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Abstract

Flux di�erence splitting methods are widely used for the numerical ap

proximation of homogeneous conservation laws where the �ux depends only

on the conservative variables� However� in many practical situations this

is not the case� Not only are source terms commonly part of the mathe

matical model� but the �ux can vary spatially even when the conservative

variables do not� It is the discretisation of the additional terms arising

from these two situations which is addressed in this work� given that a

speci�c �ux di�erence splitting method has been used to approximate the

underlying conservation law� The discretisation is constructed in a manner

which retains an exact balance between the �ux gradients and the source

terms when this is appropriate�

The e�ectiveness of these new techniques� in both one and two di

mensions� is illustrated using the shallow water equations� in which the

additional terms arise from the modelling of bed slope and� in one dimen

sion� breadth variation� Roe�s scheme is chosen for the approximation of

the conservation laws and appropriate discrete forms are constructed for

the additional terms� not only in the �rst order case �which has been done

before� but also in the presence of �ux limited and slope limited high res

olution corrections� The method is then extended to twodimensional �ow

where it can be applied on both quadrilateral and triangular grids�
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� Introduction

There has been much research in CFD into the accurate and e�cient solution of

homogeneous systems of conservation laws� More recently� as numerical models

become more complicated and the areas of application of these methods widens�

it has become important that other aspects of the discretisation be given due

attention� This is certainly true in the �eld of computational hydraulics where

the modelling can be dominated by the e�ects not only of source terms� but also

of quantities which vary spatially but independently of the �ow variables�

It can be argued that the presence of these e�ects warrants the construction

of new numerical schemes which are appropriate to the nature of the equations�

not one of the many which have been constructed for the simple� homogeneous

case� However� this work is concerned with how the additional terms should

be discretised� given that a speci�c scheme has been used to approximate the

�ux terms� This approach has been taken previously by a number of authors�

and applied in a variety of di�erent situations� For example� Smolarkiewicz has

adapted his own MPDATA scheme to solve inhomogeneous equations arising from

geophysical �ows 	�
�� LeVeque has incorporated the modelling of source terms

for shallow water �ows within his wave�propagation algorithm 	�� and Roe�s

scheme 	��� has been modi�ed by a number of authors to include source terms�

the research of Glaister 	��� V�azquez�Cend�on 	���� Berm�udez and V�azquez 	�� and

Berm�udez et al� 	�� being of particular relevance to this work�

In each of the aforementioned papers discussing Roe�s scheme� the discrete

form of the source terms has been deliberately constructed along similar lines to

the numerical �uxes� This is done to ensure that equilibria which occur in the

mathematicalmodel are retained by the numerical model� and that in the absence

of additional terms� the conservative �uxes are retrieved for accurate modelling

of discontinuous solutions� However� all of the previous work deals only with

the �rst order scheme� The intention of this paper is to provide an extension of

these ideas to higher order Total Variation Diminishing �TVD� versions of Roe�s

scheme �using both �ux limiting and slope limiting techniques� and to describe a

source term approximation which has each of the above properties on all types of
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regular and irregular grids in any number of dimensions� Furthermore� following

on from 	
�� a new formulation is presented for the discretisation of the �ux in

the case where it depends on a spatially varying quantity which is independent

of the solution�

The shallow water equations have been chosen to demonstrate the e�ectiveness

of these new techniques in one and two dimensions� by modelling the e�ects of

a sloping bed and� in one dimension only� the inclusion of breadth variation in

an open channel� The one�dimensional discretisation is described �rst� in Section

�� for a general system of conservation laws� followed by its application to the

shallow water equations and a wide selection of results to show its accuracy� In

Section � the generalisation to two dimensions� illustrated using unstructured

triangular grids� is presented and again applied to the shallow water equations�

The �nal section contains some brief conclusions obtained from the work�

� One dimension

The one�dimensional equations representing a system of conservation laws with

source terms may be written

U t � F x � S � �����

where U is the vector of conservative variables� F is the conservative �ux vec�

tor and S includes all of the source terms� In this section it is assumed that

F � F �U�� in Section ��� the �ux will be assumed to depend not only on the

conservative variables but also another independent� spatially varying quantity�

i�e� F � F �U�B�x���

Using the standard �nite volume approximation of the �ux terms in ������

combined with a simple� forward Euler discretisation of the time derivative leads

to a di�erence scheme which can be written

Un��
i � Un

i �
�t

�xi

�
F �

i� �

�

� F �

i� �

�

�
�

�t

�xi
S�i � �����

in which F � represents a numerical �ux evaluated at an interface between control

volumes and S� � R
S dx is a numerical source integral over the control volume�






which has yet to be approximated� For convenience� a cell centre scheme in which

the control volumes coincide with the mesh cells has been considered throughout

this work� although the ideas may be applied to other types of scheme in a similar

manner�

At �rst sight� the second term on the right hand side of ����� looks like a

discrete �ux derivative for cell i� However� for the purposes of this work it is

more convenient to consider it from the point of view of the numerical �uxes

being constructed from an approximation to the integral of the �ux derivatives

over dual cells and providing contributions to the cell updates ��xi comes from

the integration of the original equations over the control volume��

Commonly� S�i is evaluated pointwise� taking the value �xi S�U i�� or split

symmetrically� giving an expression of the form

S�i �
�xi
�

�
S�U i� �

�
� � S�U i� �

�
�
�
� �����

but a more sophisticated approach is sought here� based on the approach of

Glaister 	��� which accounts for the form of the numerical �uxes�

i� � i� �
i� �

�

i
i� �

�

�xi

S
�

i

F�
i�

�

�

F�
i� �

�

Figure ���� Numerical �uxes and sources for the cell centre scheme�

Note that in the absence of source terms the scheme given by ����� reduces

to a conservative discretisation of the homogeneous system� Also� ����� has been

written with irregular grids in mind� and as a consequence the mesh spacing

�xi � xi� �

�

� xi� �

�

relates to the cells� not the nodes �see Figure �����

Roe�s scheme 	��� is one of the most commonly used examples of the conserva�

tive �nite volume method mentioned above� This is an upwind scheme which uses
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an approximate Riemann solver to decompose the �ux terms into characteristic

components by diagonalisation of the homogeneous part of a linearised form of

the system ������ which is

U t � �AUx � � � ���
�

where �A � �F

�U
is the linearised �ux Jacobian of the system� The Riemann

problems arise at the interfaces between the control volumes �the mesh nodes in

this case� where discontinuities occur in the discrete representation of the solution�

Application of Roe�s Riemann solver results in a decoupling of the linearised

equations that splits the �ux di�erence so that it can be written in a number of

equivalent forms� i�e� at an interface

�F i� �

�
� � �A�U�i� �

�
� � �R �� �R���U�i� �

�
�

�
NwX
k��

��k
��k�rk

�
i� �

�

� �����

in which �F represents the jump in F across the edge of a control volume� �R is

the matrix whose columns are the right eigenvectors �rk of �A� �� is the diagonal

matrix of eigenvalues ��k of �A� and the components of �R���U�� �W � are the

�strengths� ��k associated with each component of the decomposition �W being the

vector of characteristic variables of the system�� The �nal expression indicates

how the �ux di�erence is decomposed into Nw characteristic components �or

waves of the Riemann problem�� where Nw is the number of equations of the

system ���
�� In both ���
� and ������ �� denotes the evaluation of a quantity at

its Roe�average state 	��� ��� This is a special average state of the �ow variables

which is constructed so that ����� is always satis�ed for the given system�

Having obtained the decomposition ������ Roe�s scheme for a homogeneous

system of equations is constructed from ����� by taking the numerical �uxes to

be

F �

i� �

�

�
�

�
�F i�� � F i��

�

�

�
�Rj��j �R���U

�
i� �

�

� �����

where j��j � diag�j��kj�� the source terms have been temporarily ignored� A

similar expression can be written down for F �

i� �

�

�

Generally� �� in ����� can represent any consistent approximation to the spec�

i�ed variables� and the resulting scheme will be conservative� However� forcing

it
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Figure ���� Wave propagation directions in a control volume�

Choosing the Roe�average state �represented by ��� to satisfy ����� means that

the resulting approximate Riemann solver is an exact solver for this local lineari�

sation of the Riemann problem� More importantly� in the context of this work�

when ����� is combined with ����� the nodal update scheme given by ����� is

equivalent to the �uctuation�signal scheme 	��� given by

Un��
i � Un

i �
�t

�xi

��
�R ��� �R���U

�
i� �

�

�
�
�R��� �R���U

�
i� �

�

�
�

�t

�xi
S�i � �����

in which

��� �
�

�
��� � j��j� � �����

This splits the update into contributions related to right�going ��� and left�going

��� characteristics in the decomposition� It follows that the solution is updated

using only contributions from the wave perturbations of the Riemann problems

at the nodes which enter the cell under consideration� as illustrated in Figure ����

It remains to choose an appropriate form for the numerical source term integral

S��

��� Source terms

This work follows much recent research into source term discretisation� see for

example 	�� �� �� 
�� which has concentrated on the use of a characteristic de�

composition of the type shown in ������ This similarly projects the source term

integral onto the eigenvectors of the �ux Jacobian �A� so that in its linearised
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form it can be expressed as

Z xi��

xi

S dx � �Si� �

�

�
�
�R �R���S

�
i� �

�

�

�
NwX
k��

��k�rk

�
i� �

�

� ����

where ��k� the coe�cients of the decomposition� are the components of the vector

�R���S� Note that the integral approximated in ���� is over a dual cell of the

mesh �associated with the interface i� �
�
�� and can be easily incorporated within

the �uctuation�signal form of the �nite volume scheme given by ������ S�i will

be constructed out of contributions from both ends of the cell� with consistency

assured as long as the whole of each dual cell integral ���� is distributed�

It is useful �though less so than in higher dimensions� to note here that the

analytical form of the source term can be split up into components which can be

discretised separately� i�e�

S � S� �
X
j

S�
j

�S�
j

�x
� ������

so that its integral can be approximated consistently by

Z xi��

xi

S dx � �Si� �

�
�

�
��x �S� �

X
j

�S�
j �S�

j

	
A
i� �

�

� ������

and comparison with ���� leads directly to the coe�cients ��k of the characteristic

decomposition of �Si� �

�

�

The terms within the sum on the right hand side of ������ may be called upon

to balance components of the �ux di�erence �F ����� so they must be linearised

in the same way to ensure that� for the chosen equilibrium state�

F x � S � � � �F i� �

�

� �Si� �

�

� � ������

throughout the domain� This follows because at this equilibrium the decom�

positions ����� and ���� have been constructed to give �� �R�� �U � �R���S �or

alternatively ��k
��k � ��k�� Hence �� still represents the evaluation of a quantity at

the Roe�average state�

The �rst term on the right hand side of ������ contains only contributions

which provide no exact balance with the �ux derivatives �e�g� bed friction terms

in the shallow water equations�� so the precise form of their linearisation is not
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prescribed by the above arguments� However� it seems sensible that they should

also be evaluated at the same state� given by the Roe�average�

As a result of the characteristic decomposition ����� the source terms may

be discretised in an �upwind� manner �although� since none of the components

has an inherent upwind direction� this must be taken from the corresponding �ux

component�� This leads straightforwardly to an appropriate upwind �uctuation�

signal formulation for the �rst order scheme ����� with source terms� given by

Un��
i � Un

i �
�t

�xi

��
�R� ��� �R���U � I� �R���S�

�
i� �

�

�
�
�R� ��� �R���U � I� �R���S�

�
i� �

�

�
� ������

in which I� � ���� ���� The correct balance follows immediately from �������

It is not immediately clear though� how the discretisation of the source term

implied by ������ can be converted into a numerical source integral S�i so that

the same balance can be achieved within the �ux�based form of the scheme ������

particularly when it is extended to higher order� Previous attempts have only

proved successful for �rst order schemes�
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Figure ���� Flux and source distribution within a control volume�

The di�culties which arise �and the solution to the problem� can be high�

lighted by following the transformation of ������ into an equation corresponding

to ������ With a small amount of algebraic manipulation ������ becomes

Un��
i � Un

i �
�t

��xi

��
�R� �� �R���U � �R���S�

�
i� �

�

�
�
�R� �� �R���U � �R���S�

�
i� �

�

�

�
�t

��xi

��
�R�j��j �R���U � sgn�I� �R���S�

�
i� �

�





�
�
�R�j��j �R���U � sgn�I� �R���S�

�
i� �

�

�
� ����
�

in which sgn�I� � ����j��j� Since ����� and ���� hold� and

�F i� �

�

��F i� �

�

� �F i�� � F i�� �F i � F i��� � ������

it follows that the scheme ����
� can be simpli�ed to

Un��
i � Un

i �
�t

�xi

�
F �

i� �

�

� F �

i� �

�

�
�

�t

�xi

�
S�
i� �

�

� � S�
i� �

�

�
�
� ������

The numerical �uxes� F �

i� �

�

and F �

i� �

�

� are precisely those de�ned by ����� and

the numerical source term integral of ����� is given by

S�i � S�
i� �

�

� � S�
i� �

�

� � ������

where

S�
i� �

�

� �
�

�

�
�R�I� sgn�I�� �R���S

�
i� �

�

�
�
�RI� �R���S

�
i� �

�

������

and

S�
i� �

�

� �
�

�

�
�R�I� sgn�I�� �R���S

�
i� �

�

�
�
�RI� �R���S

�
i� �

�

� �����

Note that because the numerical source integral cannot� in general� be written

as a di�erence� nothing similar to ������ can be applied to it to allow it to be

included within the numerical �ux ������ This means that the balance which is

sought between �ux derivatives and sources in the �ux�based scheme can only

be obtained locally by balancing non�zero �uxes through the edges of a control

volume� and not by setting each edge �ux to zero� One important consequence

of this is that the most sensible method of applying the boundary conditions to

the numerical scheme is through the addition of ghost cells� since this requires no

further correction to maintain the balance which is sought� The distribution of

the numerical �uxes and source term components is shown in Figure ����

It is of course possible to overcome the above problem when the source term

takes the form of a derivative� If this is the case the source simply augments the

conservative �ux in the scheme ������ i�e� given S � Gx then

F � � F � �G� � ������
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and S� becomes obsolete� In some cases it may also be possible to incorporate

some part of the source term which can be expressed as a derivative within the

numerical �ux� and then apply an appropriate discretisation to the remaining

component of the source�

����� Flux limited schemes

The approach presented in the previous section is no di�erent to the standard

upwind technique for approximating source terms when a �rst order upwind �ux

discretisation is being used 	��� The only new aspect is the way it has been

written� splitting the dual cell source integral into two parts� Usually though�

accuracy of higher than �rst order is required for practical calculations�

The accuracy of Roe�s scheme is improved� without introducing spurious os�

cillations into the solution� by the application of �ux limiting techniques 	��� ���

These ensure second order accuracy in smooth regions of the �ow� whilst enforc�

ing a Total Variation Diminishing �TVD� property� It is achieved by including a

high order correction term in the numerical �ux� which becomes 	���

F �

i� �

�

�
�

�
�F i�� � F i��

�

�

�
�Rj��jL �R���U

�
i� �

�

� ������

in which L � diag�� � L�rk��� � j�kj��� where �k � ��k�t	�x is the Courant

number associated with the kth component of the decomposition� L is a nonlinear

�ux limiter function� as described in 	�� ���� and

rk �
��upwindk

��localk

� ������

It is clear that a corresponding high order correction must also be made to the

source term approximation� and its form can be derived simply by comparing the

numerical sources of ���������� with the numerical �uxes in ������ all of which

have been split into two parts which are balanced separately� The �ux limiter is

only applied to the second part of the numerical �ux� so the �ux limited numerical

source which maintains the balance achieved by the �rst order discretisation takes

the form

S�
i� �

�

� �
�

�

�
�R�I� sgn�I�L� �R���S

�
i� �

�

� ������
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with a similar expression for S�
i� �

�

� in ������� Note that since ������ is an edge�

based quantity� it is simple to evaluate with the �uxes and include within the

numerical model�

At this point it should be emphasised that the TVD condition which the �ux

limiter has been constructed to satisfy applies to the homogeneous system of con�

servation laws� and the inclusion of source terms means that spurious oscillations

may appear in the �nal solution� The same is true of the slope limited schemes

of the next section� This problem has not been addressed in this work�

����� Slope limited schemes

The same balance is slightly more di�cult to achieve when the high resolution

scheme is constructed using a MUSCL�type slope limiting approach 	���� This is

because the underlying representation of the solution is now taken to be linear

within each cell so that ������ is no longer true� It can though� be replaced by

the more general expression�

�F i� �

�

��F i� �

�

� �FR
i� �

�

� F L
i� �

�

�� �FR
i� �

�

� FL
i� �

�

�� ��FL
i� �

�

� FR
i� �

�

� � ����
�

where the superscripts �R and �L represent evaluation on� respectively� the right

and left hand sides of the interface indicated by the associated subscript �as shown

in Figure ��
�� The corresponding numerical �ux is

F �

i� �

�

�
�

�

�
FR

i� �

�

� FL
i� �

�

�
� �

�

�
�Rj��j �R���U

�
i� �

�

� ������

in which the Roe�averages are now evaluated from the reconstructed piecewise lin�

ear solution� An appropriate correction must therefore be made to the numerical

source within each cell� and this leads to

S�i �
�
S�
i� �

�

� � S�
i� �

�

�
�
� �S

�
UL
i� �

�

� UR
i� �

�

�
� ������

The �rst term on the right hand side is evaluated precisely as before� in �������

except that the interface values are now those of the MUSCL reconstruction of

the solution within each cell� �S is simply the source term integral approximated

over the mesh cell �cf� �������� and hence evaluated at the Roe�average of the left

and right states of the linear reconstruction of the solution within the cell� In
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terms of the approximations ������ and ������ the extra term can be thought of

as a correction to the integral of the source term over the dual cell arising from

the linear variation of the approximation�
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Figure ��
� Flux and source evaluation for the MUSCL scheme�

��� Spatially dependent �uxes

In some situations the �ux may depend on quantities other than the �ow variables

and the numerical scheme needs to be modi�ed appropriately� Only one extra

spatially varying quantity will be considered here but the approach is easily ex�

tended to any number� Returning to Equation ����� and taking F � F �U�B�x���

where B varies independently of U � requires a modi�cation to the characteristic

decomposition� so that ����� becomes

�F i� �

�

�
�
�A�U � �V

�
i� �

�

�
�
�R�� �R���U � �R �R�� �V

�
i� �

�

�

�
NwX
k��

��k
��k�rk �

NwX
k��

�
k�rk

�
i� �

�

� ������

where �V � �F

�B
�B and �
k� the coe�cients of the decomposition of this extra

term� are the components of �R�� �V � ������ gives a set of Nw equations in Nw ��

unknowns� which are taken to be a set of consistent Roe�averaged independent

variables from which �U and �B �and all other variables� can be evaluated� This

leaves one degree of freedom which can be used by enforcing �F � �S � � at an
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appropriate state of equilibrium �cf� ������ in which the equilibrium was achieved

automatically using the original averages��

Following the same steps as in Section � to transform the �uctuation�signal

scheme to the �ux�based scheme� but including this extra term in the �ux d�

i�erence� leads to precisely the same form for the scheme when approximating

the homogeneous system as shown in ������ but with new expressions for the

numerical �uxes� given by

F �

i� �

�

�
�

�
�F i�� � F i��

�

�

�
�Rj��j �R�� �U � �R sgn�I� �R�� �V

�
i� �

�

� ������

in the �rst order case�

F �

i� �

�

�
�

�
�F i�� � F i��

�

�

�
�Rj��jL �R���U � �R sgn�I�L �R�� �V

�
i� �

�

� �����

when the �ux limited high resolution scheme is being used� or

F �

i� �

�

�
�

�

�
FR

i� �

�

� F L
i� �

�

�
� �

�

�
�Rj��j �R���U � �R sgn�I� �R�� �V

�
i� �

�

� ������

for the MUSCL scheme� where the averages are now calculated from the linearly

reconstructed solution� By including this extra term in the numerical �ux it is

possible to avoid altering the form of the source term� as was suggested in 	����

��� Shallow water �ows

The shallow water equations have been chosen as the system of equations to

illustrate the use of these new techniques� In one dimension� shallow water �ow

through a rectangular open channel of varying breadth and bed slope� The e�ects

of bed friction may also be included and� as described in Section ���� are simple

to treat within the new framework without disturbing balance between the other

source terms and the �ux derivatives� However� since it is this balance which the

new discretisation has been constructed to maintain� friction is not included in

the following discussion� The remaining system can be modelled by the equations�
B� bd

bdu

	
CA
t

�

�
B� bdu

bdu� � �

�
gbd�

	
CA
x

�

�
B� �

�

�
gd�bx � gbdhx

	
CA � ������

which� when compared with ����� to �nd U � F and S� ultimately leads to

�F

�U
�

�
B� � �

gd� u� �u

	
CA �

�F

�B
�

�
B� �

��

�
gd�

	
CA � ������
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In these equations d is the depth of the �ow� h is the depth of the bed below a

nominal still water level� b � b�x� is the channel breadth� u is the �ow velocity�

and g is the acceleration due to gravity� These quantities are depicted in Figure

����

u u

b
d

h

�

Side view Plan view

Figure ���� The shallow water �ow variables�

Equation ������ provides an example which includes source terms and a spatial

dependence on channel breadth which is independent of the �ow� Furthermore�

the balance which has been sought in previous sections is illustrated by the steady

state represented by still water �d � h and u � ��� in which case the system ������

reduces to 

�

�
gbd�

�
x

�
�

�
gd�bx � gbdhx � ������

Previously it has only been possible to maintain this steady state numerically

when �rst order schemes have been used�

The characteristic decomposition ������ for the one�dimensional shallow water

equations ������ and ������ is completely de�ned by

��� �
��bd�

�
�

�

��c
���bdu�� �u��bd�� � ��� �

��bd�

�
� �

��c
���bdu�� �u��bd��

��� � �u� �c � ��� � �u� �c

�r� �

�
B� �

�u� �c

	
CA � �r� �

�
B� �

�u� �c

	
CA

�
� � � �


g
�c��b � �
� �

�


g
�c��b � ����
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and it is easily shown that ������ is satis�ed exactly when

�u �

p
bRdRuR �

p
bLdLuLp

bRdR �
p
bLdL

� �c� � g

�p
bRdR �

p
bLdLp

bR �
p
bL

�
� ������

which reduce to the Roe�averages for one�dimensional shallow water �ow de�

scribed in 	�� in the absence of breadth variation �i�e� when bR � bL�� The

corresponding decomposition of the source terms ���� then leads to

��� �
�


g
�c��b�

�

�
�b�c�h � ���� ������

In order for ������ and ����� to maintain the correct balance� i�e�

��k
��k � �
k � ��k � � �k ������

or equivalently�

�R
�
�� �R���U � �R�� �V � �R���S

�
� � ������

when the �ow is quiescent� �b is constructed so that it satis�es

�b�h � ��bh�� �h�b � �����

where �h is evaluated in a similar manner to �d�

�h �

p
bRdR �

p
bLdLp

bR �
p
bL

� ���
��

so that d � h � �d � �h throughout the domain� Note that this also requires

that d and h are reconstructed in the same manner if the MUSCL high resolution

scheme is used�

����� Numerical results

The results presented in this section have been chosen to illustrate the improve�

ment in the approximation using the new techniques by focusing on the following�

	 the ability to maintain quiescent �ow�

	 the accuracy of approximations to both continuous and discontinuous steady

state solutions�

	 the accuracy of simple time�dependent approximations�

��



These have been studied using a variety of channel geometries�

The geometry for the �rst test case was proposed by the Working Group

On Dam�Break Modelling 	��� and the bed and breadth variation of the channel

�of length ����� are depicted in Figure ���� The upwind source term treatment

described in this paper is compared with a much simpler pointwise discretisations

in Figure ��� �using a uniform ��� cell grid� so that �x � ����� which show graphs

of water surface level and unit discharge for the numerical steady states which

result from quiescent initial conditions �� � d � h � ���� and u � ����� and

applying simple non�re�ecting boundary conditions� In this case the initial �still

water� conditions should be maintained inde�nitely by the numerical scheme�
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Figure ���� Breadth �left� and bed �right� variation for the �tidal �ow� test case�

The comparison is made between �rst order� slope limited and �ux limited

schemes combined with pointwise and upwind source term discretisations� in al�

l high resolution cases the Minmod limiter 	��� has been applied� The upwind

source term discretisations always produce the correct steady state solution� ex�

act to machine accuracy and indistinguishable from the exact solution in the

graphs� This is not only true for the �rst order scheme �which has been achieved

previously� but also for the high resolution TVD schemes using any �ux or slope

limiter on any grid in the presence of bed slope and breadth variations� The

pointwise discretisations show small discrepancies �a central discretisation of the

source term was also tried but produced even worse results than the pointwise

approximation and isn�t presented here�� most notably in the unit discharge� a

��



quantity which depends on the �ow velocity� In each case the method described

in Section ��� is used to discretise the �uxes where the channel breadth varies�

The second channel geometry which will be used in this work is de�ned over

the interval 	���� ���� and has a smoothly varying depth and breadth� given by

b�x� �

��
�

��� � ����� bmin� cos����x� ����� for jx� ���j 
 ���

��� otherwise �
���
��

where bmin is the minimum channel breadth� and

h�x� �

��
�

��� � zmax cos����x� ����� for jx� ���j 
 ���

��� otherwise �
���
��

in which zmax is the maximum height of the bed above the level � � ���� This has

been chosen as a simple channel geometry for which exact steady state solutions

to the one�dimensional shallow water equations are available for comparison 	���

The parameters chosen to de�ne the channel here are zmax � ��� and bmin � ���

A uniform ��� cell grid has been used for each computation�

Three �ows are compared�

	 F� � ���� d� � ���� giving purely subcritical �ow which is symmetric

about the throat of the constriction �the most narrow point� x � �����

	 F� � ���� d� � ���� giving transcritical �ow with a stationary hydraulic

jump downstream of the throat and a critical point at the throat�

	 F� � ���� d� � ���� giving purely supercritical �ow which is symmetric

about the throat�

The subscript �� represents the freestream �ow values �at in�nity� which are

used in the application of simple characteristic boundary conditions at in�ow

and out�ow� The results of the comparisons for each of the schemes are shown

in Figures ��������� The graphs show the variation of total discharge Q through

the channel� a quantity which should remain constant at the steady state�

In each case the upwinded source terms can be seen to model the solution bet�

ter than the pointwise evaluation� This is particularly noticeable in the subcritical

��
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Figure ���� Water surface level and unit discharge for quiescent �ow in a channel

with variable bed and breadth� see Figure ���� for �rst order �top� and high

resolution slope limited �centre� and �ux limited �bottom� schemes �t � ������
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Figure ���� Discharge for the steady� subcritical� symmetric constricted channel

test case for �rst order �top� and high resolution slope limited �bottom left� and

�ux limited �bottom right� schemes�
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Figure ��� Discharge for the steady� transcritical� symmetric constricted channel

test case for �rst order �top� and high resolution slope limited �bottom left� and

�ux limited �bottom right� schemes�
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Figure ����� Discharge for the steady� supercritical� symmetric constricted chan�

nel test case for �rst order �top� and high resolution slope limited �bottom left�

and �ux limited �bottom right� schemes�
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case where the latter is unable to attain a symmetric solution� The position and

strength of the hydraulic jump is predicted accurately by all of the schemes� al�

though there is a small discrepancy in the discharge at the discontinuity in every

case� Note that in the second order case small oscillations appear in the �up�

winded�� slope limited solution� These are not prohibited by enforcing the TVD

condition because this only applies to the homogeneous equations� although they

appear in neither the �rst order nor the �ux limited results� This indicates that

the correction term of ������ may require modi�cation away from the still water

steady state�

In 	��� it is shown that� for a �short� channel �of length L� taken here to be

����� and �low�speed� �ow� given the initial conditions

d�x� �� � h�x� � q�x� �� � � � ���
��

where q � du and h�x� is indicated in Figure ���� and the boundary conditions

d��� t� � h��� � �t� � q�L� t� � ��t� � ���

�

then a �rst order approximate solution to the equations ������ can be expressed

as

d�x� t� � h�x� � �t�

q�x� t� � ��t� �
��t�

b�x�

Z L

x
b�s� ds � ���
��

The quiescent �ow case considered earlier corresponds to taking �t� � ��t� � ��

A time�dependent �tidal� �ow test case was suggested in 	��� for which

�t� � 
 � 
 sin

�
�t� �������

�����

�
���
��

and ��t� � �� the asymptotically exact solution being given by ���
��� The

�exact� and numerical solutions �all computed on the same regular ��� cell grid�

to this problem when t � ����� are compared in Figure ����� The agreement

is very close for the �rst order and both of the higher order schemes when the

upwind source discretisation is used� The main disadvantage of the higher order

method is that there is a much stricter practical bound on the CFL number for

��
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Figure ����� Water surface level and unit discharge for the tidal �ow test case

for �rst order �top� and high resolution slope limited �centre� and �ux limited

�bottom� schemes�
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the solution to remain free of unwanted oscillations �a value of ��� was used in the

second order case compared with ��� for the �rst order scheme�� At higher CFL

numbers the accuracy of the solutions is comparable to the accuracy of those

obtained with the simpler source term discretisations� This is due to the fact

that the TVD condition only applies in the absence of source terms� Note though

that� as in the still water test� even though the pointwise source discretisation

gives a reasonable approximation to the depth� it is very poor at predicting the

�ow velocity�

� Higher dimensions

The following analysis is presented for the two�dimensional case but can be ap�

plied simply in three dimensions as well� The conservative form of a system of

conservation laws with additional source terms is expressed as

U t � Fx �Gy � S � �����

in which there are now two �ux vectors� denoted by F � F �U� and G � G�U��

The case where the �uxes depend on a quantity other than the �ow variables

is not presented here� having no obvious application to two�dimensional shallow

water �ows� but can be dealt with in a similar manner to the one�dimensional

case presented in Section ����

A combination of a standard �nite volume approximation of the �ux terms on

an arbitrary polygonal mesh �although only triangular and quadrilateral meshes

will be considered in the results� and a forward Euler discretisation of the time

derivative leads to the conservative di�erence scheme�

Un��
i � Un

i �
�t

Vi

NeX
l��

Lil �F
�

il� G
�

il� �  �nil �
�t

Vi
S�i �����

where Vi is the area of the chosen control volume� Ne is the number of edges it

has�  �nil is the outward pointing unit normal to the edge common to cells i and l

�where l represents a generic neighbouring cell� and Lil is the length of that edge

�as shown for a triangular mesh cell in Figure ����� S� � R R
cell S dxdy is once

more a numerical approximation to the source integral over the control volume�

��



For simplicity the scheme will again be assumed to be a cell centre discretisation

in which the control volumes coincide with the mesh cells� although the techniques

may also be applied to other types of scheme� The following analysis runs along

similar lines to that presented in previous sections for the one�dimensional case�

G�ilF�
il

S
�

i

Vi

Lil

��nil

cell i

cell l

Figure ���� Numerical �uxes and sources for the cell centre scheme�

��� The �rst order scheme

The numerical �uxes which lead to the �rst order Roe�s scheme in two dimensions

are given by

�F �

il� G
�

il� �  �nil �
�

�
�F i � F l� Gi �Gl� �  �nil �

�

�

�
�Rj��j �R���U

�
il
� �����

in which the eigenvectors and eigenvalues which are needed to construct �R and

�� are now those of the matrix �Cn � � �A� �B� �  �n� where

�A � �F

�U
and �B � �G

�U
���
�

are the linearised �ux Jacobians� It can be seen that the numerical �ux is similar

in form to that used in one dimension ������ In particular� �� again denotes the

evaluation of a quantity at its Roe�average state�

Since the two�dimensional scheme is based on Riemann solvers oriented per�

pendicular to the edges of the grid cells the decomposition also bears a strong

resemblance to the one�dimensional case� Once more� as long as the quantities

��



denoted �� are evaluated at the appropriate Roe�average state 	��� then the �ux

di�erences can be written in the decomposed form

��F�G� �  �n � �Cn�U � �R�� �R���U �
NwX
k��

��k
��k�rk �����

from which it follows in much the same way as in one dimension that the scheme

����� is equivalent to

Un��
i � Un

i �
�t

Vi

NeX
l��

Lil

�
�R ��� �R���U

�
il
�

�t

Vi
S�i � �����

where the superscript �� now indicates the incoming characteristics at the ap�

propriate edge of the control volume �see Figure ����� It is easily seen that this

reduces to ����� when restricted to one dimension�
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�

edge
cell il

Figure ���� Wave propagation directions �left� and source distribution �right�

within a triangular cell in two dimensions�

As in one dimension the analytical form of the source term can be split into

components to be integrated separately �cf� ������� so that

S � S� �
X
j

S�
j
�r � �Sx

j � S
y
j � � �����

Hence� integrating over an edge�cell and applying the divergence theorem to the

terms within the sum leads naturally to the approximation

Z Z
�il

S dxdy � �Sil �

�
�V� �S� �

X
j

�S�
j

I
��

�Sx
j � S

y
j � � d�n

	
A
il

� �����

��



in which V� is the area of the edge�cell� Now� given that the solution has already

been assumed to be constant in each part of the edge�cell for the purposes of the

Riemann solver� and hence the �ux evaluation� the approximation reduces to

�Sil �

�
�V� �S� �

X
j

�S�
j ��Sx

j � S
y
j � � �n

	
A
il

� ����

where �n is the normal to the edge� scaled by its length� see also ������� The terms

within the sum may again be required to balance the �ux di�erence� so the same

Roe linearisation is used in their evaluation� and it follows that

F x �Gy � S � � �
�
��F�G� � �n� �S

�
il

� � ������

throughout the domain� �il is the edge�cell corresponding to the edge between

cells i and l� as shown in Figure ���� The three�dimensional case is similar� with

all the approximations being carried out over a face�cell with the solution being

assumed constant on either side�

The two�dimensional source term can now be written as a characteristic de�

composition similar to that of the �ux di�erence ������ i�e� its linearisation can

take the form

�Sil �
�
�R �R���S

�
il

� Lil

�
NwX
k��

��k�rk

�
il

� ������

Evaluating this at the same Roe�average state as the �ux di�erence means that

the correct balance is attained because� at equilibrium� the decompositions give

L�R�� �U � R��S� S�i will be constructed out of contributions from each edge

of the cell� with consistency assured as long as the whole of each edge�cell integral

������ is distributed�

The decomposition has been carried out so that� when ����� is combined with

������ to give

Un��
i � Un

i �
�t

Vi

NeX
l��

�
�R�L��� �R���U � I� �R���S�

�
il
� ������

a precise balance can be achieved when one is sought between the sources and

the �ux gradients�

The relationship between the two forms of the �nite volume scheme� ����� and

������ can now be exploited� Substituting for I� in ������ gives

Un��
i � Un

i �
�t

�Vi

NeX
l��

�
�R�L�� �R���U � �R���S�

�
il

��



��t

�Vi

NeX
l��

�
�R�Lj��j �R���U � sgn�I� �R���S�

�
il
� ������

In addition� it is easily shown that

NeX
l��

��F il� Gil� � �nil �
NeX
l��

�F i � F l� Gi �Gl� � �nil � ����
�

in which �F il � F l � F i is the jump in F across the lth edge of cell i �and

similarly for G�� Therefore� since �� indicates evaluation at the Roe�average state�

����� holds and ������ can be rewritten as

Un��
i � Un

i �
�t

Vi

NeX
l��

�F �

il� G
�

il� � �nil �
�t

Vi
S�i � ������

in which the numerical �uxes are given by ����� and the numerical source is

S�i �
NeX
l��

S�il
� � ������

where

S�il
� �

�

�

�
�R�I� sgn�I�� �R���S

�
il

�
�
�RI� �R���S

�
il
� ������

These expressions bear a close resemblance to the numerical �uxes and can be

incorporated into the �ux�based scheme in a similar manner� As in one dimension

it is not possible to combine the source term completely with the numerical �uxes�

��� High resolution schemes

When the accuracy of the scheme is increased by the use of a �ux limiting tech�

nique the numerical �ux takes the form

�F �

il� G
�

il� �  �nil �
�

�
�F i � F l� Gi �Gl� �  �nil �

�

�

�
�R��L �R���U

�
il
� ������

and the appropriate discretisation of the source term can be shown to be

S�il
� �

�

�

�
�R�I� sgn�I�L� �R���S

�
il

�����

by similar arguments to those used in one dimension�

For a MUSCL�type slope limited higher order numerical scheme� the numerical

�uxes take the form

�F �

il� G
�

il� �  �nil �
�

�
�F Il � F iL� GIl �GiL� �  �nil �

�

�

�
�R�� �R���U

�
il
� ������

�



in which the subscripts �Il and �iL represent evaluation of the piecewise linear

reconstruction of the solution on� respectively� the inside and the outside of the

edge between cells i and l� relative to cell i �indicated in Figure ����� giving new

values from which the Roe�averages at the interface are calculated� Now� instead

of ����
� the �ux di�erences satisfy the more general expression

NeX
l��

��F il� Gil� � �nil �
NeX
l��

�F Il � F iL� GIl �GiL� � �nil

��
NeX
l��

�F Il � F i� GIl �Gi� � �nil � ������

Consequently� the numerical source term appropriate to this type of scheme is

given by

S�i �
NeX
l��

�
S�il

� � �S�U Il� U i�
�
� ������

where �� indicates the evaluation of the source term integral �cf� ����� at the

Roe�average of the speci�ed conservative variables �taken from the linear recon�

struction at the midpoints of the cell edges� and S�il
� is taken directly from �������

This can again be considered as applying a higher order correction to the integral

of the source term over the edge�cell�

cell i

cell l

Il

iL

�S

S
�

il

�

Figure ���� Flux and source evaluations for a two�dimensional MUSCL�type

scheme on triangles�

��



��� Shallow water �ows

In two dimensions the shallow water equations including the e�ects of varying

bed slope are obtained by substituting

U �

�
BBBBB�

d

du

dv

	
CCCCCA � F �

�
BBBBB�

du

du� � gd�

�

duv

	
CCCCCA � G �

�
BBBBB�

dv

duv

dv� � gd�

�

	
CCCCCA � ������

where v is the �ow velocity in the y�direction in addition to the variables de�ned

for ������� and

S �

�
BBBBB�

�

gdhx

gdhy

	
CCCCCA ����
�

into ������ The matrix Cn can be calculated simply from these for any edge

orientation�

When d � h and u � v � � �quiescent �ow in two dimensions� the desired

balance is given by the equations�
gd�

�

�
x

� gdhx �

�
gd�

�

�
y

� gdhy � ������

The discretisation should satisfy ������ exactly in this special case�

The characteristic decomposition is now carried out on the eigenvectors of the

matrix � �A� �B� �  �n� which are

�r� �

�
BBBBB�

�

�u� �cnx

�v � �cny

	
CCCCCA � �r� �

�
BBBBB�

�

��cny

�cnx

	
CCCCCA � �r� �

�
BBBBB�

�

�u� �cnx

�v � �cny

	
CCCCCA � ������

in which �nx� ny� �  �n and

�c �

s
g�dR � dL�

�
�

�u �

p
dRuR �

p
dLuLp

dR �
p
dL

� �v �

p
dRvR �

p
dLvLp

dR �
p
dL

� ������

The superscripts �R and �L indicate here the evaluation of a quantity on either side

of a cell edge� at its midpoint� The corresponding expressions for the eigenvalues

�wave speeds� are

�� � �unx � �vny � �c � �� � �unx � �vny � �� � �unx � �vny � �c � ������

��



and the wave strengths�

��� �
�d

�
�

�

��c
���du�nx ���dv�ny � ��unx � �vny��d�

��� �
�

�c
����dv�� �v�d�nx � ���du�� �u�d�ny�

��� �
�d

�
� �

��c
���du�nx ���dv�ny � ��unx � �vny��d� � �����

complete the decomposition ������

In this case� in order to provide the desired balance� the source term is written

in the form ������ giving

S �

�
BBBBB�

�

gd

�

	
CCCCCA
�r � �h� �� �

�
BBBBB�

�

�

gd

	
CCCCCA
�r � ��� h� � ������

At �rst glance this seems counterproductive� but it immediately allows the source

term integral over an edge�cell to be approximated in a manner which will allow

the discrete balance with the �ux integral� i�e� it can be approximated in the form

���� via ������ This leads to

�Sil � Lil

�
BBBBB�

�

g �d�hnx

g �d�hny

	
CCCCCA � ������

which is used to obtain the coe�cients which are used in the characteristic de�

composition ������� In this case these are

��� �
�

�
�c�h � ��� � � � ��� � ��

�
�c�h � ������

By construction� it follows that ��k
��k � ��k � � for each k� i�e�

�R
�
L�� �R�� �U � �R���S

�
� � � ������

when the �ow is quiescent� and the numerical balance is assured�

��� Numerical results

The test cases presented in this section are essentially a subset of those de�

scribed in Section ����� for the one�dimensional schemes� but applied to the

��



two�dimensional shallow water equations� For the purposes of presentation� com�

parisons will be made between breadth�averaged solutions for channel �ows and

exact solutions to the corresponding one�dimensional problem� These will obvi�

ously di�er slightly in the non�quiescent cases due to the simpli�cations inherent

in the one�dimensional model but still provide an accurate guide when the cross�

�ow velocity is small� as it is in the results presented�
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Figure ��
� Water surface level and unit discharge for the still water test case for

�rst order �top� and high resolution slope limited �bottom� schemes �t � ������

The ability of the new techniques to maintain the still water steady state

is illustrated using the geometry of Figure ��� and a triangular grid with 
��


cells and ���� nodes �giving about ��� cells along the channel� roughly half the

one�dimensional grid resolution�� As in one dimension� the upwind source term
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Figure ���� Water surface level and unit discharge for the tidal �ow test case for

�rst order �top� and high resolution slope limited �bottom� schemes�
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discretisation maintains still� �at water inde�nitely to machine accuracy in both

the �rst order and the high resolution cases� see Figure ��
� This is true of all of

the channel shapes which were tested and each of the schemes described earlier in

the text� The pointwise evaluation of the source term is clearly unable to match

this�

Results for the tidal �ow test case described in Section ����� are shown in

Figure ��� for the same triangular grid� Again� the advantage of using the upwind

source term discretisation is clearly visible and here� unlike in one dimension� the

CFL number used to obtain the results is still ���� When the source terms are

upwinded the results from the high resolution scheme are almost oscillation�free

�although it must be remembered that the averaging across the channel breadth

does produce a small amount of smoothing�� Generally� it has been seen that the

properties exhibited by the schemes in one dimension are carried over into higher

dimensions�

� Conclusions

In this paper a new method has been presented for the discretisation of source

terms when they appear as part of a nonlinear system of conservation laws� Specif�

ically� the correct approximation to the source terms is sought� given that a

particular �nite volume scheme has been used for the discretisation of the �ux

terms� Roe�s scheme has been chosen here as the underlying numerical scheme�

but the philosophy underlying the source term approximation �that the source

terms must� in some sense� be discretised in the same manner as the �ux deriva�

tives� may also be applied to other �nite volume methods� The discretisation

builds on the work of many previous authors 	�� �� �� 
�� who approximated their

source terms in a manner which took into account the �ux discretisation and� as

a consequence� allowed the numerical model to maintain speci�c equilibria which

are satis�ed by the mathematical model� The new aspect of this work is the

generalisation of these techniques to high order TVD versions of Roe�s scheme

�using both �ux limiters and slope limiters� and to arbitrary polygonal meshes

in any number of dimensions� The methods have been designed speci�cally for

��



source terms which provide some sort of balance with the �ux derivatives� Even

so� the same techniques can easily be applied to other source terms �such as those

which model bed friction in the shallow water equations� which do not exhibit a

precise balance� but the advantages over the simple pointwise discretisation are

less obvious�

The e�ectiveness of these techniques has been illustrated using the one� and

two�dimensional shallow water equations �the extension to three�dimensional sys�

tems of equations is straightforward� though not described here in detail�� in which

source terms are used to model variations in the bed topography and �in one di�

mension� channel breadth� Particular attention has been paid to the special case

of still water� and the schemes have been constructed so that they maintain this

state� In fact� the improved accuracy of the new �upwind� discretisation of the

source terms is also shown in the approximation of other steady state solutions�

particularly in one dimension when �ux limiters have been used� and to a great

extent by time�dependent test cases as well� The improvement is less marked for

slope limited schemes� indicating that a more sophisticated approximation to the

source term may be necessary away from the still water steady state� This has

been shown by comparison with a selection of test cases for which exact solutions

are available� The advantages over the commonly�used pointwise discretisation�

s are particularly apparent when quantities depending on the �ow velocity are

compared� At this stage of the research� the main problem with the new tech�

nique �a problem which also applies to the old methods� is in the modelling of

time�dependent problems� Here� in order to avoid spurious oscillations in the high

resolution results a low CFL number has to be imposed ���� in the cases tested

here�� and in some cases the unphysical oscillations cannot be removed complete�

ly� This is because the TVD condition which is satis�ed by the scheme is only

valid for the homogeneous equations� The possible construction of a TVD condi�

tion in the presence of source terms is a topic for future research� In the meantime

it may prove bene�cial to apply a Flux�Corrected Transport approach since it is

clear from the techniques presented in this paper how the source terms should be

treated for both upwind and Lax�Wendro� schemes� and the �rst order upwind

scheme appears to be robust enough to eradicate the unwanted oscillations�

��



An alternative method has also been proposed for the discretisation of the

�ux term in the case where it varies spatially but independently of the �ow

variables �as with one�dimensional models of shallow water �ow through a channel

of variable breadth�� It has been shown that� in combination with the source

term approximation� the method produces accurate solutions for a wide variety

of steady state and time�dependent test cases�
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