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Abstract

The problem of finding good preconditioners for the numerical solution
of an important class of indefinite linear systems is considered. These
systems are of a regularized saddle point structure

[
A BT

B −C

] [
x
y

]
=

[
c
d

]
,

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n.
In Constraint preconditioning for indefinite linear systems, SIAM J.

Matrix Anal. Appl., 21 (2000), Keller, Gould and Wathen analyze the
idea of using constraint preconditioners that have a specific 2 by 2 block
structure for the case of C being zero. We shall extend this idea by al-
lowing the (2,2) block to be symmetric and positive semi-definite. Results
concerning the spectrum and form of the eigenvectors are presented, as
are numerical results to validate our conclusions.

1 Introduction

Recently, a large amount of work has been devoted to the problem of solving
large linear systems in saddle point form. Such systems arise in a wide variety
of technical and scientific applications. For example, interior point methods
in both linear and nonlinear optimization require the solution of a sequence of
systems in saddle point form [26]. Another popular field, which is a major source
of saddle point problems, is that of mixed finite element methods in engineering
fields, see [10] and [19, Chapters 7,9]. An excellent survey of numerical methods
for algebraic saddle point problems has been written by Benzi, Golub and Liesen
[3].

We wish to find the solution of block 2× 2 linear systems of the form
[

A BT

B −C

]

︸ ︷︷ ︸
A

[
x
y

]
=

[
c
d

]

︸ ︷︷ ︸
b

, (1)

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n. We shall as-
sume that m ≤ n and B is of full rank. If A and C are positive definite, then
the matrix A is a permuted quasidefinite matrix, [25]. Vanderbei has shown
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that quasidefinite matrices are strongly factorizable , i.e., a Cholesky-like fac-
torization LDLT exists for any symmetric row and column permutation of the
quasidefinite matrix, [25]. The diagonal matrix has n positive and m negative
pivots. However, we shall not confine ourselves to quasidefinite matrices.

It may be attractive to use iterative methods to solve systems such as (1),
particularly for large m and n. In particular, Krylov subspace methods might
be used. It is often advantageous to use a preconditioner, P, with such iterative
methods. The preconditioner should reduce the number of iterations required for
convergence but not significantly increase the amount of computation required
at each iteration, [24, Chapter 13].

In Section 2 we shall firstly review the well known spectral properties of
a technique commonly known as constraint preconditioning when C = 0 [15,
17]. For the case of C = 0, a constraint preconditioner exactly reproduces the
(constraint) blocks B, BT and the C = 0 block. It is restrictive to assume that
the matrix C in the saddle point systems is always a zero matrix: a number
of situations arise in which C 6= 0 [1, 16, 23]. In all these cases, C is positive
semi-definite and, hence, we shall consider the idea of extending constraint
preconditioners to the case of C being positive semi-definite. In particular,
the preconditioner will exactly reproduce the B, BT and C blocks, whilst the
A block will be replaced by a symmetric block which we refer to as G; this
is considered in Sections 3 and 4. Such a preconditioner has been considered
before, for example, Perugia and Simoncini consider the case of G = I [18],
and Siefert and de Sturler assume that G is nonsingular [22], but we show that
these assumptions can be relaxed. In Section 5 we shall report numerical results
where our preconditioners have been used to solve various test problems.

2 Constraint preconditioners

Let us initially assume that C = 0. Keller, Gould and Wathen [15] investigated
the spectral properties of the resulting preconditioned system when we use of a
preconditioner of the form

P =
[

G BT

B 0

]
, (2)

where G approximates but (in general) is not the same as A. They were able
to prove various results about the eigenvalues and eigenvectors for the precon-
ditioned systems P−1A, where A and P are defined in (1) and (2) respectively.
P is called a constraint preconditioner. Proof of the following theorem can be
found in [15].

Theorem 2.1. Let A ∈ R(n+m)×(n+m) be a symmetric and indefinite matrix of
the form

A =
[

A BT

B 0

]
,
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where A ∈ Rn×n is symmetric and B ∈ Rm×n is of full rank. Assume Z is an
n× (n−m) basis for the nullspace of B. Preconditioning A by a matrix of the
form

P =
[

G BT

B 0

]
,

where G ∈ Rn×n is symmetric, and B ∈ Rm×n is as above, implies that the
matrix P−1A has

1. an eigenvalue at 1 with multiplicity 2m;

2. n−m eigenvalues λ which are defined by the generalized eigenvalue problem
ZT AZxz = λZT GZxz.

This accounts for all of the eigenvalues.

If either ZT AZ or ZT GZ are positive definite, then the indefinite precon-
ditioner P applied to the indefinite saddle point matrix A with C = 0 yields a
preconditioned matrix P−1A which has real eigenvalues [15]. If both ZT AZ and
ZT GZ are positive definite, then we can use a projected preconditioned conju-
gate gradient method to find x and y, see [12]. Results about the associated
eigenvectors and the Krylov subspace dimension can also be found in [15].

3 Constraint preconditioners for the case of sym-
metric and positive definite C

In this section we shall assume that the matrix C is symmetric and positive
definite. The term constraint preconditioner was introduced in [15] because the
(1,2) and (2,1) matrix blocks of the preconditioner are exact representations
of those in A, where these blocks represent constraints. However, we also ob-
serve that the (2,2) matrix block is an exact representation when C = 0. This
motivates the generalization of the constraint preconditioner to take the form

P =
[

G BT

B −C

]
, (3)

where G ∈ Rn×n approximates, but is, in general, not the same as A.
For symmetric matrix systems, the convergence of an applicable iterative

method is determined by the distribution of the eigenvalues of the coefficient
matrix. It is often desirable for the number of distinct eigenvalues to be small so
that the rate of convergence is rapid. For non-normal systems the convergence
is not so readily described, see [14, page 6].

We shall use the following assumptions in the theorems of this section:

A1 C ∈ Rm×m is symmetric and positive definite,

A2 A ∈ Rn×n is symmetric,
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A3 B ∈ Rm×n (m < n) has full rank,

A4 G ∈ Rn×n is symmetric,

A5 A ∈ R(n+m)×(n+m) is as defined in (1),

A6 P ∈ R(n+m)×(n+m) is as defined in (3).

In the next section A1 will be relaxed.

Theorem 3.1. Assume that A1-A6 hold, then the matrix P−1A has

• an eigenvalue at 1 with multiplicity m, and

• n eigenvalues which are defined by the generalized eigenvalue problem
(
A + BT C−1B

)
x = λ

(
G + BT C−1B

)
x.

This accounts for all of the eigenvalues.

Proof. The eigenvalues of the preconditioned coefficient matrix P−1A may be
derived by considering the generalized eigenvalue problem

[
A BT

B −C

] [
x
y

]
= λ

[
G BT

B −C

] [
x
y

]
. (4)

Expanding this out we obtain

Ax + BT y = λGx + λBT y, (5)

and
Bx− Cy = λBx− λCy. (6)

Equation (6) implies that either λ = 1 or Bx−Cy = 0. If the former holds then
(5) becomes

Ax = Gx. (7)

Equation (7) is trivially satisfied by x = 0 and, hence, there are m linearly in-
dependent eigenvectors of the form

[
0T yT

]
associated with the unit eigen-

value. If there exist any x 6= 0 which satisfy (7), then there will be a i (0 ≤ i ≤ n)
linearly independent eigenvectors of the form

[
xT yT

]
where the components

x arise from the generalized eigenvalue problem Ax = Gx.
If λ 6= 1, then (6) implies that

y = C−1Bx.

Substituting this into (5) yields the generalized eigenvalue problem
(
A + BT C−1B

)
x = λ

(
G + BT C−1B

)
x. (8)

Thus, the non-unit eigenvalues of P−1A are defined as the non-unit eigenvalues
of (8). Noting that if (8) has any unit eigenvalues, then the values of x( 6= 0)
which satisfy this are exactly those which arise from the generalized eigenvalue
problem Ax = Gx, we complete our proof.
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If A + BT C−1B or G + BT C−1B are positive definite, then the precondi-
tioned system has real eigenvalues. If both A + BT C−1B and G + BT C−1B
are positive definite, then we can apply a projected preconditioned conjugate
gradient method to find x and y [7, 11]. We also observe that if C has a small
2-norm, ‖A‖2 = O(1) and ‖G‖2 = O(1), then the BT C−1B terms will dominate
the generalized eigenvalue problem (8) for Bx 6= 0 and, hence, there will be at
least a further m eigenvalues clustered about 1 for ‖C‖2 ¿ 1. This additional
clustering of part of the spectrum of P−1A will often translate into a speeding
up of the convergence of a selected Krylov subspace method, [2, Section 1.3].

Theorem 3.2. Assume that A1-A6 hold and G+BT C−1B is positive definite,
then the matrix P−1A has n + m eigenvalues as defined in Theorem 3.1 and
m + i + j linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT
]

that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[

xT yT
]
arising from Ax = σGx

for which the i vectors x are linearly independent, σ = 1, and λ = 1, and

• j (0 ≤ j ≤ n) eigenvectors of the form
[

xT yT
]

that correspond to the
case λ 6= 1.

Proof. The form of the eigenvectors follows directly from the proof of Theo-
rem 3.1. It remains for us to show that the m + i + j eigenvectors are linearly
independent, that is, we need to show that

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]



a
(1)
1
...

a
(1)
m


 +

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]



a
(2)
1
...

a
(2)
i




+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]



a
(3)
1
...

a
(3)
j


 =




0
...
0


(9)

implies that the vectors a(k) (k = 1, 2, 3) are zero vectors. Multiplying (9) by
P−1A, and recalling that in the previous equation the first matrix arises from
the case λk = 1 (k = 1, . . . , m), the second matrix from the case λk = 1 and
σk = 1 (k = 1, . . . , i), and the last matrix from λk 6= 1 (k = 1, . . . , j), gives

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]



a
(1)
1
...

a
(1)
m


 +

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]



a
(2)
1
...

a
(2)
i




+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]



λ1a
(3)
1

...
λja

(3)
j


 =




0
...
0


 .(10)
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Subtracting (9) from (10) we obtain

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]



(λ1 − 1)a(3)
1

...
(λj − 1)a(3)

j


 =




0
...
0


 .

The assumption that G + BT C−1B is positive definite implies that x
(3)
k (k =

1, . . . , j) are linearly independent and thus that (λk− 1)a(3)
1 = 0, (k = 1, . . . , j).

The eigenvalues λk (k = 1, . . . , j) are non-unit which implies that a
(3)
k = 0

(k = 1, . . . , j). We also have linear independence of x
(2)
k (k = 1, . . . , i) and thus

a
(2)
k = 0 (k = 1, . . . , i). Equation (9) simplifies to

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]



a
(1)
1
...

a
(1)
m


 =




0
...
0


 .

However, y
(1)
k (k = 1, . . . , m) are linearly independent and thus a

(1)
k = 0 (k =

1, . . . , m).

Krylov subspace theory states that iteration with any method with an op-
timality property, e.g. GMRES [21], will terminate when the degree of the
minimum polynomial is attained. This is also true of some other (non-optimal)
practical iterations such as BiCGTAB as long as failure does not occur. In
particular, the degree of the minimum polynomial is equal to the dimension of
the corresponding Krylov subspace K (P−1A, b

)
(for general b), [20, Proposition

6.1].

Theorem 3.3. Assume that A1-A6 hold and G+BT C−1B is positive definite,
then the dimension of the Krylov subspace K (P−1A, b

)
is at most min{n+2, n+

m}.

Proof. As in the proof of Theorem 3.1, the generalized eigenvalue problem is
[

A BT

B −C

] [
x
y

]
= λ

[
G BT

B −C

] [
x
y

]
. (11)

Suppose that the preconditioned matrix P−1A takes the form

P−1A =
[

Θ1 Θ3

Θ2 Θ4

]
, (12)

where Θ1 ∈ Rn×n, Θ2 ∈ Rm×n, Θ3 ∈ Rn×m, and Θ4 ∈ Rm×m. Using the facts
that P (P−1A)

= A and B has full row rank, we obtain Θ3 = 0 and Θ4 = I.
The precise forms of Θ1 and Θ2 are irrelevant for the argument that follows.
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From the earlier eigenvalue derivation, it is evident that the characteristic
polynomial of the preconditioned linear system (12) is

(P−1A− I
)m

n∏

i=1

(P−1A− λiI
)
.

In order to prove the upper bound on the Krylov subspace dimension, we need
to show that the order of the minimum polynomial is less than or equal to
min{n + 2, n + m}. Expanding the polynomial

(P−1A− I
) ∏n

i=1

(P−1A− λiI
)

of degree n + 1, we obtain
[

(Θ1 − I)
∏n

i=1 (Θ1 − λiI) 0
Θ2

∏n
i=1 (Θ1 − λiI) 0

]
.

Since Θ1 has a full set of linearly independent eigenvectors, Θ1 is diagonalizable.
Hence,

(Θ1 − I)
n∏

i=1

(Θ1 − λiI) = 0.

We therefore obtain

(P−1A− I
) n∏

i=1

(P−1A− λiI
)

=
[

0 0
Θ2

∏n
i=1 (Θ1 − λiI) 0

]
. (13)

If Θ2

∏n
i=1 (Θ1 − λiI) = 0, then the order of the minimum polynomial of P−1A

is less than or equal to min{n + 1, n + m}. If Θ2

∏n
i=1 (Θ1 − λiI) 6= 0, then the

dimension of K (P−1A, b
)

is at most min{n + 2, n + m} since multiplication of
(13) by another factor

(P−1A− I
)

gives the zero matrix.

Theorem 3.3 tells us that with preconditioner

P =
[

G BT

B −C

]

for

A =
[

A BT

B −C

]

the dimension of the Krylov subspace is no greater than min{n + 2, n + m}
under appropriate assumptions. Hence, termination (in exact arithmetic) is
guaranteed in a number of iterations smaller than this.

4 Constraint preconditioners for the case of sym-
metric and positive semi-definite C

We shall relax assumption A1 and instead make the following assumptions in
the theorems of this section:



CONSTRAINT-STYLE PRECONDITIONERS 9

B1 C ∈ Rm×m is symmetric and positive semi-definite, and has rank p where
0 < p < m,

B2 C is factored as C = EDET , where E ∈ Rm×p, and D ∈ Rp×p is non-
singular,

B3 The matrix F ∈ Rm×(m−p) is such that its columns span the nullspace of
C,

B4
[

E F
] ∈ Rm×m is orthogonal,

B5 The columns of N ∈ Rn×(n−m+p) span the nullspace of FT B.

The exact form of the factorization of C in B2 is clearly not relevant and, also,
clearly not unique – a spectral decomposition is a possibility.

Theorem 4.1. Assume that A2-A6 and B1-B5 hold, then the matrix P−1A
has

• an eigenvalue at 1 with multiplicity 2m− p, and

• n − m + p eigenvalues which are defined by the generalized eigenvalue
problem

NT
(
A + BT ED−1ET B

)
Nz = λN

(
G + BT ED−1ET B

)
Nz.

This accounts for all of the eigenvalues.

Proof. Any y ∈ Rm can be written as y = Eye + Fyf . Substituting this into

the generalized eigenvalue problem (4) and premultiplying by




I 0
0 ET

0 FT


 we

obtain



A BT E BT F
ET B −D 0
FT B 0 0







x
ye

yf


 = λ




G BT E BT F
ET B −D 0
FT B 0 0







x
ye

yf


 . (14)

Noting that the (3,3) block has dimension (m−p)×(m−p) and is a zero matrix
in both coefficient matrices, we can apply Theorem 2.1 from [15] to obtain that
P−1A has

• an eigenvalue at 1 with multiplicity 2(m− p), and

• n − m + 2p eigenvalues which are defined by the generalized eigenvalue
problem

N
T

[
A BT E

ET B −D

]
Nwn = λN

T
[

G BT E
ET B −D

]
Nwn, (15)
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where N is an (n + p)× (n−m + 2p) basis for the nullspace of
[

FT B 0
] ∈

R(m−p)×(n+p), and [
x
ye

]T

= Nwn +
[

BT F
0

]
wb.

Letting N =
[

N 0
0 I

]
, then (15) becomes

[
NT AN NT BT E
ET BN −D

] [
wn1

wn2

]
= λ

[
NT GN NT BT E
ET BN −D

] [
wn1

wn2

]
. (16)

This generalized eigenvalue problem is exactly that of the form considered in
Theorem 3.1, so (16) has an eigenvalue at 1 with multiplicity p and the remaining
eigenvalues are defined by the generalized eigenvalue problem

NT
(
A + BT ED−1ET B

)
Nwn1 = λNT

(
G + BT ED−1ET B

)
Nwn1. (17)

Hence, P−1A has an eigenvalue at one with multiplicity 2m − p and the
other eigenvalues are defined by the generalized eigenvalue problem (17).

As for the cases C = 0 and C nonsingular, we are able obtain conditions
which guarantee that the eigenvalues are real and for which a projected precondi-
tioned conjugate gradient method could be applied to find x and y; respectively,
these conditions are:

• either NT
(
A + BT ED−1ET B

)
N or NT

(
G + BT ED−1ET B

)
N are pos-

itive definite,

• both NT
(
A + BT ED−1ET B

)
N and NT

(
G + BT ED−1ET B

)
N are pos-

itive definite.

Interestingly, the projected preconditioned conjugate gradient method is also
derived by the use of a factorization of C as in the assumption B2; transforma-
tions are then used to remove the requirement of needing to factorize C [7].

Similarly to the case p = m, if C has a small 2-norm, ‖A‖ = O(1) and
‖G‖ = O(1), then the NT BT ED−1ET BN terms will dominate the generalized
eigenvalue problem (17) for ET BNwn1 6= 0 and, hence, there will be at least p
further eigenvalues clustered about 1 for ‖C‖2 ¿ 1.

Theorem 4.2. Assume that A2-A6, B1-B5 hold and G + BT ED−1ET B is
positive definite, then the matrix P−1A has n + m eigenvalues as defined in
Theorem 3.1 and m + i + j linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT
]

that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[

xT yT
]
arising from Ax = σGx

for which the i vectors x are linearly independent, σ = 1, and λ = 1, and
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• j (0 ≤ j ≤ n) eigenvectors of the form
[

xT yT
]

that correspond to the
case λ 6= 1.

Proof. Proof of the form and linear independence of the m + i + j eigenvalues
obtained in a similar manner to the proof Theorem 3.2.

To show that both the lower and upper bounds on the number of linearly
independent eigenvectors can be attained we need only consider variations on
Examples 2.5 and 2.6 from [15].

Example 4.1 (minimum bound). Consider the matrices

A =




1 2 1 0
2 2 0 1
1 0 −1 0
0 1 0 0


 , P =




1 3 1 0
3 4 0 1
1 0 −1 0
0 1 0 0


 ,

such that m = 2, n = 2 and p = 1. The preconditioned matrix P−1A has an
eigenvalue at 1 with multiplicity 4, but only two linearly independent eigenvectors
which arise from case (1) of Theorem 4.2. These eigenvectors may be taken to
be

[
0 0 1 0

]T and
[

0 0 0 1
]T

.

Example 4.2 (maximum bound). Let A ∈ R4×4 be as defined in Exam-
ple 4.1, but assume that G = A. The preconditioned matrix P−1A has an eigen-
value at 1 with multiplicity 4 and clearly a complete set of eigenvectors. These
may be taken to be the columns of the identity matrix.

The linear independence of the m+ i+ j eigenvectors allows us to obtain an
upper bound on the Krylov subspace K (P−1A, b

)
:

Theorem 4.3. Assume that A2-A6, B1-B5 hold and G + BT ED−1ET B is
positive definite, then the dimension of the Krylov subspace K (P−1A, b

)
is at

most min{n−m + p + 2, n + m}.

Proof. As in the proof of Theorem 3.3, the preconditioned matrix P−1A takes
the form

P−1A =
[

Θ1 0
Θ2 I

]
, (18)

where Θ1 ∈ Rn×n, and Θ2 ∈ Rm×n. The precise forms of Θ1 and Θ2 are
irrelevant for the argument that follows.
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From the earlier eigenvalue derivation, it is evident that the characteristic
polynomial of the preconditioned linear system (18) is

(P−1A− I
)2m−p

n−m+p∏

i=1

(P−1A− λiI
)
.

In order to prove the upper bound on the Krylov subspace dimension, we need to
show that the order of the minimum polynomial is less than or equal to min{n−
m+p+2, n+m}. Expanding the polynomial

(P−1A− I
) ∏n−m+p

i=1

(P−1A− λiI
)

of degree n + 1, we obtain
[

(Θ1 − I)
∏n−m+p

i=1 (Θ1 − λiI) 0
Θ2

∏n−m+p
i=1 (Θ1 − λiI) 0

]
.

Since G+BT ED−1ET B is positive definite, Θ1 has a full set of linearly inde-
pendent eigenvectors and is diagonalizable. Hence, (Θ1 − I)

∏n−m+p
i=1 (Θ1 − λiI) =

0. We therefore obtain

(P−1A− I
) n−m+p∏

i=1

(P−1A− λiI
)

=
[

0 0
Θ2

∏n−m+p
i=1 (Θ1 − λiI) 0

]
. (19)

If Θ2

∏n−m+p
i=1 (Θ1 − λiI) = 0, then the order of the minimum polynomial of

P−1A is less than or equal to min{n−m+p+1, n+m}. If Θ2

∏n−m+p
i=1 (Θ1 − λiI) =

0, then the dimension of K (P−1A, b
)

is at most min{n−m+p+2, n+m} since
multiplication of (19) by another factor

(P−1A− I
)

gives the zero matrix.

Thus, in exact arithmetic, iteration with any method with an optimality
condition will terminate in at most min{n −m + p + 2, n + m} iterations. We
observe that if p = m, then Theorem 4.3 gives the same bound on the Krylov
subspace dimension as that in Theorem 3.3 and if p = 0, then we obtain the
results of [15].

5 Numerical results

The CUTEr test set [13] provides a set of quadratic programming problems. We
shall firstly use a problem from this set to illustrate how changing the rank of C
affects the multiplicity of the unit eigenvalues and the termination of GMRES,
and then present results of numerical tests which compare the four different
approaches to finding solutions to (1). All tests were performed in Matlab r©

7.01.
The CVXQP1 S problem from the CUTEr test set is small with n = 100

and m = 50. It is a convex quadratic program whose constraints are linear;
it is a purely academic problem which has been constructed specifically for
test problems. “Barrier” penalty terms (in this case 1.1) are added to the
diagonal of A to simulate systems that might arise during an iteration of an
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0 25 50 75 100 125 150
−0.5

0

0.5

1

1.5

2

2.5

3

j

λ j
C = 0
C = [0, 0; 0, I

m/2
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C = I

Figure 1: Distribution of the eigenvalues of P−1A for various choices of C.

interior-point method for such problems. We shall set G = diag(A), C =
diag(0, . . . , 0, 1, . . . , 1) and vary the number of zeros on the diagonal of C so as
to change its rank.

In Figure 1, we illustrate the change in the eigenvalues of the preconditioned
system P−1A for three different choices of C. The eigenvalues are sorted so
that

λ1 ≥ λ2 ≥ . . . ≥ λn+m.

When C = 0, we expect there to be at least 2m unit eigenvalues [15]. We
observe that our example has exactly 2m eigenvalues at 1. From Theorem 3.1,
when C = I there will be at least m unit eigenvalues. Our example has exactly
m unit eigenvalues, Figure 1.

When C has rank m
2 , then the preconditioned system P−1A has at least 3m

2
unit eigenvalues, Theorem 4.1. Once again the number of unit eigenvalues for
our example is exactly the lower bound given by the theorem.

Now suppose that we use (full) GMRES preconditioned by our extended
constraint preconditioner with G = diag(A) and vary the rank of C by changing
the number of 1s along the diagonal of C (all other entries are zero). Figure 2
shows that with this choice of G there is a strong correlation between the upper
bound on the Krylov subspace dimension and the number of iterations required
to reduce the residual by at least a factor of 10−12. This is an extreme example
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Figure 2: Comparison of upper bound on the Krylov subspace dimension and
the number of iterations required to reduce the residual by 10−12.

and, as we will see in the following results, the number of iterations is often a
lot lower than the upper bound on the Krylov subspace dimension.

Let us compare five different approaches for solving problems of the form (1).
The matrix C is set to have rank dm/2e and to be diagonal with just entries of 0
and 1, as above. The indefiniteness of the matrix suggests the use of MINRES;
we shall use the unpreconditioned version, although positive definite precondi-
tioning could be employed, see [23]. We note that unpreconditioned MINRES
is equivalent (in exact arithmetic) to unpreconditioned GMRES for these exam-
ples because A is symmetric. The next three methods apply a standard (full)
GMRES method with preconditioners of form P as considered in Section 4: in
the first case we shall set G = I (denoted in our table by GMRES(I)), in the
second G = diag(A) (denoted by GMRES(D)), and in the third case

G =
[

0 0
0 Am+1:n,m+1:n

]
(20)

which we denote by GMRES(Ã). Finally, we shall apply the projected precon-
ditioned conjugate gradient method (variant 2) of Dollar, Gould, Schilders and
Wathen [7] with G = diag(A) (this we shall denote by PPCG(D)), and G as in
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Problem m n MINRES GMRES(I) GMRES(D) GMRES(Ã) PPCG(D) PPCG(Ã)
CVXQP1 M 500 1000 — 547 251 396 95 90
CVXQP2 M 750 1000 — 623 240 192 82 31
GOULDQP2 S 349 699 108 23 20 76 10 1
KSIP 1001 1021 41 9 1 13 1 1
MOSARQP1 700 3200 147 57 10 30 8 3

Table 1: Comparison of different Krylov subspace methods and preconditioners
for some of the CUTEr test problems

(20) which we denote by PPCG(Ã). Dollar, Gould, Schilders and Wathen show
that the PPCG(Ã) method will terminate (with exact arithmetic) in at most
min{2m,n−m +

⌈
m
2

⌉}+ 1 iterations.
The saddle point systems are all preprocessed such that the first m columns

of B are linearly independent. This is achieved by carrying out a column per-
mutation to B (and also appropriately applied to A and the right hand side):
this permutation is obtained by finding a sparse LU factorization of BT using
the built-in Matlab r© function lu. This preprocessing step is necessary for the
preconditioners of GMRES(Ã) and PPCG(Ã) to be nonsingular (the resulting
Am+1:n,m+1:n is also assumed to be nonsingular). We make no claim that this is
the definitive method for finding a permutation such that the first m columns of
the resulting matrix B are linearly independent and recognize that this would
be an inefficient method when the dimensions of the saddle point problems are
large. Further discussions on such permutations can be found in [6, Chapter 8]
and is a source of future work.

In Table 1 we give the iteration counts for a small subset of CUTEr problems.
As in the previous example, the matrix C is set to have rank dm/2e and to be
diagonal with just entries of 0 and 1, the right hand sides have been set to be
equal to the sum of the columns of A and a tolerance of 10−12 is used. If no
iteration count is given, then this indicates that the method failed to terminate
to the desired tolerance within n + m iterations. The numerical results suggest
that the inclusion of the (1,2), (2,1) and (2,2) blocks ofA into the preconditioner,
together with G = diag(A) or G as in (20), results in a considerable reduction in
the number of iterations. In particular, the projected preconditioned conjugate
gradient methods appear to be favorable because they also have lower storage
requirements than the GMRES-based methods.

In Figure 3 we compare how the number of PPCG iterations vary as the size
of the entries of C vary. We set G as in (20), C = αI and vary α ∈ R+. As
α approaches 0 we will expect 2m of the eigenvalues to cluster around 1 and
for the number of iterations to decrease [2]; this is observed in practice. For
these examples the right hand sides have been set to be equal to the sum of the
columns of A and a tolerance of 10−12 is used. In Figure 4 the same tests were
performed but a random right hand side was used. Again we observe that as α
approaches 0 the number of PPCG iterations decrease as expected.

We have not compared the execution times for the different methods. Instead
of building P and then factoring it, as has been done in these tests, we suggest
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Figure 3: Comparison of the number of PPCG iterations for C = αI and varying
α. The right hand sides have been set to be equal to the sum of the columns of
A.

the possible use of implicit-factorization constraint preconditioners which only
require small factorizations to be carried out [7, 8, 9]. Dollar, Gould, Schilders
and Wathen also consider how G might be chosen to further increase the number
of eigenvalues at 1 [7].

6 Conclusions

In this paper, we investigated a class of preconditioners for regularized saddle
point matrix systems that incorporate the (1,2), (2,1) and (2,2) blocks of the
original matrix. We showed that the inclusion of these blocks in the precondi-
tioner clusters at least 2m − p eigenvalues at 1, regardless of the structure of
G. However, the standard convergence theory for Krylov subspace methods is
not readily applicable because, in general, P−1A does not have a complete set
of linearly independent eigenvectors. Using a minimum polynomial argument,
we found a general (sharp) upper bound on the number of iterations required
to solve linear systems of the form (1).

To confirm the analytical results of this paper we used a subset of problems
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Figure 4: Comparison of the number of PPCG iterations for C = αI and varying
α. The right hand side is a random vector.

from the CUTEr test set. We firstly used the CVXQP1 S problem and varied
the rank of C to confirm the lower bound on the number of unit eigenvalues
and the upper bound on the Krylov subspace dimension. We also compared
MINRES for the unpreconditioned matrix system with the GMRES and PPCG
methods where the preconditioner incorporate the (1,2), (2,1) and (2,2) blocks
of the original matrix. We observed that the preconditioned methods resulted
in a considerable reduction in the number of iterations required to reach our
desired tolerance. Since GMRES and PPCG minimize different quantities, the
number of iterations required may vary although the same preconditioner is
used; indeed, we observe this in our results. We also confirmed that as the
entries of C approach zero the number of PPCG iterations will decrease because
of the additional clustering of eigenvalues around.

We have assumed that the sub-matrices B, BT and −C in (1) are exactly
reproduced in the preconditioner. For truly large-scale problems this will be
unrealistic [4, 5] but the theorems in this paper may still be of some interest
in the inexact setting as a guide for choosing preconditioners. We wish to
investigate this possibility in our future work.
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