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Abstract

A solution method for the computation of steady Euler �ows in one�
dimension is presented� The approach is to combine the solution of the
governing equations in a Lagrangian reference frame with an algorithm to
remap the computational mesh� The aim is to retain the accuracy inherent
with Lagrangian schemes and to avoid grid tangling and distortion scenarios�

The Lagrangian phase consists of a �nite volume scheme which employs
an approximate Riemann solver to evaluate intercell numerical �uxes� The
HLLC and Roe Riemann solvers are considered� The Rezoning phase is
simply an advection algorithm� Piecewise constant and piecewise linear ad�
vection schemes are investigated�

A technique is introduced to improve the resolution of the split scheme
numerical solution pro�le at a material interface� The premiss is to allow a
Lagrangian�type scheme at the interface to coexist with a split scheme for
regions away from the interface� The methodology permits the existence of
two non�uniform computational cells either side of the interface and sup�
presses the remap procedure at the interface� To prevent the creation of
disproportionate non�uniform cells and interaction between the interface and
a mesh boundary� the rezoning operation is augmented with a reconstruction
algorithm�

The proposed two�step Lagrange�Remap or split methods are tested on
Sod�s shock tube problem and comparisons made between the Lagrange�
Remap schemes and their Eulerian �unsplit� and pure Lagrangian counter�
parts�

The interface tracking method is tested on shock tube problems contain�
ing two di	erent gases�
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� Introduction

The Euler equations for one�dimensional unsteady compressible �ow� in the
reference frame of a moving control volume� can be expressed in integral form
as

�

�t

Z
��t�

U d� 

Z
��t�

�n�F d� � � � �
�

��t� is the moving control volume enclosed by its boundary ��t�� and �n
denotes the outward normal to the boundary ��t�� The vector of conserved
variables U and the �ux vector F are given by

U �

�
� �

�u
�E

�
A and F �

�
� �u� �x��

�u� �x��u p
�u� �x��E  up

�
A � ���

where � is the density� u is the �uid velocity� �x is the velocity of ��t�� E is
the speci�c total energy� and p is the pressure� The system �
����� represents
conservation of mass� momentum and energy� When �x � �� the system corre�
sponds to the Eulerian description of conservation� whereas �x � u results in
the Lagrangian form� where the control volumemoves with the instantaneous
�uid velocity� The generality or arbitrariness of the description o	ered by
equations �
����� has rewarded them with the name Arbitrary Lagrangian�
Eulerian �ALE� form of the conservation laws ���� The set of equations is
completed by the addition of an equation of state� The ideal gas equation of
state is employed in this work and is given by

p � �� � 
��e � ���

where e � E � �
�
u� is the speci�c internal energy and � is a constant repre�

senting the ratio of speci�c heat capacities of the �uid�
This work focuses on solving the governing equations �
����� in a La�

grangian reference frame� Therefore� it is assumed �x � u� and the vectors U
and F take the form

U �

�
� �

�u
�E

�
A and F �

�
� �

p
up

�
A � ���

When formulating Lagrangian methods it is necessary to combine the schemes
with an algorithm to rezone the computational mesh� This is because� as time
advances� severe grid distortion or tangling may destroy the calculations� The

�



Lagrangian phase can then be considered as a solution for the sound wave
related transport� and the rezoning of the grid can be viewed as the solution
for the advection related transport ����

The presentation of the proposed solution method is divided into eight sec�
tions� Section � is concerned with the discretisation of the governing equa�
tions� Sections � and � respectively derive the HLLC and the Roe Riemann
solvers for the Euler equations in a Lagrangian frame of reference� Section �
is devoted to algorithms for rezoning of the mesh� Material interface tracking
is considered in Section �� Numerical results are displayed and discussed in
Section �� Finally� conclusions and proposed extensions of the work can be
found in Sections � and � respectively�

� Discretisation of the Governing Equations

The spatial domain ��� L� is discretised into M computational cells or �nite
volumes Ii � �xi� �

�
� xi� �

�
� initially of uniform size �xi � xi� �

�
� xi� �

�
�

�x � L�M � with i � �� � � � �M�
� For a given cell Ii the location of the
cell centre or particle position is denoted by xi� The value of the conserved
variables for cell Ii� denoted by Ui� are cell averaged values and are stored
at the cell centre xi� Therefore�

Ui �



�xi

Z x
i��

�

x
i�

�
�

U�x� dx ���

where U�x� is the data distribution� The temporal domain ��� T �� where T
is some output time and not a boundary� is discretised into time steps �t of
variable size� A superscript is used to identify a particular time level� Figure
�
� is an x� t diagram of the computational mesh�

The governing equations �
� and ��� are discretised via the �nite volume
formula

Un��
i �n��

i �Un
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n
i

�t
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�
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�
� Fi� �

�

�
� ���

where �t is the time step from time tn to time tn��� �n
i is the cell volume at

time tn� and Fi� �
�
is the numerical �ux across cell boundary xi� �

�
� From a

practical point of view� and according to the explicit approach� equation ���
can be rewritten in the more convenient form
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Figure 
� x� t diagram of the computational mesh

In order to preserve conservation� the volume for cell Ii is updated by
discretising the one�dimensional geometric conservation law �GCL�

��i

�t
�
Z
�i�t�

�x��n d� � � ���

in the following manner

�n��
i � �n

i

�t
� � �xi� �

�
 �xi� �

�
� ���

Here �xi� �
�
is the grid velocity normal to the boundary xi� �

�
� Therefore� since

�x � u �Lagrangian reference frame�� the volume is explicity updated via

�n��
i � �n

i ��t
�
ui� �

�
� ui� �

�

�
� �
��

where ui� �
�
is the �uid velocity normal to the boundary xi� �

�
� Equivalently�

�n��
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where xn��
i� �

�

� �t ui� �
�
is the location of boundary xi� �

�
at time tn���
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Time integration of particle position xi is performed according to an es�
timate of the displacement of the centre of volume of cell Ii�

xn��i �
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i ��i

�
xni �

n
i 

�
gi� �

�
zi� �

�
 gi� �

�
zi� �

�

��
� �
��

where zi� �
�
� �ui� �

�
�t is the additional cell volume created by normal dis�

placement of the boundary xn
i� �

�

� ��ui� �
�
is the outward normal velocity to the

boundary xn
i� �

�
�� gi� �

�
� �xn

i� �
�
 ui� �

�
�t��� is the position of the centre of

zi� �
�
� and ��i �

P�
j�	 zi� �

��j
is the total change in cell Ii volume over time

interval �t �
��
This calculation can be viewed as a weighted average of the positions of

the centres of the individual volumes which make�up the cell volume at time
tn��� The weights are equal to the value of the individual volumes�

In order to advance the �ow solution at a particle using equation ���
the numerical �ux vector is required on each of the boundaries of the cell�
Each numerical �ux is obtained by calculating an approximate solution to
the Riemann problem that exists at the respective boundary� The two Rie�
mann solvers used in this work are the HLLC and the Roe schemes� Both
are described in detail in the following two sections�

Control of the time step size is achieved� prior to each time step� by
selecting �t such that none of the waves resulting from a Riemann problem
at a cell boundary transverse more than half a cell width of the Eulerian
mesh� The time step �t from time level tn to tn�� is thus calculated using
the formula

�t �
Ccfl�x	i
Sn
max

� �
��

where Ccfl � ��� and Sn
max is an upper bound on the wave speeds present

throughout the domain at time level n� There are various ways of estimating
Sn
max� and for the time�dependent� one�dimensional Euler equations a reliable

choice is given by

Sn
max � max

i
fjuni j ani g � i � �� � � � �M � �
��

where ani �
q

�pn
i

�n
i

is the local sound speed approximation �
���

However� equation �
�� can lead to an underestimate of Sn
max� For ex�

ample� assume shock�tube data in which the �ow is stationary at time t	�
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Here uni � � and the sound speed is the only contribution to Sn
max� Un�

derestimating the value of Sn
max results in a choice of �t that is too large

and instabilities may develop from the beginning of the computations� To
circumvent this problem the Ccfl constant in �
�� is reduced to ��
 for the
�rst � time steps of the simulation�

� The HLLC Solver

The HLLC scheme �
�� is a modi�cation of the HLL Riemann solver of
Harten� Lax and van Leer ���� In the HLL scheme the full Riemann prob�
lem is reduced to an approximate solution in which the wave con�guration
consists of two waves separating three constant states� The two waves repre�
sent the two non�linear discontinuities in the exact Riemann solution� In the
HLLC solver� the missing contact wave is restored� Thus the approximate
Riemann solution for the HLLC scheme consists of four constant states sep�
arated by three waves� Here� the essential features of HLLC are derived for
the Lagrangian frame following the approach suggested by G�Ball �
��

Figure � is an x� t diagram of the resulting wave structure for two adja�
cent cells Ii and Ii��� on a Lagrangian one�dimensional grid� with piecewise
constant data states UL � Un

i and UR � Un
i��
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Figure �� Schematic of approximate Riemann solution in Lagrangian control volume
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The cell particles and their movements are indicated by the linesA�A and
C�C� The interface between the two relevant cells� which by de�nition is the
contact wave of the Riemann problem� has position through time indicated
by the line B � B� The � superscript denotes the wave�processed states i�e
the data states that are created due to the passage of three waves emerging
from the origin of the initial discontinuity� SL� S�� and SR are respectively
the speed estimates for the left� contact and right waves�

It is required to calculate a numerical �ux across the line B �B� that is
across the cell interface� over time interval �t�

Applying conservation of U on A�B over the time interval �t gives�
�x

�
� uL�t SL�t

�
UL  ��bL�t�  �tS�U�

L �
��

�
�x

�
UL �tFL ��tF�

L

� �SL � uL�UL  �S� � SL�U
�

L � FL �F�

L �
��

� F�

L  �S� � SL�U
�

L � FL  �uL � SL�UL �
��

� F�

L � FL U�

L

�
SL � S�

	�UL �SL � uL� �
��

Similarly� conservation of U on B � C over the time interval �t yields

F�

R  �S� � SR�U
�

R � FR  �uR � SR�UR �
��

� F�

R � FR U�

R

�
SR � S�

	�UR �SR � uR� ����

The wave processed states and the corresponding lagrangian �uxes take
the form

U�

K �

�
� ��K

��Ku
�

K

��KE
�

K

�
A and F�

K �

�
� �

p�K
u�Kp

�

K

�
A � ��
�

where K � L�R and S� � u�L � u�R � u� � ui� �
�
is an approximation of

the �uid velocity normal to the boundary xi� �
�
� Therefore� by substitution

of these quantities into �
�� and �
��� and by consideration of the individual
rows of these vector equations� it can be shown that

��K � �K
�SK � uK�

�SK � S��
� ����

��Ku
�

K � �K
�SK � uK�

�SK � S��
S� � ����

p�K � pK  �K �uK � SK� �uK � S�� � ����
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and

��KE
�

K � �K
�SL � uL�

�SL � S��



EK  �S� � uK�

�
S� 

pK
�K �SK � uK�

��
� ����

for K � L�R� The intercell numerical �ux is then calculated via averaging
of equations �
�� and ����

Fi� �
�
� �F�

L  F�

R� �� � ����

where the U�

K� K � L�R� vector in �
�� and ���� are obtained using equa�
tions ����� ���� and �����

Following the original approach suggested by Toro et� al� �
��� the wave
speed estimates� SL� S�andSR� are acquired from

SL � uL � aLqL � S� � u� � SR � uR  aRqR � ����

where aL� aR are the local sound speeds in the undisturbed �uid� and qK� for
K � L�R� is a parameter de�ned by

qK �

�

 HK � 
q


  ���
��

�HK � 
� otherwise
� ����

HereHK � �p��pK � and �p� and u� are estimates for the wave processed presure
and velocity� If the K wave is a rarefraction then the speed SK corresponds
to the characteristic speed of the head of the rarefraction� If the wave is a
shock then SK corresponds to an approximation to the true shock speed� the
wave relations used are exact but the pressure ratio across the discontinuity
is approximated� because the value of �p� is an estimate�

In this work� values for �p� and u� are calculated using the adaptive hybrid
approach proposed by Toro �
��� which is based on his exact Riemann solver�
The method is described algorithmically below�

� The initial approximation for the pressure is evaluated using

�p�int �



�
�pL  pR�� 


�
�uL � uR� � a � ����

where a � �aL  aR� �� and � � ��L  �R� ���

� If �p�int � pmin and �p�int � pmax� and Q � pmax�pmin � �� where pmin �
min�pL� pR� and pmax � max�pL� pR�� then

�p� � max �tolerance� �p�int� � ����

u� �
�uL  uR�

�
� �pR � pL�

�a �
� ��
�

�



� If �p�int � pmin� suggesting that the � non�linear waves in the exact
solution to the Riemann problem are rarefraction waves� then

�p� �


aL  aR � ���

�
�uR � uL�

aL
pz
L

 aR
pz
R

� �
z

� ����

u� � uL � �aL
�� � 
�


�
�p�

pL

�z

� 


�
� ����

where z � ���
��

�

� Else the � non�linear waves in the exact solution of the Riemann prob�
lem are assumed to be shock waves� and

�p� �
gL �p	� pL  gR �p	� pR � �uR � uL�

gL �p	�  gR �p	�
� ����

u� �



�
�uL  uR� 




�
���p� � pR� gR �p	�� ��p� � pL� gL �p	�� � ����

where

gK �p� �



AK

pBK

� �
�

� ����

AK �
�

��  
� �K
� ����

BK �
�� � 
�

��  
�
pK � K � L�R� ����

and

p	 � max��� �p�int� � ����

The initial approximation for the pressure ����� and the velocity approx�
imation ��
�� were achieved by writing the governing equations in terms of
the primative variables W � ��� u� p�� linearising about the constant state
W � �

� �WL WR�� and then applying the Rankine�Hugoniot jump con�
ditions across left and right waves� The condition Q � � ensures that the
presure data values pL and pR are not widely di	erent� Equations ���� to ����
were derived by assuming the appropriate wave struction and applying exact
wave relations across the discontinuities� The ��shock equations require the
use of the initial pressure esimation ���� since the approach does not lead to
a close form solution�
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Second Order Accuracy For HLLC

In this work� second order accuracy for the Lagrangian HLLC Riemann solver
is achieved using the MUSCL�Hancock approach �
��� The method can be
divided into � stages�

Stage �� Data Reconstruction

The piecewise constant data cell average values Un
i are locally replaced by

piecewise linear functions in each cell �xi� �
�
� xi� �

�
� according to

Un
i �x� � Un

i  �x� xi� 
	i � x � �xi� �
�
� xi� �

�
� � ����

where 
	i is a vector of limited �rst derivative approximations� The values of
Un

i �x� at the cell boundaries of cell Ii are

UL
i � Un

i �
�xi
�

	i and ��
�

UR
i � Un

i 
�xi
�

	i � ����

and are called boundary extrapolated values�
The two alternative methods used in this work for evaluating the vector


	i are described in detail in the next subsection�

Stage �� Evolution

The boundary extrapolated values UL
i and UR

i are considered to be cell av�
erage values� and are evolved by �

�
�t using a conservative scheme in which

the numerical �ux is equal to the exact �ux function evaluated at the ex�
trapolated values� That is�

U
L

i � UL
i 
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�xni
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�
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	� F
�
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i
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U
R

i � UR
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�t
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F
�
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i

	� F
�
UR

i

	�
� ����

Stage �� The Riemann Problem

To calculate the intercell �ux one now solves the Riemann problem with data

UL � U
R

i � UR � U
L

i � ����

The generalised Riemann problem created by the piecewise linear data ����
is ignored�







Evaluating the vector ��i�

Two methods are considered for evaluating the vector of limited �rst deriva�
tive approximations� namely conserved variable slope limiting and wave�by�
wave slope limiting�

Conserved Variable Slope Limiting�

The vector 
	i in cell Ii is taken to be a function of the derivatives
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The limited derivatives are evaluated component�wise using
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where the value 
 � 
 reproduces a minmod�type limiter� and 
 � � repro�
duces a superbee�type limiter�

Equation ���� has been established by forcing equivalence of MUSCL�
type schemes with conventional �ux limiter methods� for the model scalar
equation on a �xed Eulerian grid �
��� The result then being modi�ed to
allow for the varying cell volumes associated with Lagrangian methods�
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Wave�By�Wave Slope Limiting�

The vector 
	i in cell Ii is taken to be a function of the derivatives
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Figure �� Wave�by�wave decomposition of gradients obtained from local solutions of
Riemann problems� with cell averages as initial data�

Equation ���� can then be written as
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thus� allowing the limiting process to be applied wave�by�wave�

The limited derivatives are evaluated component�wise using
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where the value 
 � 
 reproduces a minmod�type limiter� and 
 � � repro�
duces a superbee�type limiter�

Equation ���� has been established by forcing equivalence of MUSCL�
type schemes with conventional �ux limiter methods� for the model scalar
equation on a �xed Eulerian grid �
��� The result then being modi�ed to
allow for the varying cell volumes associated with Lagrangian methods�

� The Roe Solver

The Roe solver calculates a numerical approximation to the solution of hy�
perbolic conservation laws by solving a constant coe!cient linear system�
That is� a modi�ed conservation law is computed and solved to render a nu�
merical approximation to the original problem ���� Here� an adjustment to
the �xed grid Roe scheme is derived to adapted the scheme to a Lagrangian
reference frame �

�� The adjustment is designed to take into account mesh
movement�

Figure � is an x � t diagram of the resulting wave structure of the
Roe approximation for two adjacent cells Ii and Ii��� on a Lagrangian one�
dimensional grid� with piecewise constant states UL � Un

i and UR � Un
i���

The cell particles and their movements are indicated by the lines A �A
and C�C� The interface between the two relevent cells has position through
time indicated by the line B � B� The � superscript denotes the wave�
processed states� The eigenvalues �u� �a� �u� �u �a of the Roe Jacobian matrix
�A �UL�UR� are� respectively� the wave speed estimates for the left� contact
and right waves�
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Figure �� Schematic of approximate Riemann solution in Lagrangian control volume
ABC�

For a �xed grid� diagonalising the Roe linearisation for the system of non�
linear equations allows the �ux between the two adjacent cells Ii and Ii��
�i�e the �ux across the t�axis� to be written as
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�UL�UR� �
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where
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pK
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the wave strengths are given by
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the eigenvalues are
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and the corresponding right eigenvectors are
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Here� �u � ui� �
�
is an approximation of the �uid velocity normal to the bound�

ary xi� �
�
� and

�u �

p
�LuL 

p
�RuRp

�L 
p
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����

�H �

p
�LHL 

p
�RHRp

�L 
p
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Here HK� K � L�R� is the total enthalpy

HK �
EK  pK

�K
K � L�R � ����

The tilde is used to indicate a Roe averaged value�
The �ux function ���� has been written in such a way that its value� the

�ux relative to a �xed grid� can be split naturately into two quantities� the
�ux which is a result of advection with the �ow� and the �ux relative to the
�ow�

Therefore� to determine the �ux between the two cells Ii and Ii�� in a
Lagrangian frame of reference �i�e� the �ux across the B � B in Figure ���
one simply subtracts the �ux resulting from advection with the �ow from
equation ����

Fi� �
�
�UL�UR� �




�


FL �UL�  FR �UR��

�X
m��

���m�

i� �
�

j���m�
rel j�e�m�

i� �
�

�
����

where

FK �UK� �

�
� �

pK
uKpK

�
A � K � L�R � ����


�



and the remaining variables are given by equations ���� to �����

It is well known that Roe�s scheme for the Euler equations on a �xed
grid permits non�physical stationary discontinuities� a sonic expansion wave
may be incorrectly approximated by a rarefraction shock� Hence� Roe�s ap�
proximate Riemann Solver in general does not satisfy an entropy inequality�
However� it can be modi�ed to eliminate these entropy violating discontinu�
ities while retaining those that satisfy the entropy law� Such an entropy �x
is not necessary in the Lagrangian case� because shock and expansion waves
move with respect to the Lagrangian reference frame �
���

Second�Order Accuracy For Roe

In this work� second�order accuracy for the Lagrangian Roe solver is achieved
using �ux limiting� The method is to linearize the system of non�linear equa�
tions using Roe�s approximate Riemann solver� diagonalise� and then apply
�ux�limiting to each of the resulting scalar equations ����

Taking Godunov�s scheme to calculate the �rst�order �ux and the Lax�
Wendro	 scheme to evaluate the second�order �ux� the numerical �ux be�
tween cell Ii and Ii��� for the corresponding �xed grid �ux�limiter solver�
can be written as
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Here� the �uxesFL�FR� the wave strengths
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is the limiter function� Three limiter functions are considered �
��� namely
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Subtraction of the �ux resulting from advection with the �ow from equa�
tion ��
� produces the required second�order accurate Lagrangian �ux
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where FL�FR are given by equation �����  � �r� with
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and the remaining variables are given by equations ���� to ���� and ���� to
�����
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� Rezoning

As time advances� solutions calculated using a Lagrangian scheme may be�
come less accurate or even destroyed due to mesh distortion or tangling� To
circumvent this failure the Lagrangian scheme can be combined with an al�
gorithm to rezone or remap the grid� In this work the rezoning is carried
out at each time step and the mesh is remapped back to the grid that was
generated at the initial time level�

Rezoning involves �xing the �uid and then moving the mesh through the
medium to return it to where it initial resided at the start of the Lagrangian
phase� This process can be viewed as advecting the �uid through the mesh
in pseudo time until� relative to the �uid� the mesh has been moved back to
where it began�

The actual quantities remapped are the conserved variables of mass�
momentum and internal energy ��e�� It is possible to remap total energy�
�
�
e �

�
u�
		

and arguably this has improved energy conservation proper�
ties� However� if in the problem being considered virtually all of the energy
is kinetic energy� then subtracting this from total energy to calculate rezoned
internal energy� could� due to numerical inaccuracies� result in a physically
incorrect negative value �
���

Mesh movementwithin the Lagrangian phase can result in a cell�s position
and volume being altered� Figures ��� and ��� contain x�U diagrams of four
possible outcomes of the Lagrangian phase for cell Ii� Diagrams �a� and �b�
show� in turn� non�uniform movement to the left and to the right� Diagrams
�c� and �d� respectively illustrate cell contraction and expansion�

The distance traveled by the boundary xi� �
�
during the Lagrangian phase

is denoted by ��i� �
�
and is calculated using the formula

��i� �
�

� xn��
i� �

�

� xn
i� �

�

� �t �xi� �
�
� ����

where �t is the time increment for the Lagrangian phase� and �xi� �
�
�� ui� �

�
�

is the grid ��uid� velocity normal to the boundary xi� �
�
� � ui� �

�
is determined

by the chosen Riemann solver��
Cell boundaries and centers are remapped by simply returning them to

the position they held at the previous time level

xi� �
�

� xn
i� �

�
� ����

xi � xni � ����

The overbar is used to indicate post�remap values�
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Figure �� x � U diagrams for cell Ii of non�uniform movement to the left and to the
right resulting from the Lagrangian phase�

Re�initialation ofUi� required due to the rezoning of cell Ii from
h
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� xn��
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i
to
h
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i
�
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i
� is performed using the conservative �nite vol�

ume formula
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is a vector of conserved variable averages for the
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to the conserved variables in the vector U� Their values are determined by
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Figure �� x�U diagrams for cell Ii of cell contraction and expansion resulting from the
Lagrangian phase�

�xi� �
�
and are dependent on the type of data reconstruction applied in each

cell�
As discussed earlier� the rezoning phase can be viewed as an advection

process� Interpreting equation ��
� in this way� the quantity ��i� �
�
can be

seen as a volume �ux� and the components of the vector Fi� �
�
can be viewed as

advection �uxes divided by the velocity normal to the corresponding bound�
ary� That is

Fi� �
�
�
Fi� �

�

�xi� �
�

� ����

where Fi� �
�
is a vector of numerical advection �uxes which are to be evalu�

ated� Fi� �
�
is known as a vector of e	ective �uxes� Moreover� expression ����

can be substituted directly into equation ��
� to produce the more familiar
form of the non�linear advection equation
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From a practical view point the vector equation ��
� can be written in
the component�wise form
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where Mi � �i�xi is the mass in cell Ii� �Mi� �
�
� ��i� �

�

�F �

i� �
�

� and �F �� �F u

and �F e are respectively the e	ective �uxes for density� velocity and internal
energy�

Two methods for evaluating the required �ux values are considered� namely
the piecewise�constant� or Courant� Isaacson and Rees �CIR� scheme ���� and
the piecewise�linear advection scheme of Van Leer �
��� The e	ective �ux for
these methods ��� are� respectively
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where

�ai �

�
��sign �ai�� � ai��� if 
 � �
� otherwise

� ����
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jai�� � ai��j� �jai�� � aij� �jai � ai��j

�
� ��
�


 � �ai�� � ai� �ai � ai��� � ����

For linear advection� equation ���� is monotonicity preserving�
The rezoning equations are derived by assuming a particle�s location is

at the center of a cell� However� the actual position of a particle is not re�
quired for any of the remap calculations� Therefore� since the particles are

��



being remapped back to their initial position� equation �
�� is made redun�
dant when rezoning is carried out at each time step� A similar observation
concerning boundary positions can be made� leaving it unnecessary for the
values xn��

i� �
�

� i � �� 
� � � � �M to be calculated and stored�

� Interface Tracking

The aim of this section is to present in detail a method for improving the
resolution of the numerical solution pro�le at a material interface� The tech�
nique� developed by the author� is designed to be used inconjuction with the
Lagrange�Remap �split� schemes discussed previously in this paper� where
the rezoning is proformed at each time step�

In the current setting of the one�dimensional compressible Euler equa�
tions� Lagrangian schemes are credited with the ability to accurately capture
moving material interfaces because they do not excessively smear the density
pro�le� �See for example the results of Section � which were generated using
Lagrangian versions of the HLLC and Roe approximate Riemann solvers��
Moreover� when using a Lagrangian scheme it is clear which equation of state
is valid in each of the computational cells in the domain�

The premiss behind the solution method is to allow a Lagrangian�type
scheme at the interface to coexist with a split scheme for regions away from
the interface� The approach is to maintain the alignment of a cell boundary
with the material interface throughout execution of the numerical scheme�
The designated boundary then moves in a Lagrangian sence� i�e with the
�uid� tracking the movement of the material interface� The alignment of the
cell boundary with the interface is ensured by� �rstly� permitting the exis�
tence of two non�uniform computational cells either side of the interface� and
secondly� suppressing the remap procedure at the boundary coinciding with
the interface� To prevent the creation of disproportionate non�uniform cell
volumes and interaction between the interface and another boundary in the
domain� the remap procedure of Section � is augmented with a reconstruc�
tion algorithm� The volume of "proportionate� non�uniform cells are chosen
by the author to be between one half and three halves of the volume of a
uniform cell�

Tracking the interface in this way avoids the complications associated
with multimaterial cells� Mulitmaterial cells do not exist at the initial time
level� and they are not created during execution of the scheme�

The solution method is now described in detail�

��



The Initial Discretisation�

At an initial time t � t	� a material interface is assumed to be located
at position xip� and the computational domain is divided into M uniform
compututaional cells of size �x� as detailed in Section �� If xip coincides
with a cell boundary then cell averaged values of the conserved variables can
be calculated for each cell and stored at their centre�
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Figure �� x � U diagrams illustrating initial cell merging to the right of the material
interface�

If xip does not initially coincide with a cell boundary� then the methodol�
ogy is to form two non�uniform computational cells either side of the interface�
forcing xip to be aligned with a boundary of the mesh� Then to ensure the
newly created cells are proportionate the non�uniform cell with volume less
than �

�
�x � is merged with its adjacent uniform cell� The boundary coincid�

ing with xip is denoted xint� �
�
and the cells to the left and right of xint� �

�
are

denoted Iint�� and Iint respectively� A schematic of this procedure is shown
in Figures � and �� Figure � shows the case where cell merging is required to
the left of the interface� Figure � demonstrates cell merging on the right of

�If xip is located in the exact centre of a cell� then one of the non�uniform cells is
choosen arbitrarily�
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Figure �� x � U diagrams illustrating initial cell merging to the left of the material
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the interface� It should be noted that the number of cells in the computation
domain has not been increased or decreased as a result of the reconstruction�

The Lagrangian and Remap Phases�

The Lagrangian phase of the split scheme is executed in exactly the same
way as described in earlier sections� with a Riemann problem being solved
approximately at the material interface� As with all cell boundaries� the
position of xint� �

�
�and hence the position of the interface� is updated via

xn��
i� �

�

� xn
i� �

�
�t ui� �

�
� ����

where ui� �
�
is an approximation of the �uid velocity normal to the boundary

xi� �
�
resulting from the Riemann solver� Thus� the interface boundary is

explicity updated by the equation

xnewip � xoldip �t uint� �
�
� ����

The mesh resulting form the Lagrangian phase is remapped following
the approach described in Section �� However� when rezoning� the the cell

��



boundary which is aligned with the material interface is not remapped� The
boundary xint� �

�
remains where it was positioned at the end of the Lagrangian

phase� Therefore� at the end of the remap phase there continues to exists�
embedded within an otherwise uniform grid� two non�uniform cells lying
either side of the interface� Figure � contains x � U diagrams illustrating
the Lagrangian and amended remap phases at the interface for uint� �

�
� ��

The overbar is used to denote post�remap values�
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Reconstruction

To prevent the creation of disproportionate non�uniform cell volumes and
interaction between the interface and another boundary of the computational
domain� the remap procedure is augmented with a reconstruction algorithm�

The reconstruction need only be applied when the inequality




�
�x � �xn��int����x

n��
int � �

�
�x � ����

is compremised�
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The reconstruction process can be divide into two stages� The �rst stage
is the merging of the non�uniform cell with volume less than �

�
�x with its ad�

jacent non�uniform cell� The second stage involves dividing the non�uniform
cell with volume greater than �

��x into a smaller non�uniform cell and a uni�
form mesh cell� By de�nition the smaller non�uniform cell will have volume
�xi ��x � �

�
�x� satisfying inequality ���� �i � int�
 or int according to

the value of uint� �
�
�see below��� Intuitively� the direction in which the inter�

face moves during the Lagrangian phase �indiacated by the sign of uint� �
�
�

will determine which cells are to be merged and which are to be divided�
The result of the reconstruction will be two non�uniform cells #Iint�� and #Iint�
satisfying ����� located either side of the interface and embedded within an
uniform grid whose cells have volume �x� The inverted hat symbol is used to
indicate reconstructed quantities� The new discretization will have the same
number of computational cells as the initial discretization� By de�nition�

xnewip � xn��
int� �

�

� xint� �
�
� #xint� �

�
� ����

Cell Merging

If the material interface traverses the x�axis from left to right during the
Lagangian phase �uint� �

�
� �� then it is necessary to merge cells In��int and

In��int�� to form a new non�uniform cell #Iint� see Figure 
�� However� if in
the Lagrangian phase the material interface progresses along the x�axis from
right to left �uint� �

�
� �� then it is necessary to merge cells In��int�� and In��int��

to create a new non�uniform cell #Iint��� see Figure 

� Cell volumes and node
positions are updated via

�#xint�k � �xint�k �x � ����

#xint�k �
xnewip  xint� �

���k

�
� ����

where

k �

�
� uint� �

�
� �

�
 uint� �
�
� �

� ����

The new conserved variable cell averges are evaluated using the formula

�Uint�k �
�xint�kUint�k �xUint����k

�#xint�k
� �
���

where k is given by equation �����
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�� x� U diagram illustrating cell reconstruction for uint��
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Cell Division

If the material interface traverses the x�axis from left to right during the
Lagrangian phase �uint� �

�
� �� then cell In��int�� must be divided into a non�

uniform cell #Iint�� and a uniform cell #Iint��� see Figure 
�� However� If
the material interface advances along the x�axis from right to left in the
Lagrangian phase �uint� �

�
� �� then it is necessary to divide cell In��int into a

non�uniform cell #Iint and a uniform cell #Iint��� see Figure 

� Cell volumes�

��



�b�

�a�

x

x

Uint

Ua

U c

I int

xint��
�

xint��
�

xint�� xint

Uint��

xint�

�

�Uint

�Iint

�xint
�xint�


�
�xint��

�

�Iint��

�Uint��

�xint�� �xint��

�Iint��

�Uint��

I int��

�xint���xint�� �xint

��xint�� ��xint ��xint�� 
 �x

I int��

xint��

U b
Uint��

xnew
ip 
 �xint�


�
�xint��

�

x
new
ip 
 xint�


�

Figure 

� x� U diagram illustrating cell reconstruction for uint��

�

� ��

cell boundaries and node positions are updated via

�#xint���k � �xint���k ��x � �
�
�

�#xint����k � �x � �
���

#xint� �
���k

�

�
xnewip ��#xint�� k � �
xnewip �#xint k � �


� �
���

#xint���k �
#xint� �

���k
 xnewip

�
� �
���

#xint����k � #xint� �
���k


�x

�
� �
���

where k is given by equation �����
Within the non�uniform cell to be divided� the piecewise constant data

cell average values Uint���k are locally replaced by piecewise linear functions
according to

Uint���k �x� � Uint���k  �x� xint���k�	int���k � x � �xint� �
��k

� xint� �
��k

� �

�
���

��



where 	int���k is a vector of limited �rst derivative approximations� and k is
given by equation ����� The vector 	int���k is taken to be a function of the

vectors

�


int� �

���k


x
int�

�
���k

�
and

�


int� �

���k


x
int�

�
���k

�
� namely

	int���k � 	int���k

�
�int� �

���k

�xint� �
���k

�
�int� �

���k

�xint� �
���k

�
� �
���

where

�int� �
���k

� Uint����k �Uint����kand �
���

�int� �
���k

� Uint����k �Uint����k � �
���

The components of 	int���k are evaluated using the formula

minmod

�
� �

�j�

i� �
���k

�xi� �
���k

�
�

�j�

i� �
���k

�xi� �
���k

�
A � �

��

where �
�j�

i� �
�
��k is the jth �j � 
� �� �� component of �i� �

���k
� and

minmod �x� y� �



�
�sign�x�  sign�y��min�jxj� jyj� � �


�

sign �
x

jxj � �

��

The values ofUint���k �x� at the boundaries #xint� �
���k

� #xint� �
���k

and #xint� �
���k

are� respectively

Ua � Uint���k � �xint���k
�

	int���k � �

��

Ub � Uint���k 
�
#xint� �

���k
� xint���k

�
	int���k and �

��

Uc � Uint���k 
�xint���k

�
	int���k � �

��

Redistribution of the conserved variables is then equivalent to evaluating
the area of the trapezoids which lie above the repsective cells and below
the piecewise linear function� see Figures 
� and 

� Cell averages values�
which are to be stored at the cell centre� are obtained upon division by the
corresponding volume� Therefore

#Uint����k �



�#xint����k
�
�#xint����k

�

�
Ub Uc

	
� �

��

#Uint����k �



�#xint����k
�
�#xint����k

�

�
Ua Ub

	
� �

��

where k is given by equation �����
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� Numerical Results

The selected test problems are shock tube problems ���� ���� The premiss
of the problem is a long cylindrical tube containing two mediums separated
initially by a thin membrane� The materials are assumed to be at rest� but are
held at di	erent constant pressures and densities� At time t	 the membrane
is ruptured and the problem is to determine the ensuing motion of the two
materials�

In this work� the materials either side of the membrane �and the ensuing
material interface� are ideal gases� and the ideal gas equation of state is
employed as the closure condition for the governing equations �see section

�� An ideal gas is uniquely determined by he value of �� the ratio of speci�c
heat capacities of the �uid� in the equation of state�

Numerically� the initial conditions of the test consist of two constant
states separated by a discontinuity� The two states are given by�

� �L
uL
pL

�
A and

�
� �R

uR
pR

�
A �

��

The discontinuity is initially situated at x � ���� The values of � to the left
and to the right of the material interface is denoted by �L and �R respec�
tively� Three test problems are considered� each with an exact solution for
the one dimension time dependent Euler equations� The initial data for the
tests is given in table 
� The exact solution for each of the tests consists
of a left travelling rarefraction wave� and right travelling contact and shock
waves� The exact and numerical solutions are computed in the spatial do�
main � � x � 
� The numerical solution is computed with M � 
�� cells�
and boundary conditions are transmissive� In the �gures displaying results�
the exact solution is represented by a full line and the numerical solution is
denoted by a dotted line�

�L uL pL �L �R uR pR �R

test 
 
�� ��� 
�� 
�� ��
�� ��� ��
 
��
test � 
�� ��� 
�� 
�� ��
�� ��� ��
 
��
test � 
�� ��� 
�� 
�� ��
�� ��� ��
 
��

Table 
� Initial data for the tests 
 to �

Four sets of results are presented� Figures 
� to �� display the results
produced using the Eulerian� or unsplit �xed grid� versions of the HLLC and
Roe schemes studied in this paper� as applied to test 
� They are included for

�




compariative reasons and full details of their implimentation can be found
in the book by E� F� Toro �
��� Figures �
 to �� show the results generated
by the Lagrangian HLLC and Roe schemes� as applied to test 
� As a con�
sequence of the simplicity of the test problem� �i�e one�dimension� no wave
interactions and small temporal domain�� there is no mesh tangling �node
over taking in one�dimension�� Hence the Lagrangian results presented suf�
fer from none of the inaccuracies caused by grid distortion� and serve as a
valuable comparision to the Lagrange�Remap data� Figures �� to �� contain
the results created using the Lagrange�Remap� or split �xed grid� HLLC and
Roe methods� as applied to test 
� Figures �� to �� show the results from
the second order HLLC scheme with a piecewise linear remap procedure� as
applied to tests 
 to ��

Eulerian Methods�

The results from the �rst�order HLLC and Roe schemes are displayed in
Figures 
� and 
� respectively� Both �gures show poor resolution of the
nonlinear waves and the discontinuous character of the linear wave is unrec�
ognizable� There are no signs of spurious oscillations in either of the results�

The results from the second�order HLLC and the Roe schemes are pre�
sented in Figures 
� to ��� Figures 
� to 
� show results for the HLLC
method using slope limiters which are "equivalent� to the �ux limiters min�
bee and superbee� Figures 
� to �� display the results obtained using the
�ux limited version of Roe�s scheme with the minbee� Van Leer and superbee
�ux limiters� All the plots disclose an anticipated improvement in accuracy
upon the corresponding �rst�order results�

The HLLC results generated using conserved variable slope limiting �Fig�
ures 
� and 
�� contain spurious oscillations between the right travelling
contact and shock waves� Particularly visible is the erroneous �uctuation
in the results corresponding to the superbee slope limiter� In comparison�
the HLLC results produced using wave�by�wave slope limiting �Figures 
�
and 
�� are void of spurious oscillations� Apart from this discrepancy� the
two approaches produce solution pro�les of equal accuracy� Hence� the data
appears to suggest that it is advantageous to apply wave�by�wave limiting�
rather than to employ conserved variable limiting in an Eulerian reference
frame�

Regardless of the type of slope limiting� the superbee limiter gives rise
to sharper resolution of the shock and rarefraction discontinuities than the
minbee limiter�

The second order Roe results are bereft of �uctuations and the shock
discontinuity is sharply resolved� The results from the superbee limiter are

��



the most promising� producing the most accurate solution pro�le of the three
limiters studied� The superiority of the van Leer limiter over the minbee
limiter� is also demonstrated�

Lagrangian Methods�

The results from the �rst�order HLLC and Roe schemes are presented in Fig�
ures �
 and �� respectively� Both �gures show equally poor shock resolution�
smearing the pro�le across six cells� The contact discontinuity is captured
well by both of the schemes� with the HLLC method exhibiting a slightly
sharper resolution� The HLLC results contain an overshoot immediately
ahead of the contact dicontinuity� whilst in the Roe results an oscillation is
visible directly behind the contact wave� Di	usion of the rarefraction wave�
typical of that expected by �rst�order schemes� is visible in both �gures� The
Roe scheme achieves greater accuracy at the shock wave than the HLLC
scheme�

The results from the second�order HLLC and the Roe schemes are dis�
played in Figures �� to ��� Figures �� to �� show results for the HLLC
method using slope limiters which are "equivalent� to the �ux limiters min�
bee and superbee� Figures �� to �� present the results obtained using the
�ux limited version of Roe�s scheme with the minbee� Van Leer and superbee
�ux limiters� All the plots show an anticipated improvement in accuracy
upon the corresponding �rst�order results�

The HLLC results generated using conserved variable slope limiting �Fig�
ures �� and ��� display spurious oscillation between the contact and shock
discontinuities� On the other hand the HLLC results produced using wave�
by�wave slope limiting �Figures �� and ��� show only a single overshoot ahead
of the contact wave� Hence� the data appears to indicate an advantage in
using wave�by�wave slope limiting oppose to conserved variable limiting in a
Lagrangian reference frame�

Regardless of which slope limiting process is applied� the superbee limiter
induces greater accuracy across the shock and rarefraction waves than the
minbee limiter�

Each of the second�order Roe results contain an oscillation preceeding
the contact discontinuity� The results from the superbee �ux limiter show an
accurate capturing of discontinuities� however oscillations are visible behind
the shock wave� see Figure ��� In comparison� the results from the minbee
�ux limiter do not contain spurious oscillations behind the shock wave� how�
ever the solution pro�le su	ers greater smearing� see Figure ��� The van
Leer �ux limiter produces results which lie between these two extremes� see
Figure ���

��



Lagrange�Remap Methods�

The results from the �rst�order HLLC and Roe schemes are given in Figures
�� to ��� Figures �� and �
 are a consequence of applying a piecewise con�
stant remap� whilst Figures �� and �� result from using a piecewise linear
remap�

The piecewise constant results show no signs of spurious oscillations�
There is considerable smearing of discontinuities� most noticable across the
contact wave� as highlighted on the density and energy plots� The Roe scheme
achieves greater accuracy at the shock wave than the HLLC scheme�

The piecewise linear results demonstrate an expected increase in accu�
racy over the piecewise constant results� However� spurious oscillations are
visible in the �gures between the contact and shock waves� These �uctua�
tions are certainly more profound within the Roe results� where there exists
a substantial oscillation behind the shock discontinuity�

The results from the second�order HLLC and Roe schemes are displayed
in Figures �� to ��� Figures �� to �� present results with a piecewise con�
stant remap� whilst Figures �
 to �� show results created by applying a
piecewise linear remap� All the results indicate an anticipated advance in
accuracy across discontinuities caused by increasing the order accuracy of
the Lagrangian phase�

For the HLLC scheme with a piecewise constant remap� the second�order
results are void of oscillations� The contact discontinuity is poorly resolved
in each of the �gures� The results again reveal the advantage of using a
superbee limiter instead of a minbee limiter� i�e� sharper resolution of the
nonlinear waves� However� these results also show a visible drop in the height
of the solution pro�le� between the contact and shock discontinuities� when
replacing the minbee limiter with the superbee limiter�

The results for the Roe scheme with a piecewise constant remap exhibit
erroneous oscillations behind the shock wave� Unsatisfactory contact reso�
lution is also evident� From looking at the results� it is obvious that the
superbee �ux limiter generates the sharpest discontinuities� but contain the
most violent oscillations� The minbee �ux limiter creates the most smeared
solution pro�le� but produces the smallest oscillations� The van Leer limiter
results again fall between these two extremes� The drop in pro�le height�
between the contact and shock waves� is also apparent in the Roe results
when using the superbee limiter as opposed to the minbee limiter�

As with the �rst�order schemes� the results show an expected improve�
ment in accuracy when the constant remap is replaced by a piecewise linear
remap� However� spurious oscillations are introduced into the HLLC results
and the �uctuations in the Roe data are ampli�ed� The Figures �
 to �� con�
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�rm that there is a reduction in the height of the solution pro�le� between
the contact and shock discontinuities� when minbee �slope or �ux� limiter is
replace by a superbee limiter�

The bene�ts of using wave�by�wave slope limiting instead of conserved
slope limiting are less obvious when either of the remapping methods is em�
ployed�

Eulerian Method Vs Lagrange�Remap Method

The results from the �rst�order HLLC and Roe Eulerian schemes are dis�
played in Figures 
� and 
� respectively� These are comparable to the results
produced by �rst�order HLLC and Roe Lagrangian methods with a piecewise
constant remap� which are located in Figures �� and �
 respectively�

As visible� both the HLLC and the Roe unsplit �Eulerian� results demon�
strate greater accuracy across the non�linear discontinuities� than the corre�
sponding split �Lagrange�Remap� results� Particularly apparent is the dif�
ference in the resolution pro�les at the rarefraction wave� The discontinuous
character of the linear wave is unrecognisable with both the unsplit and split
results�

The results from the second�order Eulerian HLLC and Roe schemes are
presented in Figures 
� to ��� Figures 
� to 
� show results for the HLLC
method using slope limiters� While Figures 
� to �� present the results
obtained using the �ux limited version of Roe�s scheme� These plots are
comparable to the results generated using the second�order HLLC and Roe
Lagrangian methods with a piecewise linear remap� which can be found in
Figures �
 to ���

For the HLLC scheme the superiority� in this test problem� of the wave�by�
wave slope limiting over the conserved variable limiting has been established
in the previous discussions� Therefore� the following observations are related
to those results created using wave�by�wave slope limiting only �see Figures

� and 
� for the unsplit results� and Figures �� and �� for the split results��

Limiter�wise the HLLC method achieves the same level of accuracy across
the non�linear waves for the split and unsplit approaches� However� Figures

� and �� indicate that the minbee limiter produces a sharper contact dis�
continuity when it is applied with a Lagrangian�Remap scheme as opposed to
an Eulerian scheme� In contrast� the super limiter favours the unsplit setting
over the split� producing a contact wave spread across � cells compared to �
cells respectively �see Figures 
� and ����

Regardless of which limiter is used� the results produced using the unsplit
HLLC schemes are void of oscillations� However� the data corresponding to

��



the split HLLC methods show erroneous �uctuations between the shock and
contact waves�

For the Roe scheme� limiter�wise it is visible that there is no obvious
advantage in adopting either the unsplit or the split approaches when con�
sidering accuracy across the shock and rarefraction waves� However� the
Lagrange�Remap results are polluted with large spurious oscillations which
are not visible in the Eulerian data� Moreover� when considering the results
from the Van Leer and superbee limiter� the contact resolution from the split
scheme can be viewed as poor when compared to that of the unsplit scheme�

Interface Tracking Method

The results to tests 
 to �� generated using the second�order HLLC scheme
with a piecewise linear interface tracking remap procedure� are displayed in
Figures �� to ��� Figures ��� �� and �� show results created using a minbee
slope limiter� while Figures ��� �
 and �� contain those results produced
using a superbee slope limiter�

The results from test 
� Figure �� and ��� are directly comparable to
the results in Figures �� and ��� which were created using the second�order
HLLC Lagrange scheme with a standard piecewise linear remap� As visible
the interface tracking procedure has made a signi�cant improvement to the
solution pro�le at the interface� In Figures �� and ��� there is no smearing of
the contact discontinuity� However� in regions away from the interface there
appears to be no di	erence between the two sets of data� Inparticlar� there
still exits in the density plots� di	usion to left of the contact and an slight
undershoot to the right�

The characteristics of the interface tracking technique are echoed in the
results from tests � and �� see Figures �� to ���

	 Conclusions

The main focus of this work has been to numerically solve the Euler equations
for one�dimensional unsteady compressible �ow� by employing a �nite volume
Lagrange�Remap scheme� The rezoning is carried out at each time step and
the mesh is remapped back to the grid which was used at the initial time
level� The aim was to aquire an insight into whether or not there is any
bene�t to employing a split �xed grid scheme �Lagrange�Remap�� rather
than an unsplit �xed grid scheme �Eulerian�� to solve the governing system
of equations�
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The results from the shock tube problem would seem to suggest that
there is no obvious advantage in adopting a Lagrange�Remap approach over
an Eulerian method� In fact the data would perhaps prompt the reader to
disregard the option of using an split scheme altogether� However� to base
a judgement on the results from one test problem alone would be� at best�
naive� To make a more informed decision� it would be wise to consider a
greater range of test problems in which there were wave interactions and
dimensions greater than one�

The split scheme presents the opportunity to consider the solution for the
sound wave related transport and the advection related transport separately�
It is this authors opinion� that this decomposition o	ers greater potential
for developing an accurate "�xed grid� solution method� than when faced
with the unsplit scenario� Moreover� in this work the results generated using
the Lagrangian schemes where extremely promising� and in general achieved
greater accuracy than the Eulerian results� It was only when the Lagrangian
schemes were combined with a remap phase� that the results became less
impressive than those from the Eulerian methods� Hence� the remap phase
in this work could be viewed as over di	usive� and this author believes that
an improvement in the rezoning algorithm would lead to the split scheme
results surpassing the unsplit results in terms of accuracy�

For the Eulerian approach the most accurate solution pro�le was cre�
ated by the �ux�limited Roe scheme using the superbee limiter �see Figure
���� The most precise results generated by a Lagangian scheme where those
produced by the HLLC method with wave�by�wave slope limiting using the
superbee limiter �see Figure ���� In terms of the Lagrange�Remap methods�
the most accurate solution pro�le was created by the HLLC scheme using
wave�by�wave slope limiting with superbee limiter and a piecewise linear
remap �see Figure ����

The interface tracking procedure of Section � has shown to greatly im�
prove the resolution of the solution pro�le at the material interface� There
is no smearing of the contact discontinuity� However� the method has not
alleviated� from the density pro�le� the di	usion to the left of the contact and
the undershoot to the right� Furthermore� extension to higher dimensions is
not obvious�


 Extensions

Areas of future work include a more rigorous testing of the proposed Lagrange�
Remap solution method� This should involve investigating how the schemes
cope with wave interactions� and how the methods can be implemented in

��



higher dimensions� In addition� there is scope for improving or even raising
the order of accuracy of the existing Lagrange and Remap phases of the split
scheme� For example� Sims ��� explored a piecewise parabolic �third order
accurate� remap algorithm�

Alternative methods for accurately resolving a material interface in one
and higher dimensions need to be investigated further�
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Figure 
�� HLLC Eulerian method applied to test �� Numerical �dotted line� and exact
�solid line� solutions are evaluated at time ��� units�
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Figure 
�� Roe Eulerian method applied to test �� Numerical �dotted line� and exact
�solid line� solutions are evaluated at time ��� units�
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Figure 
�� MUSCL�Hancock HLLC Eulerian method applied to test �� with conserved
variable slope limiting using the minbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure 
�� MUSCL�Hancock HLLC Eulerian method applied to test �� with conserved
variable slope limiting using the superbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure 
�� MUSCL�Hancock HLLC Eulerian method applied to test �� with wave�by�
wave slope limiting using the minbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure 
�� MUSCL�Hancock HLLC Eulerian method applied to test �� with wave�by�
wave slope limiting using the superbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure 
�� Flux limited verson of Roe Eulerian method applied to test �� using the
minbee limiter� Numerical �dotted line� and exact �solid line� solutions are evaluated at
time ��� units�
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Figure 
�� Flux limited verson of Roe Eulerian method applied to test �� using the Van
Leer limiter� Numerical �dotted line� and exact �solid line� solutions are evaluated at time
��� units�
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Figure ��� Flux limited verson of Roe Eulerian method applied to test �� using the
superbee limiter� Numerical �dotted line� and exact �solid line� solutions are evaluated at
time ��� units�
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Figure �
� HLLC Lagrangian method applied to test �� Numerical �dotted line� and
exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� Roe Lagrange method applied to test �� Numerical �dotted line� and exact
�solid line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with conserved
variable slope limiting using the minbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with conserved
variable slope limiting using the superbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with wave�
by�wave slope limiting using the minbee limiter� Numerical �dotted line� and exact �solid
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with wave�by�
wave slope limiting using the superbee limiter� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the
minbee limiter� Numerical �dotted line� and exact �solid line� solutions are evaluated at
time ��� units�
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the Van
Leer limiter� Numerical �dotted line� and exact �solid line� solutions are evaluated at time
��� units�
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the
superbee limiter� Numerical �dotted line� and exact �solid line� solutions are evaluated at
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Figure ��� HLLC Lagrangian method applied to test �� with piecewise constant remap�
Numerical �dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure �
� Roe Lagrange method applied to test �� with piecewise constant remap�
Numerical �dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� HLLC Lagrangian method applied to test �� with piecewise linear remap�
Numerical �dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� Roe Lagrange method applied to test �� with piecewise linear remap� Nu�
merical �dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with conserved
variable slope limiting using the minbee limiter� and piecewise constant remap� Numerical
�dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with con�
served variable slope limiting using the superbee limiter� and piecewise constant remap�
Numerical �dotted line� and exact �solid line� solutions are evaluated at time ��� units
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with wave�by�
wave slope limiting using the minbee limiter� and piecewise constant remap� Numerical
�dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with wave�by�
wave slope limiting using the superbee limiter� and piecewise constant remap� Numerical
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the
minbee limiter and piecewise constant remap� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the Van
Leer limiter and piecewise constant remap� Numerical �dotted line� and exact �solid line�
solutions are evaluated at time ��� units�
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the
superbee limiter� and piecewise constant remap� Numerical �dotted line� and exact �solid
line� solutions are evaluated at time ��� units�
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Figure �
� MUSCL�Hancock HLLC Lagrangian method applied to test �� with conserved
variable slope limiting using the minbee limiter� and piecewise linear remap� Numerical
�dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with conserved
variable slope limiting using the superbee limiter� and piecewise linear remap� Numerical
�dotted line� and exact �solid line� solutions are evaluated at time ��� units
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with wave�
by�wave slope limiting using the minbee limiter� and piecewise linear remap� Numerical
�dotted line� and exact �solid line� solutions are evaluated at time ��� units�
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Figure ��� MUSCL�Hancock HLLC Lagrangian method applied to test �� with wave�
by�wave slope limiting using the superbee limiter� and piecewise linear remap� Numerical
�dotted line� and exact �solid line� solutions are evaluated at time ��� units
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the
minbee limiter and piecewise linear remap� Numerical �dotted line� and exact �solid line�
solutions are evaluated at time ��� units�
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Figure ��� Flux limited verson of Roe Lagrange scheme applied to test �� using the Van
Leer limiter and piecewise linear remap� Numerical �dotted line� and exact �solid line�
solutions are evaluated at time ��� units�
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