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Abstract

In this report, we develop a numerical method to estimate the mean value of
a solution to a steady-state partial differential equation containing an unknown
parameter. It is assumed that the statistical properties of the uncertain param-
eter are given explicitly. Various results are obtained for a general admissible
realisation, by consideration of simple perturbations in the parameter, k, about
the assumed mean value. It is shown that when the mean value is taken over all
possible realisations of k, useful resultant terms for the behaviour of the mean
value of the numerical solution can be obtained. These terms involve moments
of the (discretised) k multivariate distribution function. The solutions can be
truncated at second order, to give terms involving the discretised permeability
autocorrelation function of k. Estimates of the errors obtained due to this trun-
cation process are made. Results are then evaluated for various different forms
of autocorrelation function, with particular interest in the effect of varying the

variance, and or correlation length.
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Chapter 1

Introduction to General

Problem

This report is concerned with the solution of the model differential equations for
oil recovery from an underground reservoir.

Generally, this involves the solution of single- and/or multi-phase flow equa-
tions for fluids through a porous medium. An important practical problem associ-
ated with this is that a precise knowledge of the properties of the oil-bearing rock
is not available, since the oil field may be a considerable distance underground.
The only information about the particular makeup of this rock is obtained by ex-
periments performed on samples of the rock brought up from the recovery wells;
but the most efficient method of oil extraction involves drilling as few boreholes
as possible, ideally just two, an injection well, and a production well. This means
that the knowledge of the properties of the intervening rock is extremely limited.

An obvious approach to this problem would be to interpolate the values for
the permeabilities between the two well points, using some sort of geological data
about the structure of stratigraphic rocks. However this is done, it will mean

that there is an infinite number of possibilities, i.e. realisations, that the rock



structure can take, which leads to a probabilistic approach to the problem.
There are two statistical parameters needed when describing an uncertain

permeability field in this context:

1. the mean value for the field, k(r)
- in the most general case, this will be a spatially variable function,
(k(r)) = ko(r); but in most of this research it is assumed to be homo-
geneous, i.e. (k(r)) =kq .

2. the permeability autocorrelation function (PAF)

-this relates the statistical properties at different points in the medium.

It is defined thus:

p(r1,ra) = (((k(r1) = (k(r1)))(k(rz) = (k(rz))))) (1.1)

p(r1,r2) = ((k(r1) — ko(r1))(k(rz) — ko(r2))) (1.2)

Usually, this can be assumed to be a function of separation only

p(ry,r2) = p(ry —r2) (1.3)

A further simplification used is that the PAF is (statistically) homo-

geneous:
p(ry —r2) = p(|r1 —1r2 ) (1.4)

It is important to note that the PAF for the point where ry =re =1
is given by:

p(r,r) = ((k(r) — (k(r)))*), (1.5)

which is, by definition, equal to the variance, o*(r).



Darcy’s law for fluid flow in a porous medium states that fluid velocity is

proportional to the pressure gradient across the fluid:

k

where q = fluid flow, & = permeability tensor, n = viscosity of fluid, and p =
pressure. The work done for this report involves steady-state, single-phase flow

which is modelled by the differential equation:
V-q=0. (1.7)

Combining this with equation (1.6), and assuming the viscosity is constant, gives

the model equation:

V- kVp=0. (1.8)

It is intended that any numerical techniques found to solve this problem, for the
mean value and/or standard deviation of pressure, can then be used on more

complicated problems, such as non steady-state, or multi-phase flow.



Chapter 2

Properties of a General

Realisation

It is illustrative to consider one general realisation as an example; and by investi-
gation of the properties associated with this case, a great deal of information can
be obtained about the statistical properties of the complete problem, taken over
all realisations. The work is done here in two dimensions, but a generalisation to
three dimensions is fairly straightforward.

Consider a discretisation, with a simple five-point difference scheme on a uni-
form stencil of mesh size h, of equation(1.8) The numerical approximation to the

equation 1s
Pigerkijpt + pivrkip; — (ki s+ ki 4 K + ko 0)piy

+pic1gkiyj+pij-aki o1 =0 (2.1)

Note that the discretised values for the permeability field are those evaluated at
the half way points, between the nodes.
In the complete statistical problem, the permeability k(x,y) is a random spa-

tial function with a known mean value, which may or may not be assumed to



be homogeneous (i.e. spatially constant), and a spatial autocorrelation function
which relates the statistical properties of the function at different points. When
the permeability is discretised, as in the case above, the function is represented
as a set of statistical variables, each having its own mean value, which are all
equal, if the assumption of a homogeneous mean value function is made. Each
statistical variable is also correlated to the others, reflecting a discretisation of
the original spatial, autocorrelation function. This means that points close to-
gether have a high correlation in their discretised permeability values, and points
at large distances apart have correlations approaching zero - i.e. the correlation
value is related to the separation of the two half grid-points. In the case of an
isotropic autocorrelation function the correlation is a function of distance only;
and this is the situation investigated here.

Consider a perturbation representation of the permeability function. This can

be written
k(l‘, y) = ko(l’a y) + kl(xv y)v (22)

where the perturbation k1 (x,y) is taken about the mean value function, ko(x,y).

In the discretised form this can be directly translated to
kij = kY 4 k. (2.3)

It the simplification that the mean value of the permeability is homogeneous is

made then equations (2.2) and (2.3), become respectively

k(z,y) = ko(l +d(x,y)), (2.4)

and

kij = ko(1 4+ d; ), (2.5)

where d(x,y) is a random function, with mean value zero, that is assumed small.



Note that the permeability autocorrelation function, as defined in equations
(1.1) and (1.2), where the permeability is written as a perturbation and the

variance is assumed to be homogeneous, can be written:

((k(r) = (k(r)))(k(r') = (k(r'))))

p(r,x') =
OpOpt
_ {(ko(1 4 d(r)) — ko) (ko(1 + d(r')) — ko))
= -
kg :
= iy, (2.6
and for the discretised version, in 2-D
ko
Pi,j i = g<d27] di/7]‘/>. (27)

The homogeneous mean assumption is made throughout, for simplicity. How-
ever, it is shown later that various conclusions about the generalised case (i.e.
with spatially varying mean) can be obtained from consideration of the simplified
case.

Substituting equation (2.5) into (2.1), we get

—Pij+t — Pt T 4Pi = pic1y — Pij-1 — dig 1 iPir — i jpapiga

Fdigrjtdioyj+d; i +di ;)i —dis picay—dij_1pij1 =0 . (2.8)

This leads to a system of equations, which, when combined with the relevant

boundary conditions for the problem, can be written as the matrix equation
Ap + Dp = b, (2.9)

where b contains the boundary conditions, and is quite sparse. Due to the per-

turbation formulation, b can always be split into two parts:

b = bg + b, (2.10)



where bg corresponds to the right hand side vector of the deterministic problem,
and bg contains various linear combinations of the uncertain statistical variables,
{di;} .

For the purposes of the following examples, all on a square region, the Dirichlet
case has boundary conditions ag, ag, ayn, aw on respective south, east, north,
and west boundaries; and the mixed case has ay, as on the north and south
boundaries, with normal gradients vg, and vy on the east and west ones.

In a general case, the vector b can be written:

by b1, b1,
b2 b2, b2,
S I A N 2.11)
b; bi,, bi,
bn bno bnd

For simple Dirichlet conditions, the component vectors will be:

as + aw diyas +dy 1aw
as déyzag
as d%73a5
by = + , (2.12)
as d%m_lag
as + ag d%,na5+d1,n+%aE
aw +ay dn,%aW+dn+%,1aN
an dn+%,2aN
an dn+l 3N
bn = + 3 , (2.13)
an dpyt poraN
an +ag dn_l_%ynaN—I—dn’n_l_%aE



and

For simple von Neumann/mixed boundary conditions, these would be:

and

aw dzéaw
0 0
0 0
+ , for i=2,3,...(n—1).
0 0
ag dz,n+%aE

bl

as + 2hvw d%ylaS +2d1,1hUW
as dy oas
as dl73aS
= + ’
as di py10s
ag — 2hvg d%,n+2a5 — 2dy py2hvp
ay + 2hvw dn+%ylaN+2dn,1hUW
an dpy 1 0N
an dn+l,3aN
+ 2
anN dn+%,n+1aN
aN — 2dn,n+2hvE dn+%,n+2aN - 2d”y”+2hvE
QhUW Qdiylhvw
0 0
0 0
+ , for i=2,3,...(n—1).
0 0
—2hvg —2d; py2hvg

(2.14)

(2.15)

(2.16)

(2.17)

The matrix A is the usual block tridiagonal matrix for the simple 5-point

difference scheme, and can be assumed to be irreducibly diagonally dominant,



with the form,

A= ... ... 0 —I A —I 0 U (2.18)

0 —-I A, -1 0
0o —-I A, —I

0 -1 A,

For Dirichlet boundary conditions, the component diagonal matrices are n—by—n,

symmetric, and tridiagonal with the form,

A; = for i=1,2,..n, (2.19)

A; = . for i=1,2,..n. (2.20)

The matrix D has identical structure to A:

10



Diy Dy 0
Dyy Diy Dayjs 0
0 D3y Dss Dy 0
D= 0 Diiev Diy  Diina 0
0 Dn—2,n—3 Dn—2,n—2 Dn—Q,n—l 0
0 Dn—l,n—? Dn—l,n—l Dn—l,n
0 Dn,n—l Dn,n
(2.21)
and the component matrices for the Dirichlet problem are n — by — n:
Aii —diyy 0
—diyr Agp o —dg
D;; = . for 1=1,2,..n, (2.22)
_di,n—§ Ai,n—l _di,n—%
0 —diys  Aig
where
Aij=di_rjFdijpr+dgr i +di; 1,
and
~di_iy 0 0
0 _di—%,Z 0
Dii1=Di_1; = . . . . . . . for 1=23,..n.
0 0 —d;_y
L _di—%,n m

11

(2.23)



For mixed boundary conditions, they are (n + 2) by (n + 2), and tridiagonal:

Aig =2d, 0
—dinr Aip —dior
D;; = : : , for i=1,2,.m, (2.24)
_di,n+% Ai7”+1 _di,n+%
0 —2dips Aines

where
A%] = d, ;7+d27]+%+d2+%7]+d27]_%, fOT ] :2,3,(n—l—1),
Ajngz = ity +2d; 000 +dip 1y,

and

—
o
o

Di;1=Di_1;= . . . . . . , for 1=2,3,..(n+2).

i—%,n+2 |

(2.25)

Consider one specific realisation for the set of perturbations where the ma-
trix D is denoted by D,, vector b by by, and bg by bg,,. The corresponding

expression to equation (2.9) is then
Apn + Dypn = bo + bay,. (2.26)
This can be re-arranged to give
pn = A7 (bg +bay) — A7 D,pn (2.27)

This can then be formed into a perturbation series, and, due to fact that D,

and bg, are both linear in the {d;;} terms, the second order approximation to

12



the perturbation series is
Psn = A7 (bo + ba,) — A'D, A (bg +ba,) + AT D, AT D, A" bg. (2.28)
The equivalent full perturbation series is
pn= A" i(—DnA—l)ibn. (2.29)
i=0
This series is convergent if, and only if
Sr(D,A™Y) < 1, (2.30)

where Sr(M) denotes the spectral radius of the matrix M [4].
Alternatively, convergence with respect to a general norm, is satisfied for

realisation n, if

]\(DHA_I)i]\ — 0 asi— oo

So a sufficient condition for convergence in realisation n is
D AT < 1,

or

D]l < ATHI (2.31)

This implies a restriction on the size of all possible admissible realisations for the
perturbations - they must be at least finite, and bounded.

Now consider the effect of truncating the series (2.29) to second order
2 .
Psn = A7' Y (=D, A7) by, (2.32)
7=0
This introduces an error between this expression and (2.29) given by,

en = A7) (=D, A7) by
7=3
= AN (=D, AT’ > (=D, A" by. (2.33)

J=0

13



If it can be shown that there exists a bound on D, A~ in realisation n such that:

DA < v (2.31)

where 0 < v, < 1, then a bound on the error expression in (2.33) can be

obtained quite straightforwardly:

AT v [ball

feall < HE—2-

(2.35)

Let us assume there is a bound on the maximum relative value that each
perturbation can take, given by 6, where 6 < 1. This gives an absolute bound on

the entries of a general D, -type matrix:
|D,| < 6]A], YV n. (2.36)

Here we are using the convention that if for two matrices M and N, of the same
order, we have

Mi'SNijv \V/ ivjv

then we write

M <N

Y

and we define the absolute value of any matrix to be such that,
| Ml = [ M| Vi

Now consider || D, A7, for general p € IN, and for all admissible realisations,

n, defined in the usual way:

DA™ ]l

-1 .
1P Al = mgx 0y

(2.37)
Because of the properties for a general p-norm [5], we know that

[Dn A7l < Dl AT,

14



Now, consider ||D,]|, for all n. We have

1D.x][7
D]l = max —F
[t
B i [ 2Dy |P
= Imnax
x > |l
- 2 (25 1(Dn)is])F
< max
X > |l
< max = | 225 [(Dn )i 5P
X > il
Dl
o lx[p
< H|Dn|H§Hp|X|H§
X [ ft
= [IDaIII5,
since ||x||, = |||x||l,- Therefore,

D2 AT ] < 1Dl 1A,

< Dl AT,
Combining this result with (2.36), we have
DA™, < Sl IAT v on. (2.38)

So, from (2.31), we find that

1
< A A=
AN A=

1)
is a sufficient condition for convergence of the approximate series for all the rele-
vant realisations.

In equations (2.11) to (2.17), it is seen that the vector by can be written
as bg + bq,,, where the vector bqg, contains linear combinations of the {d,;}

perturbations as its components. By again taking the maximal value for all these

perturbations, each component of by can be shown to satisfy

—2(bg); < (bn)i < 2(bo):.

15



We can therefore conclude that

Iball < 2 [bal v o,

The errors for each realisation in expression(2.32) thus satisfy

2 SNANPIA I boll
L= éflfAfl[lfa=]

len] < vV n. (2.39)

This expression is very useful when considering the error, obtained when trun-

cating the series, in the mean value of the numerical solution.

16



Chapter 3

Statistical Approach to the

Numerical Problem

One method of approach to the full statistical problem might be to take the mean

value over all possible realisations of the numerical scheme in equation(2.1)
=itk i) = Pirrgkipr )+ (Pig(kips j+ ki, + ki + ki 1)

- <pi—1,jki—1§,j> - <Pi,j—1ki,j—1§> =0 (3-1)
Whilst this equation is precisely true, it contains no useful information, as the
discretised pressure function cannot now be separated out from the cross terms,
which contain it. Indeed, equation(3.1) leads nowhere.

If we return to equation(2.28)
Psn = A7 (bo + ba,) — A D, A7 (bg + bay,) + AT D, AT D, A" by,

taking the mean value, over all realisations, element-by-element, of both sides

gives
(Ps) = A~lby+ A1 (bg) = A" DA )by — A1 (DA™ by} + A~ (DA™ D) A by,
(3.2)

17



where the convention is that
((Vector)); = ((Vector),),
and
((Matriz));; = (Matriz);;).

These uncertain matrices and vectors obey all the usual rules of matrix algebra,

in that

((AB))i; = ((AB)y)
= Z Ak By )
= Z A Byj).-

k

Also if A is known exactly, and B is uncertain, then

((AB));; = 2. (AuwBy)
2
= > Au(By)
2
= > Au((B));,
2
so that (AB) = A(B) under matrix algebra rules. Similar rules will apply for

vector operations also,

and if, for example, A is known and v is uncertain, then,

((Av)): = Z (Asjv;) Z Aij{vg)

so that
(Av) = A(v).

18



It is fairly trivial to prove all the other algebraic rules.

The vector by, and the matrix D only contain linear terms in the perturba-
tions; and since we have already assumed that the mean value of all the perturba-
tions, over all realisations, is zero, taking the mean value of any first order terms
in {d;;} gives zero.

Equation(3.2) can therefore be re-written:
(ps) = A7'bg — A™HDA 'bq) + ATH(DAT'D)A " 'by. (3.3)

It we were tackling this problem in a deterministic way, we might make the intu-
itive assumption that a good approximation to the mean value of the numerical
solution would be obtained by solving the problem using just the mean value of

the permeability field as data. This is equivalent to solving the problem:
ApA = b(), (34)

with solution

pa = A7'bo. (3.5)

It can be seen, by comparison of (3.5) with (3.3), that this deterministic
solution is, in effect, a first order approximation to the exact mean value of the
numerical solution. This means that pa can be thought of as an approximation to
(p) that effectively contains information about the mean value of the permeability
field. The information about the second order terms in {d;;} has been discarded,

which means that two aspects of the statistical information have been lost:

1. variance of the field .

Terms like <d22]> represent the variance, or the dispersion of the per-
meability field. For a single variable, qualitatively, the variance rep-

resents the spread of possible values that it can take, away from the

19



mean value. For this reason, if this information is excluded, it makes
the mean value approximation meaningless in a statistical sense, i.e.
equation(3.5) could be an approximation to the solution for either a
field with zero dispersion ( that is, one which is known precisely ),
or for a field with an arbitrarily large dispersion ( one that is highly

uncertain ).

. correlation of the field .

Terms like (d; ;d;s ;) as seen in equation(2.7), are equal to the discre-
tised correlation function for the separated points (¢, ), and (¢',5'),
and give a measure of how similar the statistical properties at the two
points are. It is very important to take this measure into account, as
was mentioned in Chapter 1, because this is a fundamental property
of the uncertainty in the permeability field. Leaving out these terms
would give the result for a ‘static’ uncertain field, that is, one where
the permeability is uncertain at all sample points with the values at

each point being unrelated statistically to each other.

So the approximation from (3.3) for the mean value of the numerical solution,

when written

(ps) = A7'bg — AT (DA 'bg) + ATHDAT D) A by, (3.6)

contains information concerning the mean, variance, and autocorrelation function

of the permeability field, which is, essentially, what is required from the original

Clearly, the error introduced by making the approximation is given by:

o0

(e) = A™! Z_:S<(—DA‘1)mb> (3.7)

20



i.e. the error between the approximation (3.6), and the exact mean value of the
numerical solution, as in equation(3.3).

Consider a general element of this error vector:

({e))i = ((en)s), (3.8)

where ey, is as defined in (2.37).
Now consider the expected value of a general functional of a number of un-
certain statistical variables, assuming the functional f, and the set of all possible

realisations R,, have suitable properties, then,

(flar, 20, 23,0, ) = /R flar, 22,25, o xm)plae, Xe, T3y ..oy 2 )d "X,
m

(3.9)
where p(x1, ¥, T3,. .., Zy) is the (joint) multivariate distribution for the variables,

and,

| <f($17$27$37---7$m)> |

— |/R flar, a2, oy xm)plr, 22, T3y ooy T )d"X |
m

< /Rm | [, 20, 25, @) p(@1, 29, T3y oy T) | d7X

< [ 1w | plan s | 4

< max | flxy, 29,23, .. 20) | -/m | p(ay, 29,23, . .., 2,,) | d7%.
Since p(xy, xg, X3, ..., ) is the m-dimensional multivariate distribution function,

it is, by convention, always positive, and is assumed to be normalised, so that

/ | plr, 22, s ) | d7x = 1. (3.10)
R

Therefore, substituting (3.10) into the inequality expression above gives,
| <f($1,$2,$3,...,$m)> | < r%ax|f(:1:1,:1;2,:1;3,...,:1;m) | : (311)

21



It can therefore be deduced that the mean value of any function or functional of
m statistical variables, irrespective of whether they are correlated, must lie within

the extremal values of that function or functional over its admissible space.

Also,

V(2. am))| = |/Rmv(:1;1,...,:1;m) o1 )d™x|

[ W)l plan. ) ld™x

IA

and since p > 0 over R,,,

[(v(21, ..., 2m))| < i V(1 ... xm)| plee, ... 2m)d"x.

Hence for any [, norm |- |,

V(21,2 )] < V(21 2w, (3.12)

irrespective of the distribution function for the variables {z,}.

We can therefore establish a bound on the error that has been introduced when
using expression(3.6) as an approximation to the mean value of the numerical
solution, (e).

First, substituting (e) into expression(3.12) gives

el < (lell)- (3.13)

Now, since

en=A""> (=D, A7) (bg + by),

m=3

ey is a vector function, in some specified way, of all the {d;;} terms, which are
themselves uncertain statistical variables. Therefore, the process of taking the
norm of a general vector e, can be thought of as a functional of e - which means
it is itself a function of the {d;;} type variables. So, the function ||e|| must satisfy

the expression(3.11).

22



Therefore,

(lell) < max  {|[en]}. (3.14)

all realisations,n

Then, by combining (3.13) with (3.15), we can see that

el = max {{lenl|}, (3.15)

all realisations,n

which is a bound for the norm on the error introduced, when expression(3.6) is
used to approximate the mean value of the numerical solution.

Therefore, by combining equation(3.15), with equation(2.39), gives,

e 2 AP IAZ I boll
T L=olAfATT

(3.16)

the required bound on the approximation to the mean value of the numerical

solution.

23



Chapter 4

Numerical Approach to the

Problem

At first sight, evaluation of the statistical terms in equation (3.6) :
(ps) = A7'bg — A™H{DA 'bg) + ATH{DA'D)A by,

are very awkward to deal with, because, due to the presence of A-! between the
two matrices in each term, the terms (DA™ bg), and (DA™ D)A~'by involve very
complicated linear combinations of the correlation terms, {(d; ;dy ;/)}, dependent
on the inverse of A. This problem can be resolved by considering the structure
of the D,, matrices, and noticing that each term like {d; ;} occurs either twice, if
it is next to a boundary, or four times if it is on an internal half grid-point.
Suppose (i,7) is an internal half grid-point lying between grid-points labelled
y, and z. It can be seen from equations (2.21) to (2.24) that the d;; term only

occurs at the matrix positions (y,y), (y, ), (z,y), and (z, z) in the following way:

24



Y dz,] dz 7
(4.1)
z di,j dZ j
This contribution can be thought of as d; ; E*, where
1 —1
EY = : : . (4.2)
—1 1

The full matrix D,, can then be written as a weighted sum of simple elemental

matrices like £ that contain either only four or two non-zero elements:

D,= > dEY (4.3)

hal fgrid—points
If a sum over all half grid-points is written as )~, ; ( each half grid-point being

labelled (7, j) ), then the expression (3.6) can be written:

(DAT'D) = Zd”E”A 1Zd, N (4.4)

25



where the mean is taken over the joint multivariate distribution function for all
the values of d;; at half grid-points. Consider a general element of this matrix:
(DAT'D)y = ZduE”A 1Z:al/ /E”
= ZduE”AIZd//E
= Zd}]’E” Vem Ay Zdi’,j’E Vo)
i
= ZduE;fmAngd/ /E ]

= ZZ i )

i i
N <Zz(di7]di'7]'ElZc]7nAmnE2])>
6y ity
= ZZ ((d; jdy, /E,meAmnE”)
i i
= > ((digding) By AL Bl ), (4.5)
2'7]'72'/7]'/
where 37, ;s i has the meaning of a sum over all possible ways that each half

grid-point can correlate with each other halt grid-point. Of course, if there are N
of these half grid-points, then there will be (N — 1) * N possible ways that they
can correlate with each other.

A similar procedure can be done with the second term in equation (3.6),
A™Y(DA™'bg) to obtain a similar series term which involves a weighted sum.
In this case the sum is performed over half grid-points that are adjacent to the
boundary only, correlating with all other halt grid-points within the region.

The (d; ;d;s ;) terms are now just equal to the normalised discretised correla-
tion function between points (7, ) and (¢, '), as seen in equation (2.7), and is,
in the most general case, a vector function of the separation of the two points.

An isotropic assumption can be made about the correlation, in which case,
the terms (d; ;dy ;1) are just a function of the absolute distance of separation of
the points (¢,7) and (¢',5'), A more interesting case would be one in which the

correlation function has a different form in different directions. There might be
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a strong correlation in the properties of the rocks in a horizontal direction, and
much weaker correlation in the vertical direction, representing the usual layered
structure of oil bearing strata. A further development in an anisotropic correlation
function might be a periodicity in the vertical direction, which would represent a
repetition in the layered structure of the rock properties. This would introduce an
extra parameter into the correlation function, in addition to the two correlation
lengths, which would be the spatial periodicity of the rock layering.

Typical possibilities for models for the spatial correlation function would be
an exponential or a Gaussian-type decay. An isotropic exponential decay would

have the form:

p(r —1') = o?exp(—|r — 1'|/}\), (4.6)

where ) is the (characteristic) correlation length.
For a general correlation function, the correlation length, A, associated with

direction « is defined to be

A = /OOO pa(@)de, (4.7)

[5]. So a Gaussian-type correlation function, takes the form:

Tl —1r'|?

p(r,r') = o’ exp(—T), (4.8)

where A is the (in this case, isotropic) correlation length.
A Gaussian-type form for the correlation function is more useful mathemat-
ically when considering anisotropic correlations, because the distance squared

terms can be separated out straightforwardly - for example, in two dimensions:
|I‘ _ I'/|2 — |($ _ $/)2 + (y _ y/)2| — (l‘ _ $/)2 + (y _ y/)27

and so the correlation function becomes a simple product:

m(z — 2')?

N2

2

p(r — ') = o exp(— M). (4.9)

Jespl~"
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An introduction of periodicity can also be made by an extra product. For

example, if there is periodicity assumed in the x-direction, then

p(r —1') = o* exp{—W} exp{—7r(y4;2y/)} cos(w(x — ")), (4.10)

where %T is the model for the spatial periodicity, an approximate length equivalent

to the repetition distance in the rock structure.
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Chapter 5

Results Section

The following section shows results for different types of imposed boundary con-
ditions.

Figures 5.1(a)-(e) have enforced flow at one end, no flow at the opposite end,
and zero pressure conditions along the two sides. 5.1(a) is the deterministic
solution with homogeneous permeability values; 5.1(b) is the result with variance
equal to 0.1; 5.1(c) has variance 0.2; 5.1(d) has variance 0.4; and for 5.1(e) the
variance is equal to 1.0.

Figures 5.2(a)-(e) have no flow conditions at either end and a pressure differ-
ence of 1.0 across the region horizontally. Again, figures (a), (b), (c), (d), and
(e) are the results for increasing covariance values 0.0 (that is the deterministic
solution), 0.1, 0.2, 0.4, and 1.0.

Figures 5.3(a)-(d) show the effects of increasing correlation length in relation
to grid size, and overall scale of the region, with the same boundary conditions
as 5.1. Figure (a) shows results for a correlation length of 0.01, which is ap-
proximately one third of the grid size; figures (b), (c¢), and (d) are results for
correlation lengths 0.1, 0.5, and 10.0, respectively, which are all larger than the

grid size. The variance for all these results was 0.2.

29



The final figures 5.4(a)-(b) show results for anisotropic correlation lengths.
The boundary conditions were, again the same as those in 5.1. Figure (a) has
correlation length 0.1 in the x direction, and 1.0 in the y direction, and figure (b)
has correlation length 1.0 in the x, and 0.1 in the y direction. Variance was (.2

throughout.
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Figure 5.1(a)

Figure 5.1(b)
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Figure 5.1(c)

Figure 5.1(d)
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Figure 5.1(e)

Figure 5.2(a)
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Figure 5.2(b)

Figure 5.2(c)
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Figure 5.2(d)

Figure 5.2(e)
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Figure 5.3(a)

Figure 5.3(b)
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Figure 5.3(c)

Figure 5.3(d)
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Figure 5.4(a)

Figure 5.4(b)
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Figures 5.1(a) to 5.1(e) show how increasing the variance of the permeability
field increases the difference between the second order approximation to the mean
value of the pressure field, and its deterministic solution. Particular features, such
as gradients, seem to be distorted, and exaggerated.

Figures 5.2(a) to 5.1(e) show a similar effect on a different set of boundary
conditions, with no flow at either ends, and an induced pressure difference across
the region. The deterministic case just results in a simple constant flow across
the pressure difference. When the non-deterministic cases were considered for
small variance, the flow (as in the gradient of pressure) is induced to increase,
but because of the necessity of satistying the boundary conditions, the gradient is
forced to decrease close to the higher boundary condition. With increasing vari-
ance, this effect becomes more pronounced with the decrease in gradient becoming
more sharp, as the boundary conditions always have to be satisfied. Eventually,
this effect becomes so great that in 5.2(d), the maximum principle for pressure is
violated, and this roughly corresponds with the series expansion (2.29) becoming
invalid due to large stochastic perturbation in permeability.

Figures 5.3(a) to 5.3(d) show effects of changing the correlation length, relative
to the grid size. For the first case, the correlation length is considerably less
than the grid size, meaning that the statistical properties at each grid-point have
virtually no correlation with each other. The values are therefore virtually the
same as the equivalent deterministic case figure 5.1(a). In figure 5.3(b), the
correlation length is roughly three times the grid size, meaning that the properties
of nearby grid-points are correlated, much more strongly than between arbitrary
grid-points. This manifests itself as a slight distortion in the shape of the solution,
with respect to the deterministic solution. For figure (c¢) the correlation length is

0.5, meaning that the statistical properties of the pressure at the grid-points are
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correlated over roughly half the region, producing slightly more distortion. In the
last figure, the correlation length is ten times the dimensions of the dimensions of
the region, meaning that all grid-points are roughly equally correlated with each
other. This results in a large distortion compared to the deterministic case, as
expected.

Figures 5.4(a) and 5.4(b) are supposed to show differences in cases where
the correlation function is spatially anisotropic. However, the results for several
tests of this type were not very interesting; and tended to give results similar
to the isotropic cases with the smaller correlation length. That is, the shorter
correlation length always tended to dominate the observed behaviour, and this
does not lead to very interesting results. The reason for this could be that the
more interesting behaviour is contained in the higher order moment term, and it

will be particularly interesting to see how these results behave in time.
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Chapter 6

Conclusions

We have developed a method for estimating mean values for numerical solutions
to systems of steady-state partial differential equations which contain a spatially
varying uncertain parameter, that takes into account terms up to second order
in the multivariate distribution function. This gives a significant insight into
the behaviour of the mean when dispersion of the parameter values is taken into
account, as opposed to using just the deterministic solution, which only includes
information about the mean of the uncertain parameter, and consequently has no
real statistical information. Bounds on the accuracy of this approach have been
found and could be developed further, by evaluation and comparison for different
multivariate distribution functions.

The problem with many of these results is the non-physicality of the model
equations, and the need to impose artificial boundary conditions, which do not
allow a proper development of the flow behaviour to be done. It is, however
always interesting to observe the behaviour of the solutions with respect to the
deterministic solution, and this is where the bulk of the work has been performed.

The equivalent results to those shown here, for time-varying systems of equa-

tions should prove to be much more interesting. It will be particularly interesting
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to observe the time-varying behaviour of the variance of the pressure solution as
a spatial function. Also, the effect of using more physical (that is, time-varying)
boundary conditions will be interesting to observe. Work is, at present being

done in this area, and the results should soon be available in a further report.
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Chapter 7
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