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Using Constraint Preconditioners with Regularized
Saddle-Point Problems

H. S. Dollar1, N. I. M. Gould2, W. H. A. Schilders3 4

and A. J. Wathen5

Abstract

The problem of finding good preconditioners for the numerical solution
of a certain important class of indefinite linear systems is considered.
These systems are of a 2 by 2 block (KKT) structure in which the (2,2)
block (denoted by −C) is assumed to be nonzero.

In Constraint preconditioning for indefinite linear systems, SIAM J.
Matrix Anal. Appl., 21 (2000), Keller, Gould and Wathen introduced the
idea of using constraint preconditioners that have a specific 2 by 2 block
structure for the case of C being zero. We shall give results concerning
the spectrum and form of the eigenvectors when a preconditioner of the
form considered by Keller, Gould and Wathen is used but the system
we wish to solve may have C 6= 0. In particular, the results presented
here indicate clustering of eigenvalues and, hence, faster convergence of
Krylov subspace iterative methods when the entries of C are small; such
a situations arise naturally in interior point methods for optimization and
we present results for such problems which validate our conclusions.

1 Introduction

The solution of systems of the form
[

A BT

B −C

]

︸ ︷︷ ︸
A

C

[
x
y

]
=

[
c
d

]

︸ ︷︷ ︸
b

, (1)

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n, is often required
in optimization and other various fields, Section 1.1. We shall assume that
0 < m ≤ n and B is of full rank. Various preconditioners which take the
general form

PC =
[

G BT

B −C

]
, (2)
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where G ∈ Rn×n is some symmetric matrix, have been considered (for example,
see [3, 4, 5, 8, 18, 23].) When C = 0, (2) is commonly known as a constraint
preconditioner [2, 16, 17, 19]. In practice C is often positive semi-definite (and
frequently diagonal).

As we will observe in Section 1.1, in interior point methods for constrained
optimization a sequence of such problems are solved with the entries in C gen-
erally becoming small as the optimization iteration progresses. That is, the
regularization is successively reduced as the iterates get closer to the minimum.
For the Stokes problem, the entries of C are generally small since they scale
with the underlying mesh size and so reduce for finer grids. This motivates us
to look at the spectral properties of P−1A

C
, where

P =
[

G BT

B 0

]
, (3)

but C 6= 0 in (1), Section 2. We will analyze both the cases of C having full rank
and C being rank deficient. When note that when there are equality constraints
in the nonlinear programming problem, the corresponding diagonal of C will be
identically zero, and thus C will be (trivially) rank deficient.

The obvious advantage in being able to use such a constraint preconditioner
is as follows: if B remains constant in each system of the form (1), and we
choose G in our preconditioner to remain constant, then the preconditioner P
will be unchanged. Any factorizations required to carry out the preconditioning
steps in a Krylov subspace iteration will only need to be done once and then
used during each execution of the chosen Krylov subspace iteration, instead of
carrying out the factorizations at the beginning of each execution.

For symmetric (and in general normal) matrix systems, the convergence of
an applicable iterative method is determined by the distribution of the eigen-
values of the coefficient matrix. It is often desirable for the number of distinct
eigenvalues to be small so that the rate of convergence is rapid. For non-normal
systems the convergence is not so readily described, see [14, page 6].

1.1 Applications requiring the solution of regularized saddle-
point problems

In this section we indicate two application areas that require the solution of a
regularized saddle-point problems. A comprehensive list of further applications
can be found in [2].

Example 1.1 (Nonlinear Programming).

Consider the convex nonlinear optimization problem

minimize f(x) such that c(x) ≥ 0, (4)

where x ∈ Rn, and f : Rn 7→ R and −c : Rn 7→ Rm̂ are convex and twice
differentiable. Primal-dual interior point methods [24] for this problem aim to
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track solutions to the (perturbed) optimality conditions

∇f(x) = BT (x)y and Y c(x) = µe, (5)

where y are Lagrange multipliers (dual variables), e is the vector of ones,

B(x) = ∇c(x) and Y = diag{y1, y2, . . . , ym̂},
as the positive scalar parameter µ is decreased to zero. The Newton correction
(∆x, ∆y) to the solution estimate (x, y) of (5) satisfy the equation [3]:

[
A(x, y) −BT (x)
Y B(x) C(x)

] [
∆x
∆y

]
=

[ −∇f(x) + BT (x)y
−Y c(x) + µe

]
,

where

A(x, y) = ∇xxf(x)−
m̂∑

i=1

yi∇xxci(x) and C(x) = diag{c1(x), c2(x), . . . , cm̂(x)}.

It is common to eliminate the variables ∆y from the Newton system. Since this
may introduce unwarranted ill conditioning, it is often better [11] to isolate the
effects of poor conditioning by partitioning the constraints so that the values
of those indexed by I are “large” while those indexed by A are “small”, and
instead to solve
[

A + BT
I C−1

I YIBI BT
A

BA −CAY −1
A

] [
∆x
−∆yA

]
=

[ −∇f + BT
AyA + µBT

I C−1
I e

−cA + µY −1
A e

]

where, for brevity, we have dropped the dependence on x and y. The matrix
CAY −1

A is symmetric and positive definite; as the iterates approach optimality,
the entries of this matrix become small. The entries of BT

I C−1
I YIBI also become

small when close to optimality.

Example 1.2 (Stokes).

Mixed finite element (and other) discretization of the Stokes equations

−∇2~u +∇p = ~f in Ω
∇ · ~u = 0 in Ω,

for the fluid velocity ~u and pressure p in the domain Ω ⊂ R2 or R3 yields linear
systems in the saddle-point form (1) (for derivation and the following properties
of this example see [7]). The symmetric block A arises from the diffusion terms
−∇2~u and BT represents the discrete gradient operator whilst B represents its
adjoint, the (negative) divergence. When (inf-sup) stable mixed finite element
spaces are employed, C = 0, however for equal order and other spaces which
are not inherently stable, stabilized formulations yield symmetric and positive
semi-definite matrices C which typically have a large-dimensional kernel - for
example for the famous Q1–P0 element which has piecewise bilinear velocities
and piecewise constant pressures in 2-dimensions, C typically has a kernel of
dimension m/4.
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2 Preconditioning A
C

by P
Suppose that we precondition A

C
by P, where P is defined in (3). The decision

to investigate this form of preconditioner is motivated in Section 1. We shall
use the following assumptions in our theorems:

A1 B ∈ Rm×n (m < n) has full rank,

A2 C has rank p > 0 and is factored as EDET , where E ∈ Rm×p and has
orthonormal columns, and D ∈ Rp×p is non-singular,

A3 If p < m, then F ∈ Rm×(m−p) is such that its columns form a basis for the
nullspace of C and the columns of N ∈ Rn×(n−m+p) form a basis of the
nullspace of FT B,

A4 If p = m, then N = I ∈ Rn×n.

Theorem 2.1. Assume that A1–A4 hold, then the matrix P−1A
C

has:

• at least 2(m− p) eigenvalues at 1,

• its non-unit eigenvalues defined by the finite (and non-unit) eigenvalues
of the quadratic eigenvalue problem

0 = λ2NT BT ED−1ET BNwn1 − λNT (G + 2BT ED−1ET B)Nwn1

+NT (A + BT ED−1ET B)Nwn1.

Proof. We shall consider the cases of p = m and 0 < p < m separately.

Case p = m The generalized eigenvalue problem takes the form
[

A BT

B −C

] [
x
y

]
= λ

[
G BT

B 0

] [
x
y

]
. (6)

Expanding this out we obtain

Ax + BT y = λGx + λBT y, (7)
Bx− Cy = λBx. (8)

From (8) we deduce that either λ = 1 and y = 0, or λ 6= 1. If the former holds,
then (7) implies that x must satisfy

Ax = Gx.

Thus, the associated eigenvectors will take the form

[ xT 0T ]T ,
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where x 6= 0 satisfies Ax = Gx. There is no guarantee that such an eigenvector
will exist, and therefore no guarantee that there are any unit eigenvalues.

If λ 6= 1, then Equation (8) and the non-singularity of C gives

y = (1− λ) C−1Bx, x 6= 0.

By substituting this into (7) and rearranging we obtain the quadratic eigenvalue
problem

(
λ2BT C−1B − λ

(
G + 2BT C−1B

)
+ A + BT C−1B

)
x = 0. (9)

The non-unit eigenvalues of (6) are therefore defined by the finite (non-unit)
eigenvalues of (9). Note that since BT C−1B has rank m, (9) has 2n−(n−m) =
n + m finite eigenvalues, but at most n linearly independent eigenvectors [22,
Section 3.1]. Hence, P−1A

C
has at most n linearly independent eigenvectors

associated with the non-unit eigenvalues when p = m.
Now, assumption A2 implies that

C−1 = ED−1ET ,

and, hence, letting wn1 = x we complete our proof for the case p = m.

Case 0 < p < m Any y ∈ Rm can be written as y = Eye + Fyf . Substituting
this into (6) and premultiplying the resulting generalized eigenvalue problem by




I 0
0 ET

0 FT


 ,

we obtain



A BT E BT F
ET B −D 0
FT B 0 0







x
ye

yf


 = λ




G BT E BT F
ET B 0 0
FT B 0 0







x
ye

yf


 . (10)

Noting that the (3,3) block has dimension (m−p)×(m−p) and is a zero matrix
in both coefficient matrices, we can apply Theorem 2.1 from [16] to obtain:

• P−1A
C

has an eigenvalue at 1 with multiplicity 2(m− p),

• the remaining n−m+2p eigenvalues are defined by the generalized eigen-
value problem

N
T

[
A BT E

ET B −D

]
Nwn = λN

T
[

G BT E
ET B 0

]
Nwn, (11)

where N is an (n+p)×(n−m+2p) basis for the nullspace of
[

FT B 0
]
.
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One choice for N is

N =
[

N 0
0 I

]
.

Substituting this into (11) we obtain the generalized eigenvalue problem
[

NT AN NT BT E
ET BN −D

] [
wn1

wn2

]
= λ

[
NT GN NT BT E
ET BN 0

] [
wn1

wn2

]
. (12)

This generalized eigenvalue problem resembles that of (6) in the first case con-
sidered in this proof. Therefore, the non-unit eigenvalues of P−1A

C
are equal

to the finite (and non-unit) eigenvalues of the quadratic eigenvalue problem

0 = λ2NT BT ED−1ET BNwn1 − λNT (G + 2BT ED−1ET B)Nwn1

+NT (A + BT ED−1ET B)Nwn1. (13)

Since NT BT ED−1ET BN has a nullspace of dimension n −m, this quadratic
eigenvalue problem has 2(n−m + p)− (n−m) = n−m + 2p finite eigenvalues
[22].

The following numerical examples illustrate how the rank of C dictates a
lower bound on the number of unit eigenvalues. In particular, Example 2.2
demonstrates that there is no guarantee that the preconditioned matrix has
unit eigenvalues when C is nonsingular.

Example 2.2 (C nonsingular).

Consider the matrices

A
C

=




1 0 1
0 1 0
1 0 −1


 , P =




2 0 1
0 2 0
1 0 0


 ,

so that m = p = 1 and n = 2. The preconditioned matrix P−1A
C

has eigenval-
ues at 1

2 , 2−√2 and 2+
√

2. The corresponding eigenvectors are
[

0 1 0
]T

,[
1 0 (

√
2− 1)

]T
and

[
1 0 −(

√
2 + 1)

]T
respectively. The precondi-

tioned system P−1AC has all non-unit eigenvalues, but this does not go against
Theorem 2.1 because m − p = 0. With our choices of AC and P, and setting
D = [1] and E = [1] (C = EDET ), the quadratic eigenvalue problem (13) is

(
λ2

[
1 0
0 0

]
− λ

[
4 0
0 2

]
+

[
2 0
0 1

]) [
u1

u2

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues which are λ = 1
2 ,

λ = 2−√2 and λ = 2 +
√

2.

Example 2.3 (C semidefinite).
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Consider the matrices

AC =




1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 −1


 , P =




2 0 1 0
0 2 0 1
1 0 0 0
0 1 0 0


 ,

so that m = 2, n = 2 and p = 1. The preconditioned matrix P−1A
C

has two unit
eigenvalues and a further two at λ = 2−√2 and λ = 2 +

√
2. There is just one

linearly independent eigenvector associated with the unit eigenvector; specifi-
cally this is

[
0 0 1 0

]T
. For the non-unit eigenvalues, the eigenvectors

are
[

0 1 0 (
√

2− 1)
]T

and
[

0 1 0 −(
√

2 + 1)
]T

respectively.
Since 2(m − p) = 2, we correctly expected there to be at least two unit

eigenvalues, Theorem 2.1. The remaining eigenvalues will be defined by the
quadratic eigenvalue problem (13):

(
λ2

[
0 0
0 1

]
− λ

[
2 0
0 4

]
+

[
1 0
0 2

])[
u1

u2

]
= 0, u2 6= 0,

where D = [1] and E =
[

0 1
]T are used as factors of C. This quadratic

eigenvalue problem has three finite eigenvalues of which two correspond to the
case u = ZT w1 + BT (BBT )−1Ew2 for some w2 6= 0, i.e. u2 6= 0. These are
λ = 2−√2 and λ = 2 +

√
2; the corresponding eigenvectors have u1 = 0.

2.1 Analysis of the quadratic eigenvalue problem

We note that the quadratic eigenvalue problem (13) can have negative and
complex eigenvalues, see [22]. The following theorem gives sufficient conditions
for general quadratic eigenvalue problems to have real and positive eigenvalues.

Theorem 2.4. Consider the quadratic eigenvalue problem
(
λ2K − λL + M

)
x = 0, (14)

where M, L ∈ Rn×n are symmetric positive definite, and K ∈ Rn×n is symmetric
positive semidefinite. Define γ(M, L, K) to be

γ(M, L, K) = min
{
(xT Lx)2 − 4(xT Mx)(xT Kx) : ‖x‖2 = 1

}
.

If γ(M,L, K) > 0, then the eigenvalues λ are real and positive, and there are
n linearly independent eigenvectors associated with the n largest (n smallest)
eigenvalues.
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Proof. From [22, Section 1] we know that under our assumptions the quadratic
eigenvalue problem (

µ2M + µL + K
)
x = 0

has real and negative eigenvalues. Suppose we divide this equation by µ2 and
set λ = −1/µ. The quadratic eigenvalue problem (14) is obtained, and since µ
is real and negative, λ is real and positive.

We would like to be able to use the above theorem to show that, under
suitable assumptions, all the eigenvalues of P−1A

C
are real and positive. Let

D̃ = NT BT ED−1ET BN, (15)

where D and E are as defined in assumption A2. If we assume that NT AN +D̃
is positive definite, then we may write NT AN +D̃ = RT R for some nonsingular
matrix R. If we pre-multiply the quadratic eigenvalue problem (13) by R−T

and substitute in z = Rwn1, then we find that it is similar to the quadratic
eigenvalue problem

(
λ2R−T D̃R−1 − λR−T (NT GN + 2D̃)R−1 + I

)
z = 0.

Thus, if we assume that NT AN + D̃, NT GN + 2D̃ are positive definite and D̃
is positive semi-definite, and can show that

γ(I, R−T (NT GN + 2D̃)R−1, R−T D̃R−1) > 0,

where γ(·, ·, ·) is as defined in Theorem 2.4, then we can apply the above theorem
to show that (13) has real and positive eigenvalues.

Let us assume that ‖z‖2 = 1, then

(
zT R−T

(
NT GN + 2D̃

)
R−1z

)2

− 4zT zzT R−T D̃R−1z

=
(
zT R−T NT GNR−1z + 2zT R−T D̃R−1z

)2

− 4zT R−T D̃R−1z

=
(
zT R−T NT GNR−1z

)2
+ 4zT R−T D̃R−1z

(
zT R−T NT GNR−1z + zT R−T D̃R−1z − 1

)

=
(
wT

n1N
T GNwn1

)2
+ 4wT

n1D̃wn1

(
wT

n1N
T GNwn1 + wT

n1D̃wn1 − 1
)

, (16)

where 1 = ‖z‖2 = ‖Rwn1‖2 = ‖wn1‖NT AN+D̃ . Clearly, we can guarantee that
(16) is positive if

wT
n1N

T GNwn1 + wT
n1D̃wn1 > 1 for all wn1 such that ‖wn1‖NT AN+D̃ = 1,

that is

wT
n1N

T GNwn1 + wT
n1D̃wn1

wT
n1

(
NT AN + D̃

)
wn1

>
wT

n1

(
NT AN + D̃

)
wn1

wT
n1

(
NT AN + D̃

)
wn1

for all wn1 6= 0.
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Rearranging we find that we require

wT
n1N

T GNwn1 > wT
n1N

T ANwn1

for all wn1 6= 0. Thus we need only scale any positive definite G such that
wT

n1NT GNwn1

wT
n1NT Nwn1

> ‖A‖22 for all Nwn1 6= 0 to guarantee that (16) is positive for
all wn1 such that ‖wn1‖NT AN+D̃ = 1. For example, we could choose G = αI,

where α > ‖A‖22 .
Using the above in conjunction with Theorem 2.1 we obtain the following

result:

Theorem 2.5. Suppose that A1–A4 hold and D̃ is as defined in (15). Further,
assume that A+ D̃ and G+2D̃ are symmetric positive definite, D̃ is symmetric
positive semidefinite and

min
{

(zT Gz)2 + 4(zT D̃z)(zT Gz + zT D̃z − 1) : ‖z‖A+D̃ = 1
}

> 0, (17)

then all the eigenvalues of P−1AC are real and positive. (Condition (17) is
guaranteed to hold if G = αI, where α > ‖A‖22 .) The matrix P−1AC also has
m− p + i + j linearly independent eigenvectors. There are

1. m − p eigenvectors of the form
[

0T yT
f

]T
that correspond to the case

λ = 1,

2. i (0 ≤ i ≤ n) eigenvectors of the form
[

wT 0T yT
f

]T
arising from

Aw = σGw for which the i vectors w are linearly independent, σ = 1, and
λ = 1, and

3. j (0 ≤ j ≤ n−m+2p) eigenvectors of the form
[

0T wT
n1 wT

n2 yT
f

]T

corresponding to the eigenvalues of P−1A
C

not equal to 1, where the com-
ponents wn1 arise from the quadratic eigenvalue problem

0 = λ2NT BT ED−1ET BNwn1 − λNT
(
G + 2BT ED−1ET B

)
Nwn1

+NT
(
A + BT ED−1EB

)
Nwn1,

with λ 6= 1, and wn2 = (1− λ)D−1ET BNwn1.

Proof. It remains for us to prove the form of the eigenvectors and that they
are linearly independent. We will consider the case p = m and 0 < p < m
separately.

Case p = m From the proof of Theorem 2.1, when λ = 1 the eigenvectors

must take the form
[

xT 0T
]T

, where Ax = σGx for which the i vectors
x are linearly independent, σ = 1. Hence, any eigenvectors corresponding to
a unit eigenvalue fall into the second statement of the theorem and there are
i (0 ≤ i ≤ n) such eigenvectors which are linearly independent. The proof of
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Theorem 2.1 also shows that the eigenvectors corresponding to λ 6= 1 take the
form

[
xT yT

]T
, where x corresponds to the quadratic eigenvalue problem

(9) and y = (1 − λ)C−1Bx = (1 − λ)D−1EBNx (since we can set D = C
and E = I). Clearly, there are at most n + m such eigenvectors. By our
assumptions, all of the vectors x defined by the quadratic eigenvalue problem
(9) are linearly independent. Also, if x is associated with two eigenvalues, then
these eigenvalues must be distinct [22]. By setting wn1 = x and wn2 = y we
obtain j (0 ≤ j ≤ n + m) eigenvectors of the form given in statement 3 of the
proof.

It remains for us to prove that the i+j eigenvectors defined above are linearly
independent. Hence, we need to show that

[
x

(1)
1 · · · x

(1)
i

0 · · · 0

]



a
(1)
1
...

a
(1)
i


 +

[
x

(2)
1 · · · x

(2)
j

y
(2)
1 · · · y

(2)
j

]



a
(2)
1
...

a
(2)
j


 =




0
...
0


 (18)

implies that the vectors a(1) and a(2) are zero vectors. Multiplying (18) by
P−1A

C
, and recalling that in the previous equation the first matrix arises from

λl = 1 (l = 1, · · · , i) and the second matrix from λl 6= 1 (l = 1, · · · , j) gives

[
x

(1)
1 · · · x

(1)
i

0 · · · 0

]



a
(1)
1
...

a
(1)
i


 +

[
x

(2)
1 · · · x

(2)
j

y
(2)
1 · · · y

(2)
j

]



λ
(2)
1 a

(2)
1

...
λ

(2)
j a

(2)
j


 =




0
...
0


 .

(19)
Subtracting (18) from (19) we obtain

[
x

(2)
1 · · · x

(2)
j

y
(2)
1 · · · y

(2)
j

]



(λ(2)
1 − 1)a(2)

1
...

(λ(2)
j − 1)a(2)

j


 =




0
...
0


 . (20)

Some of the eigenvectors x defined by the quadratic eigenvalue problem (9)
will be associated with two (non-unit) eigenvalues; let us assume that there are
k such eigenvectors. By our assumptions, these eigenvalues must be distinct.
Without loss of generality, assume that x

(2)
l = x

(2)
k+l for l = 1, . . . , k. The vectors

x
(2)
l (l = k + 1, . . . , j) are linearly independent and λ

(2)
l 6= 1 (l=2k+1,. . . ,j),

which gives rise to a
(2)
l = 0 for l = 2k + 1, . . . , j. Equation (20) becomes

[
x

(2)
1 · · · x

(2)
k x

(2)
1 · · · x

(2)
k

y
(2)
1 · · · y

(2)
k y

(2)
k+1 · · · y

(2)
2k

]



(λ(2)
1 − 1)a(2)

1
...

(λ(2)
j − 1)a2k

(2)


 =




0
...
0


 . (21)

The vectors x
(2)
l (l = 1, . . . , k) are linearly independent. Hence

(λ(2)
1 − 1)a(2)

l x
(2)
l + (λ(2)

1 − 1)a(2)
l+kx

(2)
l = 0, l = 1, . . . , k,
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and

a
(2)
l = −a

(2)
l+k

1− λ
(2)
l+k

1− λ
(2)
l

, l = 1, . . . , k.

Now y
(2)
l = (1− λ

(2)
l )C−1Bx

(2)
l for l = 1, . . . , 2k. Hence, we require

(λ(2)
1 − 1)2a(2)

l C−1Bx
(2)
l + (λ(2)

1 − 1)2a(2)
l+kC−1Bx

(2)
l = 0, l = 1, . . . , k.

Substituting in a
(2)
l = −a

(2)
l+k

1−λ
(2)
l+k

1−λ
(2)
l

and rearranging gives (λ(2)
l − 1)a(2)

l =

(λ(2)
l+k − 1)a(2)

l+k for l = 1, . . . , k. Since these eigenvalues are non-unit and λ
(2)
l 6=

λ
(2)
l+k for l = 1, . . . , k, we conclude that a

(2)
l = 0 (l = 1, . . . , j).

We also have linear independence of x
(1)
l (l = 1, . . . , i), which implies that

a
(1)
l = 0 (l = 1, . . . , i).

Case 0 < p < m From the proof of Theorem 2.1, the generalized eigenvalue
problem can be expressed as



A BT E BT F
ET B −D 0
FT B 0 0







x
ye

yf


 = λ




G BT E BT F
ET B 0 0
FT B 0 0







x
ye

yf


 . (22)

The first part of the proof for this case follows similarly to that of Theo-

rem 2.3 in [16]. Let
[

M N
] [

R
T

0
]T

be an orthogonal factorization of[
FT B 0

]
, where R ∈ R(m−p)×(m−p) is upper triangular, M ∈ R(n+p)×(m−p),

and N ∈ R(n+p)×(n−m+2p) is a basis for the nullspace of
[

FT B 0
]
. Premul-

tiplying (22) by the nonsingular and square matrix



M
T

0
N

T
0

0 I


 ,

substituting in 


x
ye

yf


 =

[
M N 0
0 0 I

] 


wm

wn

yf


 ,

and expanding out gives

M
T
ÂMwm + M

T
ÂNwn + Ryf = λ

[
M

T
ĜMwm + M

T
ĜNwn + Ryf

]
,(23)

N
T
ÂMwm + N

T
ÂNwn = λ

[
N

T
ĜMwm + N

T
ĜNwn

]
, (24)

R
T
wm = λR

T
wm, (25)

where

Â =
[

A BT E
ET B −D

]
and Ĝ =

[
G BT E

ET B 0

]
.
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From (25), it may be deduced that either λ = 1 or wm = 0. In the former case,
(23) and (24) may be simplified to

QT

[
A BT E

ET B −D

]
Qw = QT

[
G BT E

ET B 0

]
Qw, (26)

where Q =
[

M N
]

and w =
[

wT
m wT

n

]
. Since Q is orthogonal, the

general eigenvalue problem (26) is equivalent to considering
[

A BT E
ET B −D

] [
w1

w2

]
= σ

[
G BT E

ET B 0

] [
w1

w2

]
, (27)

where
[

wT
1 wT

2

]T 6= 0 if and only if σ = 1, and w1 ∈ Rn, w2 ∈ Rp. As
in the first case of this proof, nonsingularity of D and σ = 1 implies that
w2 = 0. There are m − p linearly independent eigenvectors

[
0T 0T uT

f

]T

corresponding to w1 = 0, and a further i (0 ≤ i ≤ n) linearly independent
eigenvectors corresponding to w1 6= 0 and σ = 1.

Now suppose that λ 6= 1, in which case wm = 0. Equations (23) and (24)
yield

N
T

[
A BT E

ET B −D

]
Nwn = λN

T
[

G BT E
ET B 0

]
Nwn, (28)

M
T

[
A BT E

ET B −D

]
Nwn + Ryf = λ

[
M

T
[

G BT E
ET B 0

]
Nwn + Ryf

]
.(29)

The generalized eigenvalue problem (29) defines n−m + 2p eigenvalues, where
j (0 ≤ j ≤ n −m) of these are not equal to 1 and for which two cases have to
be distinguished. If wn = 0, then (28) and λ 6= 1 imply that yf = 0. In this
case no extra eigenvalues arise. Suppose that wn 6= 0, then, from the proof of
Theorem 2.1, the eigenvalues are equivalently defined by (13) and

wn =
[

wn1

(1− λ)D−1ET BNwn1

]
.

Hence, the j (0 ≤ j ≤ n −m + 2l) eigenvectors corresponding to the non-unit
eigenvalues of P−1A

C
take the form

[
0T wT

n1 wT
n2 yT

f

]T
.

Proof of the linear independence of these eigenvectors follows similarly to
the case of p = m.

Observing that the coefficient matrices in (10) are of the form of those con-
sidered by Gould, Hribar and Nocedal [12], we could apply a projected precon-
ditioned conjugate gradient method to solve (1) if all the eigenvalues of P−1AC

are real and positive and we have a decomposition of C as in A2. Theorem 2.5
therefore gives conditions which allow us to use such a method. Dollar gives
a variant of this method in which no decomposition of C is required, see [6,
Section 5.5]. The derivation of such a method bears close resemblance to that
of a nullspace method. The nullspace N is required in the derivation but, as in
[12], we can rewrite the algorithm in such a manner that there is no need for N
to be known explicitly.
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3 Convergence

In the context of this paper, the convergence of an iterative method under
preconditioning is not only influenced by the spectral properties of the coefficient
matrix, but also by the relationship between m, n and p. We can determine an
upper bound on the number of iterations of an appropriate Krylov subspace
method by considering minimum polynomials of the coefficient matrix.

Definition 3.1. Let A ∈ R(n+m)×(n+m). The monic polynomial f of minimum
degree such that f(A) = 0 is called the minimum polynomial of A.

Krylov subspace theory states that iteration with any method with an opti-
mality property, e.g. GMRES, will terminate when the degree of the minimum
polynomial is attained, [21]. In particular, the degree of the minimum polyno-
mial is equal to the dimension of the corresponding Krylov subspace (for general
b), [20, Proposition 6.1].

Theorem 3.2. Suppose that the assumptions of Theorem 2.5 hold. The dimen-
sion of the Krylov subspace K(P−1A

C
, b) is at most min{n−m+2p+2, n+m}.

Proof. Suppose that 0 < p < m. As in the proof to Theorem 2.1, the generalized
eigenvalue problem can be written as



A BT E BT F
ET B −D 0
FT B 0 0







x
ye

yf


 = λ




G BT E BT F
ET B 0 0
FT B 0 0







x
ye

yf


 . (30)

Hence, the preconditioned matrix P−1AC can be written as

P̂−1Â
C

=
[

Θ1 0
Θ2 I

]
, (31)

where the precise forms of Θ1 ∈ R(n+p)×(n+p) and Θ2 ∈ R(m−p)×(n+p) are
irrelevant.

From the earlier eigenvalue derivation, it is evident that the characteristic
polynomial of the preconditioned linear system (31) is

(P−1A
C
− I

)2(m−p)
n−m+2p∏

i=1

(P−1A
C
− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need to
show that the order of the minimum polynomial is less than or equal to min{n−
m+2p+2, n+m}. Expanding the polynomial

(P−1A
C
− I

)∏n−m+2p
i=1

(P−1A
C
− λiI

)
of degree n−m + 2p + 1, we obtain

[
(Θ1 − I)

∏n−m+2p
i=1 (Θ1 − λiI) 0

Θ2

∏n−m+2p
i=1 (Θ1 − λiI) 0

]
.
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Since the assumptions of Theorem 2.5 hold, Θ1 has a full set of linearly inde-
pendent eigenvectors and is diagonalizable. Hence, (Θ1 − I)

∏n−m+2p
i=1 (Θ1 − λiI) =

0. We therefore obtain

(P−1AC − I
) n−m+2p∏

i=1

(P−1AC − λiI
)

=
[

0 0
Θ2

∏n−m+2p
i=1 (Θ1 − λiI) 0

]
.

(32)
If Θ2

∏n−m+2p
i=1 (Θ1 − λiI) = 0, then the order of the minimum polynomial of

P−1A
C

is less than or equal to min{n−m+2p+1, n+m}. If Θ2

∏n−m+2p
i=1 (Θ1 − λiI) =

0, then the dimension of K (P−1A
C
, c

)
is at most min{n−m+2p+2, n+m} since

multiplication of (32) by another factor
(P−1A

C
− I

)
gives the zero matrix.

If p = m, then trivially K(P−1A
C
, b) has dimension at most min{n −m +

2p + 2, n + m}.

3.1 Clustering of eigenvalues when ‖C‖ is small

When using interior-point methods to solve optimization problems, the matrix
C is generally diagonal and of full rank. In this case, Theorem 3.2 would suggest
that there is little advantage of using a constraint preconditioner of the form P
over any other preconditioner. However, in interior-point methods the entries
of C also become small as we get close to optimality and, hence, ‖C‖ is small.
In the following we shall assume that the norm considered is the `2 norm, but
the results can be generalized to other norms.

Theorem 3.3. Let ζ > 0, δ ≥ 0, ε ≥ 0 and δ2 + 4ζ(δ − ε) ≥ 0 then the roots of
the quadratic equation

λ2ζ − λ(δ + 2ζ) + ε + ζ = 0

satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2max

{
δ

2ζ
,

√
|δ − ε|

ζ

}

Proof. The roots of the quadratic equation satisfy

λ =
δ + 2ζ ±

√
(δ + 2ζ)2 − 4ζ(ε + ζ)

2ζ

= 1 +
δ

2ζ
±

√
δ2 + 4ζ(δ − ε)

2ζ

= 1 +
δ

2ζ
±

√(
δ

2ζ

)2

+
δ − ε

ζ
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If δ−ε
ζ ≥ 0, then

√(
δ

2ζ

)2

+
δ − ε

ζ
≤

√√√√2max

{(
δ

2ζ

)2

,
δ − ε

ζ

}

=
√

2max

{
δ

2ζ
,

√
δ − ε

ζ

}
.

If δ−ε
ζ ≤ 0, then the assumption δ2 + 4ζ(δ − ε) ≥ 0 implies that

(
δ

2ζ

)2

≥ ε− δ

ζ
≥ 0.

Hence,
√(

δ

2ζ

)2

+
δ − ε

ζ
≤ δ

2ζ

<
√

2max

{
δ

2ζ
,

√
ε− δ

ζ

}
.

Remark 3.4. The important point to notice is that if ζ À δ and ζ À ε, then
λ ≈ 1 in Theorem 3.3.

Theorem 3.5. Assume that the assumptions of Theorem 2.5 hold, then all the
eigenvalues of P−1AC are real and positive, and 2(m−p) of them are guaranteed
to be equal to 1. In addition, the eigenvalues λ of (13) subject to ET BNu 6= 0,
will also satisfy

|λ− 1| = O(max{‖C‖ , ‖G−A‖
√
‖C‖})

for small values of ‖C‖ .

Proof. That the eigenvalues of P−1A
C

are real and positive follows directly
from Theorem 2.5.

Suppose that C = EDET is a reduced singular value decomposition of C,
where the columns of E ∈ Rm×p are orthogonal and D ∈ Rp×p is diagonal with
entries dj that are non-negative and in non-increasing order.

In the following, ‖.‖ = ‖.‖2 , so that

‖C‖ = ‖D‖ = d1.
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Premultiplying the quadratic eigenvalue problem (13) by uT gives

0 = λ2uT D̃u− λ(uT NT GNu + 2uT D̃u) + (uT NT ANu + uT D̃u). (33)

Assume that v = ET BNu and ‖v‖ = 1, where u is an eigenvector of the
above quadratic eigenvalue problem, then

uT D̃u = vT D−1v

=
v2
1

d1
+

v2
2

d2
+ . . . +

v2
m

dm

≥ vT v

d1

=
1
‖C‖ .

Hence,
1

uT D̃u
≤ ‖C‖ .

Let ζ = uT D̃u, δ = uT NT GNu and ε = uT NT ANu, then (33) becomes

λ2ζ − λ(δ + 2ζ) + ε + ζ = 0.

From Theorem 3.3, λ must satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2 max

{
δ

2ζ
,

√
|δ − ε|

ζ

}
.

Now δ ≤ c
∥∥NT GN

∥∥ , ε ≤ c
∥∥NT AN

∥∥ , where c is an upper bound on ‖u‖
and u are eigenvectors of (13) subject to

∥∥ET BNu
∥∥ = 1. Hence, the eigenvalues

of (13) subject to ET BNu 6= 0 satisfy

|λ− 1| = O(max{‖C‖ , ‖G−A‖
√
‖C‖})

for small values of ‖C‖ .

The results of this theorem are not very surprising, but basic eigenvalue per-
turbation theorems such as Theorem 7.7.2 in [10] in conjunction with Theorem
2.3 of [16] are weaker than what we have established. Specifically, the structure
of our coefficient matrix and preconditioner means that we are still guaran-
teed to have 2(m − p) unit eigenvalues, whereas the more general eigenvalue
perturbation theorems would only imply that these eigenvalues will be close to
1.

Example 3.6 (C with small entries).
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Suppose that AC and P are as in Example 2.2, but C = [10−a] for some
positive real number a. Setting D = [10−a] and E = [1] (C = EDET ), the
quadratic eigenvalue problem (13) is

(
λ2

[
10a 0
0 0

]
− λ

[
2 + 2× 10a 0

0 2

]
+

[
1 + 10a 0

0 1

])[
xy

xz

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues: λ = 1
2 ,

λ = 1 + 10−a ± 10−a
√

1 + 10a.

For large values of a, λ ≈ 1 + 10−a ± 10−
a
2 ; the eigenvalues will be close to 1.

This clustering of part of the spectrum of P−1A
C

will often translate into
a speeding up of the convergence of a selected Krylov subspace method, [1,
Section 1.3].

3.2 Numerical Examples

We will carry out several numerical tests to verify that, in practice, our theo-
retical results translate to a speeding up in the convergence of a selected Krylov
subspace method as the entries of C converge towards 0.

Example 3.7.

The CUTEr test set [13] provides a set of quadratic programming problems.
We shall use the problem CVXQP2 M in the following two examples. This
problem has n = 1000 and m = 250. “Barrier” penalty terms (in this case α,
where α is defined below) are added to the diagonal of A to simulate systems that
might arise during an iteration of an interior-point method for such problems.
We shall set G = diag(A) (ignoring the additional penalty terms), and C = αI,
where α is a positive, real parameter that we will change.

All tests were performed on a dual Intel Xeon 3.20GHz machine with hy-
perthreading and 2GBytes of RAM. It was running Fedora Core 2 (Linux ker-
nel 2.6.8) with Matlab r© 7.0. We solve the resulting linear systems with un-
restarted GMRES [10], PPCG [6, Algorithm 5.5.2] and the Simplified Quasi-
Minimal Residual Algorithm (SQMR) [9]¶. We terminate the iteration when
the value of residual is reduced by at least a factor of 10−8 and always use P and
P

C
as left preconditioners. We emphasize that for the PPCG method knowledge

of the eigenvalues is all you need to describe convergence whereas Greenbaum,
Pták and Strakoš show that this is not generally the case with GMRES [15].

In Figure 1 we compare the performance (in terms of iteration count) be-
tween using a preconditioner of the form P and one of the form PC , equations
(3) and (2) respectively for the three different iterative methods. Although the

¶Matlab r© code for SQMR can be obtained from the Matlab r© Central File Exchange
at http://www.mathworks.fr/matlabcentral/.
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SQMR method doesn’t have an optimality property as was assumed in Sec-
tion 3, as α becomes smaller, we hope that the difference between the number
of iterations required by the two preconditioners decreases. We observe that, for
this example, once α ≤ 10−4 there is little benefit in reproducing C in the pre-
conditioner in any of the iterative methods tested. However, the SQMR method
requires around 900 iterations when α ¿ 1, whilst PPCG and GMRES require
just 500 iterations to reach the desired tolerance. We would expect the PPCG
and GMRES methods to take around 500 iterations because the preconditioned
system has 500 unit eigenvalues and a further 500 clustered about one when
α ¿ 1; the remaining 500 eigenvalues lie away from the unit eigenvalues. The
SQMR method does not satisfy an optimality condition and, in this and the
following example, this results in substantially more than 500 iterations being
required to reach the desired tolerance when α ¿ 1.

In this example, when α ≈ 1 and the preconditioned system P−1A
C

has
additional eigenvalues clustered around 1 above those 2m− p guaranteed to lie
at 1. However, as α decreases, this eigenvalues move away from 1 which results
in the number of iterations to increase.

Example 3.8.

In this example we again use the CVXQP2 M problem from the CUTEr
test set. The only difference to the above example is that we shall set C =
α× diag(0, . . . , 0, 1, . . . , 1), where rank(C) = bm/2c .

In Figure 2 we compare the performance (in terms of iteration count) be-
tween using a preconditioner of the form P and one of the form P

C
, Equations

(3) and (2) respectively for our chosen iterative methods. We observe that if
α ≈ 1, then fewer iterations are required in Figure 2 than in Figure 1 to reach
the required tolerance — this is as we would expect because of there now being
a guarantee of at least 250 unit eigenvalues in the preconditioned system com-
pared to the possibility of none. However, as α approaches 0, the number of
eigenvalues clustered around 1 will converge to be the same as in Example 3.2.
We observe from Figures 1 and 2 that the number of iterations to reach the
required tolerance is, as expected, converging to be the same as α → 0.

Example 3.9.

AUG2DQP is another test problem from the CUTEr test set. This problem
has n = 3280 and m = 1600. “Barrier” penalty terms (in this case α, where
α is defined below) are added to the diagonal of A to simulate systems that
might arise during an iteration of an interior-point method for such problems.
We shall set G = diag(A) (ignoring the additional penalty terms), and C = αI,
where α is a positive, real parameter that we will change. In Figure 3 we observe
that once α ≤ 10−4 there is little benefit in reproducing C in the preconditioner
for the PPCG method. Similarly, when C = α × diag(0, . . . , 0, 1, . . . , 1), where
rank(C) = bm/2c , there is little benefit in reproducing C in the preconditioner
for the PPCG method when α ≤ 10−4, Figure 4.



20

10
−10

10
−5

10
0

100

200

300

400

500

600

700

800

α

ite
ra

tio
ns

GMRES

(a)
(b)

10
−10

10
−5

10
0

0

200

400

600

800

1000

1200

1400

α

ite
ra

tio
ns

PPCG

(a)
(b)

10
−10

10
−5

10
0

200

400

600

800

1000

1200

1400

α

ite
ra

tio
ns

SQMR

(a)
(b)

Figure 1: Comparison of number of iterations required when either (a) P or (b)
PC are used as preconditioners for C = αI with GMRES, PPCG and SQMR
on the CVXQP2 M problem.
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Figure 2: Comparison of number of iterations required when either (a) P or (b)
PC are used as preconditioners for C = αI with GMRES, PPCG and SQMR
on the CVXQP2 M problem.
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Figure 3: Number of PPCG iterations when either (a) P or (b) PC are used as
preconditioners for C = αI on the AUG2DQP problem.
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Figure 4: Number of PPCG iterations when either (a) P or (b) P
C

are used as
preconditioners for C = α× diag(0, . . . , 0, 1, . . . , 1), where rankC = bm/2c , on
the AUG2DQP problem.
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These examples suggest that during pre-asymptotic iterations of an interior
point method for a nonlinear programming problem, we may need to use a
preconditioner of the form P

C
, but as the method proceeds there will be a point

at which we will be able to swap to using a preconditioner of the form P. From
this point onwards, we’ll be able to use the same preconditioner during each
iterative solve of the resulting sequence of saddle-point problems.

4 Conclusion and further research

In this paper, we have investigated a class of preconditioners for indefinite linear
systems that incorporate the (1,2) and (2,1) blocks of the original matrix. These
blocks are often associated with constraints. We have shown that if C has rank
p > 0, then the preconditioned system has at least 2(m − p) unit eigenvalues,
regardless of the structure of G. In addition, we have shown that if the entries
of C are very small, then we will expect an additional 2p eigenvalues to be
clustered around 1 and, hence, for the number of iterations required by our
chosen Krylov subspace method to be dramatically reduced. These later results
are of particular relevance to interior point methods for optimization.

The practical implications of the analysis of this paper in the context of
solving nonlinear programming problems will be the subject of a follow-up pa-
per. We will investigate the point at which the user should switch from using
a preconditioner of the form P

C
to that of P during an interior point method,

and how the sub-matrix G in the preconditioner should be chosen.
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