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Abstract

The Gauss-Newton algorithm is an iterative method regularly used for solving nonlinear
least squares problems. It is particularly well-suited to the treatment of very large scale
variational data assimilation problems that arise in atmosphere and ocean forecasting. The
procedure consists of a sequence of linear least squares approximations to the nonlinear
problem, each of which is solved by an ‘inner’ direct or iterative process. In comparison with
Newton’s method and its variants, the algorithm is attractive because it does not require the
evaluation of second-order derivatives in the Hessian of the objective function. In practice
the exact Gauss-Newton method is too expensive to apply operationally in meteorological
forecasting and various approximations are made in order to reduce computational costs and
to solve the problems in real time. Here we investigate the effects on the convergence of the
Gauss-Newton method of two types of approximation used commonly in data assimilation.
Firstly, we examine ‘truncated’ Gauss-Newton methods where the ‘inner’ linear least squares
problem is not solved exactly, and secondly, we examine ‘perturbed’ Gauss-Newton methods
where the true linearized ‘inner’ problem is approximated by a simplified, or perturbed,
linear least squares problem. We give conditions ensuring that the truncated and perturbed
Gauss-Newton methods converge and also derive rates of convergence for the iterations. The
results are illustrated by a simple numerical example.

Keywords Nonlinear least squares problems; approximate Gauss-Newton methods; vari-
ational data assimilation
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1 Introduction

The Gauss-Newton method is a well-known iterative technique used regularly for solving the
nonlinear least squares problem (NLSP)

min
x

φ(x) =
1
2
‖f(x)‖2

2 , (1)

where x is an n-dimensional real vector and f is an m-dimensional real vector function of x [9].
Problems of this form arise commonly from applications in optimal control and filtering and

in data fitting. As a simple example, if we are given m observed data (ti, yi), that we wish to
fit with a model S(x, t), determined by a vector x of n parameters, and if we define the i-th
component of f(x) to be fi(x) = S(x, ti)− yi, then the solution to the NLSP (1) gives the best
model fit to the data in the sense of the minimum sum of square errors. The choice of norm
is often justified by statistical considerations [12]. Recently, very large inverse problems of this
type arising in data assimilation for numerical weather, ocean and climate prediction and for
other applications in the environmental sciences have attracted considerable attention [3, 8].

The Gauss-Newton method consists in solving a sequence of linearized least squares approx-
imations to the nonlinear (NLSP) problem, each of which can be solved efficiently by an ‘inner’
direct or iterative process. In comparison with Newton’s method and its variants, the Gauss-
Newton method for solving the NLSP is attractive because it does not require computation or
estimation of the second derivatives of the function f(x) and hence is numerically more efficient.

In practice, particularly for the very large problems arising in data assimilation, approxima-
tions are made within the Gauss-Newton process in order to reduce computational costs. The
effects of these approximations on the convergence of the method need to be understood. Here we
investigate the effects of two types of approximation used commonly in data assimilation: firstly,
we examine ‘truncated’ Gauss-Newton methods where the ‘inner’ linear least squares problem
is not solved exactly, and secondly, we examine ‘perturbed’ Gauss-Newton methods where the
true linearized ‘inner’ problem is approximated by a simplified, or perturbed, linear least squares
problem. We give conditions ensuring that the truncated and perturbed Gauss-Newton methods
converge and also derive rates of convergence for the iterations.

In the next section we state the problem in detail, together with our assumptions, and
define the Gauss-Newton algorithm. We also present some basic theory for the exact method.
The truncated and perturbed algorithms that are to be investigated are then defined. In the
following sections theoretical convergence results are established for the approximate Gauss-
Newton methods. Two different approaches are used to derive the theory. Firstly, we apply
extensions of the results of [9, 4] for inexact Newton methods to the approximate Gauss-Newton
methods in order to obtain general convergence theorems. We then derive more restricted
results using the approach of [5]. The restricted results also provide estimates for the rates of
convergence of the methods. Conditions for linear, super-linear and quadratic convergence are
noted. Finally, in the remaining sections, numerical results demonstrating and validating the
theory are presented and the conclusions are summarized.

2 Gauss-Newton Method

We begin by introducing the Gauss-Newton method and reviewing briefly some results on the
convergence of the method. We then define the truncated and perturbed approximate Gauss-
Newton methods that will be examined in subsequent sections.
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2.1 Statement of the algorithm

We consider the nonlinear least squares problem (NLSP) defined in (1), where we assume that
f : Rn 7→ Rm is a nonlinear, twice continuously Fréchet differentiable function. We denote the
Jacobian of the function f by J(x) ≡ f ′(x). The gradient and Hessian of φ(x) are then given by

∇φ(x) = JT (x)f(x), (2)
∇2φ(x) = JT (x)J(x) + Q(x), (3)

where Q(x) denotes the second order terms

Q(x) =
m∑

i=1

fi(x)∇2fi(x). (4)

Finding the stationary points of φ is equivalent to solving the gradient equation

F (x) ≡ ∇φ(x) = JT (x)f(x) = 0. (5)

Techniques for treating the NLSP can thus be derived from methods for solving this nonlinear
algebraic system.

A common method for solving nonlinear equations of form (5) and hence for solving the
NLSP (1) is Newton’s method [9]. This method requires the inversion of the full Hessian matrix
(3) of function φ. For many large scale problems, the second order terms Q(x) of the Hessian
are, however, impracticable to calculate and, in order to make the procedure more efficient,
Newton’s method is approximated by ignoring these terms. The resulting iterative method is
known as the Gauss-Newton algorithm [9] and is defined as follows.

Gauss-Newton Algorithm (GN)

Step 0 : Choose an initial x0 ∈ Rn

Step 1 : Repeat until convergence:

Step 1.1 : Solve J(xk)T J(xk)sk = −JT (xk)f(xk)

Step 1.2 : Set xk+1 = xk + sk.

¤
Remarks: We note that at each iteration, Step 1.1 of the method is equivalent to solving the
linearized least squares problem

min
s

1
2
‖J(xk)s + f(xk)‖2

2 . (6)

We note also that the GN method can be written as a fixed-point iteration of the form

xk+1 = G(xk) (7)

where G(x) ≡ x − J+(x)f(x) and J(x)+ ≡ (JT (x)J(x))−1JT (x) denotes the Moore-Penrose
pseudo-inverse of J(x).
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2.2 Convergence of the exact Gauss-Newton method

Sufficient conditions for the convergence of the Gauss-Newton method are known in the case
where the normal equations for the linearized least squares problem (6) are solved exactly in
Step 1.1 at each iteration. We now recall some existing results. The following assumptions are
made in order to establish the theory:

A1. there exists x∗ ∈ Rn such that JT (x∗)f(x∗) = 0;

A2. the Jacobian matrix J(x∗) at x∗ has full rank n.

We introduce the notation ρ(A) to indicate the spectral radius of an n × n matrix A, and
define

% = ρ
((

J(x∗)T J(x∗)
)−1

Q(x∗)
)

. (8)

The following theorem on local convergence of the Gauss-Newton method then holds.

Theorem 1 [9] Let assumptions A1. and A2. hold. If % < 1, then the Gauss-Newton iteration
converges locally to x∗; that is, there exists ε > 0 such that the sequence {xk} generated by the
Gauss-Newton algorithm converges to x∗ for all x0 ∈ D ≡ {x | ‖x− x∗‖2 < ε}.

Theorem 1 has a geometrical interpretation as described in [13]. (See also [1]). We denote
by S the surface in Rm given by the parametric representation y = f(x), x ∈ Rn, and let M
be the point on S with coordinates f(x∗), taking O as the origin of the coordinate system. The
vector OM is orthogonal to the plane tangent to the surface S through M .

Theorem 2 [13] Suppose that the assumptions of Theorem 1 hold and that f(x∗) is nonzero.
Then

% = ‖f(x∗)‖2 χ, (9)

where χ is the maximal principal curvature of the surface S at point M with respect to the
normal direction w∗ = f(x∗)/ ‖f(x∗)‖2.

In the zero residual case, where f(x∗) = 0, the relation (9) continues to hold. In this case the
origin O lies on the surface S and χ denotes the maximal principle curvature of S with respect
to the direction normal to the tangent surface at O. Since we then have Q(x∗) = 0 and hence
% = 0, the result still holds.

For the Gauss-Newton method to converge it is therefore sufficient for the maximal principal
curvature χ of the surface S at the point f(x∗) to satisfy 1/χ > ‖f(x∗)‖2. This condition holds
if and only if ∇2φ(x∗) is positive definite at x∗ and ensures that x∗ is a local minimizer of the
objective function φ [1]. The relation (9) implies that the convergence condition of Theorem 1
is invariant under transformation of the NLSP by a local diffeomorphism, since the quantity
‖f(x∗)‖2 χ has this property [13].

The proofs of these results depend on theory for stationary fixed point iteration processes [9].
The theory ensures local convergence at a linear rate. Additional, but more restrictive, conditions
for local convergence are given in [5]. Conditions giving higher order rates of convergence can
be deduced from this theory. The Gauss-Newton method can also be treated as an inexact
Newton’s method [11], [4], [2]. Results of these types will be discussed further in Sections 4
and 5.
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3 Approximate Gauss-Newton Algorithms

A serious difficulty associated with the use of the Gauss-Newton method in large scale appli-
cations, such as data assimilation, is that the linearized least squares problem (6) is compu-
tationally too expensive to solve exactly in Step 1.1 of the algorithm at each iteration. The
dimensions of the normal matrix equations to be solved in Step 1.1 are often so great that the
system coefficients cannot be stored in core memory, even in factored form. Therefore, in order
to solve the full nonlinear problem efficiently, in real forecasting time, approximations must be
made within the Gauss-Newton procedure.

Two types of approximation are commonly applied. Firstly, the linearized least squares
problem (6) is solved only approximately by an ‘inner’ iteration method that is truncated before
full accuracy is reached. We refer to this approximate algorithm as the Truncated Gauss-Newton
(TGN) method . Secondly, the linearized least squares problem in Step 1.1 is replaced by an
approximate, simplified or perturbed, linear problem that can be solved more efficiently in the
inner loop. We refer to this algorithm as the Perturbed Gauss-Newton (PGN) method . Here we
examine both of these approximate Gauss-Newton methods and also the combined Truncated
Perturbed Gauss-Newton (TPGN) method, where both approximations are applied. In the
next subsections we define these procedures explicitly, and in Sections 4 and 5 we analyse the
convergence of the approximate methods.

3.1 Truncated Gauss-Newton method

At each outer iteration k of the Gauss-Newton method, we solve the normal equations

J(xk)T J(xk)s = −J(xk)T f(xk) (10)

for the linearized least squares problem (6) using an iterative procedure. Intuitively, when xk

is far from x∗ and the function f is nonlinear, it is not worth solving (10) to high accuracy. A
natural stopping criterion for the iterative process is where the relative residual satisfies

∥∥J(xk)T J(xk)sk + J(xk)T f(xk)
∥∥

2
/

∥∥J(xk)T f(xk)
∥∥

2
≤ βk. (11)

Here sk denotes the current estimate of the solution of (10) and βk is a specified tolerance. For
this reason we define the Truncated Gauss-Newton algorithm as follows.

Truncated Gauss-Newton Algorithm (TGN)

Step 0 : Choose an initial x0 ∈ Rn

Step 1 : Repeat until convergence:

Step 1.1 : Find sk such that
(J(xk)T J(xk))sk = −J(xk)T f(xk) + rk,
with ‖rk‖2 ≤ βk

∥∥J(xk)T f(xk)
∥∥

2

Step 1.2 : Update xk+1 = xk + sk.

¤
The tolerances βk, k = 0, 1, 2 . . . , must be chosen to ensure overall convergence of the proce-
dure to the optimal x∗ of the nonlinear least squares problem (1). Conditions guaranteeing
convergence of the TGN method are presented in Sections 4 and 5.
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3.2 Perturbed Gauss-Newton method

For some applications it is desirable to apply a perturbed Gauss-Newton method in which the
true Jacobian J is replaced by an approximation J̃ ; this is practical, for example, in cases where
a perturbed Jacobian is much easier or computationally less expensive to calculate. We therefore
define the perturbed Gauss-Newton method as follows.

Perturbed Gauss-Newton Algorithm (PGN)

Step 0 : Choose an initial x0 ∈ Rn

Step 1 : Repeat until convergence:

Step 1.1 : Solve J̃(xk)T J̃(xk)sk = −J̃(xk)T f(xk)

Step 1.2 : Set xk+1 = xk + sk.

¤
We emphasize that in Step 1.1 of the PGN algorithm only the Jacobian is approximated and not
the nonlinear function f(xk). The approximate Jacobian, J̃(x), is assumed to be continuously
Fréchet differentiable.

In order to interpret this iteration, it is convenient to define the function

F̃ (x) = J̃(x)T f(x), (12)

and to write its first derivative in the form

F̃ ′(x) = J̃(x)T J(x) + Q̃(x), (13)

where J(x) is the Jacobian of the function f(x) and Q̃(x) represents second order terms arising
from the derivative of J̃(x). Then the PGN algorithm can be considered as a fixed point
algorithm for finding a solution x̃∗ to the equation

F̃ (x) = 0. (14)

We remark that, just as the GN method can be regarded as an inexact Newton’s method
for solving the gradient equation (5), the PGN method can be treated as an inexact Newton’s
method for solving the perturbed gradient equation (14). In the PGN method, the second order
term in the derivative F̃ ′ is ignored and the first order term is now approximated, allowing the
fixed point iteration to be written as a sequence of linear least squares problems.

For the zero residual NLSP, where f(x∗) = 0, the solution x∗ of the problem satisfies (14),
and so the fixed point x̃∗ = x∗ of the PGN procedure is also a fixed point of the exact GN
iteration. Similarly, if f(x∗) lies in the null space of J̃(x∗), then (14) is satisfied by x∗ and the
fixed point of the PGN method is again a fixed point of the exact GN method. In general, the
fixed point of the PGN method will not be the same as that of the GN algorithm. We might
expect, however, that if J̃ is close to J , then the solution x̃∗ of (14) will be close to the solution
x∗ of the true gradient equation (5).

In Sections 4 and 5 we give conditions for the PGN method to converge locally, and in
Section 4 we also examine the distance between the fixed points of the two algorithms.
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3.3 Truncated Perturbed Gauss-Newton method

In the PGN method, we solve the normal equations in Step 1.1 of the algorithm at each outer
iteration k by applying an iterative method to the perturbed linear least squares problem

min
s

1
2

∥∥∥J̃(xk)s + f(xk)
∥∥∥

2

2
. (15)

To improve the efficiency of the PGN procedure, the iteration is truncated before full accuracy
is reached. The iterations are halted where the relative residual satisfies

∥∥∥J̃(xk)T J̃(xk)sk + J̃(xk)T f(xk)
∥∥∥

2
/

∥∥∥J̃(xk)T f(xk)
∥∥∥

2
≤ βk. (16)

Here sk is the current estimate of the solution of (15) and βk is a specified tolerance. This pro-
cedure is referred to as the Truncated Perturbed Gauss-Newton (TPGN) method and is defined
as follows.

Truncated Perturbed Gauss-Newton Algorithm (TPGN)

Step 0 : Choose an initial x0 ∈ Rn

Step 1 : Repeat until convergence:

Step 1.1 : Find sk such that
J̃(xk)T J̃(xk)sk = −J̃(xk)T f(xk) + rk,

with ‖rk‖2 ≤ βk

∥∥∥J̃(xk)T f(xk)
∥∥∥

2

Step 1.2 : Update xk+1 = xk + sk.

¤
The tolerances βk, k = 0, 1, 2 . . . , must be chosen to ensure overall convergence of the proce-
dure to the optimal x̃∗ of the perturbed gradient equation (14). Conditions guaranteeing local
convergence of the TPGN method are presented in Sections 4 and 5.

4 Convergence of Approximate Gauss-Newton Methods I

We now derive sufficient conditions for the convergence of the truncated and perturbed Gauss-
Newton methods. The theory is based on two different approaches. In this section we present
results based on theory for inexact Newton methods found in [4] and [2]. In the subsequent
section we extend the arguments of [5] for exact Gauss-Newton methods to the approximate
truncated and perturbed methods.

We begin by introducing the theory for inexact Newton methods. This theory is applied
to the exact Gauss-Newton method to obtain a new convergence condition. Criteria for the
convergence of the truncated and perturbed methods are then derived using these results.

4.1 Inexact Newton methods

The inexact Newton method for solving the NLSP problem (1), as defined in [4], is given as
follows.
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Inexact Newton Algorithm (IN)
Step 0 : Choose an initial x0 ∈ Rn

Step 1 : Repeat until convergence:

Step 1.1 : Solve ∇2φ(xk)sk = −∇φ(xk) + r̃k

Step 1.2 : Set xk+1 = xk + sk.

¤
In Step 1.1 the residual errors r̃k measure the amount by which the calculated solution sk fails
to satisfy the exact Newton method at each iteration. It is assumed that the relative sizes of
these residuals are bounded by a nonnegative forcing sequence {ηk} such that for each iteration

‖r̃k‖2

‖∇φ(xk)‖2

≤ ηk. (17)

Conditions for the convergence of IN are established in the following theorem.

Theorem 3 [4] Let assumptions A1. and A2. hold and let ∇2φ(x∗) be nonsingular. Assume
0 ≤ ηk ≤ η̂ < t < 1. Then there exists ε > 0 such that, if ‖x0 − x∗‖2 ≤ ε, the sequence of inexact
Newton iterates {xk} satisfying (17) converges to x∗. Moreover, the convergence is linear in the
sense that

‖ xk+1 − x∗ ‖∗≤ t ‖ xk − x∗ ‖∗, (18)

where ‖ y ‖∗=
∥∥∇2φ(x∗)y

∥∥
2
.

In [2] Theorem 3 is applied to obtain more general results in which the Jacobian and Hes-
sian matrices are perturbed on each iteration of the Newton method. Here we adopt similar
techniques to derive results for the approximate Gauss-Newton methods based on theory for the
inexact Newton methods.

4.2 Gauss-Newton as an inexact Newton method

We first establish novel sufficient conditions for the exact Gauss-Newton method to converge by
treating it as an inexact Newton method.

Theorem 4 Let assumptions A1. and A2. hold and let ∇2φ(x∗) be nonsingular. Assume
0 ≤ η̂ < 1. Then there exists ε > 0 such that, if ‖x0 − x∗‖2 ≤ ε and if

∥∥Q(xk)(JT (xk)J(xk))−1
∥∥

2
≤ ηk ≤ η̂, for k = 0, 1, . . . , (19)

the sequence of Gauss-Newton iterates {xk} converges to x∗.

Proof of Theorem 4 : We can write the GN method as an IN method by setting

r̃k = ∇φ(xk)−∇2φ(xk)(JT (xk)J(xk))−1∇φ(xk)
= (I −∇2φ(xk)(JT (xk)J(xk))−1)∇φ(xk). (20)

Then, using (3), we have

‖r̃k‖2 =
∥∥(I −∇2φ(xk)(JT (xk)J(xk))−1)∇φ(xk)

∥∥
2

≤ ∥∥Q(xk)(JT (xk)J(xk))−1
∥∥

2
‖∇φ(xk)‖2 . (21)

By Theorem 3, a sufficient condition for local convergence is therefore
∥∥Q(xk)(JT (xk)J(xk))−1

∥∥
2
≤ ηk ≤ η̂, k = 0, 1, . . . . (22)

¤
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The convergence condition derived in this theorem is less general than that obtained in
Theorem 1, which requires a bound only on the spectral radius of the matrix Q(x)(JT (x)J(x))−1

at the fixed point x = x∗, rather than on its norm at each iterate xk. However, the technique
used in the proof of Theorem 4 provides a practical test for convergence and is more readily
extended to the case of the approximate Gauss-Newton iterations.

4.3 Convergence of the Truncated Gauss-Newton method (I)

We now give a theorem that provides sufficient conditions for the convergence of the truncated
Gauss-Newton (TGN) method. It is assumed that the residuals in the TGN method are bounded
such that

‖rk‖2 ≤ βk ‖∇φ(xk)‖2 , (23)

where {βk} is a nonnegative forcing sequence. The theorem is established by considering the
algorithm as an inexact Newton method, as in the proof of Theorem 4.

Theorem 5 Let assumptions A1. and A2. hold and let ∇2φ(x∗) be nonsingular. Assume that
0 ≤ β̂ < 1 and select βk, k = 0, 1, . . . such that

0 ≤ βk ≤
β̂ − ∥∥Q(xk)(JT (xk)J(xk))−1

∥∥
2

1 + ‖Q(xk)(JT (xk)J(xk))−1‖2

, k = 0, 1, . . . . (24)

Then there exists ε > 0 such that, if ‖x0 − x∗‖2 ≤ ε, the sequence of truncated Gauss-Newton
iterates {xk} satisfying (23) converges to x∗.

Proof of Theorem 5 : We can write the TGN method as an IN method by setting

r̃k = ∇φ(xk)−∇2φ(xk)(JT (xk)J(xk))−1∇φ(xk) +∇2φ(xk)(JT (xk)J(xk))−1rk. (25)

Then we have

‖r̃k‖2 ≤ ∥∥Q(xk)(JT (xk)J(xk))−1
∥∥

2
‖∇φ(xk)‖2 +

∥∥I + Q(xk)(JT (xk)J(xk))−1
∥∥

2
‖rk‖2

≤ (
∥∥Q(xk)(JT (xk)J(xk))−1

∥∥
2
+ βk(1 +

∥∥Q(xk)(JT (xk)J(xk))−1
∥∥

2
)) ‖∇φ(xk)‖2

≤ (
∥∥Q(xk)(JT (xk)J(xk))−1

∥∥
2
+ (β̂ − ∥∥Q(xk)(JT (xk)J(xk))−1

∥∥
2
)) ‖∇φ(xk)‖2

≤ β̂ ‖∇φ(xk)‖2 . (26)

Local convergence then follows from Theorem 3.

¤

Since βk ≥ 0 is necessary, we require that
∥∥Q(xk)(JT (xk)J(xk))−1

∥∥
2
≤ β̂ < 1. This is just the

sufficient condition given by Theorem 4 for the exact Gauss-Newton method to converge.
We remark also that when the problem is highly nonlinear, then

∥∥Q(xk)(JT (xk)J(xk))−1
∥∥

2
will be large and hence the limit on βk will be small. The ‘inner’ iteration of the TGN method
must then be solved more accurately to ensure convergence of the algorithm.

4.4 Convergence of the Perturbed Gauss-Newton method (I)

Next we present sufficient conditions for the perturbed Gauss-Newton (PGN) method to con-
verge. The theorem is established by considering the PGN method as an inexact Newton method
for solving the perturbed gradient equation (14). We make the assumptions:

10



A1′. there exists x̃∗ ∈ Rn such that F̃ (x̃∗) ≡ J̃T (x̃∗)f(x̃∗) = 0;

A2′. the matrix J̃(x̃∗) at x̃∗ has full rank n.

We then obtain the following theorem.

Theorem 6 Let assumptions A1′. and A2′. hold and let F̃ ′(x̃∗) ≡ J̃(x̃∗)T J(x̃∗) + Q̃(x̃∗) be
nonsingular. Assume 0 ≤ η̂ < 1. Then there exists ε > 0 such that if ‖x0 − x∗‖2 ≤ ε and if

∥∥∥I − (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1
∥∥∥

2
≤ ηk ≤ η̂, k = 0, 1, . . . , (27)

the sequence of perturbed Gauss-Newton iterates {xk} converges to x̃∗.

Proof of Theorem 6 : We can write the PGN method as an IN method by setting

r̃k = J̃(xk)T f(xk)− (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1J̃(xk)T f(xk) (28)
= (I − (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1)J̃(xk)T f(xk). (29)

Then, provided the condition (27) holds, we have

‖r̃k‖2 ≤ η̂
∥∥∥J̃(xk)T f(xk)

∥∥∥
2
, (30)

and by Theorem 3 local convergence is guaranteed.

¤

The theorem gives explicit conditions on the perturbed Jacobian J̃ that are sufficient to
guarantee the convergence of the perturbed Gauss-Newton method. The requirement is that
J̃(xk)T J̃(xk) should be a good approximation to the derivative F̃ ′(x) = J̃(x)T J(x) + Q̃(x) of
the perturbed gradient equation (14).

4.5 Fixed point of the Perturbed Gauss-Newton method

We now consider how close the solution x̃∗ of the perturbed gradient equation (14) is to the
solution x∗ of the original NLSP. To answer this question we treat the GN method as a stationary
fixed-point iteration of the form (7).

We assume that the GN iteration converges locally to x∗ for all x0 in an open convex set D
containing x∗ (defined as in Theorem 1) and that G(x) satisfies

‖G(x)−G(x∗)‖2 ≤ ν ‖x− x∗‖2 , ∀ x ∈ D, with ν < 1. (31)

Then we have the following theorem, which bounds the distance between the solutions of the
exact and perturbed iterations.

Theorem 7 Let assumptions A1., A2., A1′. and A2′. hold and assume % < 1. Let (31) be
satisfied and let x̃∗ ∈ D. Then

‖x̃∗ − x∗‖2 ≤
1

1− ν

∥∥∥(J̃+(x̃∗)− J+(x̃∗))f(x̃∗)
∥∥∥

2
. (32)
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Proof of Theorem 7 : We define G̃(x) = x− J̃+(x)f(x). Then x̃∗ = G̃(x̃∗) and we have

‖x̃∗ − x∗‖2 =
∥∥∥G̃(x̃∗)−G(x∗)

∥∥∥
2

≤
∥∥∥G̃(x̃∗)−G(x̃∗)

∥∥∥
2
+ ‖G(x̃∗)−G(x∗)‖2

≤ ν ‖x̃∗ − x∗‖2 +
∥∥∥G̃(x̃∗)−G(x̃∗)

∥∥∥
2
.

Hence, we obtain

‖x̃∗ − x∗‖2 ≤ 1
1− ν

∥∥∥G̃(x̃∗)−G(x̃∗)
∥∥∥

2

≤ 1
1− ν

∥∥∥(J̃+(x̃∗)− J+(x̃∗))f(x̃∗)
∥∥∥

2
.

¤

The theorem shows that the distance between x∗ and x̃∗ is bounded in terms of the distance
between the pseudo-inverses of J̃ and J at x̃∗ and will be small if these are close together. The
theorem also implies, from (14), that the bound given in (32) equals ‖J+(x̃∗)f(x̃∗)‖2 /(1 − ν),
which is proportional to the residual in the true gradient equation (5) evaluated at the solution
x̃∗ of the perturbed gradient equation (14). (We remark that to ensure that the conditions of the
theorem may be met, that is for x̃∗ ∈ D to hold, it is sufficient that ‖J+(x̃∗)f(x̃∗)‖2 /(1−ν) < ε,
where ε is defined as in Theorem 1.)

A different approach to the convergence of the perturbed fixed point iteration can be found
in [9]. This approach shows essentially that if the GN method converges, then the PGN iterates
eventually lie in a small region around x∗ of radius δ/(1 − ν), where δ bounds the distance∥∥∥G̃(x)−G(x)

∥∥∥
2

over all x ∈ D. This theory does not establish convergence of the perturbed
method, but the theory for the distance between the fixed points of the GN and PGN methods
presented here is consistent with these results.

4.6 Convergence of the Truncated Perturbed Gauss-Newton method (I)

We now examine the convergence of the approximate Gauss-Newton method where the Jacobian
is perturbed and the inner linear least squares problem is not solved exactly. The residuals in
the inner normal equations at each outer iteration are assumed to be bounded such that

‖rk‖2 ≤ βk

∥∥∥J̃(xk)T f(xk)
∥∥∥

2
, (33)

where {βk} is a nonnegative forcing sequence. Sufficient conditions for the convergence of this
truncated, perturbed Gauss-Newton method (TPGN) are given by the next theorem.

Theorem 8 Let assumptions A1′. and A2′. hold and let F̃ ′(x̃∗) ≡ J̃(x̃∗)T J(x̃∗) + Q̃(x̃∗) be
nonsingular. Assume that 0 ≤ β̂ < 1 and select βk, k = 0, 1, . . . such that

0 ≤ βk ≤
β̂ −

∥∥∥I − (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1
∥∥∥

2∥∥∥(J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1
∥∥∥

2

. (34)

Then there exists ε > 0 such that if ‖x0 − x̃∗‖2 ≤ ε, the sequence of perturbed Gauss-Newton
iterates {xk} satisfying (33) converges to x̃∗.

12



Proof of Theorem 8 : We can write TPGN in the same form as IN by setting

r̃k = (I − (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1)J̃(xk)T f(xk)
+ (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1rk. (35)

Then, provided the condition (33) holds, we have

‖r̃k‖2 ≤ β̂
∥∥∥J̃(xk)T f(xk)

∥∥∥
2
, (36)

and by Theorem 3 local convergence is guaranteed.

¤

We remark that in order to ensure βk ≥ 0 we also require that
∥∥∥I − (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1

∥∥∥
2
≤ β̂ < 1,

which is simply the sufficient condition found in Theorem 6 for the PGN method to converge.

4.7 Summary

In this section we have established theory ensuring local linear convergence of the Gauss-Newton,
the truncated Gauss-Newton, the perturbed Gauss-Newton and the truncated perturbed Gauss-
Newton methods based on the theory of [4] for inexact Newton methods. Numerical examples
illustrating the results for the three approximate Gauss-Newton methods are shown in Section 6.
In the next section we derive additional convergence conditions for these methods based on the
theory of [5] for exact Gauss-Newton methods.

5 Convergence of Approximate Gauss-Newton Methods II

We now derive conditions for the convergence of the approximate Gauss-Newton methods by ex-
tending the results of [5] for the exact Gauss-Newton method. These results are more restrictive
than those given in Section 4, but provide more precise estimates of the rates of convergence of
the methods. Conditions for linear, super-linear and quadratic convergence are established.

5.1 Sufficient conditions for the exact Gauss-Newton method

We begin by recalling the sufficient conditions of [5] for local convergence of the Gauss-Newton
iterates to a stationary point x∗ of the nonlinear least squares problem (NLSP).

Theorem 9 [5] Let assumptions A1. and A2. hold and let λ be the smallest eigenvalue of the
matrix J(x∗)T J(x∗). Suppose that there exists an open convex set D containing x∗ such that

(i) J(x) is Lipschitz continuous in D with a Lipschitz constant equal to γ;

(ii) ‖J(x)‖2 ≤ α for all x ∈ D;

(iii) there exists σ ≥ 0 such that
∥∥J(x)T f(x∗)

∥∥
2
≤ σ ‖x− x∗‖2 , ∀x ∈ D;

(iv) σ < λ.

13



Let c be such that 1 < c < λ/σ. Then there exists ε > 0 such that, if ‖x0 − x∗‖2 < ε, the iter-
ates {xk} generated by the Gauss-Newton algorithm converge to x∗. Additionally, the following
inequality holds

‖xk+1 − x∗‖2 ≤
cσ

λ
‖xk − x∗‖2 +

cαγ

2λ
‖xk − x∗‖2

2 . (37)

¤

The constant σ may be regarded as an approximation to the norm of the second-order terms
‖Q(x∗)‖2 and is a combined measure of the nonlinearity of the problem and the size of the
residual [5]. The theorem shows that the convergence of the Gauss-Newton method is quadratic
in the case σ = 0. This holds, for example, for the zero-residual problem where f(x∗) = 0.

The sufficient conditions given by Theorem 9 for the local convergence of the Gauss-Newton
method are more restrictive than those given in Theorem 1. We demonstrate this as follows.

Theorem 10 If the assumptions of Theorem 9 hold, then % < 1.

Proof of Theorem 10 : By differentiating the map x 7→ J(x)T f(x∗) with respect to x, we
find

J(x)T f(x∗) = Q(x∗)(x− x∗) + ‖x− x∗‖2 Θ(x− x∗), (38)

with limh→0 Θ(h) = 0. We denote f(x∗), J(x∗) and Q(x∗) by f∗, J∗ and Q∗, respectively. Then
multiplying (38) by (J∗T J∗)−1 on the left yields

(J∗T J∗)−1J(x)T f∗ = (J∗T J∗)−1Q∗(x− x∗) + ‖x− x∗‖2 Θ1(x− x∗), (39)

with limh→0 Θ1(h) = 0. We let v be the right singular vector associated with the largest singular
value of (J∗T J∗)−1Q∗ and let xε = x∗+εv for ε > 0. Substituting xε for x in (39) and rearranging
the terms of the equality then gives us

ε(J∗T J∗)−1Q∗v = (J∗T J∗)−1J(xε)T f∗ − εΘ1(εv). (40)

By the assumptions of Theorem 9, we have
∥∥J(xε)T f∗

∥∥
2
≤ σε for ε sufficiently small and

therefore ∥∥(J∗T J∗)−1J(xε)T f∗
∥∥

2
≤ ∥∥(J∗T J∗)−1

∥∥
2
σε = εσ/λ. (41)

Taking norms in (40) and letting ε tend to 0 then yields
∥∥(J∗T J∗)−1Q∗∥∥

2
≤ σ/λ. (42)

Since
% ≤ ∥∥(J∗T J∗)−1Q∗∥∥

2
, (43)

we obtain % ≤ σ/λ. Therefore, if σ < λ, then % < 1.

¤

The conditions of Theorem 9 ensure that the conditions of Theorem 1 hold and that the
exact Gauss-Newton method converges, but the conditions of Theorem 1 are weaker than those
of Theorem 9 . Since the quantity σ > ‖Q(x∗)‖2 can be made arbitrarily close to ‖Q(x∗)‖2

in a sufficiently small neighbourhood of x∗, the condition σ < λ < 1 can be achieved only if
‖Q(x∗)‖2

∥∥(J(x∗)T J(x∗)T )−1
∥∥

2
< 1, which is a stronger requirement than that of Theorem 1

for convergence (see [6]).
We now extend the theory of Theorem 9 to the approximate Gauss-Newton methods. The

results are not as general as those of Section 4, but allow the rates of convergence of the methods
to be determined.
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5.2 Convergence of the Truncated Gauss-Newton method (II)

By an extension of Theorem 9, we now establish alternative conditions for the truncated Gauss-
Newton (TGN) method to converge. We assume, as previously, that the residuals in the TGN
method are bounded such that

‖rk‖2 ≤ βk

∥∥J(xk)T f(xk)
∥∥

2
, (44)

where {βk} is a nonnegative forcing sequence.

Theorem 11 Let the conditions of Theorem 9 hold and let c be such that 1 < c < λ/σ. Select
βk, k = 0, 1, . . . to satisfy

0 ≤ βk ≤ β̂ <
λ− cσ

c(σ + α2)
, k = 0, 1, . . . . (45)

Then there exists ε > 0 such that if ‖x0 − x∗‖2 < ε, the sequence of truncated Gauss-Newton
iterates {xk} satisfying (44) converges to x∗. Additionally, the following inequality holds :

‖xk+1 − x∗‖2 ≤
c

λ
(σ + βk(σ + α2)) ‖xk − x∗‖2 + C ‖xk − x∗‖2

2 , (46)

where C =
cαγ

2λ
(1 + β̂).

Proof of Theorem 11 : The proof is by induction. Let us denote by J0, f0, J∗ and f∗

the quantities J(x0), f(x0), J(x∗) and f(x∗). From the proof of Theorem 9 (see [5, Theorem
10.2.1]), there exists a positive quantity ε1 such that, if ‖x0 − x∗‖2 < ε1, then x0 ∈ D, JT

0 J0 is
nonsingular,

∥∥(JT
0 J0)−1

∥∥
2

< c/λ, and

∥∥x0 − (JT
0 J0)−1JT

0 f0 − x∗
∥∥

2
≤ cσ

λ
‖x0 − x∗‖2 +

cαγ

2λ
‖x0 − x∗‖2

2 . (47)

Let

ε = min

{
ε1,

λ− c(σ + β̂(σ + α2))

cαγ(1 + β̂)

}
, (48)

where λ− c(σ + β̂(σ + α2)) > 0 by (45).
We start from

∥∥JT
0 f0

∥∥
2

=
∥∥JT

0 f∗ + JT
0 (J0(x0 − x∗) + f0 − f∗)− JT

0 J0(x0 − x∗)
∥∥

2
, (49)

and bound successively each term in the norm. From the definitions of σ and α in Theorem 9, we
have

∥∥JT
0 f∗

∥∥
2
≤ σ ‖x0 − x∗‖2 and

∥∥JT
0 J0(x0 − x∗)

∥∥
2
≤ α2 ‖x0 − x∗‖2. From [5, Lemma 4.1.12]

and the Lipschitz continuity of J0, we also have

‖J0(x0 − x∗) + f∗ − f0‖2 ≤
γ

2
‖x0 − x∗‖2

2 . (50)

Using the triangular inequality then shows that

∥∥JT
0 f0

∥∥
2
≤ (σ + α2) ‖x0 − x∗‖2 +

αγ

2
‖x0 − x∗‖2

2 . (51)
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Gathering the partial results (47) and (51), we obtain

‖x1 − x∗‖2 =
∥∥x0 − (JT

0 J0)−1JT
0 f0 + (JT

0 J0)−1r0 − x∗
∥∥

2

≤ ∥∥x0 − (JT
0 J0)−1JT

0 f0 − x∗
∥∥

2
+ ‖r0‖2

∥∥(JT
0 J0)−1

∥∥
2

≤ ∥∥x0 − (JT
0 J0)−1JT

0 f0 − x∗
∥∥

2
+ β0

∥∥(JT
0 J0)−1

∥∥
2

∥∥JT
0 f0

∥∥
2

≤ c

λ
(σ + β0(σ + α2)) ‖x0 − x∗‖2 + C ‖x0 − x∗‖2

2 , (52)

where C = cαγ(1 + β̂)/(2λ), which proves (46) in the case k = 0. Since ‖x0 − x∗‖2 < ε is
assumed initially, it follows from (48) that

‖x1 − x∗‖2 ≤
( c

λ
(σ + β̂(σ + α2)) + Cε

)
‖x0 − x∗‖2 ≤ K ‖x0 − x∗‖2 < ‖x0 − x∗‖2 , (53)

where K = (λ + c(σ + β̂(σ + α2)))/(2λ) < 1. The convergence is then established by repeating
the argument for k = 1, 2, . . ..

¤
The theorem shows that to ensure the convergence of the TGN method, the relative residuals

in the solution of the ‘inner’ linear least square problem must be bounded in terms of the
parameters σ, λ and α. The theorem also establishes the rates of convergence of the method in
various cases. These cases are discussed in Section 5.5.

5.3 Convergence of the Perturbed Gauss-Newton method (II)

In the next theorem we consider the perturbed Gauss-Newton iteration where an approximate
Jacobian J̃ is used instead of J .

Theorem 12 Let the conditions of Theorem 9 hold and let J̃(x) be an approximation to J(x).
Let c be such that 1 < c < λ/σ. Assume that

0 ≤ η̂ <
λ− cσ

c(σ + α2)
. (54)

Then there exists ε > 0 such that if ‖x0 − x∗‖2 < ε, and if
∥∥∥J(xk)T J(xk)

(
J+(xk)− J̃+(xk)

)
f(xk)

∥∥∥
2
/

∥∥J(xk)T f(xk)
∥∥

2
≤ ηk ≤ η̂, k = 0, 1, . . . , (55)

the sequence of perturbed Gauss-Newton iterates {xk} converge to x∗. Additionally, the following
inequality holds :

‖xk+1 − x∗‖2 ≤
c

λ
(σ + ηk(σ + α2)) ‖xk − x∗‖2 + C ‖xk − x∗‖2

2 , (56)

where C = cαγ(1 + η̂)/(2λ).

Proof of Theorem 12 : The perturbed Gauss-Newton iteration takes the form xk+1 = xk +sk,
where sk = −J̃+(xk)f(xk). Therefore, using the notation of Theorem 11, we may consider the
PGN method as a truncated Gauss-Newton method with the residual defined by

rk = J(xk)T J(xk)sk + J(xk)T f(xk) = J(xk)T J(xk)(J+(xk)− J̃+(xk))f(xk).

The conclusion then follows directly from Theorem 11.

¤
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We remark that Theorem 12 establishes the convergence of the PGN method to the fixed
point x∗ of the exact Gauss-Newton method. At the fixed point, the perturbed Jacobian J̃
must, therefore, be such that J̃(x∗)T f(x∗) = 0 in order to be able to satisfy the conditions of
the theorem; that is, at the fixed point x∗, the null space of J̃(x∗)T must contain f(x∗). In
contrast the convergence results of Theorem 6 only require that a point x̃∗ exists such that
J̃(x̃∗)T f(x̃∗) = 0 and J̃(x̃∗) is full rank.

5.4 Convergence of the Truncated Perturbed Gauss-Newton method (II)

In the following theorem we consider the truncated perturbed Gauss-Newton iteration where an
approximate Jacobian J̃ is used and the inner linear least squares problem (15) is not solved
exactly on each outer step. The residuals in the inner normal equations at each outer iteration
are assumed to be bounded such that

‖rk‖2 ≤ βk

∥∥∥J̃(xk)T f(xk)
∥∥∥

2
, (57)

where {βk} is a nonnegative forcing sequence. Sufficient conditions for the TPGN method to
converge are then given as follows.

Theorem 13 Let the conditions of Theorem 9 hold and let J̃(x) be an approximation to J(x).
Let c be such that 1 < c < λ/σ. Assume that ηk ≤ η̂ < (λ − cσ)/(c(σ + α2)) and select
βk, k = 0, 1, . . . such that

0 ≤ βk ≤ (ηk

∥∥J(xk)T f(xk)
∥∥

2
−

∥∥∥J(xk)T J(xk)(J+(xk)− J̃+(xk))f(xk)
∥∥∥

2
)

·
(∥∥∥J(xk)T J(xk)(J̃(xk)T J̃(xk))−1

∥∥∥
2

∥∥∥J̃(xk)T f(xk)
∥∥∥

2

)−1
, (58)

for k = 0, 1, . . .. Then there exists ε > 0 such that if ‖x0 − x∗‖2 < ε, the sequence of per-
turbed Gauss-Newton iterates {xk} satisfying (57) converges to x∗. Additionally, the following
inequality holds :

‖xk+1 − x∗‖2 ≤
c

λ
(σ + ηk(σ + α2)) ‖xk − x∗‖2 + C ‖xk − x∗‖2

2 , (59)

where C = cαγ(1 + η̂)/(2λ).

Proof of Theorem 13 : The TPGN iteration takes the form xk+1 = xk + sk, where sk =
−J̃+(xk)f(xk) + (J̃(xk)T J̃(xk))−1rk. Therefore, using the notation of Theorem 11, we may
consider the TPGN method as a truncated Gauss-Newton method with the residual defined as

r̃k = J(xk)T J(xk)(J+(xk)− J̃+(xk))f(xk) + J(xk)T J(xk)(J̃(xk)T J̃(xk))−1rk. (60)

Then, provided the condition (57) holds, we have

‖r̃k‖2 ≤
∥∥∥J(xk)T J(xk)(J+(xk)− J̃+(xk))f(xk)

∥∥∥
2
+

∥∥∥J(xk)T J(xk)(J̃(xk)T J̃(xk))−1
∥∥∥

2
βk

∥∥∥J̃(xk)T f(xk)
∥∥∥

2

≤ ηk

∥∥J(xk)T f(xk)
∥∥

2
. (61)

The conclusion then follows from Theorem 11.

¤
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We remark that to ensure βk ≥ 0, we require that the relation given by equation (55) holds.
This is simply the condition of Theorem 12 that guarantees the convergence of the PGN method
in the case where the inner loop is solved exactly without truncation.

Theorem 13 gives conditions for the truncated perturbed Gauss-Newton method to converge
to the fixed point x∗ of the exact Gauss-Newton method, and is therefore more restrictive
than the theorem developed in Section 4. Here the allowable form of the perturbed Jacobian
is constrained to satisfy J̃(x∗)T f(x∗) = J(x∗)T f(x∗) = 0 in order that the conditions of the
theorem may be met. The theorem does, however, establish that the method converges with
rates of convergence higher than linear in certain cases. These cases are discussed in the next
subsection.

5.5 Rates of convergence of the approximate Gauss-Newton methods

¿From Theorems 11, 12 and 13, the expected convergence rates of the approximate Gauss-
Newton methods may be established for various cases. The convergence rates are shown in (46),
(56) and (59) for the truncated Gauss-Newton, the perturbed Gauss-Newton and the truncated
perturbed Gauss-Newton methods, respectively. These rates are dependent on the parameters
σ, λ and α, defined as in Theorem 9, and can be contrasted directly with the convergence rates
of the exact Gauss-Newton method, given by (37). We observe the following.

1. Linear convergence. The theorems show that in general the GN, TGN, PGN and TPGN
methods converge linearly. In comparison with the exact GN algorithm, we see that the
price paid for the inaccurate solution of the linear least squares problem in the inner step
of the approximate methods is a degradation of the local linear rate of convergence.

2. Super-linear convergence. As previously noted, if σ = 0, which holds, for example, in the
zero-residual case where f(x∗) = 0, the convergence of the exact GN method is quadratic.
In this same case, if σ = 0 and if the forcing sequence {βk} satisfies limk→+∞ βk = 0,
then the convergence rates of the TGN and TPGN methods are super-linear. For the
PGN method to converge super-linearly in this case, the sequence {ηk} must satisfy
limk→+∞ ηk = 0.

3. Quadratic convergence. From the proof of Theorem 11, we see that the convergence of the
TGN method is quadratic if σ = 0 and if the normal equation residual is such that

‖rk‖2 ≡
∥∥J(xk)T J(xk)sk + J(xk)T f(xk)

∥∥
2
≤ C1

∥∥J(xk)T f(xk)
∥∥2

2
,

for some positive constant C1. Similarly, in the case σ = 0, the PGN method converges
quadratically if

∥∥∥J(xk)T J(xk)
(
J+(xk)− J̃+(xk)

)
f(xk)

∥∥∥
2
≤ C2

∥∥J(xk)T f(xk)
∥∥2

2
,

as does the TPGN method in this case if
∥∥∥(J(xk)T J(xk))((J(xk)+ − J̃(xk)+)f(xk) + (J̃(xk)T J̃(xk))−1rk)

∥∥∥
2
≤ C3

∥∥J(xk)T f(xk)
∥∥2

2
,

for positive constants C2, C3.

4. Effect of nonlinearity. Since λ− cσ > 0, we also see from the theorems that the allowable
upper bound on the truncation decreases as σ increases. Since σ is a combined measure
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of the nonlinearity and the residual size in the problem, we see therefore that, in order
to guarantee convergence of the approximate methods, the inner linearized equation must
be solved more accurately when the problem is highly nonlinear or when there is a large
residual at the optimal.

In Section 6 we give numerical results demonstrating the convergence behaviour of the ap-
proximate Gauss-Newton methods. The rates of convergence of the approximate methods are
also illustrated for various cases.

5.6 Summary

In this section we have established theory ensuring local convergence of the Gauss-Newton, the
truncated Gauss-Newton, the perturbed Gauss-Newton and the truncated perturbed Gauss-
Newton methods based on the theory of [5] for exact Gauss-Newton methods. The conditions
for convergence derived in this section are more restrictive than those of Section 4, but enable
the rates of convergence to be established. Numerical examples illustrating the results for the
three approximate Gauss-Newton methods are shown in the next section.

6 Numerical example

We examine the theoretical results of Sections 4 and 5 using a simple initial value problem
discretized by a second-order Runge-Kutta scheme. The example is based on that in [7, Chapter
4] and is used because it provides a clear way of producing a perturbed Jacobian. We consider
the ordinary differential equation

dz

dt
= z2, (62)

where z = z(t) and z(0) = z0 is given. Application of a second order Runge-Kutta scheme gives
a discrete nonlinear model

xn+1 = xn + (xn)2∆t + (xn)3∆t2 +
1
2
(xn)4∆t3, (63)

where ∆t denotes the model time step and xn ≈ z(tn) at time tn = n∆t. We define a least
squares problem

min
x0

φ(x) =
1
2
(x0 − y0)2 +

1
2
(x1 − y1)2 (64)

subject to (63), where y0, y1 are values of observed data at times t0, t1. This is of the same
form as (1), with

f =
(

x0 − y0

x1 − y1

)
. (65)

Then the Jacobian of f is given by

J(x0) =
(

1
1 + 2x0∆t + 3(x0)2∆t2 + 2(x0)3∆t3

)
(66)

and the second order terms of the Hessian are

Q(x0) = (x0 + (x0)2∆t + (x0)3∆t2 +
1
2
(x0)4∆t3 − y1)(2∆t + 6x0∆t2 + 6(x0)2∆t3). (67)
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Table 1: Perfect observations, exact Jacobian
ε Iterations Error Gradient

0.00 5 0.000000e+00 0.000000e+00
0.25 20 9.015011e-14 1.364325e-13
0.50 37 7.207568e-13 1.092931e-12
0.75 84 2.246647e-12 3.407219e-12
0.90 210 8.292034e-12 1.257587e-11
0.95 401 1.857048e-11 2.816403e-11
1.00 1000 3.143301e-04 4.765072e-04
1.05 431 2.652062e-02 3.880614e-02
1.10 231 5.357142e-02 7.568952e-02
1.15 163 8.101821e-02 1.106474e-01
1.20 130 1.093852e-01 1.444877e-01
1.25 112 1.394250e-01 1.781241e-01

We now use this example to test some of the theorems we have derived in Section 4. For the
experiments the true value of x0 is set to be −2.5 and we begin with an initial estimate of −2.3.
Observations are generated using the truth at the initial time t0 and using the discrete numerical
model (63) to calculate the ‘truth’ at time t1. The time step is set to be ∆t = 0.5. We begin by
testing the convergence of the TGN algorithm.

6.1 Truncated Gauss-Newton method - numerical results

For this example the exact Gauss-Newton method is easy to compute, since we have only a
scalar equation and so can obtain a direct solution of each inner iteration. In order to test the
theory for the truncated Gauss-Newton algorithm we apply an error to this solution by solving
the approximate equation

(J(x0
k)

T J(x0
k))sk = −J(x0

k)
T f(x0

k) + rk, (68)

where on each iteration we select the size of the residual rk. We choose

rk = ε

(
β̂ − |Q(x0

k)(J
T (x0

k)J(x0
k))

−1|
1 + |Q(x0

k)(J
T (x0

k)J(x0
k))

−1|

)
|∇φ(x0

k)|, (69)

with ε a specified parameter and β̂ = 0.999. From Theorem 5 we expect the algorithm to converge
to the correct solution for values of ε less than one. In Table 1 we show the results of the iterative
process for various levels of truncation. In the first column we have the value of ε chosen for the
truncation. The second column shows the number of iterations to convergence. The algorithm
is considered to have converged when the difference between two successive iterates is less than
10−12 and we restrict the maximum number of iterations to 1000. The third column of the table
shows the difference between the iterated solution and the true solution and the fourth column
shows the gradient of the objective function at the iterated solution, which should be zero if the
true minimum has been reached.

We see that for ε = 0 (the exact Gauss-Newton method) the exact solution has been found
in 5 iterations. As the value of ε is increased, the number of iterations to convergence also
increases. Once we reach a value of ε = 0.95 then the number of iterations to convergence is
401. However an examination of columns three and four of the table shows that even with this
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Table 2: Imperfect observations, exact Jacobian
ε Iterations Error Gradient

0.00 10 4.440892e-15 7.778500e-15
0.25 17 9.503509e-14 1.806853e-13
0.50 32 6.181722e-13 1.176347e-12
0.75 66 1.671552e-12 3.180605e-12
0.90 128 4.250822e-12 8.088735e-12
0.95 181 6.231016e-12 1.185694e-11
1.00 359 1.052936e-11 2.003732e-11
1.05 157 6.324736e-02 1.093406e-01
1.10 116 8.697037e-02 1.452842e-01
1.15 93 1.103473e-01 1.783861e-01
1.20 79 1.336149e-01 2.092708e-01
1.25 69 1.570351e-01 2.384890e-01

large amount of truncation, the correct solution is reached. For a value of ε = 1.0 we find that
the algorithm fails to converge within 1000 iterations. Interestingly for values of ε greater than
one, the algorithm does converge, but to the wrong solution. If we examine the case of ε = 1.05
for example, then we have convergence in 431 iterations. However the final gradient is of the
order 10−2, indicating that the true minimum has not been found. Thus from these results it
would seem that the bound on the truncation proposed in Theorem 5 is precise. For truncations
less than this bound we converge to the correct solution of the original nonlinear least squares
problem, but this is not true for truncations above this bound.

We note that for this test case, when we have perfect observations, we have a zero residual
problem. In order to test what happens when we do not have a zero residual we add an error
of 10% to observation y0 and subtract an error of 10% from observation y1. The true solution
is calculated by applying the full Newton method to the problem, which gives a fixed point of
x0 = −2.5938 in 7 iterations. The accuracy of this solution is tested by substituting it into the
gradient equation and ensuring that the gradient is zero. The convergence results for this case
are shown in Table 2, where the third column is now the difference between the iterated TGN
solution and the solution calculated using the exact Newton method.

We see a very similar pattern of behaviour as for the perfect observation (zero residual) case.
For all values of ε less than one the truncated Gauss-Newton algorithm converges to the same
solution as the exact Newton method, but the number of iterations taken to converge increases
as ε increases. We also find that for this case the method converges when ε = 1. For values of ε
greater than one, convergence is achieved, but the converged solution is not equal to that found
by the Newton method. For these cases the gradient information indicates that a minimum has
not been found.

6.2 Perturbed Gauss-Newton method - numerical results

In the application of data assimilation, a perturbed Jacobian may be derived by replacing
the linearization of the discrete nonlinear model by a simplified discretization of the linearized
continuous model. For this test case we produce a perturbed Jacobian in the same way, following
the example of [7]. We note that the linearization of the continuous nonlinear equation (62) is
given by

d(δz)
dt

= 2zδz. (70)
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If we apply the second order Runge-Kutta scheme to this equation, we obtain

δxn+1 = (1 + 2xn∆t + 3(xn)2∆t2 + 3(xn)3∆t3 +
5
2
(xn)4∆t4 + (xn)5∆t5)δxn. (71)

Thus for the example we obtain the perturbed Jacobian

J̃(x0) =
(

1
1 + 2x0∆t + 3(x0)2∆t2 + 3(x0)3∆t3 + 5

2(x0)4∆t4 + (x0)5∆t5

)
. (72)

Using this perturbed Jacobian we apply the PGN algorithm on our example, where on each
iteration we confirm that the sufficient condition (27) is satisfied. For this example we find that
that the second order terms Q̃ are given by

Q̃(x0) = (x0 + (x0)2∆t + (x0)3∆t2 +
1
2
(x0)4∆t3 − y1) ·

(2∆t + 6x0∆t2 + 9(x0)2∆t3 + 10(x0)3∆t4 + 5(x0)4∆t5). (73)

For the case in which we have perfect observations we find that (27) is satisfied on each
iteration and the PGN method converges to the true solution in 18 iterations. When error
is added on to the observations, as in the previous section, the PGN method converges in 9
iterations and again we find that the condition for convergence is always satisfied. This time
the converged solution is not the same as that of the exact Gauss-Newton method. The solution
differs from the true solution x0 = −2.5 by approximately 0.01.

In order to examine a case in which the sufficient condition (27) is not satisfied on each
iteration, we change the time step to ∆t = 0.6, keeping all other parameters of the problem the
same as before. For the case of perfect observations the PGN converges to the correct solution
in 23 iterations, compared to 5 iterations for the exact GN and 6 iterations for the Newton
method. We find that the condition for convergence is satisfied on each iteration, with the
maximum value of the left hand side of (27) reaching 0.994. However, when error is present on
the observed values, the convergence condition fails by the second iteration and we find that the
PGN fails to converge in 1000 iterations. For this case the exact GN, using the true Jacobian,
converges to the correct solution in 8 iterations.

6.3 Truncated Perturbed Gauss-Newton method - numerical results

Finally in this section we consider the case in which the perturbed Gauss-Newton method is
also truncated. Following the same method as in the previous two sections, we solve on each
iteration the approximate equation

J̃(x0
k)

T J̃(x0
k)sk = −J̃(x0

k)
T f(x0

k) + rk, (74)

where we choose the residual rk. We choose

rk = ε

(
β̂ − |1− (J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1|

|(J̃(xk)T J(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1|

)
|∇φ(x0

k)|, (75)

where ε is a specified parameter and β̂ = 0.999.The other data are as before, with errors added
to the observations. From Theorem 8 we expect the method to converge for values of ε < 1. As
previously the true solution is calculated by applying the exact Newton method, but this time
to the perturbed problem. This gives a result in 5 iterations of x0 = −2.6477. In Table 3 we
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Table 3: Imperfect observations, inexact Jacobian
ε Iterations Error Residual

0.00 21 8.215650e-14 6.693951e-14
0.25 33 4.911627e-13 4.007662e-13
0.50 56 1.217249e-12 9.930633e-13
0.75 121 3.732126e-12 3.044658e-12
0.90 306 1.105871e-11 9.021988e-12
0.95 596 2.444178e-11 1.993989e-11
1.00 1000 1.260007e-01 9.382085e-02
1.05 90 1.714365e+00 1.765471e+00
1.10 53 1.842029e+00 1.934063e+00
1.15 36 1.940084e+00 2.069636e+00
1.20 25 2.019233e+00 2.184031e+00
1.25 23 2.085381e+00 2.283791e+00

show the convergence results for the TPGN method using various levels of truncation. The third
column now shows the difference between the TPGN solution and the exact Newton method
applied to the perturbed problem, and the fourth column gives the residual in the perturbed
equation (14). We find that as expected from the theory, the TPGN algorithm converges to the
correct solution for values of ε < 1. For values of ε > 1 the algorithm converges to an incorrect
solution. Thus it appears that the bound derived in Theorem 8 is robust.

6.4 Rates of convergence

Finally we test numerically the convergence rates derived in Section 5. We begin by running
the numerical example with perfect observations, so that we have a zero residual problem. The
convergence rates can be plotted by considering the norms of the residuals on each iteration. If
the convergence is of order p then we have

‖ xk+1 − x∗ ‖2= K ‖ xk − x∗ ‖p
2, (76)

for some constant K. Thus a plot of log(‖ xk+1 − x∗ ‖2) against log(‖ xk − x∗ ‖2) will have slope
p. In Figure 1(a) we plot this slope for the case when the exact Jacobian is used. The absolute
values of the logarithms are plotted for clarity. Three curves are shown, corresponding to the
exact GN method, the TGN method with constant truncation and the TGN with βk → 0. From
the theory of Section 5 we expect the rates of the convergence for these cases to be quadratic,
linear and superlinear. We find that this is the case. For the exact GN method the slope of
the line in the figure is 1.97 and for the TGN it is 0.98. For the case in which the truncation
tends to zero the slope is 0.96 at the top of the line, which corresponds to the initial iterations,
but steepens to 1.5 at the bottom of the line, demonstrating the super-linear nature of the
convergence.

In Figure 1(b) we show the convergence for the PGN method with no truncation and the
TPGN method with constant truncation. From our previous theory we expect both of these to
show linear convergence. The numerical results show that this is the case, with both lines in the
figure having a slope of one.
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Figure 1: Convergence rates for the cases of (a) exact Jacobian and (b) perturbed Jacobian for
the zero residual case. The solid line is for no truncation, the dashed line for constant truncation
and the dotted line in plot (a) is for variable truncation.

7 Conclusions

We have described here three approximate Gauss-Newton methods, the truncated, the perturbed
and the truncated perturbed Gauss-Newton methods, for solving the nonlinear least squares
problem (NLSP). We have derived conditions for the convergence of these approximate methods
by treating them as inexact Newton methods, following the theory of [4]. More restricted
convergence results, including rates of convergence, have also been derived for the approximate
methods by extending the theory of [5] for the exact Gauss-Newton method. In practice, the
approximate Gauss-Newton methods are used to treat very large data assimilation problems
arising in atmosphere and ocean modelling and prediction. The convergence properties of these
algorithms have not previously been investigated. We show by a simple numerical example that
the bounds established by the theory are precise, in a certain sense, and that the approximate
methods are convergent if the conditions of the theory hold.
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