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1 Introduction

High order finite element methods can lead to very high accuracy and are
thus attracting increasing attention in many fields of computational science
and engineering. The monographs [SB91, BS94, Sch98, KS99, SDR04] give a
broad overview of theoretical and practical aspects of high order methods.

As the problem size increases (due to small mesh-size h and high polyno-
mial order p), the solution of the arising linear system of equations becomes
more and more the time-dominating part. Here, iterative solvers can reduce
the total simulation time. We consider preconditioners based on domain de-
composition methods [DW90, GO95, SBG96, TW04, Qua99]. The concept is
to consider each high order element as an individual sub-domain. Such meth-
ods were studied in [Man90, BCM91, Pav94, Ain96a, Ain96b, Cas97, Bic97,
GC98, SC01, Mel02, EM04]. We assume that the local problems can be solved
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directly. On tensor product elements, one can apply optimal preconditioners
for the local sub-problems as in [KJ99, BSS04, BS04].

In the current work, we study overlapping Schwarz preconditioners with
large or small overlap. The condition numbers are bounded uniformly in the
mesh size h and the polynomial order p. To our knowledge, this is a new result
for tetrahedral meshes. We construct explicitly the decomposition of a global
function into a coarse grid part and local contributions associated with the
vertices, edges, faces, and elements of the mesh.

The rest of the paper is organized as follows: In Section 2 we state the
problem and formulate the main results. We prove the 2D case in Section 3 and
extend the proof for 3D in Section 4. Finally, in Section 5 we give numerical
results for several versions of the analyzed preconditioners.

2 Definitions and Main Result

We consider the Poisson equation on the polyhedral domain Ω with homoge-
neous Dirichlet boundary conditions on ΓD ⊂ ∂Ω, and Neumann boundary
conditions on the remaining part ΓN . With the sub-space V := {v ∈ H1(Ω) :
v = 0 on ΓD}, the bilinear-form A(·, ·) : V × V → R and the linear-form
f(·) : V → R defined as

A(u, v) =
∫

Ω

∇u · ∇v dx f(v) =
∫

Ω

fv dx,

the weak formulation reads

find u ∈ V such that A(u, v) = f(v) ∀ v ∈ V. (1)

We assume that the domain Ω is sub-divided into straight-sided triangular
or tetrahedral elements. In general, constants in the estimates depend on the
shape of the elements, but they do not depend on the local mesh-size. We
define

the set of vertices V = {V },
the set of edges E = {E},

the set of faces (3D only) F = {F},
the set of elements T = {T}.

We define the sets Vf , Ef ,Ff of free vertices, edges, and faces not completely
contained in the Dirichlet boundary. The high order finite element space is

Vp = {v ∈ V : v|T ∈ P p ∀T ∈ T },

where P p is the space of polynomials up to total order p. As usual, we choose
a basis consisting of lowest order affine-linear functions associated with the
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vertices, and of edge-based, face-based, and cell-based bubble functions. The
Galerkin projection onto Vp leads to a large system of linear equations, which
shall be solved with the preconditioned conjugate gradient iteration.

This paper is concerned with the analysis of additive Schwarz precondi-
tioning. The basic method is defined by the following space splitting. In Sec-
tion 5 we will consider several cheaper versions resulting from our analysis.
The coarse sub-space is the global lowest order space

V0 := {v ∈ V : v|T ∈ P 1 ∀T ∈ T }.

For each inner vertex we define the vertex patch

ωV =
⋃

T∈T :V ∈T

T

and the vertex sub-space

VV = {v ∈ Vp : v = 0 in Ω \ ωV }.

For vertices V not on the Neumann boundary, this definition coincides to
Vp∩H1

0 (ωV ). The additive Schwarz preconditioning operator is C−1 : V ∗
p → Vp

defined by
C−1d = w0 +

∑
V ∈V

wV

with w0 ∈ V0 such that

A(w0, v) = 〈d, v〉 ∀ v ∈ V0,

and wV ∈ VV defined such that

A(wV , v) = 〈d, v〉 ∀ v ∈ VV .

This method is very simple to implement for the p-version method using
a hierarchical basis. The low-order block requires the inversion of the sub-
matrix according to the vertex basis functions. The high order blocks are
block-Jacobi steps, where the blocks contain all vertex, edge, face, and cell
unknowns associated with mesh entities containing the vertex V .

The rate of convergence of the cg iteration can be bounded by means
of the spectral bounds for the quadratic forms associated with the system
matrix and the preconditioning matrix. The main result of this paper is to
prove optimal results for the spectral bounds:

Theorem 1. The constants λ1 and λ2 of the spectral bounds

λ1 〈Cu, u〉 ≤ A(u, u) ≤ λ2 〈Cu, u〉 ∀u ∈ Vp

are independent of the mesh-size h and the polynomial order p.
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The proof is based on the additive Schwarz theory, which allows to express
the C-form by means of the space decomposition:

〈Cu, u〉 = inf
u=u0+

P
V uV

u0∈V0,uV ∈VV

‖u0‖2
A +

∑
‖uV ‖2

A.

The constant λ2 follows immediately from a finite number of overlapping
sub-spaces. In the core part of this paper, we construct an explicit and stable
decomposition of u into sub-space functions. Section 3 introduces the de-
composition for the case of triangles, in Section 4 we prove the results for
tetrahedra.

3 Sub-space splitting for triangles

In this section, we give the proof of Theorem 1 for triangles. The case of
tetrahedra is postponed to Section 4.

The strategy of the proof is the following: First, we subtract a coarse
grid function to eliminate the h-dependency. By stepwise elimination, the
remaining function is then split into sums of vertex-based, edge-based and
inner functions. For each partial sum, we give the stability estimate. This
stronger result contains Theorem 1, since we can choose corresponding vertices
for the edge and inner contributions (see also Section 5).

3.1 Coarse grid contribution

In the first step, we subtract a coarse grid function:

Lemma 1. For any u ∈ Vp there exists a decomposition

u = u0 + u1 (2)

such that u0 ∈ V0 and

‖u0‖2
A + ‖∇u1‖2

L2
+ ‖h−1u1‖2

L2
� ‖u‖2

A.

Proof. We choose u0 = Πhu, where Πh is the Clément-operator [Cle75]. The
norm bounds are exactly the continuity and approximation properties of this
operator.

From now on, u1 denotes the second term in the decomposition (2).

3.2 Vertex contributions

In the second step, we subtract functions uV to eliminate vertex values. Since
vertex interpolation is not bounded in H1, we cannot use it. Thus, we con-
struct a new averaging operator mapping into a larger space.
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In the following, let V be a vertex not on the Dirichlet boundary ΓD,
and let ϕV be the piece-wise linear basis function associated with this vertex.
Furthermore, for s ∈ [0, 1] we define the level sets

γV (s) := {y ∈ ωV : ϕV (y) = s},

and write γV (x) := γV (ϕV (x)) for x ∈ ωV . For internal vertices V, the level set
γV (0) coincides with the boundary ∂ωV (cf. Figure 1). The space of functions
being constant on these sets reads

SV := {w ∈ L2(ωV ) : w|γV (s) = const, s ∈ [0, 1] a.e.};

its finite dimensional counterpart is

SV,p := SV ∩ Vp = span{1, ϕV , ..., ϕp
V }.

We introduce the spider averaging operator(
ΠV v

)
(x) :=

1
|γV (x)|

∫
γV (x)

v(y) dy, for v ∈ L2(ωV ).

To satisfy homogeneous boundary conditions, we add a correction term as
follows (see Figure 2)(

ΠV
0 v
)
(x) :=

(
ΠV v

)
(x)− (ΠV v)|γV (0)(1− ϕV (x)).

x

γ(x)

V

Fig. 1. The level sets γV (x)

Π γ(0)
V(u)

x

(u)VΠ

)ϕ
V

(1−    

Fig. 2. Construction of ΠV
0

Lemma 2. The averaging operators fulfill the following algebraic properties

(i)
ΠV Vp = SV,p,

(ii)
ΠV

0 Vp = SV,p ∩ VV ,
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(iii) if u is continuous at V , then

(ΠV u)(V ) = ΠV
0 u(V ) = u(V ).

The proof follows immediately from the definitions.

We denote the distance to the vertex V , and the minimal distance to any
vertex in V by

rV (x) := |x− V | and rV(x) := min
V ∈V

rV (x).

Lemma 3. The averaging operators satisfy the following norm estimates

(i)
‖ΠV u‖L2(ωV ) � ‖u‖L2(ωV )

(ii)
‖∇ΠV u‖L2(ωV ) � ‖∇u‖L2(ωV )

(iii)
‖r−1

V {u−ΠV u}‖L2(ωV ) � ‖∇u‖L2(ωV )

(iv)
‖∇{ϕV u−ΠV

0 u}‖L2(ωV ) � ‖∇u‖L2(ωV )

(v)
‖r−1

V {ϕV u−ΠV
0 u}‖L2(ωV ) � ‖∇u‖L2(ωV )

Proof. We parameterize the patch ωV by

FV : γV (0)× [0, 1] → ωV : (y, s) 7→ y + s(V − y).

Splitting the patch into elements, and applying element-wise transformation
rules, one proves∫

ωV

∣∣f(x)
∣∣ dx ' hV

∫ 1

0

∫
γV (0)

∣∣f(FV (y, s))
∣∣ (1− s) dy ds,

where hV := diam{ωV }.

(i) Using γV (FV (y, s)) = γV (s) together with standard inequalities we
derive
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‖ΠV u‖2
L2(ωV ) ' hV

∫ 1

0

∫
γV (0)

∣∣(ΠV u)(FV (y, s))
∣∣2 (1− s) dy ds

= hV

∫ 1

0

∫
γV (0)

∣∣∣ 1
|γV (s)|

∫
γV (s)

u(x) dx
∣∣∣2 (1− s) dy ds

≤ hV

∫ 1

0

∫
γV (0)

1
|γV (s)|

∫
γV (s)

u2(x) dx (1− s) dy ds

= hV

∫ 1

0

∫
γV (0)

1
|γV (0)|

∫
γV (0)

u2(FV (x, s)) dx (1− s) dy ds

= hV

∫ 1

0

∫
γV (0)

u2(FV (x, s)) dx (1− s) ds

'
∫

ωV

u2(x) dx.

(ii) To verify the estimate for the H1-semi-norm, we rewrite the point-wise
gradient:

(∇ΠV u)(x) = ∇

(
1

|γV (x)|

∫
γV (x)

u(y) dy

)

= ∇

(
1

|γV (0)|

∫
γV (0)

u(FV (y, ϕV (x)) dy

)

=
1

|γV (0)|

∫
|γV (0)|

d (u ◦ FV )
ds

(y, ϕV (x))∇ϕV (x) dy

=
1

|γV (0)|

∫
|γV (0)|

(∇u)
(
FV (y, ϕV (x))

)
· (V − y)∇ϕV (x) dy.

Forming the absolute values allows us to estimate

|∇ΠV u|(x) ≤ 1
|γV (0)|

∫
γV (0)

∣∣(∇u)(FV (y, ϕV (x)))
∣∣|V − y||∇ϕV | dx

� 1
|γV (0)|

∫
γV (0)

∣∣(∇u)(FV (y, ϕV (x)))
∣∣hV h−1

V dy

=
1

|γV (x)|

∫
γV (x)

|(∇u)(y)| dy

= (ΠV |∇u|) (x).

The rest follows from the L2-estimate (i) applied to |∇u|.

(iii) On the manifold γV (0), there holds the Poincaré inequality∫
γV (0)

∣∣∣u(x)− 1
|γV (0)|

∫
γV (0)

u(y) dy
∣∣∣2 dx � h2

V

∫
γV (0)

|∇u|2 dx.
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Using rV (x) ' (1− ϕV (x))hV we derive∫
ωV

1
r2
V

(
u−ΠV u

)2
dx

' hV

∫ 1

0

∫
γV (0)

1
r2
V

(
u(FV (y, s))− 1

|γV (0)|

∫
γV (0)

u(FV (x, s)) dx
)2

(1− s) dy ds

� hV

∫ 1

0

∫
γV (0)

h2
V

r2
V

∣∣∇yu(FV (y, s))
∣∣2 (1− s) dy ds

' hV

∫ 1

0

∫
γV (0)

1
(1− s)2

∣∣∣(∇u)(FV (y, s))
∂FV

∂y

∣∣∣2 (1− s) dy ds

= hV

∫ 1

0

∫
γV (0)

∣∣(∇u)(FV (y, s))
∣∣2 (1− s) dy ds

' ‖∇u‖2
L2(ωV ).

(iv) Since ϕV 1 = ΠV
0 1, we can subtract the mean value u := 1

|ωV |
∫

ωV
u(x) dx:

‖∇{ϕV u−ΠV
0 u}‖ = ‖∇{ϕV (u− u)−ΠV

0 (u− ū)}‖
≤ ‖∇

{
ϕV (u− ū)

}
‖+ ‖∇ΠV (u− ū)−ΠV (u− ū)|γV (0)∇(1− ϕV )‖

� ‖(∇ϕV )(u− ū)‖+ ‖ϕV ∇u‖+ ‖∇u‖+
∣∣∣ΠV (u− ū)|γV (0)

∣∣∣‖∇ϕV ‖

� h−1‖u− ū‖+ ‖∇u‖
� ‖∇u‖.

We have used (ii) and the trace inequality for∣∣∣ΠV (u− ū)|γV (0)

∣∣∣ = 1
|γV (0)|

∣∣∣∣ ∫
γV (0)

u− ū dx

∣∣∣∣ ≤
≤ |γV (0)|−1/2 ‖u− ū‖L2(γV (0)) � ‖∇(u− ū)‖+ h−1‖u− ū‖.

(3)

(v) We finally prove ‖r−1
V {ϕV u−ΠV

0 u}‖L2(ωV ) � ‖∇u‖L2(ωV ). From the def-

inition of rV , we get∥∥ 1
rV
{ϕV u−ΠV

0 u}
∥∥ ' ∥∥ 1

rV
{ϕV u−ΠV

0 u}
∥∥+

∑
V ′∈ωV \{V }

∥∥ 1
rV ′

{ϕV u−ΠV
0 u}

∥∥.
We bound the first term as follows:
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rV

{ϕV u−ΠV
0 u}

∥∥
L2(ωV )

=
∥∥ 1

rV

{
(1− (1− ϕV ))u−ΠV u + (1− ϕV )(ΠV u)|γV (0)

}∥∥
=
∥∥ 1

rV

{
(u−ΠV u)− (1− ϕV )(u− ū) + (1− ϕV )

(
(ΠV u)|γV (0) − ū

)}∥∥
�
∥∥ 1

rV
(u−ΠV u)

∥∥+
∥∥1− ϕV

rV
(u− ū)

∥∥+
∥∥1− ϕV

rV

(
(ΠV u)|γV (0) − ū

)∥∥
� ‖∇u‖+ h−1‖u− ū‖+ h−1

∣∣∣(ΠV u)|γV (0) − ū
∣∣∣ |ωV |1/2

� ‖∇u‖L2(ωV )

We have used that (1 − ϕV )/rV ' h−1, and applied the Poincaré inequality
on ωV , and once again (3).

Before treating the second term, we prove the following estimate on a
triangle T : ∫

T

1
(rV ′)2

v2 dx � ‖∇v‖2
L2(T ), (4)

for functions v vanishing on an edge E containing the vertex V ′. We transform
to a reference triangle T̂ = {(x1, x2) : 0 ≤ x2 ≤ x1 ≤ 1} and use Friedrichs’
inequality:

∫
T

1
(rV ′)2

v2 dx ' h2

1∫
0

x1∫
0

1
h2 x2

1

v2(x1, x2) dx2 dx1

�
1∫

0

x1∫
0

( ∂v

∂x2

)2

dx2 dx1 � ‖∇v‖2
L2(T )

Since the function v := ϕV u − ΠV
0 u vanishes on the boundary ∂ωV , in-

equality (4) can be applied on each triangle T ⊂ ωV :∥∥ 1
rV ′

{ϕV u−ΠV
0 u}

∥∥
L2(ωV )

�
∥∥∇{ϕV u−ΠV

0 u}
∥∥

L2(ωV )

Using (iv) and summing over V ′, we get the desired estimate. Due to shape
regularity this sum is finite.

This finishes the proof of Lemma 3

The global spider vertex operator is

ΠV :=
∑

V ∈Vf

ΠV
0 .
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Obviously, u − ΠVu vanishes in any vertex V ∈ Vf . These well-defined zero
vertex values are reflected by the following norm definition:

||| · |||2 := ‖∇ · ‖2
L2(Ω) + ‖ 1

rV
· ‖2

L2(Ω) (5)

Theorem 2. Let u1 be as in Lemma 1. Then, the decomposition

u1 =
∑

V ∈Vf

ΠV
0 u1 + u2 (6)

is stable in the sense of∑
V ∈Vf

‖ΠV
0 u1‖2

A + |||u2|||2 � ‖u‖2
A. (7)

Proof. The vertex terms in equation (7) are bounded by

‖ΠV
0 u1‖2

A = ‖ΠV u1 − (ΠV u1)|γV (0)(1− ϕV )‖2
A

≤ ‖∇ΠV u1‖2
L2(ωV ) +

∣∣(ΠV u1)|γV (0)

∣∣2 ‖1− ϕV ‖2
A

� ‖∇u1‖2
L2(ωV ) + h−2

V ‖u1‖2
L2(ωV ).

We have used that ‖1− ϕV ‖A ' 1. Summing up all terms, one obtains∑
V ∈Vf

‖ΠV
0 u1‖2

A � ‖∇u1‖2
L2(Ω) + ‖h−1u1‖2

L2(Ω) � ‖u‖2
A.

To bound the second term, we compare with the partition of unity provided
by the hat functions:∣∣∣∣∣∣∣∣∣u− ∑

V ∈Vf

ΠV
0 u
∣∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣∣ ∑
V ∈VD

ϕV u +
∑

V ∈Vf

(ϕV u−ΠV
0 u)

∣∣∣∣∣∣∣∣∣2
�
∑

V ∈VD

|||ϕV u|||2 +
∑

V ∈Vf

|||(ϕV u−ΠV
0 u)|||2

The functions ϕV u have a zero-edge for each vertex, and thus, an argument
similar to that of Lemma 3, part (v) applies and leads to

|||ϕV u|||2 � ‖∇(ϕV u)‖2
L2(ωV ) ≤ ‖∇u‖2

L2(ωV ).

For the rest of this section, u2 denotes the second term in the decomposition
(6).

3.3 Edge contributions

As seen in the last subsection, the remaining function u2 vanishes in all ver-
tices. We now introduce an edge-based interpolation operator to carry the
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decomposition further, such that the remaining function, u3, contributes only
to the inner basis functions of each element.

Therefore we need a lifting operator which extends edge functions to the
whole triangle preserving the polynomial order. Such operators were intro-
duced in Babuška et al. [BCM91], and later simplified and extended for 3D by
Muñoz-Sola [Mun97]. The lifting on the reference element TR with vertices
(−1, 0), (1, 0), (0, 1) and edges ER

1 := (−1, 1)× {0}, ER
2 , ER

3 reads:

(R1w)(x1, x2) :=
1

2x2

∫ x1+x2

x1−x2

w(s)ds,

for w ∈ L1([−1, 1]). The modification by Muñoz-Sola preserving zero bound-
ary values on the edges ER

2 and ER
3 is

(Rw)(x1, x2) := (1− x1 − x2) (1 + x1 − x2)
(
R1

w

1− x2
1

)
(x1, x2).

For an arbitrary triangle T = FT (TR) containing the edge E = FT (ER
1 ),

its transformed version reads

RT w := R
[
w ◦ FT

]
◦ F−1

T .

The Sobolev space H
1/2
00 (E) on an edge E = [VE,1, VE,2] is defined by its

corresponding norm

‖w‖2

H
1/2
00 (E)

:= ‖w‖2
H1/2(E) +

∫
E

1
rVE

w2 ds,

with
rVE

:= min{rVE,1 , rVE,2}.

Lemma 4. The Muñoz-Sola lifting operator RT satisfies:

(i) it maps polynomials w ∈ P p
0 (E) := {v ∈ P p(E) : v = 0 in VE,1, VE,2} into

{v ∈ P p(T ) : v = 0 on ∂T \ E}.
(ii) it is bounded in the sense

‖RT w‖H1(T ) � ‖w‖
H

1/2
00 (E)

.

The proof follows from [BCM91] and [Mun97].

We call ωE := ωVE,1 ∩ ωVE,2 the edge patch. We define an edge-based
interpolation operator as follows:

ΠE
0 : {v ∈ Vp : v = 0 in V} → H1

0 (ωE) ∩ Vp,

(ΠE
0 u)|T := RT trE u.

(8)
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Lemma 5. The edge-based interpolation operator ΠE
0 defined in (8) is bounded

in the ||| · |||-norm:
‖∇ΠE

0 u‖L2(ωE) � |||u|||ωE

Proof. Foremost, we apply Lemma 4 on a single triangle T ⊂ ωE :

‖∇ΠE
0 u‖2

L2(T ) = ‖∇RT trE u‖2
L2(T )

� ‖ trE u‖2
H1/2(E) +

∫
E

1
rVE

(trE u)2 ds.

For the first term, the trace theorem can be immediately applied.
The second term, the weighted L2-norm on the edge, can be bounded by

a weighted norm on the triangle. We transform onto the reference triangle,∫
E

1
rVE

u2 ds =
∫

ER
1

1
rV

ER
1

(u ◦ FT )2 ds,

and write uR := u ◦ FT . Due to symmetry, we consider only the right half of
the edge ER

1 , where rER
1

= 1
1−x1

, and finally apply a trace inequality:∫ 1

0

1
1− x1

uR(x1, 0)2 dx1 �

�
∫ 1

0

1
1− x1

∫ 1−x1

0

(1− x1)
[∂uR

∂x2

]2
+

1
1− x1

[uR]2 dx2 dx1

� |||uR|||2T R ' |||u|||2T .

This leads us immediately to

Theorem 3. Let u2 be as in Theorem 2. Then, the decomposition

u2 =
∑

E∈Ef

ΠE
0 u2 + u3 (9)

satisfies u3 = 0 on
⋃

E∈Ef
E and is bounded in the sense of∑

E∈Ef

‖∇ΠE
0 u2‖2

L2
+ ‖∇u3‖2

L2
� |||u2|||2. (10)

3.4 Main result

Proof (Proof of Theorem 1 for the case of triangles). Summarizing the last
subsections, we have

u1 = u−Πhu, u2 = u1 −
∑

V ∈Vf

ΠV
0 u1, u3 = u2 −

∑
E∈Ef

ΠE
0 u2,
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and the decomposition

u = Πhu +
∑

V ∈Vf

ΠV
0 u1 +

∑
E∈Ef

ΠE
0 u2 +

∑
T∈T

u3|T . (11)

is stable in the ‖ · ‖A-norm.
For any edge E or triangle T , we can find a vertex V , such that the

corresponding summand is in VV . Since for each vertex only finitely many
terms appear, we can use the triangle inequality and finally arrive at the
missing spectral bound

〈Cu, u〉 = inf
u=u0+

P
V uV

u0∈V0,uV ∈VV

‖u0‖2
A +

∑
V

‖uV ‖2
A � 〈Au, u〉 .

4 Sub-space splitting for tetrahedra

Most of the proof for the 3D case follows the strategy introduced in Section 3,
so we use the definitions thereof. The only principal difference is the edge
interpolation operator, which shall be treated in more detail.

4.1 Coarse and vertex contributions

We define the level surfaces of the vertex hat basis functions

ΓV (x) := ΓV (ϕV (x)) := {y : ϕV (y) = ϕV (x)}.

As in 2D, we first subtract the coarse grid function

u1 = u−Πhu,

and secondly the multi-dimensional vertex interpolant to obtain

u2 = u1 −ΠVu1,

where the definitions of ΠV , ΠV
0 , ΠV are the same as in Section 3, only

the level set lines γV are replaced by the level surfaces ΓV . With the same
arguments, one easily shows that∑

v∈Vf

‖ΠV
0 u1‖2

A + ‖∇u2‖2
L2

+ ‖r−1
V u2‖2

L2
� ‖u‖2

A. (12)

4.2 Edge contributions

Let F := {(s, t) : s ≥ 0, t ≥ 0, s + t ≤ 1} be the reference triangle in Figure 3.
For (s, t) ∈ F , we define the level lines
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ER

1

1 

s

t

0

F

Fig. 3. Reference triangle

γ

x

E(0,0)

γ (x)E

E

VE,1

VE,2

Fig. 4. Edge patch

γE(s, t) := {x : ϕVE,1(x) = s and ϕVE,2(x) = t},

and write
γE(x) := γE(ϕVE,1(x), ϕVE,2(x))

for the level line corresponding to a point x in the edge-patch ωE , see Figure 4.
Define the space of constant functions on these level lines,

SE := {v : v|γE(x) = const}

and its polynomial subspace SE,p := SE ∩ Vp. The edge averaging operator
into SE reads (

ΠEv
)
(x) :=

1
|γE(x)|

∫
γE(x)

v(y) dy.

Furthermore, let rVE
:= min{rVE,1 , rVE,2}, and rE(x) := dist{x,E}.

Lemma 6. The edge-averaging operator satisfies

(i)
ΠEVp = SE,p,

(ii)
(ΠEu)(x) = u(x), for x ∈ E, u continuous,

(iii)
‖∇ΠEu‖L2(ωE) � ‖∇u‖L2(ωE),

(iv)
‖r−1

VE
ΠEu‖L2(ωE) � ‖r−1

V u‖L2(ωE),

(v)
‖r−1

E (u−ΠEu)‖L2(ωE) � ‖∇u‖L2(ωE),

where u ∈ H1(ωE).
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The proof is analogous to the proofs of Lemma 2 and Lemma 3.

Next, the edge-interpolation operator is modified to satisfy zero boundary
conditions on ∂ωE . By the isomorphism

vF (s, t) := v|γE(s,t), for v ∈ SE , (13)

the function space SE can be identified with a space on the triangle F .

Lemma 7. The isomorphism (13) fulfills the following equivalences for func-
tions v ∈ SE:

(i)
‖v‖L2(ωE) ' h3/2 ‖r1/2

ER vF ‖L2(F ),

(ii)
‖∇v‖L2(ωE) ' h1/2 ‖r1/2

ER∇vF ‖L2(F ),

(iii)

‖r−1
VE

v‖L2(ωE) ' h1/2

∥∥∥∥ r
1/2
ER

rV
ER

vF

∥∥∥∥
L2(F )

,

(iv)
‖r−1

E v‖L2(ωE) ' h1/2 ‖r−1/2

ER vF ‖L2(F ),

where

ER := {(s, t) ∈ F : s + t = 1},

rER(s, t) := 1− s− t, and (rVER
)−1 := 1

1−s + 1
1−t .

Proof. We parameterize the edge-patch ωE by

FE : γE(0, 0)× F → ωE

(z, (s, t)) 7→ z + s(VE,1 − z) + t(VE,2 − z).

Note that functions v ∈ SE do not depend on the parameter z ∈ γE(0, 0) and
vF (s, t) = (v ◦ FE)(z, s, t) for any z ∈ γE(0, 0). Equivalence (i) holds due to
the transformation of the integrals∫

ωE

|v|2 dx ' h2

∫
γE(0,0)

∫ 1

0

∫ 1−s

0

|v ◦ FE |2(1− s− t) dt ds dz

' h3

∫
F

|vF |2 rER d(s, t).

Derivatives evaluate to ∂vF

∂s = (∇v) · ∂FE

∂s = (∇v) · (VE,1 − z), and thus

|(∇v) ◦ FE | ' h−1|∇vF |.

In combination with (i), we have proven (ii). Finally, equivalences (iii) and
(iv) follow from rVE

◦ FE ' h rVER
.
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We now modify the function

uF (s, t) := (ΠEu2)|γE(s,t) (14)

to obtain a function uF,00 which satisfies zero boundary conditions on the
edges s = 0 and t = 0, and coincides with uF on the edge s + t = 1. This
modification is done in such a way that it is continuous in the weighted H1-
norm.

(s,t)

Fig. 5. Averaging lines of the smoothing operator Ss

First, we define the smoothing operator (cf. Figure 5)

(Ssv)(s, t) :=
∫ 1

0

v
(
s +

τ

2
(1− s− t), t

)
dτ.

Secondly, we modify the operator to obtain

(Ss,0v)(s, t) := (Ssv)(s, t)− 1− s− t

1− t
(Ssv)(0, t),

which vanishes on the edge s = 0.

Lemma 8. The smoothing operator Ss,0 satisfies

Ss,0 : {v ∈ P p : v(0, 1) = v(1, 0) = 0} → {v ∈ P p : v(1, 0) = v(0, ·) = 0}

and the estimates∥∥r1/2

ER∇(Ss,0v)
∥∥

L2(F )
+
∥∥ r

1/2
ER

rV
ER

(Ss,0v)
∥∥

L2(F )
+
∥∥r−1/2

ER (Ss,0v − v)
∥∥

L2(F )

�
∥∥r1/2

ER∇v
∥∥

L2(F )
+
∥∥ r

1/2
ER

rV
ER

v
∥∥

L2(F )
. (15)

Proof. Assume that v is a polynomial vanishing in (0, 1) and (1, 0). Then
Ssv is again a polynomial, which is identical to v on the edge s + t = 1. In
particular, the restriction onto the edge s = 0 is a polynomial in t vanishing
for t = 1. Thus, the factor 1− t in the definition of Ss,0 cancels out.
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First, we prove the corresponding estimates for the smoothing operator
Ss. We observe that derivatives of Ssv depend on derivatives of v, only:

∂(Ssv)
∂s

=
∫ 1

0

(∇v) ·
(
1− τ

2
, 0
)
dτ,

∂(Ssv)
∂t

=
∫ 1

0

(∇v) ·
(
− τ

2
, 1
)
dτ.

Since rER is bounded from below and from above on the averaging line
[(s, t); (s + 1

2 (1 − s − t), t)], the smoothing operator Ss is bounded in the
weighted H1-semi-norm. The approximation property corresponding to the
weighted L2-norm follows from Friedrichs’ inequality applied on the same
line.

Now, we prove the estimates for the correction Ss,0 − Ss. The first is∥∥∥r1/2

ER∇
[

1−s−t

1−t
(Ssv)(0, t)

]∥∥∥
L2(F )

≤
∥∥∥r1/2

ER

( −1

1−t
,

−s

(1−t)2

)
(Ssv)(0, t)

∥∥∥
L2(F )

+
∥∥∥r1/2

ER

1−s−t

1−t
∇(Ssv)(0, t)

∥∥∥
L2(F )

�
∥∥(1− t)−1/2(Ssv)(0, t)

∥∥
L2(F )

+
∥∥(1− t)1/2 ∂(Ssv)

∂t
(0, t)

∥∥
L2(F )

=
∥∥(Ssv)(0, t)

∥∥
L2(0,1)

+
∥∥(1− t)

∂(Ssv)
∂t

(0, t)
∥∥

L2(0,1)
,

the other two are bounded by the same expression.
We now bound these trace norms of Ssv by the right-hand side of (15).

We start with the L2-norm:∫ 1

0

(Ssv)2(0, t) dt =
∫ 1

0

[ ∫ 1

0

v
(1− t

2
τ, t
)
dτ
]2

dt

≤
∫ 1

0

∫ 1

0

v2
(1− t

2
τ, t
)
dτ dt =

∫ 1

0

∫ 1−t
2

0

v2(s, t)
2

1− t
ds dt

�
∫

F

rER

r2
VE

v2(s, t) ds dt

We have substituted s = 1−t
2 τ , and used that

s ≤ 1− t

2
implies

1
1− t

≤ 2
1− s− t

(1− t)2
≤ 2

rER

r2
VE

.

Similarly, we can bound the weighted H1-norm on the edge by
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0

(1− t)2
[∂(Ssv)

∂t
(0, t)

]2
dt =

∫ 1

0

(1− t)2
[ ∫ 1

0

(∇v) · (−τ/2, 1)T dτ
]2

dt

�
∫ 1

0

(1− t)2
∫ 1

0

∣∣∣∇v
(1− t

2
τ, t
)∣∣∣2 dτdt

�
∫ 1

0

∫ 1−t
2

0

(1− s− t)|∇v|2 ds dt.

In the same manner, we define

(Stu)(s, t) :=
∫ 1

0

u
(
s, t +

τ

2
(1− s− t)

)
dτ,

and
(St,0)(x, y) := (StuF,0)(s, t)−

1− s− t

1− s
(StuF,0)(s, 0).

These two smoothing operators allow us to define the function

uF,00 := St,0Ss,0uF

satisfying zero boundary values at both edges s = 0 and t = 0.
We define the edge interpolation operator by

(ΠE
0 u2)(x) := uF,00(ϕVE,1(x), ϕVE,2(x)). (16)

Lemma 9. The edge interpolation operator ΠE
0 satisfies

‖r−1
E {v −ΠE

0 v}‖L2(ωE) � ‖∇v‖L2(ωE) + ‖r−1
V v‖L2(ωE),

where
rE(x) := min

E∈E
rE(x).

Proof. The proof is analogous to the one of Lemma 3, part (v). We observe
that

‖r−1
E w‖L2(ωE) ' ‖r−1

E w‖L2(ωE) +
∑

E′⊂ωE\{E}

‖r−1
E′ w‖L2(ωE).

The desired estimate for the first term follows directly from Lemma 6,
Lemma 7 and Lemma 8.

For the second term, we use that
∫

T
r−2
E′ v2dx � ‖∇v‖2

L2(T ) for functions v
vanishing on ∂ωE .

Finally, we define the global edge interpolation operator

ΠE :=
∑

E∈Ef

ΠE
0 , (17)

where Ef is the set of are all free edges, i. e. those which do not lie completely
on the Dirichlet boundary. We obtain
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Theorem 4. The decomposition

u2 =
∑

E∈Ef

ΠE
0 u2 + u3 (18)

fulfills the stability estimate∑
E∈Ef

‖ΠE
0 u2‖2

A + ‖∇u3‖2 + ‖r−1
E u3‖2 � ‖∇u2‖2 + ‖r−1

V u2‖2. (19)

Moreover, u3 = 0 on
⋃

E∈Ef
E.

Proof. The result is an immediate consequence of Lemma 6, Lemma 8 and
Lemma 9 using the argument of finite summation.

4.3 Main result

Proof (Proof of Theorem 1 for the case of tetrahedra). The interpolation on
faces in 3D and its analysis follows the line of the edge interpolation in 2D,
see Section 3.3.

Summarizing, we obtain

u1 = u−Πhu, u2 = u1 −
∑

V ∈Vf

ΠV
0 u1,

u3 = u2 −
∑

E∈Ef

ΠE
0 u2, u4 = u3 −

∑
F∈Ff

ΠF
0 u3,

where Ff = {F ∈ F : F 6⊂ ΓD}. As a consequence of the last subsections, the
decomposition

u = Πhu +
∑

V ∈Vf

ΠV
0 u1 +

∑
E∈Ef

ΠE
0 u2 +

∑
F∈Ff

ΠF
0 u3 +

∑
T∈T

u4|T (20)

is stable in the ‖ · ‖A-norm.

5 Numerical results

In this section, we show numerical experiments on model problems to verify
the theory elaborated in the last sections and to get the absolute condition
numbers hidden in the generic constants. Furthermore, we study two more
preconditioners.

We consider the H1(Ω) inner product

A(u, v) = (∇u,∇v)L2 + (u, v)L2
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on the unit cube Ω = (0, 1)3, which is subdivided into 69 tetrahedra, see
Figure 6. We vary the polynomial order p from 2 up to 10. The condition
numbers of the preconditioned systems are computed by the Lanczos method.

Example 1: The preconditioner is defined by the space-decomposition
with big overlap of Theorem 1:

V = V0 +
∑
V ∈V

VV

The condition number is proven to be independent of h and p. The computed
numbers are drawn in Figure 7, labeled ’overlapping V’. The inner unknowns
have been eliminated by static condensation. The memory requirement of this
preconditioner is considerable: For p = 10, the memory needed to store the
local Cholesky-factors is about 4.4 times larger than the memory required for
the global matrix.

In Section 2 we introduced the space splitting into the coarse space V0 and
the vertex subspaces VV . However, our proof of Theorem 1 involves the finer
splitting of a function u into a coarse function, functions in the spider spaces
SV , edge-, face-based and inner functions. Other additive Schwarz precondi-
tioners with uniform condition numbers are induced by this finer splitting.

Example 2: Now, we decompose the space into the coarse space, the
p-dimensional spider-vertex spaces SV,0 = span{ϕV , . . . , ϕp

V }, and the over-
lapping sub-spaces VE on the edge patches:

V = V0 +
∑
V ∈V

SV,0 +
∑
E∈E

VE

The condition number is proven to be uniform in h and p. The computed
values are drawn in Figure 7, labeled ’overlapping E, spider V’. Storing the
local factors is now about 80 percent of the memory for the global matrix.

Example 3: The interpolation into the spider-vertex space SV,0 has two
continuity properties: It is bounded in the energy norm, and the interpolation
rest satisfies an error estimate in a weighted L2-norm, see Lemma 3 and
equation (12). Now, we reduce the p-dimensional vertex spaces to the spaces
spanned by the low energy vertex functions ϕl.e.

V defined as solutions of

min
v∈SV,0, v(V )=1

‖v‖2
A.

These low energy functions can be approximately expressed by the standard
vertex functions via ϕl.e.

V = f(ϕV ), where the polynomial f solves a weighted
1D problem and can be given explicitly in terms of Jacobi polynomials, see the
upcoming report [BPP05]. The interpolation to the low energy vertex space
is uniformly bounded, too. But, the approximation estimate in the weighted
L2-norm depends on p. The preconditioner is now generated by
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V = V0 +
∑
V ∈V

span{ϕl.e.
V }+

∑
E∈E

VE .

The computed values are drawn in Figure 7, labeled ’overlapping E, low energy
V’, and show a moderate growth in p. Low energy vertex basis functions ob-
tained by orthogonalization on the reference element have also been analyzed
in [Bic97, SC01].

Example 4: We also tested the preconditioner without additional vertex
spaces, i.e.,

V = V0 +
∑
E∈E

VE .

Since vertex values must be interpolated by the lowest order functions, the
condition number is no longer bounded uniformly in p. The rapidly growing
condition numbers are drawn in Figure 8.

Fig. 6. Unstructured mesh
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[SDR04] B. Szabó, A. Düster, E. Rank. The p-version of the finite element method.

In E. Stein, R de Borst, T.J.R. Hughes, eds, Encyclopedia of Computational
Mechanics, John Wiley & Sons, (2004)

[TW04] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms
and Theory. Springer Series in Computational Mathematics, Vol. 34 (2005)

[Qua99] A. Quarteroni and A. Valli Domain Decomposition Methods for Partial
Differential Equations. Oxford University Press, Oxford (1999)




