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Abstract

Data assimilation is a means for combining observational data with model predictions to
produce a model state that most accurately estimates the current and future states of the true
system. The technique is commonly used in atmospheric and oceanic modelling, but in this report
we consider its application within a coastal environment. A simplified one-dimensional model
of bedform propagation is used to illustrate the basic theory of data assimilation and examine
some of the issues associated with its practical implementation. The equations used to describe
the morphodynamic evolution of the seabed are introduced and the method of characteristics is
used to derive a solution in the special case of constant water height and flux. We then present
a general overview of the principles of data assimilation and describe the optimal interpolation
scheme used in this work. The roles of the background and observation error covariance matrices
are discussed. Particular attention is given to the background error correlations and the way
in which they govern the spatial spreading and smoothing of information from the observations.
A simple model based on the linear advection equation is used to set up a series of test cases
to investigate the effect of alternative forms for the background error covariance matrix, with
results validated against the analytical solution. It is shown that when the background error
correlations are poorly specified the quality of the analysis is greatly reduced.

1 Introduction

Changes to UK weather patterns, with increasing incidence of coastal flooding in recent years, have
led to growing concern over the effects of climate change [Lowe and Gregory (2005)]. It is essential
that we improve our ability to predict floods; being able to better identify and anticipate flood
risk would facilitate the development of suitable strategies for the management of coastal areas
and help to limit the damage and distress caused by flooding. Key to this is better knowledge and
understanding of how the morphology of the coastal zone is evolving over time [Nicholls et al. (2007),
Stelling (2000)].

Bathymetry is the underwater equivalent to topography used to describe the elevation of the sea
floor. The bathymetry of the coastline changes as sediment is eroded, transported and deposited by
water action. The change in bathymetry alters the water flow, which further changes the bathymetry,
which in turn alters the motion of the water, and so on. Coastal morphodynamics is the study
of the evolution of the bathymetry in response to the flow induced sediment transport [Soulsby
(1997)]. It is a particularly challenging area; an effective coastal morphodynamic model must be
able to represent the continual interaction between water flow and bathymetry in the coastal zone.
Modelling is difficult because longer term morphological changes are driven by shorter term processes
such as waves, tides and river outflows [Masselink and Hughes (2003)]. In practice, models suffer
from uncertainty in their initial conditions and parameters which can lead to significant errors



between the predicted and actual states of the system, so that coastal morphodynamic models often
perform poorly in detail [Nicholson et al. (1997), Sutherland et al. (2004)]. Improved accuracy of
such models would allow better prediction of future bathymetry, enabling improved flood forecasting
and providing an important tool for coastal management. State of the art coastal morphodynamic
models are growing more and more sophisticated in an attempt to do this [e.g. Lesser et al. (2004)].
A complementary approach to improving model performance is to combine model integrations with
observations of bathymetry using data assimilation techniques.

Data assimilation is a technique for combining observational data with model predictions to
produce a model state that most accurately estimates the current and future states of the true
system. It is routinely used in atmospheric and oceanic prediction, but the possibility of transferring
the method to the coastal environment has only recently been investigated [Scott and Mason (2007)].

Observations of bathymetry are available from a variety of sources, including remotely sensed
waterlines, swath bathymetry, beach transects, X-band radar and LiDAR data [Mason et al. (2000)].
These observations may be infrequent and samples typically only provide partial coverage of the
model domain, but data assimilation, together with the dynamics of the model, enables us to use
these limited data efficiently and effectively.

In reality, a model cannot represent the behaviour of a morphodynamic system exactly. Over
time the model bathymetry will diverge from the true bathymetry and errors will arise due to
imperfect initial conditions and inaccuracies in physical parameters and numerical implementation.
Data assimilation can be used to compensate for the inadequacies of a model and help keep the
model bathymetry on track. By periodically incorporating measured observations into the model,
data assimilation nudges the model bathymetry back toward the true bathymetry, thus improving
the ability of the model to predict future bathymetry.

The aim of this report is to use a simplified one-dimensional model of changing bathymetry to
understand the basic theory of data assimilation. By exploring how a simple system behaves under
varied conditions we gain insight into some of the theoretical issues that need to be considered when
applying data assimilation to a full coastal morphodynamic model.

In section 2 we introduce the equations used to describe the morphodynamic evolution of the
seabed in one-dimension, and use the method of characteristics to derive a solution for the special
case of constant water height and flux. In section 3 we give a brief mathematical overview of data
assimilation and describe the sequential method used in this work. In section 4.1 we build a simple
model based on the ideas presented in section 2, but simplified to avoid the complexities associated
with a non-linear bed celerity. This simple model is a linear advection equation. In section 4.2 we
explain how the model will be implemented and outline the steps of the assimilation algorithm. In
section 4.4 we discuss the roles of the background and observation error covariance matrices. We
pay particular attention to the background error correlations and the way in which they govern the
spatial spreading and smoothing of information from the observations. In section 4.5 we consider
three alternative forms for the background error covariance matrix and set up a series of experiments
to examine the effect of each matrix for different combinations of observations. Section 5 presents
the results of these experiments, comparing them with the analytical solution to the linear advection
equation. Finally, in section 6 we outline the conclusions that can be drawn from this work and
propose areas for development and further study.



2 The sediment conservation equation

Changes in bathymetry due to flow induced sediment transport processes can be described using
the sediment conservation equation [Soulsby (1997)]. In this report we consider a simple one dimen-

sional version,
0z 1 0q
9= _ Z4 2.1
ot (1 — 5) oz’ 21)

in the x direction, where z(z,t) is the bathymetry, ¢ is the time, ¢ is the total (suspended and

bedload) sediment transport rate, and e is the sediment porosity. If % is positive accretion is

occurring, and if % is negative erosion is occurring.

2.1 Calculating the sediment transport rate

Before we can solve (2.1), the sediment transport rate ¢ needs to be estimated; this can be done
using the power law equation

q=Au", (2.2)

where u = u(x,t) is the depth averaged current and A and n are parameters whose values need to
be set.

This is a simplified version of a formula derived by van Rijn (1993) to parameterise the results
of his sediment transport theory and is based on a mixture of fundamental physics and empirical
results. A variety of alternative formulae have been proposed, many of which are presented in

Soulsby (1997).

2.2 Solving the 1D sediment conservation equation

To solve (2.1) we rewrite it in the quasi linear form

0z 0z
n + a(z, q)% =0, (2.3)
where ) :
_ 94
a(zyq) = (1 _5) 0. (2.4)

The coefficient a(z, q) is often referred to as the advection velocity or bed celerity. It is a non-linear
function, depending on the bathymetry z both directly and through the sediment transport rate q.

By assuming that the water height and flux are constant, and setting u(h — z) = F, where h is
water height and F' is water flux, we can rewrite ¢ in a form that can be differentiated with respect

q=A<hfZ>n. (2.5)

to z




Hence, we obtain the following expression for a(z,q) = a(z)

a(z) = ﬁA_F 8" (h— 2)" D) (2.6)

The sediment conservation equation (2.3) can now be solved using the method of characteristics
[LeVeque (1992)].

2.3 Characteristics

Consider the chain rule for taking the total derivative of z with respect to t,

dz 0z dx0z
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Using equation (2.3) to substitute for % we obtain
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Note that

These curves are called the characteristics of the equation, and from (2.7) we can see that z(x,t)
takes a constant value on each. We can use this property to construct a solution to (2.3).

Since z(x,t) is constant on any given characteristic so too is the slope of the characteristic a(z),
thus the characteristics are straight lines given by

x =z + a(z)t. (2.8)

Here, zp = z(x0,0) is the value of z on the characteristic, determined by the initial data and xg is
the point of intercept of the characteristic with the z axis (figure 2.1).

To obtain a value for the solution z(x,t) at a point x at time t we trace back along the char-
acteristic (2.8) to the initial data. The solution is given implicitly by

z(x,t) = 2(x0,0) = z(x — a(z(z,t))t,0) for t > 0. (2.9)

This concept is illustrated in figure 2.1 for an initial bathymetry given by the Gaussian exponential
function
2
2(z,0) = ae P77, (2.10)

where «, § and 7y are constants whose values determine the height, width and position of the curve
respectively.
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Figure 2.1: Characteristics and solutions to the sediment conservation equation for Gaussian initial
data.

3 Data Assimilation

The aim of data assimilation is to combine measured observations of a system with model predictions
to derive a model state that most accurately describes the true state of the system. This optimal
estimate is called the analysis.

A wide variety of data assimilation schemes exist, many of which have been derived using sta-
tistical techniques [e.g. Griffith (1997), Kalnay (2003)]. In section 3.1 we present two standard
methods based on statistical estimation theory: optimal interpolation (OI) and three dimensional
variational data assimilation (3D Var).

3.1 Optimal interpolation and 3D variational data assimilation

The OI method belongs to a group of schemes described as sequential. It is a widely used technique
originally designed for a system in which the observations are linearly related to the model state
variables. Sequential data assimilation algorithms step through the observations in order using them
at the time they become available.

3D Var schemes are designed to provide an analysis at a single time. They do not take account
of the time dependency of observations, but treat all observations as if they had been made at the
same time. If a 3D Var scheme is applied cyclically it can be regarded as a sequential method.



OI seeks to minimize the analysis error variance by finding an analysis state that is as close as
possible to the true state in a root mean square (r.m.s) sense. 3D Var data assimilation can be
viewed as a different approach to solving the same problem as OI. It is based on a maximum a
posteriori estimate approach and derives the analysis by looking for a state that minimizes a cost
function measuring its distance from the background and observations.

If we assume random, unbiased, Gaussian errors the minimum variance and maximum a pos-
teriori estimates coincide. We can therefore find the analysis by minimising a least squares cost
function [Lewis et al. (2006)].

3.2 The cost function

We suppose that the true state of the system is represented by a vector zt € R™, and that we have
a background estimate z° € R™, based on some prior knowledge of what we expect the present state
to be. We suppose also that we have a vector y € RP containing p observations to be assimilated
and an observation operator h : R™ — RP that maps from model to observation space. If we have
direct observations, h is simply an interpolation operator for interpolating variables from the model
grid to observation locations. Often, the model variables we wish to analyse cannot be observed
directly and instead we have observations of another measurable quantity. In this case, h will also
include transformations based on physical relationships that convert the model variables to the
observations. For example, when assimilating observations of water depth into a morphodynamic
model, the observation operator interpolates the predicted model bathymetry to the observation
locations and then converts it into predicted values for the water depth [Scott and Mason (2007)].

We wish to optimally combine the background zP and observations y to produce an analysis
state z& € R™ that gives the best possible estimate of the true system state z*.

We define a cost function J(z) that measures the distance of the solution from the background
and observations weighted by the inverse of their errors

J(z) = (z—2")"B7(z — 2°) + (y — h(z)) "R (y — h(2)), (3.1)

where z € R™ is the model state vector, and B € R™*™ and R € RP*P are the covariance matrices
of the background and observation errors.

To determine the particular z that minimises J(z) we differentiate (3.1) with respect to z and
derive an expression for the gradient vector V.J(z). The analysis (z?) is then given by the solution of

VJ(z*) = 2B Y(z* — z°) - 2HTR!(y — h(z?)) = 0, (3.2)
where H € RP*™ is the linearisation (Jacobian) of h.
Using the tangent linear hypothesis [Bouttier and Courtier (2002)] we have
h(z?) — h(z®) ~ H(z?® — z°).
Inserting this into (3.2) and rearranging gives

z® = z° + K[y — h(z)]. (3.3)



The operator K € R™*? is called the gain matrix [Nichols (2003)] and determines the weight given
to the observations. It is given by

K = BHT(HBH" + R)™ L. (3.4)

By choosing K correctly, we can ensure that the analysis states will converge to the true states of
the system over time [Jazwinski (1970)].

This is the formal solution to the optimization problem. The OI method uses (3.4) to calculate
the matrix K explicitly and solve (3.3) directly. The idea of 3D Var is to avoid computation of the
gain matrix K and in practice the analysis is obtained iteratively through use of a suitable descent/
minimization algorithm [Bouttier and Courtier (2002), Lewis et al. (2006)].

When the observation operator h is linear the 3D Var and OI solutions are equivalent and we can
use OI to understand how variational assimilation works [Lewis et al. (2006)]. Since the dimensions
of our model are small K is relatively easy to compute. We will therefore adopt the OI method in
this work. On an operational scale OI becomes impractical and it is more efficient to apply a 3D
Var approach.

4 The model

The primary purpose of this report is to investigate and understand some of the basic principles
of data assimilation. For simplicity, we wish to choose a model that we can solve analytically, but
with a(z) of the form (2.6) equation (2.3) is non-linear and equation (2.8) for z¢ is implicit. The
model used for this work will therefore be based on the ideas presented in section 2, but with the
bed celerity a(z) replaced with a, where a is a constant to be chosen.

4.1 The linear advection equation

We assume that the advection velocity is constant, replacing a(z) with a constant a. Equation (2.3)
then reduces to

0z 0z
5 Tag. =0. (4.1)

This equation is known as the linear advection equation. It differs from the sediment conservation
equation (2.3) in that it assumes the advection velocity a is independent of z and ¢. Its characteristic
equations (2.8) are not implicit and this makes it much easier to solve. Its solution is simply

z(x,t) = z(x0,0) = z(x — at, 0) for t > 0. (4.2)

Figures 4.1 and 4.2 illustrate the effect of setting a(z) to be constant. The solution (2.9) for
the sediment conservation equation, with initial bathymetry given by (2.10), represents a smooth,
bell-shaped bedform that propagates downstream with velocity a(z). Since a(z) is non-constant
the initial profile becomes distorted, gradually steepening until it begins to overturn. In the simple



Figure 4.1: Solution to the sediment conservation equation with constant water height and flux.

o o o

-0
© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x x X

Figure 4.2: Solution to the linear advection equation.

advection case, the solution (4.2) represents a direct translation of the initial data. The bed now
moves undistorted across the domain with constant speed a.

Using the linear advection equation (4.1) as opposed to equation (2.3) allows us to solve the
assimilation problem analytically and provides a simple reference solution against which we can
evaluate the performance of our model.

4.2 Model setup

We assume that the morphodynamic evolution of the true system is described by the advection
equation (4.1) with initial bathymetry given by (2.10). Starting from a perturbed initial state
and using observations taken from the true solution we wish to examine the effectiveness of data
assimilation in helping to nudge the bathymetry back toward the true state as we move forward in
time. The analytical solution (4.2) with exact initial data (2.10) will be used as a reference against
which to assess the performance of the model.

4.3 The assimilation algorithm
The assimilation cycle can be split into two main phases [Kalnay (2003)]:

1. The forecast phase in which the analysis from the previous time step z?(tx) is integrated
forward using the forecast model (in this case the ‘model’ is the translation given by the
advection velocity a) to become the background state z° at analysis time #,,1. At the start of
the first forecast phase an a priori estimate for the initial background state z®(ty) = z§ needs
to be chosen.



2. The analysis phase in which the difference between the predicted observations given by the
new background state zP(t;,1) and the vector of measured observations y(tzy1) is used in
equation (3.3) to produce an updated analysis state z®(t;11). Observations are taken at the
start of each analysis phase; they are used only once, at the correct time, and not again.

Once the analysis phase is complete we advance to the start of the next cycle and the process is
repeated.

4.4 The error covariance matrices

Before we can implement our assimilation algorithm we need to make estimates of the background
and observation error covariance matrices B and R. We are assuming that our model is perfect, but
in practice the model equations do not describe the system behaviour completely, the background
state is not known exactly and the measured observations are imprecise. Our assimilation scheme
needs to take account of the errors that arise as a result of these inaccuracies as the precision of the
analysis is determined by the precision of the background and observations. The error covariance
matrices B and R represent our uncertainty in the background z® and observations y and their
specification has an important effect on the quality of the analysis.

The observation error covariance matrix R gives a statistical description of the errors in y.
Observation errors originate from instrumental error, errors in the forward model h and represen-
tativeness errors [Bouttier and Courtier (2002)]. Generally, it is reasonable to assume that errors
in measurements taken at different locations are uncorrelated, in which case the matrix R is diagonal.

The background error covariance matrix B = {b;;} describes the estimation errors of the back-
ground state, where element b;; defines the error covariance between components ¢ and j of zP. Tt
is the last operator to act in (3.4) and is therefore fundamental in determining the nature of the
analysis increment. The correlations in B govern the smoothing and spreading of information from
the observations, determining how an observation at one point influences the analysis at nearby
points [Bouttier and Courtier (2002)]. In noisy, observation dense regions, the background error
correlations are used to ensure that the analysis is smooth and contains scales that are statistically
compatible with the smoothness properties of the physical fields. In data sparse regions, where there
are few observations, correlations are needed to spread the information contained in the available
observations to the surrounding domain. Correct specification of the matrix B offers a significant
challenge, and has a vital impact on the assimilation results.

4.5 The experiments

To initiate the assimilation cycle we require a first guess for the background state. For these exper-
iments z8 was taken to be of the same form as the initial bathymetry for the truth (2.10) but with
slightly modified values for «, § and ~.

The observations are to be taken from the true solution and for ease of computation we want the
the observation points to coincide with the model grid so that the observation operator h is linear

and h = H. We set

t
y] = Zjv



where y; is the observation of the true bathymetry z;-, given by (4.2), at the grid point z;. The set
of grid points x; at which observations are to be taken is determined at the start of the assimilation
process and remains fixed throughout. As our algorithm is sequential, a new set of observations is
used during each cycle. Since the observations are taken from the truth, we weight in their favour,
setting the observation and background variances to be o2 = 0.1 and ag = 1 respectively.

We assume that the observation errors are uncorrelated and take the observation error covari-
ance matrix R to be diagonal with variance o2. We consider three different ways of computing the
background error covariance matrix B:

To begin, we assume that the matrix B is diagonal with variance 02, ie.

B=o01, TIecR™™, (4.3)

However, this is a poor approximation as it ignores correlations between grid points and means that
observations have no effect on their neighbouring points.

Next, we add entries above and below the main diagonal by setting

2
g .
bi—1; = bii—1 = 2, 1=2,...,m.
2
This gives a tri-diagonal matrix B of the form
2
of % 0 0
o2 5 o2
2 % =2 0
0 .
B = (4.4)
0
o2 5  o?
£ Th e
o 2
0 0 = oy

Finally, we use the gaussian exponential function [Daley (1991), Kalnay (2003)]

bz’j = 0'26_”23‘/2[12, (45)
to construct a matrix B with full off diagonal entries. Here rfj = (z; — z;)? is the square of the
distance between the grid points z; and z;, and L is the background correlation length scale. The
form (4.5) assumes that the covariance between the background errors at two grid points depends
only on the spatial distance between them and that covariances decrease with separation distance.
The background correlation length scale L can be used to determine the domain of influence of
observations.

10



The assimilation was run for each of the different B matrices, experimenting with various com-
binations of observations, and validating the results against the analytic solution. The effect of L
in (4.5) was also investigated, using the analysis errors €5, = z5 — z¢ to try to determine its optimal
value for different observation strategies. Results are presented in the following section.

5 Results

5.1 The Matrix B

Figures 5.1 to 5.3 compare the analysis produced at initial time ¢y for each of the background covari-
ance matrices discussed in section 4.4. Results are shown for six different observation schemes on the
domain x € [0, 10] with grid spacing Az = 0.25. The dot-dash line represents the true bathymetry
z'. Observations y are given by circles, the background z® by the dashed line and the analysis z2
by the solid line.

When both B and R are diagonal the expression for the gain matrix K simplifies and the analysis

equation (3.3) reduces to
2

o
22 =2+ —P Iy —h(zP)].
U§+Ug[y (z”)]

K now acts like a scalar, this means that each observation only effects the value of the analysis at
the grid point at which it is taken. At points where there are observations the analysis is given by
a weighted average of zé? and y;. Since we have taken o2 > O'g, a relatively small weight is given
to the background state and the analysis lies close to the observed value. At grid points where no
observation is taken the analysis is set to the background, resulting in a jagged analysis curve (figure
5.1).

Similar results are produced with the tri-diagonal matrix B (figure 5.2), except that the ob-
servational information is now spread to neighbouring grid points and so also affects the analysis
at points either side of the observation. Unless observations are taken at at least every other grid
point, this still leaves regions where the available observations have no effect on the analysis and
therefore generates oscillations as above.

The gaussian matrix B produces a much smoother analysis (figure 5.3). B now has a much
larger radius of influence and the information contained in the observations is spread further into
the domain. Each observation now affects more of the surrounding grid points allowing the shape
of the true bathymetry to be more accurately captured with fewer observations.
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Figure 5.1: Diagonal matrix B - initial analysis for different observation combinations. The dot-dash line
represents the true bathymetry zt. Observations y are given by circles, the background z® by the dashed line
and the analysis z? by the solid line.

Figure 5.2: Tri-diagonal matrix B - initial analysis for different observation combinations. The dot-dash line
represents the true bathymetry zt. Observations y are given by circles, the background zP by the dashed line
and the analysis z* by the solid line.
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Figure 5.3: Gaussian matrix B (with L = 0.5) - initial analysis for different observation combinations. The
dot-dash line represents the true bathymetry zt. Observations y are given by circles, the background z? by
the dashed line and the analysis z® by the solid line.

5.2 The Correlation Length Scale

Having concluded that the gaussian matrix B was most effective in enabling us to produce an
analysis that most closely describes the true bathymetry, we now consider the sensitivity of the
analysis to changes in the background correlation length scale L.

Recall that the element b;; of the matrix B defines the background error covariance between the
two grid points x; and x;. When there is a mismatch between the resolution of the model and the
density of the observations these covariances can be used to specify how the observed information
is smoothed in model space and therefore control the amount of influence the observations have on
the analysis. By varying the size of the background correlation length scale L in (4.5) we can vary
the size of the off diagonal matrix B elements b;;.

The OI algorithm has two effects: it filters noise from the observations and then interpolates
the filtered observations to the analysis grid points. Daley (1991) describes a useful technique for
investigating the filtering properties of the background error correlations in the OI procedure using
an eigenvector decomposition of the background error covariance matrix B. The interested reader
is referred to section 4.5 of Daley (1991) for further details. When L is large the covariance (corre-
lation) between the background errors at any pair of grid points is greater. Small scale structures
are suppressed, whilst the larger scale structures draw closer to the observations. This generates
an analysis that is comparatively smooth. When L is small the background error correlations are
reduced. There is less filtering of small scale structures, but the filtering of the large scale structures
increases so that away from the observation points the analysis reverts to the background field. Each
observation has a much narrower region of effect, and therefore less influence on the analysis.

Figures 5.4 to 5.9 illustrate the effect of different L values for two example observation sets: (i)
a single observation at x = 4, and (ii) observations at x = 2, 4 and 6. The bed is now advected
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forward in time with constant celerity a = 1 and at each time step a new analysis is produced.
Results are given for times ¢ = 0 to 3, on the domain z € [0, 10] with time step At = 1 and grid
spacing Az = 0.1. As above, we weight in favour of the observations with ¢2 = 0.1 and crg = 1.
Again, the dot-dash line represents the true bathymetry zt, observations y are given by black circles,
the background zP by the dashed line and the analysis z2 by the solid line.

For example (i), the shape of the true solution is captured most accurately with L = 0.5 (figure
5.5). If the correlation length scale is halved to L = 0.25 (figure 5.4), the peak of the analysis curve
is too narrow, oscillations appear at ¢ = 1 and proliferate as we continue to move forward in time.
With L = 1 (figure 5.6) there is too much spreading. The peak of the analysis curve loses height
and becomes slightly out of phase with the true bathymetry; although the oscillations have been
damped the curve is now too wide. Conversely, the analysis for (ii) improves when we take L = 1
(figure 5.8). Initial oscillations produced in the tails of the curve when L = 0.5 (figure 5.7) are much
smaller and the shape of the analysis is much smoother and closer to that of the true bathymetry.
However, if we double the length scale to L = 2 (figure 5.9) the radius of influence of each individual
observation is too large and the quality of the analysis is noticeably reduced.

We next examine a case where the choice for the L is less distinct. Observation points are
positioned at x = 1, 3, 5, 7 and 9, so that the peak of the bed is not initially observed. As in the
above examples, the true bathymetry moves undistorted with constant celerity a = 1. As a way of
crudely simulating tidal action, a is reversed at t = 3 so that the bed moves back across the domain
towards its original starting position. Figures 5.10 and 5.12 compare the analysis produced at each
time step for L = 0.5 and L = 1. The corresponding analysis errors are shown in figures 5.11 and
5.13 respectively.

Although the initial analysis with L = 0.5 is poor it soon recovers as the next set of observations
are taken and new information becomes available. The analysis errors mirror the movement of the
bed and their magnitude is always greatest either side of its peak. Figures 5.11 show that the
analysis errors are largest at ¢ = 0, from ¢t = 3 onwards there are only slight variations in the size
and shape of the error plot. At this point the analysis curve lies close to the true bathymetry and
continues to do so until final time ¢t = 7.

When L = 1 the initial profile is oscillation free and although the height of the bed is too low
its shape better represents that of the true bathymetry. However, at ¢ = 1 this smoothing of the
analysis generates errors either side of the observation points that are much larger in magnitude
than when L = 0.5. As we move through figures 5.12 we see that at times where the peak of
the bed is not observed the smoothing of information from the observations either side causes the
analysis curve to lose height and creates slight distortion in the tails. At all other times the anal-
ysis produced with L = 1 is comparable with, or even slightly better than, that produced for L = 0.5.

The optimal choice for L appears to depend on a number of factors including the frequency,
density and positioning of observations, the type of features and level of detail we wish to resolve,
and the quality of the background state. When observations are sparse, a too small L value gives to
great an influence to the background state and produces oscillations in the solution. We can create
a smoother, more physically realistic analysis by increasing the length scale, but if L becomes too
large it can lead to over smoothing, causing loss of detail and the generation of inaccurate values in
unobserved regions. When there is a high density of observations, a large L can cause over damping
of small scale structures and insufficient filtering of large scale structures leading to an overlap of
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information and degradation of the analysis. In order to be able to accurately reconstruct the model
state we must ensure that sufficient weight is given to the background state.

6 Conclusions and further work

The aim of this work was to use a simple one-dimensional model of changing bathymetry to illustrate
the basic theory of data assimilation and examine some of the issues associated with its practical
implementation. We began by introducing the sediment conservation equation and deriving its
solution for the special case of constant water height and flux. We then gave a brief overview of
data assimilation and presented the OI analysis approach that was used in this work. A simple model
based on the linear advection equation was adopted and a series of simple experiments were used to
investigate the role of the background error covariance matrix B in the assimilation process, with
results validated against the analytical solution. The correlations in B govern the spreading and
smoothing of the observed information and if they are poorly specified the quality of the analysis can
be considerably reduced. We found that for diagonal and tri-diagonal B matrices there is a lack of
information spreading resulting in analyses that oscillate between the observations and background
state. A full, symmetric matrix B constructed using a gaussian function produced much better
results. Using a B matrix of the form (4.5), we were able to increase the radius of influence of
the observations allowing the information they contain to be spread further into the model domain.
We found that we were able to control the amount of information smoothing using the correlation
length scale L and this produced some interesting results.

When there is a mismatch between the spatiotemporal resolution of the model and the density
of the observations the correlation length scale L in (4.5) allows us to determine how the observed
information is used. Choosing L is a balancing act; we want to extract the maximum amount of
information from the observations but we need to limit the amount of smoothing so that the analysis
produced is physically accurate. If L is too long the model cannot resolve smaller scale features.
However, the importance of being able to do this depends on the nature of the problem we are trying
to solve and whether or not these features are an essential part of our analysis. One solution could
perhaps be to use a variable length scale that took different values in different parts of the domain.

The correct specification of the background error covariances is a difficult problem and in this
report we have only considered three very simple examples. This work could be extended to look
at alternative methods for estimating B such as using innovation (observation minus background)
statistics, studying the differences between forecasts that verify at the same time, or from differences
in background fields using ensemble techniques [Fisher (2007)].

Throughout these experiments we have assumed that our model is perfect and that we have
perfect observations taken from the analytical solution. In reality the model equations do not
describe the system behaviour completely, we do not know the true state of the system and all
observations we take will contain errors. Adding random noise to the observations would enable us
to consider the effect of observation error on the analysis.

The next step is to employ numerical methods. This will allow us to calculate a solution to the
sediment conservation equation numerically and investigate the use of data assimilation techniques
in the more realistic case (2.3) where a(z) is non-linear.
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0.75 0.75

Figure 5.4: Gaussian matrix B with correlation length scale L = 0.25 - analysis with single observation
at * = 4. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the
background zP by the dashed line and the analysis z2 by the solid line.

0.75 0.75

Figure 5.5: Gaussian matrix B with correlation length scale L = 0.5 - analysis with single observation
at * = 4. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the
background zP by the dashed line and the analysis z2 by the solid line.
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0.75 0.75

Figure 5.6: Gaussian matrix B with correlation length scale I = 1 - analysis with single observation at x = 4.
The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the background zP
by the dashed line and the analysis z* by the solid line.

0.75 0.75

Figure 5.7: Gaussian matrix B with correlation length scale L = 0.5 - analysis with observations at x = 2, 4
& 6. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the background
z® by the dashed line and the analysis z2 by the solid line.
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Figure 5.8: Gaussian matrix B with correlation length scale L = 1 - analysis with observations at x = 2, 4 &
6. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the background
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Figure 5.9: Gaussian matrix B with correlation length scale L = 2 - analysis with observations at z = 2, 4 &
6. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the background
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Figure 5.10: Gaussian matrix B with correlation length scale L = 0.5 - analysis with observations at x = 1,
3,5, 7 & 9. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the
background zP by the dashed line and the analysis z2 by the solid line.
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Figure 5.11: Analysis error (¢,) for gaussian matrix B with correlation length scale L = 0.5 and observations
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Figure 5.12: Gaussian matrix B with correlation length scale L = 1 - analysis with observations at x = 1,
3,5, 7 & 9. The dot-dash line represents the true bathymetry zt. Observations y are given by circles, the
background zP by the dashed line and the analysis z2 by the solid line.
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Figure 5.13: Analysis error (¢,) for gaussian matrix B with correlation length scale L = 1 and observations
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Glossary of Symbols

2 9

2,q)

B>

3

parameter for calculating the sediment transport rate
advection velocity/ bed celerity

water flux

water height

parameter for calculating the sediment transport rate
time

depth averaged current

horizontal coordinate

bathymetry

initial bathymetry

sediment transport rate

sediment porosity

parameters of the gaussian function

background error covariance matrix (dimension m x m)
observation operator (from dimension m to p)
linearised observation operator (dimension p X m)

cost function

gain matrix (dimension m X p)

dimension of the state vector

dimension of the observation vector

observation error covariance matrix (dimension p X p)
distance (z; — x;) between grid points z; and x;

vector of observations (dimension p)

true model state (dimension m)
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zP background state (dimension m)

z? analysis (dimension m)

ag background error variance

o2 observation error variance

€a vector of analysis errors z, — 2z; (dimension m)
L background correlation length scale

Ax spatial resolution
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