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Abstract

This report gives details of a direct variational approach (with non-standard
variations) used to generate algorithms to determine optimal discontinuous piece-
wise linear and piecewise constant L, fitsto a continuous function of one or two
variables with adjustable nodes.Algorithms are presented which are fast and ro-
bust, and the mesh cannot tangle. An extension to higher dimensions is also

given.
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1 Introduction

In recent years there has been much interest in the use of irregular grids for the
representation of quantities in computational modelling. This applies both to
economic representation of individual features and tracking of such features as
they move. Two approaches to generate such grids are through best fits with
variable nodes and through equidistribution. Work on linear splines with free
knots has been carried out by de Boor [4], [5], Chiu et al. [7], Barrow et al. [3]
and, more recently, Loach and Wathen [10]. The equidistribution approach is
described in White [12], and references therein, Kautsky & Nichols [9], Carey &
Dinh [6] and Pryce [11]. A comprehensive up-to-date bibliography is given in
Grosse [8].

In this report we approach the problem of finding optimal L, fits to continu-
ous functions with adjustable nodes via piecewise linear discontinuous functions.
Using a direct variational approach but with non-standard variations, interpreted
numerically, new algorithms are devised, based on a two stage iteration process,
whose limit is the required best approximation. In this way we reduce the non-
linearity of the problem (eliminating it altogether for linear fits in one dimension)
and obtain algorithms which are fast and robust. Using the same approach,
we derive similar algorithms providing best piecewise constant L, fits with ad-
justable nodes. Fast approximate versions of the algorithms in one dimension are
also given.

It is known that for continuous functions in one dimension the best piecewise
linear fit amongst discontinuous functions with adjustable nodes is continuous
(Chui et al. [7]). This result also comes out of the present analysis, except for
certain cases where isolated discontinuities can occur. Thus the piecewise linear
algorithm in one dimension generates piecewise linear continuous L, fits with
adjustable nodes a.e.

In two dimensions the algorithms are based on variable triangulations of the
plane, although with invariant connectivity. In this more complex case the full
versions of the algorithms are less robust. We have therefore developed simpli-

fied forms which give approximately optimal piecewise linear discontinuous and



piecewise constant Lo fits with adjustable nodes on variable triangulations of a
region. One of these algorithms, for piecewise constant functions, is particularly
robust and successful.

The algorithms are demonstrated on various test functions. In one dimension
both the full and approximate methods are fast and robust and give excellent
results without any possibility of mesh tangling. In two dimensions on triangles,
owing to the complexity of the problem, only the simplest algorithm is demon-
strated, on functions with a single severe feature.

The plan of the report is as follows. In section 2 we obtain expeditious natural
conditions in one dimension for the L, error between a given continuous function
and a piecewise linear discontinuous function with variable nodes to have an
extremum. These conditions are then used in section 3 as the basis of a new
iterative algorithm designed to obtain the required best fit. The conditions also
have a useful geometrical interpretation. Section 3 also contains results on two
test functions. The ideas of sections 2 and 3 are repeated in section 4 for the
case of piecewise constant functions with variable nodes. Approximate versions
of these algorithms are then given in section 5. In section 6 natural conditions are
obtained in two dimensions for the L, error between a given continuous function
and a piecewise linear discontinuous function on a triangular grid with variable
nodes to have an extremum. These are used as the basis for a two-dimensional
algorithm in section 7. Once again the pattern is repeated for piecewise constant
functions in section 8. This section is extended to provide a simple and robust
two-dimensional algorithm. Finally, in Section 9 we give a general discussion
including the extension to three dimensions and prospects for practical use. In
Appendix A, the connection between such best fits and equidistribution is studied
(in one dimension).

Some of this material has appeared, in embryonic form, in previous reports,

but it is included again here for the sake of completeness.



2 Piecewise Linear Fits With Variable Nodes
in One Dimension

Let f(x) be a given C'' function of a scalar variable a in the interval (x,, 2,41)
and let ug(x) be any member of the family Si of linear functions in the interval
(xgp_1,2x), where 2, <z < @ < @,11. Then there exists a unique member

wi(x) of Sy such that

5/:1(f(x) — w(e))2dz — 0 (2.1)

wr=wy,

or, equivalently,

/ (f(2) — wi(2))bwpde = 0 Véwy € Sp. (2.2)

The function wy(x) is the best Ly fit to f(x) from the family Sy.
For the interval (x,, 2,4+1), the union of the intervals (x4_1, %), (k=1,...,n+
1), the best Ly fit w*(x) to f(x) from the family S of piecewise linear discontinuous

functions w(x) with (arbitrary) jumps at @ = x; (k = 1, ..., n) satisfies

o [T @) = wiw) e

u=u*

n+1 T

) Z_: {f(x) — wi(2)}?dx

TE—1

=0 (2.3)

wp=wy
and is also given by (2.1) or (2.2), (k=1,...,n),since S = BSp(k =1,...,n) and
the problem decouples. The solution w*(z) = Uwj(x).

Consider now the problem of determining the best L, fit to f(z) from the
family Sp of piecewise linear discontinuous functions having arbitrary jumps at
x=uxy (k=1,...,n) on a variable partition (xy,.., %, ..., 2,) of the fixed interval
(o, #n41). The solution again satisfies (2.3) but, since the x; (k = 1,..,n) are
to be varied as well as the wy, the problem does not decouple in an obvious
way. However, as we shall see, it is possible to regard it as two lightly coupled
problems, one of which is the decoupled problem (2.2).

It is convenient at this point to introduce here a new independent variable ¢,

which remains fixed, while z joins w as a dependent variable, both now depending



on ¢ and denoted by & and @ respectively. Then, with w(£) = w(2,(£)), equation
(2.3) becomes (reserving suffices for interval end points only)
ntl .z X X di
8> | {f(@(&) - w(f)}Q%df =0 (2.4)
k=1"7%k=-1

Taking the variations of the integral in (2.4) gives

[ {2s060) - o8 - 500

2 d .
HI(@(E) = 0(©)} 7¢(62) . (2:5)
Integrating the last term by parts leads to

- [ 2{ ) - o s 5 - Geoi bae-

(F(2(8)) = 0(&))ir + 02k + (f(2(8)) — (E))pds. (2.6)

Substituting (2.6) for the last term in (2.5), collecting terms and returning to the
x,w notation, (2.4) yields
n+1

S [ 2 — w0} (b — ek + 3 [{(0) — ()] sr =0 (27)

Tk—1

where the second summation is now over nodes j and the square bracket notation
[ ]; denotes the jump in the relevant quantity at the node j (see Fig. 10). With
the constraint 62 = 0 this leads back to (2.3) and (2.2) and to equations for the
best piecewise linear discontinuous L, fit to f(x) with fixed nodes.

We now discuss two kinds of variation. Choosing éx = 0 and éw to be in the
space of piecewise linear discontinuous functions, (2.7) yields the conditions
[ @) = wi@) o de =0 (i=1.2) (28

k1

for the best fit in element £, denoted by w} and x*, where ¢y, ¢r2 are the local
linear basis functions in element k (see Fig. 1b).

As another choice, remembering that for continuity éx must lie in the space
of continuous functions, we may set éx = «; (where «; is the standard basis
function for continuous piecewise linear functions: see Fig. la), together with the

particular constraint

obu = wiow, (2.9)



in (2.7) to obtain

{Fa") —w(@)}] = 0. (2.10)
The simultaneous solution of (2.8) and (2.10) gives the required solution w*(z*).

Using L, R for left and right values at the (variable) node j (see Fig. la),
(2.10) may be written

{f(2}) —wp(2))}* = {f(2]) — wh(2})}". (2.11)

It follows that, if f(z}) —wi(2}) and f(x7) — wp(2}) have the same sign, i.e. if

wp, wp lie on the same side of f(27) (see Fig. 2a),

f(@5) = wi(xf) = f(2]) — wi(2])

wi(x?) = w%(:z;;), (2.12)

J

irrespective of f(x) (as long as it is continuous), and therefore that w* is contin-
uous at the new position of the node. On the other hand, if f(z¥) — wi(x}) and
f(27) — wi(2}) have opposite signs, i.e. if wr,wp lie on the same side of f(z7)

(see Fig. 2b),

f(@) = wi(@}) = ={f(«}) — wr(})}

(i (a) + wile))} = f(a3) (213
in which case w” is discontinuous at 27, its jump being bisected by bisected by
f(@).

Now it is known (Chui et al. [7], Loach & Wathen [10]) that for for continuous
functions f(x) the best Ly fit amongst discontinuous piecewise linear functions
with variable nodes is continuous, which clearly corresponds to (2.11). The case
(2.12), with a definite discontinuity in w* at z%, therefore cannot correspond to
the best least squares fit when f(x) is continuous, and can correspond only to a

local minimum.



3 An Algorithm for Variable Node Discontin-
uous Piecewise Linear Fits

An algorithm to find optimal piecewise linear [, fits with variable nodes can be
constructed in two stages (carried out alternately until convergence is obtained),
corresponding to the particular choices of variations referred to in section 2 above.

Stage (i) éz; =0, (j = 1,...,n),
ow = ¢pror dpa (k=1,...,n+1) (3.1)

This stage of the algorithm is governed by (2.8) and corresponds to the best L
fit u(x) amongst the family Sp of linear functions discontinuous at prescribed
nodes, as in (2.1),(2.2).
Stage (ii) dx; = ay,

dbw; —wydx; =0 (j=1,...,n) (3.2)

This stage, which combines both w and z variations to give variations in w
“following the motion”, corresponds to finding x; such that (2.10) holds. Geo-
metrically, we see from (2.9) that variations of x,w are restricted to points lying
on the lines of the current piecewise linear discontinuous approximation (possibly
linearly extrapolated).

An algorithm is now set up, analogous to minimising a quadratic function
q(x,y) using two search directions d1 and d2 spanning the @ — y plane. Starting
from some initial guess we may alternately minimise ¢ in the directions d1 and
d2. Similarly, in the present case, to find the best L fit we may begin with an
initial guess {x;}, {w;}; stage (i) is to find the minimum in the linear manifold
specified by the variations given in (3.1) and so solve (2.8) for a new, w(z) with
the x; fixed; stage (ii) is to find the minimum in the linear manifold specified by
the variations given in (3.2) and so solve (2.10) approximately for new x; by the
implementation of (2.11),(2.12), as discussed below. Repetition of these stages
gives a sequence which, if convergent, provides a solution of (2.4) or (2.7). As
with similar problems of this type care is required as the limit may correspond
only to a local minimum.

In further detail, stage (i) involves expanding wy(x) as



wi(x) = wr1d1() + wi2a(x) (3.3)

(see Fig 1b) and substituting it for wj(x) into (2.8), yielding the equations

W1 k2 b1 ()
hy, = flz) dx (3.4)
]

where hy = 29 — 21, while stage (ii) involves taking the wg(x) which come from

D= W=
W= o=

(3.4) and solving

(f(aj) = wir(z;))” = (f(z;) = wir(z;))* =0 (3.5)

for a new z; (see Fig. 2).
From (2.8) we observe that f(x)— wy(x) must pass through zero at least once
between x,_; and xj. Let xor and xggr be the zeros closest to node j from the

element either side. Then the function

F(x) = (f(z) = wjn(2))* = (f(x) = wir(x))* (3.6)

(c.f. (3.5)) has the properties

F(l‘oL) <0 F(J}()R) > 0, (37)

(excluding the special case w;(2or) = wjr(zor)). It follows that there is at least
one root of F(x) between xqr, and xgr. Choose this root (or the one nearest the
old z; if there are two) to be the new x;. Note that if this root is chosen, all such
roots lie between pairs of intersection points and mesh tangling cannot occur.

In fact, from (3.5), the new x; must satisfy

(w;r(7) —wir(x))(f(z;) — ;(ij(l‘) +wjr(x))) =0 (3.8)
from which we either have
w;iL(r;) = wir(z;) (3.9)

or

S(wine) + winla) = f(z;) (3.10)



We shall call (3.9) the intersection construction (independent of the function
f(x), note) and (3.10) the averaging construction. They are represented graphi-
cally in Fig. 2.

Further information about the direction in which the nodes move may be ob-
tained from the sign of F'(x;). Solving (3.4) for wy and wye and using Simpson’s

rule for the integration gives

SR

_ { 3/ (@) + 3/ (@rm) = 5f(2r2) + O(h})

flar) + 5 f (2hm) + O(h)
;

f@rm) + 5f (2r2) + O ()

W= O

i
—%f(l'kl) + %f(l’kz) + %f(l‘kz) + O(h3,)

where x,, is the mid-point of the element k. Hence

(0j2) = 3 (o) + 5 (a) + Oy } 1
(1) = 31 (230) + 5 (i) + O(hi )

and, from (3.6),

1 2 L, 4 2
;) = {§52fj—% +0(hj_1)}" — {56741 + O, 1)}

1
9

For sufficiently small h;_ 1 h; 41 therefore, the movement of node j is governed

(52f]‘—% + 52f]’+%)(52f]’—% - 52fj+%) + O(max(hj_%, h?+%))- (3.13)
by the sign of

(6% i + 811 ) (6" o1 = 8% fi10), (3.14)
moving left if this quantity is positive and right if it is negative.
Since in stage (ii) w(x) is restricted in elements k& by éw = w,éx, then in

elements [ and R, respectively,
(3.15)

where my = (Wz )k, Mr—1 = (Wy)g-1.

Hence, if my # my_y, the intersection construction (3.9) gives

gt gy = - f (3.16)

mg — Mg



where z; is the previous approximation and z7“ the one currently sought. Sim-

ilarly, if my + mg_1 # 0, the averaging construction (3.10) gives

2 newy __ . .
A — ;= fa™) = (wjn +win) (3.17)

My + Mp_q

Note that the calculation of #7¢ is implicit since f(27“") occurs on the r.h.s.

Near to inflection points the averaging construction (3.10) may well occur
(see Fig. 2b) and the fit obtained by this method will be a (discontinuous) local
minimum.

For regions in which f(z) is convex the new approximation to z; is provided
by the displacement (3.16), i.e. the intersections of lines in adjacent elements
(see Fig. 2a), since in this case the expression f(z) — w is of the same sign
when approached from left or right. The fit is therefore continuous. Where f(x)
has an inflection point the intersection construction is replaced by the averaging
construction (3.17): this occurs when the f(x) — w are of opposite sign when
approached from left or right, as in Fig. 2b. For these exceptional points the fit
obtained by this method will be discontinuous. (One possible remedy is to change
the number of points locally by one, thus breaking the symmetry, a device which
seems to work well.)

In order to simplify the solution of (3.17) it is possible to make use of the
outer iteration to move towards the converged x; by using the l’?ld values at the
previous step in the calculation of f(x). In the very special case my_1 = my =0,
equation (3.15) shows that 2" is indeterminate and there is no advantage in
moving the node at all,

If f(x)is convex we see from (2.12) that the result of the converged iteration
(stage (i) — stage (ii) — repeated alternately) is the best continuous s fit using
piecewise linear approximation. If f(x) is not convex there may possibly be
isolated discontinuities in the fitted function at inflection points, where only a
local minimum occurs. It is possible to replace such a discontinuous function
locally by a continuous approximation, by say simply averaging the two nodal
values (in which case the result is the function value itself). This is of course at
the expense of abandoning the optimal fit at these isolated points. The resulting
approximation may however be used as an initialisation for other algorithms

completely dedicated to continuous best fits, see Loach & Wathen [10].



In summary the algorithm is:
1. Set up the initial grid

2. Project f elementwise into the space of piecewise linear discontinuous func-

tions on the current grid as in (3.4) (stage (i))

3. Determine the next grid by the intersection construction (3.16) or (excep-

tionally) the averaging construction (3.17) (stage (ii))
4. It the new grid is too different from the previous grid, go to 2.

The algorithm, which is fast and robust, finds in appropriate cases optimal
linear spline approximations with variable knots: indeed, by concentrating on
piecewise linear discontinuous fits, the procedure effectively linearises the prob-
lem and avoids many of the difficulties generated by restricting the search to
continuous fits at the outset.

Each step (i)+(ii) of the algorithm bears a striking resemblance to the Moving
Finite Element procedure in the two step form described by Baines [2] and Baines
& Wathen [1]. The similarity is pursued by Baines [2].

We show results for two examples, in Fig. 3(a),3(b).

(a) tanh{20(x — 0.5)} 11 interior nodes
(b) 10e™1%* 4 20/{1 + 400(z — 0.7)*} 9 interior nodes

In each case the fixed interval is [0,1] and the initial grid is equally spaced.
Example (a) is a severe front with a single inflection. Example (b) is a test
example suggested by Pryce [11].

In each example the trajectories of the nodes (i) are shown as they move
towards their final positions together with the function (ii) and the fit obtained
(iii). The process is taken to be converged when the /., norm of the nodal position
updates is less than 10™*. The number of iterations appears on the ordinate axis
of the trajectories. In general an extra order of magnitude reduction is obtained
in the Ly error over the equispaced case.

Although the theory has been derived only for C'' functions numerical ex-

periments show that the algorithm also gives optimal fits to functions which are



only piecewise C'. A simple example shows that the intersection construction
drives one node towards an isolated slope discontinuity (c.f. Fig. 2(a)), where it
remains while the fits either side converge.

The algorithm also gives piecewise linear best fits to functions which have
isolated discontinuities. In this case there are extra jump discontinuity terms in
(2.7) arising from the variation of the integral which vanish only when a node is
located at a discontinuity itself. In numerical experiments nodes move towards
such a point from either side where they remain while once again the fits either
side converge. This can be understood in terms of an isolated discontinuity, being
a limit of a continuous steep function.

A further generalisation is to functionals of the form

/F(:z;,u)dx (3.18)
(c.f. (2.3)).

4 Piecewise Constant Fits With Variable Nodes
in One Dimension

The approach is readily adapted for best piecewise constant fits with variable
nodes. In this case the conditions for the best fit, denoted by w*, and the grid,

denoted by x*, are

[ @) = wife) ) de =0 (4.1)

k—1

(c.f.(2.8)), where mp(x) is the characteristic function in the element k (see Fig.

lec), and
[ (2) = wie)}] =0 (42)
(c.f. (2.10)). As in section 2, equation (2.11)-(2.13), using L, R for values to the

left and right of the (variable) node j, it follows from (4.2) that if wy, wg lie on
the same side of f(a7)

[(@5) —wila)) = [(2F) —wh(z)) = wie)) = wk(z)) (4.3)



or, if wr, wr lie on opposite sides of f(z7),

— (J(2}) —wilzj)) = [(2]) — wp(e;) = ;(wi(l‘j) +wp(z))) = f(xF) (4.4)

The latter corresponds to monotonic behaviour of f while the former exceptionally
occurs near to maxima or minima. However, (4.3) gives no information about the
position of % (c.f. Figs. 4a,4b). The solution is therefore the set of best constant
fits in separate elements which have the averaging property (4.4).

The corresponding algorithm to find the best piecewise constant L, fit with
variable nodes is again constructed in two stages (carried out alternately until

convergence), as follows:

Stage (i) 6x; =0, (j =1,...,n),
bw=m, (k=1,2,...,n+1) (4.5)

This stage of the algorithm is governed by (4.1) and corresponds to the best L
fit amongst the family Il of piecewise constant functions on a fixed grid.
stage (ii) éz; = aj,

bw=0 (j=1,2,...,n) (4.6)

This stage corresponds to finding x; such that (4.2) holds, with variations of w
restricted to points lying on the current piecewise constant discontinuous approx-
imation (possibly extrapolated) in element k.

In stage (i) wy(x) is constant (= wy,) in each element, giving from (4.1)

hiwy = /k ’f fla)da (4.7)

where hy = 251 — 212, while stage (ii) taken the wi(x) from (4.7) and seeks x; for

which

(f(zj) —wr)* = (fz;) —wr)* =0 (4.8)
(see Figs 4a, 4b). As in section 2 the functions f(x)—wy and f(x)—wg vanish in

the intervals (wx_y, @) and (2, x511) respectively. It follows that the function

G(z) = (f(2) —wp) = (f(z) — wg) (4.9)



is negative where w intersects f in element £ — 1 and positive where w intersects
f in element k (see Fig. 4). There is therefore at least one root between these
points which may be chosen as the new position of x;. Moreover, if this root is
chosen, all roots (for different k) are separated by these intersections and mesh
tangling cannot occur.

Further information about the direction in which the nodes move can be
obtained from the sign of G/(x). Using the trapezium rule for the integration in
(4.7) gives

wn = S m) + flzaa)) + O(R) (1.10)

so that

} (4.11)
(f(2;) = [lajpn)) + O(hi%)
Then, from (4.9)

Glay) = (5 (3) = Flesma)) + 0012, )Y~

1

(50(e) = Fzse)? + 02,

1

= (@) =2 (@) +f (i) (250) = f(@02)) +O(max(hi_y 7). (4:12)

For sufficiently small h;_ 1 h; 41 therefore, the movement of node j is governed

by the sign of

(flzjo1) = 2f(z5) + fzj00))(f(2j-1) = fl231)), (4.13)

moving left if this quantity is positive and right if it is negative.
Since, in stage (ii), w(x) is restricted in element k by dw = 0, then w(x)
is equal to the value of the current stage (i) approximation within the whole

element. Hence the averaging construction (4.4) gives
1
5(wi +wir) = f(z;) (4.14)

c.f. (3.17), where wj;, and w;p are the values of the current stage (i) approxi-
mation to the left and right of node j. Any standard algorithm may be used to

extract ; : here we have used bisection.



In the case of (4.3) there is no solution for x; unless w;;, = w;g. In this
exceptional case any x; is a solution and there is therefore no reason to adjust
the node position at the current iteration.

In summary the algorithm is:

1. Set up an initial grid

2. Project f elementwise into the space of piecewise constant functions on the

current grid as in (4.7) (stage (i))
3. Determine the new grid by the averaging construction (4.14) (stage (ii))

4. It the new grid is too different from the previous grid, go to 2.

The results are shown for the same test examples as in section 3, shown in Fig.
5(a),5(b), except that for better resolution example (b) is done with 19 interior

nodes.

(a) tanh{20(x — 0.5)} 11 interior nodes
(b) 10e7'% 4+ 20/{1 + 400(x — 0.7)*} 19 interior nodes
In both cases the interval is [0,1] and the initial grid is again equally spaced.
In each example the trajectories of the nodes (i) are shown as they move towards
their final positions, together with the function (ii) and the fit obtained (iii). The
process is taken to have converged when the relative error in the Ly norm of
f(z) — u(z) is less than 107*. The number of iterations appears on the ordinate
axis of the trajectories. An order of magnitude reduction in the L, error over the
fixed node case is obtained.
As in section 3 numerical experiments indicate that the algorithm also gives
best piecewise constant fits to C'° functions which are only piecewise continuous
and functions which have isolated discontinuities, with a node moving towards a

discontinuity and remaining there while the rest of the fit converges.

5 Approximate Versions of the One-Dimensional
Algorithms

Although the algorithm in sections 3 and 4 work perfectly satisfactorily we now

describe very fast algorithms for generating approximate best fits which appear



to be almost as good, for which convergence proofs can be given, and which are
very useful for generalisations to higher dimensions.

These algorithms are based upon using interpolants of the function f(x) at
each stage of the iteration, rather than the function itself. The resulting fit is
therefore not to f(x) but the interpolant of f(x) at the limit. The degradation
is rather small, however, and the algorithms have very positive advantages.

We begin this time with the piecewise constant fits of section 4. Instead of
fitting f(x) we shall fit the current linear interpolant f;(x) (linear in each element)

at each stage of the iteration. This means that (4.7) becomes

= (F o) + F12) 5.)

and that (4.14) becomes
1
Swiz +win) = fr(z;). (5.2)

Since fr(x) is linear in each element to the left and right of node j, it is possible

to write down the solution of (5.2) for a; (called here 27*) which (using (5.1))

J

is given (see Fig. 4) by

o AU C) = 20 () + S(i) .
|f(zj+1)=f ()| [fey)—flay—1)l

Az ? Az
J+% J—%

max

This simple iteration replaces the two stage iteration of section 4. If it converges,

the limit values satisfy

F@ip) = f(@5) = f(@5) = f(5) (5.4)
and the grid is the one that produces equi-spaced f(x}) .

Convergence of the algorithm may be discussed via (4.13). Note that the
O(h3) term of (4.10) is now missing so that the node j moves to the left or the right
according as whether (4.13) is positive or negative. Thus, except in the vicinity
of nodes where (4.13) changes sign, nodal movement is uni-directional. We may
exclude the possibility of (4.13) changing sign by assigning fixed nodes to points

of maxima, minima and inflection points of f(x). Between these fixed points the



nodes will all move in the same direction, their positions are bounded above, and

they converge. The convergence result depends on these points remaining fixed.
The solution in ¢-space is simply equispaced points on the straight line

{p — ¢ £—¢&a ]

{8 —&a {B —¢&a

between any two points 4 and {g for which the averaging construction is unique,

e = sten [ 25 + e | (55)

i.e. away from maxima and minima, where

Fi(&) = fi(x(6)). (5.6)
To solve (5.5) and (5.6) for x(&) involves knowing in advance where the nodes

x(¢;) are. Alternatively we can solve

f1(8) = f(z(€)) (5.7)

with (5.5), but this involves inverting the function f itself, leading again to some
form of iteration.

In the piecewise linear case, instead of fitting f(x) we shall fit the current
quadratic interpolant in each element using the value of the function at the mid-
point of the element as the third matched value. Then (3.4) gives w values (3.11)
without the O(h?}) terms, while 27 is given by (3.16), which becomes

J

vew 310 alz;o1) = 8 folwjy1)} (5.8)
z; €= [M] _ {M] '

Ti+1—%5

l’J—l’J_l

or (3.17) in the form

. - 2fr(x7e) — (52fQ(:1:j_%) + 52fQ($]‘+§)) 5.9
Ty T4 = [f(l’]+1)_f(x])] + [M] (5:9)

Tij+1—%;

l’J—l’J_l

As in the piecewise constant case, if the iteration converges then at the limit the

2} satisfy a particular relationship, this time

away from inflection points.

Moreover, convergence of the algorithm is ensured as in the piecewise constant

case if the F(x;) of (3.13) (without the O(h*) terms) is one-signed, which is



satisfied if (3.14) is not zero. By fixing nodes at the inflection points and at points
when f(%)(z) vanishes, this condition is satisfied and convergence may be proved
as before. Finally, we observe that for the quadratic interpolant the solution in
&-space is equispaced points on the particular quadratic fQ (&) = fo(x(&)) which
passes through the points 4, %(fA +¢B),€B, between any two points {4 and {p
for which the intersection construction is unique, i.e. away from inflection points.

Finding the points x; still requires the inversion of the functions fg or f, however.

6 Piecewise Linear and Constant Fits in Two
Dimensions

The generalisation of these techniques to two dimensions raises a number of dif-
ficulties. In principle, the same approach yields algorithms for obtaining best
discontinuous fits to given continuous functions on a tessellation of the plane.
The solution of the nodal position stage of the algorithm is more difficult, how-
ever, and requires additional numerical techniques. Furthermore, there is not
the same simple connection in two dimensions between discontinuous linear fits
and continuous ones. With these important provisos, however, we describe meth-
ods and algorithms which obtain good representation of sharp functions in two
dimensions, and generalise to higher dimensions.

Let f(z,y) be a given C'* function of the two variables x and y in a domain {2
and let wy(z,y) be a member of the family S? of linear functions on a triangular

subdomain Ay, of 2. Then there exists a unique member w*(x,y) of S¢ such that

5/Ak{f(:1;,y) — e, y)Yodrdy —0  wpe S (6.1)

—a*
wk_wk

or, equivalently,

/Ak{f(x,y) —wi(x,y) Powg(x,y) dedy =0 Yéwy(w,y) € S} (6.2)

The function wi(x,y) is the best L, fit to f(z) from the family S7.
For the region 2, the union of triangles Ay, the best L, fit wi(x,y) to f(z,y)

from the family S? of piecewise linear discontinuous functions wy(z,y) satisfies

6 [, S ) — (e ) dwdy =



6 [ {(ey) = wie,y))dzdy = 0 (6.3)

and is also given by (6.1) or (6.2), since S? = @S5 and the problem decouples.
The solution is w*(x,y) = Uwg(z, y).

Now consider the problem of determining the best L, fit to f(x,y) from the
family S% of piecewise linear discontinuous functions on a variable triangulation
Ur Ay of the fixed domain €2, where the internal vertices of the Ay are varied.

It is again convenient to introduce new independent variables £, 7, which re-
main fixed, while # and % join w as dependent variables, all three now depend-

ing on ¢ and 7 and denoted by &, and w respectively. Then, with @(£,n) =

w(z(&,n), y(&,n)), equation (6.3) becomes

O [ LFGE (€ m) — @€ )} d dy =0 (6.4)

Aw,y)
a(¢m)

Taking the variations of the integral in (6.4) gives

is the Jacobian of the transformation.

where J =

[ {ptrd€nnacan - aen

(€ m) (€ mOHE ) + £ () G(EM)EHE n) — oi(E )}
HIGE L 3(Em) = G(6)Y 8 [dedy. (63)

Integrating the last term by parts leads to
—/A 207 m), §(6,m)) — (&, m)H{o0] — Ve b (62, 69) ydEdn
k

[ TG H(Em) =€) (82, 6y) o ds, (6.6)

where n is the outward drawn normal to an element ds of the boundary dAy of
Ay

Collecting terms and returning to the x,y, w notation, (6.4) yields

Z/Ak 2{f(x,y) — w(z,y) H{ow — w,dx — w,by}daedy +

S [ A ) = (e ) P(ea.sy)a ds =0 (6.7

With the constraints éx, 6y = 0 this leads back to (6.3) and (6.2) and to equations

for the best piecewise linear discontinuous L, fit to f(x,y) with fixed nodes.



Choosing 6z, 6y = 0 and 6w to be in the space of piecewise linear discontin-
uous functions gives for the best discontinuous fit, denoted by w*, z* and y*, the

conditions

where ¢r1, ¢r2, ¢rs are local linear basis functions in the element & (see Fig. 6b).
As other choices, remembering that éx;,6y; must lie in the space of piecewise
linear continuous functions, and letting «; (see Fig. 6a) be the two-dimensional

linear finite element basis function at node j, we may set (separately)

ox; =, 0y; =0, 0w; = wiox;

and (6.9)
ox; =0,0y; = a;, 0w; = w;(Syj
(c.f.(2.9)) in turn in (6.7) to obtain
| A Gey) = ey ash ds = 0 (6.10)
j—star

for 2% and y7, where i = (n1,ny) and “j-star” indicates the spokes, i.e. the union
of the sides of the triangles, passing through the node j at z7%,y%, (see Fig. 7).

The simultaneous solution of (6.8) & (6.10) gives the required solution w*(z*, y*).
Note that (6.10) can be written

S [ ) = wiale ) = (7 ey) — wiclep)Vamds =0 (6.11)

=10
where ¢ runs over the spokes ¢; to {, of j-star, and w4, wec refer to the values of
w on the spoke looking anticlockwise and clockwise, respectively. Another useful

form is
> [{tmates) — wele )y

— s (wea(r,y) — wic(e, )} Joym ds = 0 (6.12)



7 An Algorithm for Variable Node Discontinu-
ous Piecewise Linear Fits on a Variable Tri-

angulation of the Plane

An algorithm to find the best discontinuous linear L, fit with variable nodes is
constructed in two stages (carried out repeatedly until convergence), correspond-
ing to the choice of variations referred to in section 6 above.
Stage (i)

ox; =0, 0y; =0, dw = ¢p1, Pr2 Or Pis (7.1)

This stage of the algorithm corresponds to the best L, fit amongst discontinuous
piecewise linear functions on a prescribed grid, as in (6.1),(6.2), and (6.8) above.

Stage (ii), @ variations

bx; = ay, oy; =0, bw; —wbx; =0 (j=1,2,....,n) (7.2)
Stage (ii), y variations

ox; =0, dy; = aj, bw; —w,by; =0 (j=1,2,...,n) (7.3)

Stage (ii), which combines w and x (or y) variations to give variations in w
“following the motion” in the x (or y) directions, corresponds to finding z; (or
y;) such that (6.10) (or (6.11)) holds. Geometrically, we see from (7.2) or (7.3)
that variations of @, w (or (y,w)) are restricted to points lying on certain planes
constructed from the stage (i) solution (possibly extrapolated) in each of the
elements k surrounding j (see Fig. 7).

The problem of finding w(x,y), belonging to S7, which satisfies (6.8) is stan-
dard. Setting

wi(,y) = Zwki¢ki($7 y) (7.4)

in element k, where ¢ ranges over the corners of Ay, we substitute into (6.8) and

find the matrix equation

Cywy, = by (7-5)



where w, = {wpi}, by = {bxi }, bwi = [5, f(2,y)0ri dedy, and

2 1 1
Ay
C=T01 20 (7.6)
1 1 2

where Ay is the area of the triangular element £.

The other problems, those of finding «; satisfying (6.10) with éw; = w0z
and y; satisfying (6.11) with éw; = w,dy;, are more difficult non-linear problems.
To make progress we shall hold the x; in f(x,y) constant in solving for the new «;,
and embed the associated iteration in the overall iteration, as in the “averaging”
construction algorithm of section 3. Similarly for the y;. This device was used
in section 3 (equation (3.17)) to obtain converged solutions for 7%, in effect a
“lagged” form of the equation being solved as the overall iteration converges.

Let k = ky,..., k. denote the elements surrounding the node j and let ¢,y
denote the edges of the element k emanating from node j (see Fig. 7). Then
(6.12) may be written

> [{weale,y) = wiole.y)}

=10

{F(ay) = J(weale9) + wiole, )} agn dsy =0 (1.7

Since w(x,y) is restricted in element k by éu = w,6x, dy = 0, then if wjy is
the value of the fit obtained from stage (i) at node j in element k, we have in
element &

wlw, y) —wjr = mr(z —x;) + n(y — y;) (7.8)
where my = (uyz )k, np = (Uz)k, to be substituted into (7.7).

This is a highly nonlinear equation, bearing in mind the dependence of the
range of integration on the unknowns x; and y;, but if f(x,,y,) is lagged in the
iteration, it reduces to a quadratic.

We therefore introduce an iteration (to be run in tandem with the main it-

(1)

70

(1+1)

eration) in which we solve the first component (7.7) for z;™"" in terms of x

where f,m and n are evaluated at J}gi)
(i+1)
j

while z; and the range of integration are

evaluated at x . This equation can then be written

AX2—BX+C =0 (7.9)



where

=2 _ g (7.10)

J

A=

[]= S

[ty = mic)agdy, (7.11)
l

Il
~

1

B = Z /{(wm —wye) + (Mg — muc)(xe — 25)+

=10
(WA - Wc)(yz - yj)}mk%‘dyz (7-12)

Le

c=3 /[{f(l'z,yz) —wya — mealwe — 2;) — nealye — y;) =

=10

{f(2e,y0) — wje — muc(xe — x) — nec(ye — yj)}z]ajdyg (7.13)

and (provided that B? > 4AC) solved for X. The integrals in (7.13) may be
evaluated by a quadrature rule. Both Gaussian quadrature and the trapezium
rule have been tried. In the latter case (7.13) simplifies considerably with little
degradation to the results.

Two real solutions of (7.9) may be regarded in simple situations as analo-
gous to the “intersection” solution and “averaged” solution encountered in the
1-D case discussed in section 3, corresponding to convex or concave parts and
inflection points of the function f, respectively. In the present two-dimensional
case the dimensionality and the many contributions to A, B, C' blur the simple
1-D interpretation but for consistency we choose the root corresponding to the
least movement. If B*> = 4AC in (7.10) the roots coalesce, while if B* < 4AC
imaginary roots occur. In the latter case we go for the “nearest” real solution,
which is the equal roots case.

Numerical difficulties arise when A, B and/or €' become very small, which
may be due to nearly plane patches in f or simply closeness to the best fit. A
threshold parameter is therefore introduced which protects the roots from the
resultant singularities. If |A], |B| or |C] fall short of the threshold parameter,
special solutions are taken. In particular, note that if |C] is small we are already

close to convergence.



Since the non-tangling property in one-dimension is no longer guaranteed,
there may still be the possibility of nodes being carried across element boundaries,
leading to triangles with negative area. In these situations a relaxation parameter
is introduced which restricts each node to stay within the surrounding triangles.
Even then there are rare occasions when a triangle area may go negative, in which
case a local smoothing can be applied as an emergency measure, and the algorithm
continued. These features greatly reduce the effectiveness of the algorithm and
prompt the simplified algorithm described in section 9.

The calculation of y(t1) proceeds in a similar way.

This algorithm gives an approximate optimal discontinuous linear fit on trian-
gles. To obtain a useful continuous piecewise linear approximation we may take
an average of the w;; values at a given node j from each adjacent element & to
give an approximate nodal value w;, or use the present approximation as a first
guess in an algorithm dedicated to finding a continuous best fit.

In summary the algorithm is:
1. Set up the initial grid

2. Project f(x,y) elementwise into the space of piecewise linear discontinuous

functions on the current grid using (7.5) (stage (i))

3. Determine the next grid by solving (7.10) (and its y-direction counterpart)

with a relaxation factor to prevent tangling (stage (ii))

4. If the new grid is too different from the previous grid or if the L, error is

decreasing, go to 2.

Results are shown in Fig. 8(a-c) for three examples, each being a sharp front

with a different orientation:
(a) tanh 20(x — %)
(b) tanh 20(x +y — 1)
(c) tanh 20(z? 4 y* — %)

all on the unit square with 49 interior grid points. In each case the initial grid is

uniform (Fig. 8)



Figure 8(a) shows the grid and profile for example (a) after convergence of
the algorithm, while Figures 8(b) and 8(c¢) show the corresponding results in the
case of examples (b) and (c), respectively. Note that the profiles show piecewise
continuous linear plots (obtained by averaging at the nodes) whereas the true
plots should be piecewise linear discontinuous.

The L, errors are shown in Table 1. Errors from the corresponding piecewise
linear continuous function (obtained by averaging nodal values) are shown in

brackets.

Initial error | Final error No. of steps

(a) | 3.77 x 1073 | 2.37 x 1075 40
(2.49 x 1072) | (5.28 x 1075)
(b) | 4.06 x 1073 | 5.89 x 10~ 80
(3.90 x 1072) | (1.37 x 1075)
(c) | 6.62x 1073 | 243 x 10~ 40

(2.86 x 1072) | (4.53 x 107)

Table 1: L, errors for piecewise linear discontinuous best fits.

In examples (a) and (c¢) boundary node displacements along the boundary are
set equal to the corresponding displacements on the next grid line in from the
boundary. This cleans up a lot of the noise generated by the special behaviour
of the boundary nodes and the resulting pollution as it spreads into the interior,

giving an extra order of magnitude accuracy in this way.

8 Piecewise Constant Fits in Two Dimensions

In the case of best piecewise constant fits with adjustable nodes in two dimensions,

w,; = w, = 0 and (6.7) reduces to

> /Ak 2{f(x,y) — w(z,y) }ou dedy +



Zk:/aAk{f(l'ay) —w(:lf,y)}z((S:z:,(Sy).ﬁ ds =0 (8.1)

With éw as the characteristic function m4(x,y) on element k& (Fig. 6¢), and
ox, 0y taken successively, as in section 4, to be the local “hat” function associated

with node 5 we have that the conditions for the best piecewise constant L, fit to

f(x,y), denoted by wj, x% and y7, are (c.f. (6.8)-(6.10))

AT (y) = wi} dady =0 (8.2)

/j—star {f(:z;, y) — i: wzﬂ'z(:p,y)} ands =0 (8.3)

k=k1

where j-star is as in Fig. 8, «; is as in Fig. 7a, k runs over the elements

surrounding node j and

W (a,y) = S wini(z,y) (8.4)

k=k1

By solving (8.2) and (8.3) simultaneously, we obtain the required fit w*(z,y)
This leads to the following algorithm.
Stage (i)
ox; =oy; =0, dbw = 7. (8.5)

This stage of the algorithm corresponds to the best L, fit amongst piecewise
constant functions on a prescribed grid (c.f.(8.6)).
Stage (ii), @ variations

5u]‘ == 5?}] == 0, 51']‘ = Qj (86)
Stage (iii), y variations
5u]‘ == 51}]‘ == 0, 5y]‘ = Oy (87)
From (8.2) stage (i) gives

1
= A

Wi

‘/Ak fla,y) dedy (8.8)

For stage (ii) equation (8.3) may be written as (c.f. (6.11))

> /(WA —wee ) {f(xe,y0) = ;(wm +wic) Yoy dy, =0 (8.9)

=0



centred on (27, y;)(c.f. (7.9)), to be solved for x7*" with y; fixed, while for

stage (iii) it becomes

ZS: /(WA — wee ){ (2o, y0) — ;(wm + wee) bay deg =0 (8.10)

=0
centred on (z;,y7") to be solved for y?** with z; fixed. (The positive sign
corresponds to {; and the negative sign to (3).

To solve (8.9), (8.10) for the new node positions z;, y;, respectively, we may
simplify the problem by using trapezium rule quadrature and then use bisection.
Again, since the non tangling property dimension is not guaranteed, a relaxation
parameter must be introduced to prevent nodes crossing element boundaries.
These features weaken the effectiveness of the algorithm however and prompt the

approach in section 9 below.

In summary the algorithm is:
1. Set up the initial grid

2. Project f(x,y) elementwise into the space of piecewise constant functions

wy in each element k as in (8.9) (stage (i))

3. Determine the new grid by solving (8.9) and (8.10) for x;,y;, respectively,

using bisection, with a relaxation factor to prevent tangling (stage (ii))

4. It the grid is too different from the previous grid, or if the Ly error stops

decreasing, go to 2.

Results are shown in Figs. 9(a-c) for the same three examples as in section
6 on the same unit square with the same number of interior grid points. The
initial grid is again uniform (Fig. 8). Figure 9(a),(b),(c) show grids and profiles
for examples (a),(b),(c) after convergence of the algorithm. Note that, owing to
the graphics, the Figures show piecewise continuous linear plots whereas the true
plots should be piecewise constant.

The corresponding L5 errors are shown in Table 2:

In example (a) boundary node displacements along the boundary are again

set equal to the corresponding displacements on the next grid line in from the



Initial error | Final error | No. of steps
(a) 1.8 1.55 x 1073 40
(b) 1.8 8.54 x 1074 40
(c) 1.84 2.34 x 1072 20

Table 2: L, errors for piecewise constant best fits.

boundary. Again this cleans up a lot of the noise generated by the special be-
haviour of the boundary nodes and the resulting pollution as it spreads into the

interior.

9 Simplified Forms of the Algorithm in Two
Dimensions

Now, following section 5, we develop simplified forms of the two-dimensional
algorithms in sections 6-8, using the current interpolant during the iterations
instead of the function itself.

We begin with the piecewise constant case of section 8. Replacing f(x,y) by
its linear interpolant fr(x,y), (8.9) becomes

we = L(fin + fio + o) (0.1)

where

i = flop,ye), ©=1,2,3 (9.2)

and the k2 are the three vertices of the triangle k.
When f(x,y) is replaced by fr(x,y)in (8.9) or (8.10), the integrand is quadratic
in x or y, leading to

¥

s 2 1 1
> (wea — wzc){gff(»f?ewa yi)+ gf(%‘ev Yie) — §(wa + wee) Hyje —y;) =0 (9.3)
=10

‘

> (wea— wec){gff(% i)+ %f(%‘ev Yie) — %(WA +wic)Haje—a;) =0 (9.4)
=10



where x4, y;s are the coordinates of the vertex on side ¢ away from the vertex j.

Substituting for the w’s from (9.1) then gives

Z (fea = foo) {123 y5) — ;(fﬂA + fiec) M (yje —y;) =0 (9.5)

=0

Le

S (oa = fie) Ui gf™) = S Usea + fae) Mg =) =0. (96)

=10

where fi4, fic are the values of f(x,y) at the points A, C' on the diagram and

where

fma = ;(fj + fia),  fmo = ;(fj + fio). (9.7)

A more general form of (9.5),(9.6) is achieved by taking variations (éx, éy) =

a;I where T is a chosen direction, giving

Z(fm — fic A fr( mway;ww) - ;(fmA + fmc) AL sinf, =0 (9.8)

=t
where ( is the length of the spoke and 6, is the angle between the spoke and the
direction £. The point (27, y7°) is restricted to lie on the line through (z;, y;)
in the direction r.

The sum in (9.8) may be regarded as a weighted sum of the curly brackets
with weights

Wg = (ng - fgc)Ag sin (9@ (99)
Jr(af ™,y Z W, = Z 5 (fma + fuc) Wi (9.10)
=ty =ty

Equation (9.10) looks very much like a generalisation of equations (4.14) or (5.2).
However, the weights W, will vary and are not even positive generally. (An
inspection of (9.9) shows that the W, are likely to be positive when f is in the
direction of steepest f,i.e. Vf, while if r is perpendicular to V [ the w, are likely
to be small and of varying sign.)

The real advantage of positive weights is that, as in 1-D, we can prove a non-
tangling property. For, in that case, from (9.10), f(«7, y***) must be in the

support of the values %(fmA + fmc) for all £. These values are linked continuously



by the spokes of j-star. Any positively averaged value will therefore intersect
one of the spokes (the one with steepest f) at a point closer to (z;,y;) than the
mid-point of the spoke, thus ensuring a displacement which cannot cause tangling.

These arguments suggest a modification to (9.10), taking £ to be in the direc-
tion of the maximum slope of f along the spokes of j-star, giving § = é, say, and
replacing the weights W, of (9.9) in (9.10) by the positive weights

Wit = |foa — fec| AL |sindy). (9.11)

This modification gives the correct behaviour in the direction of steepest f but

new new

also ensures no tangling in any direction. The point (27, y7*) is restricted to
lie on the spoke of j-star with the greatest slope.

The resulting algorithm is very simple to code and much faster and more ro-
bust than the full algorithm of section 8. Also it requires no relaxation parameter
or test to see if the grid has tangled. A particularly easy version which simply
takes the W, = 1 is also viable. Graphs for the three problems of section 8 are
shown in Figs. 10 (a)-(c), with the initial grid of Fig. 8, and the corresponding

errors are shown in Table 3:

Initial error | Final error | No. of steps
(a) 1.8 2.37 x 107° 15
(b) 1.8 2.36 x 1072 15
(c) 1.84 6.00 x 1072 15

Table 3: Ly errors for the algorithm of section 9.

The corresponding approach for piecewise linear fits will use as interpolant a
function which must be higher order than linear in any triangle but the precise
choice will depend on a balance between simple quadrature and accuracy. For
example, a bilinear interpolant or a full quadratic interpolant could be used, the
latter being harder to integrate, the former being more subject to singularity.
We shall not pursue the analysis here except to note that, by analogy with the

1-D piecewise linear case, it is the intersection construction which will dominate



the iteration rather than the averaging construction above. In that spirit we can
investigate an intersection of the generalisation of the 1-D piecewise linear case,

namely, the intersection of the planes

w(x,y) = wjp + me(x — ;) +np(y —y;) Yk (9.12)

see (7.8)). At the “intersection” the values w(x,y) are common and z = a*,

y = y*, say. In general there is no value w, such that

we = Wik + wi(e — ;) +ne(y —y;) Vk (9.13)

for all elements k£ surrounding the point j since the problem is overdetermined.

A least squares solution exists, however, and is given by

MM | o= — 2, | = MTw, (9.14)

i

Y=y

where

Yl =Xme X
MM = | —Smy Smi Sy (9.15)
—Yng Lmgng  Lng
where the sums are over surrounding k’s and w; = {w;;}.
This approach, which has much in common with the Moving Finite Element
procedure, is only likely to work for fully convex f(x,y), however, since if f(x,y)

is not convex the averaging construction may well be needed, as it is in 1-D.

10 Conclusions

We have shown that a variational approach to finding optimal L, fits to a contin-
uous function among piecewise discontinuous linear or constant functions can be
used to generate fast and robust algorithms for obtaining such fits. In one dimen-
sion the algorithms are simple, avoid mesh tangling and are easy to implement.

If the last ounce of accuracy is not required, even simpler versions are available.



In particular, in the one-dimensional linear case the fits obtained are optimal L,
piecewise linear continuous fits a.e.

In two dimensions the algorithms are less robust and harder to implement,
needing relaxation parameters to prevent mesh tangling. Simplified versions have
therefore been developed which avoid mesh tangling and hence the need for these
parameters.

We demonstrate in the Appendix the strong connection between piecewise
discontinuous fits in one dimension and equidistribution. The extension to three
dimensions is straightforward. The main difference in the theory is that in (6.7)
the two types of integral are over tetrahedra and their faces. The spokes of j-star
then become the faces of the triangles which have node j as a vertex. A very
simple algorithm in 3-D which avoids mesh tangling is then (9.10), the ¢ being
the edges emanating from node j and with the w, taken equal to 1.

Apart from the grid generation aspects, this approach is also seen as an in-
gredient in an adaptive grid differential equation solver. A predicted solution on
the current grid gives rise to a new grid via the fitting ideas contained in this
report. The differential equation can then be re-solved with the resulting nodal

movement incorporated. This is the subject of future work.
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A Approximate Equidistribution Results in One
Dimension

In this section, following Carey & Dinh [6], we derive asymptotic equidistribution
results for the linear and constant cases in one dimension, showing the link be-
tween equidistribution and approximation by piecewise discontinuous linear and
constant functions with adjustable nodes.

From (2.8) it follows that f(x)— w*(x) vanishes at at least two points in each
element, s and tj, say. Hence (f(x) — w*(x))" vanishes at at least one point in

each element, r; say. Then, since w* =0,if f € C?

[ 1@y = [[(7(0) ~ w(e))do = ['(w) ~ w'(x) (A1)
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Hence

/;kl(f(x) —w*(x))de = /;kl {/Sjor . dA\ /7«: f”(a)da}Qd:p (A.3)

Tk 2
< [ {lon = 00 fax} da (A4)
Th_1
where ffhax is the maximum norm of f”in element £.

Now, if Fq(x) is an equidistributing function,
(v — 25_1)F{ (k) = a constant, Cy, say, (A.5)
where x,_; < 0, < x1, and we have
[ty
Fo k=1

Finally, as in Carey & Dinh [6], we approximate the right hand side of (A.6)

Tk

(E00) ™ fltas} da. (A.6)

Tr—1

by the integral
Cl [ @) @) de (AT)

and minimise over functions Fi(x), yielding

I Tty (A5)



Bi(e) < [ {f"(o)} do (A.9)
which may be regarded as the asymptotically equidistributed function.

Similarly, in the piecewise constant case, from (4.1) it follows that f(x)—w*(x)

. . . . !
vanishes at at least one point in each element, r; say. Then, since w* =0,

| Fiavde = ["(£o) = w(o))do = fz) - uifa) (A.10)

Hence

/i(f(x) — wi)de = /_ {/ f’(a)da}2 da (A.11)

ok . 2
S/ {(mk - xk—l)fmax,k} dx (A.12)
TE_1
where fax, 18 the maximum norm of f"in element k.

Now, if F,(x) is the equidistributing function,
(v — xp_1)E!(0)) = a constant, C,, say, (A.13)

where 151 < 0 < xj, and we have from (A.12)

[ = wide < B [ B0 S} e (A1)

TE—1

Finally, as before, we approximate the right hand side of (A.14) by the integral

G [ B ) () (A.15)

and minimise over functions F,(x), yielding

)™ @)Y (A16)

or
Folx) oc/ (F(0)}F do (A.17)
which may be regarded as the asymptotically equidistributed function.
These results are approximately borne out by the results obtained in sec-

tions 3 and 4, which therefore correspond to approximate equidistribution of the

functions (A.9) and (A.17), respectively.
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Results for the simplified algorithm of section 9 for Piecewise Constant Fits

in Two Dimensions.



