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Abstract 
 
 

In this report we will discuss some numerical techniques for approximating the 

Shallow Water equations.  In particular we will discuss finite difference schemes, 

adaptations of Roe’s approximate Riemann solver and the Q-Schemes of 

Bermudez & Vazquez with the objective of accurately approximating the solution of 

the Shallow Water equations.  We consider four different test problems for the 

Shallow Water equations with each test problem making the source term more 

significant, i.e. the variation of the Riverbed becomes more pronounced, so that 

the different approaches discussed in this report can be rigorously tested.  A 

comparison of the different approaches discussed in this report will also be made 

so that we may determine which approach produced the most accurate numerical 

results overall. 

 
 
The work contained in this report has been carried out as part of the Oxford / Reading 

Institute for Computational Fluid Dynamics and was funded by the Engineering and Physical 

Science Research Council and HR Wallingford under a CASE award. 
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1 Introduction  

Throughout this report, we will be discussing some numerical techniques for 

approximating the Saint-Venant equations, i.e. 
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Here, h(x,t) and u(x,t) represent the water depth and the fluid velocity respectively and 

H(x) is the bed depth from a fixed reference level, see Figure 1-1. 

 

 

 

 

 

 

 

 

Figure 1-1: Shallow Water Variables. 
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Notice that (1.1) has a source term present, ( )wR ,x , which can cause difficulties in 

accurately approximating (1.1), especially if the source term is stiff (see Hudson[7] 

and LeVeque & Yee[9]).  Sometimes, it is convenient to re-write the source term in 

terms of the bed height 

( ) ( )xBDxH −=    ⇒   ( ) ( )xBxH ′−=′ , 

hence, 
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In Chapter 2, we will discuss four test problems for the Shallow Water Equations 

(1.1) where the source term becomes more significant for each test problem, i.e. the 

variation of the riverbed becomes more pronounced.  The first test problem will have 

no source term present and the second and third test problem will have a source term 

present, with the third test problem having a source term more significant than the 

second test problem.  The final test problem will also have a source term which is the 

most significant out of all of the four test problems and thus is the most difficult to 

approximate accurately. 

The four test problems will allow us to rigorously test the different numerical 

approaches for approximating the Shallow Water Equations (1.1), which are discussed 

in Chapter 3, and determine if the approaches are accurate when the source term 

becomes difficult to approximate accurately.  The numerical approaches we will 

discuss in Chapter 3 are the finite difference approach, adaptations of Roe’s 

approximate Riemann solver and the Q-Schemes of Bermudez & Vazquez[1].  Some 

of these approaches require the Jacobian matrix of ( )wF  
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which has eigenvalues  

 
ghu +=λ1   and  ghu −=λ2  

 
and eigenvectors 
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All of the numerical approaches discussed will derive numerical schemes that are 

either first order, second order or flux-limited second order schemes (see 

LeVeque[10], Kroner[8] and Sweby[14]).  In Chapter 4 the different numerical 

approaches discussed in Chapter 3 will be compared by using the four test problems 

so that we may determine which approach produced the most accurate numerical 

results overall.  
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2 Test Problems  

In this chapter, we will discuss four test problems, for the Shallow Water Equations 

(1.1).  The first test problem is the dam-break problem and was discussed by 

Glaister[3] and Stoker[13].  This problem is one of the most basic problems for (1.1) 

since no source term is present.  The second test problem contains a source term and 

represents a dam breaking on a variable depth riverbed.  The third problem was 

discussed by LeVeque[11] and represents a square pulse, which breaks up into two 

waves travelling in opposite directions, on a variable depth riverbed.  The final test 

problem was discussed by Bermudez & Vazquez[1] and represents a tidal wave 

propagating on a variable depth riverbed.  For each test problem, notice how the 

source term becomes more significant, i.e. the variation of the bed depth becomes 

more pronounced. 

 

2.1 Problem A  - The Dam-Break Problem 

In this test problem, (1.1) has no source term present, i.e. 

( )
0=

∂
∂+

∂
∂

xt

wFw
.    (2.1) 

This is due to the riverbed being of constant depth resulting in ( ) 0=′ xH ∀x.  We also 

have initial conditions 

u(x,0) = 0   and   ( )
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which are illustrated in Figure 2-1.  In Figure 2-1, the discontinuity at x = 0.5 

represents a barrier, which separates the two initial river heights and is removed at t = 

0.  Walls are present at x = 0 and at x = 1 resulting in reflection at both boundaries.   

Note that, for this test problem, if 2.7
1

0

>
φ

 then both eigenvalues of )(wA are of the 

same sign and the downstream flow is supercritical.  If 2.7
1

0

<
φ

then the eigenvalues 

of )(wA  are of opposite sign and the downstream flow is subcritical.  If the 

downstream flow is supercritical then difficulties can arise in accurately numerically 

approximating the wave speed of the discontinuity at x = 0.  In  Figure 2-1, 

2.72
5.0

11

0

<==
φ

, hence the downstream flow is subcritical.  

We may obtain an exact solution of the dam-break problem by using the analysis of 

Stoker[13].  The following exact solution is illustrated in Figure 2-2 and Figure 2-3 

and is only valid for φ0 = 0.5 and φ1 = 1, 
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where  
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and the wave speed of the discontinuity created at x = 0 is 

S = 2.957918120187525. 

For a more in depth analysis on how the value of S was obtained see Glaister[3] and 

Stoker[13]. 

 

2.2 Problem B - The Dam-Break Problem on a Variable 

Depth Riverbed 

This test problem is similar to Problem A but the riverbed is no longer of constant 

depth, resulting in ( ) 0≠′ xH  for some values of x, which means that a source term is 

present, i.e. 
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which is illustrated in Figure 2-4.  In Figure 2-4, the discontinuity at x = 0.5 represents 

a barrier, which separates the two initial river heights and is removed at t = 0.  Walls 

are again present at x = 0 and at x = 1 giving reflection at these boundaries.  Since a 

source term is now present, difficulties can arise when numerically approximating this 

problem, as we will see later. 

 

2.3 Problem C - A Problem Discussed by LeVeque[11]  
 
In this test problem, the riverbed is again of variable depth, resulting in ( ) 0≠′ xH  for 

some values of x, which means that a source term is present, i.e.  
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and we have initial conditions 

u(x,0) = 0  and  ( )
( )
( )

( )⎪⎩

⎪
⎨
⎧

>−
≤≤−

<−
=

0.2    if     1

0.20.1   if  1.2

1.0    if     1

0,

xxB

xxB

xxB

xh , 

which is illustrated in Figure 2-5.  This problem represents an initial pulse, which 

breaks up into two waves moving in opposite directions.  The right-going square-

wave pulse passes the hump in the riverbed and becomes partially reflected, causing a 

disturbance behind the hump.  In this problem, there are no walls present at x = 0 and 

x = 1 and reflection does not occur. 
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2.4 Problem D - Tidal Wave Propagation on a Variable 

Depth Bed 

This test problem was discussed by Bermudez and Vazquez[1] and also has a source 

term present, i.e.  

( ) ( )wR
wFw

,x
xt

=
∂
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∂
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We have a variable depth given by 
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with initial conditions 
 

u(x,0) = 0  and  h(x,0) = H(x), 
 

which are illustrated in Figure 2-6, and boundary conditions 
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representing an incoming wave which is illustrated in Figure 2-7, and u(L,t) = 0.  For 

this test problem, the reference depth D is taken as D = 60.5.   

This problem represents a tidal wave propagating on a variable depth riverbed.  Here, 

h(0,t) represents a tidal wave of 4m amplitude and in Figure 2-7, we can see that at t = 

21,600s, the tidal wave has reached it’s full height of 8m at inflow whereas at t = 

43,200s, the tidal wave has disappeared.  Also, since the waves propagate at speed 

gh , the tidal wave should only reach as far as 216,000m at t = 10,800s, when L = 

648,000m.  

Throughout this chapter, we have discussed four different test problems for the 

Shallow Water Equations.  In the next chapter, we will discuss some numerical 



 9 

techniques for approximating the Shallow Water Equations so that we can apply the 

different numerical techniques to the four test problems. 

 

Initial Conditions for Problem A
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Figure 2-1: Initial condition h(x,0) for Problem A 
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Exact Solution of Problem A
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Figure 2-2: Illustration of the exact solution of Problem A 
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Initial Conditions for Problem B
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Figure 2-4: Initial condition h(x,0) and B(x) for Problem B. 

 

 

 

Initial Conditions for Problem C
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Figure 2-5: Initial condition h(x,0) and B(x) for Problem C. 
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Initial Conditions for Problem D
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Figure 2-6: Initial condition h(x,0) and B(x) for Problem D. 
 
 
 
 
 

 
 

Boundary Condition h(0,t) for Problem D.
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Figure 2-7: Boundary condition h(0,t) for Problem D.
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3 Numerical Schemes  

 
There are a variety of numerical techniques for approximating (1.1), e.g. finite 

element methods, finite volume methods, etc.  In this report, we will discuss the finite 

difference approach (see LeVeque[10] and Kroner[8]), adaptations of Roe’s 

approximate Riemann solver (see Glaister[4], Hubbard[6] and Roe[12]) and the Q-

Schemes of Bermudez & Vazquez[1].   

These approaches will be used to derive first order and second order numerical 

schemes where if a numerical scheme is first order then the scheme is dissipative and 

if a numerical scheme is second order then the scheme is dispersive (see Figure 3-1).  

Dissipation occurs when the travelling wave’s amplitude decreases resulting in the 

numerical solution being smeared.  Dispersion occurs when waves travel at different 

wave speeds and results in oscillations being present in the numerical results.  Both 

dissipation and dispersion can cause very significant errors in the numerical results, 

see Figure 3-1, and can sometimes give completely inaccurate numerical results.   

One way to minimise dissipation and dispersion is to use a numerical method which 

satisfies the Total Variational Diminishing property (see Sweby[14] and Harten[5]).  

Flux-limiter methods satisfy the TVD property and switch between a second order 

approximation when the region is smooth and a first order approximation when near a 

discontinuity.  Flux-limiter methods will also be applied to the different numerical 

approaches so that oscillations present in the numerical solution can be minimised.   
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Numerical Results of an Advection Test Problem using First and 
Second Order Finite Difference Schemes with the Exact Solution.
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Figure 3-1: Illustration of Dispersion and Dissipation 

 
 
 
 
 
 
 
 
 
 
 
 
     
    
 
 
 
 
       
 
 
 
 
 

Figure 3-2: The Mesh 

x = x0 

 i = 0 
x = x1 
 i = I 

x 
x1 x2 x3  …. xI-3 xI-2 xI-1 xi-1     xi     xi+1  …… 

n = 0 
t0  = 0 

u(x,0) 

tn-1  

t1  

t2  

…
 

Δt 
tn  

tn+1 

un
i un

i 1+  un
i 1−  

un
i

1
1
+
+  un

i
1+  un

i
1
1
+
−  

un
i

1
1
−
−  un

i
1−  un

i
1
1
−
+  

  ..…
. 

Δx 

t 

 n = N  
 t = tN   

tN-1  

tn+1 – tn = Δt 
 
xi+1 – xi = Δx 
 

tn = nΔt 
 
xi = iΔx 
 

tN-2  



 15 

3.1 Mesh & Boundary Conditions  
 
Before we discuss the various numerical approaches for approximating the Shallow 

Water Equations (1.1), we must define the mesh and then look at the numerical 

boundary conditions required to implement the numerical approaches correctly.   

In this report, we will use a fixed mesh over the finite region xxx Io ≤≤  and tt N≤≤0 , 

which is illustrated in Figure 3-2.  Here, the numerical solution is denoted by 

( )tnxiuun
i ΔΔ≈ ,  where xxx ii 1−−=Δ  and ttt nn 1−−=Δ  for all i and n.   

Numerical boundary conditions are required at x = x0  and  x = xI and are derived 

separately for each test problem.  For   

i) Problem A and Problem B, walls are present at the upstream boundary, x 

= 0, and the downstream boundary, x = 1, so we will need to reflect the velocity at the 

two boundaries  

uu n
i

n
i −=−  and uu n

iI
n

iI −+ −=  

where i = 1,2.  For the water depth, we will assume that the depth is constant at the 

boundaries 

hh nn
i 0=−  and hh n

I
n

iI =+  
where i = 1, 2. 

ii) Problem C we will assume that the velocity and water depth are constant  

hh nn
i 0=− ,  hh n

I
n

iI =+ ,  uu nn
i 0=−  and  uu n

I
n

iI =+   

where i = 1, 2. 

iii) Problem D we use the analytical boundary conditions to obtain  

( )thhn
i ,0=−   and  0=+un

iI  

where i = 0, 1, 2.  For the second boundary condition, we will use  

hh iI
n

iI
0
++ =    and    uu nn

i 0=−  

where i = 1, 2. 
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3.2 Finite Difference Method 
 
One approach widely used to numerically approximate (1.1) is the finite difference 

method.  This method involves replacing the derivatives of (1.1) with finite difference 

approximations, e.g. 

tt

n
i

n
i

Δ
−=

∂
∂ + www 1

  

which is a forward difference approximation in time, to obtain a finite difference 

scheme.  Great care must be taken when using finite differences to construct a finite 

difference scheme as we need to ensure that the scheme is conservative.  A finite 

difference scheme that is not conservative may propagate discontinuities at the wrong 

wave speed, if at all, giving inaccurate numerical results.  To ensure we obtain a 

conservative scheme, we only construct finite difference schemes of the form 

[ ]FFww *
2/1

*
2/1

1
−+

+ −
Δ
Δ−= ii

n
i

n
i

x

t
,             (3.1) 

where F*  is called the numerical flux function.  Notice that (3.1) approximates the 

homogeneous problem (2.1).  Obtaining a conservative scheme when a source term is 

present can be very difficult, especially when the source term is stiff.  However, there 

are a variety of numerical techniques which approximate the source term and they 

generally fall under two categories: a pointwise approach, where we add a source term 

approximation to (3.1), i.e. 

[ ] RFFww t
x

t n
iii

n
i

n
i Δ+−

Δ
Δ−= −+

+ *
2/1

*
2/1

1    (3.2) 

or a physical approach, which involves taking an average value of the source term and 

upwinding (see Sweby[15] for more details), i.e.  

[ ] RFFww t
x

t
iii

n
i

n
i Δ+−

Δ
Δ−= −+

+ **
2/1

*
2/1

1 .   (3.3) 
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We will now look at specific schemes which numerically approximate the Shallow 

Water Equations7.  

3.2.1 First Order Lax- Friedrichs Approach 
 
We can use the Lax-Friedrichs scheme with a source term approximation ‘added’ to 

approximate (1.1), i.e. 
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Notice that this scheme is in a similar form of (3.2) and that the Jacobian matrix of 

F(w) associated with the system (1.1) does not need to be approximated.  However, 

the Lax-Friedrichs scheme can suffer from oscillations but sometimes these 

oscillations can be minimised by using sufficiently small step-sizes. 

 

3.2.2 Explicit MacCormack Approach 
 
We can also use an approach discussed by LeVeque & Yee[9] to approximate (1.1), 

which involves modifying the explicit MacCormack scheme, i.e. 
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Unfortunately, this scheme suffers from dispersion and results in oscillations being 

present in the numerical approximation.  However, LeVeque & Yee[9] eliminated 
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these oscillations by adapting (S-2a) so that the scheme satisfies the TVD property 

and obtained 

 ( )ϕϕ 2/12/12/1 2/1
)2(1

−−+ +
+ −+= iii ii
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i XXww                   (S-2b) 

 
where X represents a matrix containing the right eigenvectors e, w )2(
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approximation derived from scheme (S-2a), i.e. 
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Here, k represents the kth component of the vector and λ, e and α represents the 

eigenvalues, eigenvectors and wave strengths associated with the system (1.1) 

respectively, which can be obtained by the decomposition 

wAeF Δ=∑ λα=Δ
=

~~~~
2

1
k

k
kk . 

 

Variables which have ˜ represent the Roe average and A
~

 is the Jacobian matrix 

evaluated at Roe’s average state.  We will discuss the method of decomposition in 

Section 3.3. 
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3.2.3 Semi-Implicit MacCormack Approach 
 
LeVeque & Yee[9] also obtained a semi-implicit approach to approximate (1.1), 

which involves modifying the explicit MacCormack scheme so that 
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Also, notice that for the Shallow Water Equations 
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(3.5) 

Hence, we can re-write (3.4) as 
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3.3 Approximate Riemann Solvers 
  
Roe [12] derived an approach which approximates systems of conservation laws by 

using a piecewise constant approximation 

( )
⎪
⎪
⎩

⎪⎪
⎨
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Δ+<<Δ−

Δ+<<Δ−
=

22
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22
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,
x

xx
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x

x
xx

x
x

tx

RRR

LLL

n

w

w
w , 

where wL and wR represent the piecewise constant states at tn, and determining the 

exact solution of a linearised Riemann problem which is related to (2.1) 
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where ( )
w
F

wwA
∂
∂≈RL ,

~
 is the linearised Jacobian matrix and ˜ is called the Roe 

average.  The eigenvalues and eigenvectors of A
~

 are λ~  and e~  respectively and are 

determined from the decomposition 

wAeF Δ=∑ λα=Δ
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~~~~
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k

M

k
kk  

 
where www LR −=Δ , M is the number of waves present in the system and α~  

represents the wave strengths, i.e. wkk Δ=α~ .  Once the eigenvalues, eigenvectors and 

wave strengths associated with the linearised Riemann problem have been obtained, 

Roe’s scheme [12] can be used 
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and φk can be any of the flux-limiters listed in Table 3-1. 



 21 

Name of Flux-limiter φ(θ) 
Minmod φ(θ) = max(0,min(1,θ)) 

Roe’s Superbee φ(θ) = max(0,min(2θ,1),min(θ,2)) 

van Leer ( )
θ+
θ+θ

=θφ
1

 

van Albada ( )
θ+
θ+θ=θφ
2

2

1
 

Table 3-1: Some second order flux-limiters. 

 

3.3.1 Roe’s Scheme with Source Term Added 

As presented so far, Roe’s scheme approximates homogeneous systems of 

conservation laws.  We now extend (3.7) to numerically approximate the Shallow 

Water Equations, which has a source term present.   

One approach is to add a source term approximation to (3.7)   
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We now need to obtain the eigenvalues, eigenvectors and wave strengths associated 

with the linearised Riemann problem from the decomposition.  For the Shallow Water 

Equations, we may obtain eigenvalues, eigenvectors and wave strengths (see 

Glaister[3] and Hubbard[6]) 

cu ~~~
1 +=λ ,  cu ~~~

2 −=λ , 
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A semi-implicit approach of (S-3a) can be obtained by approximating the source term 

at tn+1 instead of at tn, i.e. 
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Now, by using Taylor’s theorem, we may obtain 
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and by substituting into (3.8) and using (3.5), we may obtain 
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3.3.2 Roe’s Scheme with Source Term Decomposed 

Instead of adding a source term approximation to Roe’s scheme [12], we can use an 

approach discussed by Glaister[3].  This method approximates the source term by 

decomposing the source term in a similar way that we did for the flux terms, i.e.  

Re
~~~1

1
=∑β

Δ =
k

M

k
kx

. 

Here, β~k
 are the coefficients of the decomposition of the source term onto the 

eigenvectors of the characteristic decomposition (see Glaister[3] and Hubbard[6]).   

For the Shallow Water Equations, we may obtain  

2

~~
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HcΔ=β   and    
2

~~
2

HcΔ−=β .                 (3.9) 

 
Alternatively, we can use 
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for the Shallow Water equations.  Once the values of β~k

 have been obtained, we can 

approximate the source term by using 
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which is a first order approximation of the source term.  Hence, Roe’s first order 

scheme with the source term decomposed may be written 
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We can also obtain a second order accurate approximation of the source term and thus 

obtain Roe’s second order scheme with source term decomposed  
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In addition, we can also use an approach proposed by Hubbard[6] which involves 

applying TVD to the source term approximation as well as the conservation law 

approximation, i.e. 
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and φk can be any of the flux-limiter functions listed in Table 3-1. 

3.3.3 The C – Property of Bermudez & Vazquez 

The advantage of decomposing the source term as well as the conservation law is that 

we obtain a numerical scheme that satisfies the approximate C-property.  Bermudez & 

Vazquez[1] state that in order for a numerical scheme to satisfy 
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i) The approximate C-property, the numerical scheme must be at least 

second order accurate when applied to the quiescent flow case, i.e. u ≡ 

0 and h ≡ H. 

ii) The exact C-property, the numerical scheme must be exact when 

applied to the quiescent flow case, i.e. u ≡ 0 and h ≡ H.  

Hubbard’s approach and Roe’s scheme with source term decomposed all satisfy the 

exact C-property and should produce very accurate numerical results.  However, 

Roe’s scheme with source term added does not even satisfy the approximate C-

property and may give misleading results as the source term becomes significant. 

 

3.4 Q-Schemes of Bermudez & Vazquez 
 
Bermudez & Vazquez[1] discussed a variety of Q-Schemes, which numerically 

approximate (1.1).  All of the Q-Schemes discussed were used with the following first 

order equation 
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and Q is a matrix calculated by using a certain Q-Scheme.  Bermudez & Vazquez[1] 

discussed a variety of Q-Schemes but generally concentrated on the Q-scheme of van 

Leer and a Q-Scheme which is equivalent to Roe’s first order scheme (S-3c).  

The Q-Scheme of van Leer is 
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The Q-Scheme that is equivalent to Roe’s first order scheme is 
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For both Q-Schemes, the modulus of matrix A can be obtained by using 
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X�XA 1−=  

where Λ represents a matrix whose diagonal elements are the eigenvalues of A, 
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Again, notice that (S-5) with either Q-Scheme satisfies the exact C-property. 

In this chapter, we have discussed a variety of numerical schemes which approximate 

(1.1).  In the next chapter, we will apply these schemes to the four test problems 

discussed in Chapter 2 to find out which approach is the most accurate. 
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4 Numerical Results

In this chapter, we will apply the schemes discussed in Chapter 3 and listed in Table

4-1 to the four test problems discussed in Chapter 2 to find out which approach

produces the most accurate results.  We will not discuss the results of the semi-

implicit approaches as they produced almost identical results to the explicit

approaches.  Also, the numerical results of Bermudez & Vazquez’s Q-Schemes will

not be discussed as the two Q-Schemes produced almost identical results to Roe’s first

order scheme with source term decomposed, i.e. (S-3b).

For the first three test problems, step-sizes Δx = 0.001 and Δt = 0.0001 will be used

with a final time of t = 0.1.  A comparison will be made at t = 0.1 and numerical

results will also be shown for t = 0.01m, where m = 0 to 10.

For test Problem D, step-sizes Δx = 2800 and Δt = 1 will be used with a bed length of

L = 648,000m and a final time of t = 10,800s.  A comparison will be made at t =

10,800s and numerical results will also be shown for t = 1080m, where m = 0 to 10.

Name Of Approach Reference No. Order Paper
Lax-Friedrichs (S-1) 1 -

MacCormack (S-2b) 2
Yee[16],

 LeVeque & Yee[9],
Roe’s Scheme with Source Term

‘added’
(S-3a) 1 / 2

Roe’s Scheme with Source Term
Decomposed

(S-3b) 1

Hubbard[6],

Glaister[3],

Roe[12]

Hubbard’s Approach (S-4) 2 Hubbard[6]
Table 4-1: Different approaches for numerically approximating (1.1).
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Only first order and flux-limited second order numerical results will be discussed and

the Minmod flux-limiter will be used with all flux-limited second order approaches.

4.1 First Order Comparison

4.1.1 Numerical Results for Problem A

For this test problem, no source term is present so schemes (S-3a) and (S-3b) are the

same.  Now, by using schemes (S-1) and (S-3b) to approximate Problem A and

comparing with the exact solution, we may obtain the numerical results in Figure 4-1a

and Figure 4-1b.  Here, we can see that Roe’s scheme is more accurate than the Lax-

Friedrichs approach since the Lax-Friedrichs approach is more dissipative than Roe’s

scheme.  Also, the Lax-Friedrichs scheme suffered badly from oscillations if larger

step-sizes were used whereas Roe’s scheme remained accurate but became more

dissipative.

4.1.2 Numerical Results for Problem B

For this test problem, a source term is now present so approaches (S-3a) and (S-3b)

are no longer equivalent.  By using schemes (S-1), (S-3a) and (S-3b) to approximate

Problem B, the results in Figure 4-2a to Figure 4-3b were obtained.  Here we can see

that Roe’s scheme with source term decomposed has produced the most accurate

results.  Roe’s scheme with source term added produced almost identical results to

Roe’s scheme with source term decomposed showing that, for Problem B, adding a

source term approximation to Roe’s scheme produces sufficiently accurate results.

The Lax-Friedrichs approach produced the least accurate results suffering badly from

dissipation and the approach also misplaced the disturbance caused by the riverbed.
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4.1.3 Numerical Results for Problem C

For this test problem, the source term is becoming more significant, i.e. the variation

in the riverbed is becoming more pronounced, which may cause some schemes to

produce inaccurate results.  By using approaches (S-1), (S-3a) and (S-3b) to

approximate Problem C, the results in Figure 4-4a to Figure 4-7b were obtained.

Here, we can see that Roe’s scheme with source term decomposed has produced the

most accurate results but the results are no longer almost identical to Roe’s scheme

with source term added.  Adding the source term in this case has produced movement

for 0.3 > x > 0.55 whereas decomposing the source term has produced no movement

for 0.3 > x > 0.55. This is because Roe’s scheme with source term decomposed

satisfies the exact C-property whereas Roe’s scheme with source term added does not.

The Lax-Friedrichs approach has produced the least accurate results due to the

scheme suffering badly from dissipation and the scheme has also produced more

movement than Roe’s scheme with source term added for 0.3 > x > 0.55.  Also, from

Figure 4-7b we can see that the Lax-Friedrichs approach has started producing

oscillations at the peak of the pulse even though small step-sizes have been used.

4.1.4 Numerical Results for Problem D

For this test problem, the source term is very difficult to approximate accurately

which may cause some approaches to produce very inaccurate numerical results.  By

applying schemes (S-1), (S-3a) and (S-3b) to Problem D, the results in Figure 4-8a to

Figure 4-11b were obtained.  Here, we can see that Roe’s scheme with source term

decomposed has produced the most accurate results since it was the only approach not

to produce movement after x = 216,000m at t = 10,800s.  This is because the

numerical scheme satisfies the exact C-property whereas the other approaches do not

even satisfy the approximate C-property.  Roe’s scheme with source term added was
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the second most accurate due to the approach producing movement after x = 216,000

at t = 10,800s.  The Lax-Friedrichs approach failed to accurately approximate

Problem D at all due to the scheme producing oscillations over the whole domain.

4.1.5 Overall Comparison of First Order Approaches

From the results of this sub-section, we have seen that Roe’s scheme with source term

decomposed has produced very accurate results for all test problems suffering only

slightly from dissipation. Roe’s scheme with source term added produced accurate

numerical results for the first two test problems, but as the source term became more

significant, the numerical scheme started to produce less accurate results.  In Problem

D, Roe’s scheme with source term added produced movement after x = 216,000 at t =

10,800s making the scheme very inaccurate.  The Lax-Friedrichs approach is accurate

for the most basic test problems but only when sufficiently small step-sizes are used

otherwise the scheme suffers from oscillations.  Also, as the source term became

significant the Lax-Friedrichs approach became impractical suffering badly from

oscillations even when small step-sizes were used.  Hence, Roe’s scheme with source

term decomposed produced the most accurate results for all test problems in the first

order case since it was the only approach to satisfy the exact C-property.

4.2 Flux-Limited Second Order Comparison

4.2.1 Numerical Results for Problem A

Now, by using approaches (S-2b) and (S-4) to approximate Problem A, the results in

Figure 4-12a and Figure 4-12b were obtained.  Here, we can see that Roe’s scheme

and the MacCormack approach have produced almost identical results.  Both

approaches have produced extremely accurate numerical results but Roe’s scheme

was the most accurate.
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4.2.2 Numerical Results for Problem B

By using approaches (S-2), (S-3a) and (S-4) to approximate Problem B, the results in

Figure 4-13a to Figure 4-14b were obtained.  Here, we can see that Roe’s scheme with

source term added, Hubbard’s approach and the MacCormack approach have all

produced almost identical results.  All three approaches have produced very accurate

results.

4.2.3 Numerical Results for Problem C

By using approaches (S-2), (S-3a) and (S-4) to approximate Problem C, the results in

Figure 4-15a to Figure 4-18b were obtained.  Here, we can see that Hubbard’s

approach has produced the most accurate results.  The other two approaches have

produced movement in the region 0.3 > x > 0.55 with the MacCormack approach

producing the most amount of movement of the three approaches.  If we use a larger

step-size of Δx = 0.01 and Δt = 0.001 with approaches (S-2), (S-3a) and (S-4), we may

obtain the results in Figure 4-19a and Figure 4-19b.  Here we can see that Hubbard’s

approach has again produced the most accurate numerical results and has not

produced movement in the region 0.3 > x > 0.55.  However, the MacCormack

approach and Roe’s scheme with source term added have both produced very

inaccurate numerical results.  Roe’s scheme with source term added has produced

inaccurate numerical results due to the approach producing a considerable amount of

movement in the region 0.3 > x > 0.55 and the approach has slightly smeared the

pulse at x = 0.5.  The MacCormack approach has produced less movement in the

region 0.3 > x > 0.55 than Roe’s scheme with source term added but the approach has

smeared the pulse at x = 0.5 considerably more than Roe’s scheme with source term

added.  Hence, Hubbard’s approach is still very accurate when the step-size is

increased but the other two approaches are becoming impractical.
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4.2.4 Numerical Results for Problem D

Now, by using approaches (S-2), (S-3a) and (S-4) to approximate Problem D, the

results in Figure 4-20a to Figure 4-23b were obtained.  Here, we can see that

Hubbard’s approach was the only approach that did not produce movement after x =

216,000m at t = 10,800s.  Roe’s scheme with source term added and LeVeque &

Yee’s MacCormack approach produced very similar results but both produced

movement after x = 216,000m at t = 10,800s.  Hence, Hubbard’s produced the most

accurate results.

4.2.5 Overall Comparison of the Flux- Limited Second

Order Approaches

From the results of this sub-section, we have seen that Hubbard’s approach has

produced the most accurate results for all test problems producing very accurate

results even for Problem D.  LeVeque & Yee’s MacCormack approach, Roe’s scheme

with source term added and Hubbard’s approach all produced almost identical results

for the first two test problems.  However, as the source term became more significant,

LeVeque & Yee’s MacCormack approach and Roe’s scheme with source term added

produced less accurate results but still produced very similar results due to both

approaches adding a source term approximation on.  When the source term became

significant and a larger step-size was used, the MacCormack approach and Roe’s

scheme with source term added both became impractical but Hubbard’s approach still

produced very accurate numerical results.
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First Order Numerical Results:

Comparison of the Different First Order Results with the Exact Solution 
using hx = 0.001, ht = 0.0001 and at t = 0.1.
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Figure 4-1a: Comparison of the first order results for Problem A

Com parison of the Different First Order Results w ith the Exact Solution 
using hx = 0.001, ht = 0.0001 and at t = 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u(
x,

0.
1)

Exact Lax-Friedrichs Roe's Schem e

Figure 4-1b: Comparison of the results for Problem A
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Roe's Scheme with Source Term Decomposed and hx = 0.001, ht = 
0.0001 and t = 0 to 0.1.
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Figure 4-2a: Results of Roe’s scheme with source term decomposed for Problem B

Roe's Scheme with Source Term Decomposed and hx = 0.001, ht = 
0.0001 and t = 0 to 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u(
x,

t)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 4-2b: Results of Roe’s scheme with source term decomposed for Problem B



36

Comparison of the Different First Order Approaches at t = 0.1.
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Figure 4-3a: Comparison of the different first order approaches for Problem B

Comparison of the Different First Order Approaches at t = 0.1.
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Figure 4-3b: Comparison of the different first order approaches for Problem B
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Lax-Friedrichs Approach with hx = 0.001, ht = 0.0001 and t = 0 to 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Riverbed 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 4-4a: Results of Lax-Friedrichs approach for Problem C

Lax-Friedrichs Approach with hx = 0.001, ht = 0.0001 and t = 0 to 0.1.
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Figure 4-4b: Results of Lax-Friedrichs approach for Problem C
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Roe's Scheme w ith Source Term Decomposed and hx = 0.001, ht = 
0.0001 and t = 0 to 0.1.
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Figure 4-5a: Results of Roe’s scheme with source term decomposed for Problem C

Roe's Scheme w ith Source Term Decomposed and hx = 0.001, ht = 
0.0001 and t = 0 to 0.1.
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Figure 4-5b: Results of Roe’s scheme with source term decomposed for Problem C
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Roe's Scheme w ith Source Term Added and hx = 0.001, ht = 0.0001 
and t = 0 to 0.1.
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Figure 4-6a: Results of Roe’s scheme with source term added for Problem C

Roe's Scheme with Source Term Added and hx = 0.001, ht = 0.0001 
and t = 0 to 0.1.
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Figure 4-6b: Results of Roe’s scheme with source term added for Problem C
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Comparison of the Different First Order Approaches at t = 0.1.
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Figure 4-7a: Comparison of the different first order approaches for Problem C

Comparison of the Different First Order Approaches at t = 0.1.
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Figure 4-7b: Comparison of the different first order approaches for Problem C
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Lax-Friedrichs Approach w ith hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 4-8a: Results of Lax-Friedrichs approach for Problem D

Lax-Friedrichs Approach with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 4-8b: Results of Lax-Friedrichs approach for Problem D
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Roe's Scheme with Source Term Decomposed and hx = 1000, ht = 1 
and t = 0 to 10800.
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Figure 4-9a: Results of Roe’s scheme with source term decomposed for Problem D

Roe's Scheme w ith Source Term Decomposed and hx = 1000, ht = 1 
and t = 0 to 10800.
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Figure 4-9b:Results of Roe’s scheme with source term decomposed for Problem D
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Roe's Scheme with Source Term Added and hx = 1000, ht = 1 and t = 
0 to 10800.
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Figure 4-10a: Results of Roe’s scheme with source term added for Problem D

Roe's Scheme w ith the Source Term Added and hx = 1000, ht = 1 and 
t = 0 to 10800.
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Figure 4-10b: Results of Roe’s scheme with source term added for Problem D
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Comparison of the Different First Order Approaches at t = 10800.
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Figure 4-11a: Comparison of the different first order approaches for Problem D

Comparison of the Different First Order Approaches at t = 10800.
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Figure 4-11b: Comparison of the different first order approaches for Problem D
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Flux-Limited Second Order Numerical Results:

Comparison of the Different Flux-Limited Second Order 
Approaches with the Exact Solution at t = 0.1.
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Figure 4-12a: Comparison of the flux-limited second order results for Problem A

Comparison of the Different Flux-Limited Second Order 
Approaches with the Exact Solution and at t = 0.1.
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Figure 4-12b: Comparison of the flux-limited second order results for Problem A
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Hubbard's Approach with hx = 0.001, ht = 0.0001 and  t = 0 to 0.1.
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Figure 4-13a: Results of Hubbard’s approach for Problem B

Hubbard's Approach with hx = 0.001, ht = 0.0001 and t = 0 to 0.1.
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Figure 4-13b: Results of Hubbard’s approach for Problem B
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Comparison of the Different Flux-Lim ited Second Order Approaches at 
t = 0.1.
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Figure 4-14a: Comparison of the flux-limited second order results for Problem B

Comparison of the Different Flux-Limited Second Order Appraoches 
at t = 0.1.
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Figure 4-14b: Comparison of the flux-limited second order results for Problem B
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Hubbard's Approach with hx = 0.001, ht = 0.0001 and t = 0 to 0.1.
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Figure 4-15a: Results of Hubbard’s approach for Problem C

Hubbard's Approach w ith hx = 0.001, ht = 0.0001 and t = 0 to 0.1.
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Figure 4-15b: Results of Hubbard’s approach for Problem C
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Roe's Scheme w ith Source Term Added and hx = 0.001, ht = 0.0001 
and t = 0 to 0.1.
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Figure 4-16a: Results of Roe’s scheme with source term added for Problem C

Roe's Scheme w ith Source Term Added and hx = 0.001, ht = 0.0001 
and t = 0 to 0.1.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u(
x,

t)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 4-16b: Results of Roe’s scheme with source term added for Problem C
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MacCormack Approach with hx = 0.001, ht = 0.0001 and t = 0 to 0.1.
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Figure 4-17a: Results of LeVeque & Yee’s MacCormack approach for Problem C

MacCormack Approach with hx = 0.001, ht = 0.0001 and t = 0 to 0.1.
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Figure 4-17b: Results of LeVeque & Yee’s MacCormack approach for Problem C
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Comparison of the Different Flux-Limited Second Order Approaches at 
t = 0.1.
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Figure 4-18a: Comparison of the flux-limited second order results for Problem C

Comparison of the Different Flux-Limited Second Order 
Approaches at t = 0.1.
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Figure 4-18b: Comparison of the flux-limited second order results for Problem C
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Comparison of the Different Flux-Limited Second Order Approaches using 
a Larger Step-Size of hx = 0.01, ht = 0.001 and at t = 0.1.
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Figure 4-19a: Comparison of the flux-limited second order results for Problem C

Comparison of the Different Flux-Limited Second Order Approaches using 
a larger step size of hx = 0.01, ht = 0.001 and at t = 0.1.
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Figure 4-19b: Comparison of the flux-limited second order results for Problem C
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Hubbard's Approach with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 4-20a: Results of Hubbard’s approach for Problem D

Hubbard's Approach with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 4-20b: Results of Hubbard’s approach for Problem D
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MacCormack Approach w ith hx = 1000, ht = 1 and t = 0 to 10800.

0

10

20

30

40

50

60

70

0 100000 200000 300000 400000 500000 600000

x

Riverbed 0 1080 2160 3240 4320 5400 6480 7560 8640 9720 10800

Figure 4-21a: Results of LeVeque & Yee’s MacCormack approach for Problem D

MacCormack Approach w ith hx = 1000, ht = 1 and t = 0 to 
10800.
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Figure 4-21b: Results of LeVeque & Yee’s MacCormack approach for Problem D
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Roe's Scheme w ith Source Term Added and hx = 1000, ht = 1 and t = 
0 to 10800.
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Figure 4-22a: Results of Roe’s scheme with source term added for Problem D

Roe's Scheme with Source Term Added and hx = 1000, ht = 1 and t = 
0 to 10800.
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Figure 4-22b: Results of Roe’s scheme with source term added for Problem D
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Comparison of the Different Flux-Limited Second Order Approaches 
at t = 10800.
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Figure 4-23a: Comparison of the flux-limited second order results for Problem D

Comparison of the Different Flux-Lim ited Second Order Approaches 
at t = 10800.
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Figure 4-23b: Comparison of the flux-limited second order results for Problem D
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5 Conclusion

In Chapter 4, it was shown that Roe’s scheme with source term decomposed and

Hubbard’s approach produced the most accurate numerical results for all four test

problems.  All the other approaches were accurate for the first two test problems, but

as the source term became more significant, the other approaches became inaccurate.

In Problem D we saw that Roe’s scheme with source term decomposed and Hubbard’s

approach was the only approach that did not produce movement after x = 216,000m at

t = 10,800s.  This is because the other approaches did not satisfy the C-property of

Bermudez & Vazquez[1].

Overall, Hubbard’s approach, which is Roe’s scheme with source term decomposed

with a flux-limiter applied to both the conservation law and the source term, produced

the most accurate numerical results.  However, if we use the Superbee flux-limiter

instead of the Minmod flux-limiter with Hubbard’s approach then the approach

produces inaccurate numerical results.  If we use (S-4) with Roe’s Superbee flux-

limiter, the Minmod flux-limiter and van Leer’s flux-limiter and use Δx = 1000, Δt = 1

and t = 0 to 10,800s, we may obtain Figure 5-1a to Figure 5-4b.  Figure 5-1a to Figure

5-2b show that by using either Roe’s Superbee flux-limiter or van Leer’s flux-limiter

with Hubbard’s approach, oscillations occur in the numerical results.  Figure 5-3a and

Figure 5-3b show that using the Minmod flux-limiter with Hubbard’s approach

produces no oscillations in the numerical results.  Figure 5-4a and Figure 5-4b

compare the results obtained by using the three different flux-limiters with Hubbard’s

approach at t = 10,800s.  Here, we can see that Roe’s Superbee flux-limiter has
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produced the most oscillations, followed by van Leer’s flux-limiter and the Minmod

flux-limiter has produced no oscillations.  This suggests that applying a flux-limiter to

the source term approximation when the source term is significant can create

oscillations in the numerical results.  However, if we do not apply a flux-limiter to the

source term approximation but we do to the conservation law then we will no longer

be able to obtain a numerical scheme which satisfies the C-property of Bermudez &

Vazquez[1].  The only solution at present is to use the Minmod flux-limiter with

Hubbard’s approach or to use Roe’s first order scheme with source term decomposed.

Throughout this report, we have seen that adding a source term approximation can

produce accurate numerical results but as the source term becomes significant, adding

a source term approximation can give very inaccurate numerical results.  We have

also shown that by decomposing the source term as well as the conservation law, we

may obtain very accurate numerical results for the first order case.  However, when

applying flux-limiters to the source term as well as the conservation law to ensure the

numerical scheme satisfies the exact C-property, oscillations can occur in the

numerical solution depending on which flux-limiter is used.
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Superbee Flux-Limiter with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 5-1a: Superbee Flux-Limiter results for Problem D

Superbe Flux-Limiter with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 5-1b: Superbee Flux-Limiter results for Problem D
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van Leer Flux-Limiter with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 5-2a: van Leer Flux-Limiter results for Problem D

van Leer Flux-Limiter with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 5-2b: van Leer Flux-Limiter results for Problem D
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Minmod Flux-Limiter with hx = 1000, ht = 1 and t = 0 t o 10800.
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Figure 5-3a: Minmod Flux-Limiter results for Problem D

Minmod with hx = 1000, ht = 1 and t = 0 to 10800.
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Figure 5-3b: Minmod Flux-Limiter results for Problem D
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Comparison of the Three Flux-Limiters at t = 10800.
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Figure 5-4a: Comparison of the Flux-Limiter results for Problem D

Comparison of the Three Flux-Limiters at t = 10800.
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Figure 5-4b: Comparison of the Flux-Limiter results for Problem D
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