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Abstract

Inhomogenous Anisotropic Elliptic operators arise from the integration of the
Navier-Stokes equations for a hydrostatic Boussinesq fluid on a sphere. Anisotropy
may be defined as the variation of the property of a material with the direction in
which it is measured. An Anisotropic Elliptic operator arises in the free-surface for-
mulation of the Met Office Ocean model. A modified Helmholtz problem is iteratively
solved using conjugate gradient with a diagonal preconditioner. The anisotropy in the
corresponding discretised equations causes the convergence of the method to be slow,
particularly in polar regions. Block diagonal and Alternating Direction Implicit pre-
conditioners are considered here as alternatives and their impact on the pole problem
and on the overall convergence are assessed.

1 Introduction

Most ocean models in use today are based on integrating the incompressible Navier-Stokes
equations on a sphere. Complex topography is used at the ocean bottom and the ocean
surface is either fixed or free to move with time. The ocean basins themselves typically
contain irregularly shaped coastlines and islands which require the inclusion of specific
boundary conditions into any solution algorithm.
The forms of the operators that arise in the spherical coordinate framework are anisotropic.
An operator is anisotropic if its local properties vary with direction. As an example
consider the constant coefficient partial differential equation
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where Lx and Ly are taken here to be constant. Note that the case Lx = Ly = 1 is just the
Laplacian operator which, when discretised on a regular Cartesian grid, is known to be
relatively easy to model. If we alter the coefficients though, making Lx much larger than
Ly, the operator becomes poorly conditioned. This is an example of strong anisotropy.
In the ocean models we consider, the effects of anisotropy are seen in the latitudinally
varying rates of convergence of the elliptic methods. Poor rates of convergence are observed
in polar regions compared to equatorial and mid-latitude regions. In these cases Lx and Ly

are non constant, with Lx ≈ Ly in equatorial regions, but Lx >> Ly in polar regions. This
is an example of inhomogenous anisotropy. In these cases an operator is inhomogenous if its
properties change with location. A typical convergence result encountered with this type of
operator is shown in Figure 1 This shows the variation in residual error latitudinally, after
a convergence tolerance has been reached, for a numerical experiment with the free surface
formulation of the Met Office ocean model. Significantly higher error values are observed
in the polar regions; over an order of magnitude higher than the errors in equatorial and
mid-latitude regions.
The aims of this paper are to discuss the effect the anisotropy of the elliptic operators
has on the conditioning of model problem and on the speed of convergence of the Precon-
ditioned Conjugate Gradient (PCG) method, and also to consider the use of alternative
preconditioners to the diagonal (pointwise Jacobi) preconditioner currently used in the
Met Office free surface ocean model. Block diagonal (Jacobi) and Alternating-Direction-
Implicit (ADI) preconditioners are considered as alternatives and their impact on the
convergence speeds and conditioning are investigated.
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Figure 1: Latitudinal variance in convergence for experiment with free surface formulation
of Met.Office ocean model (Northern Hemisphere only)

2 Met Office Free-surface Model

Most of the Ocean General Circulation models in use today, including the free-surface
barotropic model used by the Met Office, are based on the Bryan-Cox-Semtner (hence-
forth BCS) model initially introduced by Bryan [2] in the late 1960’s and later modified
by Cox [3] and Semtner [9]. The BCS model solves the primitive equations, derived
from the Navier-Stokes equations, in a spherical coordinate system using hydrostatic and
Boussineq approximations. The implicit free-surface barotropic model was introduced by
Dukowicz [4] and is summarised briefly here.
The barotropic, or vertically averaged, equations of state are given by

∂u
∂t − fv = −g 1

acosφ
∂η
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(2)

where λ and φ are longitude and latitude respectively, f is the coriolis parameter, g is the
gravitational acceleration constant, H = H(λ, φ) is the total depth of the ocean, (u, v) are
the barotropic velocity components and Gx, Gy represent baroclinic forcing. Dukowicz [4]
considered the following general time discretisation of equation (2) :
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with
uα′ = α′un+1 + (1− α′ − γ′)un + γ′un−1,
ηα = αηn+1 + (1− α− γ)ηn + γηn−1,
uθ = θun+1 + (1− θ)un.

(4)

where τ is the fixed timestep, n is the current time level and α, α′, γ, γ′ and θ are
coefficients used to parameterise the time centering of the pressure gradient, Coriolis, and
divergence terms. Eliminating un+1 and vn+1 in (3) and rearranging we can obtain an
implicit equation for η′ which represents the change in free surface height η between two
consecutive timesteps of the overall Met Office Unified model. The elliptic operator, which
is solved at every timestep, is given by:
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where
β =

1
2αθgτ

, (6)

3 Preconditioners for model problem

We consider a Limited Area, Northern Hemisphere model problem of the following form
in our numerical experiments:





1
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− kU = γ(λ, φ)

λ ∈ (0oE, 30oE), φ ∈ (10oN, l)
U(0oE, φ) = 0, U(30oE, φ) = 0
U(λ, 10oN) = 0, U(λ, l) = 0
l ∈ (40oN, 89.5oN).

(7)

where k ≥ 0, and γ is known. In our experiments we investigated the effects of moving
the northern boundary of the domain closer to the pole. We discretise the problem using
a standard five-point discretisation scheme with a constant stepsize h in both directions
and taking a natural ordering of the grid points. This gives rise to a matrix equation of
the general form

AU = b, (8)

where the variable U is a (unknown) column vector of the grid point values of the variable
U and b is a (known) column vector representing boundary values and source terms. The
system matrix A is a real, symmetric, m ×m matrix representing the discretised model
equations (where m is the number of grid points). It is also square, sparse, irreducible and
diagonally dominant with strict diagonal dominance in at least one row. It is therefore
irreducibly diagonally dominant and hence positive-definite ( [10]).
The Met Office free-surface model currently uses a PCG method with a preconditioner
containing only the diagonal elements of A, aii. The PCG method may be thought of as
an acceleration method for the point Jacobi iterative method. Due to the block nature of
A we may also consider the block Jacobi splitting as a preconditioner for the PCG method
( [1], [5], [8]). In our experiments we also consider an ADI preconditioner ( [10]) based on
the splitting

A = Hω + Vω + Σ,

where
(HωU)(λi, φj) = −U(λi + h, φj) + 2U(λi, φj)− U(λi − h, φj)
(VωU)(λi, φj) = −U(λi, φj + h) + 2U(λi, φj)− U(λi, φj − h)
(ΣU)(λi, φj) = kU(λi, φj)

(9)

The matrices defined in 9 have the following properties : Σ is a non-negative diagonal
m×m matrix and is hence non-negative definite. H and V are Stieltjes matrices and are
diagonally dominant and positive definite (since they have positive diagonal entries and
non-positive non-diagonal entries).
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4 Numerical Experiments

Figure 2 shows the effect the increased anisotropy due to moving the northern boundary
closer to the pole has on the eigenvalues of GD, the point Jacobi iteration matrix. We
observe the clustering of secondary eigenvalues of GD near the, slightly larger, leading
eigenvalue. This suggests that more eigenmodes will contribute significantly to the errors
with increased anisotropy. Figure 3 shows the leading four eigenvectors of GD. Whilst
the lead eigenmode does not possess a significant signal in the polar regions the others do
and it is these that become more significant with increased anisotropy and therefore will
contribute much more to the residual errors in the method.
Tables 1 and 2 show the effect on the conditioning of the problem with the increased
anisotropy due to moving the northern boundary closer to the pole, and the use of the
different preconditioners (where GP is the iteration matrix of the preconditioned system
P−1A with GP = I − P−1A). We observe that the conditioning becomes over an order
of magnitude larger by moving the boundary near to the pole. We also observe that
the conditioning of the matrix with the Block preconditioner is better than with the
diagonal preconditioner, with ADI preconditioning a further improvement on that. We
would therefore expect ADI preconditioning and to a lesser extent Block preconditioning,
to yield better convergence rates to the diagonal preconditioner, and this is indeed what
is shown in Figure 4. This shows the residual errors after a fixed amount of CPU time,
with ADI and Block preconditioning clearly superior.
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Figure 2: Leading eigenvalues of GD for problem with northern boundary at 40o and 89o

respectively, h = 1o, k = 0.01.
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Figure 3: Leading four eigenvectors of GD, l = 88o, h = 1o, k = 0.01.
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κ(A)
Boundary h = 1

2

o
h = 1o h = 2o

40o 2.19×103 544.18 134.17
70o 4.28×103 1.04×103 249.57
88o 3.12×104 6.51×103 1.21×103

89o 5.20×104 9.75×103 NA

Table 1: Variation of condition number with varying northern boundary, k = 0.01.

Preconditioner κ(P−1A) ρ(GP )
None 6.51×103 -

Diagonal 691.92 0.9960
Block 293.92 0.9901
ADI 139.31 0.9601

Table 2: Variation of condition number and spectral radii with preconditioners, 88o North-
ern Boundary, h = 1o, k = 0.01.
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Figure 4: Latitudinal variance in convergence for Limited Area Helmholtz problem with
Diagonal, Block and ADI preconditioners. Northern boundary at 88o, h = 1o, k = 0.01.

5 Conclusions

Our analysis of the eigenvectors and eigenvalues of the iteration matrix GD of our iterative
method leads us to conclude that the problem of larger residual errors in polar regions of
our model is at least partly due to the increased importance, with increased anisotropy,
of ’nearly’ leading eigenvectors with significant values in polar regions. Our numerical
experiments have shown that Block Jacobi and particularly ADI preconditioners can yield
significant improvements with regards to addressing the issue of larger residual errors in
polar regions and hence improve convergence speeds as a whole.
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