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Abstract

Accurate prediction of convective storms is important because these storms

can lead to dangerous flooding events. Improvements in computer power have

allowed operational forecasting centres to begin running research models at

resolutions down to O(1km). There are still limits to computer power however,

and if a model is to have a very high resolution it can only have a limited

domain size; this creates some problems. One is there may be waves present in

the atmosphere that have wavelengths longer than the domain of the model;

this is what we refer to as the ‘long wave’ problem. Another is that if a

model domain has a limited area, then it has ‘edges’ and the model will need

boundary conditions. In order to investigate the ‘long wave’ problem we nest

a limited area domain within a simple 1D PDE model. Fourier analysis shows

that the smallest wavenumber that can be represented by the limited area

model is larger than the wavenumber of the ‘long wave’. This has implications

for data assimilation. Large scale information from observations within the

limited area domain will require special treatment.

1 Introduction

An important challenge for numerical weather prediction (NWP) is to improve our

ability to forecast convective storms. Accurate prediction of convective storms is

important because these storms can lead to dangerous flooding events, such as the

flood in Boscastle, UK in 2004.

In order to represent convective storms accurately, spatial resolutions of order

100m are needed to resolve the dominant motions properly. However, running op-

erational forecast models at such high resolutions requires computer power beyond

that currently available. Nevertheless research has shown that very useful results

can be obtained with horizontal resolutions of order 1km [6], because the mesoscale

flows leading to storm initiation, organisation and propagation are generally well

represented. The 1km resolution also allows us to do away with convective param-

eterisations and allows us to use more accurate orography. If a model is to run at a

very high resolution it can only have a limited domain size. For example, the UK
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Met Office High Resolution Trial Model has a horizontal domain of 300km×300km

and 76 vertical levels [6].

In order to generate a weather forecast with a limited area model (LAM) we

need initial conditions and lateral boundary conditions (LBCs). To generate initial

conditions that accurately describe the observed reality we combine a previous model

forecast (background) with observations. The tool that allows us to do this is data

assimilation and the initial conditions are known as the ‘analysis’. The LAM also

needs LBCs because the grid is nested within a larger grid and has ‘edges’. This is

not necessary for the global model because the grid stretches over the whole globe.

The operational assimilation-forecast cycle has the following steps:

Step 1 Run a coarse resolution model to provide a forecast over a large domain.

Step 2 Run the LAM to provide a background forecast over the assimilation time

window, using LBCs from the forecast in Step 1.

Step 3 Run the data assimilation to combine the LAM background forecast with

observations.

Step 4 Run the LAM over the full forecast period, using the updated initial conditions

from Step 3 and the LBCs from Step 1.

The limited area nature of storm-scale forecasting models can create some sig-

nificant problems for data assimilation. Firstly, there may be waves present in the

atmosphere with wavelengths that are longer than the domain of the model; for

example, a Rossby wave is of the scale O(1000km). Meteorological processes are

known to be multiscale phenomena and there are strong feedbacks between synop-

tic and convective scale behaviour [4]. Atmospheric measurements can contain a

large range of scales and it is important to preserve this information in the analysis.

Secondly, the LAM LBCs come from a model with a coarser resolution in both

space and time, so have to be interpolated to the LAM grid at every timestep.

The LAM solution is then relaxed to these interpolated values over a ‘buffer zone’;

operationally this is usually done using Davies Relaxation [5]. To control reflection

at the boundaries Davies Relaxation requires the buffer zone to be sufficiently wide

because the reflection coefficient reduces with buffer width [3].
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In order to investigate these and other possible problems that may exist, we

insert a limited area domain in a simple 1D-PDE model, to mimic the operational

system in a simple model. We aim to explore possible problems caused by the

presence of a boundary, differences in resolution and multiscale properties. The

model is described in Section 2. In Section 3 we discuss some preliminary results

and we conclude in Section 4 and consider future work.

2 Method

We use the 1D heat equation. This has the advantage of having an analytic solution

so we can compare our results with the truth and check the accuracy and convergence

of the model. Using this simple model we explore possible problems caused by the

presence of a boundary and differences in resolution.

We have the 1D heat equation

ut = σuxx, (1)

with homogeneous boundary conditions and x ∈ [0, 1], t ∈ [0, 0.5], where u =

u(x, t) is the heat, x is the spatial coordinate, t is time and σ > 0 is the diffusion

constant. We call the spatial domain [0, 1] the global domain. We use an explicit

Euler discretisation

ui,k = ui,k−1 + µ (ui−1,k−1 − 2ui,k−1 + ui+1,k−1) , (2)

where µ = σδt/δx2, i = 1, 2, · · · , N and k = 1, 2, · · · , T . N is the number of internal

spatial gridpoints and T is the number of timesteps. δx = 1/(N +1) and δt = 0.5/T .

Into the global domain we insert a smaller, limited area domain. It covers D global

grid spaces where D = b2− b1 and b1, b2 are the global gridpoints corresponding to

the boundaries of the limited area domain. The spatial and temporal resolutions of

the LAM are defined by their ratio to the global resolutions. If the distance between

two global grid points is δx then the distance between two LAM grid points is

δξ = δx/h, and if the global model uses a timestep of δt then the LAM timestep

is δτ = δt/g. The values of h and g are chosen such as to keep the same value

of µ in both models. The boundary values for the limited area model come from
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the global model values at b1 and b2. In order to relax the solution on the interior

of the limited area domain to the values prescribed at the boundaries there is a

buffer zone implemented at the boundaries covering bz LAM gridpoints. A Davies

Relaxation scheme [5] is used in the buffer zone. We use Davies Relaxation because

this is what is used operationally. Since our discretisation is explicit it can be shown

algebraically that the Davies Relaxation is equivalent to the interpolation

unew
i = (1 − ωi)u

L
i + ωiu

G
i , (3)

where unew
i is the value of u in the buffer zone, uL

i is the value of u calculated by

the limited area model, uG
i is the value of u coming from the global model and ω is

a interpolation function

ωi = 1 − [(i − 1)/bz].

To investigate the outputs of our models we consider their power spectra. The

absolute value of the fast Fourier transform (FFT) squared, is plotted against the

wavenumber κ, where the FFT for a function fj, defined on [0, 2π) is

FFT (fj) =
N−1∑

j=0

fje
−iζjk, where ζj =

2πj

N
.

Methods of using the power spectra to understand a wave solution are described

in [2]. We now consider the effect the limited area domain has on the model output

when the initial conditions are a sine wave with wavelength longer than the domain

of the LAM.

3 Results

We take our global model to have N = 15 internal gridpoints. The LAM boundaries

are at global gridpoints b1 = 4 and b2 = 12 so the LAM domain covers D = 8 global

gridspaces. The spatial resolution of our LAM is δξ = δx/h where h = 2, and the

temporal resolution of our LAM is δτ = δt/g where g = 4. The buffer zone covers

bz = 2 LAM gridpoints. We begin with the initial conditions

u(xi, 0) = sin(2πxi), where i = 1, · · · , N
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Figure 1: (a) is the output of the global model run at resolution δx and δt, (b) is

the output of the LAM run at resolution δξ and δτ , (c) is the output of the global

model run at resolution δξ and δτ and (d) is the power spectra of all three outputs

plotted against wavenumber κ with respect to the global grid with resolution δx.

The power spectra of (a) is the solid line, (b) the dashed line and (c) the dotted

line.

5



2 4 6 8 10 12 14 16
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

LAM gridpoint

er
ro

r

(a)

2 4 6 8 10 12 14 16
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

LAM gridpoint

er
ro

r

(b)

Figure 2: The differences between the fine resolution global model and LAM outputs.

(a) at time t=0.25, (b) at time t=0.50.

u(ξj, 0) = sin(2πξj), where j = 1, · · · , (D × h) + 1

for the global and LAM respectively. In both models the constant of diffusivity

σ = 0.01.

Figure 1 shows the model outputs for the global and LAM at time t = 0.25.

Figure 1(a) shows the global model output, Figure 1(b) shows the LAM output and

Figure 1(c) shows the output of the global model when run at the resolution of the

LAM, i.e. the global model with N = 31 and T = 160. Clearly in Figure 1(b),

the limited area of the model domain has meant that the model cannot resolve the

entire wave. In order to inspect what has been captured by the LAM, the power

spectra of all three model outputs are shown in Figure 1(d). As can be seen both

global model outputs capture the correct wavenumber, κ = 1. The LAM output

does not capture this wavenumber. This is because wavenumber κ = 1 cannot be

represented on the limited area domain. The smallest wavenumber the LAM can

resolve is κ = 2. As can be seen in Figure 1(d), the LAM has shifted most of the

power in the output to wavenumber κ = 2. There are also small amounts of power

in the subsequent wavenumbers.

In order to consider the effect of taking boundary conditions for the LAM from

a global model with coarser resolution, we compare the output of the LAM with

the output of the global model, both run at resolution δξ, δτ . We then extract the

part of the global output which covers the domain of the LAM. This allows us to

examine the effect of the boundaries as the only difference between the two models
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is that the LAM takes boundary conditions from a coarser resolution global model.

Figure 2(a) shows the error at t = 0.25 and Figure 2(b) shows the error at t = 0.50.

As can be seen in Figure 2(a), at time t = 0.25 there are small discrepancies

between the two models at the boundary. The error is at a maximum at the second

gridpoint in; this is the edge of the buffer zone. The error then decreases as we move

inwards through the domain to become zero at several of the central gridpoints.

This pattern is repeated at time t = 0.5 in Figure 2(b), although there are some

differences worth noting. The magnitude of the maximum error is smaller at time

t = 0.5. However the number of gridpoints with zero error is fewer, with only the

very central gridpoints having no error at all. This is because the errors at the

boundary are diffused inwards over time. This simple experiment shows the impact

that can be made on a LAM output by taking LBCs from a model with coarser

resolution.

4 Summary and Future Work

We nested a LAM within a larger model of the 1D heat equation. We have shown

that taking LBCs from a model with coarser resolution can introduce errors to the

model and that these errors propagate inwards over time. We have also demon-

strated the ‘long wave’ problem and shown that the LAM output does not capture

the same wavenumbers as the global model output. This has implications for data

assimilation. Large scale information from observations within the limited area

domain will require special treatment. One method for this has been attempted

by [1] where the LAM background is modified using large scale information from

the coarser model. However, this method is not suitable when the LAM is run more

frequently than the coarse model providing the LBCs or when extra sources of high

resolution observations are used only in the LAM.

Having considered the model itself we are now implementing a 4D-Var data

assimilation scheme on the limited area domain. 4D-Var data assimilation means

we find an analysis which minimizes a cost function as a nonlinear least squares

problem, subject to model equations, in space and time [7]. The cost function is a
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measure of the distance of the analysis from a first guess field (background) and the

observations, weighted by the inverse of the error covariance matrices. The status

and progress of 4D-Var and in particular the problems associated with applying

it to the prediction of storm-scale atmospheric phenomena are reviewed by [4], [8]

and [10]. With the data assimilation we will again consider problems coming from

differences in resolution and the presence of a boundary. Once we have investigated

these different sources of potential problems using the heat equation, we aim to

extend the model to the 1D Kuramoto-Sivashinski equation. This nonlinear wave

equation illustrates self-sustained chaotic behaviour of a multiscale nature [9] and

will allow us to identify problems associated with nonlinear advection rather than

diffusion, as well as multiscale properties.
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