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Abstract

Four-dimensional variational data assimilation (4D-Var) combines the information from
a time-sequence of observations with the model dynamics and a background state to
produce an analysis. In this paper, a new mathematical insight into the behaviour of
4D-Var is gained from an extension of concepts that are used to assess the qualitative
information content of observations in satellite retrievals. It is shown that the 4D-Var
analysis increments can be written as a linear combination of the singular vectors of a
matrix which is a function of both the observational and the forecast model systems.

This formulation is used to consider the filtering and interpolating properties of 4D-Var
using idealized case-studies with a simple model of baroclinic instability. The results of
the 4D-Var case-studies exhibit the reconstruction of the state in unobserved regions, as
a consequence of the interpolation of observations through time. The results also exhibit
the filtering of components with small spatial scales that correspond to noise, and the
filtering of structures in unobserved regions.

The singular vector perspective gives a very clear view of this filtering and interpolating by
the 4D-Var algorithm and shows that the appropriate specification of the a priori statistics
is vital to extract the maximal amount of useful information from the observations.
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1 Introduction

In weather forecasting, data assimilation is used to generate an analysis that provides the
initial conditions for numerical weather prediction. The data assimilation algorithm combines
together various sources of information about the present state of the atmosphere such as
observations, a model forecast valid at the same time (known as a background state), statistics
of the expected observation and background state errors, and a forecast model.

The algorithm known as three-dimensional variational data assimilation (3D-Var) gives an
analysis which is a weighted average of the observations and the background state. For linear
observation operators, this is the Best Linear Unbiased Estimate (BLUE), (Lorenc 1986).
The weights are defined by the error covariances so that when the observations are relatively
accurate, the analysis is drawn to the observations, but when the observations are relatively
inaccurate or there are no observations, the analysis is drawn to the background state. Since
the observational coverage of the atmosphere is not complete, the specified background error
correlations are important for spreading information from the observations to the regions
surrounding the observation locations. Thus, the a priori statistics play an important role
in determining the filtering and interpolating properties of the algorithm (Hollingsworth and
Lönnberg 1986).

3D-Var uses observations given at only a single point in time. However, it is possible to
make use of a full time-sequence of observations by linking the observations with the model
equations. This was first considered by Thompson (1961), who used dynamical equations to
propagate information from data rich regions into data holes. Sasaki (1970) subsequently de-
veloped a variational method to combine the information from a time-sequence of observations
with a numerical model. Finding the optimal state at every time is expensive, but the cost
may be reduced by using only the initial conditions as the control variables (Le Dimet and
Talagrand 1986), giving what is now known as four-dimensional variational data assimilation
(4D-Var).

4D-Var is the most advanced data assimilation algorithm used operationally (Rabier et al.
2000). The use of the model equations means it is much more computationally expensive
than 3D-Var, but it does yield many advantages. Courtier and Talagrand (1987), Rabier and
Courtier (1992), Thépaut et al. (1993), and Tanguay et al. (1995) have demonstrated that
4D-Var is able to extract information from a time-sequence of observations to infer the state
in unobserved regions. Also, from the equivalence with the Kalman Filter, it is known that
4D-Var is able to generate flow-dependent structure functions and hence give westward tilting
analysis increments that are vital for baroclinic growth. This has been demonstrated with
single-observation experiments by Thépaut et al. (1993). Operational experiments (Rabier
et al. 1998; Desroziers et al. 1999) have also shown that 4D-Var gives better analyses than
3D-Var, particularly in baroclinic regions.

Although the advantages of 4D-Var have been demonstrated, they are not well understood the-
oretically. Single-observation experiments have usefully illustrated the flow-dependent struc-
ture functions that are implicitly generated by 4D-Var, but they have not provided insight
into how the information from an observation interacts with both the model dynamics and
the other observations in a 4D-Var algorithm. The purpose of this paper is to provide a
new insight into the use of a time-sequence of observations in 4D-Var. This will be achieved
mathematically through an extension of an information content technique that is widely used
in satellite retrieval studies. This technique is used later in this paper to provide a new
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interpretation of 4D-Var analyses from idealized case-studies using the 2D Eady model.

In section 2, the singular value decomposition (SVD) technique for examining the qualitative
information content of observations in 4D-Var is introduced. The Eady model and experiments
are introduced in section 3. In section 4, the 4D-Var analyses are first discussed and then
interpreted using the SVD technique. The main conclusions of the study are given in section
5 and are followed by a brief discussion. The notation used in the paper follows Ide et al.
(1997).

2 Qualitative Information Content of Observations in 4D-Var

4D-Var considers observations, yi, at time, ti, distributed over an assimilation time window,
[t0, tN ]. It is assumed that the observational errors are unbiased, temporally uncorrelated and
have Gaussian distributions with covariances, Ri. The observations, yi, are related to the
state variables, xi, by the observation operator, H. Throughout this paper, it is assumed that
the observation operator is linear. The background state, xb, is specified at the initial time,
t0, and it is assumed that the background state errors are also unbiased and have a Gaussian
distribution with covariance, B. It is assumed that there are no cross-correlations between
the observations and the background state.

The 4D-Var algorithm then finds the initial state, x0, that is close to the background state
at the initial time and such that the trajectory, xi, satisfying the model equations, is close
to the observations through the assimilation window. Again, it is assumed that the model,
M, is perfect and linear. The linearity assumption simplifies the problem considerably, and
allows the use of the SVD. In operational assimilation, both the observation operator and the
model are weakly nonlinear. The following interpretation, however, could be applied to the
linearized models in an incremental 4D-Var formulation.

Mathematically, the analysis at time t0, xa, is determined by the state, x0, which minimizes
the cost function,

J(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N
∑

i=0

(yi − Hxi)
T R−1

i (yi −Hxi), (1a)

subject to the linear model constraint,

xi+1 = M(ti+1, ti)xi for i = 0, . . . , N − 1, (1b)

where xi is the state vector at time ti, and M(ti+1, ti) is the linear model operator from time
ti to ti+1. The first and second terms in the cost function are known as the Jb and the Jo

terms respectively.

The 4D-Var algorithm is a constrained minimization but we may rewrite it as an unconstrained
minimization by substituting the model (1b) into the Jo term in (1a):

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2
(ŷ − Ĥx0)

T R̂−1(ŷ − Ĥx0), (2a)

where the block matrix,

Ĥ =
[

HT (HM(t1, t0))
T . . . (HM(tN , t0))

T
]T
, (2b)
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is known in control theory as the observability matrix (Zou et al. 1992). The observability
matrix links the time-sequence of observations to the state vector. It can be thought of as
a generalized observation operator as it acts in a similar way to the observation operator in
3D-Var. The vector

ŷ =
[

yT
0 yT

1 . . . yT
N

]T
(2c)

is the generalized observation vector. The generalized observation error covariance, R̂, is a
block diagonal matrix with the observation error covariances, Ri, on the diagonal. Note that
this formulation can be extended to include temporal observation error correlations, in which
case R̂ would no longer be block diagonal.

We now assume that the observation error variance is σ2
o for all observations, and the back-

ground state error variance is σ2
b for all control variables. This is not true in general, but

simplifies the equations considerably. The covariance matrices can then be written as:

R̂ = σ2
oρR, B = σ2

bρB , (3)

where ρR and ρB are the observation and background state correlation matrices respectively.
If these are substituted into (2a), then the analysis is also the minimum of

2σ2
oJ(x) = µ2(x0 − xb)T ρ

−1
B (x0 − xb) + (ŷ − Ĥx0)

T
ρ
−1
R (ŷ − Ĥx0), (4)

where µ2 = σ2
o/σ

2
b is the variance ratio, which can be considered as a weighting parameter or

signal-to-noise ratio that determines the relative weight given to the observations in compar-
ison to the background state. Such a parameter is also considered by Gong et. al (1998).

Writing the algorithm in form (4) clearly illustrates that 4D-Var solves the least-squares
equations. Least-squares equations have been used for many years to solve other inverse
problems such as deducing unknown constants in dynamic oceanography (Wunsch 1977) and
determining the vertical distribution of ozone in remote sensing (Mateer 1965). Current
satellite retrieval algorithms also use the least-squares equations, and in such problems it is
useful to assess the information content of observations. For example to select a subset of
radiance channels it is useful to assess the information that is provided by each channel.

Many techniques have been developed to assess the information content of observations. One
of these which will be used here is the singular value decomposition (SVD). This technique
has been used in the context of satellite retrievals (Mateer 1965; Thépaut and Moll (1990);
Prunet et al. 1998; and Rabier et al. 2002).

Guided by their importance in the filtering and interpolation in 3D-Var, we first consider the
error covariance matrices by defining the pre-conditioned control variable,

χ = ρ
−1/2

B (x0 − xb), (5)

where ρ
−1/2

B , which satisfies (ρ
−1/2

B )T (ρ
−1/2

B ) = ρ
−1
B , denotes the symmetric square root of

ρ
−1
B . A similar transformation is often used both to define the B matrix and to precondition

the problem (see for example, Courtier et al. 1998). The transformation is useful here as it
gives variables that are uncorrelated.

The 4D-Var uncorrelated analysis increments then minimize the cost function,

2σ2
oJ(χ) = µ2‖χ‖2

2 + ‖ρ
−1/2

R Ĥρ
1/2

B χ − ρ
−1/2

R d̂‖2
2, (6)
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using the notation ‖z‖2
2 = zTz, and where d̂ = ŷ − Ĥxb is the generalized innovation vector.

ρ
−1/2

R is the symmetric square root of ρ
−1
R . The 4D-Var algorithm has now been written in

a form similar to that in Tikhonov Regularization, which is used to solve discrete ill-posed
inverse problems (for example, Winkler 1997; Hansen 2001).

The matrix ρ
−1/2

R Ĥρ
1/2

B will be called the normalized observability matrix as the correlation
matrices can be considered as normalizing factors and also to be consistent with the termi-
nology used by Rabier et al. (2002). We let the generalized observation vector, ŷ, be of
dimension m and the state vector, x, be of dimension n so that the normalized observability
matrix is an m × n matrix with its rank denoted by r ≤ min{m,n}. We then consider the
SVD of this matrix:

ρ
−1/2

R Ĥρ
1/2

B = UΛVT , (7)

where Λ is a diagonal matrix with r positive singular values, λj , arranged in decreasing order
on the diagonal, where j is the singular vector index. The m columns uj of U are known as
the left singular vectors (LSVs) and the n columns vj of V are known as the right singular
vectors (RSVs). The LSVs form an orthonormal basis for the observation space and the RSVs
form an orthonormal basis for the state space. Thus, the SVD can be used to identify the
structures in state space that can be determined from the observations and also to identify
the observations that are important in this determination.

If the SVD (7) is substituted into the cost function (6) then it is easily shown (Wunsch 1996;
Rodgers 2000, p.109; Hansen 2001) that the analysis increments can be written as:

χ ≡ ρ
−1/2

B

(

xa − xb
)

=

r
∑

j=1

fjcjvj , (8a)

where

fj =
λ2

j

µ2 + λ2
j

, (8b)

cj =
uT

j ρ
−1/2

R d̂

λj
. (8c)

The uncorrelated analysis increments are now written as a linear combination of the RSVs
of the normalized observability matrix, where the weight given to each RSV is determined
by the product of two terms: fj and cj . This formulation illustrates the interpolating and
filtering aspects of the 4D-Var algorithm.

The interpolating aspect is more clearly illustrated by considering the case with µ2 = 0. This
is equivalent to considering the 4D-Var algorithm with no Jb term. It is assumed that such a
problem is well-posed, although this is not true in general. When this parameter is zero, fj = 1
for all j and so the weight given to the RSVs is only determined by the coefficient cj . This
coefficient has a relatively large value for those LSVs almost in the direction of the normalized
generalized innovation vector. Thus, the analysis increment is composed of the combination
of RSVs needed for the analysis to fit exactly through the observations. In this way, the RSVs
can be considered as basis functions for the interpolation, where the interpolating coefficients
are determined by the innovation vector.

The filtering aspect is then illustrated by considering the case with µ2 > 0. This only changes
the value of what are known as the Tikhonov filter factors, fj (Hansen 2001). The filter
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factors damp all the contributions to the analysis increment which have small singular values,
λj , as:

fj
∼=







1 λj � µ
1/2 λj = µ
λ2

j/µ
2 λj � µ.

(9)

For example, consider a fixed value of λj. Then, if the observations are relatively accurate so
that the variance ratio between the observation and background state errors is smaller than
the squared singular value (µ2 is smaller than λ2

j ), the filter factor has a value close to one so
that the corresponding RSV, vj , is incorporated into the analysis increment and the analysis
is close to the observations. On the other hand, if the observations are relatively inaccurate, so
that the variance ratio between the observation and background state errors is larger than the
squared singular value (µ2 is larger than λ2

j), the filter factor has a value close to zero so that
the corresponding RSV, vj, is strongly damped and hence the corresponding observational
information is rejected and the analysis is close to the background state. This filtering is a
vital part of the 4D-Var algorithm as both the background state and the observations always
have errors. The choice of the specified value of µ2 is crucial to enable the algorithm to extract
the signal whilst filtering the observational noise.

The filter factors also imply that if we wish 4D-Var to include observational information that
has a large projection onto a particular RSV, vj , the ratio of the standard deviation of the
observational and background state errors, µ, must be comparable to or smaller than the
corresponding singular value, λj.

It is proposed here that this perspective of 4D-Var, summarized mathematically in (8), is
a useful technique for identifying which components of the state vector are related to the
observations for particular forecast models, observing systems, and error covariances. The
RSVs do not depend on the relative weight, µ2, given to the background state or the innovation
vector, d̂. Therefore, this singular vector perspective may be used to give general conclusions
concerning 4D-Var.

3 Eady Model Experiments: Description

The following experiments explore the behaviour of 4D-Var using idealized case-studies with
the 2D Eady model (Eady 1949). This model is able to capture quite realistic baroclinic wave
growth and decay but its dynamics are sufficiently simple that it should allow a clear under-
standing of the mechanisms of 4D-Var. The first part of the study considers the results given
by 4D-Var analyses and the second part of the study considers the SVD of the corresponding
normalized observability matrix. The model, identical twin experiments, 4D-Var algorithm,
and SVD computations are now described.

3.1 2D Eady Model

The 2D Eady model is a simple linear, quasi-geostrophic (QG) model of baroclinic instability.
The model equations describe the evolution of perturbations to a basic state. It should be
noted that although the equations are linear, they have not been linearized as there are no
terms that are quadratic in perturbation quantities. However, only the perturbations to the
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Experiment µ2
actual µ2

specified lactual(km) lspecified(km) Note

1 1 1 1000 1000
2 1 1 1000 200
3 1 4 × 10−3 1000 1000
4 1 4 × 10−3 1000 1000 different random seed for ε

o

5 4 × 10−3 4 × 10−3 1000 1000
6 4 × 10−3 1 1000 1000

Table 1: Summary of the parameters used in the six 4D-Var experiments. µ2

actual = σ2

o/σ
2

b is the
actual variance ratio, µ2

specified is the variance ratio that is used by the 4D-Var algorithm, lactual is the
length-scale used to generate the background state, and lspecified is the length-scale used by the 4D-Var
algorithm. The parameter values are shown to an accuracy of one significant figure.

basic state are taken as control variables in the data assimilation, and the basic state flow is
assumed to be correct. The non-dimensional equations are now given.

The basic state is assumed to be dependent on the meridional direction, y, through a linear
temperature gradient. The perturbations are independent of y. The basic state is given
by a linear zonal wind shear with height, z, that is associated with the uniform meridional
temperature gradient in a domain between two rigid horizontal boundaries, z = ±1/2. The
density, static stability and Coriolis parameter are all taken to be constants. It is also assumed
that the interior quasi-geostrophic potential vorticity is zero.

The initial state is given by the perturbation buoyancy, b = b(x, z, t), on the boundaries,
z = ±1/2, at time t = 0. This is used to calculate the corresponding perturbation geostrophic
streamfunction, ψ = ψ(x, z, t), which satisfies:

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0, in z ∈

[

−
1

2
,
1

2

]

x ∈ [0,X] . (10a)

From hydrostatic balance, the boundary conditions are:

∂ψ

∂z
= b, on z = ±

1

2
, x ∈ [0,X] . (10b)

Perturbations to the basic state are advected zonally by the basic shear flow as described by
the non-dimensional QG thermodynamic equation:

(

∂

∂t
+ z

∂

∂x

)

b =
∂ψ

∂x
, on z = ±

1

2
, x ∈ [0,X] . (10c)

The spatial boundary conditions are taken to be periodic such that at any time, t, and height,
z, b(0, z, t) = b(X, z, t) and ψ(0, z, t) = ψ(X, z, t).

The Eady model is discretized using 11 vertical levels for streamfunction. There are 20 grid
points in the horizontal, giving 40 degrees of freedom. The advection equations are discretized
using a leap-frog advection scheme, and the NAG routine known as nag-gen-lin-sys is used to
perform an LU factorization to solve the elliptic equation. The discrete model with non-zero
QGPV has previously been used by Badger and Hoskins (2001) to investigate the nature of
optimal perturbations.
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3.2 Identical Twin Experiments

The Eady model is used within 4D-Var identical twin experiments. The numerical model is
first integrated from the initial conditions over a six hour assimilation window to give the true
state. The background state is then defined from the true state with random errors that are
consistent with a specified background error covariance with horizontal length-scale, lactual,
and variance, σ2

b . The observations are also defined from the true state. Uncorrelated random
errors are added with variance σ2

o so that the actual error variance ratio is µ2
actual = σ2

o/σ
2
b .

The variance ratio, µ2
specified, and the background error length-scale, lspecified, that are used

in the 4D-Var algorithm are not necessarily the same as the actual parameter values. The
following six experiments are designed to investigate the impact of different parameter settings
and are summarized in Table 1.

3.2.1 True State.

The true state initial conditions, xt
0, are given by the analytical solution for the most unstable

normal mode structure;

ψ(x, z) = cosh(kz) cos(kx) − α sinh(kz) sin(kx), (11)

where the non-dimensional wave number k = 1.6 and α = 2.59. This solution exhibits a
westward tilt with height of the streamfunction field and an eastward tilt with height of
the buoyancy field. This tilt with height is associated with the vertical coupling between the
upper and lower waves that leads to exponential growth with the non-dimensional growth rate
ω = 0.31. The true state at the end of the assimilation window, tN , has the same structure
as in (11), but the amplitude has increased by a factor eωtN .

3.2.2 Background Error Correlations.

The background error correlation matrix is specified by defining the inverse matrix using
second derivatives. It is assumed that there are no correlations between the upper and lower
buoyancy errors, so the ρB matrix is block diagonal and is defined by

ρ
−1
B =

(

ρ
−1
TT 0

0 ρ
−1
TT

)

, (12a)

where

ρ
−1
TT = γ

(

I +
l4

2
(Lxx)2

)

. (12b)

Lxx is a finite difference second derivative matrix in the x direction, incorporating periodic
boundary conditions, l is the correlation length-scale, and γ is a scalar parameter that is
specified so that the trace of ρB is equal to 40 (the number of unknowns). This is similar
to the second derivative smoothness constraints used by Sasaki (1970) and Schröter et. al
(1993). Correlations with various length-scales are shown in Fig. 1.

10



20001000

Horizontal Distance (km)

40003000

Correlation

−0.2

0

0.2

0.4

0.6

0.8

1

200km

600km

1000km

Figure 1: Horizontal auto-correlation of the background state error for correlation length-scales l =
200km, 600km, and 1000km.

3.2.3 Background State.

The background state is defined by the true state with correlated random errors;

xb = xt
0 + ρ

1/2

B ε
b. (13)

ε
b is a vector of unbiased random numbers with a Gaussian distribution of variance σ2

b = 1.52

and ρB is a correlation matrix, of the form (12), with length-scale lactual = 1000km.

3.2.4 Observations.

As the position and amplitude of the upper level wave is vital for the growth of the lower level
wave, we consider the case where only the lower level wave is observed and 4D-Var seeks to
infer the unobserved upper level wave. It should be noted that due to the symmetry of the
Eady model, the mathematical problem is equivalent to observing the upper level wave and
reconstructing the lower level wave.

The synthetic observations,

yi = Hxt
i + ε

o
i for i = 0 and N, (14)

are taken from the lower level buoyancy field of the true state. The errors, ε
o
i , are unbiased

and random with a Gaussian distribution of variance σ2
o , which takes the value of 1.52 in Exps.

1 to 4 and 0.12 in Exps. 5 and 6. The observational errors are assumed to be uncorrelated,
so that ρR = I.
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3.3 4D-Var Algorithm.

The first part of the study considers the 4D-Var analyses. From (4), the 4D-Var cost function
may be written as:

J(x0) = µ2
specified(x0 − xb)ρ−1

B (x0 − xb) + (y0 − Hx0)
T (y0 −Hx0)

+ (yN − HM(tN , t0)x0)
T (yN − HM(tN , t0)x0),

(15)

where ρB
−1 is a function of lspecified.

The 4D-Var algorithm uses the forward Eady model to calculate the values of J and the
adjoint Eady model to calculate the values of ∇J . These values are used by the quasi-Newton
minimization algorithm known as CONMIN or algorithm 500 from TOMS (Shanno and Phua
1976) to find the state that minimizes the cost function.

3.4 SVD Computations.

The second part of the study interprets the 4D-Var analysis results using the singular values
and singular vectors of the corresponding normalized observability matrix (7). With observa-
tions at only the beginning and the end of the window and no observation error correlations,
this is given by

ρ
−1/2

R Ĥρ
1/2

B =

[

H

HM(tN , t0)

]

ρ
1/2

B . (16)

Note that we again assume that the observational errors are uncorrelated, ρR = I. There are
various methods to calculate the singular vectors (Toumazou and Cretaux 2001). When only
the first few singular vectors of an operator are required, the Lanczos strategy may be applied
to the linear operator. Here, as all the singular vectors are required, the SVD strategy must
be applied to the matrix form of the linear operator.

The real symmetric positive definite square root of the background error covariance is found
by inverting ρ

−1
B and then using the eigenvalues and eigenvectors. The Eady model is then

applied to successive columns of ρ
1/2

B to give the matrix M(tN , t0)ρ
1/2

B . The NAG routine
known as nag-gen-svd, based on the SVD algorithm described by Golub and Van Loan (1996),
is then used to find the RSVs, LSVs and singular values of the normalized observability matrix.

4 Eady model experiments: Results

4.1 4D-Var Analyses

The 4D-Var analyses from the six experiments are now discussed. All six experiments consider
the same true state and background state. The background state has correlated random errors,
with lactual = 1000km and σ2

b = 1.52, which gives mainly a displacement error, as shown in for
example Fig. 2(a)-(b). The first four experiments consider observations with errors with the
same variance as the background state errors so that µ2

actual = 1. These errors may appear to
be large, but they provide a clear illustration of the filtering by 4D-Var.

Experiment 1 considers an assimilation using the appropriate parameters so that µ2
specified = 1

and lspecified = 1000km. The analysis, shown in Fig. 2(a)-(b), is close to the true state on

12
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Figure 2: 4D-Var analyses (xa, solid), with (a)-(b) Exp. 1: lspecified = 1000km and (c)-(d) Exp.
2: lspecified = 200km. In both cases, the true state (xt

0
, dotted) is given by the most unstable normal

mode, and the background state (xb, dashed) has random correlated errors that are consistent with a
covariance matrix with σ2

b = 1.52 and lactual = 1000km. Observations (y, circles) of the lower level
buoyancy are given at the beginning and the end of a 6 hour assimilation window. The observations
have random uncorrelated errors with a Gaussian distribution and variance σ2

o = 1.52. The actual
variance ratio is µ2

actual = σ2

o/σ
2

b = 1 and the specified variance ratio is also µ2

specified = 1. All fields
are shown at the beginning of the assimilation window. The upper panels ((a) and (c)) show the
buoyancy on the upper boundary and the lower panels ((b) and (d)) show the buoyancy on the lower
boundary.

the lower boundary and close to the background state on the upper boundary. Thus, the
algorithm uses the observations of the lower level to move the state from the background
state closer to the true state. Although the observations are noisy, the analysis is smooth
due to the filtering by the algorithm. In this case, the algorithm is unable to interpolate the
observations through time to infer the state on the unobserved boundary.

Experiment 2 considers an assimilation using the appropriate value for µ2, but an inappro-
priate value for l. The background state errors are generated using lactual = 1000km, but the
4D-Var algorithm uses a much shorter length-scale of lspecified = 200km. The analysis, shown
in Fig. 2(c)-(d), is similar to that for Exp. 1, except that it is now noisy on the lower bound-
ary. Thus, the specification of the correlation length-scale is vital in controlling the amount of
filtering that is achieved by the algorithm. All the following experiments use the appropriate
specified length-scale.

Experiment 3 considers an assimilation using the appropriate specification of the length-scale,
lspecified = 1000km, but an inappropriate value for µ2. A much smaller specified value is used;
µ2

specified = 4 × 10−3. This may be interpreted as either specifying too large background state
errors or specifying too small observational errors. The resulting analysis, shown in Fig.
3(a)-(b), is close to the noisy observations. Although the specified correlation length-scale
is large, the Jb term is given a small weight, and therefore there is a smaller constraint on
the smoothness of the analysis. Both the upper and the lower boundaries exhibit unrealistic
solutions. The actual structure of these is associated with the actual noise on the observations,
which is now demonstrated by using a different set of observations with the same variance.
Experiment 4 is identical to Exp. 3, but the observational noise is generated using a different
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Figure 3: 4D-Var analyses where the actual variance is µ2

actual = 1 whilst the specified variance ratio
is µ2

specified = 4 × 10−3. The observations in (c)-(d) are generated using a different random seed to
the observations in (a)-(b). Other parameter values are: σ2

o = 1.52, σ2

b = 1.52, lspecified = 1000km,
lactual = 1000km. The details are as for Fig. 2.

random seed. The analysis, shown in Fig. 3(c)-(d), again exhibits unrealistic solutions on
the upper and lower boundaries. They have very different structures to those in Experiment
3 and are therefore associated with the observational noise. The largest analysis errors are
found on the unobserved upper boundary; this is consistent with the results found by Courtier
and Talagrand (1987) and Laroche and Gauthier (1998).

In all the previous experiments, the 4D-Var algorithm is unable to infer the state on the
unobserved upper boundary. This is because the observational noise is very large. The last
two experiments consider observations with errors with variance σ2

o = 0.12, which is much
smaller than the variance of the background state errors so that µ2

actual = 4 × 10−3.

Experiment 5 considers an assimilation using the appropriate parameters; µ2
specified = 4 × 10−3

and lspecified = 1000km. The analysis, shown in Fig. 4(a)-(b), is close to the true state
on both the lower and the upper boundary. The 4D-Var algorithm combines the valuable
time-evolution information provided by the observations on the lower boundary with the
model dynamics to correct the unobserved part of the state on the upper boundary. The
analysed upper level wave is now in the correct position needed for the growth of the wave
during the assimilation window. This clearly illustrates that 4D-Var interpolates through
the observations in both space and time, enabling the state to be inferred in the unobserved
regions. This reconstructive ability is a major benefit of 4D-Var and is one reason why 4D-Var
has previously been shown to give better analyses than 3D-Var. It is therefore important that
this benefit is maximized.

Experiment 6 considers an assimilation using the appropriate length-scale, but with a variance
ratio that is too large. The specified value is µ2

specified = 1, which may be interpreted as
assuming that the background state errors are too small or that the observational errors are
too large. The analysis, shown in Fig. 4(c)-(d), is similar to that for Exp. 5, except that the
upper level wave is no longer near to the true state. The analysis is very similar to that in Exp.
1, as the same specified parameter values are used. Thus, although the information to the
infer the state in the observed region is contained in the observations, it is not extracted by the
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Figure 4: 4D-Var analyses where the specified variance ratio is (a)-(b) µ2

specified = 4×10−3 and (c)-(d)
µ2

specified = 1, whilst the actual variance ratio is µ2

actual = 4 × 10−3. Parameter values are: σ2

o = 0.12,
σ2

b = 1.52, lspecified = 1000km, lactual = 1000km. The details are as for Fig. 2.

algorithm due to the inappropriate specification of µ2
specified. Thus, the reconstructive ability

of 4D-Var is not maximised due to the inappropriate specification of the error variances.

The conclusions from these six experiments are now summarized. Experiment 1 shows that
the correct specification of the variance ratio and length-scale gives a smooth analysis. The
size of the observational noise is the same as the background state errors so that the analysis
is close to the true state in the observed region, but close to the background state in the
unobserved region. Experiment 2 shows that if the specified background error correlation
length-scale is too small, the observational noise is not filtered enough so that the analysis is
noisy. Experiments 3 and 4 show that if the specified variance ratio is too small, the algorithm
draws too closely to the observations, giving a bad analysis, particularly in the unobserved
regions. Experiment 5 shows that if the observational noise is smaller and the appropriate
parameters are specified, the algorithm is able to draw closer to the observations to give
an analysis that is close to the true state in both the observed and the unobserved regions.
Experiment 6 shows that if the observational noise is still relatively small, but if the specified
variance ratio is too large, the algorithm does not draw closely to the observations. Thus,
there is little change in the unobserved regions and there is no benefit from the improved
quality of the observations.

4.2 SVD Interpretation

A new interpretation of the 4D-Var analyses in the previous six experiments is now given
through the use of the SVD technique, described in Section 2. First the singular values and
the structure of the matrix of RSVs are examined to consider which information is filtered
by 4D-Var. Then the coefficients, cj , are examined to consider the effect of the size of the
observational noise.

The SVD of the normalized observability matrix with lspecified = 200km is first considered.
The singular values and RSVs are shown in Fig. 5. There are 20 observations at two time
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Figure 5: The singular values, λj , (upper panel) and the corresponding RSVS, vj , (lower panels)
of the normalized observability matrix as a function of the singular vector index, j. The RSVs are
shown by the amplitude of the upper and lower buoyancy fields as a function of horizontal distance
x, with each RSV separated by one unit of (non-dimensional) buoyancy. Observations are given at
the beginning and the end of a 6 hour window. The background error correlation has a length-scale of
lspecified = 200km.

levels, giving a total of 40 observations. Although there are 40 non-zero singular values,
the singular value spectrum decays so that many of the singular values are very small. The
RSVs that correspond to large singular values have large amplitudes on the lower boundary,
whereas the RSVs that correspond to small singular values have large amplitudes on the upper
boundary. On both the lower and the upper boundaries, there tends to be an increase in the
number of oscillations in the horizontal with increasing singular vector index.

Almost all the RSVs form pairs with the same singular value. For example, the first and
second RSVs both correspond to a singular value of 2.15. The second RSV has the same
structure as the first RSV, but is phase shifted in the horizontal by 1000km. This is due to
the zonal symmetry of the Eady model. The only RSVs that are not in a pair either do not
vary in the horizontal, or have a wavelength of 2 grid spaces.

The analysis from Exp. 2 (Fig. 2(c)-(d)) is close to the observations on the lower boundary
but close to the background state on the upper boundary. This is now explained using the
SVD. Equation 8 shows that the 4D-Var algorithm damps the RSVs with small singular
values. From Fig. 5, these are the RSVs that correspond to the information that is needed
to infer the state on the unobserved upper boundary and therefore the algorithm has filtered
the structures in the unobserved region. The singular values of the first few RSVs are large
enough that the corresponding observational information is largely drawn to in the analysis.
These RSVs have long wavelengths and large amplitudes on the lower boundary.

The analyses from Exps. 1 and 2 (Fig. 2) show that specifying a longer length-scale gives
a smoother analysis. Therefore, we now investigate the SVD of the normalized observability
matrix with lspecified = 1000km. The RSVs, shown in Fig. 6, are now re-ordered so that, for
example, RSVs 21&22 have moved to become RSVs 6&7 and the RSVs with small wavelengths
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Figure 6: The singular values, λj , (upper panel) and the corresponding RSVS, vj , (lower panels) of
the normalized observability matrix as a function of the singular vector index, j. The background error
correlation has a length-scale of lspecified = 1000km and the details are as for Fig. 5.

are now associated with relatively small singular values whilst the RSVs with large wavelengths
are now associated with slightly larger singular values. This is because the background error
covariance now has a larger variance at the large spatial scales and a smaller variance at the
small spatial scales (see for example Rodgers 2000, p. 39). The RSVs with small spatial
scales are therefore damped by the 4D-Var algorithm so that the analysis is more smooth.
The RSVs needed to infer the large-scale component of the upper level wave still have small
singular values and are therefore still damped by the algorithm when µ2

specified = 1.

It is the coefficients, cj , that determine which RSVs contribute to the analysis increment.
Since these values span several orders of magnitude, it is more convenient to examine what is
known as the Picard ratio (Winkler 1997), which is given by

log(cj) = log

(

|uT
j ρ

−1/2

R d̂|

λj

)

. (17)

As there are no observation error correlations, we use ρ
−1/2

R = I. The Picard ratio values for
perfect observations and observations with noise of standard deviation σo = 0.01, 0.1 and 1.5
are shown in Fig. 7. With perfect observations, approximately half the RSVs contribute to
the analysis increment and the coefficients of these are all of the same order of magnitude.

The analyses from Exps. 3 and 4 show that if µ2
specified is too small, unrealistic structures

corresponding to the observational noise are generated and the analysis errors are largest in
the unobserved region. This is now explained using the Picard ratios. When the observations
are noisy (σo = 1.5), many more RSVs with small singular values are given a large weight.
These RSVs have small-scale structures and large amplitudes on the upper boundary. Note
that this is similar to the results found by Callies and Eppel (1995) where the projections of
the initial state onto the eigenvectors of the Hessian of the cost function are examined. In
the absence of filtering (µ2

specified � 1) these RSVs dominate the analysis increment. This
explains why the largest analysis errors are found on the upper boundary. When µ2

specified has
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Figure 7: Values of the Picard ratio log(cj) = log(|uT
j ρ

−1/2

R d̂|/λj) for observations with no noise
(solid), and noise with standard deviation σo = 0.01 (dashed), 0.1 (dot-dashed) and 1.5 (dotted). The
background error correlations have a length-scale of lspecified = 1000km. Only the values between −1
and 20 are shown for clarity, but the Picard ratios have a maximum value of 40 at j = 40 and the
values for perfect observations reach values of log zero to machine accuracy.

the appropriate value, the filter factors, fj, damp these RSVs to give a smooth and realistic
analysis.

The analysis from Exp. 5 shows that if the observations are more accurate, the state on
the upper boundary can be reconstructed. With smaller observational noise (σ = 0.01), the
Picard ratio values are closer to the values for perfect observations. Therefore less damping
is required and hence it is appropriate to use a smaller value for µ2

specified. From Fig. 6, the
pair of RSVs that are needed to reconstruct the large-scale structure on the upper boundary
have a squared singular value of λ2 = 0.18. The filter factors (9) show that µ2

specified needs to
be smaller than λ2 for the corresponding RSV to be incorporated into the analysis increment.
Therefore, when the algorithm uses µ2

specified = 4 × 10−3, it is able to infer the state on the
unobserved upper boundary. When µ2

specified = 1, the algorithm is unable to infer the upper
level wave, as the analysis from Exp. 6 shows. In this last experiment, µ2

specified > µ2
actual so

that not only do the filter factors damp the RSVs corresponding to the observational noise,
but they damp the RSVs needed to reconstruct the upper level wave aswell. Consequently
the useful information that is contained in the observations is lost.

5 Conclusions

The filtering and interpolating properties of 4D-Var have been investigated using simple ideal-
ized case-studies with the 2D Eady model. The 4D-Var analyses have been interpreted using
a new technique involving the SVD of the normalized observability matrix. The main results
can be summarized as follows:

• The 4D-Var analysis increments can be written as a linear combination of the RSVs
of the normalized observability matrix. The weight given to an RSV is determined by
the projection of the innovation vector onto the corresponding LSV and the filter factor
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which acts to damp the RSVs with singular values comparable to or smaller than the
ratio of the standard deviation of the observational and background state errors.

• The 4D-Var algorithm optimally combines the information from the background state
and the observations. Observations are noisy and therefore it is important to specify
the appropriate background error correlations so that the algorithm is able to extract
the signal whilst filtering the noise. With a longer correlation length-scale, the RSVs
are re-ordered and the RSVs with small-scale structures have reduced singular values
and are thus more heavily damped by the filter factor; this gives a smoother analysis.

• If the specified variance ratio, µ2
specified, is smaller than the actual variance ratio, µ2

actual,
the algorithm draws too close to the observations so that the analysis contains unre-
alistic structures that have large amplitudes in the unobserved regions. From an SVD
perspective, the RSVs with small singular values have small-scale structures and large
amplitudes in the unobserved regions. The observational noise has a large projection
onto these RSVs, and therefore they dominate the solution unless they are filtered from
the solution through a value of µ2

specified greater than the square of their singular values.

• The specification of the variance ratio in the 4D-Var algorithm is critical so that all
the useful information contained in the observations is extracted, whilst filtering the
observational noise. If µ2

specified is smaller than µ2
actual, the analysis contains unrealistic

structures. Alternatively, if µ2
specified is larger than µ2

actual, the filter factors damp the
structures corresponding to the observational noise, but also damp the structures corre-
sponding to the signal. In particular, the information that is needed to reconstruct the
state in the unobserved regions is damped.

• 4D-Var is able to interpolate through observations distributed in time to infer the state in
unobserved regions. This has been illustrated by observing the lower level of a baroclinic
wave and reconstructing the upper level. We have also shown that the algorithm is only
able to reconstruct the upper level wave if the growth of the true solution over the
assimilation window can be detected from the noisy observations. This requires that
the ratio of the standard deviation of the observational and background errors be less
than the singular value of the RSV that has the relevant structure in the unobserved
region.

6 Discussion

We have shown that the use of the SVD of the normalized observability matrix provides a
useful framework to examine the behaviour of 4D-Var. The RSVs do not depend on either the
innovation vector or the variance ratio and therefore more general conclusions may be obtained
than from individual 4D-Var analyses. This framework provides insight into the spatial and
temporal interpolation resulting from the interaction of a time-sequence of observations with
the model dynamics, for example, to infer the state in unobserved regions and to provide the
vertical structures that are necessary for baroclinic growth.

This paper has focussed on the filtering properties of the 4D-Var algorithm. The results have
illustrated the importance of specifying the a priori error statistics so that the maximum
amount of useful information, particularly that for the unobserved regions, may be extracted
from the observations. If the relative magnitude of the observational and background state

19



errors is underestimated then useable information for the unobserved regions is rejected. If
it is overestimated, then false structures may be analysed, particularly in the unobserved
regions. To be able to maximize the benefits of 4D-Var, it is important to draw close to the
true state, but this may give poor analyses if the observations are inaccurate. Alternatively,
if the algorithm is tuned so that it does not draw so close to the observations, we can expect
the observational noise to be filtered, but may not benefit from the reconstructive ability of
4D-Var.

In operational data assimilation, the background error statistics are specified from climato-
logical information. This could be improved by varying the statistics for each analysis so that
they are consistent with the actual background state errors. An important question to address
is whether it is possible to obtain the appropriate value for the variance ratio from the data
itself. Various methods have been proposed, such as the L-Curve (Hansen 2001), General-
ized Cross Validation (Gong et. al 1998), Maximum Likelihood techniques (Dee 1995), and
Iterative Tuning (Desroziers and Ivanov 2001), but further investigation is required.

The SVD of the observability matrix has also been used to investigate the impacts of the vari-
ance ratio and the spatial and temporal position of the observations on the vertical structure
of 4D-Var analysis increments (Johnson 2003). Results from this work will be reported in a
future paper.
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