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Abstract

The semi-Lagrangian method is widely used in numerical weather models. The
properties of the numerical solutions obtained by this method, depend strongly
on the form of spatial interpolation used. In this report, several commonly used
interpolants are reviewed and Fourier analysis is applied to the resulting schemes.
Error measurements for the advection of more general data are then established,

which build on the results of the Fourier analysis.
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Introduction

This report has two aims. The first is to describe the semi-Lagrangian method.
This is an approach to the generation of finite difference schemes for problems
involving advection. The importance of this method lies in the fact that it allows
the time step to be chosen from accuracy considerations alone; the scheme being
unconditionally stable. For this reason it is particularly suitable for weather
modelling. In particular semi-Lagrangian advection has been combined with an
implicit treatment of sound and gravity wave terms. This results in schemes
whose time step far exceeds the stability limit for conventional explicit methods,
[8], 9.

An important part of any semi-Lagrangian scheme is the spatial interpolation
of the finite difference data. Not only does the choice of interpolant determine
the spatial accuracy of the scheme, it also affects certain physically important
properties of the solution. These are properties such as monotonicity, or more
generally positivity, and conservation of mass. This leads to the second part of
this report, which involves assessing the suitability of various interpolants, for use
in semi-Lagrangian schemes.

As a first step in finding a means of comparing different interpolants, a review
of the standard technique of Fourier analysis is carried out. This provides values
for amplitude attenuation and phase error for harmonic waves. The next step
builds on these results by considering the advection of periodic waves of arbitrary
shape. Such a wave may be decomposed into its component harmonics. The
expansion coefficients, used in this decomposition, provide a means of weighting
the amplitude and phase errors associated with each harmonic. These weights
are then used in the averaging of the errors over all the component harmonics.

The methods described above are applied to a specific class of explicit finite
difference schemes. Several interpolants of practical importance fall in to this
class, and results are given here for some of these. A separate analysis is made for

cubic spline interpolation, which is not a member of this class. Results obtained



for some standard schemes are given for comparison.



1 The Semi-Lagrangian Method

The semi-Lagrangian method is a finite difference technique for the numerical
modelling of advection, [8]. It achieves the redistribution, of a transported quan-
tity, by solving local fluid trajectories over each time step. First it is necessary
to consider the Lagrangian description of fluid flow. Following this, an overview

of the two time-level semi-Lagrangian method is given.

1.1 Lagrangian Description

Let u(x,t) be some property of the fluid and let a(x,t) be the velocity field of
the fluid. Passive transport of the quantity u is described by the one dimensional

advection equation :

ou ou
Stz =0 (1.1)

This equation may be written in terms of the Lagrangian (or convective) deriva-

tive,
D 0 n 0
— = —+a
Dt Ot ox’
when it becomes
Du
— = 0. 1.2

The Lagrangian derivative (1.2) provides the time rate of change, of the value
of u, associated with any one particular fluid element. Such a fluid element is
uniquely identified by specifying its position, z, at some reference time, ... If
y(x,t,;1) is the position of this fluid element at time ¢, then the trajectory of

the element is given by the equation,

dy
i a(y,t). (1.3)
1.2 Two Time-Level Scheme

The finite difference solution of (1.2) is to be established on an Eulerian mesh

with uniform space and time intervals, Az and At respectively. Grid nodes are



at the positions x; = jAx and the solution is to be advanced through successive
time intervals, ¢, = n/At where n = 0,1,2,---.

Let U(x,t) be an approximate solution of (1.2) obtained numerically. If U is
known up to the time level ¢, then it is advanced to the next time level using a

discretization of (1.2). For a two time-level scheme [1] this discretization is

U(xjv tn-l—l) - U(?J(l']a tn-l—l; tn)a tn)
At

= 0. (1.4)

where y(x;,t,41;t,) is the position of the fluid trajectory at time ¢, described

below. So at time #, 4, the value of U at the grid node z; is given by

This important equation is the basic statement of the semi-Lagrangian method.

Equation (1.2) states that, for any chosen fluid element, the value of u does
not change with time. Equation (1.5) is the discrete equivalent of this : the value
of U held by the fluid element at (x;,%,41) is exactly that which it held at the
earlier time ¢,. In order to find this value of U, it is first necessary to discover
the position, y(x;,t,41; 1), of the particle at time t,. This position is known as
the upstream departure point. It is found by performing an integration of the
trajectory equation (1.3).

The simplest choice of integration is the Euler method. For this particular

problem it takes the form,

y(wj,tn+1; tn+1) - ?J(%atnﬂ; tn)
At

= a(y(zj, tup1; tas)s Ln)- (1.6)
Using the identity,
y(xjv tn-l—l; tn-l—l) = Zj,
equation (1.6) results in the displacement formula :
y(zj, togrity) = x; — At a(xj, ty,).

In practice the Euler method is considered too inaccurate, but ordinary differen-
tial equation solvers of higher order can be applied to (1.3) in an entirely analogous

way, [8].



The upstream departure point, once found, will generally not coincide with a
grid node. Yet it is only at the nodes that a finite difference solution exists. This

raises the need for interpolation to evaluate U(y,1,).

1.3 Interpolation

A finite difference method provides values of the approximate solution U(x,t) only
at grid nodes, x;. To obtain a value between nodes, any form of interpolation
might be used. If a polynomial interpolant is chosen, then the scheme falls into
a class of schemes particularly well suited to analysis. These are the explicit
polynomial schemes considered in the next section of this report. First a number

of interpolation options of practical importance are considered here.

1.3.1 Lagrange Interpolation

This is the simplest form of polynomial interpolation. A small subset of grid
nodes is selected, which surround the point at which an interpolated value is
required.

Assume that the upstream departure point, y, lies between nodes £ — 1 and
k. That is

Tpo1 S Y < X

Take a sample set of p nodes either side of the interval [xg_1, 4] :

Sy = {Th—p» Thopt1, "+ Thtp-1}-

Let L5,-4 be the unique polynomial of degree 2p — 1 which interpolates the finite
difference solution at all the points in S,. Let u; = U(z;,t,) and v/ = U(xj, t,41),
then

p—1
'C’?p—l(xk—pv Ty Thtp—1y Uk—py * "y Uktp—1, y) = Z uk-l-TLT
r=—p

where

. o ! Tpys — Y
Lo(@hepy s tppp;y) = [ | . (1.7)

s=—p Lhts — Thyr
SET



For a constant velocity field, the velocity is simply displacement over time,

l’]‘—y

AN

(1.8)

a =

This provides the following useful formula for the Courant number :

The set S, is centred on the interval [¢_1, 2], which contains the departure
point y. As a consequence y always lies within one grid interval, Az, of x;. Now
equation (1.7) indicates that the interpolation is built up of differences between
zj, (and surrounding nodes) and y. So if the Courant number is restricted to
lie between 0 and 1, then there is no loss of generality putting & = j. A further
simplification of the equations results by remembering that z; = jAz. Redefining

the polynomial in terms of the Courant number, it may now be written

Uy, tn) = Lop-1(v) = pz_:l Wi pl:[l (8 + 1/)

== ey NS

s#r
where 0 < v < 1.

Only polynomials of degree 2p — 1 have been considered. Even degree poly-
nomials are constructed in the same way. However it is not possible to centre
the sample set about the upstream departure point : an even degree polynomial
requires an odd number of data points. Stable schemes can still be constructed
by choosing the sample set correctly. There are two possibilities of sample set for
a second degree polynomial. Both lead to stable schemes. These are the uncon-
ditionally stable equivalents of the Lax-Wendroff [5] and Warming and Beam [10]
schemes. However not all of the possibilities for a fourth degree polynomial give

a stable scheme.

1.3.2 Hermite Cubic Interpolation

This form of interpolation is very similar to the Lagrange form. Again the inter-

polation is done on a small number of nodes surrounding the departure point. A



Hermite polynomial requires two values at each node : the values of the interpo-
lated function and its first derivative. However, the finite difference scheme does
not provide values of the first derivative. These must be obtained from the data
using a suitable approximation method. This freedom in choosing an estimate
for the first derivative allows for great flexibility in designing a semi-Lagrangian
scheme. Also limiters can be applied to derivative estimates to obtain desirable

properties in the solution, such as monotonicity [7].
aU(l‘]‘, tn)
dx

will be obtained in terms of the discrete slopes :

Let d; be an estimate for . In general such a derivative estimate

U; — Uj—q

Bj-1j2 = Az

With these definitions the semi-Lagrangian scheme, with Hermite cubic interpo-

lation, may be written

U(y, tn) = Hg(l/) = A(E (ZA]‘_l/Q — dj—l — d]) l/3
+ Al’ (d]‘_l + Qd] — 3A]‘_1/2) l/2
— Az d; v+u;

1.3.3 Derivative Estimates

There are many forms of derivative estimate which might be used in the Hermite

cubic interpolation. A few are listed here.

JAVE A
e Arithmetic Mean : d, = —i=/2 + Djyy2

! 2
~A. T T - AL
e Hyman [3] . dj — i-3/2 T J 1/21;‘ j+1/2 J+3/2
—3A;_ 19A 194 ; — 3A.
° Priestley [6] . d]‘ _ 3 J 3/2‘|‘ 9 7 1/23;‘ 9 J+1/2 3 7+3/2

1.3.4 Cubic Spline Interpolation

This interpolation method does not share the same structure as the Lagrange and
Hermite methods. A spline does not depend only on the data near the departure

point, but on all the data throughout the region.



The cubic spline is formed using approximations, ¢;, for the second derivative
at grid points [4] :
0*U

These derivative estimates are related to the finite difference solution by the

formula,

1 1
(1+652) ¢ = - §%u;, (1.9)

20— o _ . .
where 6“u; = w41 — 2u; + uj_q.

The cubic spline polynomial is

Uy, t,) = S3(v) = —Az? (CJ_GCJ_I) v 4+ Az? % v? (1.10)

1
—NAz? AR 6(20j +ecjo1)| v+ u;

1.3.5 Fourier Analysis of the Cubic Spline

As an example of the type of analysis used in this report, Fourier transforms are
applied to equations (1.9) and (1.10). Equation (1.9) involves the step operator
FE. The effect of the Fourier transform on this is to introduce the multiplicative
factor e7'*, where ¢ = k/Az and k is the independent variable of the transform.
Let U and C be the Fourier transforms of U and C, which are related by

1

e §*U(x,t,).

(1 + é&?) Clas b)) =

The transform of this equation is
CAz? = Mo)U

3
where  A(¢) = 6 (1 — 2—|—cos¢) :

A transform equation may be obtained for (1.10) in a similar way :

Uk, tot1) = g(o, V)U(kv tn)

where glo,v) = —M(l — e 4

6
o .
— 1—€_Z¢+(g5)(2—|-6_2¢) v+1

MO,
2



The quantity ¢(¢,v) is known as the amplification factor for the scheme. In
effect it is the response of the scheme to a single Fourier mode. This form of
analysis will be presented in the next section for a large class of finite difference
schemes. These schemes have a particularly simple polynomial form, and include

many of the semi-Lagrangian schemes of interest here.



2 Analysis of Finite Difference Schemes for Ad-

vection

2.1 Test Problem and its Discretization

In order to analyse the performance of a numerical solution scheme, a suitable
test problem is required. This is usually taken to be the simplest differential
equation whose solutions exhibit the process which is of interest. In the case of

advection the following test problem is chosen :

Ju Ju

where u = u(x,t) and a > 0,
) —o0 < x <X
on the domain D :
t >0.
The choice of initial condition is dictated by the form of the analysis which is to
be carried out. The simplest possibility is considered in section 2.4 and slightly
more realistic data will be considered in section 2.5.
To establish a finite difference approximation for this problem, the domain

must first be discretized. The following mesh, which is regular in both space and

time, is used :
M(Ax, At) = {(jAx,nAt) : j € Z,n € N},
where Ax and At are the space and time grid intervals respectively. Now let
z;=jAx and t, =nAt, (2.12)
and let u? be the finite difference solution at the mesh point (z;,?,). That is,
ul R u(ag,ty). (2.13)

The time evolution of the finite difference solution is governed by a numerical
scheme, which is obtained from some consistent discretization of the equation

(2.11). One class of schemes will be considered.

10



2.2 Explicit Schemes of Polynomial Form

The schemes of this class have the general form,

w't = C(E,v) u?

J J

(2.14)

where
e C is a polynomial in both arguments,
e [V is the space index step operator : Fu; = vy,

e and v is the Courant number : v = a——

At
This is an explicit, two time-level scheme : the solution at the next time level is
obtained from data held at the current time level alone.

The polynomial, C, has the general form

C(E,v) = > ¢(v) E

z (2.15)
where ¢, (v) = Z o, VP

and «,; are constant values. In practice both summations will consist of a finite,

and usually quite small, number of terms.

2.3 Evolution Operators

Evolution operators exist for both the exact and finite difference solutions. These
operators advance their respective solutions, at any point (z;,%,), through one
time step. The evolution operator of the exact solution is obtained by considering

the analytical solution of (2.11),
u(x,t) = u(x — at,0). (2.16)
Applying this to the exact solution on the mesh M,

u(x;,t, + At) = wu(x; — at, —alt,0)

= u(x; —at, —vAz,0)

11



. t .
where the last line follows from v = a——. Using the space step operator F, the
x

above may be written,
u(x; —at, —vQAex,0) = E " u(x; —at,,0)
= Eu(xj,t,) (2.17)

where the final line is obtained from the analytical solution (2.16). Hence the

evolution equation for the exact solution of (2.11) is
u(z, by + At) = E™"u(x;, 1), (2.18)

This equation identifies the evolution operator for the exact solution, on the mesh
M : E7". It corresponds to linear wave motion; during one time step, it shifts the
solution through a distance determined by the mesh velocity v. The evolution
operator for the finite difference solution is simply C(FE, v), since (2.14) is the
numerical analogue of (2.18).

The effectiveness of the finite difference scheme rests on how well its evolution
operator mimics that of the exact solution. A well known technique for investigat-
ing this is to compare the effect each evolution operator has on a single harmonic

wave.

2.4 Fourier Analysis

Consider the case where the differential equation (2.11) and its discretization

(2.14) are supplied with initial data

u(z,0) = €+ (2.19)
u! — eibm;
where k € IR is the wave number of this particular Fourier mode.
[t is the ratio of the grid interval Az to the wavelength 27 /k which determines
how well the wave is resolved on the grid. Consequently the performance of any
numerical scheme must depend on this ratio. For this reason it is convenient to

define the mesh dependent wave number,
¢ = kAw.

12



For the above initial data the exact solution of (2.11) is a sinusoidal progressive
wave. Such a wave is precisely specified by just two parameters (the wavenumber

k and the wave velocity a) and takes the form
U(l’, t) — eik(ac—at)‘

If this solution is restricted to the mesh M(Ax, At), then the relevant parameters

are the mesh dependent counterparts of k£ and a, that is ¢ and v :
u(wj,t,) = U, (2.20)

The space and time parts of this solution are separable allowing the solution to

be written as

w(xi t,) = (e79)" %, 2.21
J

The quantity e~ is the amplification factor for the exact solution. It is obtained

by the action of the exact evolution operator, £~ on the Fourier wave e'® :

E—uemS — ei(l—u)¢ —

e~ 0,

The parameters ¢ and v also determine the finite difference solution. They
enter the solution through the action of the evolution operator, C(F, v) as follows.

Using (2.14) and (2.19) the solution after the first time step is

ut =C(E,v) e,

J

This may be expanded using (2.15),

C(E,v) i’ = > e(v) ET e'?

= > e (v) cilitr)d
et Z ¢ (v) e’?.

The summation in the last line may be written in terms of the polynomial C,
which leads to

u; = €Y% C(e, v).

13



The coefficient, C(e*?, v), is independent of the space index and will be unaffected
by subsequent applications of the evolution operator. Hence the solution of the

difference scheme may be written as
uf = [C(e, v)]™ 9. (2.22)

This result is the finite difference analogue of (2.21) and, just as for the exact
solution, an amplification factor may be identified. The finite difference amplifi-
cation factor plays the central réle in the analysis which follows. It is a function

of ¢ and v, and is assigned the symbol ¢g(¢,r), where
g(¢,v) = C(e”,v). (2.23)

Equations (2.21) and (2.22) indicate that any error in the finite difference
solution must arise through discrepancies between the exact and finite difference
amplification factors. One such discrepancy is immediately apparent. The finite
difference amplification factor is 27 periodic in @, since it is a polynomial in €®.
In general e~"% does not share the same periodicity.

Both amplification factors are complex, producing changes in the amplitude
and phase of the wave solutions over one time step. For this reason the analysis
is split into two parts; comparisons are made between the moduli and arguments
of the amplification factors. This leads to von Neumann stability and spectral

analysis.

2.4.1 Von Neumann Stability

For this form of stability, the modulus of the finite difference amplification factor

is required not to exceed that of the exact amplification factor. Define

o) = el
(9:2) =] (2.24)

= lg(o,v)].

The stability requirement now reads ¢, < 1.

14



2.4.2 Spectral Analysis

Phase error in the finite difference solution is a result of error in the argument of

g(¢,v). Define

_ arglg(¢, v)]
gp(¢7 l/) - arg(e‘wl’) .

Since g(¢,v) is 27 periodic in ¢, it suffices to restrict ¢ to the principal values

—7 < ¢ < 7. It is now possible to write the ratio of the finite difference and

exact phases in a more useful form,

ep(0,v) = —qusarg[g(qﬁ, V)] (2.25)

where arg(z) represents the argument of the complex number z.

With the above definition :
€, < 1 corresponds to phase lag in the finite difference solution,

€, > 1 corresponds to phase advance.

First Order Upwind The first order upwind scheme

u?"’l = l/u?_1 + (1 - V)u;b , v>0

may be written in the form (2.14) :

Wt = WET + (1 —v)E°lu? = C(E, v)u’.

J J J

This gives
§(6,0) = Cle,v) = ve™* 4 (1 - 1)

Simple calculations then provide
cubr) = [1—20(1 = v)(1 - cos o)1,

1 vsin @
5p(¢7 V) = %arctan {1 — l/(l — COS ¢)}

for —7 < ¢ < 7.

15



2.4.3 Plots of Modulus and Argument Ratios

Treating (¢, v) and ¢ as polar coordinates, curves of {(¢(¢),¢) : —7 < ¢ < 7}

may be plotted. This is done for both ¢, and ¢,, with a range of values for v.

Amplitude

Figure 1: First Order Upwind Scheme

First Order Upwind The amplitude graph of figure 1 always remains within
the unit circle, indicating that the scheme is stable. At ¢ = 0, ¢, = 1 but its
value rapidly drops away from the unit circle, as |¢| is increased. This accounts for
the well known damping inherent in this scheme. However the extreme damping
of the highest frequencies is a desirable property, since these will most often be
non-physical.

It is important, in producing these plots, to ensure that arg(g) is not allowed
to change discontinuously with respect to the exact phase. Sudden jumps in
arg(g), relative to the exact phase, occur due to the periodicity of the arg function.
Multiples of 27 are added/subtracted to arg(g) to ensure that it changes smoothly

with respect to ¢.

16



2.5 Arbitrary Periodic Waves

So far only waves composed of a single frequency have been considered. A more
realistic approach is to consider the advection of a periodic wave, which contains
a superposition of frequencies. (For instance the initial data may be chosen to
be a square or triangular wave.) This allows the possibility of analysing such
phenomena as dispersion and frequency dependent attenuation. However the
approach which will be made here, is to look for measurements of amplitude and

phase error averaged over all frequency components.

2.5.1 Fourier Expansion

At time 1, let the data take the form
ui = Z a,(t,) elor (2.26)
where «,, € C are the Fourier weights and ¢, the wave numbers of the component
Fourier modes.
When the solution is advanced one time step using (2.14), the linearity of the
scheme results in each Fourier mode being separately advected :
u?"’l = C(F,v) { > ozTeij(br}

r=—00
00

= Y o C(E,v) o,

The evolution operator combines with the complex exponentials, to produce an

amplification factor multiplying each Fourier component :

> o, C(E,v) ¢t = > o, g(or,v) e o,
This equation shows that the relative importance of the amplification factors,
g(¢,,v), is dictated by the Fourier weights, a,.

Some measure of the deviation of numerical advection from exact advection is

required. Again the approach is to analyse amplitude and phase error separately.

17



2.5.2 Phase Error

The chosen measure of phase error is simply a weighted sum of the phase errors

for each Fourier component :

S Ja(t) {argle(ér.0)] — (—vd0))?
E.(r) === : (2.27)

S Ja(t)[?

r=—00

The corresponding weighted amplitude error would appear to be of little use;
it is symmetric about the stability limit |¢| = 1. However, by making use of
Parseval’s Theorem, the conserved fraction (defined below) of the second moment

of the solution may be obtained.

2.5.3 Conservation of Second Moment

Parseval’s Theorem Consider an infinite periodic wave with wavelength 2/ :

It f(l') — Z a, eirwx/[

r=—00

1 <
then ﬂ/_lf(ac)2 de = > |oy|

r=—00

under suitable conditions on f(z). O

Let U(x,1,) be the continuous extension of the finite difference solution, where

the index j is replaced by «/Ax :

Ulz,t,) = Y at,) /o (2.28)

r=—00

and let
L
M, :/ Uz, t,)* da.
-L

If the wavelength is 2 then Parseval’s Theorem provides the following :
M,=2L > |a|*. (2.29)
When the evolution operator C(FE,v) is applied to (2.28), each Fourier mode

produces an amplification factor :

o0

Uz, t, + At) = Z o, g(é,,v) pidre/ Do

r=—00

18



Applying Parseval’s Theorem to this gives
My =21 Z |ar 9(457“7 V)|2' (2'30)

Define the conservation fraction per time step for the second moment :

M, 11

Cn(v) = M

From (2.29) and (2.30) this is seen to be

o0

> len(t)l® lg(r, )|
C.v) = =" (2.31)
_Z_: |O‘T(tn)|2

For linear advection with a constant velocity field, all the finite difference
schemes considered in this report provide perfect conservation of mass. The
second moment is not necessarily conserved : non-conservation is a result - though

not a necessary one - of changes in the shape of the advected mass distribution.

2.5.4 Convergence of E,(v) and C,(v)

Convergence of the summations in (2.27) and (2.31) follows from a property of the
Fourier expansion, namely, that 3" |a,| converges. Convergence of C, is ensured
since |¢g| < 1, for any stable scheme.

There is a slight problem involved in the calculation of E,(v). Care must
be taken in the calculation of arglg(é,,v)] + v¢,, which is the phase error in
the amplification factor for Fourier mode e¢'*". The problem arises when v¢, is
outside the range of the arg function, since it is then necessary to find the winding
number for ¢(¢,, ). However, this may be side-stepped by recalling that waves
with wavenumbers ¢ and ¢+ 27 are indistinguishable on the grid. This allows the
phase error to be mapped onto the interval (—m, x| by the addition/subtraction
of multiples of 27. Provided the scheme is known never to produce phase errors
exceeding 27, then the above procedure provides the correct phase error. This is

the case for all the schemes to be considered here.

19



2.5.5 Courant Average

By averaging C,(v) and E,(v) over the range 0 < v < 1, single values are
obtained, corresponding to second moment conservation and average phase error
respectively. This is accomplished by dividing the unit v-interval into N equal

parts. Define

o 1 N
C, = N;Cn(r/zv)
_ 1 N
E, = NZEn(T/N)-

o

r=

Finally, we have arrived at two quantities related to the error in numerically
advecting an arbitrary periodic wave. Both quantities are time dependent. This
is due to the relative changes in the Fourier coefficients, since they each evolve
according to their own amplification factor. Unlike the single Fourier wave case,
where the wave retains similarity of form throughout all time steps, the data now
changes its shape. Since it is the finite difference scheme which causes this change,
it is to be expected that the scheme will perform better for this new shape : the
shape becomes better suited to the scheme. This indicates that measurements
of the error committed during the first time step are sufficient to describe the
scheme’s performance. It is then only a matter of testing the scheme with a
variety of different initial wave shapes. The values of Cy and Eg then indicate the

scheme’s effectiveness for the chosen shape.

20



3 Results

The analysis presented in sections 2.4 and 2.5 is applied to two groups of schemes.
The first group comprises the schemes of Lax-Wendroff [5], Warming and Beam
[10], and Fromm [2] in addition to the first order upwind scheme. In the second
group various forms of interpolation are applied to the semi-Lagrangian scheme
outlined in section 1. Each scheme is presented together with graphical results
of the appropriate Fourier analysis. Then results of second moment conservation

and average phase error are given.

3.1 Standard Schemes
Lax-Wendroff

uj‘"l — 5(1 +v) uli_y (1- 1/2) ul — 5(1 —v) uty

Amplitude

. 0.25
1 0.0,1.0

Figure 2: Lax-Wendrfoff
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Warming and Beam This is the second order upwind scheme,

. 1 n __ n
uj"'l = §V(1 —v) U;_g + v(2—v) uj_g + 5(1/ - (v —=2) uj

Amplitude Phase

o
[6)]
-
AN I T O A

0.0

o
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o
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.
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AN N N [ Y B

-
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I I s e s B s sy I e e I L L N N B s
-1.0 -0.5 0.0 0.5 1.0 -1 0 1

Figure 3: Warming and Beam

Fromm Fromm is the mean of the Lax-Wendroff and Warming and Beam

schemes. It has the form

n v n v n 1 n v n
uj+1 = 1(1/ — 1) uly + 1(5 —v)ui, — 1(”2 +3v —4) uf — 1(1 —v) Uiy,
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Figure 4: Fromm’s Scheme
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3.2 Semi-Lagrangian Schemes

In section 1 the semi-Lagrangian finite difference method was presented, along
with several possible choices for interpolation. The results of Fourier analysis on

these schemes is presented here in graphical form.

Cubic Lagrange The Lagrange interpolating polynomial of degree three is the

simplest semi-Lagrangian method with fourth order spatial accuracy.

Amplitude Phase

o110 10.25,0.75 10.75 10,05
05 050
0.0 0.0
-0.5E 0.5
1_0; 0.5 -1.0—:
T | T 1T | T 17T | T 1T | T 1T | 1 7\ T | T 1T | T 1T | T 1T | T 1T | T T
40 05 00 05 10 40 05 00 05 10

Figure 5: Cubic Lagrange

Quintic Lagrange Despite the extra effort in computing a higher degree poly-
nomial, the quintic Lagrange method shows little improvement over the cubic

Lagrange.

Hermite Cubic with Arithmetic Mean Hermite cubic interpolation re-
quires estimates for the derivative at each grid node. These are usually expressed

in terms of the discrete slopes of the finite difference solution. A simple form of
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derivative estimate is provided by the mean of the discrete slopes, either side of

a grid node.

Hermite Cubic with Priestley Derivatives The Priestley derivative esti-
mate [6] provides fourth order accuracy. This is consistent with the accuracy of

the Hermite cubic itself.

Hermite Cubic with Hyman Derivatives The Hyman derivative estimate

[3] is similar in form to Priestley’s.

Cubic Spline This is a global interpolation method requiring considerable com-

putational effort when used in practice.
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Figure 7: Hermite Cubic with Arithmetic Mean
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Amplitude Phase
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Figure 8: Hermite Cubic with Priestley Derivatives
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Figure 9: Hermite Cubic with Hyman Derivatives
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Figure 10: Cubic Spline
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3.3 Conservation of 2nd Moment And Average Phase

Error

In section 2.5 the errors incurred by numerically advecting an arbitrary periodic
waveform were investigated. Quantities were established for measuring second
moment conservation and average phase error; theses are Cy and Eg respectively.
Both quantities were obtained by averaging over a range of Courant numbers
and consequently provide an indication of the overall performance of a scheme.
However both Cy and Ej were seen to be dependent on the shape of the advected
wave. This shape dependency enters the calculations for Cy and E, through
the Fourier coefficients of the wave. General periodic initial data has a Fourier

expansion of the form :

o0
o g
u; = E a, e,

r=—00

The wave is specified by the wave numbers of the Fourier modes, ¢,, and the
corresponding coefficients, a,.. The quantities Cy and Eq refer to errors averaged
over all the component Fourier modes, with weightings determined by the ampli-
tudes of the expansion coefficients. Hence it is the quantities ¢, and |oz7¢|2 which

are of importance. Results are obtained for three different test shapes.

Square Wave The general form of the square wave used is depicted in figure 11.
It has a wavelength of 2/, and an ‘on-fraction’ pg. The choice g = 1 is used

throughout.
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Figure 11: Square Wave
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The component wave numbers are

O, = Tﬂ'g.

[
where r =0, £1,4£2,---.

The corresponding error weights are

2
lao|? = (ﬁ)
9

2 = sin?(rmpu/2)

e (rm)?

where r = +1, 42, - .

Saw-Tooth Wave The saw-tooth wave, with wavelength 2/, is shown in figure 12.

This has component wave numbers

¢27’ = 0

A
borp1 = (2r + 1)71'790

where r =0, £1,4£2,---.

- 2[ -
Figure 12: Saw-Tooth
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The corresponding weights are

o> = ©
4
o, | = 0 r=41,42, -
4
2
el = oy PO ALER

Parabolic Blips This test wave is similar to the square wave described above,
except that the square waves are replaced by parabolas. The wave is described

by the function :

é:Jc(l—:Jc) 0<z<l!

fla)y=19 "
0 [ <z <2l
where f(x £ 2I) = f(x). The wave numbers and corresponding weights which

this function gives rise to are :

A
¢T — rﬂ—i
[
and
1 2
ol = (5)
3
2
|Oé276_1|2 — #
w3(2r —1)3

where r = 1,2, --.

The measure of conservation of second moment is an absolute quantity : C,
takes the value 1 if the second moment is conserved exactly; above and below
this value correspond to gain and loss respectively. This is not the case for the
phase measure, Eg. It takes the value 0 if there is no phase error. However no
scale has yet been defined for non-zero values. It is chosen here to assign a phase
error of 1 to the first order upwind scheme, and scale the errors for other schemes

accordingly.
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For each of the test waves there is a parameter which must be specified. This is
the quantity Tx It describes how well the wave is represented on the grid : it is
the ratio of the grid spacing to a half wavelength. When this parameter is varied,
there appears to be little, or no, relative change in performance for the schemes

considered here. For this reason Tx is assigned the value 0.1 throughout.

The results obtained, using the above definitions, are shown in table 1.

Square Wave Saw-Tooth Parabolas
Scheme Co Eo Co Eo Co Eo
Upwind 0.9667 | 1.0000 || 1.2079 | 1.0000 || 0.98500 | 1.0000
Lax-Wendroff 0.9867 | 1.0701 || 1.1919 | 0.8898 || 0.99869 | 1.1691

Warming-Beam 0.9867 | 1.0701 || 1.0000 | 0.6319 || 0.99869 | 1.1691

Fromm 0.9842 | 1.0235 || 1.0720 | 0.8488 || 0.99856 | 0.9927

Cubic Lagrange 0.9853 | 1.0141 || 1.0000 | 0.6319 || 0.99867 | 0.9902

Quintic Lagrange || 0.9895 | 1.0229 || 1.0000 | 0.6319 || 0.99950 | 0.9920

Arithmetic Mean | 0.9879 | 1.0000 || 1.0000 | 0.9357 || 0.99890 | 1.0000

Priestley 0.9911 | 1.0139 || 1.0487 | 0.7405 || 0.99958 | 0.9898
Hyman 0.9907 | 1.0122 || 1.0409 | 0.7475 || 0.99950 | 0.9899
Cubic Spline 0.9928 | 1.0275 || 1.0387 | 0.6861 || 0.99968 | 0.9938

Table 1: Error comparison
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Conclusion

The weighted averages for phase error and second moment conservation error ap-
pear to have practical significance. They provide measurements for errors com-
mitted in numerically advecting reasonably realistic data. A particularly useful
feature is, that these error measurements are obtained without the need to run a
code of the scheme. They also allow the possibility of testing how well a scheme
copes with advecting a given shape of periodic wave.

The results given in table 1 show that, in general, all the schemes perform
best on data without sudden jumps and with fewest sharp corners.

Throughout all the tests the upwind scheme displays the worst conservation
of second moment. This is to be expected, since it is a first order scheme. Its
solutions display severe smearing and diffusion.

Fourier analysis shows that the Lax-Wendroff scheme suffers from phase lag
at most frequencies. Warming and Beam suffers mainly phase advance. The
motivation behind the Fromm scheme, which is the mean of these two schemes,
is that there will be cancellation of their respective phase errors. The results in
table 1 show that this is mostly the case. However, this improvement in phase is
achieved at the cost of greater loss of second moment conservation.

The Hermite cubic interpolant with mean derivative estimate consistently lies
somewhere between cubic and quintic Lagrange interpolations, whilst the higher
order derivative estimates of Priestley and Hyman out-perform quintic Lagrange
interpolation. Results for theses two schemes are very similar. Priestley’s scheme
provides slightly better second moment conservation than Hyman’s. The Hyman
scheme tends to give better phase, but this difference between the two is less
pronounced.

The cubic spline has extremely good second moment conservation. This indi-
cates that the interpolation has captured the wave shape very well. Perhaps this
is due to the fact that the spline is a global interpolation. Despite this its phase

errors are a little disappointing.
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