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Abstract

Data assimilation is a means of estimating an atmospheric or oceanic state by com�

bining observational data with a prior estimate of the state� usually from a numerical

model� We look at application of data assimilation to numerical weather prediction

using control theory�

Firstly� we apply observer theory to successive correction methods of data as�

similation to show when they converge in time to the true solution� However� we

mostly focus on �D variational data assimilation schemes� Here the approach is to

minimize a cost function penalizing distance from observational data over a time

interval� subject to the constraint that the model equations are satis�ed� The min�

imization problem can be solved by iterating on the model initial state� which is

referred to as �using the initial state as the control vector��

Our aim is to provide a consistent theoretical foundation which allows for model

error in variational assimilation� We investigate the �correction term technique� in

which a constant correction term approximating model error is added to the model

equations and used as a control vector instead of� or as well as� the initial state�

We use the concept of complete N �step observability to give conditions for a unique

solution of the minimization problem using di	erent control vectors�

We suggest a generalization of the correction term technique in which we use

state augmentation to estimate a serially correlated component of model error along

with the model state� In particular� we consider using a correction term representing

model error that evolves as the model state evolves� We investigate the e	ectiveness

of the constant and the evolving correction term in compensating for di	erent types

of model error using simple linear models� We also use the correction term technique

for a 
D nonlinear shallow water model in the presence of di	erent types of model

error� and �nd that a constant correction term can compensate for non�constant

model error on a signi�cant timescale�
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Chapter �

Introduction

We start with an introduction to data assimilation� particularly focusing on its

application to numerical weather prediction �NWP�� This is followed by an overview

of the rest of the thesis�

��� Background on data assimilation

In meteorology and oceanography� data assimilation is a means of estimating the

state of the atmosphere or ocean by combining observational data with a prior

estimate of the state� which usually comes from a dynamical model� This estimate

of the atmospheric or oceanic state is often called an analysis�

Three important applications of data assimilation are� to provide a good analysis

of the current situation to be used in initiating a forecast� to give a good analysis of

a past event for diagnostic studies or archive records� and to use observational data

for the process of model veri�cation and for increasing our knowledge of physical

processes�

In meteorology� the main application of data assimilation is in NWP� where it

is used to obtain a good estimate of the current atmospheric state for initiating a

forecast� Typically� data in a time window of 
� or 
� hours is assimilated to give

an analysis of the �current� state� to be used as initial conditions for a forecast� It is

this application that we refer to as operational data assimilation� Data assimilation

is also used in a non�operational context for diagnostic studies of the atmosphere�






in forecast veri�cation� for archive records and for climate studies� In oceanogra�

phy� on the other hand� the main use of data assimilation is in studies to increase

understanding of ocean circulations� although it is also used in short range ocean

forecasting �����

A wide variety of data assimilation schemes have been proposed and developed

over the last �� years or so� and many of them are taken from state estimation tech�

niques in engineering� We now introduce the terminology we will use to describe

di	erent types of data assimilation schemes� By three dimensional ��D� data assim�

ilation schemes� we mean schemes which are designed to provide an analysis at a

single time� and treat each analysis time in isolation� In contrast to �D schemes� four

dimensional ��D� schemes seek to bene�t from the �time�tendency information� in

the observations� In �D schemes� information from observations at earlier �and in

some cases later� times is used in the analysis at a given time� �D data assimilation

schemes involve a model of the state evolution�

Sequential data assimilation schemes treat observations as they occur in time�

and then discard them ����� If a �D analysis is carried out repeatedly� this can be

seen as a sequential approach to data assimilation� and hence �D schemes can be

regarded as sequential methods of data assimilation� �D sequential schemes seek to

�nd an analysis which draws closer to the true solution as time progresses� and as

more information from observations becomes available� In these schemes information

from observations at earlier times in�uences the solution at any time� In the control

theory literature� �D sequential data assimilation is referred to as �ltering �����

The �D variational assimilation schemes� on the other hand� use information

from observations at both earlier and later times in a given assimilation interval for

an analysis at any given time in the assimilation interval� For a set of observations

over a given assimilation interval� a �D sequential data assimilation scheme is de�

signed to give the �best possible analysis� �in some sense� at the end of the time

interval� and a �D variational scheme is designed to give the best possible analysis

over the entire assimilation interval�

�D variational assimilation can be expressed as a constrained minimization prob�

lem� The aim is to minimize a cost function penalizing distance from the observa�

�



tions over the assimilation interval� and distance from a prior estimate� subject to

the constraint that the solution �the analysis� is consistent with the model dynamic�

s� In the strong constraint approach to the �D variational assimilation problem� the

constraint is that the solution must satisfy the model equations exactly� In the weak

constraint approach� the solution is only required to satisfy the model equations

approximately� and hence some allowance is made for model error�

Meteorological observational data available for assimilation

We now give a brief description of the types of observational data available for use in

operational meteorological assimilation to produce analyses for weather forecasting�

a fuller description is given in the book by Daley �����

Meteorological observations are available on a world�wide scale� and there is

international cooperation on the data collection and distribution to the various na�

tional meteorological centres� At surface level� observations are available from land

weather stations and over the sea from ships� These observations are available at

least every three hours� usually at the sub�synoptic times� ie ����GMT� ����GMT����

Radiosondes and pilot balloons are launched from land areas and from ships� and

typically give observational data at the synoptic times� ie ����GMT and 
���GMT�

An increasingly important source of data is that of reports from commercial air�

craft� These reports provide an increase in the spatial coverage of data� and a more

continuous temporal coverage� but are of course limited to the well�travelled routes�

Satellite information provides greater global coverage� and also greater vertical cov�

erage� This data is again available continuously in time �ie� is asynoptic�� One

important aspect of satellite data is that it typically is nonlinearly related to the

model state variables� It is likely that the availability of satellite data will increase

still further in the near future �����

More detail on what meteorological variables are observed in each of these data

sources and also the sizes of typical observational errors in each case are given in

����� Observational data varies enormously in type and accuracy� and also in spatial

and temporal distribution� This is an important point to consider in design of a

data assimilation scheme�

�



The quality control of observations is crucial for successful data assimilation�

Data needs to be checked for gross errors and for internal consistency� This may

be done before data is assimilated� or as part of the data assimilation process itself�

Generally� it is assumed that observational errors are Gaussian ����� Information

on observational error correlations and on how to specify the observation error co�

variance matrices needed in many applications of data assimilation can be found in

�����

Numerical models used in data assimilation

The type of numerical model used in data assimilation depends of course on the

application� In the context of operational data assimilation in meteorology� the

forecast model itself� or perhaps a simpli�ed version of it� is used� Data assimilation

is carried out on both global models and mesoscale limited area models in an op�

erational context� The models used may be �nite di	erence models� �nite element

models or spectral models� Current operational weather forecast models typically

have a model state with dimension of the order of 
�� to 
��� This huge number

of model unknowns at each timestep has a very dominant impact on the practical

choice of a data assimilation scheme�

The models most accurately describing atmospheric or oceanic evolution are

nonlinear� These models can exhibit chaotic behaviour� and this has also been

observed in the laboratory for some types of �ow ����� However� nonlinearities in

atmospheric and oceanic �ows are essentially quadratic� and the nonlinear e	ects

do not dominate on the time�scales of operational data assimilation� although they

can have a huge impact on longer timescales� ����� For mid�latitude atmospheric

�ows� Lacarra and Talagrand ���� have showed that the tangent linear model is a

good approximation to the full nonlinear model for a period of about �� hours�

Initialization

In numerical weather prediction �NWP�� initialization is a process of reducing the

inertia�gravity waves present at the beginning of a forecast as much as possible� This

is necessary in the context of data assimilation with realistic models� because dis�

�



crepancy between noisy data and a prior estimate of the state can produce spurious

inertia�gravity waves ����� Although primitive equation models do in fact exhibit

gravity waves which describe a small amount of the �ow� atmospheric and ocean�

ic �ows at mid�latitudes on the timescale of a forecast are well described by the

relatively slow Rossby waves�

Early NWP models were often quasi�geostrophic� and hence avoided the need

for initialization� since these models produce only Rossby waves� When primitive

equation models became operational for forecasting in the early 
��s� initialization

became necessary� Initialization has generally been carried out separately from

the data assimilation procedure� by projection of the solution onto the subspace

described by the Rossby modes ����� or by the process of nonlinear normal mode

initialization introduced by Machenhauer ����� In �advanced� data assimilation

techniques� however� it is possible to incorporate the initialization process in the

assimilation� This may be done in Kalman �ltering applications by projection of

the solution onto the Rossby modes ����� and in variational assimilation applications

by the addition of a penalty term to the cost function �
��� ��
�� �����

Brief historical overview of data assimilation methods

Here we mention brie�y the main methods that have been used for data assimilation

in meteorology and oceanography� and methods that are currently being developed�

More detail on the methods themselves with more references on their application

are given in Chapters � and ��

In the 
���s and 
���s� along with the advent of primitive computers� interest

grew in �nding methods for objective analysis of the atmosphere� The earliest at�

tempts involved using polynomial splines to �t the data� This was done by Panofsky

in 
��� ����� and by Gilchrist and Cressman in 
��� ����� The method of succes�

sive corrections� introduced by Bergthorsen and D�o�os in 
��� ��� and Cressman in


��� ��
�� proved more appropriate when less dense data coverage was available� and

variants of this method have been used successfully in operational data assimilation�

Schemes taking into account the relative accuracy of observations and corre�

sponding prior estimates of the state from numerical models were proposed early

�



on� but only as computer power increased was this approach further developed and

used extensively in an operational context� The method of optimal interpolation

�OI� suggested by Gandin in 
��� ����� attempts to provide a statistically optimal

estimate of a linear system at a given time� Variants of this method� which are

also applicable to nonlinear systems� have been applied widely for operational data

assimilation in the 
���s and 
���s� The three�dimensional variational assimilation

�or �DVAR� method ��� can be seen as a di	erent approach to solving the same

problem as OI� and is currently being developed for operational use at several NWP

centres�

In the earlier days of data assimilation� observations were available mainly at

the synoptic and sub�synoptic times� Since observations from satellites have be�

come available� however� some observations are available continuously and it has

become more important that data assimilation techniques should draw upon the

time�tendency information available in the observations� For this reason� there is

much interest at present in the design and development of �D data assimilation

methods� Two examples of such methods include the Kalman �lter� and �D varia�

tional assimilation�

The Kalman �lter� proposed by Kalman in 
��� ���� for engineering applications

can be used as a sequential �D assimilation method� For a linear model and under

certain assumptions� it provides a statistically optimal solution at a given time taking

into account all previous observations� The method in unsimpli�ed form is generally

considered too expensive for use with large operational models in meteorology and

oceanography ����� but various simpli�cations have been proposed which are feasible

����� Kalman �ltering theory can also be extended for use with nonlinear models�

The four�dimensional variational assimilation method was suggested for mete�

orological data assimilation by Sasaki in 
��� ���� the method seeks to obtain an

optimal solution over an entire assimilation interval by minimization of a cost func�

tion penalizing distance from the observations and from a prior estimate of the state�

The minimization is subject to the constraint that the model equations hold� either

exactly �the strong constraint approach�� or approximately �the weak constraint ap�

proach�� Using the strong constraint approach� the problem can be reduced to that
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of �nding the optimal initial state for the assimilation interval ��
�� This approach

to �D variational assimilation has received much attention since the mid 
���s� and

several meteorological centres are currently developing it for eventual operational

implementation in the late 
���s�

Under certain statistical assumptions� the weak constraint formalism� which al�

lows for model error� gives the same statistically optimal solution as the Kalman

�lter at the end of an assimilation interval� The problem of �nding �D variation�

al assimilation methods that can account for model error at reasonable cost is a

problem currently receiving attention in research�

��� Overview of the thesis

In Chapter � we present mathematical background useful for the methods of data

assimilation we consider in this thesis� We include de�nitions and useful results

from control theory� an overview of nonlinear optimization theory� background on

descent methods and a brief overview of probability theory�

In Chapter �� we look at sequential methods of data assimilation� We give some

background on �D data assimilation methods and on the Kalman �lter� When

describing the Kalman �lter� we focus on the assumptions made on model error and

observational error� and on how to allow for serially correlated model error� since we

refer to these issues later� We then give background on observer theory� and describe

as an example of observer design� a robust observer� We note that observer theory

is useful for data assimilation and that �D sequential data assimilation methods

such as the Kalman �lter are observers� We point out that if a �D scheme such as

a successive correction scheme is implemented repeatedly� it too can be expressed

as an observer� This provides a way of looking at the dynamical properties of the

resulting analysis� For example� we give conditions in the linear time invariant case

under which the analysis will converge to the true solution� Using a simple model�

we compare the results of data assimilation using the Cressman successive correction

scheme and a robust observer�

Much of the thesis focuses on �D variational assimilation methods� and in par�





ticular we address the problem of how to account for model error in these methods

without incurring too much extra cost� Chapter � gives background on �D varia�

tional methods of assimilation� We describe the strong constraint approach using

the initial state as a control vector� and discuss the derivation of the adjoint models

used in this approach� We then describe the correction term technique in which a

constant correction term representing model error is added to the model equations�

and used as a control vector as well as or instead of the initial state� Finally� we

describe the weak constraint approach to variational assimilation� which allows for

model error in a more general way� and refer to methods that have been proposed

for solving this problem�

In Chapter �� we concentrate on the correction term technique� We give condi�

tions for uniqueness of the solution of the variational assimilation problem using the

initial state� the correction term and both together as control vectors� and relate

these conditions to the concept of complete N�step observability� We point out the

importance of including a background estimate of the correction term in the cost

function if there are insu�cient observations� such a background term was not in�

cluded in earlier published work on the correction term technique� We also compare

the results of data assimilation using these di	erent control vectors in a practical

context� using a simple linear model with a constant source of model error� In the

theory we present� we suggest that the correction term vector might have a dimen�

sion m less than the dimension n of the state vector� In these experiments� in which

the source of model error is localised� this approach improves the e�ciency of the

method�

Then� in Chapter �� we consider how we could use a more general representation

of model error in variational assimilation� We give examples of di	erent forms

for representing model error supposing that model error is composed of serially

correlated and serially uncorrelated components� and we discuss how the technique

of state augmentation can be used to estimate the serially correlated component of

model error along with the model state� We suggest a generalized correction term

technique in which the correction term represents a serially correlated component of

model error which might evolve in time and might have dimension m less than or
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greater than the dimension of the model state� We carry out experiments using a

simple model in which model error is not constant in time� In these experiments we

use an �evolving correction term� which evolves as the model state does�

In Chapter � we carry out experiments using a 
D nonlinear shallow water

model� We compare the results of data assimilation using the constant correction

term� the initial state and both together as control vectors in the presence of di	erent

types of model error and errors in the initial state� In particular� we investigate

whether the constant correction term can compensate for model error on a signi�cant

timescale� when model error depends on the model state� Finally� in Chapter �� we

summarize the conclusions from the work in the thesis and discuss how the work

could be extended�

Throughout the thesis we bear in mind the application of data assimilation for

numerical weather prediction in an operational context� Here� the huge dimension of

the model state is a dominating factor in the practical choice of assimilation methods�

Data assimilation is also used in other applications in the atmospheric and oceanic

sciences� as we discussed in the previous section� Apart from these applications�

state estimation using observed data has many applications in engineering� and the

work in this thesis has relevance to this wider �eld also�
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Chapter �

Mathematical Background

Throughout this thesis� we will be looking at data assimilation for meteorology and

oceanography using a framework of mathematical control theory� In the �rst sec�

tion we introduce the general model system� using control theory notation� Then�

in Section ���� we give background on some of the basic concepts of control theory

which will be useful� and state de�nitions and theorems which will be referred to

later on� In Section ��� we give background on nonlinear optimization theory� and

in Section ��� describe descent algorithms that may be used to iterate to an optimal

solution� Sections ��� and ��� provide the background for the variational data as�

similation methods� Finally� Section ��� gives background on probability theory and

the concept of a �most likely� estimate� which is widely used in data assimilation�

In this background chapter� we limit our discussion to discrete systems� since

this is most convenient for application to numerical models of meteorology and

oceanography� Many texts on control theory concentrate on continuous systems�

with only brief reference to the discrete case� However� we treat the discrete case

since the transition from the continuous to the discrete case is not always immediate

�����

��� Introducing the System

To start with� we introduce the general nonlinear model system which we will use

throughout the thesis� and explain what we mean by the true model state and model
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error� We specify how the observational data is related to the true model state� We

then introduce the linear version of the system� which we will want to focus on in

some situations�

����� The nonlinear model

We consider the discrete� nonlinear model on the time interval �t�� tN ��

xk�� � fk�xk�uk�� k � �� ��� N � 
� ���
�

where xk � IRn represents the model state at time tk� uk � IRm is a vector of

model inputs at time tk� and fk � IR
n � IRm � IRn is a nonlinear function describing

the evolution of the state from time tk to time tk��� The state represents model

variables de�ned on a spatial grid frjg� j � �� ��J � which might represent one� two

or three spatial dimensions� The model inputs in our context might include tunable

model parameters� forcing terms or boundary conditions� Equation ���
� represents

an explicit� one�step model on a �xed spatial grid� We stick with this notation

for simplicity� although the theory can usually be generalized to implicit or multi�

timestep models�

We assume that speci�cation of the model state xj at time tj and the inputs

uj � ���uk�� uniquely determines the model state xk at time tk� for any k � j� We

also assume that fk is di	erentiable with respect to xk and uk for all k�

����� The true model state and model error

The development here� which introduces the concept of the true model state and

de�nes model error� follows that in the papers by Cohn and Dee �
�� Dee ���� and

Cohn �
���

We suppose that the true state of the atmosphere or ocean at any time t in a

time interval �t�� tN � can be represented by a vector ��t� belonging to an in�nite

dimensional space U � We further suppose that the evolution of the state from time

tk to time tk�� can be described by a well�posed nonlinear system of equations� and

can be written in the form

��tk��� � �k���tk��� �����







where �k � U � U is a uniquely de�ned nonlinear solution operator �
�� We now

de�ne the true model state xtk to be the representation of the in�nite dimensional

true state at time tk on the model grid� and we write

xtk � ���tk�� �����

where � � U � IRn is a mapping onto the model grid� Hence we can write the

evolution of the true model state in terms of our model ���
� as follows

xtk�� � fk�x
t
k�uk� � �k� k � �� ��� N � 
� �����

where

�k � ��k���tk��� fk�x
t
k�uk�� �����

The term �k � IR
n is the model error in the evolution operator fk� If� for example�

the equation representing the evolution of the true state ��t� is a known system of

partial di	erential equations� and if the model ���
� is a consistent discretization of

this� then model error is just the truncation error of the discretization� In general�

however� as well as errors due to lack of resolution� sources of model error arise due

to lack of knowledge of the true evolution of the atmosphere or oceans� or due to

deliberate simpli�cation of their known evolution� Hence� sources of model error

include misspeci�cation of model parameters� forcing terms and boundary condi�

tions� Equation ����� shows that in general model error depends on the unknown

true state in an unknown way ����� and so might be treated as stochastic forcing �
���

or by some simple deterministic correction ����� In Chapter � we consider speci�c

examples of how we might approximate or represent the model error term so we can

account for it in data assimilation�

����� Observational data

We suppose we have a set of observations y�� ���yN�� which are related to the true

model state by

yk � hk�x
t
k� � �k� k � �� ��� N � 
� �����

where yk � IRpk is a vector of pk observations at time tk� hk � IR
n � IRpk is a

nonlinear function relating the observations to the model state at time tk� and �k �
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IRpk represents the observational error at time tk� In the context of control theory�

the observations are generally referred to as model outputs� If observation times do

not coincide with the timesteps tk� then hk will include temporal interpolation� The

number of observations pk varies with time� and this includes the possibility of no

observations at some timesteps�

Observational error has two components usually referred to as measurement er�

rors and representational errors� The measurement errors are due to errors in the

measurement instruments and in the transmission of information� and the represen�

tation errors are due to errors in hk� More detail on the form of observational error

is given in �����

����� The linear assimilation system

In some cases we will limit our attention to linear theory� and so we consider the

discrete� linear� time�varying model

xk�� � Akxk �Bkuk� ����

with xk and uk de�ned as in ���
�� and with Ak � IR
n�n� Bk � IR

n�m� We assume

that Ak is nonsingular and that Bk has rank m for all k� so that speci�cation of x�

and the uj� j � �� ��� k � 
 uniquely determines xk for k � �� We suppose that the

evolution of the true model state xtk satis�es

xtk�� � Akx
t
k �Bkuk � �k� k � �� ��� N � 
� �����

where �k � IR
n is the model error as de�ned in Subsection ��
���

We now suppose that the observations are related linearly to the true model

state as follows�

yk � Ckx
t
k � �k� k � �� ��� N � 
� �����

with yk and �k de�ned as in ����� and Ck � IR
pk�n�

If the assimilation system ����������� is a linearization of the system �����������

about some reference state xok and input u
o
k� then Ak and Ck are the Jacobians of fk

and hk respectively with respect to xk� and Bk is the Jacobian of fk with respect to

uk� all evaluated at �xok�u
o
k�� In this case� the model ����� is often referred to as the

tangent linear model of ����� in data assimilation literature ����� �����
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����� State transition matrix

For some applications of the linear system� it will be useful to relate the state at

a given time to the state at any earlier time� We therefore introduce the state

transition matrix  �k� j�� for the unforced system

xk�� � Akxk� ���
��

which relates the state at time tk to the state at an earlier time tj as follows� ����

xk �  �k� j�xj �k � j� ���

�

with

 �j� j� � I �j� ���
��

For the system ���
�� the state transition matrix is given uniquely by

 �k� j� �
k��Y
i�j

Ai� ���
��

Clearly we have

 �l� j� �  �l� k� �k� j� �l � k � j� ���
��

and since the matrices Ai are assumed to be nonsingular� we also may de�ne

 �j� k� �  ���k� j�� �j � k� ���
��

For the forced model ����� we now have ���

xk �  �k� j�xj �
k��X
i�j

 �k� i� 
�Biui �k � j� ���
��

The relationship ���
�� will be important later on in the thesis�

��� Controllability and Observability

The general aim of control theory is to regulate the state to some desired state by

a suitable choice of the inputs which we are free to choose� The variables we use to

manipulate the state are known as control variables� Generally� the model inputs

are used as control variables� In some cases we might be free to choose the initial
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states� and so these too could be used as control variables� The �strong constraint�

approach to variational assimilation hinges on the use of the initial state as a control

vector� or vector of control variables� since the idea is to choose that initial state

which will ensure that the state at later times is as desired� One of the areas we will

investigate is the use of correction terms representing model error as control vectors�

Other work has been carried out using tunable model parameters ��� or boundary

conditions ���� as control variables�

In this section� we introduce the concepts of controllability and observability�

and give some theoretical results which can be used to determine whether a system

is controllable or observable�

����� Some de�nitions

The concepts of controllability and observability are very important in control theo�

ry� The concept of controllability addresses the question of whether it is possible to

choose control variables to obtain the desired state� and the concept of observability

addresses whether it is possible to reconstruct the model state from the outputs

or observations and a knowledge of the model inputs� Here we give de�nitions for

complete ��step controllability and complete ��step observability� Often� the phrase

���step� or ���step� is not included in de�nitions of controllability or observability�

In the theory we present in Chapter �� however� we require these more speci�c ��

and ��step de�nitions�

The de�nitions are for the linear system with no model error and no observational

error� ie for the system

xtk�� � Akx
t
k �Bkuk� ���
�

yk � Ckx
t
k� ���
��

However� as we will see in Chapter �� the concepts are still useful for the sys�

tem ����������� with model error and observational error�

We note that since the system matrices Ak are nonsingular� the related concepts

of reachability and detectability are in this case equivalent to controllability and

observability respectively� �����
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De�nition ��� The system ���
�����
�� is completely ��step controllable at time tj

if for any arbitrary state xj at time tj and any desired state xd� there is an admissible

control sequence uj� ���uj���� on the discrete time interval �tj� tj����� which drives

the system to the desired state xd at time tj���

If the system is completely ��step controllable for any time tj� it is completely

��step controllable�

If the system is completely ��step controllable �at time tj� for some �� we might

simply say that the system is completely controllable �at time tj��

De�nition ��� The system ���
�����
�� is completely ��step observable at time

tj if and only if knowledge of the outputs yj�yj��� ���yj���� and of the inputs

uj �uj��� ���uj���� is su�cient to determine the state xj�

If the system is completely ��step observable for any time tj� it is completely

��step observable�

If the system is completely ��step observable �at time tj� for some �� we might

simply say that the system is completely observable �at time tj��

����� Theory for the general linear case

For the linear system ���
�����
��� the following theorems can be used to determine

whether the system is controllable or observable� We �rst introduce the ��step

controllability matrix Cj� for time tj and the ��step observability matrix Oj
�� for time

tj as follows�

Cj� � �Bj��� �j� j � 
�Bj��� � � � � �j� j � �� 
�Bj��� � ���
��

Oj
� �

�
BBBBBBBB�

Cj

Cj�� �j � 
� j�
���

Cj���� �j � � � 
� j�

�
CCCCCCCCA
� ������

Theorem ��� The linear system ��	
�����	
�� is completely ��step controllable at

time tj if and only if Rank �Cj�� � n	
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The proof of Theorem 
 is given in ���� for the concept of reachability� which in

this case is equivalent to that of controllability� We note that complete ��step

controllability at time tj implies complete �
��step controllability at time tj for all

integers �� � � �����

We give the proof of the next theorem� since it illustrates a line of argument we

will use later� The proof is based on that given by Weiss ����� but uses our notation

and expresses a couple of the arguments slightly di	erently�

Theorem ��� The linear system ��	
�����	
�� is completely ��step observable at

time tj if and only if Rank �Oj
�� � n	

Proof

�i� We �rstly show that Rank �Oj
�� � n is a su�cient condition for complete ��

step observability at time tj� We suppose that Rank �Oj
�� � n� We use ���
��

and ���
�� to rewrite the information available from the observations on the time

interval �tj� tj����� explicitly in terms of the state xj� as follows

yk � Ck �k� j�xj � bk� k � j� ���� j � � � 
� ����
�

where bj � � and

bk � Ck

k��X
i�j

 �k� i� 
�Biui k � j � 
� ���� j � � � 
� ������

Hence we can write

Oj
�xj � z� ������

where

z �

�
BBBBBBBB�

yj � bj

yj�� � bj��
���

yj���� � bj����

�
CCCCCCCCA
� ������

Since Rank �Oj
�� � n and� by construction� z is a linear combination of the columns

of Oj
� so that Rank �O

j
�jz� � n� xj can be uniquely determined from the observations

and speci�ed inputs�






�ii� To show that Rank �Oj
�� � n is a necessary condition for complete ��step

observability at time tj� we suppose that the system is completely ��step observable

at time tj� but that Rank �Oj
�� � n� and let uk � �� k � j� ��� j � � � ��

Then there exists a nonzero vector v � IRn� such that

Oj
�v � �� ������

Putting xj � v in ������ with zero input� we have z � �� which violates complete ��

step observability �since we have zero output over the whole time interval �tj� tj�����

although the state at time tj is not zero�� �

We note that complete ��step observability at time tj implies complete �
��step

observability at time tj for any integer �� � � �����

����� Theory for the linear� time	invariant case

The results given above can be applied to the time�invariant system� but in this

special case� we can say a bit more� The linear� time�invariant system is given by

xtk�� � Axtk �Buk� ������

yk � Cxtk� �����

where xtk � IRn� uk � IRm and yk � IRp are de�ned as in ����� and ������ and

A � IRn�n� B � IRn�m and C � IRp�n are constant matrices� For a time�invariant

system� ��step controllability at time tj clearly implies ��step controllability for all

time� and ��step observability at time tj implies ��step observability for all time�

We introduce the notation

C�� � �B�AB� ���� A
���B�� O�

� �

�
BBBBBBBB�

C

CA
���

CA���

�
CCCCCCCCA
� ������

The time invariant system ������������ is completely controllable if and only if

Rank �C�n� � n� ���� and is completely observable if and only if Rank �O�
n� � n� �����
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Later in the thesis� we will want to apply theoretical results involving the concept

of complete ��step observability to the special case of a time invariant system� and

where it is possible� to express the results in terms of the more familiar concept of

complete observability� The following theorem enables us to do this�

Theorem ��� a� If the linear time�invariant system is not completely observable�

then it is not completely ��step observable for all positive integers �	

b� If � � n then the linear time�invariant system is completely ��step observable if

and only if it is completely observable	

Proof

a� We must show that Rank�O�
n� � n implies Rank�O�

�� � n for all positive integers

�� and we do this by showing

Rank�O�
�� � Rank�O

�
n� ������

for all ��

This is clearly true for � � n� We suppose that � � n�
� By the Cayley Hamilton

theorem ���� we have

An �
n��X
j��

�jA
j ������

for some �j � IR� and so CAn can be be written as a linear combination of the rows

of O�
n� and hence ������ holds� Similarly� for any � � n�

A� � �
n��X
j��

�jA
j�A��n� ����
�

and hence CA� is still a linear combination of the rows of O�
n� and so ������ holds

for all positive integers ��

b� It follows from part a� that for any positive integer �� the linear time�invariant

system is completely ��step observable only if it is completely observable� We now

suppose that the linear time invariant system is completely observable� and hence

is completely n�step observable� As noted earlier� complete n�step observability


�



implies complete ��step observability for any � � n� and so part b� of the theorem

holds� �

One further result which will be useful when considering the time invariant case

is the Hautus condition ����� which is given in Theorem ����

Theorem ��� The linear time�invariant system ��	�����	��� is completely observ�

able if and only if� � 	 � C and � s � IRn�

�A� 	I�s � � and Cs � � 	 s � �	

��� Nonlinear optimization theory

The theory we give here provides background for the variational methods of data

assimilation which we investigate in this thesis� Useful texts for this material include

����� ����� ����� �
��� and �����

����� Preliminaries

A Hilbert space is a complete� linear inner�product space� All the properties of

Hilbert spaces are important for our purposes ����� We denote the inner product

de�ned on a Hilbert space V by � x�y �V� for any two elements x and y � V� We

note that real� n�dimensional Euclidean space IRn with the Euclidean inner product

�or �dot product�� is a Hilbert space� and throughout the thesis use the notation

� x�y ��� xTy ������

to refer to this inner product�

Later in the thesis� we refer to the adjoint of a linear operator� For a linear

operator A from a Hilbert space U to a Hilbert space V� the adjoint operator A� is

the linear operator from V to U for which� for all u � U and v � V

� v� Au �V�� A�v�u �U � ������

In the case where U is IRm and V is IRn� both with the Euclidean product �or dot

product�� A � IRm � IRn is an n�m matrix and we have

� v� Au �� vTAu � �ATv�Tu �� ATv�u �� ������

��



so that AT � IRn � IRm is the adjoint of A�

We consider a nonlinear� real valued function J on V� We suppose that J is

three times di	erentiable at v� � V� and that v��
�v � V represents a perturbation

of size 
 � ��
� 
� in a direction �v from v�� The Taylor series expansion of J about

v� can be written as follows ����

J �v� � 
�v� � J �v�� � 
 � rvJ �v��� �v �V �

� � �v�Hv�v���v �V �O

��
��

������

where the vector rvJ �v�� � V is the gradient of J with respect to v at v�� and

the linear operator Hv�v�� � V � V is the Hessian of J with respect to v at v��

Throughout the thesis� we use this notation to denote the gradient and the Hessian

of a real valued function�

����� Unconstrained minimization

We suppose that we wish to minimize a real valued function J � usually referred

to as a cost function� which is de�ned on a Hilbert space V� The unconstrained

minimization problem we consider is

Problem U 

Minimize J � ie� �nd v� � V such that

J �v�� � J �v� ������

for all v in some neighbourhood N 
 V of v�	

If such a v� exists� it is called a local minimum of J � If the inequality in ������

is strict� then v� is a unique local minimum� If N �v�� � V� then v� is also a global

minimum�

Since we have no constraints� the following is a necessary condition for v� to

minimize J

rvJ �v
�� � �� �����

In the special case that the cost function is quadratic in v�

J �



�
� v� Av �V � � b�v �V �c� ������

�




where b � V and c � IR are constants and A � V � V is a linear operator� if A is

a positive de�nite operator� then a minimum v� exists� is unique� and is given by

v� � �A��b� ����� If� however� A is only positive semi�de�nite� a minimum v� exists

but is not unique� since v�� z is also a minimum for any z satisfying � z� Az �� ��

Further� if A is inde�nite� then there is no minimum�

We now return to the general case where J is not necessarily linear or quadratic�

We suppose J is three times di	erentiable� and so can be expanded in a Taylor

series of the form ������� Then� for k
�vk small enough� the quadratic part of the

expansion dominates� so if rv�v�� � �� and Hv�v�� is a positive de�nite operator�

then v� is a unique local minimum of J ����� If Hv�v�� is only a positive semi�

de�nite operator� we can draw no conclusions about v�� because of the in�uence of

the higher order terms in the expansion� However� if Hv�v�� is inde�nite� then v�

cannot be a minimum�

����� Constrained minimization

In this subsection� we consider constrained minimization of a real valued function

J over IRn� which with the Euclidean inner product ������ is a Hilbert space�

The constrained minimization problem we consider is

Problem C �

Minimize J subject to the r constraints

gk�v� � �� k � 
� ��� r� ������

or equivalently

g�v� � �� ������

where r � n and g is a vector of r real valued functions gk � IR
n � IR� k � 
� ��� r

which are continuously di�erentiable	 We further assume that the vectors rvgk�v��

k � 
� ��� r are linearly independent for all v � IRn	

A constrained minimization problem of this form can be addressed as an un�

constrained optimization problem using the technique of Lagrange multipliers� The

��



Lagrangian function associated with Problem C is de�ned to be

L�v��� � J �v� � �Tg�v�� ����
�

where � � IRr is a vector of r Lagrange multipliers 	k� A solution of Problem C�

if it exists� can be found by extremizing the �unconstrained� Lagrangian function L

with respect to v and �� Necessary conditions for an extremal are �����

rvL � �� ������

r�L � �� ������

Any vector v � IRn satisfying ������ can be written in the form

v �

�
B� u

x

�
CA ������

with u � IRn�r and x � IRr� where the n�r components uj may be chosen indepen�

dently� and the r components are determined from the choice of the uj through ������

����� We refer to the n � r variables uj as control variables� and the vector u as a

control vector�

����� Solving Problem C by reducing the control vector

We now describe an iterative method for �nding v� satisfying necessary conditions

for a solution of Problem C by iterating on the control variables� Since this involves

iterating on the control vector u rather than on the full vector v� this technique

is referred to as �reduction of the control vector�� This method was suggested for

application to �D variational assimilation by Le Dimet and Talagrand ��
�� who

used the optimal control approach of Lions ���� rather than the Lagrange multiplier

approach we use here�

Necessary conditions for an extremal of L are given by

ruL � ruJ �v� �GT
u�v�� � �� ������

rxL � rxJ �v� �GT
x�v�� � �� ������

r�L � g�v� � �� �����

��



where Gu � IR
r�	n�r
 and Gx � IR

r�r are the Jacobian matrices of g with respect

to u and x respectively� Since the vectors rvgk�v� for k � 
� ��� r are linearly

independent� the Jacobian Gx�v� is invertible�

From a guess u for the control vector� the corresponding vector x is speci�ed

from the constraints ������� and hence ����� holds� From this choice of v �

�
B� u

x

�
CA�

� can be uniquely chosen to satisfy ������� Then we have the following expression

for the gradient of L with respect to the control vector u

ruL � ruJ �v� �GT
u�v��� ������

This gradient can be used in a gradient method to obtain a better guess of u� and

the procedure repeated until ������ holds�

��� Gradient methods

We consider here the problem of unconstrained minimization of a cost function J

over IRn with respect to a control vector u � IRn� We suppose that for any guess uk

of an optimal u� we can �nd ruJ �uk�� the gradient of the function with respect to

the control vector at uk�

A gradient method for iterating to a minimizing u� is of the following general

form ��
��

uk�� � uk � �kGkd
k ������

where dk � IRn is the descent direction based on the gradient ruJ �uk�� �k � IR is

the step�length� and Gk � IR
n�n is a matrix which should ideally approximate the

inverse of the Hessian Hu�uk� of J with respect to u at uk�

We now outline three types of gradient algorithms� steepest descent methods�

conjugate gradient methods and Newton�type methods� We give more detail on the

conjugate gradient method and a package quasi�Newton method� since we use these

methods in the thesis�

��



����� The steepest descent algorithm

In this case� the direction dk in ������ is simply the direction ruJ �uk�� Gk is the

identity� and �k is chosen to ensure

J �uk��� � J �uk�� ������

In practice� this might be done by setting �k � 
 initially on each iteration� and

halving �k until ������ holds� Alternative step�length choices are given in �����

The advantage of the steepest descent method lies in its simplicity� but the

rather ad�hoc method of �nding the step�length can render it very ine�cient since it

involvesmany evaluations of J andruJ � Further� choosing the direction dk with no

consideration of the previous directions used is not the most e�cient approach� The

conjugate gradient method provides a more sophisticated approach to calculating

�k and dk� and we describe this next�

����� The conjugate gradient method

The aim of the conjugate gradient method �CGM� is to choose the kth descent

direction dk to be a projection of the gradient ruJ �uk� onto a subspace of IR
n

which is orthogonal to dj for j � �� 
� ��� k � 
� Primarily� the CGM addresses an

unconstrained minimization problem with quadratic cost function�

J �



�
� u� Au � � � b�u �� ����
�

whereA � IRn�n is symmetric� positive de�nite� and b � IRn� The method calculates

the optimal step�length �k for each direction� and so for the quadratic case above

should theoretically converge in at most n iterations� However� this condition does

not hold in practice because of rounding errors� and if n is large� we require good

convergence in far fewer iterations in any case�

The conjugate gradient iteration on u is given by

uk�� � uk � �kdk ������

dk�� � �rk�� � �kdk� ������

��



where

�k �
� rk�dk �

� dk� Adk �
� �k �

� rk��� Adk �

� dk� Adk �
� ������

and

rk � Auk � b � ruJ �u
k� ������

with

d� � �r�� ������

The conjugate gradient method can also be used when J is not quadratic� as

described in ����� For the non�quadratic case� however� the step�length �k given

by ������ is no longer the �exact� step�length for the direction dk� and a di	erent

procedure �a linesearch� must be used to give a good estimate of the optimal step�

length� This need for an accurate step�length can lead to expensive line searches for

non�quadratic problems� However� Newton�type methods have the advantage that

accurate line searches for the optimal step�length are not needed�

����� Newton
s method and quasi	Newton methods

Newton�s method

Newton�s method provides an iterative solution to the problem

f�u� � �� �����

where u � IRn� and f � IRn � IRn is a nonlinear function� which is assumed to

be continuously di	erentiable in the neighbourhood of u with nonsingular Jacobian

Fu�u�� Newton�s method for solving ����� is

uk�� � uk � F��
u �uk�f�uk�� ������

Newton�s method has fast convergence �quadratic rate�� and for a quadratic cost

function converges in just one iteration�

In the context of our minimization problem� the problem of the form ����� that

we wish to solve is

ruJ �u� � �� ������

��



For this problem� Newton�s method is

uk�� � uk �H��
u �u

k�ruJ �u
k�� ������

The drawback of Newton�s method however is that it requires a solution of the

equation

Hu�u
k��uk � uk��� � ruJ �u

k� ����
�

at each iteration� For this reason� modi�cations of the Newton method have been

devised� to simplify the Hessian or to approximate its inverse� These modi�cations

constitute the quasi�Newton methods�

Quasi�Newton methods

Quasi�Newton methods for our minimization problem are of the form

uk�� � uk � �kGkruJ �u
k� ������

where Gk approximates H��
u �u

k�� the inverse Hessian at uk� A particular class of

quasi�Newton methods is the class of methods which use information on the previous

gradients to compose Gk� and so to gradually build up a better approximation of

the true inverse Hessian� The BFGS update formula for Gk ��
� has been widely

considered one of the most e�cient ����� ��
�� ����� For problems where n is large�

however �say� n � ���� ������ the cost of storing these approximate Hessian matrices

becomes prohibitively expensive� with a memory requirement of O�n��� compared

to the O�n� memory requirement of the CGM�

This problem may be alleviated by storing only the most recent gradient infor�

mation� from� say� the last !m iterations ����� such methods are called limited memory

quasi�Newton methods�

Another important issue for quasi�Newton methods is the condition number of

the matricesGk� Large condition numbers lead to large round�o	 errors� which a	ect

the numerical stability of the method� This matter is treated by Oren and Spedicato

���� We now give some detail on a limited�memory quasi�Newton algorithm used

in a package from INRIA� We use the program N
QN��f in the work described in

Chapter �

�



The INRIA N�QN� minimization algorithm

This minimization algorithm uses the the quasi�Newton update formula ������� in

which Gk� the current approximation of the inverse Hessian� is calculated using a

limited memory BFGS update� It is based on an algorithm by Nocedal� ����� with

an added preconditioning option� and is described in the documentation ���� and in

the paper by Gilbert and Lamar"echal �����

The general inverse BFGS formula� for approximating the new inverse Hessian

Gk�� from Gk is as follows

Gk�� � �I �
sk�yk�T

�yk�T sk
�Gk�I �

yk�sk�T

�yk�Tsk
�
sk�sk�T

�yk�T sk
�� ������

where

sk � uk�� � uk� yk � ruJ �u
k����ruJ �u

k�� ������

The matrix Gk is not stored explicitly in memory� but the product GkruJ �uk� is

calculated from a diagonal matrix Dk and !m pairs of vectors

f�yj� sj� � k � !m � j � k � 
g ������

if k � !m � 
� or just k pairs otherwise� In this way� at the kth iteration with

k � !m � 
� the oldest pair is discarded and a new pair added� The matrix Gk can

be represented using �� !m�
� n�vectors� where !m is an integer supplied by the user�

and this is all that need be stored in memory�

The form of the starting matrix Dk has been found to be very important to

the performance of quasi�Newton methods in general� and the paper by Oren and

Spedicato ��� gives some detail on how Dk can be chosen� The N
QN� algorithm

�without the preconditioning option� speci�es Dk to be the diagonal matrix

Dk � k��I� ������

where the number k is the Oren�Spedicato factor

k�� �
�yk���T sk��

kyk��k�
� �����

which is intended to give Gk a good scaling�

��



The step�length �k in ������ is chosen to satisfy Wolfe�s conditions

J �uk��� � J �uk� � ���
k � ruJ �u

k�� GkruJ �u
k� �� ������

� ruJ �u
k���� GkruJ �u

k� � � �� � ruJ �u
k�� Gkru�u

k� �� ������

where the constants �� and �� must be set in the ranges � � �� �
�
� and �� � �� � 
�

In the algorithm� these are set at the values �� � 
���� �� � ����

The algorithm provides the option of preconditioning by altering the way in

which Dk is speci�ed in ������� In the preconditioned version� Dk is calculated from

Dk�� using a diagonal update formula� and the matrix is now diagonal with respect

to a new inner product to be speci�ed by the user� This change of inner product

is equivalent to a change of orthonormal basis from the canonical basis for IRn� and

this change of basis forms the preconditioning� If the usual inner product is the

Euclidean product� as assumed in the above� then a new inner product could be of

the form

� a�b �L� aTLTLb� �����

where L is nonsingular� and the Canonical basis is altered by this change from the

basis fejg� j � 
� ��� n to the basis fL��ejg� Rather than storing the matrix L� or

the new basis� the user provides a subroutine which speci�es how the inner product

is to be calculated�

��� Background on probability theory

This section gives a brief overview of probability theory� The aim is to introduce the

concept of a statistically �most likely estimate�� which is a very important concept

in data assimilation� Before this� we give necessary de�nitions and background on

the Gaussian distribution� References for this theory include ���� �
��� ���� and �����

����� De�nitions

Random variables and probability density functions

A random variable can be thought of as a numerical value associated with a random

event� The range of a random variableX� denoted RX � is the set of all possible values

��



of X� We consider here only continuous random variables� or random variables with

an uncountable range�

An n�vector X of random variables Xj� j � 
� ��� n we refer to as a random n�

vector� or simply as a random vector if its dimension is not to be speci�ed� The

range of a random n�vector we denote RX� where RX � RX�
�RX�

� ����RXn �

Associated with any random variable X is a probability density function �abbre�

viated to pdf�� pX � RX � IR� The pdf of a continuous random variable X describes

how the unit of probability of X is distributed on the real line� The probability

P �a � X � b� that X takes a value between a and b � IR is given by

P �a � X � b� �
Z b

a
pX�x�dx� ���
�

The other fundamental properties of a pdf are

pX�x� � � for all x � RX � �����

Z
RX

pX �x�dx � 
� �����

We write the pdf of a random n�vector as pX � RX � IRn� where pX is the vector

of the pdfs of the random variables Xj � j � 
� ��� n�

The joint pdf of two random variables X and Y is given by pXY � RX�RY � IR�

with

��a � X � b�
�
�c � Y � d�� �

Z b

a

Z d

c
pXY �x� y� dx dy� �����

pXY �x� y� � � for all x � RX � y � RY �����Z
RX

Z
RY

pXY dx dy � 
 �����

The random variables X and Y are independent if

pXY �x� y� � pX�x�pY �y�� ����

The conditional pdf of X� given that Y has taken a value y� �so y� is a realisation

of the random variable Y � is de�ned to be

pXjY�y� �x� �
pXY �x� y�

pY �y��
� �����

��



This relation is from Bayes theorem� and it can also be written in the form

pXjY �y��x� �
pY jX�x�y

��pX�x�

pY �y��
� �����

We note that if X and Y are independent� then

pXjY�y��x� � pX�x�� ������

ie� knowledge that Y has taken a particular value has no impact on the probability

of X�

Mean� mode� variance� covariance and correlation

The mean value or expected value EfXg of a random variable X is de�ned to be

EfXg �
Z �

��
xpX�x�dx� ����
�

A random variable is unbiased if EfXg � �� The mean of a random n�vector X is

the vector of mean values of the components of X�

EfXg �

�
BBBBB�
EfX�g
���

EfXng

�
CCCCCA � ������

The expectation operator Ef g is a linear operator� and so has the following property

for random vectors X and Y�

EfAX �BY � cg � AEfXg�BEfYg � c� ������

where A and B are constant matrices and c is a constant vector� The mode of a

random variable is de�ned to be the value for which its pdf achieves a maximum�

The variance of a random variable X is de�ned to be

VarfXg � Ef�X � EfXg��g� ������

which can be interpreted as the expected square distance from the mean� For con�

stants a and b � IR we have

VarfaX � bg � a�VarfXg� ������

�




The standard deviation of X is de�ned as

��X� � �VarfXg�
�

� � ������

The covariance of two random variables X and Y is de�ned as

CovfX�Y g � Ef�X � EfXg��Y � EfY g�g� �����

and the correlation between X and Y is

CorfX�Y g � EfXY g� ������

If CovfX�Y g � �� then X and Y are uncorrelated � The correlation coe�cient of X

and Y is

��X�Y � �
CovfX�Y g

��X���Y �
� ������

where �
 � ��X�Y � � 
�

By linearity of the expectation operator� we have for matricesA and B of suitable

dimensions

CovfAX� BYg � ACovfX�YgBT � ������

We also note that if X and Y are unbiased� then

CovfX�Yg � EfXYT g� ����
�

By the covariance matrix of a random vector X� we mean the covariance matrix

CovfX�Xg�

����� The Gaussian distribution

We now suppose that a random variable X represents random error� The Gaussian

distribution� also called the Normal distribution� has the following characteristics

that make it suitable for representing errors�


� Continuity

�� An unbounded range

�� Symmetry about the mean �so positive and negative errors are equally likely�

��



�� A �bell�shaped� distribution� which gives small probability to large errors and

largest probability to the smallest errors�

�� Tractability� ie a pdf that is easy to work with�

The Gaussian pdf for a random variable X with mean � and variance �� is given by

pX �x� �

q
�����

exp

�
��x� ���

���

�
� ������

For a random n�vector with mean � � IRn and nonsingular covariance matrix R�

the Gaussian pdf is

pX�x� �



����
n
� �det�R��

�

�

exp��



�
�x���TR���x� ���� ������

����� �Most likely� estimates

The following development broadly follows that of the paper by Lorenc �����

We suppose that xf is a �prior�estimate of a random n�vector X� If we know

that

X � xf � ef � ������

where ef is a random n�vector of the error X�xf � and we know that ef is Gaussian

and unbiased with nonsingular covariance matrix P f � then the pdf of X is given by

pX�x� � k� exp��



�
�x� xf �T �P f ����x� xf��� ������

where k� is a constant� We now suppose that we have a random p�vector Y that

satis�es

Y � CX� �� ������

where C � IRp�n� and � is a random p�vector of the error Y � CX� which is

Gaussian and unbiased� with nonsingular covariance matrix R� The conditional pdf

for Y given that X � x is

pYjX�x�y� � k� exp��



�
�Cx� y�TR���Cx� y��� �����

where k� is a constant� We now suppose that we have a particular realisation� y� of

Y� and that we wish to �nd the �most likely� estimate xa of X given that Y � y��

��



To do this we need to know pXjY�y� �x�� which by ����� is given by

pXjY�y��x� �
pYjX�x�y

��pX�x�

py�y��
� ������

hence

pXjY�y� �x� �
k�k�
k�

exp��



�
f�Cx�y��TR���Cx�y����x�xf�T �P f ����x�xf�g��

������

where k� � pY�y
�� is a constant since y� is given�

The �most likely estimate� of xa could be de�ned either as the mode or the mean

value of X� which correspond to the maximum likelihood and minimum variance es�

timates respectively� Here it turns out that the maximum likelihood and minimum

variance estimates coincide ����� and are given by x which maximises ������� Maxi�

mizing ������ is equivalent to minimizing the function

J �x� �



�
�Cx� y��TR���Cx� y�� �




�
�x� xf�T �P f ����x� xf�� ���
���

�since J �x� � �ln k�
k�k�

pXjY�y� �x���

In summary� if X and Y are random vectors satisfying ������ and ������� then

the most likely estimate of X given that Y � y� and a prior estimate X � xf � is

given by xa � IRn which minimizes J in ���
����

��



Chapter �

Sequential data assimilation

Sequential data assimilation schemes treat observations as they become available in

time� and then discard them� If a �D data assimilation method� which is designed

to produce an analysis at a single time� is applied repeatedly� this can be seen as

sequential data assimilation� �D sequential data assimilation methods� however�

are designed so that an analysis should gradually draw closer to the true model

state� as more observations are processed� In control theory� dynamic observers are

designed for this very purpose� and so observer theory is very relevant to sequential

data assimilation� An example of an observer originally designed for engineering

applications which is being investigated for use in data assimilation� is the Kalman

�lter� The Kalman �lter is designed to produce a solution that is� under certain

assumptions� statistically optimal� There are also other ways of designing observers

which give the solution other desirable properties�

In this chapter� we �rstly give a brief outline of some �D data assimilation

schemes� In Section ���� we give an introduction to the Kalman �lter� We pay

particular attention to the assumptions made on observational error and model

error� and how the Kalman �lter can be generalized to allow for serially correlated

model error� since we use these ideas later in the thesis� Then� in Section ���� we give

an introduction to dynamic observers of control theory� and give theory on design

of a robust observer using eigenstructure assignment� In Section ���� we discuss

how �D data assimilation schemes can be extended to �D schemes� We show how

the successive correction method can be expressed as an observer if observations

��



are available frequently� Using observer theory� we are able to give conditions for

the linear� time invariant case under which the successive correction analysis will

converge in time to the true solution� In Section ���� we compare the Cressman

successive correction scheme with a robust observer in data assimilation for a simple

example� These experiments serve to illustrate how an observer which is designed for

temporal convergence to the true solution can perform much better than successive

correction scheme designed for an analysis at a single time�

��� Background on �D data assimilation schemes

By ��D� data assimilation schemes we mean schemes that are designed to give an

analysis at a single time� and do not attempt to take into account the time�tendency

of the observations� This section gives a brief overview of a few �D data assimilation

schemes that have been used in the past and to date� and which we use or refer to

in this thesis� We �rstly outline successive correction methods� which are some of

the earlier schemes to have been proposed and implemented� We then introduce

the method of optimal interpolation� on which the schemes currently used in many

meteorological centres are based� Finally� we describe the �D variational assimilation

��DVAR� method which is being developed for operational use at several centres as

an intermediate stage in the development of �D variational assimilation ��DVAR�

schemes�

The material in this section is intended to be only a brief outline of the methods

discussed� A more in�depth overview of data assimilation methods and further

references are given in the review paper by Ghil and Malenotte�Rissoli ���� and the

books by Daley ���� and Bennett ����

����� Successive correction schemes

Successive correction schemes were introduced to meteorology in the 
���s for op�

erational objective analysis� by Bergth"orson and D�o�os ���� and by Cressman ��
��

The Cressman scheme ��
� was designed for systems with few observations� widely

scattered� which are to be �tted as closely as possible� This method was intend�

��



ed to improve on the earlier polynomial spline methods ����� ���� by being more

suitable for use over larger areas with less dense data coverage� and by being com�

putationally simpler ��
�� Successive correction schemes have been widely used in

data assimilation� �����

We suppose we have a prior estimate xbk of the true model state x
t
k� and obser�

vations given by

yk � hk�x
t
k�� ���
�

where equation ���
� is as de�ned in ����� assuming no observational error� The

successive correction method is an iteration on xk which brings it successively closer

to the observations yk� This iteration has the following general form� �����

x
	i��

k � x

	i

k �QW 	i��
�yk � hk�x

	i

k ��� i � �� ��� s� 
� �����

with x
	�

k � xbk� where x

	i

k represents the ith iterate of xk�W 	i
 � IRn�pk are weighting

matrices� Q � IRn�n contains normalizing factors� and s is the total number of

iterations� The analysed state is then given by xak � x
	s

k � The weighting matrix in

e	ect smoothes the observational data into the model state by modifying the state at

grid points within some radius of in�uence of each observation point� Although the

weights in a successive correction method are generally empirically determined� some

methods� including the original method by Bergthorsen and D�o�os� use the statistics

of analysis error to determine the weights� and so are able to allow for observational

error ����� The paper by Lorenc ���� shows how the successive correction methods

can be related to statistically optimal methods�

The Cressman scheme

The Cressman scheme ��
� is one of the earliest schemes for objective analysis to

have been used operationally� and has been widely used since ����� We give more

detail on this method� since we implement it for a simple example in Section ����

In this method� the iteration is repeated with successively smaller radii of in�uence

R	i
� which has the e	ect of altering the large scale features of the motion on the

�rst iterations� and the smaller scale features on successive corrections ����� The

�



�l�m�th element of the matrix W 	i
 is given by

W
	i

lm �

�R	i

m �

� � d�lm

�R	i

m �� � d�lm

� l � 
� ��� n� m � 
� ��� pk� �����

where R	i

m is the radius of in�uence at the ith iteration for observation m �ie� the

mth component of yk�� and dlm is the distance between observation m and grid point

l� In the original paper introducing this method� � iterations were carried out with

di	erent radii of in�uence ��
��

����� Optimal interpolation

The method of optimal interpolation �OI� has been widely used in operational data

assimilation for NWP in the 
���s and 
���s ����� Important references for the

method include the papers by Gandin ���� and Lorenc ����� The OI method was

designed for a system in which observations are linearly related to the model state�

We suppose that we wish to estimate xtk� and that we have observations given by

yk � Ckx
t
k � �k� �����

where yk and �k are de�ned as in ������ We suppose that the observational error

�k is an unbiased� Gaussian random vector� with nonsingular covariance matrix Rk�

We also suppose that we have a prior estimate �or �background estimate�� xbk of

xtk� and that the error �x
t
k � xbk� is an unbiased� Gaussian random vector with non�

singular covariance matrix Pk� The OI method is based on �nding the most likely

state xak at time tk from the prior estimate xbk and the vector of observations yk�

From Chapter �� Section ���� we have that the most likely estimate minimizes

J �xk� �



�
�xk � xk

b�TP��
k �xk � xk

b� �



�
�Ckxk � yk�

TR��
k �Ckxk � yk�� �����

The OI analysis xak satis�es

xk
a � xbk �Wk�yk � Ckx

b
k�� �����

where the OI weighting matrix Wk is speci�ed by

Wk � PkC
T
k �CkPkC

T
k �Rk�

��� ����

��



as discussed in ����� The OI method is in fact not truly optimal since it does not

update the error covariance matrix Pk of the background estimate in a way that

takes into account the earlier observations which have already been assimilated�

The Kalman �lter does this� but the extra cost involved is large� The OI method is

sometimes more realistically referred to as statistical interpolation� ����� Although

designed for a linear system� the method can be extended for use in a system in

which the observations are nonlinearly related to the model state�

yk � hk�x
t
k� � �k� �����

with yk� xtk and �k as de�ned in ������ and where hk � IR
n � IRpk is a nonlinear

operator� This can be done by linearizing ����� about xbk� We describe this approach

in a little more detail in the context of the nonlinear extension to the Kalman �lter

in Section ����

����� �D variational assimilation� and the PSAS method

The three dimensional variational assimilation ��DVAR� method takes a di	erent

approach to minimizing the function ������ Rather than solving equations ����� and

����� the approach is to iterate to the minimizing solution xak� The gradient of �����

with respect to xk is

rxkJ � P��
k �xk � xbk� � CT

k R
��
k �Ckxk � yk�� �����

and this may be used in a gradient method to iterate to the optimal solution� We

describe a few such methods in Chapter �� Section ����

The �DVAR method is currently being developed for implementation for opera�

tional data assimilation at several meteorological centres� with plans for extension to

the �DVAR method ���� The �PSAS� method� or physical�space statistical analysis

system ���� represents another way of solving equations ����������� The approach

taken in this case is to solve for wk � IR
pk the equation

�CkPkC
T
k �Rk�wk � �yk � Ckx

b
k� ���
��

using some suitable iterative method� The solution xak is then given by

xak � xbk � PkC
T
k wk� ���

�

��



In general� the dimension pk of the observation vector is much smaller than the

dimension n of the model state xk� for meteorological applications it might be t�

wo orders of magnitude less� and even less for oceanographic applications� The

advantage of the �physical�space� approach lies in this potential gain in e�ciency�

The �DVAR and PSAS methods may be extended to cases where the observations

are nonlinearly related to the model state� as in equation ������ as we described for

the OI method� Alternatively� the cost function J may be explicitly de�ned for

the nonlinear system� as we describe in the context of �D variational assimilation in

Chapter ��

��� The Kalman �lter

The Kalman �lter for a discrete linear model with observations linearly related to the

model state was developed by Kalman in 
��� ����� The continuous time version

was developed by Kalman and Bucy in 
��
 ����� Here we concentrate on the

discrete version� Comprehensive background on the discrete Kalman �lter is given

in the texts �
�� and ����� An introduction to the Kalman �lter for data assimilation

applications can be found� for example� in �����

The Kalman �lter has been considered for application in meteorology and o�

ceanography� but is generally considered too expensive for operational implementa�

tion because of the large dimension of the problem ����� However� several simpli�ca�

tions of the method have been suggested for data assimilation� ����� Further� since

the Kalman �lter provides� for a linear system and under certain statistical assump�

tions� a statistically optimal solution for �D data assimilation� it is useful to exploit

links between the Kalman �lter and other data assimilation methods� We describe

the assumptions made in Kalman �ltering on observational errors and model errors

in some detail� since we refer to these same assumptions later in the thesis� We then

describe the Kalman �lter� and give some detail on how it can be modi�ed to deal

with serially correlated model error� since later in the thesis we discuss further how

to deal with serially correlated model error in variational data assimilation� Finally�

we discuss brie�y how the Kalman �lter can be used for nonlinear systems�

��



����� The standard Kalman �lter assumptions

We suppose that the true model state is de�ned by the linear stochastic dynamic

system

xtk�� � Akx
t
k �Bkuk � �k� ���
��

where xtk is a random n�vector representing the true model state at time tk� uk � IR
m

is a vector of speci�ed model inputs� Ak � IR
n�n� Bk � IR

n�m� and �k is a Gaussian

random n�vector representingmodel error� with nonsingular covariance matrix Qk �

IRn�n� We suppose that the output of ���
�� at time tk is a random pk�vector yk

related to the state xtk by

yk � Ckx
t
k � �k� ���
��

where Ck � IR
pk�n and �k is a Gaussian random pk�vector representing observational

error� with non�singular covariance matrix Rk � IR
pk�pk � We suppose that we have

a prior estimate� called a forecast in this context� xfk of x
t
k� and that the forecast

error at time tk� de�ned to be

efk � xfk � xtk� ���
��

is a Gaussian random n�vector with zero mean and with nonsingular covariance

matrix P f
k �

In the standard Kalman �lter� the following assumptions are made about the

model error �k�

ME� � it is unbiased� Ef�kg � ��

ME� � it is serially uncorrelated �white�� ie Covf�k� �jg � �� j �� k�

We make similar assumptions about the observational error �k�

OE� � it is unbiased� Ef�kg � ��

OE� � it is serially uncorrelated� ie Covf�k� �jg � � j �� k�

It is further assumed that model error and observational error are uncorrelated with

each other and uncorrelated with xf��

�




MOE �

Covf�k� �jg � �� Covf�k�x
f
�g � �� Covf�k�x

f
�g � �� �j� k� ���
��

We note that� from ���
�� and ME�� we have

Covfxtj� �kg � �� �k � j� ���
��

and similarly� from ���
�� and OE� we have

Covfxtj� �kg � �� �k � j� ���
�

As mentioned above� we assume that the error covariance matrices Qk� Rk and

P f
k are nonsingular� All covariance matrices for a random vector with itself are

symmetric positive semi�de�nite� and are positive de�nite if they do not contain

null variances or perfect correlations ��
�� We assume that this is so� Assumption

ME
 that model error is unbiased is in fact not restrictive� if we have

Ef�kg � #�k �� �� ���
��

we can de�ne

�k � #�k � �k
� ���
��

where Ef�k�g � � and #�k � IRn is now part of the deterministic model forcing�

and continue as before� Similarly� assumption OE
 on observational error is not

restrictive� Assumptions ME� and OE� can also be relaxed� but doing so necessitates

extra computational cost and extra statistical information�

����� The Kalman �lter

The Kalman �lter �nds the most likely estimate xak of the state x
t
k from a prior

estimate xfk and a vector y
�
k of observations� which is a realization �or particular

outcome� of the random vector yk� The vector xak is sometimes called the analysis�

From Chapter �� Section ���� we know that xak minimizes the function

J �xk� �



�
�xk � xfk��P

f
k �

���xk � xfk� �



�
�Ckxk � y�k�

TR��
k �Ckxk � y�k�� ������

��



A necessary condition for a minimum is that rxkJ �xk� � �� ie

�P f
k �

���xk � xfk� � CT
k R

��
k �Ckxk � y�k� � �� ����
�

It can be shown ���� that the best estimate xak is a unique� global minimumof ����
��

and satis�es

xak � xfk �Kk�y
�
k �Ckx

f
k� ������

where Kk � IR
n�pk is the Kalman gain matrix given by

Kk � P f
k C

T
k �CkP

f
k C

T
k �Rk�

��� ������

We de�ne the analysis error at time tk to be

eak � xak � xtk� ������

Subtracting xtk from ������ and using ���
�� gives the following equation for eak�

eak � efk �Kk�Ckx
t
k � �k � Ckx

f
k� ������

� �I �KkCk�e
f
k �Kk�k� ������

Since efk and �k are unbiased� e
a
k is also unbiased� Further� it can be veri�ed that

efk and �k are uncorrelated because of equation ���
�� and hence e
a
k has covariance

matrix

P a
k � �I �KkCk�P

f

k �I �KkCk�
T �KkRkK

T
k � �����

which can also be written ����

P a
k � �I �KkCk�P

f
k � ������

So far� we have speci�ed the optimal analysis xak at time tk and its error covariance

matrix P a
k � We now move on to the next step� and calculate the prior estimate or

forecast of xtk�� as follows

xfk�� � Akx
a
k �Bkuk� ������

The forecast error covariance matrixP f
k�� must now be calculated� Subtracting ���
��

from ������ gives the following expression

efk�� � Ake
a
k � �k� ������

��



It can be veri�ed that eak and �k are uncorrelated because of the relation ���
���

Further� efk�� is unbiased since e
a
k and �k are� and we have

P f
k�� � AkP

a
kA

T
k �Qk� ����
�

We can now apply the Kalman �lter equations ������ and ������ to �nd xak���

which is the best estimate of xtk�� given the observation vector y
�
k�� and prior

estimate xfk��� and ������ to �nd its error covariance matrix�

In fact� since xfk�� is the best estimate of x
t
k�� from the observation vector y�k

and prior estimate xfk � then x
a
k�� is the best estimate of x

t
k�� from the observations

y�k and y
�
k�� and prior estimate x

f
k� If observations y

�
�� y

�
�����y

�
k�� have been treated

in this way� then xak�� is the best estimate of x
t
k�� given observations y

�
�����y

�
k�� and

prior estimate xf� �����

����� Serially correlated model error

If we wish to allow for serial correlation in model error� and abandon assumption

ME�� then the Kalman �ltering equations can be modi�ed in the way described

below� In Chapter � we give a fuller discussion on why this modi�cation might

be needed� The following theory broadly follows a paper by Daley written in the

context of data assimilation ����� and the book by Jazwinski ����� in which the case

of serially correlated observation error rather than model error is treated�

To account for serially correlated model error in the system ���
������
��� we

must assume that the serial correlation is known� We therefore suppose that we

have the following linear stochastic dynamic model for the evolution of model error�

�k�� � Gk�k � qk ������

where Gk � IRn�n represents the dynamic evolution of model error from time tk

to tk��� and qk is an unbiased� Gaussian random n�vector� which is assumed to be

serially uncorrelated� and uncorrelated with the observational error� We assume

that qk has a nonsigular covariance matrix Sk� We note that from ������ and the

fact that qk is serially uncorrelated� we have

Covf�j �qkg � �� �k � j� ������

��



The other assumptions on model error and observational error are as before� includ�

ing the assumption that model error and observational error are uncorrelated�

The analysis given for the standard Kalman �lter in equations ������ and ������

still holds for producing the best estimate or analysis xak based on x
f
k� y

�
k and their

error covariance matrices� The expressions ����� and ������ for the analysis error

covariance are also unchanged� since the forecast error and observational error are

still uncorrelated� The expression for the new forecast error efk�� given in ������ is

also unchanged� but because model error is now serially correlated� equation ���
��

no longer holds� and model error and analysis error are now correlated� Hence� the

expression ����
� for the new forecast error covariance matrix must be modi�ed as

follows�

P f
k�� � Covf�Ake

a
k � �k�� �Ake

a
k � �k�g

� AkP
a
kA

T
k �AkCovfe

a
k� �kg � Covfe

a
k� �kgA

T
k �Qk� ������

or� de�ning the covariance matrix of analysis and model errors as

P aq
k � Covfeak� �kg� ������

we have

P f
k�� � AkP

a
kA

T
k �AkP

aq
k � P aq

k AT
k �Qk ������

It now remains to specify P aq
k�� from P aq

k � This is given by

P aq

k�� � �I �KkCk��AkP
aq

k �Qk�G
T
k � �����

Finally� Qk�� is calculated from Qk as follows

Qk�� � GkQkG
T
k � Sk� ������

So� for serially correlated model error� we have the standard Kalman �lter equations�

except that the evolution of the forecast error covariance ����
� is modi�ed to �������

and in addition we must propagate the covariance matrix of analysis and model

errors as expressed in equation ������ and the model error covariance matrix �������

We note that serially correlated observational errors can be dealt with in a similar

way� if we assume model error is uncorrelated in time ����� In this case the equation

��



for the analysis error covariance propagation would be modi�ed� and we would need

to work out the propagation of the covariance matrix of forecast and observational

errors� It is also possible to allow for serial correlations in both model error and

observational error ����� but at greater complication still�

����� The extended Kalman �lter

We now consider the extension of Kalman �ltering theory to the nonlinear� stochastic

dynamic system

xtk � fk�x
t
k�uk� � �k� ������

with observations nonlinearly related to the state as follows

yk � hk�x
t
k� � �k� ������

where the true state xtk� the output yk� the speci�ed input uk and random errors

�k and �k are de�ned as in the system ���
������
��� and fk � IR
n � IRm � IRn and

hk � IR
n � IRpk are nonlinear operators�

There are various ways of developing an extended Kalman �lter �EKF� for the

system �������������� ����� Here we give a fairly brief treatment of the subject� using

one approach which is popular in the context of data assimilation for meteorology

and oceanography� ����� This approach involves linearizing the system about the

forecast state xfk� to obtain a linear system of the form

x�k�� � Ak�x
f
k�uk�x

�
k �Bk�x

f
k�uk�u

�
k � ��k� ����
�

y�k � Ck�x
f
k�x

�
k � ��k� ������

in which Ak � IRn�n and Ck � IRpk�n are the Jacobians with respect to xk of fk

and hk respectively� and Bk � IR
n�m is the Jacobian of fk with respect to uk� and

the errors ��k and �
�
k are assumed to satisfy the standard Kalman �lter assumptions

ME
�ME�� OE
�OE�� and MOE� In the EKF� the nonlinear evolution

xfk�� � fk�x
a
k�uk� ������

replaces ������� but the analysis ������ with ������ and the evolution of the co�

variance matrices given in ������ and ����
� are carried out using the linearized

��



system ����
��������� In this case� the equation for the forecast error covariance

propagation is correct to �rst order in efk�

��� Observer theory

In control theory� a dynamic observer uses model outputs �observations� to drive a

model state closer to the true state as characterised by the observations� For this

reason the sequential data assimilation methods can be expressed quite naturally in

terms of observers� because the approach in sequential assimilation is to gradually

drive the model state closer to the optimal solution over the assimilation interval�

The Kalman �lter is an example of a stochastic observer� although in this case

the aim is not to drive the model to the observations exactly� but to the �most

likely� model state given appropriate error covariance information� Other forms of

observer can be formulated for data assimilation and a class of observers known

as �simpli�ed Kalman �lters� �SKF� are being developed for this application �����

����� If a �D method of data assimilation� such as a successive correction method�

is applied repeatedly� it could also be expressed in terms of observers� as we discuss

in Section ����

We begin this section by introducing a dynamic observer for a nonlinear system�

and looking for criteria for its convergence to the true solution� In the case where

we restrict our attention to the linear� time invariant system� it is easy to express

conditions for convergence in terms of the eigenvalues of the observer� We discuss

how� under certain conditions� we can design the eigenstructure of the observer

system so that it behaves in a desirable way� Then we describe a method of observer

design that results in a robust observer system� which serves as an example of

observer design�

����� Dynamic observers

We consider the nonlinear model

xtk�� � fk�x
t
k�uk� ������

�



with observations

yk � hk�x
t
k� ������

de�ned as in ���
�������� assuming no model error or observation error� A dynamic

observer for ������������� may be written in the form

xk�� � fk�xk�uk� �Gk�yk � hk�xk��� ������

where xk is an estimate of the true model state xtk� and the feedback matrix Gk �

IRn�pk must be chosen so that xk � xtk as tk ���

Expanding ������ in a Taylors series about xtk� and de�ning ek � xk � xtk we

have

xk�� � fk�x
t
k�uk� � Fk�x

t
k�uk�ek �Gk�yk � hk�x

t
k��Hk�x

t
k�ek� � o�ek�� �����

where Fk and Hk are the Jacobians of fk and hk with respect to xk� and o�ek�

represents the higher order terms� Now using ������ and subtracting ������ from

����� we have the following equation for the error ek between the observer state

and true state

ek�� � �Fk�xk�uk��GkHxk�xk��ek � o�ek�� ������

The nonlinear observer ����� will converge to the true model state provided ek � �

as tk � �� with the evolution of ek given by ������� An example of a nonlinear

observer� which uses a gradient method with an interesting link to the �D variational

assimilation method� is given in �����

The linear� time invariant case

For the linear� time invariant system

xtk�� � Axtk �Buk ������

yk � Cxtk� ������

as de�ned in ������������� a dynamic observer of the form ������ is

xk�� � Axk �Buk �G�yk � Cxk�� ����
�

��



and the error equation corresponding to ������ is

ek�� � �A�GC�ek� ������

and therefore

ek � �A�GC�ke�� ������

Hence� to satisfy the condition ek � � as tk � �� the eigenvalues of �A�GC��

denoted by 	i�A�GC�� must satisfy the condition

j	i�A�GC�j � 
 �i � 
� ��� n� ������

In certain cases it is possible to choose the feedback matrix G so that the matrix

�A � GC� has any speci�ed eigenvalues� and in particular� it is possible to ensure

that the condition ������ holds� Theorem ��
 gives su�cient conditions for this to

hold �����

Theorem ��� If the system ��	������	��� is completely observable� then it is pos�

sible to choose the matrix G in ��	�
� so that the eigenvalues of �A � GC� take

prescribed values	

����� Eigenstructure assignment

The inverse eigenvalue problem of assigning eigenvalues to the system ����
� allows

some freedom in choosing the corresponding eigenvectors in the case p � 
� and

since we have some freedom in choosing the eigenvectors also� our problem now

is one of eigenstructure assignment ����� We now describe how we can choose the

eigenstructure of the dynamic observer ����
��

We suppose that the conditions of Theorem ��
 hold� and that the set of eigen�

values we wish to assign is

$ � f	�� 	�� ���� 	ng� ������

where

	i � C� j	ij � 
� and 	 � $ #	 � $ for i � 
� ���� n� ������

��



We letD � diagf	ig and letX be the modal matrix of right eigenvectors of �A�GC�

and Y be the modal matrix of �AT �CTGT �� Then our problem is to choose G and

X to satisfy

�A�GC�X � XD� �����

or� equivalently� to choose Y and GT to satisfy

�AT � CTGT �Y � Y D� ������

For our purposes� we work with equation �������

If we calculate the QR decomposition of CT � we �nd that

CT � � %Qc� Qc�

�
	
 Ro

�

�
� � ������

where %Qc � IR
n�p� Qc � IR

n�	n�p
� � %Qc� Qc� is orthogonal and Ro � IR
p�p is upper

triangular� nonsingular since C is assumed to have rank p� Substituting this into

������ and rearranging gives

�
B� %QT

c A
TY � %QT

c Y D

QT
c A

TY �QT
c Y D

�
CA �

�
B� RoG

TY

�

�
CA � ������

from which we have

GT � R��
o
%QT
c �A

TY � Y D�Y ��� ����
�

� � QT
c �A

TY � Y D�� ������

Equation ����
� is the equation for GT for a given Y and equation ������ gives us a

condition for choosing Y �

From ������ we have that for i � 
� ���� n

QT
c �A

T � 	iI��i � �� ������

where �i is the i
th column of Y and is the left eigenvector corresponding to eigenvalue

	i� Therefore�

�i � Ni � N �Q
T
c �A

T � 	iI��� ������

where N represents the right null space� This gives some restriction on the choice

of each column �i of Y � but since Ni has dimension p �by observability� ����� there

��



is still some freedom to choose the �i if p � 
� We can use this freedom to ensure

that our selected eigenvalues are as insensitive as possible to perturbations in A�C

and G and thus that the system is robust ���� This can help to reduce the e	ects

of model error ����

Eigenstructure assignment for robustness

The sensitivity of eigenvalue 	i to perturbations in the components of A�C and G

is given by

ci �
k�ikk�ik

j�T
i �ij

� ������

where �i are the columns of X� and �
T
i the rows of Y

T �����

We note that

ci �



j cos�j
������

where � is the angle between �i and �i� by the scalar product rule� Therefore ci is

smallest where � is smallest� which will be where �i is parallel to �i� To optimize

the conditioning� then� we choose each �i to be as close as possible to parallel to �i�

We have that �i is orthogonal to �j for all j �� i ����� If �i is to be parallel to �i� it

follows that �i should also be orthogonal to �j for all j �� i� A necessary condition

for optimal conditioning is therefore that the vectors �j be as close to orthogonal

to each other as possible�

To summarize� our aim is to choose a set of vectors �i� the columns of Y so that

for all i � 
� �� ��n

a� �i � Ni � N �QT
c �A

T � 	i�� �i � 
� ��� n

b� the �i are linearly independent

c� the �i are as close to orthogonal to each other as possible�

Condition b� is included� because the inverse of Y is needed for evaluating G� The

set of vectors �i must be scaled so that k�ik � 
�

�




A method for eigenstructure assignment

The method described here involves choosing a set of vectors �i which satisfy con�

ditions a�� b� and c� above� and follows a method given in ����

Calculating the QR decomposition of �A� 	iI�Qc gives

�A� 	iI�Qc � � %Si� Si�

�
	
 Ri

�

�
� � �����

where � %Si� Si� is orthogonal� %Si is n� �n�p�� Si is n�p� and Ri is �n�p�� �n�p�

upper triangular and nonsingular� It follows by orthogonality of � %Si� Si�� that

QT
c �A

T � 	iI�Si � �� ������

Therefore� if �i is in the space spanned by the columns of Si� then condition a� is

satis�ed�

We now choose any set of linearly independent left eigenvectors �i satisfying

condition a�� and modify these in turn to satisfy condition c�� Let

Y�i � f��� �����i����i��� �����ng� ������

We want �i to be as close to orthogonal as possible to this set� Calculating the QR

decomposition gives

Y�i � � %Zi� zi�

�
	
 %Yi

�

�
� � �����

where � %Zi� zi� is orthogonal� %Yi is upper triangular and nonsingular� and zi is an

n � 
 vector� This gives us the vector zi which is orthogonal to Y�i� but zi may

not be in Ni� which would violate condition a�� Choosing �i to be the orthogonal

projection of zi into Ni ensures that �i is as orthogonal as possible to the set Y�i

whilst satisfying condition a�� So� after normalization we take

�i � SiS
T
i zi�kSiS

T
i zik� ���
�

When all the columns have been modi�ed in this way� the same procedure can

then be repeated to modify the �i again� until k�Y
T ���kF �

P
i ci reaches a local

minimum� Minimizing k�Y T ���kF is a way of minimizing all the ci together� The

feedback matrix G can then be calculated from ����
�� using the Y derived�

��



This method for improving the robustness of the system can not be guaranteed

to converge to the minimumpossible value of k�Y T ���kF � but in practice it has been

found to reduce its value signi�cantly�

An algorithm for a robust observer


� Calculate the QR decomposition of CT into

CT �
h
%Qc� Qc

i �	
 Ro

�

�
� � �����

�� For each i � 
� ��� n�

calculate the QR decomposition of �A� 	iI�Qc into

�A� 	iI�Qc �
h
%Si� Si

i �	
 Ri

�

�
� � �����

�� Choose columns from each of the Si to be columns of the �rst guess Y� in such

a way that Y is invertible�

�� For i � 
� ���� n� modify the columns �i of Y as follows�

�a� calculate the QR decomposition of Y�i � f��� ����i����i��� ����ng into

Y�i � � %Zi� zi�

�
	
 %Yi

�

�
� � �����

�b� project the vector zi into space Si to satisfy condition a� and then nor�

malize�

�i � SiS
T
i zi�kSiS

T
i zik� �����

�� Repeat Step � until k�Y T ���kF reaches a local minimum�

�� Using the Y found� let the feedback matrix be G where

GT � R��
o
%QT
c �A

TY � Y D�Y ��� �����

��



��� Extending �D schemes to �D

����� Introduction

�D data assimilation schemes are designed for an analysis at a single time� This

approach was suitable in the earlier days of data assimilation� when observations

were available mostly at synoptic times� For many modern applications of data

assimilation� however� observations are available much more frequently�

The OI� �DVAR and PSAS methods all have theoretical extensions to �D schemes�

For example� the Kalman gain matrixKk given in ������ is the same as the OI weight�

ing matrixWk given in ���� with the matrix Pk of the OI scheme playing the r!ole of

the forecast error covariance matrix P f

k of the Kalman �lter� If the matrix Pk of the

OI scheme is updated from Pk�� in the same way as the forecast error covariance

matrices of the Kalman �lter� then the OI scheme extended to �D is equivalent to

the Kalman �lter� Since updating the forecast error covariance matrices is a very

expensive part of Kalman �ltering when the dimension of the system is large� in OI

applications the covariance matrices Pk are usually kept constant� or a much simpler

updating is performed� �����

Similarly� the �DVAR method can be extended to the strong constraint �D vari�

ational assimilation method by summing the observational part of the cost function

J given in ����� over the times that observations are available� and performing

the minimization subject to the constraint that the model equations hold� In this

method� it is only necessary to specify the covariance matrix P� at time t�� as the

matrices Pk do not need to be calculated explicitly�

These �D data assimilation methods are much more expensive than the �D

methods� however� Although much recent research in data assimilation has cen�

tred around the theory and development of these �D schemes� it is likely that �D

schemes will be used operationally at some centres for a while yet� There is also still

interest in simple schemes� such as the successive correction method ����� Successive

correction methods are largely empirically designed� to �smooth in� observations to

a prior estimate of the state at a single analysis time� In the next subsection� we

discuss how ideas from control theory on observer design can be applied to provide

��



a theoretical extension of successive correction schemes to �D� This could provide

a way to make successive correction schemes more appropriate for use in a modern

application of data assimilation in which observations are available more frequently�

����� Successive correction schemes as observers

Here we suppose that a successive correction method is to be used for data assimi�

lation with observations available frequently� and we show how it may be regarded

as an observer� If an observer is applied over an assimilation interval� then the

analysed solution over that interval does not satisfy the model dynamics� but the

observer dynamics� Hence� considering a sequential data assimilation method as

an observer gives a di	erent way of understanding some of the properties of the

analysed solution�

In particular� by considering a successive correction scheme using observer theory�

we are able to consider theoretical convergence in time of the scheme to the true

model solution� In the data assimilation literature� the issue of whether a successive

correction scheme converges generally refers to the question of whether the successive

iterations or corrections �at a single analysis time� bring the analysis close to the

true solution at that time ����� In general� however� observations from more than

one time are needed to determine the true state uniquely� Here� we consider whether

the successive correction technique converges in time to the true model state�

We suppose that the evolution of the true model state is given by the linear�

time invariant system

xtk�� � Axtk �Buk� k � �� ��� N � 
 ����

as de�ned in ���
� and we suppose that we have observations available at every

timestep� related to the true model state by

yk � Cxtk� k � �� ��� N � 
 �����

as de�ned in ���
���

The successive correction method� with a constant number s of corrections� �nds

an analysis xak from a prior estimate xbk using the following iteration

x
	i��

k � x

	i

k �W 	i��
�yk � Cx

	i

k �� i � �� ��� s� 
� �����

��



with x
	�

k � xbk� and x

a
k � x

	s

k � and where theW

	i
� i � 
� ��� s represent the weighting

matrices used in the successive corrections� After manipulation� the method can be

written for theoretical purposes in the form

xak � xbk � %W 	s
�yk �Cxbk�� ������

where the matrix %W 	s
 is given by the recursion

%W 	i��
 � W 	i��
�I � C %W 	i
� � %W 	i
� i � 
� ��� s� 
� ����
�

with %W 	�
 � W 	�
�

From an analysis xak at time tk� the prior estimate for the next timestep� x
b
k���

is found using the model equations

xbk�� � Axak �Buk� k � �� ��� N � 
� ������

Substituting ������ into ������ gives

xak�� � Axak �Buk � %W 	s
�yk�� � Cxbk���� ������

which expresses the successive correction method in the form of a dynamic observer�

Subtracting ���� from ������ and using ����� gives the following equation for the

evolution of the error ek � xak � xtk�

ek�� � Aek � %W 	s
�C�Axtk �Buk��C�Axak �Buk��� ������

or

ek�� � �A� %W 	s
CA�ek� ������

Hence� the successive correction scheme converges to the true model state xtk in time

if the eigenvalues of �A � %W 	s
CA� have modulus less than unity� The weighting

matrix %W 	s
 plays a similar r!ole as the feedback matrix G in the observer ����
��

The matrix C in ������ has been replaced by the matrix product CA in �������

because ������ uses observations at time tk��� rather than at time tk as the observ�

er ����
� does�

If observations are available less frequently� then xak�� is speci�ed by ������ when

observations are available� and is equal to xbk�� given in ������ when observations

��



are not available� If observations are available every rth timestep� then the error ek

satis�es

er	k��
 � �A� %W 	s
CA�Ar��erk� ������

and hence the successive correction scheme converges to the true model sate in time

if the eigenvalues of �A� %W 	s
CA�Ar�� have modulus less than unity�

Discussion

In Section ��� on dynamic observer theory we discussed how the feedback matrix G

could be designed to ensure convergence in time to the true solution� and so that

the observer system has desirable properties �we considered good convergence and

robustness�� This theory could be used to provide a choice of the weighting matrices

in the successive correction scheme which give it desirable dynamical behaviour� In

Section ���� we illustrate this point with a simple example in which the robust

observer described in Section ��� produces much better convergence in data sparse

areas than the Cressman successive correction scheme�

��� An example comparing the Cressman scheme

and robust observer

In this section� we compare the Cressman scheme� an example of a successive cor�

rection data assimilation scheme� with the robust observer described in Section ����

which is designed for good convergence and robustness� We �rst describe the simple

model we use� and the observations we suppose are available� We then describe the

experiments that are carried out� and discuss the results�

����� The models and observations

The model we use here is also used in the experiments of Chapter �� and so we

describe it in some detail�

�



The theta method for the �D heat equation

The 
D heat equation on z � ��� 
�� t � ��� T �� with a point heat source of strength

�
�
at z � �

�
is�

vt � �vzz �



�
�z �




�
�� �����

where  is the Dirac delta function� For this equation� with initial condition

v�z� �� � ��z�� ������

and zero boundary conditions

v��� t� � �� v�
� t� � �� ������

the �theta method� discretisation for some 
 � ��� 
� is

xk��j � xkj �
�&t

&z�

n
�
� 
��xkj � 
�xk��j

o
� sj&t ������

with initial condition

x�j � ��j&z�� ����
�

and zero boundary conditions

xk� � �� xkJ � �� ������

where xkj � v�j&z� k&t� for j � �� 
� ��� J � k � �� 
� ��� N with &z � �
J
and &t � T

N
�

and where �xkj denotes x
k
j����x

k
j �xkj��� The dimension of this system is n� where

n � J � 
� Here� we consider only the explicit form of ������� so we take 
 � ��

As discussed in ����� the source term

s�z� �



�
�z �




�
� ������

can be represented in discrete form with sj � s�j&z� given by

sj �

���
��

�
��z

if j � J

�

� otherwise�
������

The discretisation ������ �with 
 � �� can be written as the matrix system�

xk�� � Axk � s� ������

��



where the state xk at time tk is given by

xk � �x
k
�� x

k
�� ���� x

k
n�

T � ������

The input s � IRn represents the source term and zero boundary conditions and is

given by

s � ��� ����
&t

�&z
� ���� ��T � �����

where the non�zero element of s is sj where j � J��� The matrix A � IRn�n is given

by

A �

�
BBBBB�
�
� ��� �

� �
� ��� �
� � � � � � � � �

�
CCCCCA � ������

where � � � �t
�z�

� The theta method with 
 � � is stable for � � � � �
��

Observational data

We suppose that we have p observations �
 � p � n� at each of N timesteps� given

by

yk � Cxtk� k � �� ��� N � 
� ������

The matrix C represents a linear interpolation between the model grid and the p

observation positions on the interval ��� 
�� speci�ed in Table ��
 below�

Table ��� The observation positions

obs� obs� obs� obs� obs� obs obs� obs� ���

���� ��
� ��
� ���� ��� ���� ���� ���� ���

��� obs� obs�� obs�� obs�� obs�� obs�� obs��

��� ��� ���� ��� ��
 ��� ���� ����

The matrix C is built up as follows� if observation i �where 
 � i � p� has the

position obsi which lies between grid points j and j � 
� then

��



Ci�j � 	j��
�z�obsi
�z

�

Ci�j�� � obsi�j�z

�z
�

Ci�k � � k �� j� k �� j � 
�

���
���

If obsi lies between either the �rst or nth grid point and its adjacent boundary point�

then row i of C has just one non�zero entry� since the boundary conditions are zero�

For example� with p � �� C is the � � n matrix

C �

�
BBBBBBBBBBBBBB�

���� � � ���

���� ���� � � ���

� � ���� ���� � ���

� � � ���� ��
� � ���

� � � � ���� ���� � ���

�
CCCCCCCCCCCCCCA

� ���
�
�

����� Description of the experiments

We suppose that the evolution of the true model state xtk is given by the model

xtk�� � Axtk � s� k � �� ��� N � 
 ���
���

as de�ned in ������� with initial conditions

�xt��j � 
� j � 
� ��� n� ���
���

We set N � �� and T � �
�
� �hence &t � �

��
�� and J � 
� �hence &z � �

�
� and

n � 
�� and � � ��
 �hence � � ������

We suppose that we have p �error free� observations at N timesteps� and that

these are related to the true model state by

yk � Cxtk� k � �� ��� N � 
� ���
���

as de�ned in ������� We suppose that the true initial state ���
��� is unknown� and

that our �prior estimate� of the initial state� xb�� is given by

�xb��j � �� j � 
� ��� n� ���
���

��



In these experiments� we compare the Cressman scheme� a successive correction

method for data assimilation which we described in Section ��
�
� with the robust

observer we described in Section ������ for di	erent values of p� the number of ob�

servations� The experiments carried out are as follows�

Data assimilation using the Cressman scheme

Since this is a simple example� the Cressman scheme is implemented using only one

correction �s � 
� using just one radius of in�uence R� The experiments are carried

out using di	erent values for R� R � ��
� R � ���� R � ��� and R � ���� and

di	erent values for p� the number of observations available at each timestep�

Data assimilation using the robust observer

We let $m denote the eigenvalues of the model ������� In this experiment� di	erent

sets of eigenvalues are assigned to the observer� $a� $b and $c� The set of eigenvalues

$a are equally distributed between ���� and ���� The sets of eigenvalues $b and

$c represent the model eigenvalues reduced in modulus by a quarter and by a half�

respectively� ie the eigenvalues in the set $m multiplied by ��� and ���� respectively�

����� Results

The �gures referred to here can be found at the end of this section�

The Cressman scheme

Figure ��
 shows that when a large number of observations are used �p � 
���

complete convergence to the true solution is achieved in approximately �� timesteps�

using R � ��� as the radius of in�uence� When R is reduced to ��
� convergence

takes about �� timesteps�

When fewer observations are used� convergence to the true solution occurs quick�

ly in data dense areas� but muchmore slowly in data sparse areas� Fig� ��� illustrates

this for the case p � �� R � ���� In this case� the solution with data assimilation is

closer to the true solution in the data sparse areas than the solution without data

�




assimilation is� but it does not have the spatial shape of the true solution� Fig� ���

shows the case p � 
� where only one observation is available right near one of the

boundaries of the domain� using R � ���� In this case� the data assimilation has only

a small impact on the results� Increasing R to ���� so that the radius of in�uence

extends all the way across the spatial domain� convergence is still slow� as Fig� ���

shows�

The robust observer

Very good results are achieved using eigenvalue set $b� in which we assign to the

observer system �ie� to the matrix �A � CG�� the system eigenvalues multiplied

by ���� In this case convergence to the true solution is achieved in fewer than ��

timesteps using � observations� as Fig� ��� shows� Using eigenvalue set $a� in which

the eigenvalues to be assigned are evenly distributed between ���� and ��� gives

less pleasing results� From this it seems that it is important for good convergence

to reduce the modulus of all the eigenvalues� as we do when assigning eigenvalue set

$b� but not when assigning set $a� We give more detail on experiments in assigning

di	erent sets of eigenvalues in a report on observers and data assimilation� �����

One pleasing aspect of these results compared with those obtained using the

Cressman scheme is that there is fast convergence in data sparse areas� Figure ���

illustrates this in the case p � �� and Fig� ��� in the case p � 
� where eigenvalue

set $b is used� Using eigenvalue set $c �so the eigenvalues are ��� times the size

of the system eigenvalues� gives slightly faster convergence in the cases where few

observations are used� and complete convergence is achieved in less than �� timesteps

using only one observation� as Fig� �� shows�

Discussion

The model used in these esperiments is not really ideal for testing� since solutions

converge quickly to a steady state� Even so� these simple experiments illustrate

some interesting points�

Although the Cressman scheme gives good convergence near the observation po�

sitions� convergence is slow in data sparse areas� The robust observer� however�

��



produces much faster convergence in data sparse areas� This serves as an example

of how designing the feedback matrix of an observer to ensure temporal convergence

to the true solution can improve on the empirical spatial smoothing of a successive

correction method� The robust observer design itself� involving eigenstructure as�

signment� however� would be too expensive for systems with very large dimension�

and hence for application to operational data assimilation�

��
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Figure ��
� Data assimilation using the Cressman scheme with R � ��� using 
�

observations� Solid line� true solution� dotted line� solution with no assimilation�

dashed line� solution with assimilation� crosses� observations�
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Chapter �

�D Variational assimilation

�D variational methods of data assimilation were introduced to meteorology by

Sasaki in his paper of 
��� ���� These schemes seek to �nd the model state which

minimizes some cost function over a particular assimilation interval� subject to con�

straints on the model state� Most typically the constraints require that the model

state should satisfy the dynamical model equations over the assimilation time period�

Sasaki put forward two approaches to variational assimilation� In the strong

constraint approach� the solution is constrained to satisfy the model equations ex�

actly� In the weak constraint approach� the model equations are required to hold

only approximately� allowing for model error� Sasaki�s papers ���� ���� ��� ����

deal with methods of solving these minimization problems analytically for simple�

continuous models�

Various methods for solving the strong constraint problem are outlined in �����

One method is to iterate on the model initial state rather than on the model s�

tate over the whole assimilation interval� This technique of �reducing the control

vector� which we outlined in Chapter �� Section ���� signi�cantly reduces the cost

of variational assimilation� In this case the initial state is the control vector� The

method was introduced to meteorology in the mid 
���s in the papers by Le Dimet

and Talagrand ��
�� Lewis and Derber ����� Lorenc ����� and Courtier and Talagrand

�
��� ����� and to oceanography by Thacker and Long ����� It is currently being

developed for implementation as an operational data assimilation scheme at several

national meteorological centres ����

��



Derber ���� suggested carrying out �D variational assimilation� adding to the

model equations a correction term which is constant over the assimilation interval�

and which approximates model error� This �correction term technique� is a modi��

cation of the strong constraint method� in which the correction term is used instead

of� or as well as� the initial state as a control vector� The weak constraint approach�

which allows for model error without the approximation that model error is constant

over the assimilation interval� is a more di�cult problem� however�

This chapter is organised as follows� In Section ��
� we introduce the strong

constraint problem and describe the technique of reducing the control vector for

solving this problem� In Section ���� we give a discussion on the development of the

adjoint models which form a central part of the method� Then in Section ��� we

outline Derber�s correction term technique� and �nally in Section ��� we describe

the weak constraint approach� which allows for model error� In this context we also

discuss the links between the �D variational methods and other methods of data

assimilation� and state conditions under which the solution is statistically optimal�

Throughout the chapter� we consider the nonlinear model system given by

xtk�� � fk�x
t
k� � �k� k � �� ��� N � 
� ���
�

as de�ned in ������ where xtk � IR
n is the true model state at time tk� fk � IR

n �

IRn represents the nonlinear evolution of the state from time tk to tk��� and �k �

IRn represents model error� Here� for notational convenience� we do not indicate

dependence on the model inputs uk� which we suppose are �xed� We suppose we

have observations yk � IR
pk at time tk� related to the true model state by

yk � hk�x
t
k� � �k� k � �� ��� N � 
� �����

as de�ned in ������ where hk � IR
n � IRpk is a nonlinear operator� and �k � IR

pk is the

observational error� Finally� we suppose that we have a prior estimate xb� � IR
n of the

initial state� called a background estimate in the context of variational assimilation�

satisfying

x� � xb� � ��� �����

where �� � IR
n is the background error� At this stage� we do not make any assump�

tions about the statistics of the errors �k� �k and ���

��



��� The strong constraint approach

In the strong constraint approach� model error is neglected and we work with the

model

xk�� � fk�xk�� k � �� ��� N � 
� �����

We suppose that we have observations given by ����� and a background estimate of

the initial state given by ������

����� The method

In the strong constraint approach to variational assimilation� we aim to minimize a

cost function J with three components�

J � Jb � Jo � Jc� �����

where Jb penalizes distance from the background estimate� Jo penalizes distance

from the observations� and Jc ensures that the solution has required smoothness

properties� so that the process of initialization �or part of it� mentioned in Chapter 


can be incorporated in the optimization procedure� The work in this thesis does not

include the component Jc for simplicity� although it is important in operational

applications of data assimilation ��
�� ����� �
��� that use more complex models and

fewer observations than we use in our idealized experiments�

The strong constraint problem we address is

Problem S

Minimize� with respect to x�� ���xN

J �



�
�x� � xb��

TP��
� �x� � xb�� �




�

N��X
j��

�hj�xj�� yj�
TR��

j �hj�xj�� yj�� �����

subject to ��	��

The matrices P��
� � IRn�n and R��

j � IRpj�pj are symmetric positive de�nite

weighting matrices which re�ect the accuracies of �x��xb�� and of �hj�xj��yj�� If the

inverse covariance matrices of the errors �� and �j are known and are nonsingular�

these can be used as weighting matrices� and under certain assumptions this choice

�



leads to a statistically optimal analysis� We discuss this further in Section ��� where

we also consider model error� Some detail on how the matrices P��
� and R��

j are

prescribed in practice is given in �
��� ����

We now use the theory of Chapter �� Section ���� on reducing the control vector

to give a method for solving the constrained minimization problem Problem S � We

have the N�
 state vectors x�� ���xN as the unknown variables� and ����� speci�es N

constraints on these� If we use x� the control vector� we can determine the remaining

N state vectors x�� ���xN uniquely from the N constraints ������

The constrained minimization problem Problem S is equivalent to the uncon�

strained optimization problem of extremizing the Lagrangian function

L � J �
N��X
j��

�T
j���xj�� � fj�xj��� ����

with respect to x��x�� ���xN� and ��� ����N � where ��� ����N � IR
n are N vectors of

Lagrange multipliers� A necessary condition for an extremal is that the gradient of

L with respect to x��x�� ���xN� and ��� ����N should vanish� Using the method of

reducing the control vectors� this necessary condition can be achieved by iterating on

the control vector x�� as follows� From a guess of the control vector� the model states

x�� ���xN are calculated using the constraints ������ This ensures that r�k
L � � for

k � 
� ��� N � The adjoint vectors �k must now be chosen to ensure rxkL � � for

k � 
� ��� N � ie�

� � rxkJ � �k � F T
k �xk��k��� k � 
� ��� N � 
� �����

� � �N � �����

where Fk�xk� � IR
n�n is the Jacobian of fk�xk� with respect to xk� Since

rxkJ � HT
k �xk�R

��
k �hk�xk�� yk�� ���
��

where Hk�xk� � IRpk�n is the Jacobian of hk with respect to xk� the Lagrange

multipliers must satisfy

�k � F T
k �xk��k�� �HT

k �xk�R
��
k �hk�xk�� yk�� k � 
� ��� N � 
� ���

�

�N � �� ���
��






We note that� since x�� ���xN have been calculated from the current guess of the

control vector� the vectors �k of Lagrange multipliers can be calculated recursively

backwards from the condition ���
���

The system of equations ���

�� ���
�� is known as the system of adjoint equations

for the model ������ or as the adjoint model� In this context� the Lagrange multipliers

are known as adjoint variables� and we refer to the vectors �k of adjoint variables

as adjoint vectors�

We can now evaluate the gradients of L with respect to the control vectors� The

gradient with respect to the initial state is given by

rx�L � rx�J � F T
� �x���� ���
��

� P��
� �x� � xb�� �HT

� �x��R
��
� �h��x�� � y��� F T

� �x���� ���
��

� P��
� �x� � xb��� ��� ���
��

where the additional adjoint vector �� � IR
n is de�ned via the relation ���

� with

k � �� This gradient can be used in a descent algorithm� such as one outlined in

Chapter �� Section ���� to improve our guess of the control vector� We summarize

this procedure in the following algorithm�

Algorithm IS


� From a guess of the control vector x��

calculate the model states x�� ���xN using the model equations ������

�� From the end condition ���
��� calculate the adjoint vectors �N��� ����� using

the model states calculated in Step 
�

�� From ��� calculate rx�L using ���
��

�� Use the gradient rx�L in a gradient algorithm to obtain a better guess of the

control vector x�� and repeat until convergence criteria are satis�ed�

����� The incremental approach for Problem S

Although the method of reducing the control vector signi�cantly reduces the expense

of �D variational assimilation� further reductions in its expense are still required to

�



make it feasible for operational implementation� The incremental approach ����

was suggested to allow �exibility to incorporate simpli�cations which will reduce

the expense of the method� We �rst describe the incremental approach� and then

describe the approximations that can be made to reduce expense�

Expanding the nonlinear model ����� in a Taylors series about the �background�

state xbk obtained from a model run using the model with xb� as the initial state� we

have for a small perturbation �xk of xk�

xbk�� � �xk�� � fk�x
b
k� � Fk�x

b
k��xk � o��xk�� k � �� ��� N � 
� ���
��

where Fk�xbk� is the Jacobian of fk with respect to xk evaluated at x
b
k� and o��xk�

represents the higher order terms in the expansion� Since ����� holds at xbk� we have�

after neglecting higher order terms�

�xk�� � Fk�x
b
k��xk� ���
�

which is referred to as the tangent linear model �TLM�� For mid�latitude meteoro�

logical models� Lacarra and Talagrand ���� have shown that the the TLM is a fair

approximation to the full nonlinear model for periods of up to around �� hours�

The observations yk are related to the perturbation �xtk � �x
t
k � xbk� as follows

yk � hk�x
t
k� � �k � hk�x

b
k � �xtk� � �k ���
��

� hk�x
b
k� �Hk�x

b
k��x

t
k � �k� k � �� ��� N � 
� ���
��

The incremental approach to solving Problem S proceeds as follows� Firstly� a

background run is performed from a background guess xb� of the initial state� using

the full nonlinear model ����� to calculate the terms xbk� The minimization problem

is then to �nd the optimal increment or perturbation �x� to xb�� by minimizing a

cost function of the form

J ��x�� �



�
�xT�P

��
� �x� �




�

N��X
j��

�Hj�x
b
j��xj � dj�

TR��
j �Hj�x

b
j��xj � dj� ������

subject to the constraints ���
�� k � �� ��� N � 
� where

dk � yk � hk�x
b
k�� ����
�

�



Since all the constraints ���
� are linear� we now have a cost function which is

quadratic in the control vector �x�� and so a unique global minimum to this problem

exists if the Hessian of J with respect to �x� �satisfying the constraints ���
�� is

positive de�nite� We give conditions for this to hold in Chapter �� Section ���� The

adjoint equations are� in this case�

�k � F T
k �x

b
k��k�� �HT

k �x
b
k�R

��
k �Hk�x

b
k��xk � dk�� k � �� ��� N � 
�������

�N � �� ������

but using ����
� and ���
�� we see these are the same as the adjoint equations ���

�

of the full� nonlinear system� except that the higher order terms of ���
�� have been

neglected in the forcing in ������� and that the Jacobian Fk is evaluated at xbk�

If �x�� is the control vector which solves the incremental problem� then x
�
� ��

xb� � �x��� �and hence the model states x
�
�� ���x

�
N found from this initial state� is a

good approximation to the solution of the full� nonlinear mimimization problem�

provided the TLM is a �valid� approximation to the full nonlinear model�

The incremental approach can be used to further reduce the cost of �D variational

assimilation by performing the background run to calculate the xbk using the full

nonlinear model ������ but carrying out the iteration on �x� at lower resolution� The

iteration at lower resolution could also be performed using a simpli�ed �and hence

less expensive� version of the TLM� Research is also being carried out on variants

of the incremental approach� These include applying the incremental approach at

lower resolution� perhaps using multi�grid strategies �this is the so�called multi�

incremental approach�� and interspersing several �inner loop� iterations with an

�outer loop� nonlinear run� in which a new background �eld for the next inner

loop iterations is obtained� One question being looked at both theoretically and

practically� is whether the low resolution inner loop iterations give improvements

which correspond to an improvement at full resolution� and whether these methods

do converge to a solution of the full nonlinear problem�

Several centres planning to implement the adjoint method for large models are

developing simpli�ed or modi�ed tangent linear models for the minimization using

the incremental approach� This gives a way of overcoming some of the problems of

�



the adjoint method� for example by ensuring that the modi�ed linear model is fully

di	erentiable� At the UK Meteorological O�ce� the linear version of the full model

being developed for use in data assimilation is called the �perturbation forecast�

model� since it is not actually tangent linear to the full model ����� Other centres

are developing tangent linear models with simpli�ed physics as an intermediate step

to developing a complete tangent linear model �����

��� Development of adjoint models

����� Properties of adjoint models

Before proceeding with a discussion on the practical development of an adjoint

model� we note a further theoretical property of the adjoint equations� We suppose

 �k� j� is the state transition matrix associated with the �unforced� tangent linear

model ���
�� �Chapter �� Section ��
 gives background on state transition matrices��

We have

�xk �  �k� j��xj� for all k � j� ������

where

 �k� j� � Fk���x
b
k���Fk���x

b
k������Fj�x

b
j�� ������

If we let '�j� k� be the state transition matrix for the unforced version of adjoint

system ������� ie for the system

%�k � F T
k �x

b
k�%�k��� k � N � 
� ��� � ������

with end condition ������� we have

%�j � '�j� k�%�k� for all k � j� �����

where

'�j� k� � F T
j �x

b
j�F

T
j���x

b
j������F

T
k���x

b
k���� ������

Hence� we have the following ���� ��
��

'�j� k� �  T �k� j� for all k � j� ������

�



Since  T �k� j� is the adjoint operator of  �k� j� with respect to the Euclidean inner

product� we see one reason why the adjoint equations are so�called�

Hence we have the following property�

� %�k� �xk � � � %�k� �k� j��xj � � �  T �k� j�%�k� �xj � ������

� � %�j � �xj �� for all k � j ����
�

where %�k and %�j solve the unforced adjoint equations ������� and where �xj and

�xk solve the tangent linear model ���
��

����� Adjoint model development

Clearly� the derivation of the adjoint model is a major part in the setting up of the

adjoint method� Here we outline a few di	erent approaches to the derivation of the

adjoint model which might be used in the wider context of optimization problems�

One approach is to work with a continuous� rather than a discrete version of the

model� In this case� the calculus of variations is the appropriate theory for �nding

conditions for extrema of an optimization problem �we give some background on the

calculus of variations� and an overview of this approach in the report ������ Using

the method of Lagrange multipliers �which in this case are functions� to deal with

the model constraints� the adjoint model is given by the Euler Lagrange equations�

and an expression analogous to equation ���
�� can be found for the gradient of the

Lagrange functional with respect to the initial state� This leads us to a continuous

analogue of Algorithm IS� involving the model equations� the adjoint equations and

the gradient of the Lagrangian functional with respect to the initial state� In general�

these will have to be discretized in some appropriate way so that the problem can

be solved numerically� In application to data assimilation� this approach has been

used in ���� for example�

A disadvantage of this approach� however� is that in general� the discretized ad�

joint equations will not in fact be the true adjoint equations of the discretized model

equation ����� Hence� the gradient calculated at each iteration will be inaccurate�

and so it might not be possible to obtain a su�ciently accurate estimate of the

optimal control vector�

�



The approach most generally taken in the development of adjoint models for

data assimilation is that it is better to �nd the adjoint of the discrete model� so that

theoretically at least� we can obtain an exact expression for the required gradient�

�
��� We use this approach in the work described in this thesis� and work out the

adjoint of the discrete models which we wish to use �by hand�� For very large and

complex models� however� this would be a much more di�cult task�

A di	erent approach to deriving the adjoint model is to work directly from the

model computer code� Each assignment statement in the computer code can be

treated as a constraint to be multiplied by a Lagrange multiplier� Di	erentiating

each model statement with respect to the model variables gives the conditions on

the Lagrange multipliers �or adjoint variables� which constitute the adjoint model�

The paper by Chao and Chang �
�� gives a di	erent perspective on what it means

to �nd the �adjoint� of computer code� and also gives a little more detail on the

practical procedure of developing the adjoint code�

There is much research underway to produce computer software to automate

the process of �nding the adjoint of computer code� Developments in this �eld

of computational di�erentiation ���� �

� are of particular interest for developing

adjoint models in meteorology and oceanography� which is a tedious and error prone

task�

��� The correction term technique

The method we refer to as the �correction term technique� was suggested by Derber

����� In this approach� a constant correction term is used instead of� or as well

as� the model initial state as the control vector in �D varaitional assimilation� In

Derber�s paper� the technique is called �variational continuous assimilation�� and

the correction term was seen as a correction to the time derivatives of the model� In

this approach� the correction made by the assimilation is evenly distributed over the

entire assimilation interval� rather than concentrated at the initial time� This gives a

solution of the data assimilation problem which is continuous from one assimilation

interval to the next�





The other advantage of the correction term technique is that it can account for

schematic model errors� and it is suggested in ���� that by application to many cases�

this method could yield an estimate of the model�s systematic error in each timestep�

Further� the correction term found for an assimilation interval could be used in a

subsequent forecast to counteract model error here too�

In the correction term technique� the model error is approximated by

�k � ske� k � �� ��� N � 
 ������

where the sk � IR are predetermined constants� and e � IR
n is a constant correction

term to be determined� Hence we work with the model

xk�� � fk�xk� � skek� k � �� ��� N � 
� ������

As before� we suppose we have observations

yk � hk�x
t
k� � �k� k � �� ��� N � 
� ������

as de�ned in ������ The correction term is used as a control vector instead of� or as

well as� the initial state�

Including the correction term e in the model equations� Problem S is modi�ed

to

Problem CT

Minimize� with respect to x�� ���xN� e

J �



�
�x� � xb��

TP��
� �x� � xb�� �




�

N��X
j��

�hj�xj�� yj�
TR��

j �hj�xj�� yj� ������

subject to ��	���	

We now summarize how the adjoint method for �D variational assimilation us�

ing the initial state as a control vector can be modi�ed to the correction term

technique� In this case� x� and e can be used as control vectors� since from them�

the model states x�� ���xN can be determined� Minimizing ������ with respect to the

constraints ������ is equivalent to extremizing the Lagrangian function

L � J �
N��X
j��

�T
j���xj�� � fj�xj�� sje�� ������

�



Enforcing r�k
L � � for k � 
� ��� N yields the model equations ������� and enforcing

rxkL � � for k � 
� ��� N yields the same adjoint equations as before

�k � F T
xk
�xk��k�� �HT

xk
�xk�R

��
k �hk�xk� � yk�� k � 
� ��� N � 
� �����

�N � �� ������

As before� the gradient of L with respect to the initial state is

rx�L � P��
� �x� � xb��� ��� ������

and the gradient of L with respect to the correction term e is

reL � �
NX
j��

sj���j� ������

Algorithm IS can easily be modi�ed to use the correction term instead of� or as well

as� the initial state as a control vector�

��� The weak constraint approach

We �nally consider the weak constraint approach to �D variational assimilation in

which we allow for model error without the approximation that it is constant in

time� and so we consider the model

xk�� � fk�xk� � �k� k � �� ��� N � 
� ����
�

We again suppose that we have observations given by

yk � hk�x
t
k� � �k� k � �� ��� N � 
� ������

and a background estimate xb� satisfying

xt� � xb� � ��� ������

����� The general least squares problem

The classical least squares approach to estimating the true model state on the as�

similation interval �t�� tN � involves minimizing the errors ��� �k and �k ���� and is as

follows �����

�



Problem LS

Minimize� with respect to x�� ���xN� ��� ��� �N��

J �



�
�x� � xb��

TP��
� �x� � xb�� �




�

N��X
j��

�hj�xj�� yj�
TR��

j �hj�xj�� yj�

�



�

N��X
j��

�Tj Q
��
j �j ������

subject to ��	�
��

where the symmetric� positive de�nite weighting matrices P��
� � IRn�n� R��

k �

IRpk�n and Q��
k � IRn�n are based on our knowledge of the sizes of the errors ��� �k

and �k respectively� Problem LS is equivalent to the weak constraint minimization

problem formulated by Sasaki ����

Statistically optimal solutions to Problem LS

We assume now that the model errors �k� the observational errors �k and the back�

ground error �� are unbiased Gaussian random vectors� and that the matricesQk�Rk

and P� are their respective error covariance matrices� We assume that the errors �k

and �k are not serially correlated� are uncorrelated with each other and with ��� and

uncorrelated with the true model state� These are the assumptions made on model

error and observational error in the standard Kalman �lter described in Chapter ��

Section ���� In this case� minimizing ������ with respect to x�� ���xN� ��� ��� �N��

subject to the constraints ����
� is equivalent to �nding the maximum likelihood

Bayesian estimate of x�� ���xN given the observations y�� ���yN�� and with prior

estimate xb�� which is given by the mode of the joint conditional pdf of x�� ���xN�

�����

If the model evolution described in ����
� is linear� and the observations ������ are

linearly related to the model state� then the conditional pdf of x�� ���xN is Gaussian�

and so unimodal� Further� in this case� the mode coincides with the mean� and hence

the maximum likelihood Bayesian estimate is the same as the minimum variance

estimate ����� ����� In this case� a solution of Problem LS is a statistically optimal

or �most likely� solution in the sense of both maximum likelihood and minimum

variance�

��



In the nonlinear case� however� a cost function J with multiple minima corre�

sponds to a pdf which is multimodal� As Jazwinski notes ����� maximum likelihood

estimation is of questionable value unless the pdf is unimodal and concentrated

about the mean�

We note that Problem S of Section ��
 is a special case of Problem LS with the

model error terms �k set �xed at zero� If the errors �k and �� are as speci�ed above�

then the strong constraint approach provides the statistically most likely solution

if there is no model error� We discuss how the correction term technique can be

interpreted statistically in Chapter ��

����� Methods for solving Problem LS

The purpose of this subsection is to overview the main approaches to solving a prob�

lem of the form of Problem LS which have been suggested for data assimilation in

meteorology and oceanography� This highlights the well�known links between these

methods� discussed for example in ����� ���� and ��
�� which we wish to exploit for a

better understanding of how to deal with model error in �D variational assimilation�

The Kalman �lter

We outlined the standard Kalman �lter for a linear model with observations linearly

related to the model state� and under given statistical assumptions� in Chapter ��

Section ���� In that section� we stated that the Kalman �lter solution xak at time

tk is the most likely estimate of xtk given the observations y�� ���yk and background

estimate xb�� In this linear case� the Kalman �lter estimate is the same as the solution

to ProblemLS at time tN � ie� at the end of the assimilation interval �t�� tN �� ����� The

Kalman smoother is a generalization of the Kalman �lter which gives an estimate

x�k at time tk which is the most likely given the observations y�� ���yN� and so is

equivalent to a solution of Problem LS� ��
� although this requires still greater cost�

One major advantage of the Kalman �lter as a method of solving Problem LS

in the linear case is that it produces at each timestep the error covariance matrix

of the analysed state� Hence� at time tN � we have not only the optimal estimate of

the state� but also its error covariance matrix� This provides the background error

�




covariance matrix P� for the next assimliation interval� and also gives us a way of

calculating the accuracy of a forecast initiated at time tN �

In this advantage of the Kalman �lter lies also �arguably� the biggest drawback

for its application in operational assimilation in meteorology and oceanography�

compared to other methods of �nding the same statistically optimal solution� This

drawback is the huge cost of propagating the error covariance matrices in time� which

involves O�n�� operations ����� Hence for operational meteorological models� where

the dimension n of the state is O�
��� � O�
���� the Kalman �lter in unsimpli�ed

form is considered too expensive ����� ���� Various simpli�cations of the Kalman

�lter have been proposed� however� ����� We note that several centres planning to

implement variational assimilation schemes operationally are also proposing the use

of a simpli�ed Kalman �lter to solve the problem of specifying the covariance matrix

P� for the beginning of a new assimilation interval�

The representer method

The representer method was suggested for oceanographic applications of data as�

similation by Bennett et� al� �� and for meteorological assimilation by Bennett et�

al� ��� and by Amodei �
�� For a linear system� it provides a method for solving

the Euler�Lagrange equations which constitute necessary conditions for a solution of

a continuous analogue of Problem LS� The method involves iterating on elements

of the �space of observations�� This is similar in principal to the PSAS algorithm

outlined in Chapter �� Section ��
� which is for analysis at a single time only� In the

nonlinear case� solutions to the �nonlinear� Euler�Lagrange equations are found by

solving a sequence of linear Euler�Lagrange equations using the representer method�

Since the dimension of the observation vector is generally much smaller than the

dimension of the state vector at any time� this method is potentially much more

e�cient than other approaches to solving Problem LS� In oceanography� where the

number of observations is O�
���� the potential advantage of this method is greater

than in meteorology� In meteorology� where the number of observations at just one

time might be O�
���� this method is still too expensive ���� but might become

feasible in the future�

��



The adjoint method

We consider here the technique of reducing the control vector for solving Prob�

lem LS� In this case� we have N � 
 state vectors plus N model error vectors as

variables� and N sets of model constraints ����
�� If we use x� and ��� ��� �N�� as

N � 
 control vectors� we can uniquely determine the remaining variables� the N

state vectors x�� ���xN from the N constraints ����
�� The constrained minimization

problem Problem LS is equivalent to the unconstrained optimization problem of

extremizing the Lagrangian function

L � J �
N��X
j��

�T
j���xj�� � fj�xj�� �j�� ������

where ��� ����N � IR
n are N vectors of Lagrange multipliers�

Using the method of reducing the control vectors described in Chapter �� Sec�

tion ���� the solution can be found by iterating on the control vectors x� and

��� ��� �N��� as follows� From a guess of the control vectors� the model states x�� ���xN

are calculated using the constraints ����
�� As before� this ensures that r�k
L � �

for k � 
� ��� N � and again� enforcing rxkL � � for k � 
� ��� N � yields the same

adjoint equations

�k � F T
k �xk��k�� �HT

k �xk�R
��
k �hk�xk�� yk�� k � 
� ��� N � 
� ������

�N � �� �����

As before� the gradient with respect to the initial state is given by

rx�L � P��
� �x� � xb��� ��� ������

where the additional adjoint vector �� � IR
n is de�ned via the relation ������ with

k � �� The gradient with respect to the model error vector �k for k � �� ��� N � 
 is

given by

r�kL � Q��
k �k � �k��� k � �� ��� N � 
� ������

These gradients can be used in a descent algorithm� such as one outlined in Chap�

ter �� Section ���� to improve our guess of the control vectors� We summarize this

procedure in the following algorithm�
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Algorithm ISME


� From a guess of the control vectors x� and ��� ��� �N���

calculate the model states x�� ���xN using the model equations ����
��

�� From the end condition ������ calculate the adjoint vectors �N��� ����� using

the model states calculated in Step 
�

�� From �N��� ������ calculater�N��L� ���r��L andrx�L using ������ and �������

�� Use these gradients in a gradient algorithm to obtain a better guess of the

control vectors x��and ��� ��� �N��� and repeat until convergence criteria are

satis�ed�

In practice� this algorithm is expensive for operational data assimilation� since

it involves iterating on N control vectors of dimension n� A second problem is that

the conditioning of the problem minimizing the cost function simultaneously with

all these control vectors could be very poor� ���� �����

We mention here� however� an attempt to solve a similar problem by Thacker

and Long ���� in the context of a simple oceanographic model� Rather than trying to

recover the model error vectors �k� they attempt to recover unknown model forcing

terms �wind stresses� from the data� although they mention that model error is

accounted for via uncertainty in the forcing� They look at the question of data

su�ciency� and �nd that if forcing is to be recovered with the initial state� a huge

amount of extra data is needed� muchmore than they could expect to be available in

practice� They also mention that the problem of recovering model forcing with the

initial state is ill�conditioned and requires many iterations of the descent algorithm�

��



Chapter �

The correction term technique

We described the �correction term technique� for �D variational assimilation in�

troduced by Derber ���� in Chapter � Section �� Here we take a further look at

both theoretical and practical aspects of using a correction term as a control vector�

instead of or as well as using the initial state as a control vector�

In Section ���� we look for conditions for uniqueness of the solution to the �D

variational assimilation problem using the initial state� the correction term and both

together as control vectors� Using the initial state as the control vector� uniqueness

depends on the condition of complete N �step observability of the system� We show�

however� that in general conditions for a unique solution using the correction term as

a control vector are di	erent� and so it might be possible to determine uniquely the

initial state from the data and not the correction term� or vice versa� In each case

adding a background estimate of the control vector to the cost function guarantees

uniqueness in the case of data insu�ciency� This point has been considered in data

assimilation using the initial state as the control vector ���� but not in published

work using the correction term technique� We look at uniqueness of the solution

using both control vectors together by using the technique of state augmentation�

and by relating conditions for observability of the augmented system with conditions

for observability of the original system�

In a practical context� we compare the performance of the di	erent control vec�

tors using a simple linear model� We compare the ability of each control vector to

compensate for errors in the initial state and for model error which is constant in
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time� We also examine the impact of the number of observations on the results�

and the use of a background estimate of the correction term� The experiments are

described in Section ���� and the results are presented and discussed in Section ����

In Section ��� we summarize the theoretical and practical results of the chapter�

In Chapter � we extend the ideas given here on accounting for model error in

�D variational assimilation� and in Chapter  we discuss further how each of these

control vectors can account for di	erent types of model error in the context of a less

simple model�

��� Background

In this section� we summarize use of the correction term technique in meteorology�

and highlight research areas�

����� Use of the technique in the literature

The correction term technique� which we described in Chapter �� Section ���� was

suggested by Derber ����� The experiments described in this paper showed better

results were obtained using the correction term than were obtained using the initial

state as the control vector� It was acknowledged that the comparative success of the

correction term technique might in this case have been partly due to the fact that

the model used was known to be inaccurate� It was also pointed out� however� that

since �D variational assimilation might be performed using simpli�ed models� the

correction term approach has potential� It was mentioned brie�y that an attempt

at using both control vectors simultaneously had not been successful� In this paper�

the cost function to be minimized penalizes distance to the observations only�

The correction term technique was later applied by M� Zupanski� ����� who in�

terpreted the correction term as representing model bias� The experiments carried

out were on a full regional forecast model� but with approximate adjoint equations

�and hence inaccurate gradient calculations�� The cost function consisted of two

terms� one to penalize distance from observed data �which came from OI analyses��

and the other to penalize spurious gravity waves� The results showed that using the
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correction term as the control vector worked better than using the initial state as

the control vector�

M� Zupanski ���� extended Derber�s work by trying to use both control vectors�

Using both simultaneously did not work as well as hoped� which was believed to be

because of problems with preconditioning� Better results� as characterised by greater

cost function reduction during the assimilation and greater reductions of rms errors

in the ensuing forecast� were claimed by using �rst the initial state and then the

correction term as a control vector� It was acknowledged� however� that minimizing

the cost function �rst with respect to one control vector and then with respect to the

other constitutes a di	erent optimization problem to minimizing the cost function

with respect to both control vectors simultaneously� As in Derber�s paper ����� it was

found that using the correction term determined by the assimilation in a subsequent

forecast improved the forecast�

The correction term technique was also used by D� Zupanski and Mesinger ����

in a paper primarily on the problems of assimilating precipitation data� Here the

correction term and initial state were used simultaneously as control vectors� This

paper does not give details on experiments with di	erent control vectors� but men�

tions that using both control vectors reduced the cost function �� percent more than

using just the initial state as a control vector� Here� the largest components of the

correction term recovered were nearest to the model boundaries�

The correction term technique was also investigated by Wergen ��� in a more

idealized context� using a linearized one�dimensional shallow water model� The pa�

per considers more generally the impact of model error on variational assimilation�

and gives a very interesting discussion on allowing for model error in variational

assimilation� Using the initial state and the correction term simultaneously� it was

found that the correction term could very successfully recover omitted constant forc�

ing terms� In this case� using the recovered forcing terms in the ensuing forecast was

also successful� In this context� Wergen refers to the correction term technique as

variational tuning� and points out that this approach provides a way to tune simul�

taneously several model parameters and so obtain the proper interactions between

the various parameters�

�



In the experiments of Wergen�s paper� an extra term� constraining the correction

to the mass �eld to be small� was added to the cost function� The aim was to make

the approach more like Sasaki�s weak constraint method ���� but the mass �eld only

and not the other two �elds was constrained in this way� �for simplicity�� The other

papers mentioned above included no constraint on the correction term in the cost

function� In rather testing experiments in which the model error consisted of a ��

percent phase error in the Rossby modes� using both control vectors together gave

better results than using the initial state only during the assimilation period of ��

hours� The results of the ensuing forecast were also improved for the �rst 
� hours�

but after this were worse than if just the initial state was used as the control vector�

From these results Wergen points out the danger that allowing for model error

in variational assimilation allows freedom which could yield a solution which is close

to the data but physically unrealistic� and that use of the correction terms in a

subsequent forecast will be detrimental if they do not compensate for the real model

error� He concludes that the problem of how to incorporate statistical information

on model error into variational assimilation� in a way consistent with the Kalman

�lter� is a very important issue�

����� Research issues

We now discuss some issues on using the correction term as a control vector that

are worth further investigation� Firstly� no background estimate for the correction

term is used in the work described above� It is known however� that when the

initial state is used as a control vector� including a background estimate of this is

essential to guarantee a unique solution in certain cases ���� We might ask� under

what conditions is it necessary to use a background estimate of the correction term(

Further� are these conditions the same as when a background estimate for the initial

state is necessary(

Another question is� if a background estimate for the correction term is included

in the cost function� how should this be weighted against the other terms in the cost

function( In particular� how can this weighting be chosen so that the solution will

be statistically optimal(
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Moving on from these theoretical issues� Wergen�s question ��� of whether the

constant correction term can �compensate for the real model error� is worth further

investigation� This is important� since using the correction term technique means

altering the model equations in some way� Therefore it would be worth checking

whether the correction term found in the assimilation seems to be a credible rep�

resentation of model error� This could mean checking the size of the correction

term� checking which model variables have been corrected� and which locations the

corrections refer to�

We might expect the constant correction term to compensate well for constant

model errors� but how well does it compensate for model errors which are not con�

stant� especially model error which is known to depend on the model state( Perhaps

a useful question to address is� on what timescale can the correction term correct

for model error( It might also be pro�table to investigate how we can modify the

correction term technique to better deal with model error which is not constant in

time�

Finally� in the research described above� using both the initial state and the

correction term together as control vectors was not always successful� It is important

to �nd preconditioning to improve the e�ciency of the method using both control

vectors� It is also worth investigating the importance of a background estimate for

each of the control vectors in this case� too�

In the remainder of this chapter� and in Chapters � and � we address some of

these issues both theoretically and also practically using simple models�

��� Uniqueness and observability

In this chapter� we consider theory only for the linear case� At �rst this may seem

restrictive� since in an operational context� models are generally nonlinear and ob�

servational data is often nonlinearly related to the model state� However� the �D

variational assimilation problem is generally being planned for implementation using

the incremental approach� in which the full problem is reduced to the minimization

of a quadratic function with linear constraints �or a series of such minimizations��
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This approach is justi�ed because of the validity of the tangent linear model over

the assimilation length scales and is necessary because of limitations of computa�

tional resources �Chapter �� Section ��
�� Further� and importantly� the incremental

approach gives us a minimization problem with a unique solution under certain

conditions which we specify here�

We consider the general linear model ������ For convenience� we suppose there is

no forcing of the form Bkuk� this does not alter the results of the theory but avoids

unnecessary complication� Hence� we suppose the true model state satis�es

xk�� � Akxk � �k� ���
�

We approximate model error by

�k � Bke �����

where e � IRm is the correction term� and the matrices Bk � IR
n�m are prescribed�

with Rank�Bk� � m� Hence the model we use for assimilation is

xk�� � Akxk �Bke� �����

In the method proposed by Derber ����� the correction term e has the same

dimension as the model state� and the matricesBk are replaced by prescribed scalars

sk� Introducing the matrices Bk however allows us to use a correction term with

dimensionm less than the state dimension n� This could lead to increased e�ciency

if we know in advance that model error is concentrated in certain locations�

As before� we have observations available over N timesteps related to the true

model state by

yk � Ckx
t
k � �k� k � �� ���N � 
� �����

as de�ned in ������

We now formulate the general data assimilation problem we wish to address

in this chapter� that of estimating the model states and constant input over the

assimilation interval� using the observational data ������
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Problem AISCT

Minimize with respect to x�� ���xN� e�

J �



�

N��X
j��

�Cjxj � yj�
TR��

j �Cjxj � yj� �����

subject to ��	��	

In ����� the matrices R��
j � IRpj�pj are assumed to be symmetric positive def�

inite� and to represent the relative accuracies of the observational data� Ideally�

they should be the inverse observational error covariance matrices� We consider

modi�cations of Problem AISCT involving background terms later�

Since Rank�Ak� � n and Rank�Bk� � m for all k by assumption� speci�cation

of x� and e uniquely determines the model state at all subsequent times� Hence x�

and e can be used as control vectors� and we view Problem AISCT as that of �nding

an optimal initial state �IS� and correction term �CT��

If we consider the correction term to be �xed �for example� if we assume that

there is no model error� or that model error is represented by a known bias�� the

initial state is the control variable and we have the familiar strong constraint �D

variational assimilation method outlined in Chapter �� Section ��
� Here we will

refer to this as Problem AIS�

Problem AIS

Minimize J de�ned in ��	�� with respect to x�� ���xN� subject to ��	��� with e �xed	

The problem addressed by correction term technique� using the correction term

only as the control vector� we refer to here as Problem ACT � In this case we assume

the initial state is known�

Problem ACT

Minimize J de�ned in ��	�� with respect to x�� ���xN� e� subject to ��	��� with x� �xed	

One of our objectives in this chapter is to give conditions under which Problems

AISCT � AIS and ACT have a unique solution�
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Our approach here� rather than using Lagrange multipliers to reduce the problem

to an unconstrained problem is to substitute the model constraints ����� directly into

the cost function� We do this for theoretical purposes in this chapter� but use the

Lagrange multiplier technique for our practical examples� We express the state xk

at time tk in terms of the control vectors x� and e� which is possible using the state

transition matrix�

From Chapter � equation ���
�� we have

xk �  �k� ��x� �
k��X
j��

 �k� j � 
�Bje� k � 
� ��N� �����

where the state transition matrix is given by

 �k� j� �
k��Y
i�j

Ai� k � j� ����

 �j� j� � I� �����

For convenience� we write ����� as

xk �  kx� � %Bke� k � �� ��N� �����

where

%Bk �
k��X
j��

 �k� j � 
�Bj� k � 
� ��N� ���
��

%B� � �� ���

�

and

 k �  �k� ��� k � �� ��N� ���
��

Incorporating the model constraints� we �nd that the cost function J can be written

in terms of x� and e as

%J �



�

N��X
j��

�Cj� jx� � %Bje�� yj�
TR��

j �Cj� jx� � %Bje�� yj�� ���
��

which after manipulation gives

%J �



�

N��X
j��

fxT� 
T
j C

T
j R

��
j Cj jx� � eT %BT

j C
T
j R

��
j Cj

%Bje

���Cj jx� � yj�
TR��

j �Cj
%Bje� yj�� yTj R

��
j yjg� ���
��

This can be veri�ed by noting that for any vectors a�b� c � IRn� the following

identity holds�

�a� b � c�T �a� b� c� � aTa � bTb � ��a� c�T �b� c�� cTc� ���
��
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����� Using the initial state as the control vector

In this subsection we consider Problem AIS � which consists of constrained mini�

mization of ����� subject to ������ with e �xed� so throughout this subsection e is

assumed to be given�

Our aim is to �nd conditions for a unique minimum x� of ProblemAIS� In terms

of the initial state x�� ���
�� can be written

%J �



�
xT�

%AISx� � %b
T
ISx� � %cIS � ���
��

where %bIS � IR
n� %cIS � IR� and the Hessian matrix AIS � IR

n�n is given by

%AIS �
N��X
j��

 T
j C

T
j R

��
j Cj j� ���
�

From the theory of Chapter �� Section ���� a necessary condition for x� to be a

minimum is that rx� %J vanishes� ie�

%AISx� � %bIS � �� ���
��

Any x� satisfying ���
�� is a minimum since %AIS is positive semi�de�nite� and

it is unique if and only if %AIS is positive de�nite or equivalently if and only if

Rank� %AIS� � n� We now link this condition of uniqueness to the observability of

the system�

The observations ����� may be related to x� and e using ����� as follows�

yk � Ck� kx� � %Bke� � �k� k � �� ��� N � 
� ���
��

which may be written as

ONx� � YN � TNe�DN � ������

where

ON �

�
BBBBBBBBBB�

C� �

C� �

���

CN�� N��

�
CCCCCCCCCCA
� TN �

�
BBBBBBBBBB�

�

C�
%B�

���

CN��
%BN��

�
CCCCCCCCCCA
� ����
�

��



and

YN �

�
BBBBBBBBBB�

y�

y�
���

yN��

�
CCCCCCCCCCA
� DN �

�
BBBBBBBBBB�

��

��

���

�N��

�
CCCCCCCCCCA
� ������

We note that ON � O�
N � the N �step observability matrix at time t� de�ned in

equation �������

If there is no observational error� then the right hand side of ������ is known� In

Chapter �� Section ���� we de�ned complete N�step observability at time t� as the

ability to determine uniquely the state x� from the observations yk and speci�ed

inputs Bke� k � �� ��� N � 
� It was proved in Theorem ��� that the system is

completely N �step observable at time t� if and only if Rank�ON � � n� and therefore

N �step observability is a necessary and su�cient condition to determine a unique

initial state x� in this case� We note� however� that only if the model ����� is a

perfect representation of the evolution of the true model state xtk� will the solution

x� of ������ represent the true initial state x
t
��

In practice� the observational error is not negligible� It is therefore not possible

in general to estimate x� exactly from the data� since the observational errors are

unknown� Hence we attempt to �nd a least�squares estimate for x�� which can be

done by solving Problem AIS� If the observational errors �k are unbiased� Gaussian

and uncorrelated in time with covariance matrices Covf�k� �kg � Rk� and if the

model ����� is a perfect representation of the evolution of the true model state� then

this least squares estimate of x� is themost likely estimate of xt�� If these assumptions

on the observational error statistics and on the model accuracy do not hold to a good

approximation� then our estimate x� will not be a good approximation to the most

likely estimate�

The question of whether ProblemAIS has a unique solution depends on complete

N �step observability� as we now show�

De�nition ��� We say that the linear time varying system ��	�����	�� containing

observational error is completely N�step observable at time tj if the corresponding

system with no observational error is completely N�step observable at time tj	

��



Theorem ��� Problem AIS has a unique solution if and only if the system ��	�����	��

is completely N�step observable at time t�	

Proof

From the previous discussion� it su�ces to show that Rank � %AIS� � n if and only if

Rank �ON� � n�

Since the matrices R��
j are positive de�nite� they can be written uniquely as follows

R��
j � UT

j Uj� ������

where Uj � IR
pj�pj are positive de�nite matrices�

De�ning %U to be the positive de�nite block diagonal matrix with block elements

U�� ��� UN��� ie

%U �

�
BBBBBBBBBB�

U�

U�

� � �

UN��

�
CCCCCCCCCCA
� ������

we have

%AIS � O
T
N
%UT %UON � ������

Suppose that Rank� %AIS� � n� Then there exists a non�zero vector v � IRn such

that

vT %AISv � �� ������

 %UONv � � �����

 Rank�ON� � n� ������

since %U is positive de�nite�

Similarly� suppose Rank�ON � � n� Then there exists a non�zero vector u � IRn such

that

ONu � �� ������

 uT %AISu � �� ������

 Rank� %AIS� � n� ����
�

��



Hence� Rank� %AIS� � n if and only if Rank�ON� � n� �

Theorem ��
 is a recasting for our data assimilation problem of a known result

in �ltering theory that the time�varying system ����������� is completely observable

if and only if %AIS is positive de�nite for some N � �����

We now specialize to the time�invariant case� which is given by

xk�� � Axk �Be� ������

yk � Cxk � �k� ������

The following Corollary links the concept of complete observability of the time in�

variant system ������������� to uniqueness of Problem AIS� We note however� that

Theorem ��
 also applies to the time invariant case�

De�nition ��� We say that the linear time varying system ��	������	��� is com�

pletely observable if the corresponding system with no observational error is com�

pletely observable	

Corollary � For the time invariant system ��	������	���� if N � n then Prob�

lem AIS has a unique solution if and only if the system ��	������	��� is completely

observable	

Proof

This result follows from Theorem ��
� since if N � n� complete N �step observability

at time t� of a time invariant system is equivalent to complete observability of that

system� by Theorem ���� Part b� �

The paper by Zou� Navon and Le Dimet ��
� included a proof for the continuous�

time invariant case that complete observability is a su�cient condition for a unique

solution of the problem� and stated that similar results may be obtained for a discrete

model� In the discrete case� however� the number N of timesteps in the assimilation

interval is important to whether the problem has a unique solution� Corollary ��


��



does not tell us whether complete observability is su�cient for uniqueness if N � n�

but Theorem ��
 does� Since in most applications of data assimilation in meteorology

and oceanography� the number of timesteps over which observations are available is

far less than the dimension of the system �ie� N �� n�� this is an important point�

Hence� using the concept of complete N �step observability is important for our

application not only because it allows generalization to a time�varying system� but

also because it can be used to give a condition for uniqueness of the data assimilation

problem that depends on the length of the assimilation interval� and the particular

time t� at which the assimilation is started�

We now show that if the system is not completely N �step observable at time t��

we can ensure a unique solution by adding a background term to the cost function� It

has often been stated in the data assimilation literature that a background term can

make up for data insu�ciency ���� ���� ����� Bennett and Miller ��� show for a linear

model� expressed in terms of Fourier coe�cients� that a background estimate of the

initial state is su�cient for uniqueness� They also argue that unless there is su�cient

independent data� such a background term is in fact necessary for uniqueness�

We consider the following minimization problem�

Problem BIS

Minimize with respect to x�� ���xN

J �



�
�x� � xb��

TP��
� �x� � xb�� �




�

N��X
j��

�Cjxj � yj�
TR��

j �Cjxj � yj� ������

subject to ��	�� with e �xed	

In ������� xb� � IRn is a background guess for x�� and P��
� � IRn�n is a symmet�

ric positive de�nite weighting matrix� ideally approximating the inverse covariance

matrix of the errors �x� � xb��� Equation ������ can be written

%J �



�
xT� �P

��
� � %AIS�x� � �%bIS � xb�P

��
� �Tx� � %cIS �




�
�xb��

TP��
� xb�� ������

so in this case the Hessian of %J with respect to x� is �P
��
� � %AIS�� We have

Theorem ��� Problem BIS has a unique solution	

�



Proof

The Hessian matrix �P��
� � %AIS� is the sum of a positive de�nite and a positive

semi�de�nite matrix� and hence is positive de�nite� �

����� Using the correction term as the control vector

Here we consider the case where x� is �xed and the correction term e is the control

vector� and seek conditions for a unique solution of Problem ACT �

In this case� we wish to express the cost function J in terms of the correction

term� From ���
�� we have

%J �



�
eT %ACTe� %b

T
CTe� %cCT ������

where %bCT � IR
m� %cCT � IR� and %ACT � IR

m�m is the Hessian of %J with respect to

e� given by

%ACT �
N��X
j��

%BT
j C

T
j R

��
j Cj

%Bj� �����

Hence� Problem ACT has a unique solution if and only if %ACT is positive de�nite�

In Subsection ����
� we related the observational data to the initial state and

correction term� In the case that observational error can be neglected� we have from

equation �������

TNe � YN �ONx�� ������

By analogous arguments to those given in the proof of Theorem ���� if x� is known�

then e satisfying ����� can be uniquely determined from the observations if and only

if Rank�TN � � m� However� unless ����� is a perfect representation of the true model

evolution� then the solution obtained using this value of e does not represent the

true model state�

We note that ����� now has the same form as the general linear model ����� in

which the time�varying input uk has been replaced by the constant input e� In the

context of control theory� the problem of determining unknown or required model

inputs from the outputs is referred to as system inversion� and this has been studied

since the late 
����s �
�� Some theory for the time invariant continuous case is

��



given in ���� �
�� and ����� Our problem is rather di	erent� however� since we only

look for a constant input� and because we consider the discrete� time�varying case�

Since observational errors are not negligible in reality� we seek a least squares es�

timate of the correction term e from the observational data by solving ProblemACT �

We now give conditions under which this problem has a unique solution�

Theorem ��� Problem ACT has a unique solution if and only if Rank�TN � � m	

Proof

With the matrix %U de�ned as in ������� we have

%ACT � T
T
N
%UT %UTN � ������

Since %U is positive de�nite� we have� by the same argument as in Theorem ��
� that

Rank� %ACT � � m if and only if Rank�TN � � m� ������

�

It is interesting to note� however� that complete N �step observability is neither

a necessary nor a su�cient condition for a unique solution of Problem ACT � Hence�

given the same set of observations� it is possible that Problem AIS has a unique

solution but Problem ACT does not� and vice versa� We show this by means of

simple counter�examples� in the case where m � n and the matrices Bk are equal

to the identity matrix� We note that the result does not rely on the fact that the

observations y� contain information about the initial state� but not the correction

term�

Theorem ��� Complete N�step observability at time t� is neither a necessary nor

a su�cient condition for a unique solution of Problem ACT 	

Proof

The result will be proved using simple counter�examples in the case n � m � ��

p � 
� and N � � and for k � �� 
� ��

��



We consider the system ����� with

A� �

�
BB� 
 


� 


�
CCA � A� �

�
BB� 
 


�
 


�
CCA � ����
�

and Bk � I for k � �� 
�

To show that completeN �step observability is not a necessary condition for a unique

solution of Problem ACT � we give an example in which

Rank�O�� � �� Rank�T�� � �� ������

We suppose that the data set is given by ����� with

C� � ��� 
�� C� � ��� 
�� C� � �
� 
�� ������

In this case

O� �

�
BBBBBB�

C�

C�A�

C�A�A�

�
CCCCCCA
�

�
BBBBBB�
� 


� 


� �

�
CCCCCCA
� ������

T� �

�
BBBBBB�

�

C�

C�A� � C�

�
CCCCCCA
�

�
BBBBBB�
� �

� 



 �

�
CCCCCCA
� ������

and so ������ holds�

To show that complete N �step observability is not a su�cient condition for a unique

solution of Problem ACT � we give an example in which

Rank�O�� � �� Rank�T�� � �� ������

If the data set is now given by

C� � ��� ��� C� � �
� ��� C� � �
� 
�� �����

we have

O� �

�
BBBBBB�
� �


 �

� �

�
CCCCCCA
� T� �

�
BBBBBB�
� �


 �


 �

�
CCCCCCA
� ������


��



and so ������ holds� �

We have� however� the following special case as an example where complete

�N�
��step observability is a necessary and su�cient condition for a unique solution

of Problem ACT � We consider again the time invariant system �������������� The

experiments we describe in Section ��� are for a time invariant system� and so

Theorem ��� is relevant for this case�

Theorem ��� For the time invariant system ��	������	��� with m � n and B non�

singular� Problem ACT has a unique solution if and only if the system ��	������	���

is completely �N � 
��step observable	

Proof

We need to show that Rank�TN � � n if and only if Rank�ON��� � n�

We let T � � TNB��� and note that since B is nonsingular� Rank�TN � � n if and

only if Rank�T �� � n�

For the time invariant system� we have

ON�� �

�
BBBBBBBBBB�

C

CA

���

CAN��

�
CCCCCCCCCCA
� T � �

�
BBBBBBBBBBBBBB�

�

C

C�A� I�

���

C�AN�� �AN�� � ��� I�

�
CCCCCCCCCCCCCCA

������

Since each row of T � can be written as a linear combination of rows of ON��� we

have that Rank�T �� � Rank�ON���� Further� since each row of ON�� can be written

as a linear combination of the rows of T �� we have that Rank�ON��� � Rank�T ���

Hence Rank�ON��� � Rank�T �� � n if and only if Rank�TN � � n� which proves

the result� �

Finally� we show that a unique solution to Problem ACT can be guaranteed

provided we add a background term to the cost function� In this case� ProblemACT

is modi�ed to


�




Problem BCT

Minimize with respect to x�� ���xN� e

J �



�
�e� eb�TQ���e� eb� �




�

N��X
j��

�Cjxj � yj�
TR��

j �Cjxj � yj� ������

subject to ��	�� with x� �xed	

In ������� eb � IRm is a background estimate for e� and Q�� � IRm�m is a sym�

metric� positive de�nite matrix� ideally representing the inverse covariance matrix

of �e� eb��

Although it is known in the data assimilation literature that a background term

is needed in some cases to give uniqueness to ProblemAIS� the applications of Prob�

lemACT �ie� applications of the correction term technique� mentioned in Section ��


did not use a background term for the control vector� Wergen ��� added an extra

term to the cost function which acted as a background term which constrained just

one of the three model �elds to be close to zero�

In analogy to the working of the previous subsection� the Hessian of J with

respect to e is �Q�� � %ACT �� and the following result holds�

Theorem ��� Problem BCT has a unique solution	

Proof

The Hessian matrix �Q�� � %ACT � is the sum of a positive de�nite and a positive

semi�de�nite matrix� and so is positive de�nite� Hence Problem BCT has a unique

solution� �

It could also be deduced from the results in Bennett and Miller�s paper ��� on the

importance of a background estimate of the initial state� that when terms represent�

ing model error are estimated� a background estimate for these terms is su�cient

for uniqueness in the linear case�


��



����� Using both the initial state and the correction term

as control vectors

We notice that the system ����������� can equivalently be written as

xk�� � Akxk �Bkek� ����
�

ek�� � ek� k � �� ��� N � 
� ������

with observations

yk � Ckx
t
k � �k� k � �� ��� N � 
� ������

It is helpful to rewrite this system as the augmented system

wk�� �Mkwk� ������

yk � %Ckw
t
k � �k� ������

where wk � IR
n�m� Mk � IR

	n�m
�	n�m
 and %Ck � IR
pk�	n�m
 are given by

wk �

�
BB� xk

ek

�
CCA � Mk �

�
BB� Ak Bk

� I

�
CCA � %Ck �

�
Ck �

�
� ������

In this augmented system� wk is the augmented state vector and w� is the augmented

control vector� The augmented state transition matrix is % �k� j�� and we have

% �k� �� � % k �

�
BB�  k

%Bk

� I

�
CCA � �����

Problem AISCT can now equivalently be written

Problem AISCT

Minimize with respect to x�� ���xN� e

J �



�

N��X
j��

� %Cjwj � yj�
TR��

j � %Cjwj � yj� ������

subject to ��	���	

In this form� we see that Problem AISCT is just Problem AIS applied to the sys�

tem ������� and so the theory of Section ����
 applies here� From Theorem ��
 we


��



know that Problem AISCT has a unique minimum if and only if the N �step observ�

ability matrix %ON has rank �n �m�� where

%ON �

�
BBBBBBBBBB�

%C�

%C�
% �

���

%CN��
% N��

�
CCCCCCCCCCA
� ������

We now consider observability of the augmented system ������������� in terms

of observability of the original system ������������ Observability of the augmented

system concerns the ability to determinew� or equivalently x� and e from the obser�

vations� and observability of the original system concerns the ability to reconstruct

x� from the same observations� We now show that the following result holds�

Theorem ��
 Necessary conditions for Problem AISCT to have a unique solution

are that the original system ��	�����	�� is completely N�step observable at time t�

and that Rank�TN � � m	

Proof

From Theorem ��
� Problem AISCT has a unique solution if and only if Rank� %ON� �

�n�m�� with %ON given in �������

Since

%Ck
% k � �Ck k� Ck

%Bk�� k � �� ��� N � 
 ������

we have

%ON � �ON �TN �� ����
�

Let v � IRn�m be arbitrary� and suppose

%ONv � ONv� � TNv�� ������

with v� � IR
n and v� � IR

m�

If Rank�ON � � n� then there exists a non�zero vector v�� such that ONv
�
� � �� Hence

with this choice of v� and with v� � �� there exists a non�zero vector v such that

%ONv � ��


��



Hence� Rank�ON� � n� or equivalently by Theorem ���� complete N �step observ�

ability is a necessary condition for a unique solution of Problem AISCT �

By a similar argument� we have that Rank�TN � � m is also a necessary condition

for a unique solution of Problem AISCT � �

One simple example for which Problem AISCT has a unique solution is the case

where C� and C� both have rank n� �as is the case in our experiments where we use

the full set of observations�� as we now show�

We suppose v � IRn�m is arbitrary and that %ONv � �� Then by ������

ONv� � TNv� � �� ������

and by equation ������

Ck kv� � Ck
%Bkv� � �� k � �� ��� N � 
� ������

With k � � we have

C�v� � �� ������

and hence v� � � since C� has rank n� With v� � � in the equation for k � 
 we

have

C�
%B�v� � C�B�v� � �� ������

and since B� has rank m and C� has rank n� we also have v� � �� We have shown

that in this case�

%ONv � � v � �� �����

so in this case the augmented system is completely N �step observable� and hence

Problem AISCT has a unique solution�

The necessary conditions given in Theorem �� are not in general su�cient for

a unique solution of Problem AISCT � We show this for the linear� time�invariant

system ������� ������� which can equivalently be written as the augmented system

wk�� �Mwk� ������

yk � %Cwt
k � �k� ������


��



where

M �

�
BB� A B

� I

�
CCA � %C �

�
C �

�
� �����

The following result is also applicable to the system we use in the experiments

we describe in Section ���� and we use it later�

Theorem ��	 For the time invariant system ��	��� ��	�� with m � n and B

nonsingular� Problem AISCT has a unique solution if and only if Rank�C� � n	

Proof

By Theorem ��
� Problem AISCT has a unique solution if and only if the augmented

system ������� ������ is completelyN �step observable� We show that if Rank�C� � n�

the system ������� ������ is not completely observable� and hence not completely ��

step observable for any � by Theorem ��� Part a�

By the negation of the Hautus condition �Theorem ����� the system is not com�

pletely observable if there exists a non�zero vector v � IR�n and 	 � C such that

�M � 	I�v � �� ���
�

%Cv � �� �����

or equivalently

�A� 	I�v� �Bv� � �� �����

�I � 	I�v� � �� �����

Cv� � �� �����

where v��v� � IR
n�

Suppose that Rank�C� � n� Then there exists a non�zero v� such that Cv� � ��

Let v� be given by

v� � B���A� 	I�v�� �����

and 	 � 
� Then �����) ����� or equivalently ���
�� ����� hold for a non�zero

vector v� and 	 � 
� Hence� if Rank�C� � n the augmented system is not completely

observable� and Problem AISCT does not have a unique solution�


��



The fact that Problem AISCT has a unique solution if Rank�C� � n follows from

our previous remarks which showed that this is true for the general time�varying

system with Rank�C�� � n� Rank�C�� � n� �

By Theorem ���� we know that we can guarantee a unique solution to Prob�

lem AISCT by adding a background estimate of the augmented control vector w� to

the cost function� and so we formulate the following problem�

Problem BISCT

Minimize with respect to w�� ���wN

J �



�
�w� �wb

��
T %P��

� �w� �wb
�� �




�

N��X
j��

� %Cwj � yj�
TR��

j � %Cwj � yj� ����

subject to ��	���	

In ����� wb
� � IR

n�m is a background estimate ofw�� and %P
��
� � IR	n�m
�	n�m
 is

symmetric� positive de�nite� By Theorem ���� Problem BISCT has a unique solution�

We now show that if the original time�varying system ������ ����� is completely

N �step observable� and if we use a background estimate of e only� we are again

guaranteed a unique solution� We formulate the following modi�cation of Prob�

lem AISCT �

Problem CISCT

Minimize with respect to w�� ���wN

J �



�
�e� � eb�TQ���e� � eb� �




�

N��X
j��

� %Cwj � yj�
TR��

j � %Cwj � yj� �����

subject to ��	���	

In ������ eb and Q�� are as de�ned in Problem BCT � We now give conditions

under which Problem CISCT has a unique solution�

Theorem ��� Problem CISCT has a unique solution if and only if the original sys�

tem ��	�����	�� is completely N�step observable at time t�	


�



Proof

We note that ����� can equivalently be written

J �



�

N��X
j��

�Djwj � zj�
TS��j �Djwj � zj�� �����

where Dj � IR
	pj�m
�	n�m
� S��j � IR	pj�m
�	pj�m
 and zj � IR

pj�m are given by

Dj �

�
BB� Cj �

� I

�
CCA � S��j �

�
BB� R��

j �

� �
N
Q��

�
CCA � zj �

�
BB� yj

eb

�
CCA � ������

Since the matrices S��k are symmetric� positive de�nite� we can apply Theorem ��


to see that Problem CISCT has a unique solution if and only if the observability

matrix !ON has rank �n�m�� where

!ON �

�
BBBBBBBBBB�

D�
% �

D�
% �

���

DN��
% N��

�
CCCCCCCCCCA
� ����
�

It therefore su�ces to show that Rank� !ON� � �n�m� if and only if Rank�ON � � n�

We note that

Dk
% k �

�
BB� Ck �

� I

�
CCA
�
BB�  k

%Bk

� I

�
CCA �

�
BB� Ck k Ck

%Bk

� I

�
CCA � ������

Let v � IRn�m be arbitrary with v �

�
BB� v�

v�

�
CCA� v� � IRn� and v� � IR

m� We have

!ONv � � if and only if Dk
% kv � � k � �� ��� N � 
� ������

which holds if and only if

Ck kv� � Ck
%Bkv� � �� ������

v� � �� k � �� ��� N � 
� ������

ie� if and only if

Ck kv� � � k � �� ��� N � 
� ������


��



or equivalently

ONv� � �� �����

Hence� there exists a non�zero vector v � IRn�m such that !ONv � � if and only if

there exists a non�zero vector v� � IR
n such that ONv� � �� It follows that !ON has

rank �n�m� if and only if ON has rank n� which proves the result� �

In Section ���� we present a summary of the theoretical results in this chapter�

We now compare the performance of the initial state� correction term and both

together as control vectors practically� in experiments with a simple model�

��� Description of the experiments

The aim of these experiments is to compare the performance of variational assimi�

lation using the di	erent control vectors� the initial state� the correction term and

the augmented control vector containing the initial state and the correction term�

This is done for a �perfect model� with unknown initial state� and for an �imperfect

model� in which the source term is unknown� We also investigate the impact of p�

the number of observations available at each timestep� on the results� and the im�

pact of including a background term in the cost function� constraining the correction

term to be small� Finally� we try using a correction term of dimension m less than

the dimension n� which corrects just an area close to the source term�

����� The model and observations

The model

In these experiments� we use the heat equation model with a source term on the

time interval ��� 
�� which we described in Chapter �� Section ���� given by

xk�� � Axk � s� k � �� ��� N � 
� ������

We take N � ��� T � 
� J � 
� and � � ��
� so &t � �
�� � &z �

�
�� n � 
� and

� � �����


��



The true model state

We suppose that the true model state xtk satis�es ������ started from the true initial

state xt� is given by

�x�j�
t � 
� j � 
� ��� n� ������

Model error

As a source of model error� we suppose that the constant source term is omitted

from the model equations� Hence� in the �imperfect� model� s is set to zero�

Observations

We suppose that we have error free observations at p of the 
� grid points at every

timestep on the interval ��� ����� ie for N

�
� �� timesteps� and that after this no

further observations are available� Hence� the observations are given by

yk � Cxtk� k � �� ����
N

�
� 
� ������

where the observational matrix C � IRp�n has a simple form since the observation

positions coincide with the grid points� The positions of the observations used in

each case are shown in the �gures�

����� The minimization problem

Our aim is to estimate the true model state xtk from the observations ������ using

the model

xk�� � Axk � s�Be� k � �� ���
N

�
� 
� ����
�

where e � IRm is the correction term and B � IRn�m is the identity matrix if m � n�

and if m � n� then B is a transformation matrix which limits the e	ect of the

correction term to a limited area of the model domain�

We minimize the cost function

J �



�
eTQ��e�




�

N
�
��X

j��

�Cxj � yj�
TR���Cxj � yj�� ������



�



subject to ����
�� where R�� � �
N
I � IRp�p� and Q�� � qI � IRn�n� The matrices

R�� give equal weight to all observations� and are not supposed to represent error

covariances� The value of q is sometimes taken to be zero� in which case we do not

constrain the size of the correction term to be small�

The adjoint model is

�k � AT�k�� �CTR���Cxk � yk�� k �
N

�
� 
� ��� �� ������

with

�N
�

� �� ������

The gradients of the Lagrange function L associated with J with respect to the

control vectors are

rx�L � ���� ������

reL � Q��e�BT

N
�
��X

j��

�j � ������

We veri�ed that the system �����������
� is completely observable even when

just one observation is used� using the Matlab package for calculating matrix rank�

Hence� we are guaranteed a unique solution even when both control vectors are used

provided q � �� by Theorem ����

The minimization algorithm used in these experiments is the conjugate gra�

dient method �CGM�� In Chapter �� Section ��� we outlined this method for an

unconstrained minimization problem� In Subsection ����� below we explain how we

implement the CGM for our constrained minimization problem�

����� The CGM for a constrained minimization problem

We aim to solve the constrained minimization problem Problem AISCT or one of

its variants� As we saw in Section ���� this can be written as an unconstrained

minimization problem explicitly in terms of the control vector u� in the following

form

%J �



�
uT %Au� %bTu� %c� �����








where the control vector u might be the initial state� correction term or the aug�

mented vector consisting of the initial state and the correction term� Unless stated

otherwise� the stopping criterion used in the conjugate gradient descent is

kru %J k � 
��� ������

If this stopping criterion is not satis�ed within 
�� iterations� the descent process is

terminated anyway�

For this unconstrained minimization problem� we use the conjugate gradient

method �CGM� outlined in Chapter �� Section ���� The CGM algorithm can be

written in terms of uk� the kth iterate of the control vector� as summarized below�

where � �� � � represents the Euclidian inner product in IRn�

uk�� � uk � �kdk� ������

where

dk�� � �rk�� � �kdk� ���
���

rk � ru %J � %Auk � %b� ���
�
�

with

�k �
� rk�dk �

� dk� %Adk �
�k �

� rk��� %Adk �

� dk� %Adk �
���
���

and with

d� � �r�� ���
���

In practice we do not have an explicit form of the Hessian matrix %A� We must

therefore �nd a way of implementing ����������
��� which does not use explicit

knowledge of the Hessian� The Hessian %A appears in the expressions for the residual

rk� and in the inner products � rk��� %Adk � and � dk� %Adk �� We now discuss how

these terms may be evaluated without explicit knowledge of %A�

Calculating the residuals rk

Firstly� we notice that the residual rk is the gradient of %J with respect to the control

variable uk� The gradient of %J with respect to uk is the same as the gradient of the

Lagrangian L with respect to uk as de�ned in ��������������
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Calculating � rk��� %Adk �

From ������ and ���
�
� we have

%Adk � �rk � rk�����k� ���
���

Everything on the right hand side of ���
��� is known by the timewe need to evaluate

� rk��� %Adk �� so %Adk can be evaluated easily�

Calculating � dk� %Adk �

This expression can be built up using the following iteration� Starting from

�� � dk� ���
���

	� � R��C��� ���
���


� � 	T� 	�� ���
��

for i � 
� ��� N
� � 
 we let

�i � �i��i���� ���
���

	 i � R��C�i� ���
���


i � 
i�� � 	Ti 	 i� ���

��

where

�i��i��� � A�i�� if u � x�� ���


�

�i��i��� � A�i�� �B�� if u � e� ���

��

�i��i��� �

�
BB� A B

� I

�
CCA �i�� if u �

�
BB� x�

e

�
CCA � ���

��

Then we have

� dk� %Adk �� 
N
�
��� ���

��

����� The experiments

We investigate the performance of data assimilation using the initial state� the cor�

rection term and both together as control vectors for each of the following cases�
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Case a Perfect model� unknown initial state

In this case� the �rst guess of the initial state is

x�j � �� j � 
� ��� n� ���

��

rather than �������

Case b Imperfect model� known initial state

The source term s is assumed to be zero in this imperfect model� but this time the

true initial state is known�

Case c Imperfect model� unknown initial state

Here we use the imperfect model of Case b with the �rst guess initial state speci�ed

in Case a�

Data assimilation is carried out over the time interval ��� ����� where observations

are available� We then suppose that no more observations are available� and see

whether any bene�ts of the assimilation are maintained in a model run continued

on the time interval ����� 
�� This type of experiment in allows us to ascertain

whether the assimilation results in an improved �forecast�� which is the ultimate

aim of operational applications of data assimilation ���� This is especially important

when we are testing the correction term technique� because as Wergen found ���� an

improved solution during the assimilation interval does not always give an improved

forecast using this technique�

The simplicity of the linear� time�invariant model� with small state dimension�

the fact that it is completely observable for all values of p and the fact that the

observations contain no noise and that the model error we examine is constant in

time means� of course� that the situation we examine here is very di	erent to that

of operational NWP� Further� the fact that the model is strongly dissipative means

that some aspects of the results will not hold in general� as we will point out�

However� this setup allows us to examine the relative e�ciency of the various

control vectors in using the observational data to correct for wrong initial conditions
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and for model error which is constant in time� The results from these experiments

should enable us to make conclusions which will apply more generally�

��� Results

The �gures referred to in the text may be found at the end of this section�

����� Experiments using the initial state as the control vec	

tor

We carry out data assimilation using the initial state as the control vector for a

perfect model with unknown initial state� and for an imperfect model with known

initial state� Here e is set �xed at zero�

Experiment �a Perfect model� unknown initial state

From the theory of Section ����
 we know that� since the system is completely ob�

servable and we have perfect model and perfect observations� it should be possible to

reconstruct perfectly the true initial state and hence the true solution for subsequent

times from the observations�

Fig� ��
 shows that with � observations �p � ��� the true initial state is recon�

structed exactly� This requires �� iterations of the minimization algorithm� The

results at t � ���� at the end of the assimilation interval� match the true results

exactly� and so� since the model is perfect� the �forecast� started at t � ��� still

matches the true solution at t � 
�

If fewer observations are used� fewer iterations of the descent algorithm are need�

ed to satisfy the stopping criterion� Fig� ��� shows the results for p � 
� Here the

match to the true solution at the initial time is very poor� but at subsequent times

is good� and the forecast initiated at t � ��� matches the true solution exactly� This

illustrates that since the model is strongly dissipative� the solution is not very sen�

sitive to the initial state� Even using a stricter stopping criterion� it is not possible

to obtain a more accurate result in the case p � 
� because of numerical round�o	

error�
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Experiment �b Imperfect model� known initial state

In this case we still expect that the minimization problem has a unique solution�

but the optimal initial state found will not be the true one� but that which gives

the solution of the imperfect model which is closest to the observations�

The true initial state is known� and the minimization iterations are started from

this value� If a di	erent start guess for the initial state is used� the same results

are found� but this generally takes a couple of iterations more� Fig� ��� shows that

when the full set of observations are used �p � 
��� a smooth initial state is found

with a higher value at the position of the source point� If fewer observations are

used �Fig� ��� shows the results when p � ��� the initial state obtained is no longer

smooth� but matches the true solution at the observation positions� However� the

model dissipation soon acts to smooth out the solution�

The best results in each case are in the middle of the assimilation interval� at

t � ����� This tendency of the variational assimilation method to give a closest �t to

observations in the middle of the assimilation interval has often been noted �
��� In

this case of an imperfect model� the method does not produce the true initial state

but �nds one for which the ensuing solution throughout the assimilation interval is

closer to the observations� In this way� the e	ects of model error� rather than building

up in time� have been spread throughout the assimilation interval� as noted in ����

Although the assimilation has improved the results at t � ���� the bene�ts at t � 


are much smaller� because the forecast has been carried out with an uncorrected

imperfect model�

����� Experiments using the correction term as the control

vector

Here we carry out data assimilation using the correction term as a control vector�

and with x� �xed� Comparison of these results with those using the initial state as

the control vector gives a comparison of the e�ciency of the two control vectors in

each situation� We also examine the use of the background term �
�e

TqIe in the cost

function� with di	erent values of q� We look �rst at the situation of the imperfect
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model with known initial state� since this problem is more naturally treated by using

the correction term as a control vector�

Experiment �b Imperfect model� known initial state

Since the system is completely observable and N

� � n�
� we know that ProblemACT

has a unique solution� Since in Case b the initial state is known and model error is

constant in time� this method should �nd a correction term which exactly represents

the model error� and hence be able to reproduce the true solution�

Fig� ��� shows this to be so when p � � using q � �� If the correction term

found is used in the forecast started at the end of the assimilation interval �t � �����

the forecast using this corrected model matches the true solution exactly� The

number of iterations taken in this case is 
� very similar to the number taken in

Experiment 
a using the initial state as the control vector� and as in that case� the

number of iterations decreases when fewer observations are used� When only one

observation is used with q � �� �Fig� ����� the results are still good�

Experiments were also carried out using the background term with q � 
� For a

given value of p� fewer iterations were needed to satisfy the stopping criterion than

using q � �� but the results were very slightly less accurate�

Experiment �a Perfect model� unknown initial state

Again� we expect a unique solution� but not the true solution� The method will �nd

the correction term for which the model started from a wrong initial state is as close

as possible to the observations�

In these experiments the correction term is not included in the forecast following

the assimilation� This is because the correction term is supposed to compensate for

the errors in the initial conditions throughout the assimilation period� and since the

model is perfect� an improved solution at the end of the assimilation interval �at

t � ���� will give an improved forecast�

If p � 
�� ie� the full set of observations are used� �Fig� ���� the solution is

closest to the true solution about halfway through the assimilation interval� At the

end of the assimilation interval� it is hard to judge whether the assimilation has







produced a better solution than the �rst guess� as one over�estimates and the other

under�estimates the true solution� as is the case throughout the forecast�

The results using q � � are very poor if fewer than the full set of 
� observations

are used� however� The results in these cases are very close to the true solution at

the observation positions� but have large spikes where observations are missing� as

Fig� ��� shows in the case p � �� If more observations are used� the result is closer to

the true solution in more places� but the spikes in the data voids are larger� In this

case� the solution does not make sense since the correction term produces a solution

close to the true solution only at the observation positions�

Using a background term with q � 
 improves the situation by getting rid of the

large spikes� but the solution still is not smooth� This is shown in Fig� ��� for p � ��

As in Experiment �b� introducing this background term reduces the number of

iterations needed before the stopping criterion is reached� from �� to 
� iterations in

this case �p � ��� Using a stricter stopping criterion does not produce better results�

Increasing the value of q to 
� gives a smoother solution in just 
� iterations� and

a very smooth solution in just � iterations if q is increased to �� �Fig� ��
��� In this

last case� it happens that the solution at the end of the assimilation interval is very

close to the true solution� and stays close to it in the forecast�

These results show that although a background term for the control vector is not

necessary for uniqueness� it is very important in practice to constrain the correction

term to be close to zero to obtain a smooth solution� rather than a solution which is

merely close to the true solution at the observation positions� We note that the poor

results shown in Fig� ��� would have shown a reduction in the cost function and in

the rms errors of the forecast period� This means that using the criteria of some of

the earlier work on the correction term with no background in the cost function� we

might have concluded that these results represented an improvement on the results

with no assimilation�

����� Experiments with both control vectors used together

We now carry out data assimilation using the augmented control vector consisting

of the initial state and the correction term� We aim to �nd a way of doing this
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which gives the bene�ts obtained using each of the control vectors separately� while

keeping the extra cost at an acceptable level� As illustrated above� there are some

situations in which using the initial state as the control vector� and other situations

in which using the correction term as the control vector works particularly well� If

we do not know before starting the assimilation which control vector is better for

the situation� we would like to be able to use both together and obtain the same

bene�ts as if the preferable control vector had been chosen� This is examined here

by looking at Cases a and b using the augmented control vector� We then look

at Case c� the more general situation of an imperfect model with unknown initial

state� to see whether by using the augmented control vector we can obtain the true

solution in this case�

From the theory of Section ���� we know that for our time invariant system� the

minimization problem with no background term using both control vectors has a

unique solution if and only if the full set of 
� observations are used �Theorem �����

but that since the system is completely observable for any number of observations�

using q � � ensures uniqueness �Theorem �����

Experiment �a Perfect model� unknown initial state

In this case we want results to be as the case where we use only the initial state as

the control vector� As expected� when 
� observations are used� the results match

the true solution exactly� However� this takes more iterations �� iterations� than in

the same case when only the initial state is used as the control vector �
� iterations��

When no background term is used� the results using fewer than 
� observations

are rather like the poor results of Experiment �a using only the correction term

as the control vector and no background term �q � ��� although in this case the

solution does not deviate so far from the true solution in data void areas� Using

a background term �q � �� solves this problem� however� and an exact match to

the true solution is achieved using q � �� With p � 
� exactly the same results are

obtained as in the case where the initial state is the only control vector� the same

rather inaccurate initial state is found� but an exact match to the true solution

is obtained at later times� Using both control vectors together it is necessary to
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perform many more iterations of the descent algorithm than using just one control

vector� In this case� �� iterations are used in the case p � �� though fewer iterations

are needed when fewer observations are used� ��� iterations for p � 
��

Increasing q reduces the number of iterations required� however� These results

show that when both control vectors are used� the background term is essential for

sensible results� and that an appropriate choice of q is important to save extra cost�

Experiment �b Imperfect model� known initial state

In this case� we want the results to be as in the case where only the correction term

is used as the control vector� Again� an exact match to the true solution is achieved

using 
� observations� In the light of the previous results and the theory� we might

have expected that using fewer observations and no background term it would not

be possible to obtain reasonable results� However� results in this case are as good

as those obtained in the case where only the correction term is used as the control

vector� apart from a very slight inaccuracy in the initial state� Although we are not

guaranteed a unique solution in this case� the �rst guess of the initial state is correct�

so from a �rst guess which is close to the true solution� the true solution is found�

As above� the number of iterations needed is larger than in the case where only one

control vector is used� although the increase is not so large� �� iterations rather

than 
 iterations using just the correction term in the case p � ��� This time�

however� adding the background term with q � 
 signi�cantly increases the number

of iterations needed� Further increasing q in this case leads to a deterioration in the

results� and does not decrease the number of iterations�

Experiment �c Imperfect model� unknown initial state

In the experiments without the background term �q � ��� the results are much as

in Experiment �a� A perfect match to the true solution is obtained using the full

set of 
� observations� but if fewer observations are used� the solution is close to the

true solution at the observation positions but not where observations are missing�

The case for p � � is shown in Fig� ��

� Using di	erent starting guesses in this case

gives di	erent solutions� which demonstrates that the minimization problem does
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not have a unique solution using q � � and p � 
��

Adding the background term �using q � ��� ensures uniqueness and results in

good solutions� although for smaller values of p the results are not completely smooth

at the beginning of the assimilation interval� Figs� ��
� and ��
� show the results

for p � � and p � 
�� respectively� with q � 
� In all cases the match to the true

solution is very good at the end of the assimilation� and the forecast initiated at this

time using the correction term found in the assimilation maintains a perfect match

to the true solution�

Increasing the value of q to 
� gives a smoother solution for smaller values of p�

and reduces the number of iterations needed� However� further increasing q to ��

leads to a less accurate match to the true solution as Fig� ��
� shows in the case

p � �� and little further reduction in the number of iterations needed�

����� Reducing the dimension of the correction term vec	

tor

In this example� model error is due to the omission of a source term which is only

nonzero at one gridpoint� We now suppose we know that model error is localized�

and suppose that we know approximately this location� In this case we are able to

reduce the dimension of the correction term to m � n �provided the correction term

is not also supposed to correct for errors in the initial state�� When using m � n�

we suppose that the correction term covers an area centred on the location of the

source term�

Experiment �b Imperfect model� known initial state

Using values of m � n improves the e�ciency of the method� As before� using the

correction term as the control vector it is possible to perfectly reconstruct the true

solution from the observations using p � � and q � �� If m � n� however� these

results are achieved using fewer iterations� just � iterations for m � � and just �

iterations for m � �� Before� using m � n � 
�� 
 iterations were required for the

same results�
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Using only one observation� the results were slightly more accurate using m � �

than usingm � 
�� as comparing Fig� ��
� with Fig� ��
� illustrates� In this case� the

observation is not in the area the correction term covers� The number of iterations

required was reduced from  iterations for m � n � 
� to just � iterations for m � ��

Experiment �c Imperfect model� unknown initial state

Here again reducing the dimension of the correction term improves the e�ciency

of the method� Fig� ��
 shows the results using both control vectors and using

m � n � 
� and � observations with q � 
� This requires  iterations of the

descent algorithm� Fig� ��
� shows that the results using m � � are just as good�

and in this case only �
 iterations are required�
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��� Summary and conclusions

In this chapter we have looked at both theoretical and practical aspects of using

the correction term as the control vector compared with using the initial state as

the control vector� and also of using both control vectors together� Here we brie�y

summarize the theoretical results of Section ���� and give conclusions from the ex�

periments described in Sections � and ��

����� Summary of the theoretical results

In Section ��� we considered from a theoretical point of view� uniqueness of the �D

variational assimilation problem using each control vector� We were particularly

interested to see when it is possible to determine each control vector from the obser�

vations alone� exactly in the case of observations with no error� or in a least squares

sense in the case of imperfect observations�

The issue of uniquely determining an initial state from observations is addressed

in the concept of observability� The paper by Zou et� al� ��
� includes a proof

that in the continuous� time invariant case� complete observability of the system is a

su�cient condition for a unique solution of the �D variational assimilation problem�

Problem AIS� Here we used the concept of complete N �step observability at the

initial time t�� which is both a necessary and su�cient condition for uniqueness in

the discrete� time varying case� This result is applicable to an assimilation system

in which the number and type of observations vary in time� Even when applied to

a time�invariant system� this result linking uniqueness to complete N �step observ�

ability tells us more than the corresponding result on complete observability if the

number N of timesteps in the assimilation interval is smaller than the dimension n

of the model state�

We then addressed the issue of whether it is possible to determine uniquely a

constant model input �a correction term representing model error in our context�

from observations on an assimilation interval� Interestingly� in this case complete

N �step observability at time t� is neither a necessary nor a su�cient condition

for uniquely determining a constant input from the observations� as we showed
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using simple counter�examples� This means that in some cases it is possible to

uniquely determine the correction term but not the initial state from a given set

of observations� and vice versa� However� we also gave an example for the time�

invariant case in which it is possible to uniquely determine the correction term

from the observations if and only if it is possible to uniquely determine the initial

conditions�

If both control vectors are used together� it is possible to write the original system

in terms of an augmented system� in which the augmented initial state� consisting

of the original initial state and the correction term� is the augmented control vector�

Hence� a necessary and su�cient condition for being able to determine both the

original initial state and the correction term from the observations is that the aug�

mented system is completely N �step observable at time t�� We looked at conditions

for complete N �step observability of the augmented system in terms of complete

N �step observability of the original system and showed� in particular� that for a

time�invariant system� it is possible to determine the augmented control vector from

the observations if and only if a full set of observations is used� In the time varying

case� however� it is possible to determine the augmented control vector from the

observations if there is a full set of observations at times t� and t��

In each case� adding a background estimate of the control vector to the cost

function can guarantee a unique solution when the observational data cannot� This

is known for data assimilation using the initial state as the control vector� but a

background term was not included in published work on the correction term tech�

nique� We also showed that if both control vectors are used� then if the original

system is completely N �step observable� it is only necessary to add a background

estimate of the correction term�

In general� it is not possible to check completeN �step observability in the context

of operational data assimilation in NWP or in oceanography� although in some

cases we know whether or not this condition holds� In other applications of data

assimilation� however� it is possible to check this condition� However� even when

we do not know whether or not a system is completely N �step observable� these

theoretical results give us insight into the comparative ability of the variational
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assimilation method using di	erent control vectors to obtain information from the

observations� In particular� we showed that conditions for determining the initial

state and those for determining the correction term from the observations are the

same in a time�invariant system with N large enough� although they are not the

same in general� that a necessary but not su�cient condition for both control vectors

to be uniquely determined from the data is that each of them can be determined

individually� and that in the time�invariant case it is not possible to determine both

control vectors unless a full set of observations is used�

����� Conclusions from the experiments

The experiments described in this chapter show that just as it is possible to recon�

struct the true solution from an unknown initial state with a perfect model and a

su�cient number of perfect observations� so it is possible to reconstruct the true

solution from an imperfect model with known initial state and a su�cient number

of observations if model error is constant in time� In these experiments� when only

one or two observations were used at each timestep� the solution was inaccurate�

even though the theory shows that we should be able to obtain exact results in

these cases also� This is probably due to numerical rounding error in the descent

iteration procedure�

From these results� we can conclude that the correction term technique might

work well to compensate for sources of model error which are approximately constant

over the assimilation interval� such as forcing terms which do not depend on the

model state� and misspeci�ed� constant boundary conditions� When an imperfect

model is used� using the correction term obtained in the assimilation in a subsequent

forecast greatly improves the forecast� as found in earlier studies on the correction

term technique�

If the initial state is the only control vector and an imperfect model is used� then

the best �t to the true solution is in the middle of the assimilation interval� and

there is little gain in accuracy in an ensuing forecast since this is carried out with an

imperfect model� Similarly� using only the correction term as the control vector can

compensate for the e	ect of errors in the initial conditions� although in this context
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the correction term should not be included in an ensuing forecast�

In all experiments with unknown initial state in which the correction term was

used as a control vector� using a background term with a large weight constraining

the correction term to be small �ie� a large value of q� was vital for sensible results

where fewer than the full set of observations are available� although the background

term is not needed for uniqueness in all these cases� This fact was revealed because in

our idealized experiments we were able to compare our results with the true solution

away from the observation positions� Previous published work on the correction term

technique did not include the background term�

Using a background term was also useful� although not necessary� when the

correction term was being used to correct for model error� since including it speeds

up the descent procedure slightly� In this case� however� using a value of q which

was too large had a detrimental impact on the results� This problem of needing a

small value of q to deal with the constant component of model error� and a large

value of q to deal with other forms of forecast error� such as errors in the initial

state� might not be such an issue in cases in which the errors dealt with are not so

drastic� In these experiments we used very large model error and initial state errors

for exaggerated results�

Using both control vectors together it was possible to obtain very good results

in the presence of a wrong initial state� an imperfect model� or both� However�

this was at the cost of signi�cantly more descent algorithm iterations� typically ���

�� iterations with both control vectors compared with just 
���� using just one of

them� although these results were required to satisfy a very strict stopping criterion�

Reducing the dimension of the correction term control vector increased the e��

ciency of the method� since fewer iterations of the descent algorithm were required

in this case� This is particularly signi�cant when both control vectors are used

together� since in this case the high number of iterations required was reduced by

around a half� Reducing the dimension of the correction term might be appropriate

if the correction term is only required to counteract the e	ects of model error which

are known to be localized to some area�

From these experiments� two immediate issues arise which require further atten�
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tion� The �rst is the problem of reducing the number of iterations needed when

both control vectors are used� This could be achieved by suitable preconditioning of

the descent process� but we do not take this any further in this work� Secondly� the

question arises of how well the correction term technique would work in the presence

of model error which is not constant in time� especially model error which depends

on the model state� We examine this in the experiments of the next two chapters�


��



Chapter �

Accounting for model error in

variational assimilation

We start this chapter with a discussion on the problem of how to account for model

error in data assimilation� In particular� we note that the assumptions made on

model error in Kalman �ltering theory have theoretical and practical limitations�

We consider a more general form of model error which has serially correlated and

serially uncorrelated components� and we give several di	erent examples of how we

might represent model error�

We show that the technique of state augmentation provides a useful tool for

accounting for model error in data assimilation� Using this technique� the aim

in data assimilation is to estimate serially correlated components of model error

along with the model state� This leads to a generalised form of Problem LS of

Chapter �� in which we allow for serially correlated model error� In this context� it

is possible to give a statistical interpretation of the correction term technique� The

state augmentation approach also provides a way to generalize the correction term

technique to represent model error that changes with the state evolution� rather than

model error that is constant in time� We refer to this as the �evolving correction

term technique��

We conclude this chapter with experiments using a simple model in which the

model error changes with the model state� In this case� the usual correction term

technique does not compensate for the e	ects of model error at all� but using the
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evolving correction term as a control variable produces a signi�cant improvement in

the results�

The theoretical part of our work described in this chapter has been published in

a shorter form in ��
��

	�� Background on representing model error

In �D variational assimilation using the strong constraint approach� which is cur�

rently being developed for operational application in meteorological centres� model

error is neglected� Recently� however� the problem of how to account for model error

in variational assimilation in a cost e	ective way has begun to receive more attention

��
��

Studies in predictability which explicitly attempt to represent the e	ects of model

error on forecast error� �
������������ show that the impact of model error on forecast

error in meteorological models is indeed signi�cant� The study in ���� leads to the

conclusion that the predictability limit of a forecast might be extended by two or

three days if model error were eliminated� However� there is a lack of quantative

information on model error in such forecast models� even of its size relative to that

of the model state� Hence� the problem arises of how to represent model error in

data assimilation�

The Kalman �lter does account for model error� and in the Standard Kalman

�lter model error is treated as serially uncorrelated� unbiased random error� In Chap�

ter �� Section ��� we also discussed other approaches to weak constraint variational

assimilation which make the same assumptions about model error� An interesting

paper by Dee ���� however� questions the validity of this representation of model

error� Using an analysis of model error similar to that given in Chapter �� Subsec�

tion ��
�� here� he argues that since model error in general depends on the model

state� it is likely to be serially correlated� In Chapter �� Section ��� we gave back�

ground on how the Kalman �lter can be modi�ed to deal with serially correlated

model error� but this involves a large increase in the expense of the method� which

�unless in simpli�ed form� is already thought to be too expensive for operational
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application in data assimilation�

Another major problem with using a stochastic representation of model error

in data assimilation is that it is very di�cult to model the error covariance matrix�

since the statistics of model error are largely unknown� Dee ���� argues that it is this

huge information requirement� rather than the large computational cost� that is the

real obstacle to successful implementation of the Kalman �lter� He further argues

that it doesn�t make sense to expend huge amounts of e	ort in propagating the

error covariance matrices when the statistical assumptions made on model error are

suspect� He concludes that until further information about the statistics of model

error are available� the advantages of the Kalman �lter over other data assimilation

schemes are �strictly hypothetical��

Here� we are concerned with how to account for model error in variational as�

similation� The weak constraint approach to variational assimilation does allow for

model error� and in Chapter �� Section ��� we reviewed some of the methods for

solving this minimization problem which have been proposed for data assimilation�

Generally� these methods make the same statistical assumptions on model error as

made in the Kalman �lter� and so the theoretical problems raised above apply here

too�

The correction term technique provides a way of allowing to some extent for

model error in variational assimilation� In Chapter � we saw that this works very

well for model error that is constant in time� but this is of course not generally the

case� Papers on the use of the correction term technique refer to the correction term

as representing �model bias� or as representing �average� model error� but published

work has not provided a theoretical statistical interpretation of the analysis the

correction term technique provides� as has been done in the case of the strong

constraint approach �ie� that under certain statistical assumptions it represents the

�most likely solution�� if the model can be assumed to be perfect��

In Section ��� of this chapter� we consider a general representation of model

error that can be used to represent each of the forms of model error that have

been suggested for use in data assimilation� and which could also represent other

forms� We consider how the technique of state augmentation can be used to estimate
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a serially correlated component of model error along with the model state� In

Section ��� we give a generalised version of Problem LS �the general least squares

problem for variational assimilation introduced in Chapter �� which allows for the

state augmentation approach� In this context we can interpret the correction term

technique in a statistical way�

	�� State augmentation

We consider the nonlinear model

xk�� � fk�xk� � �k� k � �� ��� N � 
 ���
�

as de�ned in ������ where xk � IR
n and �k � IR

n are the model state and the model

error at time tk� In Chapter � on the correction term technique� we considered an

approximation of the model error term �k of the form

�k � Bke� �����

where the Bk � IR
n�m are prescribed matrices� and e � IRm is a constant correction

term to be determined� In the correction term technique� e is used as a control vector

in the minimization� If both the initial state x� and the correction term e are used

as control vectors� we saw that it is convenient for theoretical purposes to write the

system as an equivalent augmented system� This technique of state augmentation is

sometimes used in the control theory literature as a way of estimating� along with

the model state� unknown� constant model parameters� as discussed in the text by

Jazwinski ���� Chapter �� Section �� or of estimating a serially correlated component

of random model error� as discussed in the text by Gelb ��
� Chapter �� Section ��

As we will show in this chapter� this technique therefore provides a convenient way

to account for serially correlated model error in data assimilation�

���� A general formulation of model error

We now consider a more general form of model error than ������ which also has a

random component� Following ��
�� we consider a stochastic form of model error�
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which is made up of serially correlated errors and serially uncorrelated random

errors� We therefore write

�k � Bkek � q�k� �����

where the vectors q�k are serially uncorrelated� random n�vectors� the matrices Bk �

IRn�m are prescribed matrices as before� and the vectors ek � IRm represent the

serially correlated component of model error� We suppose that we know how the

error ek evolves in time� and for now write this in a very general form�

ek�� � gk�xk� ek� � q��k� �����

where gk � IR
n� IRm � IRm is some function to be speci�ed� and the vectors q��k are

serially uncorrelated random m�vectors�

As we discussed in Section ��
� we know very little about the form of the model

error� and in practice will have to specify ������ ����� in a very simple form which

re�ects any knowledge of model error we do have� We give a few such examples in

Subsections ����� and ������ Using this general formalism� however� we can allow for

model error which depends on the model state� and for other types of model error

discussed earlier�

The model system can now be written

xk�� � fk�xk� �Bkek � q�k� �����

ek�� � gk�xk� ek� � q��k� k � �� ��� N � 
 �����

or as the equivalent augmented system

wk�� � %fk�wk� � qk� k � �� ��� N � 
 ����

in which wk �

�
BB� xk

ek

�
CCA � IR	n�m
 is the augmented state vector� %fk � IR

	n�m
 �

IR	n�m
 is a nonlinear function� and qk is a random �n�m��vector� The aim of the

data assimilation problem for the augmented system is to estimate the augmented

state wk� Before discussing how to do this� we �rst give some examples of how we

may represent the model error term�
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���� Examples of how model error can be speci�ed

i� Serially uncorrelated model error

Setting all the ek in ����� to zero we have

�k � q�k� �����

in which case model error is a serially uncorrelated random vector� as assumed in

the Standard Kalman �lter�

ii� Constant model bias error

Setting

�k � Bkek � q�k� �����

ek�� � ek� ���
��

allows for a constant vector of unknown �dynamical parameters� as discussed in

����� If this form of model error is purely deterministic �ie� q�k � ��� this represents

the correction term technique of Chapter �� In Derber�s paper ���� introducing the

correction term technique� the matrices Bk were the n� n identity multiplied by a

time�varying scalar and by the time�step length &t� to re�ect the r!ole of this form

of model error as a correction to the time derivative of the model equations� As

discussed in Chapter �� we expect this form of model error to be appropriate for

representing constant errors in the forcing or in the boundary conditions�

iii� Model error evolving with model evolution

In Section ��
� we discussed that model error is likely in general to depend on the true

model state� and hence to change with the �ow� In this case model error evolution

might be approximated by

�k � Bkek � q�k� ���

�

ek�� � Gkek� ���
��

where Gk � IR
m�m represents a simpli�ed form of the model state evolution� This

might be an appropriate approximation to model error evolution if model error
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represents truncation error� This is similar to the form of serially correlated model

error which was suggested in the paper by Daley ���� in formulating a Kalman

�lter allowing for serially correlated model error� which we discussed in Chapter ��

Section ����

The matrices Bk in ����� allow for a serially correlated component of model

error with dimension m which may be less than or greater than the dimension n

of the model state� In Chapter � we showed how using m � n can lead to greater

e�ciency in the correction term technique if the source of model error is known to

be localized� We now consider how including the possibility that m � n can allow

for greater �exibility in the speci�cation of model error�

We may partition the serially correlated component of model error in r sub�

vectors of dimension s �where rs � m�� and write

�k � Bkek � q�k� ���
��

ek�� � gk�wk� � q��k� ���
��

where this time

Bk � �B
	�

k � B

	�

k � ��� B

	r

k �� ek �

�
BBBBBB�
e
	�

k

���

e
	r

k

�
CCCCCCA
� ���
��

where e	�
k � ��� e
	r

k � IRs and B

	�

k � ��� B

	r

k � IRn�s� The following examples illustrate

how this generalization might be useful�

iv� Model error growing in time

Here� rather than using a constant correction term to represent model error as in

the correction term technique� we allow for a correction term which can increase or

decrease linearly in time� In this case model error has the form

�k � Bkek � q�k� ���
��

ek�� � ek� ���
�


��



with

Bk � �B
	�

k �&tB	�


k �� ek �

�
BB� e

	�

k

e
	�

k

�
CCA � ���
��

This form of model error is referred to in ��
� as a �random ramp�� since its initial

size and rate of change are to be determined�

v� Combination of Examples i� and ii�

We suppose the model error has the form

�k � Bkek � q�k� ���
��

ek�� � %Gkek� ������

with

Bk � �B
	�

k � B

	�

k �� ek �

�
BB� e

	�

k

e
	�

k

�
CCA � %Gk �

�
BB� Gk �

� I

�
CCA � ����
�

where Gk is as de�ned in ���
��� In this we can allow for model error with a constant

component and a component which changes with model evolution�

vi� Spectral form of model error

In this case we suppose that model error has the form

�k � Bkek � q�k� ������

ek�� � ek� ������

with

Bk � �B
	�

k � B

	�

k sin

�
k

N�

�
� B

	�

k cos

�
k

N�

�
�� ek �

�
BBBBBB�
e
	�

k

e
	�

k

e
	�

k

�
CCCCCCA
� ������

where � is a constant which might be chosen bearing in mind the timescale on which

model error is expected to vary� for example a diurnal timescale�


��



vii� Piecewise constant model error

Here we suppose that the assimilation interval �t�� tN � is broken into r subintervals

over which model error is represented by di	erent constant correction terms� For

convenience� we suppose here that N is a multiple of r� so that we can represent

model error as

�k � Bkek � q�k� ������

ek�� � ek� ������

with

Bk � �s
	�

k B

	�

k � s

	�

k B

	�

k � ��� s

	r

k B

	r

k �� ek �

�
BBBBBB�
e
	�

k

���

e
	r

k

�
CCCCCCA
� �����

where the scalars s
	i

k are given by

s
	i

k �

����
���

 for k � 	i��
N

r
� ��� iN

r
� 


� otherwise�
������

If r � N � Bk � I and q�k � � then we estimate N serially uncorrelated model error

terms�

���� Problem LS for the augmented system

Using our most general form of model error� the nonlinear system is

xk�� � fk�xk� �Bkek � q�k� ������

ek�� � gk�wk� � q��k k � �� ��� N � 
� ������

which can equivalently be written in as the augmented system

wk�� � %fk�wk� � qk� k � �� ��� N � 
� ����
�

where wk �

�
BB� xk

ek

�
CCA � IRn�m is the augmented state vector� qk �

�
BB� q�k

q��k

�
CCA is a

random �n �m��vector� and %fk � IR
n�m � IRn�m is a nonlinear function describing


��



the evolution of the augmented state vector� We suppose that as before� we have

observations given by

yk � hk�xk� � �k� k � �� ��� N � 
 ������

as de�ned in ������ We de�ne %hk � IR
n�m � IRpk by %hk�wk� � hk�xk�� We assume

that the quantities w�� qk and �k� k � �� ��� N�
� are not correlated with each other�

We suppose that qk has a positive de�nite covariance matrix Sk � IR
m�m� and that

we have a prior estimate or �background� estimatewb
� ofw�� and that the covariance

matrix of the errors �w��wb
�� is given by the nonsingular matrix %P� � IR

	n�m
�	n�m
�

As before� we suppose that the covariance matrix of the observational error �k is

given by the positive de�nite matrix Rk � IR
pk�pk �

For this augmented system� with observations ������ and prior estimate wb
�� the

general least squares problem for estimating the augmented state w�� ����wN is

Problem LSA

Minimize� with respect to w�� ���wN �q�� ���qN��

J �



�
�w� �wb

��
T %P��

� �w� �wb
�� �




�

N��X
j��

�%hj�wj�� yj�
TR��

j �%hj�wj�� yj�

�



�

N��X
j��

qTj S
��
j qj� ������

subject to �	�
�	

Problem LSA is a generalization of Problem LS which allows for a more general

form of model error� Hence� if the errors fqkg and f�kg are Gaussian and unbiased�

and if the system ����
�� ������ is linear� then the solution of Problem LSA repre�

sents the �most likely solution� as de�ned in Chapter �� Section ���� The methods

outlined in Chapter � for solving Problem LS could also be applied to this gen�

eralised version� If the Kalman �lter is used to solve Problem LSA for a linear

system� then if model error is assumed to have the form given in Example iii� of

Section ������ we have the method of accounting for serially correlated model error

in Kalman �ltering outlined in Chapter �� Section ���� This approach� however�

involves propagating extra covariance matrices� and so is much more expensive than


��



the standard Kalman �lter� It is possible to allow for serially correlated model error

in the Kalman �lter without actually estimating the serially correlated component

of the model error ek� ����� ����� In this case the state dimension is still only n�

but we are not able to improve an initial estimate of the ek during the assimilation�

as we do using the state augmentation approach� The representer method seems a

promising way of accounting for model error in �D data assimilation at a reasonable

cost� If applied to Problem LSA rather than Problem LS � however� this method

can also allow for serially correlated model error�

If we neglect the serially uncorrelated part of the model error� qk� then we can

use the augmented initial state w� as the control vector� as we discuss next�

	�� A generalized correction term technique

In the strong constraint approach to �D variational assimilation outlined in Chap�

ter �� in which the initial state is used as the control vector� model error is neglected�

Since model error is not negligible in reality� this method �nds only an approxima�

tion to the optimal solution� If we attempt to estimate an augmented state which

includes serially correlated components of model error� however� it should be possi�

ble to obtain a better approximation to the optimal solution� We therefore attempt

to solve Problem LSA neglecting the random errors qk� The accuracy of the solu�

tions we obtain will depend on how well the serially correlated component of model

error we estimate represents the actual model error�

In this case� we estimate the model state xk and a correction term ek representing

serially correlated model error� using w� �

�
BB� x�

e�

�
CCA as a control vector� This can

be seen as a generalization of the correction term technique in which the correction

term ek may evolve in time�

Hence� the correction term technique provides an optimal solution to Prob�

lem LSA assuming that model error is represented by a constant bias and does

not have a serially uncorrelated component� Viewing the correction term technique

as a method of solving Problem LSA again points out the theoretical importance


�



of including a background term for e� in the cost function�

Adjoint equations and gradients

We now follow the development of Chapter �� Section ��
 to solve Problem LSA

with qk � � using the augmented initial state w� as the augmented control vector�

In this case� the Lagrangian is given by

L �



�
�w� �wb

��
T %P��

� �w� �wb
�� �




�

N��X
j��

�%hj�wj�� yj�
TR��

j �%hj�wj�� yj�

�
N��X
j��

�T
j���wj�� � %fj�wj��� ������

where the �k � IR
	n�m
 are vectors of Lagrange multipliers�

The adjoint equations are given by

�k � %F T
k �wk��k�� � %HT

k �wk�R
��
k �%hk�wk�� yk�� k � N � 
� ��� 
 ������

with

�N � �� ������

where %Fk � IR
	n�m
�	n�m
 and %Hk � IR

pk�	n�m
 are the Jacobians of %fk and %hk with

respect to wk�

The gradient of L with respect to the augmented control vector w� is

rw�
L � %P��

� �w� �wb
��� ��� �����

where �� is de�ned by ������ with k � �� Algorithm IS of Chapter �� Section ��


may now be applied to this case�

In terms of the original system and model error equations �������������� the

augmented equations can be written

�k � F T
k �xk��k�� �GT

k �wk��k�� �HT
k R

��
k �hk�xk�� yk� ������

�k � BT
k �k�� � *

T
k �wk��k�� k � �� ��� N � 
 ������

with

�N � �� ������

�N � �� ����
�
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where �k � IR
n� �k � IR

m� and where Gk � IR
m�n is the Jacobian of gk with respect

to xk� and *k � IR
m�m is the Jacobian of gk with respect to ek� With

%P��
� �

�
BB� P��

� �

� Q��
�

�
CCA � ������

where P� � IRn�n and Q� � IRm�m are the covariance matrices of �x� � xb�� and

�e� � eb�� respectively� equation ����� becomes

rx�L � P��
� �x� � xb��� ��� ������

re�L � Q��
� �e� � eb��� ��� ������

with �� and �� de�ned by ������ and ������ with k � ��

Reduced work with a non�evolving correction term

We now note that if ������ has the trivial form

ek�� � ek� ������

then ������ may be rewritten

�N�k �
k��X
m��

BT
N�m���N�m � �N � ������

and hence

�� �
N��X
j��

BT
j���j� �����

so

re�L � Q��
� �e� � eb�� �

N��X
j��

BT
j���j� ������

Hence� because the model error evolution has a trivial form here� equations ������

and ������ can be eliminated� and the gradients of L with respect to a guess of each

control vector found from a run of the original model and adjoint equations only�

Hence� there is very little extra computational e	ort in the procedure for calcu�

lating the gradient of L with respect to e� along with the gradient with respect to

x�� This is an important point� since the model run and adjoint run represent the

most expensive part of the descent iteration process� More storage is needed for the
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extra control vector e� and its gradient� although the dimension m of these might

be much less than n� The increased dimension of the augmented control vector also

means that the part of the descent algorithm which uses the gradient information

to improve a guess of the control vector will be more expensive� A larger problem�

however� is that the conditioning of the problem using the augmented control vector

approach will be altered� and as a result� more iterations and hence more model

and adjoint runs may be needed� as we found in the experiments of Chapter � using

both control vectors�

	�� Using an evolving correction term

���� Introduction

In the experiments of Chapter �� we saw that the correction term technique is

successful in correcting for model error which behaves like a constant forcing term�

Here� we consider the upwind discretization of the linear advection equation in

which model error is present due to dissipation� The model error can be expressed

as truncation error� and since this depends on the true model state� it will change

in time with the model state� In this section� we consider the generalized correction

term technique supposing that the correction term representing model error evolves

with the model equations�

The model has the form

xk�� � Axk� ������

and we try to compensate for model error using an evolving correction term ek � IR
n�

where

xk�� � Axk � ek� ������

ek�� � Aek� ����
�

We consider using the initial state x�� the initial correction e� and both together

as control vectors� We note that when the initial correction e� is used as a control

vector� the dimension of the augmented model system and its adjoint is twice that

of the original system and its adjoint� We noted in the previous section that this can
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be avoided if the correction term is constant� We must assess� therefore� whether the

bene�ts in correcting for model error using the evolving correction term are worth

the extra e	ort�

���� Description of the experiments

We �rst introduce the linear advection model and its discretization using the upwind

scheme� We then specify what observational data is available� and the minimization

algorithm used� and then state the experiments that are carried out�

The Upwind Scheme for the Linear Advection Equation

The linear advection equation on z � ��� 
�� t � ��� 
�� with periodic boundary

conditions is given by

�v

�t
� c

�v

�z
� �� ������

with

v��� t� � v�
� t�� ������

We suppose we have initial conditions given by

v�z� �� � ��z� �

��������
�������

���� z � �����

��� ���� � z � ����

���� z � ����

������

The upwind scheme for the linear advection equation ������ with ������ for c � � is

xk��j � xkj � �c
&t

&z
�xkj � xkj���� j � 
� ��J� k � �� 
� ��N� ������

with &z � �
J
� &t � �

N
and xkj � v�j&z� k&t�� or

xk��j � �
� ��xkj � �xkj��� ������

where � � c�t

�z
� with xk� de�ned to be x

k
J � and with

x�j � ��j&z�� �����


�




The scheme can be written as a matrix system as follows�

xk�� � Axk� ������

in which xk � IR
n is the state at time tk� where n � J � and A � IRn�n is given by

A �

�
BBBBBBBBBB�

�
� �� � �

� �
� �� �

� � � � � � � � �

� � �
� ��

�
CCCCCCCCCCA
� ������

The upwind scheme is �rst order accurate and stable provided � � 
�

We run the model ������ with c � 
� using N � ��� J � ��� so &t � �
��
and

&z � �
��
� Hence� � � �

�
and the model state has dimension n � ��� Since c � 
� the

square wave represented by the initial conditions is advected all the way round the

model domain to its starting position on the time interval ��� 
��

The true model state

With � � 
� the upwind discretization yields the true solution of the pde ������ on

the model grid� ie� there is no model error� So� to compute the true model state xtk

on the model grid speci�ed above� we used the model ������ with � � 
� choosing

&t � �
��� &z �

�
��� and with initial conditions �������

Observations

We suppose that we have error free observations at p of the �� grid points at every

timestep on the interval ��� �� �� ie for
N

� � �� timesteps� and that after this no further

observations are available� Hence� the observations are given by

yk � Cxtk� k � �� ����
N

�
� 
� ������

where the observational matrix C � IRp�n has a simple form since the observation

positions coincide with the grid points� The positions of the observations used in

each case are shown in the �gures�
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The minimization algorithm

The minimization algorithm used is the conjugate gradient descent method� imple�

mented as described in Chapter �� Section ����

The experiments

We minimize the cost functional

J �



�
eT�Q

��
� e� �




�

N
�
��X

j��

�Cxj � yj�
TR���Cxj � yj�� ����
�

subject to

xk�� � Axk � ek� ������

ek�� � Aek� k � �� ���
N

�
� 
� ������

where R�� � �
N
� IRp�p� and Q��

� � qI � IRn�n� As in the experiments of Chapter

�� the matrices R�� give equal weight to all observations� and are not supposed to

represent error covariances� The value of q is sometimes taken to be zero� in which

case we do not constrain the size of the correction term to be small�

In the experiments� assimilation is carried out on the interval t � ��� �
�
� over

which observations are available� The solution at time t � �
�
is then used to initiate

a forecast over the interval ��
�
� 
��

Starting from the correct initial conditions� and using � � �
�� the upwind scheme

�typically of schemes which are �rst order accurate� exhibits numerical dissipation�

which smears shocks� This model error becomes less severe as the grid is re�ned

�keeping � � �
��� The aim of the experiments is to compare the performance of

di	erent control vectors in compensating for model error during the assimilation

interval� We further investigate whether the assimilation produces an improvement

in the subsequent forecast in each case� We investigate the following cases using the

di	erent control vectors�

Case a� Imperfect model� known initial state

The performance of assimilation using the initial state and the evolving correction

term as control vectors is compared for di	erent values of q and p� We also see


��



how performing data assimilation using the evolving correction term as a control

vector compares with reducing model error by increasing the spatial and temporal

resolution of the model�

Case b� Imperfect model� unknown initial state

The performance of assimilation using the initial state� the evolving correction term

and both together as control vectors is compared for di	erent values of q and p�

	�� Results

The �gures referred to in the text can be found at the end of this section� In

each case the impact of the assimilation may be judged by comparing the solution

with assimilation �dashed line� to the background solution �dotted line� in which no

assimilation is performed�

���� Case a�� Imperfect model� known initial state

Using the initial state as a control vector

When the full set of �� observations are used� the initial state recovered is close to

the true initial state� except that peaks are introduced at the corners of the square

wave� as Fig� ��
 shows� Hence� the impact of the numerical dissipation which smears

down the corners� is less at later times in the assimilation� As noted in Chapter ��

when the initial state is used as a control vector in the presence of model error�

the solution is closest to the true solution in the middle of the assimilation interval�

Using the initial state as the control vector modi�es the impact of model error by

distributing its e	ects throughout the assimilation interval� At the the end of the

assimilation interval� the solution is closer to the true solution than the model run

started from true initial state� and as a result� the forecast remains slightly closer

to the true model state�

If �� observations are used at every timestep of the assimilation interval �Fig� �����

the results are similar to when the full set of observations is used� except that in


��



this case� as well as having peaks at the corners� the initial state also contains er�

roneous spikes away from the observation points� which are soon smoothed away as

the solution evolves� As discussed in the context of the experiments of Chapter ��

the minimization is not sensitive to these errors in the initial state� When fewer

than �� observations are used� these spikes in the recovered initial state are larger�

although the solution at later times is still good� This is illustrated in Fig� ��� which

shows the case when p � �� Even though the impact of this erroneous initial state

is soon eliminated� it is clearly not a desirable solution� and should be treated either

by including a background estimate of the initial state� or by imposing some other

smoothness condition�

Using an evolving correction term as the control vector

The results using a full set of observations with q � 
� are shown in Fig� ����

Convergence is achieved in �� iterations in this case� With q � � the results look very

similar� but the stopping criterion had not been satis�ed when the minimiziation was

stopped after 
�� iterations� As found in the experiments of Chapter �� convergence

occurs more quickly using larger values of q� Increasing the value of q to 
�� produces

visibly less accurate results� however�

Fig� ��� shows how the correction term compensates well for the e	ects of model

error� and produces a solution which is better than the background solution starting

from the true initial state� throughout the assimilation interval� Compared with

the solution produced using the initial state as the control vector� the reduction in

model error in the middle and at the end of the assimilation interval is achieved to

a similar extent� but this time there is no corresponding increase in model error at

the beginning of the assimilation interval�

There are two other advantages in this approach� Firstly� it provides a way

of improving a subsequent forecast by including the evolving correction term in

the forecast� Fig� ��� shows a considerable improvement over the original solution

during the forecast period� although this does involve the extra cost of evolving the

correction term as well as the full model state� The second advantage is that the

solution obtained behaves well even when fewer observations are used� and there are
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no erroneous spikes in the data sparse areas� Fig� ��� shows the good results obtained

using �� observations� and q � 
� in �� iterations� When only � observations are

used� the results are still good� as Fig� ��� shows�

In this example it is not possible to bene�t by reducing the dimension of the

correction term� �by using m � n as in the examples of Chapter ��� because the

wave and hence the impact of the model error travels across the whole of the model

domain on the time interval we consider� In other applications� however� in which

we may wish to treat the impact of numerical model error near a discontinuity which

only travels over part of the model domain during the assimilation interval� it would

be possible to reduce the dimension of the correction term so that it in�uences this

area only�

The results of these experiments show that� if the initial state is known to a

good enough approximation� using the evolving correction term as a control vector

provides a better way of dealing with this type of model error than using the initial

state� although the amount of work needed at each iteration in is approximately

doubled�

In these experiments� model error is due to lack of resolution� and a more e�cient

way of correcting for this type of model error is of course to increase the resolution�

We compare the results using the evolving correction term with the model solution

at twice the spatial and temporal resolution� keeping � �xed� ie using &z � �
��
�

&t � �
��
� The results of these experiments are shown in Fig� �� �using the full

set of observations� and in Fig� ��� �using �� observations�� During the assimilation

interval� the quality of the solution using the evolving correction term is very similar

to the solution �without assimilation� at double spatial and temporal resolution� The

forecast using the evolving correction term is slightly better than the forecast using

double resolution�

Carrying out data assimilation using the evolving correction term to correct for

model errors due lack of resolution involves more work than simply increasing the

model resolution� However� these experiments indicate that the evolving correction

term could be e�cient in compensating for model error which travels with the model

solution�
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���� Case b�� Imperfect model� unknown initial state

Using the initial state as a control vector

The results using the initial state as the control vector are the same whether the

true initial state is known or not� but the minimization procedure requires a few

more iterations if it is not known�

Using an evolving correction term as the control vector

If the �rst guess of the unknown initial state is taken to be zero� the evolving

correction term must make up for very large errors� Fig� ��� shows the results using

the full set of observations� and Fig� ��
� shows the results using p � ��� The

solution produced is the right shape� under�estimating the true solution in the �rst

half of the assimilation interval� and over�estimating it in the second half� In these

experiments it is not appropriate to include the evolving correction term in the

forecast period�

Using both control vectors

Fig� ��

 shows the solution produced using the full set of observations and q � 
�

However� the stopping criterion had not been reached when the minimization was

terminated after 
�� iterations� The solution improves on the solution started from

the true initial state� and on the solution obtained using the initial state only as the

control vector� Using the evolving correction term in the forecast reduces the e	ect

of model error as before� If the value of q is increased to 
�� the initial state control

vector appears to have too much in�uence� and the solution is less accurate at the

initial time� Using larger values of q also results in a deterioration of the quality of

the forecast� and does not succeed in reducing the number of iterations of descent

algorithm to less than 
��� Fig� ��
� shows that fairly good results are still achieved

using �� observations� Fig� ��
� shows that the results using only � observations are

poorer� but still an improvement on the background solution�
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	�	 Summary and conclusions

Summary of the theory

We began this chapter with a discussion on why it is important to account for

model error in data assimilation� and on some of the limitations of the approach

taken to model error in the standard Kalman �lter� We then considered a general

representation of model error made up of serially correlated and serially uncorrelated

components� and gave examples of di	erent representations of model error which

might be suitable in di	erent situations� We suggested that the technique of state

augmentation could be used in data assimilation to estimate the serially correlated

components of model error along with the model state� This leads to a generalization

of the least squares problem of Chapter � to deal with serially correlated model error�

The correction term technique can be interpreted as giving an optimal solution

to this general data assimilation problem in the case that model error is a constant

bias error with no sequentially uncorrelated component� We also suggested a gener�

alization of the correction term technique to allow for model error that changes with

the state evolution� or to allow for more general forms of model error by including

more than one correction term�

Conclusions from experiments with the evolving correction term

In Section ��� we used the generalized correction term technique with an �evolving

correction term�� We applied this to the linear advection equation with the upwind

scheme discretization� an example in which the model error is numerical dissipation�

For this example� using a constant correction term does not correct for the e	ects

of model error at all� Using the initial state as the control vector� however� does

compensate to some extent for the e	ects of model error� In this case� an initial state

is found that over�exaggerates the corners of the wave� which to some extent com�

pensates for the e	ects of the dissipation later in the assimilation interval� Although

the solution at the end of the assimilation interval has been slightly improved by

the assimilation� the bene�ts of this improvement are only very small by the end of

a subsequent forecast interval�
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Using the evolving correction term as a control vector compensates for the e	ects

of model error better than using the initial state as the control vector� In this case�

the evolving correction term compensates for the e	ects of model error throughout

the assimilation interval� and also gives a improvement in the subsequent forecast�

Another advantage of using the evolving correction term as the control vector is

that the solutions produced are still smooth when fewer observations are used� The

evolving correction term can also compensate to some extent for a wrong initial

state� giving the best solution in the middle of the assimilation interval� In this

case� however� it is not appropriate to include the evolving correction term in a

subsequent forecast� Using both the initial state and the evolving correction term

as control vectors however compensates very well for unknown initial state and

model error during an assimilation interval� and for the e	ects of model error in a

subsequent forecast� but the number of iterations required in this case remains high�

In this example� the e	ects of model error could more e�ciently be corrected by

re�ning the resolution of the model than by performing data assimilation using the

evolving correction term technique� However� these simple experiments have shown

that the evolving correction term technique could be used to compensate for the

e	ects of model error which are likely to change with the model evolution�
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Chapter �

Experiments with a shallow water

model

Here we describe experiments using a 
D nonlinear shallow water model which

includes topography and rotation� In these experiments we aim to investigate to

what extent the conclusions of the experiments in Chapters � and � hold in the

context of more complex dynamics� We compare using the initial state� a constant

correction term and both together as control vectors� In particular� we aim to see

whether the constant correction term can compensate for model error on a signi�cant

timescale� when the model error depends on the model state� and hence changes in

time� Further� since the correction term technique involves changing the model

equations by adding on the correction term� we want to check that the correction

term produced in the assimilation does in fact represent an approximation of model

error� These experiments are carried out in an idealized context with a full set

of observations which are not corrupted by noise� We also begin to look at the

situation in which fewer� noisy observations are available� Finally� we check whether

assimilation using the correction term technique can result in a better forecast than

assimilation using the initial state as the control variable� This is important to

check� because in Wergen�s study ��� using the correction term technique produced

good results during an assimilation interval� but had a detrimental impact on the

ensuing forecast� A briefer description of the results from these experiments has

been published in ��
��
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�� The shallow water model

The shallow water equations are often used in test problems in meteorology and

oceanography because they describe �ow which exhibits several features present in

the �ows of atmospheres and oceans� We consider the one�dimensional shallow water

equations including rotation and bottom topography� which are given by

�u

�t
� u

�u

�x
�
��

�x
� fv � g

�H

�x
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�v
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� �fu� ����
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�t
� u
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�x
� �

�u

�x
� �� ����

where x and t represent the spatial and temporal independent variables� u � u�x� t�

and v � v�x� t� are the eastward and northward components of velocity� and � �

��x� t� is the geopotential given by � � g��x� t� where g is the acceleration due to

gravity and ��x� t� is the depth of the �uid� The height of the bottom topography

is represented by H � H�x�� and f is the Coriolis parameter� Periodic boundary

conditions are assumed� The model equations are nonlinear� and describe �ow which

may develop hydraulic jumps�

The discretization we use is a �nite di	erence discretization developed by Parrett

and Cullen ����� and we refer to it as the PC scheme� It was developed to give a

good representation of hydraulic jumps� Arti�cial di	usion is added to the model

equations to eliminate the spurious oscillations which are generated by second order

�nite di	erence schemes near jumps� Also� the discretization is carried out on the

model in �ux form� since a non�conservative version of the same discretization was

found to produce errors in the position and amplitude of the jumps�

Hence� the discretization is carried out on ��
������ written in �ux form with

arti�cial di	usion added�
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for x � ��� ��L�� t � ��� T �� The discretization is carried out with &x � �
J
� &t � �

N
�

with discrete variables approximating the continuous variables as follows�

�kj � ��j&x� k&t�� ukj � u�j&x� k&t�� vkj � v�j&x� k&t�� ���

for k � �� ��� N � j � �� ��� J � 
� The discretization uses centred time and space

di	erencing� except for the di	usion terms� in which forward time di	erencing is

used for stability� The discrete model is
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for k � 
� ��� N � 
� j � �� ��� J � 
� with periodic boundary conditions� so

ukJ � uk�� vkJ � vk� � �kJ � �k�� k � �� ��N � 
� ��

�

where
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for k � �� ��� N � 
� j � �� ��� J � 
� The �rst time�step equations are speci�ed using

forward time di	erences�
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where the initial conditions are to be speci�ed�

Since discrete models which include arti�cial di	usion do not always converge

to the correct solution of ��
������� the PC scheme was compared in ���� with

a method �Glimm�s method� which has been proved to converge to the physically

correct solution� The PC scheme was found to give good agreement to corresponding

solutions of Glimm�s method for several test cases involving hydraulic jumps�

After coding up this model in Fortran � we tested it by comparing results

with those obtained in two of the examples given in ����� We describe one of these

examples here� since it was modi�ed to provide the example to be used for our

experiments� The Coriolis parameter is set at the value for ��o North� ie f �

���� � 
���s��� We use a spatial discretization of 
�� grid points� so J � 
���

In the �rst experiment of the paper� there is no topography� but a hydraulic jump

evolves for certain Rossby and Froude numbers from smooth initial conditions given

by

u�x� �� � U cos�x�L�� ��
�
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��

��x� �� � �m � Uf�U��� cos��x�L� � ��m � U����
�

� cos�x�L�g� ��
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where the length of the domain is ��L� �m � g�m where �m is the mean depth of

the �uid� and U is a constant� In our case� we ensured the required Rossby number

Ro � U�fL � 
 and Froude number F � U��
�

�
m � 
 were satis�ed by choosing the

constants L� U and �m as

U � 
ms��� �����

�m � 
m�s��� ���
�

L � ���� � 
��m� �����
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Since &x � ��L�J � we have &x � ���� � 
��m� or approximately ��km� We chose

a timestep to satisfy �t
�x
� �

��
� so &t � �����
��s �which is approximately one hour


� minutes�� As in the paper ����� we chose K � ��� � 
��m�s���

Results from this test case were plotted in non�dimensional form� and seen to

give good agreement with the corresponding �gures in ����� Our model was also

tested on the examples given in ���� which include topography� and found to agree

with the results in the paper in these cases� too�


�� The data assimilation problem

We de�ne the model state xk � IR
�J at time tk to be the vector
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and we de�ne the correction term to be the vector e � IR�J given by
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We suppose that we have observations over timesteps t� to tN��� The data assimi�

lation problem we address is to minimize

J � Jo �



�
eQ��e �����

with respect to the control vector or vectors being used� subject to the constraint

that the model equations �������
�� hold� where the observational part of the cost

function Jo is to be speci�ed later� The matrix Q�� is given by qI where I is the

identity matrix� and di	erent values of q are used in the experiments� We suppose

that there are a large number of observations� and so do not include a background

of the initial state in the cost function�

����� The adjoint model

We wish to minimize the cost function J subject to each of the model equation�

s �������
�� with ��
�����
�� and the relations ��
�����
��� and we introduce a

Lagrange multiplier for each of these model equations�







As usual� we let L denote the Lagrangian function associated with J � Hence

L is made up of J plus the sum of all the Lagrange multipliers multiplying their

respective model constraints� We let 	kj multiply ����� p
k
j multiply ���� and �kj

multiply ��
�� for k � 
� ��� N � 
� j � �� ��� J � 
� We let 	�j multiply ��
��� p
�
j

multiply ��
�� and ��j multiply ��
�� for j � �� ��� J � 
� and �nally we let �kj

multiply ��
�� and �kj multiply ��
�� for k � �� ��� N � 
� j � �� ��� J � 
� We

assume that the boundary conditions ��

� are substituted directly into the model

equations�

The adjoint equations are given by
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for k � N� ��� 
� j � �� ��� J � 
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����� The gradients of L with respect to the control vectors

The partial derivatives of the Lagrangian L with respect to the variables making up

the initial state x� are given by
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�&x�
K�	�j�� � �	

�
j � 	�j���� �����
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�L

���j
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�
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Hence� the gradient of L with respect to x� is
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The partial derivatives of L with respect to the variables in the control vector e

are
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and the gradient of L with respect to e is
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�� Description of the experiments

����� The true model state

For our experiments� we suppose that the true model state is de�ned by a run of

the model with certain parameters and initial conditions� We use the values of

f � J � L� &x� &t� and K speci�ed in Section �
� but this time we use di	erent

initial conditions and a non�zero bottom topography� This low spatial resolution

was chosen so that the dimension of the control vector would not be too large� It

was noticed� however� that when the model was run at twice the spatial resolution�

the results were not signi�cantly di	erent� In Experiments 
 and �� the model is

run for 
�� timesteps �N � 
���� and we take the assimilation interval ��� T � to

represent 
�� timesteps�

The bottom topography is as given in ����� by

H�x� � Hc�
 � �x�
L

�
���a�� � � �x�

L

�
� � a� ���
�

where Hc is half the initial water depth� We take a to correspond to a length of ten

grid points� The shape of the bottom topography is shown in Fig� �
�

We de�ne the true model initial state to be given by a �uid depth of 
m� and

zero velocities� so we have �taking g � 
�ms���

m�
j � �m�s��� �����

n�j � �m�s��� �����

��j � 
�m�s��� �����

for j � �� ���� J � 
� From this initial state� motion is initiated as �uid �ows down

from the ridge in the centre of the domain� A wave travels in each direction across

the domain� This is illustrated in Fig� �
 which shows the true solution at the initial

time and also after �� and after 
�� timesteps�

����� Observations

In Experiments 
 and �� we suppose that we have a full set of observations� ie�

observations of all the model state variables for all 
�� timesteps� These observations
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are the same as the true model state� In Experiment �� we also carry out experiments

in which we suppose that observations are available only for the �rst �� timesteps�

In Experiment �� we use observations corrupted by unbiased and sequentially

uncorrelated random errors� The errors in the ���eld are uniformly distributed

between���� and ���� and the errors in them� and n��elds are uniformly distributed

between ����� and ����� We also suppose fewer observations are available in the

spatial domain� We suppose that observations are available at every second� fourth

or tenth grid point�

If we let %mk
j � %n

k
j and

%�kj denote the observations of the model state variables m
k
j �

nkj and �
k
j � the observational part of the cost function is given by

Jo �



�

N��X
k��

J��X
j��

cj�m
k
j � %mk

j �
� � cj�n

k
j � %nkj �

� � cj��
k
j � %�kj �

�� �����

where cj � 
 if there are observations at the jth grid point� and is zero otherwise�

The partial derivatives of Jo with respect to the state variables to be included in

the adjoint equations are given by

�Jo

�mk
j

� cj�m
k
j � %mk

j �� �����

�Jo

�nkj
� cj�n

k
j � %nkj �� ����

�Jo

��kj
� cj��

k
j � %�kj �� �����

for k � �� ���� N � 
� j � �� ���� J � 
�

����� Model error

We carry out experiments with an imperfect model� in which we introduce the

following two sources of model error� Both these sources of model error are very

severe� this is done for exaggerated results in our experimental setting�

Model error i� Omission of bottom topography

Here we suppose that we have a model which neglects the �true� bottom topography

as de�ned in ���
�� The model error at the jth grid point and kth timestep is
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therefore

�
	m
k
j � g

&t

�&x
f��kj�� � �kj ��Hj�� �Hj� � ��

k
j � �kj����Hj �Hj���g� �����

�
	n
k
j � �� �����

�
	�
k
j � �� ���
�

Clearly� this model error does depend on the model state� and so is not constant

in time� No motion is initiated when this model is used with the true initial state

de�ned in ������������ as the background solution in Fig� �� shows�

Model error ii� Omission of rotation

In this case the Coriolis parameter is taken to be zero� and the model error at the

jth grid point and kth timestep is

�
	m
k
j � �&tfnkj � �����

�
	n
k
j � ��&tfmk

j � �����

�
	�
k
j � �� �����

Again� the model error depends on the state and hence changes in time� In a model

run started from the true initial state ����������� with this model error� the n�

�eld remains zero� and small errors in the m� and ���elds develop in time as the

background solution in Fig� �� shows�

����� The descent algorithm

The descent algorithm used is the INRIA limited�memory quasi�Newton minimiza�

tion package n
qn��f� which is described in Chapter �� Section ���� The stopping

criterion used is
ruL�ui�

ruL�u��
� epsg � 
���� �����

where ruL�ui� is the gradient of L with respect to the control vector u on the ith

iteration� and ruL�u�� is the gradient on the �rst iteration� If the stopping criterion

is not satis�ed in ��� iterations� the minimization is terminated anyway�

The number !m of updates used in forming the inverse Hessian is �� a value

between � and 
� is suggested in the program documentation ���� to provide a
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compromise between a better approximation of the inverse Hessian using a high

value of !m� and lower CPU time with a low value of !m�

����� The experiments

Experiment �

The aim of this experiment is to compare the performance of the di	erent control

vectors in the presence of di	erent types of model error� and of error in the initial

state� A full set of observations� uncorrupted by error� is used� The following cases

are investigated�

Case a� Perfect model� unknown initial state

In this case there is no model error� but the true initial state ����������� is un�

known� The background estimate of the initial state is

m�
j � �m�s��� �����

n�j � �m�s��� ����

��j � 
�m�s��� �����

for j � �� ���� J � 
�

Case b� Omission of topography� known initial state

In this case the model error is type i� above� but the true initial state is known�

Case c� Omission of rotation� known initial state

In this case the model error is type ii� above� but the true initial state is known�

Case d� Omission of topography and rotation� and unknown initial state

Here model error of type i� and type ii� is present� and the background estimate of

the initial state is as given in ������������






Experiment �

Experiment �� Case b� is repeated using observations corrupted by observational

noise� and using fewer observations� also corrupted by observational noise� The aim

here is to check to what extent the conclusions of Experiment 
 still hold in this

more realistic case� rather than to explore the impact of increasing or reducing the

number of observations� The following cases are investigated�

Case e� Observations with random error

Experiment 
b is carried out using observations corrupted by noise as described in

Subsection �����

Case f� Fewer observations with random error

Experiment 
b is carried out using fewer observations corrupted by noise� We sup�

pose that observations �of all the state variables� are available only at every fourth

timestep�

Experiment �

In Experiment 
 we compare the performance of the di	erent control vectors in

compensating for model error and error in the initial state over an assimilation

interval� In Experiment � our aim is to test whether an improvement at the end of

the assimilation interval leads to an improved forecast�

Here we suppose observations are available over an assimilation period of ��

timesteps� The assimilation is carried out using either initial state or the correction

term as a control vector� and then a �forecast� is carried out over the remaining ��

timesteps� The same is carried out using an assimilation interval of 
�� timesteps�

and a forecast interval of 
�� timesteps�

Case g� Omission of rotation� known initial state

In this case the model error is type i� above� but the true initial state at the beginning

of the assimilation interval is known�
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Case h� Omission of rotation� known initial state

In this case the model error is type ii� above� but the true initial state at the

beginning of the assimilation interval is known�


�� Results from the experiments

����� Experiment �� Comparing di�erent control vectors

The �gures referred to here can be found at the end of this section�

Case a� Perfect model� unknown initial sate

Fig� �
 shows the true solution� and the background solution started with the wrong

initial state� Fig� �� illustrates that the errors in the background solution are an

over�estimated ���eld throughout� and also that the waves travel too fast across the

domain� Fig� �� shows the solutions generated using each of the control vectors�

and Fig� �� shows the errors in each of these solutions� The improvement given by

the assimilation in each case can be judged by comparing the solutions of Fig� ��

with the true solution and the background solution of Fig� �
� and by comparing

the errors after assimilation �Fig� ��� with the errors in the background solution

�Fig� ����

Using the initial state as the control vector� it is possible to perfectly recon�

struct the true solution with a perfect model and a full set of perfect observations

�Fig� ��� Fig� ���� These results are as we expected� and are as we also found in

the experiments of Chapters � and �� This was achieved using � iterations of the

minimization algorithm�

Using the correction term as the control vector also gives a signi�cant reduction

in the errors �Fig� ���� The errors in the m� and n��elds have successfully been

treated by the correction term� and the waves now travel at the correct speed�

Fig� �
 shows the actual correction term found by the assimilation� As seen in

the experiments of Chapter �� the solution is closest to the true solution in the

middle of the assimilation interval� and the correction is too large at the end of the
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assimilation interval� The results shown are for q � 
� Using q � 
�� the correction

term found is smaller� and so in this case the solution is closest to the true solution

at the end rather than in the middle of the assimilation interval� For larger values of

q fewer iterations are needed� for q � 
� �� iterations are needed and using q � 
��

�� iterations are needed� which is similar to the number of iterations required using

the initial state as the control vector� When q is increased further� however� the

results are much poorer� The points we make here on the impact of di	erent values

of q are consistent with the conclusions we made from the experiments of Chapter ��

When both control vectors are used together� the results achieved depend very

strongly on the value of q� Using q � �� the results are very similar to those obtained

using only the correction term as the control vector� and as q is increased� the results

become more like those obtained using the initial state only� The results shown in

Fig� �� and Fig� �� are for q � 
��� As found in the experiments of Chapters �

and �� using both control vectors together requires many more iterations� in this

case �for all values of q�� around �� iterations�

Case b� Omitted topography� known initial state

In this case� the imperfect model started from the correct initial state generates no

motion at all �Fig� ���� Hence� the background errors �Fig� �� are large in all

model �elds� and propagate from the centre of the model domain right to its edges

on the timescale of the assimilation� Fig� �� shows that assimilation using each of

the control vectors makes a very signi�cant reduction in this background error�

When the initial state is used as the control vector� the correct initial height

pro�le is produced� and this compensates for the omission of the topography in the

model� This height pro�le in the ensuing motion is also good� but the depth is

wrong� However� the errors in the m� and n��elds are now small� and so using the

initial state as the control vector compensates very well for the e	ects of model error

in this respect� Here � iterations were required for these results�

Using the correction term as a control vector successfully compensates for the

model error� As Fig� �� shows� the errors in the m� and n��elds are almost e�

liminated� and the error in the ���eld is reduced signi�cantly� As can be seen in
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equation ������ the actual model error at each timestep depends on the m��eld�

Fig� �
� shows that the correction term derived in the assimilation is a correction

to this �eld only� and so it is reasonable to assume that the correction term found

in the assimilation does indeed represent the temporal average of model error� The

errors still existing in the ���eld at the end of the assimliation interval are presum�

ably due to the fact that this average does not perfectly represent the actual model

error� However� it is signi�cant that the correction term representing a temporal

average of model error compensates for the real model error on the timescale of the

assimilation� since on this timescale the e	ects of the model error propagate half

way across the model domain in each direction�

The results shown are again with q � 
� and this requires �� iterations� Increasing

q to 
� reduces this number to �� iterations� but the results are slightly less accurate

in this case�

Using both control vectors together and q � � produces very good results�

Fig� �
� shows that in this case the correction term found in the assimilation is

very much like that found when the correction term is the only control vector� but

slightly smaller� Further� the initial state found in the assimilation is slightly dif�

ferent to the true initial state� and this has the e	ect of further reducing the error

in the ���eld at the end of the assimilation interval� If the value of q is increased�

the solution becomes more like that where only the initial state is used� and so not

as good� Using only the correction term as the control vector works very well� but

using the initial state as well it is possible to further compensate for the e	ects of

model error� As before� the number of iterations using both control vectors is high�

in this case �� iterations are needed�

Case c� Omitted rotation� known initial state

The background solution of Fig� �� illustrates that with the Coriolis parameter set

at zero� no motion is initiated in the n��eld� Fig� �

 shows the resulting errors in

the n��eld� and also shows very small errors in the m� and ���elds by the end of the

assimilation interval�

When the initial state is used as the control vector� the solution is closest to the
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true solution in the middle of the time interval� A �wrong� initial state is found in

the assimilation procedure� but the ensuing solution is closer to the true solution in

the middle and at the end of the assimilation interval� This is typical of the way

that assimilation using the initial state as the control vector compensates for model

error� as we saw in the experiments of Chapters � and �� In this case� �� iterations

were performed�

Using the correction term as the control vector reduces the errors more than

using the initial state as the control vector in the middle and at the end of the

assimilation� as Fig� �
� shows� The �gures show the results using q � 
� and in

this case �� iterations are needed� Again� for larger values of q the results are less

accurate� Fig� �
� shows that the correction term found in the assimilation corrects

the n��eld� This is appropriate since the background error �Fig� �
�� is restricted

to this �eld� Therefore it seems reasonable to assume that the correction term found

in the assimilation does represent a time average of the model error�

When both control vectors are used together with q � ���� the errors in the

middle and at the end of the assimilation interval are slightly smaller than using

either of the control vectors on their own� In this case� using q � � produces a

correction term which seems to include a spurious correction to them��eld� although

this does not a	ect the results� Using q � ��� produces a correction term which is

very similar to that produced using only the correction term as a control vector� as

Fig� �
� shows� Again� the number of iterations required using both control vectors

is high� ��� iterations in this case�

Case d� Omitted topography and rotation� unknown initial state

This is a combination of Cases a�� b� and c�� The model contains no rotation or

topography and is initiated from the wrong initial value of �� and in the background

solution� no motion is generated� Fig� �
� shows the large errors in the background

solution� and Fig� �
� shows that each of the control vectors signi�cantly reduces

this error� However� Fig� �
� shows that the solutions produced using the di	erent

control vectors are visibly quite di	erent�

When the initial state is used as the control vector� the wrong initial value
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of � is corrected� except at the ridge� The omitted topography and rotation are

compensated for as when the initial state is used as the control vector in Cases b�

and c�� After the assimilation� quite large errors remain in the ���eld�

When the correction term is used as the control vector� the �� and n��elds are

quite close to the true solution at the end of the assimilation interval� but them��eld

has larger errors� The solution no longer underestimates the ���eld at the end of the

assimilation interval as was the case using the correction term as the control vector

in Case a�� In this case using the correction term happens to give the best �t to the

true solution at the end rather than in the middle of the assimilation interval� This

could be explained by the fact that the correction to the ���eld� shown in Fig� ����

is much smaller than it is in Case a� �Fig� �
�� The correction to the m��eld in

�Fig� ���� is similar to that obtained in Case b� �Fig� �
��� but is slightly larger�

This might explain why there are larger errors in the m��eld at the end time in this

case than in Case b�� The n��eld produced is very similar to that produced in Case

c� using the correction term as the control vector�

The results using both control vectors together in this case are very good as can

be seen by comparing Fig� �
� with the true solution of Fig� �
�� Fig� �
� shows

that indeed the errors using both control vectors are much smaller than those using

either one of the control vectors� and that these errors are almost zero except for

those in the n��eld� The results shown in the �gures were obtained using q � 
� and

the iteration was terminated after ��� iterations� before the convergence criterion

had been satis�ed�

Experiments using other control vectors

We mention brie�y an attempt at using a couple of the other control vectors men�

tioned in Chapter �� Section ��� in Experiment 
� We used the spectral form of

model error� and a piecewise constant form using three subintervals� Using the

spectral form of model error for Cases b� and c�� the results were similar to the

results obtained using the correction term which we described here� This time� how�

ever� more iterations of the descent algorithm were needed� We do not show these

results here�
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Using the piecewise continuous form� problems arose in the iteration process

which were probably due to large di	erences between the three correction terms� It

should be possible to rectify this situation� however� and this would be an interesting

topic for further work�

����� Experiment �� Fewer observations and observational

error

The aim of Experiment � is to check whether the conclusions of Experiment 
 still

hold in the presence of observational error and when there are fewer observations

available� We therefore repeat Experiment 
 Case b� to test these things�

Case e� Observational error

Fig� ��
 shows the error�corrupted observations used in the assimilation in this

case� This noise in the observational data in fact has very little impact on the

results� as Fig� ��� shows� This indicates that the assimilation e	ectively �lters out

the observational noise�

When the initial state is used as the control vector� the initial state found is

not completely smooth� but at later times the solution is smooth� The same is true

when both the initial state and control vector used as control vectors�

Using the correction term as the control vector in with q � 
� the observational

error has no visible impact on the results�

Case f� Fewer observations

In this case� observations available every fourth spatial grid point� When the initial

state is used as the control vector� the initial state produced by the assimilation is

very spiky� although at later times the solution matches the true solution well� This

is just as seen in the experiments of Chapters � and � when fewer observations are

available� This highlights again the need to impose extra conditions for smoothness

on the initial state found in the assimilation� Using fewer observations also slows the

rate of convergence of the iteration process� When the initial state or the correction
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term is used as a control vector� approximately three times as many iterations were

required� Surprisingly� though� the number of iterations required when both control

vectors are used together is about the same as when the whole set of observations

are used�

When the correction term is used as the control vector with q � � �Fig� �����

the solution produced by the assimilation is very spiky throughout the assimilation

interval� as was found in the experiments of Chapter �� Also as in Chapter ��

increasing the value of q smoothes the solution� Fig� ��� shows the results obtained

using q � 
� However� in this case the results using q � 
� although smooth� were

much less accurate� It may be� then� that an alternative method for smoothing the

solution is needed when using the correction term as a control vector with fewer

observations available�

When both control vectors are used together� the solution obtained is signi��

cantly smoother than when either the initial state or the correction term is used

alone� Using q � � produced a smoother initial state than using q � 
� but using

q � 
 produced a smoother solution at later times than using q � � �Fig� ��� and

Fig� �����

����� Experiment �� The impact of assimilation on a fore	

cast

Experiments �g and �h were �rst carried out performing an assimilation over just

�� timesteps �rather than 
�� timesteps as in Experiments 
 and ��� or on the time

interval t � ��� T
�
�� using the results to initiate a forecast for the interval �T

�
� T ��

The experiments were then repeated using assimilation and forecast intervals of 
��

timesteps each� In this case the assimilation was carried out on the interval ��� T ��

and the results used to initiate a forecast for the interval �T� �T ��

Case g� Omitted topography

Fig� ��� shows the true solution over the forecast interval of t � �T� � T �� It also shows

the forecast generated from the true state at time T

� using the imperfect model� This
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demonstrates the e	ects of the model error over this time interval� Starting a forecast

with an imperfect model at time T
�
from the true state at that time is equivalent

to suddenly removing the topography in the middle of a model run� In addition to

the existing motion� there are now also waves travelling towards the centre as the

�uid �lls the area where ridge used to be� Because of this� the forecast from the

true state at time T

�
using the imperfect model very quickly diverges from the true

solution�

We now describe the results of starting a forecast from the assimilation analysis

at time T
�
� comparing the results using the initial state and using the correction

term as the control vector� These results are shown in Fig� ����

When the initial state is used as the control vector over the assimilation interval

��� T
� �� the ensuing forecast is very similar to the solution obtained by continuing the

assimilation over the interval �T
�
� T �� as comparing Fig� ��� with Fig� �� shows� The

forecast is a fairly good approximation of the true solution� except at the position of

the ridge� In this case the same model is used in the assimilation and in the forecast�

When the correction term is used as the control vector over the assimilation

interval ��� T� �� the solution produced at time
T

� is in good agreement with the true

solution at this time� If this correction term is not included in the ensuing forecast�

the impact is similar to that of starting a forecast with an imperfect model from the

true solution� which we described above� In the centre of the domain� the forecast

very quickly diverges from the true solution� Since the background solution is nearer

to the true solution in this region� the assimilation has had a negative impact on

the forecast here�

However� if the correction term is included in the forecast� the model used for

the forecast is the same as that used in the assimilation� In this case the forecast is

much improved and the above problem does not occur� The shape of the solution

matches that of the true solution quite well� except for the m��eld at the centre of

the domain� The forecast over the interval �T� � T � is on the whole better than the

forecast obtained from the assimilation using the initial state as the control vector�

We now describe the results of performing the assimilation and the forecast over

longer time intervals� Fig� �� shows the true solution on the time interval �T� �T ��
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Over this time interval� the waves reach the boundaries of the domain and start to

travel back towards the centre� Fig� �� also shows the forecast obtained with the

imperfect model started from the true model state at time T � Since this forecast

is over a period twice as long as before� the forecast diverges even further from the

true model state in this case�

Fig� ��� shows the forecasts ensuing from assimilation intervals using the di	er�

ent control vectors� If the initial state is used as the control vector for assimilation

over the interval ��� T �� the ensuing forecast still gives a signi�cant improvement over

the background solution for the same period in the m� and n��elds� but the forecast

of the ���eld hardly improves on the background solution�

When the correction term is used as the control vector in the assimilation over

the interval ��� T �� the solution produced is a very good approximation of the true

solution� and so the forecast not including the correction term quickly diverges from

the true solution� However� when the correction term is included in the forecast� the

forecast is quite close to the true solution� It seems unlikely that the correction term

found over the assimilation interval ��� T � really compensates for model error in the

forecast interval �T� �T �� since the motion in each interval is in opposite directions�

It is more likely that the forecast is good because it is started from an estimate close

to the true state� and it does not diverge quickly from the true solution because

there is no di	erence in the model used for the forecast and in the assimilation�

Case h� Omitted rotation

Fig� ��� shows the true solution on the time interval �T
� � T �� and also the forecast

with the imperfect model initiated from the true solution at time T

� � which shows

the e	ects of model error over the forecast interval�

When a forecast with the imperfect model is performed starting from the true

solution at time T

� � it is as if the Coriolis parameter f is suddenly set at zero in the

middle of a model run� However� the impact of this is very gradual and only a	ects

the n��eld� Hence� the forecast using the imperfect model started from a true state

in this case diverges only very slowly from the true solution�

Fig� ��� shows the forecasts ensuing from assimilation using each of the di	erent


�



control vectors� If the initial state is used as the control vector in the assimilation

interval� the ensuing forecast shows an improvement over the background solution

in the middle of the forecast� but not at the end� all the bene�t of the assimilation

is lost by the end of the forecast�

However� when the correction term is used as the control vector during the

assimilation interval� the solution at time T

�
is closer to the true state� and hence

the forecast is better than when the initial state is used as the control vector in the

assimilation� This is true whether the correction term is included in the forecast or

not� and it is hard to judge whether or not including it is bene�cial in this case�

Experiment �h was repeated using the longer assimilation and forecast intervals�

The results for this case are shown in Fig� ��
 and Fig� ���� Here� much the same

conclusions hold as for the shorter time interval� except that in this case a better

forecast is achieved by using the correction term in the assimilation but not in the

forecast�
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�IS�� the correction term �CT� and both together as control vectors�
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�� Summary and Conclusions

Experiment � Comparing di�erent control vectors

In Experiment 
 we compared the e	ectiveness of the initial state� the �constant�

correction term and both together as control vectors in compenstating for errors

in the initial state� for two types of model error� and for a combination of these

errors during an assimilation interval� This extends the experiments of Chapter �

since the model dynamics are more complex� and because the model error depends

on the model state and so is not constant in time� Generally� the conclusions of

the experiments of Chapter � are found to hold here� too� We found that the

initial state can compensate to some extent for model error� generally producing a

solution which is closest to the true solution in the middle of the assimilation interval�

Similarly� using the constant correction term as the control vector compensates to

some extent for the e	ects of errors in the initial state� and a suitable choice of q

can give a solution close to the true solution at the end rather than in the middle

of the assimilation interval�

Using the constant correction term as the control vector compensates well for

both types of model error investigated� and reduces the errors in the background

solution �with no assimilation� more than using the initial state as a control vector�

Since the model error in each case depends on the model state� and since the motion

during the assimilation interval propagates almost half way across the model domain

in each direction� it is signi�cant that the constant correction term can compensate

for model error on this time scale� In each case the correction term found in the

assimilation seems to represent a temporal average of the actual model error� When

using a correction term in the assimilation� we are altering the model equations

over the assimilation interval� It is therefore important to check that what the

correction term represents makes sense� as Wergen argues ���� Here� it seems that

the correction term does in fact approximate model error�

Using both control vectors together requires many more iterations but is partic�

ularly successful in Case d� in which there are errors in initial state as well as two

sources of model error� These results show that using both control vectors together

�
�



could be very e	ective� but in our experiments the number of iterations required is

unacceptably high� To alleviate this situation� ways of e	ectively preconditioning

the problem should be investigated�

The results seem to depend quite strongly on the choice of q� or on how strongly

�if at all� the correction term is constrained to be small� As in Chapter �� however�

it was found that if the correction term is being used to compensate for errors in

the initial state� then a larger value of q should be used� If on the other hand

the correction term is compensating for model error� using a small value of q gives

more accurate results� but larger values of q requires fewer iterations of the descent

algorithm� In our examples� using q � 
 gives a good compromise between accurate

solutions and a reasonable number of iterations� These conclusions on the choice of

q are similar to those made in the experiments of Chapters � and ��

Experiment � Fewer observations and observational errors

The results from Experiment � show that whereas random observational errors do

not have a big impact on the assimilation� using fewer observations does� The

results were much the same as the results from the experiments of Chapter � and of

Chapter � using the initial state or the constant correction term as a control vector

when a quarter of the observations are available� When the initial state is used

as the control vector� the initial state produced in the assimilation is not smooth�

although this has little impact on the solution at later times� This highlights the

need to impose extra conditions for smoothness of the solution when a full set of

observations is not available� for example by constraining the initial state to be close

to a background value� A background term was not included in our experiments

because our primary aim was to compare the control vectors in the idealised case of

a full set of observations�

When the correction term is used as the control vector� increasing the value of

q �and hence constraining the correction term to be small� helps to smooth the

solution� However� since increasing the value of q leads to less accurate results� an

alternative way of ensuring smoothness might prove more successful�
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Experiment � The impact of assimilation on the forecast

In Experiment � we test whether the improvement in the solution at the end of an

assimilation interval� produced by assimilation using each of control vectors� results

in an improvement in a subsequent forecast� This is carried out for both examples

of model error� In the case that model error is due to the omission of topography�

using the initial state as a control vector gives a signi�cant improvement over the

background solution not only in the assimilation interval� but also in the forecast�

Using the constant correction term as a control vector gives a good improvement

during the assimilation interval� but if the correction term is not included in the

forecast� the forecast soon deteriorates� and becomes worse than if no assimilation

had been performed� These results can be explained by examining the impact of

starting a forecast with an imperfect model from the true solution at the end of the

assimilation interval� It is the impact of using a di	erent model for the assimilation

and forecast that causes the forecast to deteriorate quickly� We note that this

situation could be alleviated by gradually phasing out the correction term during

the assimilation interval using the predetermined scalars of equation ������� as was

done in the original paper on the correction term technique ����� When we include

the correction term in the forecast� however� the forecast is good� better than the

forecast produced using the initial state as the control vector in the assimliation�

When the model error is due to omission of rotation� slightly di	erent conclu�

sions are reached� In this case� using the initial state as the control vector in the

assimilation results in a slightly improved forecast� but the bene�ts of the assimi�

lation are lost by the end of the forecast� When the correction term is used in the

assimilation� the impact of including the correction term in the forecast dependes

on the length of the assimilation and forecast intervals� For the shorter intervals�

there is a slight improvement to the forecast whether or not the correction term is

included in the forecast� For the longer time intervals� however� better results are

obtained by not including the correction term in the forecast�

From these results� we see that some attention is needed on the issue of whether

or not to use the correction term in the forecast� The results from the experiments

with omitted topography indicate the danger of suddenly cutting out the correction
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term� The results from the experiments with omitted rotation� on the other hand�

indicate the danger of leaving the correction term in the forecast for too long� It

seems that on the whole� it would be best to gradually phase out the correction

term during the forecast interval� It would be worth carrying out further work to

investigate this�

These results show� however� that using a correction term in the assimilation

to compensate for model error� it is possible to produce a better forecast than can

be produced using the initial state in the assimilation� In these experiments the

model error depends on the model state� and the assimilation and forecast intervals

represent a signi�cantly long timescale�

�
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Chapter 	

Conclusions

In this thesis� we have considered problems in data assimilation using a framework

of control theory� In Chapter �� we showed how a successive correction method

of data assimilation could be regarded as an observer if observations are available

frequently in time� Observer theory can be used to design the weighting matrices so

that the data assimilation scheme has desirable dynamical properties� In particular�

we gave conditions under which the analysis converges in time to the true solution�

for the linear time�invariant case� In our experiments using a simple model� an

observer designed for good temporal convergence gave much faster convergence than

the Cressman successive correction scheme in areas distant from the observation

positions� These results serve to illustrate the potential bene�ts of suitable observer

design�

The majority of the work in the thesis is geared towards the �D variational

approach to data assimilation� In particular� we address the problem of how to

account for model error without incurring unreasonable extra expense� One method

for doing this is the correction term technique ����� in which a constant correction

term approximating model error is added to the model equations� The correction

term is then used instead of� or as well as� the model initial state as a control vector

in variational assimilation�

In the context of a linear� time varying system� we looked for conditions for

uniqueness of solutions of the �D variational assimilation problem using the initial

state� the correction term or both together as control vectors� When the initial state

�
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is used as the control vector� complete N �step observability at time t� is a necessary

and su�cient condition for uniqueness in the case where the cost function consists

of observations from the time interval �t�� tN���� We showed however� that complete

N �step observability at time t� is neither a necessary nor a su�cient condition for

uniqueness when the constant correction term is used as a control vector� This

means that in some cases the set of observations may contain enough information

to specify uniquely the initial state but not the correction term� and vice versa� We

showed that if both the initial state and the correction term are used as control

vectors� a necessary but not su�cient condition for uniqueness is that conditions for

a unique solution using each of the control vectors individually hold� In the time

invariant case� we showed that a necessary and su�cient condition for uniqueness

using both control vectors is that a full set of observations is available� In each case�

adding a background estimate of the control vector to the cost function guarantees

uniqueness� These results could be applied more widely in control theory in cases

where we wish to determine a constant input from the outputs�

In Chapter �� we addressed the question of how to allow for a more general

form of model error in �D data assimilation� and in �D variational assimilation

in particular� We considered a general� stochastic representation of model error

consisting of serially correlated and serially uncorrelated components� The di	erent

representations of model error that have been suggested for use in data assimilation

can be expressed using this general form� We considered the technique of state

augmentation for estimating the serially correlated component of model error along

with the model state in the context of data assimilation� and formulated a general

least squares problem for data assimilation allowing for serially correlated model

error� This formalism allows us to interpret the correction term technique in a

stochastic sense as a method for estimating a constant model bias�

We suggested a �generalized correction term technique� in which the serially

uncorrelated part of the model error is neglected� and the augmented initial state

is used as an augmented control vector� The generalized correction term technique

can therefore allow for various di	erent forms of serially correlated model error� In

particular� it can allow for model error which evolves as the model state does� The
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theory we present also allows for the dimension m of the correction term to be less

than the dimension n of the model state� which could reduce the expense of the

assimilation if the e	ects of model error are known to be localized to a certain area�

As well as considering theoretical aspects of accounting for model error in varia�

tional assimilation� we carried out experiments using the correction term technique

and generalized correction term technique with simple models exhibiting di	erent

types of model error�

In Chapter � we compared the initial state� the constant correction term and

both together as control vectors in a heat equation model in which model error was

due to the omission of a constant source term� Using the correction term as a control

vector compensates very well for this model error� and using the correction term in

an ensuing forecast gives very good results� We also noted that using the initial

state as a control vector partially compensates for the e	ects of model error� and

that using the correction term as the control vector� it is possible to compensate to

some extent for errors in the initial state� Using both control vectors together is

very e	ective in this example if we have model error and an unknown initial state�

However� this requires about four times as many iterations of the descent algorithm

as when only one of the control vectors is used�

In these experiments we also investigated the impact of using a background

estimate of zero for the correction term in the cost function� with di	erent values

of the weighting q� We found that if the correction term is expected to correct for

constant model error� best results are obtained with a small value of q� However� if

the correction term is being used to compensate for errors resulting from a wrong

initial state� it is important to use a large value of q� We also tried using a correction

term with dimension less than that of the model state� Concentrating the correction

term around the source point produced good results in far fewer iterations than

before�

In Chapter �� the simple model we used was the linear advection equation with

the upwind scheme discretisation� The model error in this example is due to severe

dissipation� Using the constant correction term as a control vector has no impact

on the model error� which travels across the domain� We tried instead using the

�
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generalized correction term technique allowing the correction term to evolve as the

model state does� This successfully reduces the e	ects of model error during the

assimilation interval and also in a subsequent forecast� As found in the experiments

of Chapter �� using the initial state can also compensate to some extent for the

e	ects of model error during the assimilation interval� and the evolving correction

term can compensate to some extent for the e	ects of errors in the initial state

during the assimilation interval� Also as in Chapter �� using both control vectors

together compensated successfully for the e	ects of model error and errors in the

initial state� Again� however� many more iterations were required in this case�

Using an evolving correction term is more expensive than using a constant cor�

rection term� since an extra set of state and adjoint equations must be integrated�

However� these simple experiments demonstrate that using the evolving correction

term as a control vector could compensate for the e	ects of model error which are

likely to evolve with the model solution�

In Chapter  we carried out similar experiments for a 
D nonlinear shallow

water model� using the initial state� a constant correction term and both together

as control vectors� We compared the performance of the di	erent control vectors

in compensating for errors in the initial state� and for two types of model error�

omission of topography and omission of rotation�

As in the earlier experiments� we found that using the initial state as the control

vector can compensate to some extent for the e	ects of model error and can produce

a solution closer to the true solution in the middle and at the end of the assimilation

interval than if no assimilation were carried out� It is interesting that this is so even

though we do not explicitly allow for model error� In each case� however� using a

constant correction term as the control vector better compensates for the e	ects of

model error over the assimilation interval� The model error in each case depends

on the model state� and motion propagates half way across the model domain in

each direction during the assimilation interval� Hence� we concluded that in these

experiments the constant correction term is able to compensate for model error

depending on the model state on a signi�cant timescale� Using the correction term

as a control vector it is also possible to compensate to some extent for the e	ects of
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errors in the initial state� as we noted from the earlier experiments�

We also checked that the correction term recovered in the assimilation was not

unreasonably large� and concluded that it did seem to represent an average of the

model error source over the assimilation interval� This is important to check� since

when using the correction term technique we need to ensure that we are modifying

the model equations in a way that makes sense ����

Using both control vectors together is successful in reducing the large errors

caused by both a wrong initial state and model error� In each case the reduction

of these errors is greater than if either control vector is used alone� but at the cost

that many more iterations of the descent algorithm are required�

The impact of using di	erent values of q� or of how strongly the correction term

is constrained to be small in the cost function� is as found in the experiments of

Chapter �� When fewer observations are available� however� using a value of q large

enough for smooth solutions produced disappointingly inaccurate results�

Finally� we checked whether the improvement in the solution at the end of the

assimilation interval would result in an improvement to a forecast started at this

time� We found that it is important not to suddenly cut out the correction term at

the beginning of the forecast� and that including the correction term all through a

long forecast might have a detrimental impact� Gradually phasing out the correction

term during the forecast interval would probably give better results� but further

work is needed to check this� In these experiments� however� we found that using

the correction term as the control vector to compensate for model error in the

assimilation interval� it is possible to obtain a better forecast than is obtained using

the initial state as the control vector�

Suggestions for further work

One of the immediate questions arising from this work is that of how to reduce the

large number of iterations needed in the minimization procedure using more than

one control vector� This could probably be achieved by suitable preconditioning� for

example as attempted by D� Zupanski ����� who used serially uncorrelated compo�

nents of model error as control vectors� Our pleasing results using more than one
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control vector indicate that this problem of reducing the number of iterations to an

acceptable level is well worth addressing� A second area of our work requiring more

attention is that of obtaining smoother solutions when fewer observations are used�

This problem is generally tackled by using a background estimate of the control

vectors� or extra conditions on smoothness in the cost function�

It would be interesting to carry out more experiments on the shallow water

model using other control vectors� An evolving correction term evolving with a

simpli�ed� linearized version of the model� perhaps at lower resolution� could be

used� perhaps in addition to a constant correction term� Also� it would be worth

trying the piecewise constant correction term again�

On a theoretical level� the results given in Chapter � on uniqueness and ob�

servability could be generalized to allow for an evolving rather than a constant

correction term� A major theoretical problem is that of how to specify the model

error covariance matrix Q� This is a di�cult problem� and a	ects any attempt to

use a stochastic representation for model error in data assimilation �����

Our work has concentrated on theoretical aspects of the correction term tech�

nique and generalizations of it� with tests on simple models� A natural extension to

this work would be examine to what extent the same conclusions hold in the con�

text of models which are used operationally� Apart from operational applications�

however� the techniques explored here have relevance to other applications to data

assimilation� such as estimation of model bias� and in model development� Recently�

�D variational assimilation has been applied to atmospheric chemistry ���� In this

case there may be a very plentiful set of data� but knowledge about the chemical

processes constituting the model is incomplete� Here� the generalized correction ter�

m technique could be used to indicate where the model is prone to error� and so to

use the observational data to infer further information about the model processes�
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