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Abstract

Data assimilation provides techniques for combining observations and prior

model forecasts to create initial conditions for numerical weather prediction

(NWP). The relative weighting assigned to each observation in the analysis is

determined by its associated error. Remote sensing data usually has correlated

errors, but the correlations are typically ignored in NWP. Here we describe

three approaches to the treatment of observation error correlations. For an

idealised data set, the information content under each simplified assumption

is compared to that under the correct correlation specification. Treating the

errors as uncorrelated results in a significant loss of information. However,

retention of an approximated correlation gives clear benefits.
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1 Introduction

In Numerical Weather Prediction, an accurate, high resolution representation of the

current state of the atmosphere is needed as an initial condition for the propaga-

tion of a weather forecast. Data assimilation combines observations of atmospheric

variables with a priori knowledge of the atmosphere to obtain a consistent represen-

tation. The weighted importance of each is determined by the size of their associated

errors, so it is crucial to the accuracy of the analysis that these errors be specified

correctly.

Satellite instruments are regularly calibrated, so that instrument errors are usu-

ally uncorrelated. However, observation error correlations will arise from observation

pre-processing and errors in the forward model, including representativity (when

phenomena observed by a sensitive instrument cannot be resolved by the model).

The inclusion of such correlations results in a lower weighting of the observations

in the analysis, when compared with assimilating the same observations with the

same error variances and no correlations. The correlations increase the accuracy

of gradients of the observed field represented in the analysis, but make a smaller

impact on the accuracy of the observed field itself [9]. They also act in conjunction

with the prior error covariance to specify how observation information should be

smoothed.

Unfortunately, such errors are not easily measured. Even when good estimates

can be made, the number of observations is of order 106 [2], and so the storage and

subsequent computation using observation error correlations is infeasible. Hence

operationally, observations are usually assumed uncorrelated. In most cases, to

compensate for the lack of correlation, the observation error variances are inflated

so that the observations have the correct lower weighting in the analysis. However,

results have shown [3] that error variances can be made at most 2-4 times larger

before the analysis field becomes degraded through excessive error amplification.

So variance enlargement is constrained by the need for a physically accurate error

estimate.

The assumption of zero correlations is often used in conjunction with data thin-

ning methods such as superobbing [1]. This reduces the density of data by averaging
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the properties of observations in a region, and assigning this average as a single ob-

servation value. Under such assumptions, increasing observation density beyond

some threshold value has been shown to yield very little or no improvement in anal-

ysis accuracy [7]. Clearly these methods discard much of the available information.

Although these may be appropriate when the spatial resolution of the observations

is denser than the model grid, recent technological advances have challenged their

practicality. For example, as high resolution models are used in forecasting convec-

tive storms, there is a requirement to retain all the available data to provide detail

on the appropriate scales. Such shortcomings suggest that an alternative approach

to dealing with observation error correlations is needed.

Approximating observation error correlation is a relatively new direction of re-

search but progress has been made. Healy and White [6] have used circulant matrices

to approximate symmetric Toeplitz observation error covariance matrices. Results

indicated that assuming uncorrelated observation errors gave misleading estimates

of information content. Fisher [5] proposes giving the observation error covariance

matrix a block diagonal structure, with (uncorrelated) blocks corresponding to dif-

ferent instruments or channels; individual block matrices are approximated by a

truncated eigendecomposition. On a simple domain, spurious long range correla-

tions have been observed.

In this paper, we expand on the work of the above and quantify the loss in in-

formation content when ignoring error correlations, using simplified diagonal matrix

structures, and using Fisher proposed structures. We further extend Fisher’s work

and investigate long range correlations on larger domains. The question of whether

information loss is significant enough to warrant a change in operational treatment

is addressed. In Section 2 we give a brief overview of data assimilation and infor-

mation theory for this problem, and the structure of the experiment. Results and

subsequent conclusions will be given in Section 3 and 4, respectively.
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2 Methods and data

2.1 Data assimilation

The main aim of variational data assimilation methods is to minimise a cost function

which measures the distance of the solution to the background and the observations,

weighted by the inverse of their respective errors,

J(x) = (x − xB)TB−1(x − xB) + (y − h(x))TR−1(y − h(x)), (1)

where x is the model state vector, xB is the background state, and h is the observa-

tion operator (known as the forward model). For simplicity in our analysis we use a

linear approximation to the forward model, H ≈ h. The vector y is the observation

vector, whose relationship to the model state vector is given by y = Hx+ ǫo, where

ǫo is the measurement error. Matrices B and R are the background and observation

error covariance matrices, respectively. B(i, j) describes the error covariance be-

tween components i and j of xB, and R(i, j) describes the error covariance between

components i and j of y.

Equation (1) can be solved to determine the value, xA, of the model state x that

minimises J ; xA is used for the initialisation of the model variables in a forecast,

xA = xB + BHT(HBHT + R)−1(y − H(xB)). (2)

2.2 Information theory

In ignoring observation error correlation, we overlook a portion of the available

data, and so information that could be utilised is lost. In this context, the amount

of information provided by a set of observations is a measure of how far they go

to reduce uncertainty in our analysis. To numerically evaluate the information lost

when using simplified observation error correlations, we use Shannon Information

Content and the number of degrees of freedom of signal.
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2.2.1 Shannon Information Content

The Shannon Information Content (SIC) is a measure of the reduction of entropy.

Entropy physically corresponds to the volume of state space occupied by the prob-

ability density function (pdf) describing the knowledge of the state. Assuming all

pdfs are Gaussian, [8],

SIC =
1

2

∣

∣S−1

A
B

∣

∣ , (3)

S−1

A
= HTR−1H + B−1, (4)

where SA is the analysis error covariance matrix (SA(i, j) describes the error co-

variance between components i and j of xA). The larger the SIC, the greater the

reduction in uncertainty in our analysis.

2.2.2 Degrees of freedom of signal

The number of degrees of freedom of signal (dofS) indicate the number of quantities

deemed measured by the observations; the closer dofS is to the total number of

degrees of freedom (dof), the more information the observations have provided.

We have an initial covariance matrix B, and performing an analysis to minimise

the variance in observed directions gives us a posterior matrix SA. The size of the

eigenvalues in each matrix represent the size of the uncertainty in the direction of the

associated eigenvector; in comparing the eigenvalues of the two, we can determine

the reduction in uncertainty.

Take a non-singular square matrix L, as in [4], such that LBLT = I and

LSALT = ŜA. This transformation is not unique as we can replace L by XTL

where X is an orthogonal matrix. Now if we take X to be the matrix of the eigen-

vectors of ŜA, then we simultaneously reduce B to the identity matrix and SA to a

diagonal matrix of its eigenvalues, Λ;

XTLBLTX = XTX = I,

XTLSALTX = XTŜAX = Λ.
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After this transformation, the diagonal elements (eigenvalues) of the transformed

matrix B are unity, and each corresponds to an individual dof . The eigenvalues of

ŜA may therefore be interpreted as the relative reduction of variance in each of the

independent directions. So the dofS are given by

dofS = N − trace(Λ). (5)

2.3 Idealised data set

To quantitatively evaluate information content under different treatments of error

correlations, we investigate a scalar quantity on an idealised data set. Consider

observations on a regular flat N×N grid, with a 200km spacing between observation

points. Assume that every observation is taken directly, H = I, and the background

errors are uniform and described by the correlation function Bij = exp
(

−r2

ij/2L
)

,

where rij is the Euclidean distance between point i and j and L = 190 is the length

scale.

The test error covariance matrix Rt is calculated using empirically derived error

variances [2], and isotropic correlations described by Cij =
(

1 +
rij

L

)

exp (−rij/L),

L = 190. This produces a correlation matrix C, with components Cij, which can be

used to alternatively describe Rt: Rt = D1/2CD1/2 where D is the diagonal matrix

of error variances. The values are obtained from the analysis of pairs of collocations

between Atmospheric Motion Vectors (AMVs) and radiosonde observations. It is

this matrix against which we measure information loss.

2.4 Observation error correlation matrix structures

Using the above experimental structure, we compare four different approaches to

observation error correlation:

1. Use the test error covariance matrix Rt;

2. Set the correlations to zero in Rt;

3. Set the correlations to zero in Rt and inflate the error variances;
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4. Describe R by a truncated eigendecomposition [5];

R̃ = D1/2(αI +
K

∑

k=1

(

λk − α)vkv
T

k

)

D1/2 = D1/2C̃D1/2 (6)

(λk,vk) is an eigenvalue, eigenvector pair of C, K is the number of leading

eigenpairs used in the approximation, and α is chosen such that trace(R̃)=trace(D),

i.e, so that there is no mis-approximation of the total error variance.

3 Results

First we present the results obtained when using a diagonal approximation of Rt:

Approach 2 and Approach 3. As anticipated, under simplified assumptions of ob-

servation error correlations, information is lost. Both the SIC and dofS are directly

proportional to the number of observation points; so increasing our grid size provides

access to more information. But as the number of observation points increases, the

greater the difference in information between Rt and the diagonal approximation

used in Approach 2. For a grid with 100 points, both the SIC and dofS decrease

by 75% between Rt and the diagonal approximation (Figure 1(a)).

The depletion in information increases with the scale of variance enlargement.

Variance enlargement (Approach 3) is shown to have a detrimental effect on the

information provided by a set of observations; more so than a simple diagonal ap-

proximation. For a grid with 100 points, the decrease in information is up to 93%

between Rt and a diagonal approximation with an 8× variance enlargement (Figure

1(a)). If, as Collard [3] suggests, we are limited to a variance enlargement of between

2-4 times, then we still lose between 74% and 84% of the information available.

In Approach 4 we acknowledge error correlations by forming a truncated eigende-

compostion of Rt. Results show that the more eigenpairs used in the decomposition,

the smaller the difference in the information between Rt and the eigenpair approxi-

mation. The eigenpair approximation retains a higher percentage of the information

available than the diagonal approximations. For a grid size with 100 points, even

when Rt is described by an eighth of its eigenpairs, the resultant loss of information

is considerably less than for any diagonal approximation. When Rt is described by
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Figure 1: (a) The dofS for different scales of variance enlargement; (b) The SIC for

a correlated (Rt), uncorrelated and eigenpair described R.
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Figure 2: Spatial structure of correlations for (a) Rt and (b) Rt described by its

leading 10 eigenpairs.

half of its eigenpairs, the SIC only decreases by 5% (Figure 1(b)). In describing Rt

by its eigenpairs, using too few will lead to spurious error correlations (Figure 2),

as suggested by Fisher [5]. Under this set up the correlations are not large enough

to discount the approach, but care must be taken for larger problems.

4 Conclusions

We have evaluated the loss of information under three different treatments of cor-

related observation errors. Approximating Rt with a diagonal matrix and ignoring

error correlations, has been shown as so detrimental to the information provided by

a set of observations that an alternative approach must be sought. One such ap-
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proach is the approximation of Rt through its leading eigenpairs; this retains much

of the information available even with less than half the available eigenpairs. But,

addressing Fisher’s concerns [5], we find that spurious long range correlations are

present even for larger observation sets.

Although creating a truncated decomposition of Rt is more costly than the

traditional operational approach, it includes some of the correlation structure of Rt

and is still realtively easy to invert. If the computational cost involved in this is not

too extensive, then it may be possible to include correlations operationally, leading

to a more accurate forecast.

The above results are only currently applicable to the idealised framework in

which they have been obtained. Although we have used empirically derived ob-

servation errors, the background errors are not realistic. Since the calculations of

information are dependent on both B and the idealised observation operator H, a

more realistic specification of these would produce more general results. Also, this

paper has not addressed the operational feasibility of including correlated observa-

tion errors in the data assimilation algorithm. In future work, comparisons will be

made using more realistic models, and using different approaches to incorporating

correlation structures in the observation error covariance matrix.
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