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Abstract

In this thesis we consider a class of conservation based moving mesh methods ap-

plied to hyperbolic conservation laws. We mainly concentrate on the one dimensional

case with the examples of the linear advection equation, inviscid Burgers’ equation

and the Buckley-Leverett equation. The moving mesh methods are generated us-

ing the conservation of mass as a method for determining the mesh velocity at the

computational nodes. We use the notion of the reference space as a mathematical

tool to analyse the moving mesh methods allowing us to show the accuracy, stability

conditions and convergence. In addition we use the reference space as a technique

for constructing new moving mesh methods which share the accuracy and stability

properties of the fixed mesh scheme they are derived from. At the end of the thesis

we use the knowledge gained from the scalar conservation laws to construct moving

mesh methods for the isothermal equations.
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Chapter 1

Introduction

A class of Partial Differential Equations (PDEs) known as conservation laws fre-

quently arises in physics whenever a conserved quantity is present. Generally the

conservation laws which arise from physical phenomena are nonlinear and as a result

it is not possible to find an analytic solution. As a result, numerical approximations

are required.

Standard numerical techniques rely on static meshes to computationally solve

conservation laws but this is often inefficient. The simplest technique of solving on

a uniform static mesh performs poorly due to the need to have a large number of

nodes to correctly resolve discontinuities. Adaptive static mesh techniques, known

as h-refinement methods, improve this by only increasing the resolution in regions

where necessary but suffer from the increased computational cost of calculating

where the mesh needs to be refined and the fact that it may still take many nodes

to achieve the required resolution.

It is clear that mesh adaptivity is important to generate a numerical method

which accurately approximates the solutions to conservation laws without being

too computationally expensive. However, as noted, h-refinement methods may be
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expensive while an improvement over non-adaptive meshes may still have a high

computational overhead. Instead, more recent research has focused on moving mesh

methods known as r-refinement methods. R-refinement methods are adaptive meth-

ods in which the computational mesh is moved in an attempt to automatically refine

the mesh in an advantageous way without having to introduce more nodes.

One particular class of r-refinement methods of note for use with conservation laws

is conservation based moving mesh methods. These methods work by considering

a conserved quantity and using the local conservation of this quantity as a method

for positioning or finding the velocity of the mesh nodes. As such they appear to be

a natural fit for conservation laws which are also derived from conserved quantities.

It is these conservation methods that will be the focus of this thesis.

Chapter 2 will provide a summary of prior knowledge required in the rest of

the thesis as well as an overview of some of the work that has been done in the

field. The chapter is split into three sections, the first focuses on the conservation

laws themselves while the second and third both provide information regarding r-

refinement methods.

In Chapter 3 the background work from Chapter 2 will be combined to derive

the general class of schemes studied in later chapters. This derivation will be done

step by step to show how standard Eulerian PDEs can be adapted for use with a

Lagrangian conservation based moving mesh scheme. Particular care will be taken

concerning the choices made to derive the schemes as well as potential issues such

as boundary conditions. At the end of the chapter the general framework will be

demonstrated by applying it to several test problems.
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Chapter 4 introduces the notion of a ‘reference space’ as an analytical tool for

analysing the class of conservative moving mesh methods considered. Using the

reference space we will discuss some methods for finding the accuracy, stability

and convergence of the conservation based moving mesh schemes. Finally numerical

results are carried out to indicate the numerical order of convergence of a test scheme.

The main aim of Chapter 5 is to show how standard conservative Eulerian finite

difference schemes can be adapted to produce new moving mesh schemes. The

benefit of this is that the properties of the resulting moving mesh schemes are easily

determined from the properties of the generating Eulerian scheme. The end of the

chapter will compare some generated Lagrangian schemes with the Eulerian schemes

used to derive them.

In Chapter 6 we will give a brief introduction to some of the problems faced when

trying to extend the scheme to systems of hyperbolic conservation laws. The added

issues will lead to a slightly modified method in which a more complex mesh equation

is found. This modified scheme is applied to the isothermal Euler equations and the

resulting mesh trajectories are shown. The end of the chapter will discuss possible

improvements that could be made to improve the scheme for systems of equations

as well as the work required to use the method for the full Euler equations of fluid

dynamics.

The final chapter of the thesis will provide a summary of all of the work done.

In addition there will be a discussion of potential future work regarding adapted

schemes, systems of equations and higher dimensional problems.

The novel work done in this thesis appears in chapters 3-6. These original aspects

are:
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• In Chapter 3 we give a more in-depth discussion of how Eulerian boundary

conditions are applied to Lagrangian schemes than appears in the literature.

• The notion of the transform to reference space from Chapter 4 is taken from

the Moving Mesh Partial Differential Equation (MMPDE) methods but is

applied as an analytical tool for the first time to find accuracy, stability and

convergence.

• Chapter 5 discusses a novel approach to generating new moving mesh methods

from existing fixed mesh conservative Eulerian methods.

• The attempt to solve the isothermal equations in Chapter 6 provides a moving

mesh which does not tangle.
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Chapter 2

Background

In this chapter we give an overview of the previous work done in both hyperbolic

conservation laws and moving mesh methods. This background covers both related

work which has already been done, as well as background knowledge required for

application of the results found.

2.1 Hyperbolic Conservation Laws

Hyperbolic conservations law arise in many areas of physics, notably when con-

served quantities are present in the system being modelled. In the Eulerian descrip-

tion, conservation laws can often be expressed as time-dependent systems of partial

differential equations (PDEs) with a particularly simple structure.

In 1D the equations have the differential form

u(x, t)t + f(u(x, t))x = 0, (2.1)

where u : R×R→ Rm is an m-dimensional vector of conserved quantities, f : Rm →

Rm is a known flux function which prescribes the rate of flow for each conserved
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variable and x and t are the spatial and time coordinates respectively [LeV92].

Note that in this thesis we are using the subscript notation to represent partial

derivatives. Therefore ux is equivalent to ∂u
∂x

and utt = ∂2u
∂t2

.

In this work the system of equations (2.1) is assumed to be hyperbolic. This

implies that the Jacobian matrix of the flux function, f ′(u), has a complete set of

m linearly independent real eigenvectors for each value of u.

To form a complete problem the PDE (2.1) must also be equipped with an initial

condition u0(x) and suitable boundary conditions.

The requirement for boundary conditions depends on the domain of the prob-

lem. Importantly, it is well established that for a hyperbolic conservation law to be

well-posed, boundary conditions must be applied only at boundaries where there is

information entering the domain.

Definition 2.1.1. A boundary is defined to be an ‘inflow boundary’ if and only if

−n · f ′(u)|∂Ω > 0, (2.2)

where ∂Ω is the boundary being considered and n is the normal unit vector which

leaves the domain. Similarly, a boundary is defined to be an ‘outflow boundary’ if

and only if

−n · f ′(u)|∂Ω < 0. (2.3)

This definition of information in/out is arrived at via the characteristics of the

solution, which is explained in more detail in section 2.1.2. Furthermore, it is noted
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that the case where −n · f ′(u)|∂Ω = 0 is not considered here as this is a special case.

Further discussion of this special case can be found in Section 3.2.

In general, conservation laws which arise from physical phenomena have a nonlin-

ear flux function and are therefore themselves nonlinear. It is not generally possible

to derive an exact solution for these nonlinear systems and it is therefore necessary

to construct and analyse numerical methods to find approximate solutions.

2.1.1 Derivation of Conservation Laws

While conservation laws are often written in the differential form (2.1), this is not

how they arise from physical principles. The basic way for conservation laws to arise

is in the form of a balance equation.

Balance equations arise when a conserved quantity is considered over a control

volume, [x1, x2]. For example, consider the conservation of mass in a system where

there is a flow. The mass in the control volume is given by the integral of a density,

u(x, t), over that volume, i.e.

mass =

∫ x2

x1

u(x, t)dx. (2.4)

Since mass is conserved it follows that this integral can only change due to flow

into or out of the control volume. Let f(u(x, t)) be a given flux function which

describes the rate of flow of the mass, then the rate of change of mass is given by

the balance law

d

dt

∫ x2

x1

u(x, t)dx = − [f(u(x, t))]x2x1 (2.5)

where [·] denotes the jump in the argument in the square brackets.
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Note that while equation (2.5) was derived here for the scalar density function,

the more general balance equation has the same form if the integrand, u(x, t), is a

vector of conserved quantities and the flux function, f(u(x, t)), is a function of the

components of u(x, t).

The differential form of the conservation law (2.1) introduced in the beginning of

this chapter can be derived from the balance law (2.5) by first integrating over time.

Integrating equation (2.5) over the time interval [t1, t2] yields

∫ t2

t1

d

dt

(∫ x2

x1

udx

)
dt+

∫ t2

t1

[f(u)]x2x1 dt = 0, (2.6)

and using the fundamental theorem of calculus and rearranging gives

∫ x2

x1

[u]t2t1 dx+

∫ t2

t1

[f(u)]x2x1 dt = 0. (2.7)

Now assume that both u(x, t) and f(u(x, t)) are differentiable functions. In this

case it follows from the fundamental theorem of calculus that

[u(x, t)]t2t1 =

∫ t2

t1

u(x, t)tdt, (2.8)

and

[f(u(x, t))]x2x1 =

∫ x2

x1

f(u(x, t))xdx. (2.9)

Substituting equations (2.8) and (2.9) into equation (2.7) gives

∫ t2

t1

∫ x2

x1

(u(x, t)t + f(u(x, t))x) dxdt = 0, (2.10)
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where it is noted that the intervals [x1, x2] and [t1, t2] have been chosen arbitrarily.

Hence it follows that the integrand of equation (2.10) must be identically zero leading

to the equation

u(x, t)t + f(u(x, t))x = 0, (2.11)

which we note is the differential form of the conservation law (2.1).

Remark 2.1.2. The differential form (2.1) is not the only differential form of

the conservation laws, it is a special form referred to as the conservation form.

Another key differential form that the reader should be aware of is the non-

conservative form. This form takes a nonlinear conservation law and rewrites

it as though it is linear by using the chain rule on the flux term to obtain an

explicit u(x, t)x. The non-conservative or ‘quasilinear’ form associated with

the conservation law (2.1) is

u(x, t)t + f ′(u(x, t))u(x, t)x = 0. (2.12)

2.1.2 Mathematical Difficulties

Hyperbolic conservation laws have several mathematical difficulties which must

be overcome in order for a ‘correct’ solution to be found. The main concerns are

the differentiability of the solution and the existence of a unique solution.

Discontinuous Solutions

Discontinuous solutions are a major mathematical difficulty which arises when

considering hyperbolic conservation laws. Since the problems are often stated in the

differential form (2.1) it seems that the conservation law cannot hold for discontin-

uous solutions: however by contrast there is no assumption on the smoothness of
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u(x, t) in the original balance law (2.5).

The issue of discontinuous solutions arises because of the assumption of differen-

tiability made in equations (2.8) and (2.9) that is required to derive the differential

form. It is also not possible to disregard discontinuous solutions as they can arise

in nonlinear conservation laws from smooth initial conditions and smooth boundary

conditions.

To demonstrate how nonlinear flux functions can cause discontinuous solutions to

form, the notion of characteristic solutions is introduced. Characteristic solutions

involve finding contour lines of the solution in (x,t) space which are lines on which

the solution u(x, t) is constant. These characteristic lines can therefore be seen

as carrying ‘information’ through time. As such each characteristic line has an

associated trajectory equation, x(t), which gives its position at a given time.

The velocity of the characteristic trajectories can be found by considering that

the solution u(x, t) is required to be constant along the characteristic lines. Hence,

d

dt
u(x(t), t) = 0. (2.13)

Applying the chain rule to the left hand side of equation (2.13) yields

u(x(t), t)t + x′(t)u(x(t), t)x = 0. (2.14)

Comparing equation (2.14) with the quasilinear form of the conservation law (2.12)

shows that there is a constant solution along the trajectory if

x′(t) = f ′(u(x(t), t)). (2.15)
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Using the notion of characteristics we can consider how the structure of the flux

function, f(u(x, t)), affects the solution u(x, t). If f(u(x, t)) is linear then it is clear

from equation (2.15) that the characteristic trajectories are independent of the value

of the solution, u(x(t), t), along that characteristic line. However, if the flux function

is nonlinear then the characteristic trajectory is dependent on the u value carried

by the characteristic line.

Consider the conservation law (Inviscid Burgers’ Equation)

ut +

(
1

2
u2

)
x

= 0, (2.16)

for which f(u) = 1
2
u2 and where we have left out the independent variables, x and

t, for ease of reading. Suppose that (2.16) is coupled with the initial condition

u0(x) = −x, x ∈ [−1, 1], (2.17)

and the boundary conditions

u(−1, t) = 1 and u(1, t) = −1. (2.18)

The resulting characteristic velocity is given by

x′(t) = f ′(u) = u, (2.19)

where u is a constant on the trajectories (characteristics). Figure 2.1 shows the

trajectories of some of the characteristics in the x, t plane.

As can be seen in Figure 2.1, at time t = 1 the characteristic lines cross, meaning

that the solution becomes multivalued for time, t > 1 and the differential equation
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Figure 2.1: Characteristics crossing after time t = 1 causing the solution to become
multivalued. This is not a physically valid solution to the problem (2.16)-(2.18).

(2.16) is invalid (the second part of this section will introduce the idea of entropy

solutions and show that this multivalued solution is not physically relevant for the

purposes of this example). However it is accepted that the actual solution to the

problem (2.16)-(2.18) for time t > 1 is given by

u(x, t) =

 1 x < 0

−1 x > 0
, (2.20)

where a discontinuity is now present at x = 0. The reason why this is the accepted

physically relevant solution will be presented in the next subsection. The integral

form (2.5) is more useful is this situation.

The example (2.16)-(2.18) demonstrates that, for nonlinear conservation laws, dis-

continuities can occur even with smooth initial conditions and boundary conditions.

The standard approach to solve this problem is to return to the integral form (2.5) of

the conservation law and introduce a boundary across which u(x, t) is discontinuous.

Much as the PDE (2.1) is not a unique differential form of the conservation law,

the balance law (2.5) is not a unique integral form. Another key form that readers

12



should know is the weak form. To find the weak form associated with the general

1D conservation law (2.1) first multiply the conservation law by a once differentiable

compactly supported test function φ(x, t) ∈ C1
0(R×R) and then integrate over space

and time. This yields

∫ ∞
0

∫ ∞
−∞

(φut + φf(u)x) dxdt = 0. (2.21)

Using integration by parts on equation (2.21) to move the derivatives from the

solution variables to the test function yields

∫ ∞
0

∫ ∞
−∞

(φtu+ φxf(u)) dxdt+

∫ ∞
−∞

φ(x, 0)u(x, 0)dx = 0, (2.22)

where it is noted that the boundary terms have disappeared due to the compact

support of the test function.

Uniqueness of the Solution

Recall the example (2.16)-(2.18) from the first part of this section. In Figure 2.1

it appears that the characteristics of the problem cross and therefore the solution

becomes multivalued. However, we stated that the physically relevant solution for

times t > 1 was (2.20). Figure 2.2 shows the x, t plane characteristic plot for this

discontinuous solution.

The problem arises because after time t = 1 there is no longer a classical solution

to the problem and we must instead turn to the weak form (2.22). The issue with

this is that the weak form does not have a unique solution and therefore in order to

find the physically relevant solution of the problem another condition is required.

13
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Figure 2.2: Characteristic plot with a discontinuity forming at time t = 1. This is
the physically relevant characteristic solution to the problem (2.16)-(2.18).

The extra condition required to find the physically relevant solution can be de-

rived from the notion of a ‘vanishing viscosity solution’. This assumes that the

conservation law is the limiting case of the viscous PDE

ut + f(u)x = εuxx, (2.23)

as ε → 0. The argument follows that since (2.23) has a classical solution for all

ε > 0, the physically relevant solution to the conservation law (2.22) should be the

solution that is the limit of the classical solution of (2.23) as ε → 0. The solution

that satisfies this restriction is called the ‘entropy solution’.

In section 4.5.1 we look more in depth at vanishing viscosity solutions as a method

for analysing numerical schemes. In this introductory chapter it is simply noted that

this notion of a vanishing viscosity solution leads to a variety of entropy conditions

which when applied alongside the weak form of the conservation law (2.22) leads to

a unique solution. The most easily applied entropy condition for scalar conservation

laws and general flux functions, f(u), is due to Oleinik [Ole63].

Theorem 2.1.3 (Oleinik Entropy Condition). u(x, t) is the entropy solution of the
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Figure 2.3: Sketch of a discontinuous solution where ε = 0 (red) and two viscous
solutions ε = 0.05 (blue) and ε = 0.1 (black).

weak form conservation law (2.22) if all discontinuities satisfy the condition that

f(u)− f(ul)

u− ul
> s >

f(u)− f(ur)

u− ur
(2.24)

for all u between ul and ur, where ul is the limit of the solution as the discontinuity

is approached from the left, ur is the limit when approached from the right and s is

the shock speed.

Applying the entropy condition (2.24) to the test problem (2.16)-(2.18) confirms

that (2.20) is the physically relevant solution.

The shock speed noted in the entropy condition is found by considering the

Rankine-Hugoniot jump condition. This is a relationship between the shock speed,

s, and the states ul and ur derived from (2.5). The condition is given by

f(ul)− f(ur) = s (ul − ur) , (2.25)
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which simplifies to

s =
f(ul)− f(ur)

ul − ur
=

[f(u)]

[u]
(2.26)

for scalar conservation laws.

The one issue that still needs to be considered is what happens if an entropy vio-

lating discontinuity is present in the initial condition. To demonstrate this consider

the example conservation law (2.16) with the initial condition

u0(x) =

 −1 x < 0

1 x > 0
(2.27)

and no boundary conditions due to the fact that both are ‘outflow’ boundaries.

The initial condition (2.27) is a solution to the weak form of the conservation law

(2.16) for all time. Figure 2.4 shows the characteristic lines in the x, t plane for this

solution.
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Figure 2.4: Characteristic plot to the time independent solution (2.27). This solution
is entropy violating and therefore not a physically valid solution.
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As can be seen in Figure 2.4 this solution has characteristics leaving the discon-

tinuity. Applying the entropy condition (2.24) shows that this solution is not the

entropy solution since the discontinuity is entropy violating.

The entropy solution to this entropy violating discontinuity in the initial condition

is known as a ‘rarefaction’ fan. The entropy solution for the conservation law (2.16)

with initial condition (2.27) is given by

u(x, t) =


−1 x < −t
x
t
−t 6 x 6 t

1 x > t

, (2.28)

and the characteristics for this solution are plotted in Figure 2.5.
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Figure 2.5: Characteristic plot to the rarefaction fan solution (2.28). This solution
satisfies the entropy condition (2.24) and is therefore the physically valid solution.

It is clear that this solution (2.28) does not have an entropy violating discontinuity

for any time t 6= 0, as is required to be the entropy solution.
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2.1.3 Numerical Difficulties

In the previous section we considered some of the mathematical difficulties which

arise when attempting to solve hyperbolic conservation laws. In this section we

consider how these mathematical difficulties cause further numerical difficulties when

we attempt to solve the conservation laws with numerical approximations.

Approximating Shocks

The main issue that arises is due to the fact that hyperbolic conservation laws

can have discontinuous solutions.

As discussed in section 2.1.2, the differential form of the conservation law (2.1)

does not hold at the discontinuity since the solution does not have a derivative at

this point. Since many standard numerical approaches are based on the differential

form of the conservation law it follows that these are equally poor at approximating

the discontinuity.

Consider finite difference methods as an example. In Figure 2.6 we have plotted

the results for the first order upwind method, the second order Lax-Wendroff scheme

and the exact solution. More information concerning these schemes can be found in

[LeV92].

The schemes shown in Figure 2.6 are representative of schemes of their respective

orders. The first order upwind scheme shows that numerical diffusion leads to a

smoothed out discontinuity and therefore poor accuracy in the surrounding area.

This is very common behaviour in first order schemes and often leads to a need for

higher accuracy. The second order Lax-Wendroff method captures the discontinuity

very effectively but at the cost of introducing spurious oscillations. As with the
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Figure 2.6: Finite difference approximations to the Inviscid Burgers’ example prob-
lem introduced in Section 3.6 at the post-shock time regime t = 1.5. (A) shows the
first order upwind scheme (blue) compared with the exact solution (red). (B) shows
the second order Lax-Wendroff Scheme (green) compared with the exact solution
(red).

numerical diffusion in the first order upwind case these oscillations are typical for

higher order methods and can lead to instability in numerical solutions.

The approximation of discontinuities or ‘shocks’ is further complicated by the fact

that numerical schemes may converge to an incorrect solution. In section 2.1.2 it

was shown that there is not a unique solution to the weak form of the conservation

law (2.22) unless an extra condition is applied. It is possible that unless care is

taken numerical approximations of the conservation law (2.1) may converge to these

physically invalid solutions.

There is a simple condition which is sufficient to guarantee that numerical solu-

tions have the correct shock speeds. This requirement is simply that the numerical

scheme must be able to be written in conservation form.

Definition 2.1.4 (Conservation Form). A scheme is said to be in conservation form
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if it has the form

un+1
j = unj −

∆t

∆x

(
F (unj−p, u

n
j−p+1, · · · , unj+q)− F (unj−p−1, u

n
j−p, · · · , unj+q−1)

)
(2.29)

where F is the numerical flux function with p + q + 1 arguments and is consistent

with the flux function f(u) in the sense that F (u, u, ..., u) = f(u). This form is a

discrete equivalent to the balance law (2.5) as shown in [MM05].

The above definition however only ensures that discontinuities move with the

correct speed and does not ensure that the scheme converges to the entropy solution.

To ensure convergence to the entropy solution a monotone scheme or an e-scheme

is required. These schemes are discussed in greater detail in [Tor99].

In this section we have discussed the issues that surround the attempt to ac-

curately approximate discontinuities in the solution. The fact that higher order

schemes, which better approximate these discontinuities, can lead to instability mo-

tivates discussion of the next numerical difficulty.

Scheme Stability

As mentioned in the previous section, first order schemes often end up being

insufficiently accurate around discontinuities in the solution whereas higher order

schemes tend to develop spurious oscillations which can lead to instability.

Since the issue of spurious oscillations arises frequently, many methods have been

developed in an attempt to mitigate their effect. One such attempt is to define the

notion of a monotonicity preserving scheme. These are schemes which do not allow

new extrema in the solution to form and are therefore non-oscillatory. The formal

definition of monotonicity preserving schemes is as follows.
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Definition 2.1.5 (Monotonicity Preserving Scheme). [Wes01] A numerical scheme

is said to be monotonicity preserving if for every non-decreasing (non-increasing)

initial condition u0(x) the numerical solution at all later instants unj , n ∈ N is non-

decreasing (non-increasing).

While definition 2.1.5 does help describe schemes that have the desired property

of not introducing spurious oscillations, it is also not very useful for actually de-

termining if a scheme is monotonicity preserving or not. To this end a variety of

methods have been developed to test if a scheme is monotonicity preserving. In

this section we only focus on the stricter condition that schemes are Total Variation

Diminishing (TVD).

Definition 2.1.6 (Total Variation). The Total Variation of a numerical solution at

time t = n∆t is given by

TV (un) =
∑
j

∣∣unj − unj−1

∣∣ . (2.30)

The total variation can easily be seen to increase if the solution is oscillatory

and decrease if the solution becomes strictly increasing (decreasing). The fact that

oscillations are not desired motivates the notion of a TVD scheme.

Definition 2.1.7. A scheme is defined to be Total Variation Diminishing (TVD) if

TV (un+1) 6 TV (un) ∀n, (2.31)

where the total variation is given by definition 2.1.6.

As in the case of monotonicity preserving schemes, the definition of TVD is not

very helpful in determining if a specific scheme is TVD or not. The benefit of
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the TVD framework is a result by Harten [Har83] which gives certain conditions a

scheme must meet to be TVD.

Theorem 2.1.8 (Harten’s Theorem). If a numerical scheme can be written in the

form

un+1
j = unj − Cj−1/2(unj − unj−1) +Dj+1/2(unj+1 − unj )

where Cj−1/2 > 0, Dj+1/2 > 0 and 1−Cj−1/2−Dj−1/2 > 0 then the scheme is Total

Variation Diminishing (TVD).

Theorem 2.1.8 provides a method for easily determining if a scheme will be not

oscillatory however, this does not solve all the problems with numerically solving

conservation laws.

The main obstacle to having very accurate numerical approximations without

oscillation problems comes from a theorem by Godunov [God59].

Theorem 2.1.9 (Godunov’s Order Barrier Theorem). Linear numerical schemes for

solving conservation laws which have the property of being monotonicity preserving,

can be at most first order.

Theorem 2.1.9 provides a simplification of the result obtained by Godunov, how-

ever it importantly highlights that any linear scheme found to be TVD via Harten’s

theorem 2.1.8, say, can at most be first order.

2.1.4 Further Reading

The previous parts of this section have focused on some of the important results in

the field of hyperbolic conservation laws required in this work. This is by no means
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an exhaustive background in the field as many classical topics such as in-depth

discussion of the Riemann problem and the CFL condition have been omitted.

Readers wishing to learn more about hyperbolic conservation laws and the nu-

merical methods associated with them have plenty of resources to consider. Further

information on the hyperbolic partial differential equations can be found in [Eva10],

[Daf10] and [LeF02], while [LeV92], [Tor99] and [Wes01] provide a greater back-

ground in the numerical methods.

At the end of section 2.1.3 we discussed how Godunov’s Order Barrier Theorem is

a limit on traditional linear numerical methods for solving PDEs. As a result many

of the more recent developments have been concerned with special schemes known

as ‘high-resolution schemes’. These schemes have the following properties:

• They are nonlinear.

• They have second order or higher spatial accuracy in smooth regions of the

solution.

• Solutions obtained do not have spurious oscillations.

• High accuracy is obtained around discontinuities.

• They require a smaller number of computational nodes when compared with

similar accuracy first order schemes.

There have been several notable high-resolution approaches which have been

widely adopted and do not rely on a specific mesh.

The first involves the use of flux/slope limiters which take a weighted average

of a high order scheme and a first order scheme, depending on how smooth the
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solution is locally. While flux and slope limiters arise from different approaches

to solving the problems surrounding Godunov’s order barrier theorem, they take a

similar mathematical form. More in-depth discussion of flux/slope limiters can be

found in [vL79], [Swe84] and [GL88].

Another type of high-resolution scheme which has been widely used comprises Es-

sentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory (WENO)

schemes. These schemes work by allowing the size of the computational stencil to

vary to control oscillations. Both types of scheme generate several candidate sten-

cils in an attempt to minimise oscillations, ENO taking the least oscillatory while

WENO takes a linear combination of the candidates. Further reading on these

schemes can be found in [HEOC87] and [Shu09].

2.1.5 Example Conservation Laws

In this section we briefly introduce some conservation laws which will be used as

examples in the rest of the thesis.

Note that in this section we will denote u(x, t) by u for ease of reading.

Linear Advection Equation

The simplest conservation law that we consider is the Linear Advection Equation.

This equation models fluid with a constant flow and is given in differential form by

ut + aux = 0, (2.32)

where a is the constant fluid velocity.
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The fact that the linear advection equation is linear makes it a useful first test

problem for schemes since exact solutions are easy to calculate based on the method

of characteristics discussed in section 2.1.2. It is trivial to see that

f ′(u) = a (2.33)

which makes the characteristic trajectories independent of the solution.

Inviscid Burgers’ Equation

The next equation we consider is the Inviscid Burgers’ equation. This equation is

arguably the simplest nonlinear conservation law and arises in many areas of applied

mathematics including fluid mechanics, nonlinear acoustics, gas dynamics and traffic

flow.

The flux function for Inviscid Burgers’ equation is f(u) = 1
2
u2 which yields the

differential form of the conservation law

ut +

(
1

2
u2

)
x

= 0. (2.34)

We use this conservation law to highlight the fact that smooth initial conditions

and boundary conditions can lead to discontinuous solutions, as in Section 2.1.2,

where we note that it has the associated quasilinear differential form

ut + uux = 0. (2.35)

This shows that the characteristic trajectories are given by f ′(u) = u and are

therefore dependent on the value of the solution carried by the characteristic.
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Inviscid Burgers’ Equation has many known exact solutions making it a useful test

case for numerical methods. Importantly, piecewise linear initial data and boundary

conditions are easily incorporated via the method of characteristics. Furthermore, a

smooth solution for a sine wave initial condition up to shock formation time is given

in [GMP15].

Buckley-Leverett Equation

The final conservation law that we consider is the Buckley-Leverett Equation.

The equation arises in two phase flow in porous media and is commonly used as a

benchmark problem by the oil industry to model oil recovery via water-drive in 1D

horizontal flow [VDPP07]. In this oil recovery example the solution u represents the

saturation of water and therefore must lie between 0 and 1.

The flux function for the Buckley-Leverett Equation is given by

f(u) =


u2

u2 +M(1− u)2
0 6 u 6 1

0 u < 0

1 u > 1

, (2.36)

where M > 0 is a fixed constant.

The equation is of particular interest since it is both used industrially and has a

non-convex flux function. The flux function is of particular note since it means that

initial discontinuities can split into both a shock and a rarefaction fan.
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2.2 R-Refinement Methods

In the previous Sections we discussed hyperbolic conservation laws and some of the

numerical methods used to attempt to solve them. One area that was not discussed

was the notion of adaptive computational meshes as a method for attempting to

solve them.

In this section we focus on relocation refinement (r-refinement) methods and give

a brief history of some of the different ways in which they have been implemented.

Note that in this section we consider refinement methods for general PDEs instead

of only focusing on conservation laws.

2.2.1 Motivation

The solutions of time dependent PDEs often have features which evolve signif-

icantly as time progresses. These feature include interfaces, shocks, singularities,

change of phase, high vorticity and regions of complexity [BHR09]. Examples of

such structures appear in a plethora of applications including fluid dynamics, con-

servation laws, free boundary problems, combustion, meteorology and mathematical

biology. The evolution of these features often happens over short time scales in very

fine regions of space and as such a computational mesh must be at least as fine to

be able to capture this behaviour.

Using a uniform mesh to solve a problem with complex features is clearly not

advisable since in order to resolve the fine grain features a small mesh spacing,

∆x, is required but this is computationally inefficient away from such structures.

Instead adaptive methods are applied which attempt to refine/coarsen the mesh as
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required. These adaptive methods generally fall into three categories, h-refinement,

p-refinement and r-refinement.

The h-refinement methods are the most commonly applied type of adaptive mesh

and is named after the widespread use of the notation h = ∆x. Such methods usually

start with a uniform mesh and locally coarsen or refine the mesh by removing or

adding in mesh points, respectively. This is often achieved by considering some a

posteriori estimate of the solution error and setting tolerances to indicate where

nodes should be introduced or removed.

The p-refinement methods are only applicable to finite element methods (FEM)

and stands for polynomial refinement. In p-refinement methods a finite element

discretisation of the PDE is applied with local polynomials of some particular order.

This order is then increased/decreased with regard to some a posteriori solution

error. It is possible to combine h-refinement and p-refinement methods to generate

hp-refinement methods which are explored in [AO97].

In r-refinement (relocation refinement) methods the computational mesh is al-

lowed to move in the hope that the mesh refinement/coarsening will occur automat-

ically without the need to add or remove computational nodes. The mesh movement

is often dictated by some function of the solution in the hope that this will cause the

computational nodes to gather in regions where a small spatial step is required and

separate in regions where the solution is changing very little. These methods are

not as widely used as either h-refinement or p-refinement methods but have been

successfully applied to a variety of different applications including computational

fluid mechanics [Tan05], convective heat transfer [CH01] and mathematical biology

[LBLT13].
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The main downside of r-refinement methods is that allowing the mesh to move

introduces some problems which static meshes do not have namely, the mesh can

tangle. Mesh tangling can occur in multiple ways but the main two are node crossing,

where one computational node passes another, and mesh vorticity, where the mesh

starts to spiral in on itself causing the connectivity of the mesh and the location

of the nodes to be incompatible. Node crossing is often caused by a poor choice of

time step while mesh vorticity is often caused by vorticity is the solution making it

difficult to avoid.

The methods that will be studied in this thesis are r-refinement methods and as

such this section will give a brief overview of other moving mesh schemes.

2.2.2 Useful Tools

In this section we introduce a few mathematical tools which are commonly used

in r-refinement methods.

The first of these is the notion of a monitor function. As noted in the previous

section, r-refinement methods often require some function of the solution to guide

the mesh evolution. A monitor function, m(u, ux, uxx, ...), is commonly used as part

of the mesh evolution.

Some examples of monitor functions are the density monitor

m(u) = u (2.37)

and the arc length monitor

m(ux) =
√

1 + (ux)2. (2.38)
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Another important mathematical tool is the notion of an equidistribution prin-

ciple. This is applied to a general monitor function and is important for many

established results in moving mesh methods.

Definition 2.2.1 (Equidistribution Principle). [dB73] The equidistribution princi-

ple states that for 0 6 χ 6 1,

∫ x̂(χ,t)

a(t)

m(u, ux, uxx, ...)dx = χ

∫ b(t)

a(t)

m(u, ux, uxx, ...)dx (2.39)

where a(t) is the left hand boundary of the domain, b(t) is the right hand boundary

and x̂(χ, t) is a moving point in the interval [a(t), b(t)].

The equidistribution principle shows that the variable χ can be seen as the frac-

tions of the total monitor integral between a(t) and the moving point x̂(χ, t). This

implies that the interval [a(t), b(t)] can be divided up into a partition of subintervals

all with the property that the monitor integral evaluated over them is equivalent.

Having introduced these useful mathematical tools we can now introduce some of

the different types of r-refinement methods.

2.2.3 Types of Moving Mesh Methods

In section 2.2.1 we discussed how adaptive mesh refinement methods could be

separated into three categories, h-refinement, p-refinement and r-refinement. In a

similar way r-refinement methods may be further separated into two subcategories,

location based methods and velocity based methods [CHR03].

In this section we will discuss how the two categories differ and give some examples

of schemes in each category.
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Location Based Methods

The premise of location based moving mesh methods is that the location (or den-

sity) of the computational nodes at a given time is found by solving a mesh equation.

Typically this mesh equation takes the form of some nonlinear differential equation

which is often hard to solve. The benefit of these methods is that they often lead to

good global mesh properties such as avoiding the mesh tangling mentioned in the

previous section and avoiding excessive skewness in computational cells. Three ex-

amples of location based methods are MMPDE-based methods, variational methods

and optimal transport methods.

The most studied of the location based methods are the MMPDE methods with a

large body of the work being done by Huang et al. [HRR94], [BHR96], [HR97] and

[HR00]. An example of a variational method may be found in [CH01] and discussion

on the optimal transport methods can be found in [BHR09].

Velocity Based Methods

The velocity based methods, also referred to as Lagrangian methods, rely on

calculating the velocities of individual computational nodes and using this to update

the node positions. These methods are often far simpler to implement than the

location based methods but generally do not have the good global properties that

are seen with the location based methods.

The main methods in this category are geometric conservation law (GCL) meth-

ods, moving mesh finite element methods, Arbitrary Lagrangian-Eulerian (ALE)

methods and conservation methods. All of these methods are closely related to the

concept of monitor conservation as a tool for finding mesh velocity.
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In the GCL methods the mesh velocity is found by using the GCL as a minimi-

sation problem in order to discretise. The term Geometric Conservation Laws was

first coined in [TL79] and further work has been has been done by Cao, Huang and

Russell [CHR02] and Baines, Hubbard and Jimack [BHJ11].

The conservation methods and the moving mesh finite element methods use very

similar methods for finding the mesh however differ on how to recover the solution

on this mesh. A large body of work has been done on the moving mesh finite element

methods by Baines, Hubbard and Jimack [BHJ04], Baines [Bai94], [Bai98] and in

the theses of Wells [Wel04] and Lee [Lee11]. Since the methods described in this

thesis are conservation methods we leave further discussion of them until Section

2.3.

The final velocity based moving mesh scheme considered here is the Arbitrary

Lagrangian-Eulerian (ALE) methods. These methods are again very similar to the

other methods in this class, using monitor conservation to find the mesh velocity.

These methods differ however as they allow for arbitrary velocities to be applied.

Examples of ALE methods can be found in [KHDB03] and [SDP07].

2.3 Lagrangian Framework

In the previous section we introduced adaptive r-refinement methods and gave

a brief overview of some of the different moving mesh methods that have been

developed. At the end of the section we noted that the schemes that are studied in

this thesis are a type of velocity based moving mesh scheme known as conservation

methods.
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In this section we detail how these methods arise, give an example of a particular

method applied to a test problem and note further reading which may be of interest.

2.3.1 Derivation

The first step in solving a problem using these conservation methods is to first

rewrite the PDE in the Lagrangian formulation. Start by choosing a monitor func-

tion, m(u, ux, uxx, ...), and consider the associated monitor integral

M(u, ux, uxx, ... : x̂1(t), x̂2(t)) =

∫ x̂2(t)

x̂1(t)

m(u, ux, uxx, ...)dx, (2.40)

where x̂1(t) and x̂2(t) are moving coordinates. The moving coordinates are defined

to be such that the monitor integral remains constant in time hence,

d

dt

∫ x̂2(t)

x̂1(t)

m(u, ux, uxx, ...)dx = 0. (2.41)

Since x̂1(t) and x̂2 are only defined to move so that equation (2.41) holds only

their velocity is prescribed. This implies that such coordinates can be arbitrary in

the sense of initial starting position and hence, the region being considered could be

the entire domain or an arbitrary time dependent subregion.

Leibniz integral rule [Fla73] can be applied to the left hand side of equation (2.41)

in order to take the time derivative inside the integral,

∫ x̂2(t)

x̂1(t)

mtdx+ [mx̂(t)t]
x̂2(t)
x̂1(t) = 0 (2.42)

where the dependent variables of the monitor function have been omitted for ease

of reading.

33



Depending on the form of the monitor function either the Eulerian PDE (2.1)

or the balance law (2.5) can be used to replace the mt term in the integrand of

equation (2.42). This is not trivial to do for a general monitor function but for a

given monitor function equation (2.42) can be rewritten into a formula for x̂(t)t.

It is noted that the manipulation of equation (2.42), required to find the cor-

rect conservative velocity, includes having to divide by m(u, ux, uxx, ...) and for this

reason the monitor function should be non-zero.

Together the conservation of the monitor integral (2.40) and the conserving ve-

locity x̂(t)t form the Lagrangian formulation. To derive a specific scheme these two

equations are then discretised.

Remark 2.3.1. Note that while the above discussion assumes that the mon-

itor is conserved over the domain it is also possible to apply the method to

problems in which the monitor function is not conserved. This is achieved by

considering the monitor integral over a subregion relative to the monitor inte-

gral over the entire domain. In this way a subregion can be seen to conserve a

fraction of the total monitor integral. This method is covered in [LBL15] for

the density monitor function.

2.3.2 An Example

In the previous section we briefly discussed how to derive the Lagrangian formula-

tion of a general monitor function. Since the conserving velocity is difficult to write

down explicitly without making assumptions on the monitor integral we consider an

example problem.
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Consider the Porous Medium Equation given by

u(x, t)t = (u(x, t)u(x, t)x)x (2.43)

with appropriate initial conditions and boundary conditions [Aro].

Since mass is conserved for the PDE (2.43) we will consider the density monitor

m(u) = u, (2.44)

which leads to the the conservation of mass

d

dt

∫ x̂2(t)

x̂1(t)

udx = 0. (2.45)

Applying Leibniz integral rule to equation (2.45) gives

∫ x̂2(t)

x̂1(t)

utdx+ [ux̂t]
x̂2(t)
x̂1(t) = 0 (2.46)

and using the PDE (2.43) yields

∫ x̂2(t)

x̂1(t)

(uux)xdx+ [ux̂t]
x̂2(t)
x̂1(t) = 0. (2.47)

Finally applying the fundamental theorem of calculus [CJ12] leads to

[uux + ux̂t]
x̂2(t)
x̂1(t) = 0, (2.48)

which has a solution if

x̂t = −ux. (2.49)
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Together the mass conservation (2.45) and the conservative velocity (2.49) form

the mass conservative Lagrangian formulation for the porous medium equation

(2.43), then all that remains is to discretise both of these equations.

Approximating the conservation of mass (2.45) by the trapezium rule yields

Aj−1/2 =
1

2
(x̂nj − x̂nj−1)(unj + unj−1), (2.50)

where Aj−1/2 is the local mass constant.

Using a discretisation of the velocity (2.49) and inserting it into the Forward Euler

methods gives

x̂n+1
j = x̂nj−∆t

unj − unj−1

x̂nj − x̂nj−1

. (2.51)

In order to test the scheme we consider the initial condition,

u(x, 0) =

 (1− x2)
1
2 |x| 6 1

0 otherwise
, (2.52)

with far field boundary conditions.

Note that by ‘far field’ boundary conditions we mean that the boundaries are far

away from the behaviour we are interested in and the solution is essentially constant

near these boundaries.

Figure 2.7 shows the results of the moving mesh scheme and the results from the

Eulerian Crank-Nicolson scheme [CN47] when run with the same number of nodes

and the same timestep for comparison.
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(a) Moving Mesh Scheme (2.50)-(2.51)
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(b) Crank-Nicolson Scheme

Figure 2.7: Numerical comparison of the moving mesh scheme and the Eulerian
Crank-Nicolson scheme when both applied to the Porous Medium Equation with
initial condition (2.52) and far field boundary conditions.

The key note from this example is that the Eulerian scheme required us to have a

larger initial domain to accommodate for the fact that the solution diffuses outward.

In contrast the moving mesh scheme could move with the boundary of the diffusion

and therefore did not waste nodes outside of this region.

2.3.3 Further Reading

In this section we have given an overview of the velocity based moving mesh

method by paying particular attention to Eulerian PDE’s of the form (2.1).

Lagrangian methods are all closely related and often use very similar mesh move-

ment techniques but vary in how the solution is recovered on this mesh. The con-

servative methods which are studied in this thesis have been applied to diffusion

problems [Bir14], general conservation laws [SMR01], hydrocodes [Col13], the Sod

shock tube problem [DD87], ice sheets [BBNP16] and many more.

Less conventional conservative methods have been developed in recent years. In

[BL14] the conservative method is extended to cope with non-conservative problems

and in [CS07] the conservative mesh is used with a WENO/ENO type scheme used

to recover the solution of the mesh.
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Chapter 3

Mass Conserving Moving Mesh

Methods for Conservation Laws

In this section we set out the general class of schemes that we consider in this

thesis. This is done by demonstrating how to derive the mass based Lagrangian

formulation for a general conservation law and providing a generalised numerical

approximation to the resulting equations.

Recall from section 2.1 that the scalar hyperbolic conservation law with solution

u(x, t) is given by

ut + f(u)x = 0, x ∈ (a(t), b(t)), t ∈ R+, (3.1)

u(x, 0) = u0(x), x ∈ (a(0), b(0)), (3.2)

u(a, t) = ua(t), t ∈ R+. (3.3)

We assume that a(t) is the inflow boundary, as defined in section 2.1, leading to

a boundary condition only being required here. This assumption does not lead to a

loss of generality and the results of this section follow similarly under the assumption

38



that b(t) is the inflow boundary.

3.1 Lagrangian Formulation

Following the same procedure as in Section 2.3 requires choosing a monitor func-

tion. Since a mass conserving scheme is desired an obvious choice of monitor function

is the density function,

m(u) = u(x, t). (3.4)

As in section 2.3 this imposes a restriction on the problems that can be solved

with a conservation-based moving mesh method. Namely, only problems where

u(x, t) > 0, ∀x, t, (3.5)

may be considered.

The choice of monitor function (3.4) leads to the monitor integral

M(u, x̂1(t), x̂2(t)) =

∫ x̂2(t)

x̂1(t)

u(x, t)dx, (3.6)

which is required to be constant in time for x̂1(t) and x̂2(t) moving with appropriate

velocity. Hence,

d

dt

∫ x̂2(t)

x̂1(t)

u(x, t)dx = 0. (3.7)
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It follows that by applying Leibniz integral rule to dM
dt

that,

d

dt

∫ x̂2(t)

x̂1(t)

u(x, t)dx =

∫ x̂2(t)

x̂1(t)

utdx+ [u(x, t)x̂t]
x̂2(t)
x̂1(t) , (3.8)

and appealing to the conservation law (3.1) further yields

d

dt

∫ x̂2(t)

x̂1(t)

u(x, t)dx = −
∫ x̂2(t)

x̂1(t)

f(u)xdx+ [u(x, t)x̂t]
x̂2(t)
x̂1(t) . (3.9)

Application of the fundamental theorem of calculus gives

d

dt

∫ x̂2(t)

x̂1(t)

u(x, t)dx = [u(x, t)x̂t − f(u)]
x̂2(t)
x̂1(t) . (3.10)

Note that equation (3.10) is a generalised balance law which we call the ‘La-

grangian balance law’. This balance law has a different flux function associated

with it that we call the ‘net flux’,

Net Flux = f(u)− ux̂t. (3.11)

It is clear from equation (3.10) and the time independence requirement (3.7) that

[u(x, t)x̂t − f(u)]
x̂2(t)
x̂1(t) = 0. (3.12)

Let x̂1 = a(t) be the position of the inflow boundary and x̂2 = x̂, x̂ ∈ (a(t), b(t))

be an arbitrary moving coordinate, with velocity x̂t. It follows from equation (3.12)

that

ua(t) x̂t|a − f(ua) = u(x̂, t)x̂t − f(u). (3.13)
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Rearranging for x̂t yields

x̂t =
f(u) + ua(t) x̂t|a − f(ua)

u(x̂, t)
, (3.14)

where the division by u(x̂, t) is justified by the restriction (3.5).

Together equations (3.7) and (3.14) form the general Lagrangian formulation

d

dt

∫ x̂2(t)

x̂1(t)

u(x, t)dx = 0, (3.15)

x̂t =
f(u) + ua(t) x̂t|a − f(ua)

u(x̂, t)
. (3.16)

3.2 Boundary Conditions

In the previous section we derived the general Lagrangian formulation (3.15)-

(3.16) of the general conservation law (3.1). We note that the general form of the

moving coordinate velocity (3.16) requires both knowledge of the solution, u(x, t),

and the position, a(t), of the inflow boundary.

In this section we consider some example boundary conditions that can be pre-

scribed for various problems, namely, a fixed inflow boundary for comparison with

fixed mesh schemes, a boundary moving with characteristic velocity as described in

section 2.1.2 and, the ‘natural’ Lagrangian boundary condition.

3.2.1 Fixed Inflow Boundary

First consider a standard conservation problem for a fixed mesh scheme to solve.

This will take the form of equations (3.1)-(3.3) where a(t) and b(t) are constant in
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time.

Since the inflow boundary a(t) is fixed it is clear that x̂t|a = 0 and hence the

velocity (3.16) simplifies to become

x̂t =
f(u)− f(ua)

u(x̂, t)
. (3.17)

Note further that the standard Eulerian problem formulation fixes both the inflow

boundary, a(t), and the outflow boundary, b(t). This defines a fixed ‘volume’ and as a

consequence cannot guarantee global mass conservation for a given initial condition.

In the Lagrangian formulation global mass conservation is required and therefore

we cannot fix the ‘volume’. This implies that since the inflow boundary, a(t), is the

only given boundary condition and fixed we must allow b(t) to remain free to move

as prescribed by the mass conservation. This is prescribed by

x̂t|b =
f(ub)− f(ua)

ub(t)
. (3.18)

Therefore, in the Lagrangian formulation the net flux across all such coordinates

must be equal at any given time, t. This means that the net flux of the inflow

boundary condition determines the net flux for every other x̂ which moves with

a consistent mass conserving velocity. In the case of the fixed inflow boundary,

equation (3.12) tells us that the net flux for any coordinate must be equivalent to

f(ua).

3.2.2 Boundary with Characteristic Velocity

The next case to consider is the special case where the inflow boundary is pre-

scribed to move with the characteristic velocity. This means that the inflow bound-
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ary follows the characteristic starting at the same point exactly.

Recall from section 2.1.2 that on characteristic lines the solution u(x, t) remains

constant and the characteristic velocity can be found by

x′(t) = f ′(u). (3.19)

Substituting the given boundary data into equation (3.19) yields

x̂t|a = f ′(ua), (3.20)

which may be further substituted into equation (3.14) to give the general coordinate

velocity

x̂t =
f(u)−ω
u(x̂, t)

, (3.21)

where ω = f(ua) − ua(t)f ′(ua) is prescribed by the given boundary condition and

remains constant in time since ua is constant on the characteristic line.

As in the case of a fixed inflow boundary condition, the outflow boundary position

is determined by mass conservation. In this case equation (3.21) yields the outflow

boundary velocity to be

x̂t|b =
f(ub)−ω
ub(t)

. (3.22)

Note that for this given boundary condition the associated net flux across any

coordinate moving with the ‘correct’ velocity (3.21) is ω.
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3.2.3 Free Lagrangian Boundary Conditions

The final boundary condition we consider is called the ‘free Lagrangian’ boundary

condition. In this case the boundary condition is allowed to arise naturally from the

Lagrangian formulation of the problem through a zero net flux.

Recall equation (3.12),

[u(x, t)x̂t − f(u)]
x̂2(t)
x̂1(t) = 0. (3.23)

This was previously used to find the correct velocity of an arbitrary coordinate

to give mass conservation between two such coordinates. This was done by setting

the net flux at each coordinate to be equivalent to the net flux at the given inflow

boundary.

The ‘free Lagrangian’ velocity is found by setting all net fluxes, including at the

inflow boundary, equal to 0. In this way the net flux sets the boundary condition,

in contrast with previous examples where the boundary condition set the net flux.

Since it is required that ua(t) x̂t|a − f(ua) = 0, it follows directly from equation

(3.14) that the general coordinate velocity in this case is simply given by

x̂t =
f(u)

u(x̂, t)
, (3.24)

where it is noted that there is no dependence on the inflow boundary.
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Inserting our outflow boundary into equation (3.24) gives the outflow boundary

velocity to be

x̂t|b =
f(ub)

ub(t)
. (3.25)

Note that for the rest of this thesis we will only consider ‘free Lagrangian’ bound-

ary conditions. This does not lead to a loss of generality of any of the results

contained and there are several example problems with other boundary conditions

to demonstrate this.

3.2.4 Limits on the Boundary Velocity

Having given three examples of boundary conditions, the question remains as to

whether there are any limits on how the boundary conditions may be prescribed.

Section 2.1 discussed when and where boundary conditions should be applied to

standard Eulerian hyperbolic conservation laws, namely they should only be applied

to inflow boundaries. To determine if a boundary is an inflow or outflow, consider

the expression

−n · f ′(u)|∂Ω (3.26)

where ∂Ω is the point on the boundary you are considering and n is the normal

unit vector which leaves the domain. Note that in our 1D case n is simply −1 if we

are considering the left hand boundary and 1 if we are considering the right hand

boundary.

The expression (3.26) can be used to determine if a boundary is inflow or out-

flow by calculating whether it is positive or negative. If (3.26) is positive then the
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boundary is an inflow and if (3.26) is negative then it is an outflow.

Remark 3.2.1. If the expression (3.26) is equal to 0 then we are in the

special case where the boundary lies exactly on a characteristic line. In this

case the fact that u(x, t) must be constant along characteristics implies that

the boundary condition is determined by the initial condition. Further note

that this does not make the problem solely an IVP since the other boundary

could still be an inflow boundary.

It is natural to ask if a similar function can be found for the Lagrangian formu-

lation of the problem, i.e. is it possible to find a function to replace f ′(u) which

changes sign for the two types of boundary?

We propose that a suitable function is

f ′(u)− x̂t (3.27)

where x̂t is the calculated boundary velocity. This leads to the Lagrangian in-

flow/outflow expression being given by

−n · (f ′(u)− x̂t)|x=a(t) . (3.28)

This function follows naturally when considering the Eulerian fixed boundary case

since f ′(u) informs us of the velocity of the characteristic trajectories and since the

boundary is not moving this is sufficient to determine whether the characteristic

lines are entering or leaving the domain. In the Lagrangian moving boundary case

however it is not sufficient and we therefore compare the chosen boundary velocity

with the characteristic velocity to determine which is moving faster.
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Figures 3.1 and 3.2 highlight the two cases where (3.27) is positive and negative

leading to an inflow and an outflow boundary respectively.

Figure 3.1: A moving domain in blue where the boundary velocity does not exceed
the characteristic velocity, hence f ′(u)− x̂t > 0 and the left hand boundary is still
an inflow boundary.

Figure 3.2: A moving domain in green where the boundary velocity exceeds the
characteristic velocity, hence f ′(u) − x̂t < 0 and the left hand boundary is now an
outflow boundary.

Note that as in remark 3.2.1 the case where (3.28) is equal to zero implies that

the boundary is moving along a characteristic line and is therefore neither an inflow

nor an outflow boundary. This is the characteristic velocity defined earlier in this

section.
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Remark 3.2.2. It is important to note that given our definition of the La-

grangian inflow/outflow condition (3.28) it may not be possible to apply the

’free Lagrangian’ boundary condition to the boundary which would be consid-

ered inflow in an Eulerian sense. This is due to the fact that the behaviour

of

f ′(u)− f(u)

u
(3.29)

changes dramatically depending on the given flux function f(u).

In conclusion we can determine whether a boundary requires any solution infor-

mation by evaluating the expression (3.28).

3.3 Partitioning the Domain

Now that we have the Lagrangian formulation of the problem in section 3.1 and

the boundary conditions in section 3.2, we must now decide on how we will partition

the domain of the problem numerically.

Since the Lagrangian formulation is an integral form of the problem it is easy

to consider the partition of the domain before actually discretising the Lagrangian

formulation. The two choices which must be considered are:

• The structure of the partition, how do the subintervals cover the domain of

the problem? Is there any overlapping?

• The initial interval distribution, do we start with a uniform partition or weight

it based on the initial condition?

48



In this section we consider two alternative options for each of these choices. Note

however that neither of these sections covers the options available exhaustively and

instead focuses on the more promising alternatives.

3.3.1 Standard Partition vs Overlapping Masses

The first choice is what form the partition of the domain will take. It is clear that

whatever partition we choose must cover the entire domain, however we may also

choose to have overlapping intervals.

The obvious option here is to simply split the domain into a standard partition

where each subsequent subinterval of the domain shares a boundary with the previ-

ous subinterval and there is no overlapping. In this case the local mass conservation

is given by

∫ x̂j+1(t)

x̂j(t)

udx = Aj+1/2, ∀j < J, j ∈ N, (3.30)

where Aj+1/2 is the local mass constant and J is the number of nodes in the partition.

This partitioning of the domain is illustrated in Figure 3.3.

x

u

1st cell

2nd cell

3rd cell

x1 x2 x3 x4

Figure 3.3: The standard partition in which subintervals of the domain do not
overlap and consecutive intervals share a boundary.
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The other clear option is to instead have overlapping intervals which all relate

back to the inflow boundary. In this case the local mass conservation is given by

∫ x̂j(t)

x̂1(t)

udx = A(j+1)/2, ∀j 6 J, j ∈ N, (3.31)

where A(j+1)/2 is the mass constant and J is the number of nodes in the partition.

Note that in this description the local mass constant AJ is the total mass over the

entire domain. Figure 3.4 illustrates this overlapping partition for completeness.

x

u

1st cell

2nd cell

3rd cell

x1 x2 x3 x4

Figure 3.4: The overlapping partition in which subinterval of the domain starts at
the inflow boundary of the region.

Now that we have introduced the two main ways of partitioning the domain we

leave the choice of which to use until section 3.4 where the consequences of the

choice can be more clearly seen.

3.3.2 Choice of Local Mass Constant

The second choice that must be made in regards to partitioning the domain is

how to choose the length of the subintervals.
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The obvious choice here is to start with a uniform length of intervals. Explicitly,

this is defining the intervals such that

x̂j+1(0)− x̂j(0) = l, ∀j < J, j ∈ N, (3.32)

where J is the number of nodes in the partition and l = x̂J−x̂1
J

.

While this may be the most obvious choice, we will later find that this leads to

some awkwardness. Hence we suggest an alternative based on the equidistribution

principle given in section 2.2.2. Here we restrict the local mass constants to be equal

so that

Aj = A ∀j < J, j ∈ N, (3.33)

where

A =
1

J − 1

∫ x̂J (0)

x̂1(0)

u(x, t)dx. (3.34)

Note here that this does not imply that A is time dependent as the integral is the

mass integral and the boundary values are chosen to be mass conserving.

While both options given in this section are valid, in practice the equidistributed

starting partition often leads to better results later on.
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3.4 Discretising the Lagrangian Formulation

In this section we focus on how to discretise the Lagrangian formulation. Unlike

the approximation of the Eulerian formulation of the problem which only requires the

PDE to be discretised, the Lagrangian formulation requires that the two equations

(3.15), (3.16) are discretised. These are the local conservation and the partition or

mesh velocity.

3.4.1 Mesh Movement

The key idea of the Lagrangian moving mesh method is that the domain is par-

titioned and the boundaries move such that the local mass in the partitions is con-

served. This may be discretised by considering these boundaries as nodes on a

computational mesh, leading to a numerical approximation in which the local mass

is conserved in each cell.

To compute the mesh movement the conservative velocity (3.16) must be discre-

tised. To approximate this we have choose a general Runge-Kutta approximation

x̂n+1
j = x̂nj + ∆t

s∑
i=1

biki (3.35)

where ki = x̂(x̂nj + ∆t
∑s

l=1 ailkl, t
n + ci∆t)t and ail, bi and ci are the coefficients

which define the individual scheme [MM05].

3.4.2 Quadrature Approximation

The discretisation of the local conservation involves making a choice of quadrature

approximation to discretise equation (3.15) as well as considering the choice of how

the domain is partitioned, which was discussed in the previous section. A general
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form of quadrature approximation is given by

∫ xq

xp

u(x)dx ≈ (xq − xp)
q∑
i=p

diu(xi), (3.36)

where di is a set of normalised weights such that
∑q

i=p di = 1.

Consider the overlapping partition given by equation (3.31). In this partition the

size of each interval increases the further away from the inflow boundary the moving

coordinate we are considering lies. As discussed in section 3.3 the J th interval is the

entire domain and it is clear that under such a partition the quadrature must be

very high order to accurately represent the mass over this large interval.

Consider instead the standard partition given by equation (3.30). In this case

the intervals are much closer in relative size and importantly the size of the interval

depends on the local solution u(x, t), instead of how far the outflow boundary of the

interval is from the inflow boundary condition. In this case we can take a simple

quadrature approximation to the local mass conservation.

The main difference between the two choices of partition are in how we introduce

an error. In the standard partition the error is introduced by the fact that the error

in each small interval leads to an inaccurate velocity of the local outflow boundary.

This in turn is defined to be the inflow boundary of the next interval and hence the

error is accumulated as you move further from the inflow boundary condition. The

overlapping partition introduces a similar error but this is instead due to the large

approximation on the solution u(x, t) as the intervals become larger.

In this thesis we choose to only concern ourselves with the standard partition.

This is due to the fact that the error is more easily quantifiable and hence easier
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to work with. Since we are only considering intervals with solutions known at the

nodes we simplify the general quadrature (3.36) to

∫ xj−1

xj

u(x)dx ≈ (xj − xj−1)(dju(xj) + dj−1u(xj−1)), (3.37)

where di are weights such that dj + dj−1 = 1.

3.5 A General Mass Conservative Moving Mesh

Method

In this section we put everything we have developed in the previous section to-

gether and finally arrive at a general moving mesh method for solving a general

conservation law.

In the rest of the general discussion in this thesis we will assume that we are

required to find a strictly positive numerical solution to the following scalar Eulerian

conservation law,

ut + f(u)x = 0, x ∈ (a, b), t ∈ R+, (3.38)

u(x, 0) = u0(x), x ∈ (a, b), (3.39)

u(a, t) = α, t ∈ R+, (3.40)

where α > 0 is a constant and u(x, t) > 0.

Following the steps demonstrated in section 3.1 it can be easily shown that the

resulting Lagrangian formulation to this Eulerian conservation law (3.38) is given
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by a mass conservation equation,

d

dt

∫ b̂(t)

â(t)

udx = 0, (3.41)

together with a velocity which defines the motion of the nodes to enforce conservation

of mass,

x̂t =
f(u)− ω

u
, (3.42)

where ω is the net flux which is to be determined by the boundary condition.

Section 3.2 considered what boundary conditions can be given in the Lagrangian

formulation and the question of what boundary condition should be applied for this

problem is not simple. While the initial problem (3.38)-(3.40) called for solving

the problem on a fixed interval (a, b) the Lagrangian mass conservation relies on a

moving interval (â(t), b̂(t)).

As discussed in Section 3.2, it is possible to fix â(t) = a and find a resulting net flux

ω however this still does not lead to a solution on a fixed interval since in general the

resulting outflow boundary will not be stationary, hence b̂(t) 6= b. This can be shown

to be unavoidable in non-trivial cases where u(x, t) 6= a constant, by considering

u(x, t) as a density and making an analogy to the basic physics relationship between

mass, volume and density, given by Mass = Volume × Density. In the Eulerian

problem (3.38)-(3.40) we are fixing the ‘volume’ by restricting the domain to be the

fixed interval (a, b) while in the Lagrangian framework we are requiring that the

‘Mass’ is unchanging in time. Clearly the only way that both the ‘Mass’ and the

‘Volume’ can remain invariant in time is if the ‘Density’ is also invariant, u(x, t) =

a constant. Therefore for non-trivial problems to be solved we must allow b̂(t) to
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move.

Remark 3.5.1. It is noted that allowing one of the boundaries to move when

the problem specifies a fixed domain may cause alarm for readers who are

used to solving such problems using Eulerian methods. An example that may

arise is what happens if the PDE (3.38) does not hold beyond b, while the

Lagrangian solution allows b̂(t) > b for some t?

This issue can be alleviated to some degree by considering that real world

problems that lead to constraints on the physical domain rely on systems

of conservation laws as opposed to a single scalar conservation law. Indeed a

scalar conservation law is often not suited to having interfaces where behaviour

changes, for example a wall or a change in material, and should instead be con-

sidered as a restriction of an infinite domain problem where we have truncated

the domain for computational purposes rather than physical restraints. In sec-

tion 6 this is supported by considering a problem of a fixed physical domain

and showing that the Lagrangian formulation allows the same fixed domain.

Having demonstrated that the outflow boundary can move, now consider if the

inflow boundary is actually restricted to being stationary. Indeed the restriction

(3.40) on the boundary condition being constant implies that u(x, t) is constant in

any region where the characteristics trace back to the boundary condition. Hence

we could choose to apply any boundary that starts at a and has a velocity such that

â(t) 6 f ′(α)t+ a, ∀t. (3.43)
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This is because any characteristic line which starts at the boundary carries the

same constant value of u. It follows that we may choose any path for the moving

boundary to follow in this region without change the boundary condition of the

solution.

As long as the prescribed boundary velocity satisfies the condition (3.43) then this

boundary will always lie within the region where u(x, t) = α and this is therefore

the solution boundary condition which applies for such boundaries.

Assume for ease of notation that the ‘free Lagrangian’ boundary condition (3.24)

satisfies the condition (3.43), i.e. f(α) 6 αf ′(α). In this case we can simplify

the Lagrangian formulation since the net flux is zero. Under this assumption the

complete Lagrangian formulation can be written as a local conservation of mass

d

dt

∫ x̂2(t)

x̂1(t)

udx = 0, (3.44)

giving a simplified velocity which defines the motion of the subinterval boundaries

to allow for this conservation,

x̂t =
f(u)

u
, (3.45)

with the initial condition

u(x, 0) = u0(x), x ∈ (â(0), b̂(0)), (3.46)

and, the boundary conditions

ât =
f(α)

α
and u(â(t), t) = α. (3.47)
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Note that x̂1(t) and x̂2(t) are arbitrary coordinates in the interval (â(t), b̂(t)) that

move with the mass conserving velocity (3.45).

The discussion in section 3.4 provides the final step required to derive the general

mass conservative moving mesh method to solve the original conservation law (3.38)-

(3.40), namely the discretization of equations (3.44) and (3.45).

Using the quadrature approximation (3.37) to equation (3.44) and a general

Runge-Kutta scheme for the mesh motion leads to the general moving mesh scheme

x̂n+1
j = x̂nj + ∆t

s∑
i=1

biki (3.48)

and

(x̂n+1
j − x̂n+1

j−1 )(dju
n+1
j + dj−1u

n+1
j−1 ) = Aj−1/2, (3.49)

where ki = x̂t(x̂
n
j + ∆t

∑s
l=1 ailkl, t

n + ci∆t) and ail, bi, ci and di are the coefficients

which define the scheme.

The numerical solution is found by applying the approximations (3.48) and (3.49)

in the following algorithm:

1. Choose the initial partition of the initial domain and use the initial condition

(3.46) to evaluate the solution values, u0
j on this initial mesh.

2. Use the calculated u0
j to calculate the local mass constants, Aj−1/2, using the

quadrature approximation (3.49).

3. Use an appropriate timestep, ∆t, in the timestepping scheme (3.48) to update

the node positions, x̂n+1
j , the new mesh.
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4. On the new mesh use the general quadrature (3.49) to recover the new solution

values, un+1
j , on the nodes.

5. Repeat steps 3 and 4 until the desired termination time is reached.

3.6 Examples

In this section we demonstrate how the framework developed in this section can

be applied to the example conservation laws introduced in section 2.1.5.

In the first example we look at the derivation of the scheme step by step to

demonstrate how such a scheme can be constructed from scratch, while in the other

two examples we use the general forms found earlier in the chapter as shortcuts to

deriving the scheme.

3.6.1 Linear Advection Equation

As noted in section 2.1.5 the simplest scalar conservation law is the linear advec-

tion equation where f(u) = au with a constant. This leads to the linear conservation

law

ut + aux = 0, (3.50)

with a given initial condition u0(x) and a free Lagrangian boundary condition.

As the scheme is desired to be mass conserving, the rate of change of the mass in

a moving interval over time should be zero, hence

d

dt

∫ x̂2(t)

x̂1(t)

udx = 0. (3.51)
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Applying Leibniz integral rule to equation (3.51) gives

∫ x̂2(t)

x̂1(t)

utdx+ [ux̂t]
x̂2(t)
x̂1(t) = 0, (3.52)

and appealing to the conservation law (3.50) yields

−
∫ x̂2(t)

x̂1(t)

auxdx+ [ux̂t]
x̂2(t)
x̂1(t) = 0. (3.53)

The fundamental theorem of calculus can be used to show that

[ux̂t − au]
x̂2(t)
x̂1(t) = 0. (3.54)

Under the given boundary condition we know that ux̂t − au = 0 when evaluated

at the inflow boundary. Hence, it follows that the mass conservative velocity for an

arbitrary moving coordinate is given by

x̂t = a. (3.55)

Having chosen mass conservation and found the associated conservative veloc-

ity, the actual discretisation can be chosen. In regard to the choice of partition

from section 3.3 we consider only the standard partition and choose an initial node

distribution based on equidistribution.

Selecting a simple one-sided quadrature as the discretisation of the local mass

conservation (3.51) leads to

unj
(
x̂nj − x̂nj−1

)
= A, (3.56)

where A is a single constant for all cells due to equidistribution.

60



To approximate the mesh velocity (3.55) we choose to use the forward Euler

explicit method, yielding

x̂n+1
j = x̂nj + a∆t. (3.57)

Together equations (3.56) and (3.57) form the mass conservative moving mesh

method for solving the linear advection equation (3.50). The scheme is applied by

using equation (3.57) to update the mesh and then using the quadrature (3.56) to

recover the solution at each timestep.

Remark 3.6.1. Note that the linear advection equation (3.50) is a special

case for our class of numerical schemes. This is due to the fact that f(u)

is linear and as a result x̂t = f(u)
u

is a constant for all nodes in the mesh.

Considering the numerical method (3.56)-(3.57) derived, it is clear that since

the nodes x̂j and x̂j−1 have the same velocity for all time, the quadrature is

not actually required as the solution value, unj , remains constant. As a result

the scheme is easily verifiable as exact in time with the only error occurring

in the original discretisation of the initial condition.

To demonstrate the scheme we consider a single wave with u constant everywhere

else. The test problem is given by defining the constant

a = 1, (3.58)

the initial condition

u0(x) =

 (x2 − 1)2 + 0.5 −1 6 x 6 1

0.5 otherwise
, (3.59)
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the inflow boundary trajectory

x̂0(t) = t− 2, (3.60)

and an initial domain, [−2, 2].

Note that we are not required to prescribe a solution boundary condition as for

the linear advection equation the ‘free Lagrangian’ boundary condition coincides

with the characteristic boundary condition since f ′(u) = f(u)
u

. This implies that the

problem is actually an IVP as opposed to a IBVP.

The numerical scheme (3.56)-(3.57) is run with 41 computational nodes over an

initial domain of [−2, 2] with a timestep of ∆t = 0.1. Figure 3.5 shows the numerical

solution up to time t = 1.
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Figure 3.5: These graphs show various aspects of the numerical solution to the linear
advection equation obtained from the scheme (3.56)-(3.57). The graphs show (A)
the solution as a surface in (x,t,u) space. (B) computational node trajectories in the
(x,t) plane. (C) the solution at time t = 0. (D) the solution at time t = 1.
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It is clear from Figure 3.5 that the notes made in remark 3.6.1 hold since the

solution does not diffuse or blow up. The numerical solution moves with the speed

expected and the only error is incurred in the discretisation of the initial condition.

3.6.2 Inviscid Burgers’ Equation

The simplest nonlinear conservation law is the Inviscid Burgers’ equation. In this

equation f(u) = 1
2
u2 leading to the PDE

ut +

(
1

2
u2

)
x

= 0, (3.61)

with a given initial condition u0(x) and a free Lagrangian boundary condition.

Since Lagrangian mass conservation is desired, the general mass conservative for-

mulation (3.44)-(3.45) is applied. This leads to the Lagrangian formulation for

Inviscid Burgers’ equation being the mass conservation equation,

∫ x̂2(t)

x̂1(t)

udx = constant, (3.62)

and the conservative velocity

x̂t =
f(u)

u
=

1

2
u. (3.63)

As in the linear advection example we choose to apply a one-sided quadrature

approximation to the local conservation law (3.62),

unj
(
x̂nj − x̂nj−1

)
= A, (3.64)
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where A is a single constant for all cells due to equidistribution. To approximate

the mesh movement (3.63) we again use the explicit forward Euler method, yielding

x̂n+1
j = x̂nj +

∆t

2
unj . (3.65)

As a test problem for this numerical scheme we give the piecewise linear initial

condition

u0(x) =


1.1 + x −1 < x 6 0

1.1− x 0 < x < 1

0.1 otherwise

, (3.66)

the inflow boundary condition

u(x̂0(t), t) = 0.1, (3.67)

the inflow boundary velocity

dx̂0(t)

dt
=

1

2
u(x̂0(t), t) = 0.05 (3.68)

with the initial domain, [−2, 2].

As noted in section 2.1.5, since the initial and boundary conditions are piecewise

linear an exact solution for this problem can be calculated via the method of char-

acteristics. In this case the exact solution has two distinct time regimes, pre-shock

formation and post-shock formation. The shock can easily be shown to occur at
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time t = 1. The pre-shock solution for t < 1 is then given as

u(x, t) =


x+ 1.1

t+ 1
0.1t− 1 < x 6 1.1t

x− 1.1

t− 1
1.1t < x < 0.1t+ 1

0.1 otherwise

, (3.69)

and the post-shock solution for t > 1 is

u(x, t) =


x+ 1.1

t+ 1
0.1t− 1 < x 6 0.1t+

√
2t+ 2− 1

0.1 otherwise
. (3.70)

The numerical method (3.64)-(3.65) is run with 41 computational nodes over the

initial domain [−2, 2] with a timestep of ∆t = 0.05. Figure 3.6A shows the solution

at time t = 0.9 before a shock has formed and Figure 3.6B shows the solution at

time t = 1.5 after the shock has formed and propagated.
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Figure 3.6: These graphs show the comparison between the numerical solution (Blue)
to Inviscid Burgers Equation obtained from the scheme (3.64)-(3.65) and the exact
solution (Red). Comparisons are taken at the pre-shock time regime t = 0.9 (A)
and the post shock time regime t = 1.5 (B).
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Figure 3.6A shows that unlike the linear example the Inviscid Burgers’ scheme is

prone to numerical diffusion. The interesting result is the post shock time regime

in Figure 3.6B, where the numerical scheme is correctly approximating the shock

speed.

3.6.3 Buckley-Leverett Equation

The final conservation law we consider from Section 2.1.5 is the Buckley-Leverett

equation. This equation is given by

ut + f(u)x = 0, (3.71)

with a given initial condition u0(x) and a free Lagrangian boundary condition, where

f(u) =


u2

u2 +M(1− u)2
0 6 u 6 1

0 u < 0

1 u > 1

, (3.72)

and M > 0 is a given constant.

Using the general Lagrangian velocity formula for free Lagrangian boundary con-

ditions (3.45) gives

x̂t =
f(u)

u
=


u

u2 +M(1− u)2
0 < u 6 1

1
u

u > 1
, (3.73)

where we note that the u 6 0 cases have been omitted since these problems do

not fall into the class of problem solvable by the conservation based moving mesh

method.
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We use the same approximations to the local conservation (3.44) and the mesh

movement (3.73) as in the previous two examples, these are a one-sided quadrature

and the explicit forward Euler method, respectively.

We test the scheme with 41 computational nodes and a timestep of ∆t = 0.0001

over the region [−2, 0]. We choose M = 0.5, the discontinuous initial condition

u(x, 0) =

 1 x < −1

0.11 otherwise
, (3.74)

the boundary condition

u(x̂0(t), t) = 1, (3.75)

and the boundary velocity

dx̂0(t)

dt
=

u(x̂0(t), t)

u(x̂0(t), t)2
= 1. (3.76)

In Figure 3.7 the solution is shown at times t = 0 (black), t = 0.2 (red), t = 0.4

(blue) and t = 0.6 (green).

We note that in Figure 3.7 the initial discontinuity splits as would be expected

from a non-convex flux function. In addition we also note that the discontinuity

which is initially poorly approximated steepens as the mesh refines around it.
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Figure 3.7: This graph shows the moving mesh approximation of the Buckley-
Leverett equation with initial condition (3.74) and boundary conditions (3.75) and
(3.76). The numerical approximation is shown at times t = 0 (black), t = 0.2 (red),
t = 0.4 (blue) and t = 0.6 (green).
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Chapter 4

Analysis of Mass Conserving

Moving Mesh Methods

In the previous chapter we demonstrated how to derive a mass conservative moving

mesh scheme for a given conservation law. As noted in Section 2.3, this class of

methods has been widely applied to nonlinear diffusion problems to yield effective

numerical results, for example in [BHJ11]. However, analysis of the schemes is often

omitted since special issues arise when considering the moving mesh for which the

schemes are nonlinear.

In this chapter we will discuss the main issues that arise when considering moving

mesh methods as opposed to standard Eulerian fixed mesh methods before introduc-

ing a transformation to a fixed reference space in which the analysis of the schemes

is feasible. Finally we will use this new space to show how the accuracy, stability

and convergence of such schemes can be obtained.
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4.1 Problems with Moving Meshes

The analysis of fixed grid finite difference and finite volume schemes for conserva-

tion laws is well established and is based on estimating a global error in the solution

at each node of the mesh [GMP15]. This global error is defined to be

En
j = |u(xj, t

n)− unj | (4.1)

at node j, where unj is the numerical solution at the node and u(xj, t
n) is the exact

solution at this point at time tn.

A similar approach may be taken with moving mesh methods by defining the

standard global truncation error to be

Snj = |u(x̂nj , t
n)− unj | (4.2)

where u(x̂nj , t
n) is the exact solution at the position of the moving node and unj is

the corresponding numerical solution.

This gives the error that users of the moving mesh method are most interested in,

since it is easily comparable with standard fixed grid method errors. However, the

definition (4.2) of global error neglects to take into account the displacement of the

mesh, and hence we introduce the notion of the true global error. This is defined to

be

T nj =

√(
u(x̂(χj, tn), tn)− unj

)2
+
(
x̂(χj, tn)− x̂nj

)2
(4.3)

where χj is a spatial variable label that defines a specific trajectory, x̂(χj, t
n) which

gives the point in space where the node would be if the time-stepping scheme were
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exact, and u(x̂(χj, t
n), tn) is the exact solution at that point.

The true error can be broken into two component errors, namely the error in the

solution, unj , and the error in the position, x̂nj . This decomposition of the error is

shown graphically in Figure 4.1.

Figure 4.1: The True Error in the scheme broken down into solution error, Un
j , and

position error, Xn
j , components.

It is clear from Figure 4.1 that by defining the solution error to be

Un
j = |u(x̂(χj, t

n), tn)− unj |, (4.4)

and the position error to be

Xn
j = |x̂(χj, t

n)− x̂nj | (4.5)

and, using the orthogonality of the errors leads to our definition of the true error

(4.3),

T nj =

√(
Un
j

)2
+
(
Xn
j

)2
. (4.6)
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Both the standard error and the true error are useful for different purposes and

it is therefore important that a connection is made between the errors. Figure 4.2

demonstrates an example of (i) a single node and (ii) the two points on the exact

solution which are used to define the two global errors.

Figure 4.2: The Standard Finite Difference Error (Blue) Compared with the True
Error in the Moving Mesh Scheme (Red).

As previously mentioned, the standard error is the most intuitive for anyone

using the moving mesh scheme since the point x̂(χj, t
n) is not generally considered

when applying this type of scheme. However, since the moving mesh scheme is

a discretisation of the continuous moving frame formulation (3.44)-(3.45) it is the

true error which is required to converge. Theorem 4.1.1 shows that, under certain

conditions, convergence of the true error causes convergence of the standard error.

Theorem 4.1.1. Given a moving mesh formulation (3.44)-(3.45) of a PDE (2.1)

and a corresponding moving mesh numerical approximation (3.48)-(3.49): if the

numerical approximation is such that the true error tends to zero and the exact

solution u(x, t) is continuous at the point x̂(χj, t
n) then the standard error also

tends to zero.

Proof. We start by considering the true error as x̂nj → x̂(χj, t
n) and as unj →

u(x̂(χj, t
n), tn). In particular, substituting equations (4.4) and (4.5) into equation

72



(4.3) gives

√(
Un
j

)2
+
(
Xn
j

)2 → 0, (4.7)

which implies that both component errors must also be approaching 0. Hence as

the true error tends to 0,

Un
j → 0 and Xn

j → 0. (4.8)

If we now consider the definition of the standard error (4.2) we may apply the

inequality,

|u(x̂nj , t
n)− unj | 6 |u(x̂nj , t

n)− u(x̂(χj, t
n), tn)|+ |u(x̂(χj, t

n), tn)− unj |, (4.9)

and by using the definition of the solution error (4.4) we can simplify (4.9) to yield

|u(x̂nj , t
n)− unj | 6 |u(x̂nj , t

n)− u(x̂(χj, t
n), tn)|+ Un

j . (4.10)

It follows from the definition of the position error (4.5) that as Xn
j → 0

|x̂(χj, t
n)− x̂nj | → 0, (4.11)

and furthermore due to the assumption that the exact solution is continuous at

x̂(χj, t
n) it follows from the Mean Value Theorem that

|u(x̂nj , t
n)− u(x̂(χj, t

n), tn)| =
∣∣∣∣ ∂u∂x

∣∣∣∣
θ

∣∣∣∣ ∣∣x̂(χj, t
n)− x̂nj

∣∣→ 0, (4.12)

where θ is a position between x̂(χj, t
n) and x̂nj .

73



Combining equations (4.8), (4.10) and (4.12) yields the required result.

Theorem 4.1.1 shows that at all points besides discontinuities in the solution,

convergence of the true error implies convergence of the standard error. Hence for

the rest of this chapter we concern ourselves only with the true error of the numerical

scheme.

4.2 Transformation to a Reference Space

In this section we introduce a useful tool for analysing our moving mesh schemes.

The idea is to transform both the conservation law and the corresponding numerical

scheme into a space in which the scheme is applied over a fixed grid. This allows

the use of well developed methods of finding accuracy, stability and convergence.

The transformation used is based on a mapping given in [BHR96]. However, in

that paper the authors use the transformation as an actual tool for numerically

solving problems whereas here it is simply used as an analytical tool to obtain a

reference space.

We call the space in which our problem is posed ‘physical space’ and the space

into which we transform the ‘reference space’.

The reference space is defined by the following properties:

1. Any point x̂ moving with the required velocity for conservation of the monitor

function in physical space is stationary in the reference space.

2. The physical domain of our scheme maps to [0, 1] in the reference space.
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3. The integral of the monitor function between an arbitrary point moving with

the correct speed, x̂, and an anchor point in physical space is linearly propor-

tional to the distance between them in the reference space.

We first transform the moving co-ordinate, x̂, from physical space to a fixed spatial

co-ordinate, ξ, in a reference space. In particular we let

x̂ = x̂(ξ, τ), t = τ and u(x̂(ξ, τ), τ) = ũ(ξ, τ). (4.13)

It follows by the chain rule that


∂

∂τ

∂

∂ξ

 =

 1
∂x̂

∂τ

0
∂x̂

∂ξ




∂

∂t

∂

∂x̂



⇒


∂

∂t

∂

∂x̂

 =
1

x̂ξ

 ∂x̂

∂ξ
−∂x̂
∂τ

0 1




∂

∂τ

∂

∂ξ

 . (4.14)

Applying this transformation to the conservation law (2.1) we see that

ut + fx(u) = 0

⇒ 1

x̂ξ
(x̂ξũτ − x̂τ ũξ + f(ũ)ξ) = 0

⇒ ũτ +
1

x̂ξ
(f(ũ)ξ − x̂τ ũξ) = 0. (4.15)
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We now note that since x̂τ = f(u)
u

under local mass conservation from (3.45),

equation (4.15) becomes

ũτ +
ũf(ũ)ξ − f(ũ)ũξ

ũx̂ξ
= 0

⇒ ũτ +
ũ

x̂ξ

(
f(ũ)

ũ

)
ξ

= 0. (4.16)

All that remains to obtain a PDE for u is to eliminate x̂ξ. In order to achieve this

we define

K(ξ) =

∫ ξ

ξ0

ũ(ξ̂, τ)x̂ξ̂dξ̂, (4.17)

where ξ0 is the transform of the point x̂0. We note that applying the inverse

transform (4.13) yields

∫ ξ

ξ0

ũ(ξ̂, τ)x̂ξ̂dξ̂ =

∫ x̂

x̂0

u(x, t)dx, (4.18)

which is defined to be constant in time, hence the definition thatK(ξ) is independent

of τ is valid.

Differentiating (4.17) with respect to ξ we see that

Kξ = ũx̂ξ. (4.19)

Substituting equation (4.19) into equation (4.16), we obtain the PDE

ũτ +
ũ2

Kξ

(
f

ũ

)
ξ

= 0. (4.20)
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We note that (4.20) is not a classical conservation law due to the factor u2

Kξ
. How-

ever, in order to exploit the equation it would be beneficial if we could reformulate

it as a classical conservation law, as follows.

The first step in reformulating equation (4.20) is to rewrite the equation such

that the dependent variable ũ does not appear outside of the derivative in the

second term. This can be achieved by making certain polynomial assumptions on

f . However, for general f we can define a new dependent variable w = 1
ũ
.

Using this new variable the transformed PDE (4.20) becomes

(
1

w

)
τ

+
1

w2Kξ

(
wf

(
1

w

))
ξ

= 0

⇒ wτ −
1

Kξ

(
wf

(
1

w

))
ξ

= 0. (4.21)

All that remains in order for the transformed PDE to be a classical conservation

law is to show that Kξ is a constant in space. In order to show this we begin by

noting that we have made no assumptions on ξ other than that it is time independent

and recall the equidistribution principle from Section 2.2.2.

Definition 4.2.1 (Equidistribution Principle). The equidistribution principle states

that for 0 6 χ 6 1

∫ x̂(χ,t)

x̂0

udx = χ

∫ x̂F

x̂0

udx. (4.22)

Note here that the LHS of the definition (4.22) defines a proportion of the integral

over the whole region (x̂0, x̂F ) in physical space which has a constant value due to

our requirement of mass conservation.
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If we let the reference space coordinate ξ be χ as defined by the equidistribution

principle and transform equation (4.22) to the fixed reference space then

∫ ξ

ξ0

x̂ξ
w
dξ̂ = ξ

∫ ξF

ξ0

x̂ξ
w
dξ̂. (4.23)

We notice that the LHS of equation (4.23) is by definition K(ξ) from (4.17) hence

K(ξ) = ξ

∫ ξF

ξ0

x̂ξ̂
w
dξ̂, (4.24)

is linear in ξ and therefore Kξ is constant as required.

We now define the transformed flux function, f̃(w), to be given by

f̃(w) := − w

Kξ

f

(
1

w

)
. (4.25)

Summarising, if we choose the mapping (4.13) to ξ which is given by the equidis-

tribution principle, then equation (4.21) is a conservation law with the transformed

flux function (4.25). This conservation law is given by

wτ + f̃(w)ξ = 0. (4.26)

The transform of the numerical scheme (3.48)-(3.49) to the reference space is

simple to achieve. Using Equations (3.48)-(3.49), we eliminate any x̂ terms: indeed,

for the example scheme (3.64)-(3.65) by subtracting (3.65) at node j−1 from (3.65)

at node j,

x̂n+1
j − x̂n+1

j−1 − (x̂nj − x̂nj−1) = ∆t

(
fnj
unj
−
fnj−1

unj−1

)
. (4.27)
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Using the local conservation principle (3.64) to eliminate the x̂ terms gives

c

un+1
j

− c

unj
= ∆t

(
fnj
unj
−
fnj−1

unj−1

)
, (4.28)

where c is the local mass constant.

We note that Equation (4.28) can be seen as the upwind moving mesh approxi-

mation to Equation (4.25).

Finally using wnj = 1
unj

, ∆t = ∆τ and rearranging gives

wn+1
j − wnj

∆τ
− 1

c

(
wnj f

n
j − wnj−1f

n
j−1

)
= 0. (4.29)

This shows that the transformation to reference space is relatively simple for both

the PDE and the numerical method and gives a conservation law for the PDE and

a conservative form numerical method with associated numerical flux function. In

the following sections we make use of this transformation as a tool to obtain the

accuracy and stability conditions and show convergence.

4.3 Accuracy

In the previous section we introduced the transformation to the equidistribution

reference space as a mathematical tool for helping with analysis of our moving mesh

schemes. In this section we use the transformation to show how the accuracy of a

scheme can be analysed.

Before the order of the schemes can be analysed however we must first consider the

order of both the true error (4.3) and the standard error (4.2) which were introduced
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at the start of this chapter.

4.3.1 Comparing the Standard Error and the True Error

At the beginning of this chapter we briefly discussed the issues with calculating the

error for our conservation based moving mesh schemes. Importantly, the actual error

that should be decreasing is not very useful for end users of the scheme. Theorem

4.1.1 shows that the true error (4.3) and the standard error (4.2) converge to zero

together away from shocks, however this is insufficient for considering the order of

each scheme.

As shown in the proof of Theorem 4.1.1 both the standard and the true error may

be written in terms of the component errors

Snj = u(x̂(χj, t
n), tn)− unj and Xn

j = x̂(χj, t
n)− x̂nj . (4.30)

The true error is given by

T nj =
√

(Un
j )2 + (Xn

j )2 (4.31)

and the standard error is bounded by

Snj 6

∣∣∣∣∂u∂x
∣∣∣∣∣∣∣∣
θ

Xn
j + Un

j . (4.32)

Now assume that the orders of the component errors Un
j and Xn

j are known. Then

we may write each as

Un
j = O(∆xk) +O(∆tm) (4.33)
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and

Xn
j = O(∆xl) +O(∆tn) (4.34)

for some k, l,m and n.

It follows from inserting equations (4.33) and (4.34) into equation (4.31) that the

true error is then

T nj =
√

(O(∆xk) +O(∆tm))2 + (O(∆xl) +O(∆tn))2, (4.35)

which simplifies under the assumption that ∆x and ∆t are changed proportionally

and disregarding higher order terms to yield

T nj = O(∆xmin(k,l)) +O(∆tmin(m,n)). (4.36)

Equation (4.36) shows that the true error is a combination of the lowest space

and time orders in the component errors.

Applying the same process to the inequality (4.32) gives

Snj 6

∣∣∣∣∂u∂x
∣∣∣∣∣∣∣∣
θ

(O(∆xl) +O(∆tn)) +O(∆xk) +O(∆tm) (4.37)

which trivially reduces to

Snj 6 O(∆xmin(k,l)) +O(∆tmin(m,n)). (4.38)

It follows from the inequality (4.38) that in the worst case scenario the standard

error is of the same order as the true error.
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As a result of the equation (4.36) and the inequality (4.38) we can now find the

order of the true error and the worst case scenario order for the standard error if we

know the orders of the solution error Un
j and the position error Xn

j .

4.3.2 Finding the Solution and Position Errors

Having reduced the question of accuracy down to having to find the order of both

the solution error Un
j and the position error Xn

j we now use the reference space

transform from Section 4.2 to find these orders.

It is noted that in the reference space the mesh is static and hence there is no

position error in the reference space. As a result there is only a single error in the

reference space which is related to the solution error by

Un
j =

1

w(ξj, τn)wnj
(w(ξj, τ

n)− wnj ). (4.39)

Since the reference space PDE is known and the transformed numerical scheme is

on a static mesh the order of the transformed numerical scheme is easily calculated.

Assuming that the reference space scheme is pth order in space and qth order in time

gives the solution error as

Un
j = O(∆ξp) +O(∆τ q), (4.40)

which can be changed to physical space parameters to give

Un
j = O(∆Ap) +O(∆tq), (4.41)

where A is the local mass constant.
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Note that unlike static mesh methods the spatial order is given in terms of the

local mass constant A instead of the spatial step ∆x. This is due to the fact that

the scheme replaces the notion of fixed ‘volumes’ with fixed masses and hence the

quantity ∆x is not useful since we cannot say what size it has in general. This is still

consistent with regular definitions of order since both a reduction in spatial step ∆x

for Eulerian methods and a reduction in the local mass constant A in our scheme

are results of increasing the number of nodes in the mesh.

Now all that remains is to find the position error. Recall from Section 4.2 that

x̂ξ = Kξw, (4.42)

where Kξ is a constant as defined in equation (4.19).

Since equation (4.42) shows that x̂ξ and w are related by a constant this implies

that the errors in both are accurate to the same order. Hence under the same

assumption made on the order of the reference space scheme before it follows that

the numerical approximation of x̂ξ is accurate to the pth order in space and the qth

order in time.

We now need to find the order of the error in x̂ from the error in x̂ξ. It is

an established result that if an approximation is nth order then the error in the

derivative is n − 1th order. This holds only over a single interval however and

summing over a number of intervals inversely proportional to the spatial step reduces

the order by one. Hence, it follows that the order does not change since these two

effects cancel out and thus

Xn
j = O(∆Ap) +O(∆tq). (4.43)
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Combining the component errors (4.41) and (4.43) with the results (4.36) and

(4.38) show that

T nj = O(∆xp) +O(∆tq), (4.44)

and

Snj 6 O(∆xp) +O(∆tq). (4.45)

In conclusion the error in the moving mesh Lagrangian scheme is of equal order

in both space and time to the transformed reference space PDE.

4.4 Stability

In this section we consider a stability framework for the schemes derived using

the Lagrangian formulation of the problem.

We start by considering the non-crossing criterion which prevents mesh tangling

in physical space before moving on to using the transform given in Section 4.2 to

find a true stability condition.

4.4.1 Non-crossing Criterion

As mentioned at the start of this chapter, a large issue that arises concerning

moving mesh methods is mesh tangling. Mesh tangling occurs when the order of

the nodes changes due to a poor discretisation of the problem. In this section we

will demonstrate a general non-crossing criterion and show how this is necessary but

not sufficient for stability of the solution.
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Start by assuming that at the nth timestep the computational mesh is untangled.

Then consider that for nodes j and j−1 to remain ordered after a further time step,

the inequality

x̂n+1
j > x̂n+1

j−1 . (4.46)

must hold for non-tangling.

Using a general timestepping scheme (3.48), where we simplify the velocity term

to vnj for ease of reading, yields the inequality

x̂nj + ∆tv
n+1/2
j > x̂nj−1 + ∆tv

n+1/2
j−1 (4.47)

where v
n+1/2
j is a general approximation of the jth node velocity and may be fully

explicit, fully implicit or a combination of both.

The inequality (4.47) may be rearranged to find the restriction on ∆t to ensure

that (4.46) holds. This restriction is given by

∆t <
x̂nj − x̂nj−1

v
n+1/2
j−1 − vn+1/2

j

, (4.48)

since v
n+1/2
j−1 > v

n+1/2
j for crossing to occur and hence v

n+1/2
j−1 − vn+1/2

j is positive.

Note that the inequality (4.48) only accounts for the possibility that the j − 1th

node will cross the jth node during this particular timestep. Hence this leads to the

requirement that the timestep for nodes j and j − 1 between timesteps n and n+ 1
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is given by

∆t
n+1/2
j−1/2 6

x̂nj − x̂nj−1

v
n+1/2
j−1 − vn+1/2

j

if v
n+1/2
j−1 > v

n+1/2
j , (4.49)

and no requirement otherwise.

Definition (4.49) allows ∆tn+1/2 to be calculated for the entire mesh. Explicitly

this is

∆tn+1/2 = min
j

∆t
n+1/2
j−1/2 . (4.50)

The timestep definition (4.50) ensures that mesh tangling will not occur, however

this does not imply stability of the scheme and is generally not a practical condition

to apply.

The problem with this definition of the timestep is that we cannot guarantee

that the timestep will not approach zero, stopping the method from proceeding

further. To demonstrate this consider a problem in which the coordinate x̂j remains

stationary and the coordinate x̂j−1 is moving towards x̂j with a constant speed. In

this case the local timestepping restriction can be calculated to give

∆t
n+1/2
j−1/2 <

x̂nj − x̂nj−1

v
n+1/2
j−1

. (4.51)

The inequality (4.51) shows that since x̂nj and v
n+1/2
j−1 are constant and x̂nj−1 is

approaching x̂nj the timestep must go to zero. This exact situation can occur around

a shock in a solution and is therefore a very real problem.

The second problem with using (4.50) as the adaptive timestep choice is that this

is not a guarantee of stability. To illustrate this consider the simple quadrature
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approximation to the local mass conservation (3.44),

unj
(
x̂nj − x̂nj−1

)
= Aj−1/2, (4.52)

where Aj−1/2 is the local mass constant.

The choice of adaptive timestep (4.50) ensures that x̂nj−x̂nj−1 > 0, however it places

no limit on how small this can become. It follows directly from the quadrature choice

(4.52) that since x̂nj − x̂nj−1 can become arbitrarily small then unj can grow arbitrarily

large.

The fact that the non-crossing criterion does not ensure stability of the solution,

u, as well as not guaranteeing a positive timestep leads to the conclusion that while

this is a necessary condition for non-tangling of the mesh, it is not sufficient for

ensuring a stable numerical approximation of u.

In the next few sections we will develop a better time step restriction and show

that this also ensures that the mesh does not tangle, as well as providing stability

of the numerical solution.

4.4.2 Stability Via Reference Space

We now consider a method for finding the stability of the numerical solution,

unj by considering the reference space PDE and associated numerical scheme from

Section 4.2. The premise here is that we can take the stability condition of the

transformed scheme and show that applying the inverse transform to the condition

does not cause it to change.
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Total Variation Diminishing

Since we have been able to transform both the PDE and the numerical scheme to a

space with a fixed spatial coordinate, we may now appeal to well established results

for the stability of fixed grid schemes. In particular, since we have a conservation

law and a scheme in conservative form, we consider TVD stability analysis [Har83].

We recall from section 2.1.3 that a scheme may be shown to be TVD by applying

Harten’s Theorem.

Theorem 4.4.1 (Harten’s Theorem). If a scheme can be written in the form

wn+1
j = wnj − Cj−1/2(wnj − wnj−1) +Dj+1/2(wnj+1 − wnj )

where Cj−1/2 > 0, Dj+1/2 > 0 and 1−Cj−1/2−Dj−1/2 > 0 then the scheme is TVD.

If we are able to show that our transformed scheme for w is TVD via Harten’s

theorem then since u = 1
w

it only remains to be shown that the scheme for u is also

stable.

TVD Property and the Transform

In section 4.2 we defined the transformation of variables,

x̂ = x̂(ξ, τ), t = τ where u(x̂(ξ, τ), τ) =
1

w(ξ, τ)
, (4.53)

and demonstrated how this transform may be applied to our numerical scheme.

In this section we seek to show that this TVD property remains valid through

this transform and may therefore be applied to the original numerical scheme.
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In order to show this we first show that by choosing our timestep in such a way that

our scheme meets the criteria for Harten’s theorem, the transform does not affect

the order of nodes (i.e. there is no mesh tangling). Secondly, having shown this, we

consider whether the change of variables from u to w leads to the introduction of

new extrema or an increase in the current extrema.

In this section we consider the general mass conserving moving mesh numerical

scheme (3.48)-(3.49) since all of the results hold of any such scheme.

Lemma 4.4.2. If a moving mesh numerical scheme of the form (3.48)-(3.49) has a

corresponding transformed scheme (4.29) that has been shown to be TVD for ∆t 6 T ,

then

x̂n+1
j < x̂n+1

j+1 ∀j. (4.54)

Proof. Assume that the timestep has met the criteria that ∆t 6 T and that in

the moving mesh numerical scheme (3.48)-(3.49) there is at least one J such that

x̂n+1
J > x̂n+1

J+1 (i.e. the mesh has tangled).

Since the transformed numerical scheme (4.29) is obtained by the simple elim-

ination of x̂ terms in the system (3.48)-(3.49) it is clear that if unj = 1
wnj

then

un+1
j = 1

wn+1
j

.

Furthermore by equation (3.49) it is clear that since the dj’s and Aj−1/2 are all

positive that un+1
j̃

6 0 for some j̃ since x̂n+1
J+1 − x̂

n+1
J 6 0. Then the corresponding

wn+1
j̃

must also be negative, but this is a contradiction with the strictly positive

initial data and the fact that the transformed scheme is TVD.

Lemma 4.4.3. If a moving mesh numerical scheme of the form (3.48)-(3.49) has a

corresponding transformed scheme (4.29) that has been shown to be TVD for ∆t 6 T ,
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then the original moving mesh scheme is also TVD for ∆t 6 T .

Proof. We have already shown in the previous Lemma that for this choice of ∆t the

moving mesh scheme is not prone to mesh tangling. Hence all that remains to be

shown is that the change of variable from unj to wnj does not lead to the introduction

of new extrema or the increase of current extrema.

Again, since the transformed numerical scheme (4.29) is obtained by simple elim-

ination of x̂ terms in the system (3.48)-(3.49) it is clear that if unj = 1
wnj

then un+1
j =

1
wn+1
j

. It follows that since the numerical solution obtained from the transformed

scheme is bounded, the moving mesh numerical solution must also be bounded.

Consider the approximation to wξ,

wj − wj−1

ξj − ξj−1

=
1

ξj − ξj−1

(
1

uj
− 1

uj−1

)
= − 1

ujuj−1

uj − uj−1

ξj − ξj−1

, (4.55)

where we note again that uj and uj−1 are bounded and positive.

Since we have already shown that mesh tangling does not occur for ∆t 6 T it

follows that since u > 0

uj − uj−1

ξj − ξj−1

= Cj
uj − uj−1

x̂j − x̂j−1

, (4.56)

where Cj is a positive constant associated with each cell. Hence,

sgn

(
wj − wj−1

ξj − ξj−1

)
= −sgn

(
uj − uj−1

x̂j − x̂j−1

)
, (4.57)
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and it follows that since the transformed scheme is TVD we cannot have spurious

oscillations occurring in our solution unj .

4.5 Convergence

In the previous section we showed how a numerical scheme (3.48)-(3.49) which

approximates the moving frame formulation (3.44)-(3.45) may be transformed into

a reference space in order to determine conditions under which the scheme is total

variation diminishing.

In this section we will continue to use the reference space as a tool to show

convergence of an altered transformed scheme. We first introduce the notion of a

vanishing viscosity solution.

4.5.1 Vanishing Viscosity Solution

In general there are infinitely many solutions to the weak form of the PDE (2.22).

We therefore seek the physically relevant solution and motivate this by introducing

the viscous regularisation through the problem

uεt + f(uε)x = εuεxx, x ∈ (a, b), t ∈ R+, (4.58)

uε(x, 0) = uε0(x), x ∈ (a, b), (4.59)

uε(a, t) = uε(b, t), t ∈ R+, (4.60)

where ε > 0 and a and b are constant.

This regularised PDE (4.58) admits a unique weak solution for positive ε. Cock-

burn [Coc03] suggests that the physically relevant solution of (3.1) may be found by

taking the limit of these weak solutions of (4.58) as ε ↓ 0.
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This requires that we show that the limiting solution satisfies the weak form of

the conservation law (2.22) and in order to show this we introduce the notion of

entropy.

Definition 4.5.1 (Entropy and Entropy Flux). Two smooth functions η(u) and

q(u) form an entropy/entropy flux pair of the conservation law (3.1) provided that

η(u) is convex and

q′(u) = η′(u)f ′(u). (4.61)

Remark 4.5.2. Since we only consider scalar conservation laws, any convex

function of u is a valid entropy, η(u), with a corresponding entropy flux, namely

q(u) =

∫
η′(ũ)f ′(ũ)dũ. (4.62)

It follows from the requirement (4.61) that for smooth solutions to the conserva-

tion law (3.1) the entropy also satisfies a scalar conservation law since,

η(u)t + q(u)x = η′(u)ut + q′(u)ux

= η′(u)ut + η′(u)f ′(u)ux

= η′(u)(ut + f(u)x)

= 0. (4.63)

However as we have previously stated, general solutions to the conservation law

(3.1) are not smooth. Hence we suggest replacing (4.63) by the inequality

η(u)t + q(u)x 6 0, (4.64)

which leads to the definition of an entropy solution to the conservation law (3.1).
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Definition 4.5.3 (Entropy Solution). A function u is said to be an entropy solution

of the conservation law (3.1), with associated entropy/entropy flux pair (η, q), if it

satisfies the weak form of the the PDE,

∫ ∞
0

∫ b

a

(ψtu+ ψxf(u))dxdt+

∫ b

a

ψ0u0dx = 0, (4.65)

and the entropy inequality,

∫ ∞
0

∫ b

a

(φtη(u) + φxq(u))dxdt+

∫ b

a

φ0η(u0)dx > 0, (4.66)

where ψ and φ are periodic Lipschitz continuous test functions and φ > 0. Note

that the subscript 0’s here denote the initial condition of the function, i.e. when

t = 0.

Remark 4.5.4. We may also consider the regularised solution, uε, as an en-

tropy solution of the regularised PDE (4.58) provided that it satisfies the weak

form of (4.58) and the entropy equality

∫ ∞
0

∫ b

a

(φtη(uε) + φxq(u
ε))dxdt+

∫ b

a

φ0η(uε0)dx = 0. (4.67)

Theorem 4.5.5. If uε is a smooth solution of the regularised PDE (4.58) and there

exists a function u such that

uε → u almost everywhere as ε ↓ 0, (4.68)

then u is an entropy solution of the conservation law (3.1).

Proof. In order to show that u is an entropy solution of the conservation law (3.1)

we must show that it satisfies both the weak form of the conservation law (4.65)

and the entropy inequality (4.66).
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Multiplying the regularised PDE (4.58) by the test function ψ and integrating

over (a, b)× [0,∞), it follows that by integration by parts

∫ ∞
0

∫ b

a

(ψtu
ε + ψxf(uε) + ψεuεxx)dxdt+

∫ b

a

ψ0u
ε
0dx = 0. (4.69)

It is clear that if we take the limit of (4.69) as ε ↓ 0 then the weak form (4.65)

follows directly. Hence all that remains to be shown is that the entropy inequality

is satisfied.

Since uε is a smooth solution to the regularised PDE (4.58) similar manipulations

to (4.63) may be used to show the entropy satisfies

η(uε)t + q(uε)x = εη′(uε)uεxx. (4.70)

We may now rewrite the right hand side of (4.70) to obtain

η(uε)t + q(uε)x = εη(uε)xx − εη′′(uε)(uεx)2

6 εη(uε)xx, (4.71)

since η′′(uε), ε and (uε)2 are all non-negative.

Multiplying (4.71) by the non-negative test function φ and integrating over (a, b)×

[0,∞) gives

∫ ∞
0

∫ b

a

φ(η(uε)t + q(uε)x)dxdt 6 ε

∫ ∞
0

∫ b

a

η(uε)xxdxdt. (4.72)

Taking the limit as ε ↓ 0 shows that u satisfies

∫ ∞
0

∫ b

a

φ(η(uε)t + q(uε)x)dxdt 6 0, (4.73)
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and application of integration by parts yields (4.66) and therefore completes the

proof.

4.5.2 Regularisation in Reference Space

In previous work we have shown that we may obtain stability results for the class

of moving mesh schemes that we are studying by making a transformation from

physical space into a reference space.

Transforming the conservation law (3.1) to the reference space yields the trans-

formed PDE

wτ −
1

Kξ

(
wf

(
1

w

))
ξ

= 0, (4.74)

which we have previously noted is also a conservation law since Kξ is a constant.

Hence we may consider the vanishing viscosity solution from Chapter 2 in the ref-

erence space to give the regularised transformed PDE

wετ −
1

Kξ

(
wεf

(
1

wε

))
ξ =

ε

K2
ξ

wεξξ. (4.75)

To simplify notation we introduce the transformed flux function and the trans-

formed viscosity coefficient.

Definition 4.5.6. We define the transformed viscosity coefficient, δ, to be given by

δ :=
ε

K2
ξ

. (4.76)
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Inserting definitions (4.25) and (4.76) into the regularised transformed PDE (4.75)

gives

wετ + f̃(wε)ξ = δwεξξ. (4.77)

Similarly the transformed conservation law (4.74) is now given by

wετ + f̃(wε)ξ = 0. (4.78)

4.5.3 Regularised Numerical Scheme

We cannot continue to apply the results to the general scheme and hence we

consider the example scheme used in Section 3.6.

Now we seek to use this theory to obtain a moving mesh numerical scheme to

approximate the conservation law (3.1).

We first make a standard discretisation of the regularised transformed PDE (4.77)

to give the reference space scheme

wn+1
j − wnj

∆τ
− 1

Kξ∆ξ
(wnj f̃

n
j − wnj−1f̃

n
j−1) =

ε

K2
ξ∆ξ2

(wnj+1 − 2wnj + wnj−1). (4.79)

Rearranging and using the fact that c = Kξ∆ξ yields,

c(wn+1
j − wnj ) = ∆τ(wnj f̃

n
j − wnj−1f̃

n
j−1) +

ε∆τ

c
((wnj+1 − wnj )− (wnj − wnj−1)).

(4.80)
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Setting cwnj = x̂nj − x̂nj−1 to be consistent with the scheme we started with, (3.64)-

(3.65), gives

x̂n+1
j − x̂n+1

j−1 − (x̂nj − x̂nj−1) =∆τ(wnj f̃
n
j − wnj−1f̃

n
j−1)

+
ε∆τ

c
((wnj+1 − wnj )− (wnj − wnj−1)), (4.81)

which we note is a Forward Euler approximation at j, minus the same approximation

at j − 1, hence given an anchor point at j = 0, say, gives the associated moving

mesh scheme to be
x̂n+1
j = x̂nj + ∆t

(
f̃nj
unj

+
ε

unj+1

1
unj+1
− 1

unj

x̂nj+1 − x̂nj

)
unj (x̂nj − x̂nj−1) = c

. (4.82)

4.5.4 Application to Inviscid Burgers’ Equation

In order to obtain results on the performance of the scheme we need to apply it to

a test problem. We choose to use the Inviscid Burgers’ equation where f(u) = 1
2
u2.

Applying a Taylor expansion and Taylor’s remainder theorem to the reference

space scheme (4.79) gives the truncation error

Tn =
1

2
∆τwεττ (ξ, ζ) +

∆ξ

4Kξ

(
1

wε(χ1, τ)

)
ξξ

− ε∆ξ2

24K2
ξ

(wε(χ1, τ)ξξξξ + wε(χ2, τ)ξξξξ) , (4.83)

where ζ, χ1 and χ2 are intermediate values.

97



We may also rearrange the reference space scheme (4.79) into the form required

for Harten’s theorem. This gives the required coefficients to be

Cj−1/2 =
∆τ

c

(
1

2wnj w
n
j−1

+
ε

c

)
and Dj+1/2 =

ε∆τ

c2
(4.84)

which may both be shown to be non-negative since all of the variables are known to

be positive. All that remains is to show under what conditions

1− Cj−1/2 −Dj−1/2 > 0. (4.85)

Inserting Cj−1/2 and Dj−1/2 into this inequality gives the timestep restriction,

∆t 6
2c2

4ε+ cunj u
n
j−1

. (4.86)

4.5.5 Rate of Convergence

In the previous section we were able to show that we may choose the timestep

of the scheme such that the scheme is TVD. However, this does not guarantee

convergence to the correct solution.

We now introduce some important concepts before showing how convergence can

be obtained.

Definition 4.5.7. The L∞([0, T ], Lp(Ω)) Bochner norm is defined as

||u||L∞([0,T ],Lp(Ω)) = ess supt∈[0,T ]||u(t)||Lp(Ω) (4.87)

where ess sup is the essential supremum which is the supremum over all but finitely

many points. Furthermore p > 1 and Ω is the spatial domain.
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To simplify notation we denote the Bochner norm by

||u||L∞(Lp) (4.88)

where there is no confusion in doing so.

In this section we aim to obtain a bound on the error of the regularised scheme

(4.82) of the form

||u− uεh||L∞(L1) 6 E(ε) (4.89)

where uεh is the regularised moving mesh numerical solution, u is the entropy solution

to the conservation law (3.1), and E(ε) is some function also to be determined.

Theorem 4.5.8. Let u be the entropy solution to the conservation law (3.1) with an

initial condition, u0(x), and periodic boundary conditions and uεh be the numerical

approximation (4.82). Further assume that wε is bounded and sufficiently smooth so

that wεξ < C1, wεξξ < C2, wεξξξξ < C3 and wεττ < C4. Then the error between u and

uεhis given by

||w − wεh||L∞(L1) 6 C5|u0|TV
√
tδ +

∆τC4

2
+

∆ξ

4Kξ

(
2{C2

1 ||u3
0||L∞ − C2||u2

0||L∞
)
− ε∆ξ2

12K2
ξ

C3

(4.90)

where |u0|TV denotes the total variation of the initial condition.

In order to prove this result we must first refer to some other theorems.

Theorem 4.5.9. If u is an entropy solution of the conservation law (3.1) and uε is
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a smooth solution of the regularised PDE then

||u− uε||L∞([0,T ),L1(a(t),b(t))) 6 C5|u0|TV
√
tε. (4.91)

where C5 is a constant independent of ε.

We refer the reader to Theorem 6.1 of [Fur01] for the proof of this result.

Lemma 4.5.10. Let w be the entropy solution to the transformed conservation law

(4.78), wεh be the regularised transformed numerical solution given by (4.79), u be the

entropy solution of the conservation law (3.1), and uεh be the moving mesh numerical

solution given by (4.82) then

||u− uεh||L1(a(t),b(t)) 6 ||u0||L∞Kξ||w − wεh||L∞(L1(0,1)). (4.92)

Proof. Starting with Definition 4.5.7 applied to w − wεh gives

||w − wεh||L∞(L1(0,1)) = ess supt∈[0,T ]

∫ 1

0

|w − wεh|dξ (4.93)

Transforming from reference space to physical space gives

||w − wεh||L∞(L1(0,1))=ess supt∈[0,T ]

∫ b(t)

a(t)

∣∣∣∣1u − 1

uεh

∣∣∣∣ 1

x̂ξ
dx̂. (4.94)

Using x̂ξu = Kξ and rearranging yields

||w − wεh||L∞(L1(0,1))=ess supt∈[0,T ]

∫ b(t)

a(t)

|u− uεh|
|u||uεh|

u

Kξ

dx̂, (4.95)
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and since both u and uε are positive and bounded by the initial condition u0(x),

||w − wεh||L∞(L1(0,1)) >
1

||u0||L∞Kξ

ess supt∈[0,T ]

∫ b(t)

a(t)

|u− uεh|dx̂. (4.96)

Rearranging and using the definition of the L∞(L1) norm yields the result.

Proof of Theorem 4.5.8. We start by considering the error between the entropy so-

lution of the transformed conservation law and the transformed numerical solution

and using the triangle inequality

||w − wεh||L∞(L1) 6 ||w − wε||L∞(L1) + ||wε − wεh||L∞(L1), (4.97)

where wε is the solution to the regularised transformed PDE.

Since w is an entropy solution to a conservation law and wε is the vanishing

viscosity regularisation we may apply Theorem 4.5.9 to obtain a bound on ||w −

wε||L∞(L1). Hence

||w − wεh||L∞(L1) 6 C5|w0|TV
√
tδ + ||wε − wεh||L∞(L1). (4.98)

The final term on the right hand side of (4.98) is the error between the solution

of the regularised transformed PDE and the transformed numerical solution. Hence

we refer to the truncation error given by (4.83), so that

||w − wεh||L∞(L1) 6 C5|w0|TV
√
tδ +

∆τ

2
wεττ +

∆ξ

4Kξ

(
1

wε

)
ξξ

− ε∆ξ2

12K2
ξ

wεξξξξ. (4.99)

Directly differentiating
(

1
wε

)
ξξ

gives

(
1

wε

)
ξξ

=
2(wεξ)

2

(wε)3
−

wεξξ
(wε)2

(4.100)
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which can be inserted into (4.99) to give

||w − wεh||L∞(L1) 6 C5|w0|TV
√
tδ +

∆τ

2
wεττ +

∆ξ

4Kξ

(
2(wεξ)

2

(wε)3
−

wεξξ
(wε)2

)
− ε∆ξ2

12K2
ξ

wεξξξξ.

(4.101)

Using the assumptions of bounds on the derivatives of wε in equation (4.101)

yields

||w − wεh||L∞(L1) 6 C5|w0|TV
√
tδ +

∆τC4

2
+

∆ξ

4Kξ

(
2C2

1

(wε)3
− C2

(wε)2

)
− ε∆ξ2

12K2
ξ

C3.

(4.102)

We can now bound above by using the fact that u = 1
w

and that u is bounded by

the initial solution gives

||w − wεh||L∞(L1) 6 C5|u0|TV
√
tδ +

∆τC4

2
+

∆ξ

4Kξ

(
2{C2

1 ||u3
0||L∞ − C2||u2

0||L∞
)
− ε∆ξ2

12K2
ξ

C3

(4.103)

Finally applying Theorem 2.15 yields the result.

4.5.6 Experimental Order of Convergence

In the final section of this chapter we look at some numerical results to determine

the Experimental Order of Convergence (EOC) for some of our test schemes. The

equations we will apply this to are the Linear Advection Equation (2.32) and Inviscid

Burgers’ Equation (2.34).
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We run the schemes multiple times doubling the number of intervals N each time

and calculating the error, eN = |u(x̂nj , t
n) − unj |, in the Bochner norms L∞(L1),

L∞(L2) and L∞(L∞). We then calculate the experimental order of convergence

(EOC) using

EOC(N) =
log
(
||eN/2||
||eN ||

)
log(2)

(4.104)

where the norms correspond to the Bochner norm the error is measured in.

The experimental order of convergence is a useful notion for showing that the

results of the numerical schemes are consistent with the theoretical rates of conver-

gence. To this end what we actually seek is what happens to the EOC as N →∞.

The EOC works by taking successive mesh refinements and calculating the error in

the coarser mesh divided by the error in the finer mesh. In order to make the results

easier to see on a graph we take the natural logarithm of this fraction and divide by

another natural logarithm to normalise. In this thesis we double the computational

nodes in each successive test. This is why Equation (4.104) has the division by

log(2), if we instead had chosen to triple the number of nodes for each comparison

we would instead choose log(3).

Note that in this Section we will show graphs with the Bochner norm errors for

each time the code is run. The lighter colours, starting with yellow, represent the

fewest number of computational intervals while the darker colours, ending in black,

have the highest number of intervals.
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Linear Advection Equation

We start by testing the scheme on the linear advection equation. This is a very

simple problem, however it is important since it will highlight several key points

concerning how the scheme performs. The equation is given by

ut + ux = 0, (4.105)

where we take the boundary condition to be that of the free Lagrangian boundary.

In this case the Lagrangian velocity is simply x̂t = 1.

We use the numerical method derived in the example in Section 3.6.1. Explicitly

this is  x̂n+1
j = x̂nj + ∆t

(x̂nj − x̂nj−1)unj = A
. (4.106)

The first initial data we apply this scheme to is

u(x, t) =
1

exp(5x2)
+ 0.1, x ∈ [−2, 2]. (4.107)

Note that we have added 0.1 to the initial condition due to our requirement that

u(x, t) > 0.

In Figure 4.3 we see that the EOC in all three norms is 1 and the errors do not

increase in time. This is as we would expect since Forward Euler is exact for linear

problems and the only error is in the data representation of the numerical solution.
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Figure 4.3: Global Errors and associated EOC for the numerical scheme (4.106)
applied the linear advection equation with initial data (4.107). The L∞(L∞) error
is on the left, the L∞(L2) error is in the middle and the L∞(L1) is on the right.

A more challenging problem is to see how the scheme copes when there is a

discontinuity in the initial data. We therefore propose the initial data

u(x, t) =

 0.15 x 6 π − 3

0.05 x > π − 3
, (4.108)

this ensures that the discontinuity will not have a node placed on it in the initial

node placement which is important since otherwise the scheme is exact for piecewise

constant initial data.

In Figure 4.4, it may be initially worrying that we do not see convergence in

the L∞(L∞) norm, however this is to be expected since this error is caused at the

discontinuity. Increasing the nodes in the scheme reduces the error in L∞(L1) and

L∞(L2) however it does this by reducing the distance of nodes from the discontinuity,

the L∞(L∞) error however remains equal to the jump in the discontinuity since a
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Figure 4.4: Global Errors and associated EOC for the numerical scheme (4.106)
applied the linear advection equation with initial data (4.108). The L∞(L∞) error
is on the left, the L∞(L2) error is in the middle and the L∞(L1) is on the right.

node never exists on the discontinuity.

Inviscid Burgers Equation

We now recall Inviscid Burgers’ Equation from Section 2.1.5. This conservation

law is given by

ut +

(
1

2
u2

)
x

= 0. (4.109)

As with the linear advection equation we use the example scheme from Section

3.6.2. The scheme is given by

 x̂n+1
j = x̂nj +

∆t

2
Un
j

(x̂nj − x̂nj−1)unj = A
. (4.110)
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It is noted that unlike the linear advection case, this time the scheme is not exact

in time hence we expect the error to increase in time.

We use the initial data

u(x, t) =


x+ 0.1 x ∈ [0, 1]

2.1− x x ∈ (1, 2]

0.1 otherwise

, (4.111)

which is initially piecewise linear and forms a shock at time t = 1.
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Figure 4.5: Global Errors and associated EOC for the numerical scheme (4.110)
applied the linear advection equation with initial data (4.111). The L∞(L∞) error
is on the left, the L∞(L2) error is in the middle and the L∞(L1) is on the right.

In this test case we appear to converge in all norms pre-shock the L∞(L1) error

has a steady convergence rate of 1 in this region, the L∞(L2) error starts at a

convergence rate of 1 but decreases to a rate of 0.8 as shock time is approached and

the L∞(L∞) error converges at a rate of about 0.5. The noise in the L∞(L1) error
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is likely due to the derivative discontinuity in the solution passing the nodes with

the error peak at the centre of each cell.

In the post-shock time regime we no longer converge in L∞(L∞). This may be

due to similar issues with the discontinuity in the previous example, namely there

is not a node on the discontinuity and therefore the error in this norm cannot be

less than the jump in the shock. The L∞(L2) error converges in the post-shock time

regime with a rate of 0.5 and the L∞(L1) error appears to continue to converge with

a rate of 1, this needs studying further to determine why.

In conclusion the schemes do converge in the L∞(L1) norm as expected. Issues

occur in the L∞(L∞) norm due to errors around the discontinuity which is not

unexpected for conservation laws.
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Chapter 5

Lagrangian Schemes Based on

Existing Conservative Schemes

In the previous chapter we used a transformation of the conservation law and the

moving mesh scheme to a reference space in order to find stability conditions for

the scheme and prove convergence. The proof of convergence relied on regularising

the numerical scheme in the reference space and working backwards to see how this

changed the original moving mesh scheme.

In this section we build upon the idea that we can take schemes applied to the

transformed conservation law and work backwards to a moving mesh mass conser-

vative scheme. Hence instead of applying a scheme to the original conservation

law

ut + f(u)x = 0, (5.1)
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we instead apply standard finite difference schemes to the transformed PDE

wτ + f̃(w)ξ = 0, (5.2)

where f̃(w) = − w
Kξ
f
(

1
w

)
.

The benefit of this approach is that if we are able to find a method for taking

established finite difference schemes and deriving moving mesh schemes from them,

then our work from Sections 4.3 - 4.5 proves that the resulting scheme will have the

same stability conditions and be convergent.

5.1 Existence of Schemes

Since the transformed PDE (5.2) is a conservation law and generally nonlinear,

we used established theory for finite difference schemes which says that the scheme

we apply should be able to be written in conservation form.

Definition 5.1.1 (Conservation Form). If a scheme can be written in the form

un+1
j = unj −

∆t

∆x

(
F (unj−p, u

n
j−p+1, · · · , unj+q)− F (unj−p−1, u

n
j−p, · · · , unj+q−1)

)
(5.3)

for some p and q which are positive integers, then the scheme is a conservative

method. F is the numerical flux function consistent with the flux function f(u).

This means that if we insert the exact solution into the numerical flux function

then, F (u, ..., u) = f(u).

Schemes which can be written in conservation form have been shown to be mass

conservative, which we require since we wish to derive a mass conservative scheme.
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Theorem 5.1.2. If a finite difference scheme can be written in conservation form

then it admits at least one conservative moving mesh scheme for the conservation

law (5.1) when applied to the reference space conservation law (5.2).

Proof. Applying the general conservation form (5.3) to the transformed conservation

law (5.2) gives

wn+1
j = wnj −

∆τ

∆ξ

(
F̃ (wnj−p, w

n
j−p+1, · · · , wnj+q)

−F̃ (wnj−p−1, w
n
j−p, · · · , wnj+q−1)

)
. (5.4)

Now rewriting G̃ = KξF̃ yields,

wn+1
j = wnj −

∆τ

∆ξKξ

(
G̃(wnj−p, w

n
j−p+1, · · · , wnj+q)

−G̃(wnj−p−1, w
n
j−p, · · · , wnj+q−1)

)
. (5.5)

Defining the local mass constant to be

A = ∆ξKξ, (5.6)

and inserting into (5.5) gives

A(wn+1
j − wnj ) = ∆τ

(
G̃(wnj−p, w

n
j−p+1, · · · , wnj+q)

−G̃(wnj−p−1, w
n
j−p, · · · , wnj+q−1)

)
. (5.7)

Assume now that local mass conservation is approximated by the upwind form,

Awnj = x̂nj − x̂nj−1, (5.8)
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which we note is in the form of the general quadrature (3.49). Equation (5.8) may

then be substituted into (5.7) to give,

x̂n+1
j − x̂n+1

j−1 − x̂nj + x̂nj−1 = ∆τ
(
G̃(wnj−p, w

n
j−p+1, · · · , wnj+q)

−G̃(wnj−p−1, w
n
j−p, · · · , wnj+q−1)

)
. (5.9)

Taking equation (5.9) at j = 1 gives

x̂n+1
1 − x̂n1 = ∆tG̃(wn1−p, w

n
2−p, · · · , wn1+q) (5.10)

since j = 0 is the given boundary so x̂n+1
0 − x̂n0 = ∆tG̃(wn−p, w

n
1−p, · · · , wnq ) by

definition as this is the discrete form of the boundary velocity. By induction this

holds for all subsequent intervals and when combined with the fact that ∆τ = ∆t

gives the numerical mesh movement approximation to be

x̂n+1
j = x̂nj + ∆tG̃(wnj−p, w

n
j−p+1, · · · , wnj+q), (5.11)

which we note is in the general Runge-Kutta form (3.48).

Together equations (5.8) and (5.11) form a valid mass conservative moving mesh

scheme.

5.2 Uniqueness of Schemes

Theorem 5.1.2 shows that for any standard Eulerian finite difference scheme that

can be written in conservation form it is possible to derive a corresponding moving

mesh numerical scheme. However, there is not a unique moving mesh scheme for

each given Eulerian scheme.
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This non-uniqueness of moving mesh schemes can be seen if we consider the

assumption (5.8) made in arriving at the moving mesh scheme. An equally valid

approximation to local mass conservation would be

Awnj = x̂nj+1 − x̂nj . (5.12)

Following the same steps as the proof of theorem 5.1.2 yields the alternative

timestepping scheme

x̂n+1
j = x̂nj + ∆tG̃(wnj−1−p, w

n
j−p, · · · , wnj+q−1). (5.13)

It is clear that any quadrature which allows us to eliminate w terms on the LHS

of equation (5.7) will produce a distinct moving mesh scheme for the original PDE.

Hence the scheme is only unique up to the choice of quadrature approximation

to the monitor function and it remains to be shown if there is a ’best’ choice of

approximation to produce a moving mesh scheme.

5.3 An Example Scheme

To illustrate the derivation of the moving mesh formulation we consider how we

apply the well known first order upwind approximation,

un+1
j = unj +

∆t

∆x

(
F (unj )− F (unj−1)

)
, (5.14)

to the Inviscid Burgers equation,

ut +

(
u2

2

)
x

= 0. (5.15)
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Using the general forms (5.1) and (5.2) it can be easily shown that in the trans-

formed reference space the PDE associated with Inviscid Burgers equation is,

wτ −
1

2Kξ

(
1

w

)
ξ

= 0. (5.16)

Applying the first order upwind approximation (5.14) to the transformed PDE

(5.16) and noting that Kξ∆ξ = A gives the reference space scheme,

wn+1
j = wnj −

∆τ

2A

(
1

wnj
− 1

wnj−1

)
, (5.17)

which we note is the transformed scheme from Example 3.6.3 in Section 3.6. Indeed,

taking the same approximation as in the example, namely

Awnj = x̂nj − x̂nj−1, (5.18)

yields

x̂n+1
j − x̂n+1

j−1 − x̂nj + x̂nj−1 =
∆τ

2

(
1

wnj
− 1

wnj−1

)
. (5.19)

The anchor point, the fact that ∆τ = ∆t and unj = 1
wnj

gives the timestepping

scheme to be

x̂n+1
j = x̂nj +

∆t

2
unj . (5.20)
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The overall moving mesh scheme to solve the Inviscid Burgers equation (5.15) is

then

x̂n+1
j = x̂nj +

∆t

2
unj , (5.21)

A = unj
(
x̂nj − x̂nj−1

)
, (5.22)

which is the scheme we started with in the example in section 3.6. However as noted

in section 5.2 this is not the only moving mesh scheme that can be derived from

starting with first order upwind as a method.

Instead of approximating the local mass integral using (5.18) we instead use the

approximation (5.12) which leads to the timestepping scheme

x̂n+1
j = x̂nj +

∆t

2
unj−1. (5.23)

The alternative scheme is then given by

x̂n+1
j = x̂nj +

∆t

2
unj−1, (5.24)

A = unj
(
x̂nj+1 − x̂nj

)
. (5.25)

This leads us to the obvious question of which scheme is actually better for solving

the original Inviscid Burgers equation. As both are derived from the same reference

space numerical scheme, it is clear from the results of Section 4.4 that they both

have the same stability condition and accuracy.
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5.4 Higher Order Schemes

Having established that we may use existing fixed mesh schemes as a basis for

generating moving mesh schemes, it remains to be discussed what effect changing

the order of the underlying scheme has on the resulting moving mesh scheme.

It is clear that since higher order schemes can be written in conservation form

then they also produce moving mesh schemes when applied to the transformed

PDE. However this does not guarantee that the resulting scheme will be of the same

order or even an increased order. Fortunately the work of Section 4.3 applies and

therefore the schemes generated are of the same order as the Eulerian scheme used

to generate them.

5.5 Numerical Comparisons

In the rest of this section we have developed the idea of using established fixed

grid numerical methods as a way of generating moving mesh methods. It remains

to give a demonstration of why we would choose to do this extra work in deriving a

scheme.

In this section we compare the results of directly applying the fixed grid schemes

with the results of the resulting moving mesh schemes as numerical motivation for

this extra work.

The schemes we will consider are the first order upwind scheme

un+1
j = unj −

∆t

∆x
(F n

j − F n
j−1), (5.26)
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and the second order upwind scheme

un+1
j = unj −

∆t

2∆x
(3F n

j − 4F n
j−1 + F n

j−2). (5.27)

We compare these Eulerian schemes with Lagrangian schemes derived from them

in two different test problems. In each problem we used 41 computational nodes,

a time step of ∆t = 0.001 and run to an end time of t = 1.1. In addition we start

both schemes on the same uniform mesh for the best comparison.

5.5.1 Linear Advection

The first problem we consider is the linear advection equation introduced in Sec-

tion 2.1.5. This is augmented with the initial condition

u(x, t) =
1

exp(5x2)
+ 0.1, x ∈ [−2, 2], (5.28)

and the boundary condition

u(−2, t) = 0.1. (5.29)

In Figure 5.1(a) we plot the solutions from the first order upwind scheme and in

Figure 5.1(b) we plot the solutions from the second order upwind scheme, both at

time T = 1.

It is clear from Figure 5.1 that the moving mesh schemes far outperform the

Eulerian schemes from which they are derived. This is not unexpected however

since the linear advection equation is a special case for the moving mesh schemes

where there is no error accumulation in time.
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Figure 5.1: Numerical comparison of the moving mesh schemes (blue) and the Eule-
rian schemes (black) which they are derived from when applied to the linear advec-
tion equation. The plotted solution is at time, T = 1. The exact solution is plotted
in red.

5.5.2 Inviscid Burgers’ Equation

The next test problem we consider is Inviscid Burgers’ Equation which also was

first introduced in Section 2.1.5. We give the initial condition

u(x, 0) =


x+ 0.1 0 < x 6 1

2.1− x 1 < x 6 2

0.1 otherwise

, (5.30)

and the boundary condition

u(−1, t) = 0.1. (5.31)

In Figure 5.2(a) we plot the solutions from the first order upwind scheme and in

Figure 5.2(b) we plot the solutions from the second order upwind scheme.

As was the case with the linear advection equation, the Lagrangian schemes both

out performed the Eulerian schemes they were based on. This provides some evi-

dence that the extra work to apply the schemes in this manner is worthwhile.
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Figure 5.2: Numerical comparison of the moving mesh schemes (blue) and the Eule-
rian schemes (black) which they are derived from when applied to Inviscid Burgers’
Equation. The exact solution is plotted in red.
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Chapter 6

Systems of Equations

In this chapter we attempt to apply the conservation based moving mesh methods

to a system of hyperbolic conservation laws to see if the insights we have obtained

in the scalar case can help.

We start by briefly discussing some of the issues that arise when attempting to

solve systems of equations before looking at the isothermal Euler equations as a test

problem.

6.1 Problems that Arise with Systems of Equa-

tions

In this section we briefly cover some of the issues that occur when attempting to

solve systems of equations with our conservation based moving mesh methods.

The first major difference is that we are now considering more than one conser-

vation law and as a result we must choose which of the conserved quantities will

be used as a monitor function to find the mesh velocity. Special care has to be
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taken here to ensure that the conserved quantity cannot be zero in the domain or

the scheme will break down. Another item to note is that we cannot take the con-

servation law in vector form and conserve u since this would lead to a vector of

positions for each node, although it may be possible to consider some functional of

the components of u.

The next major problem that arises is that the reference space PDEs are much

more difficult to solve and are indeed on par with the original physical space conser-

vation laws. To overcome this we change direction slightly for systems and instead

consider a x̂ equation in the reference space.

Now that we have briefly discussed some of the issues with systems of equations

we now move on to attempt to solve the isothermal Euler equations.

6.2 Isothermal Equations

In this section we consider the 1D Isothermal equations given in Eulerian co-

ordinates by

ρt + (ρv)x = 0, (6.1)

(ρv)t + (ρv2 + P )x = 0, (6.2)

where ρ > 0 is density, v is the fluid velocity, P = a2ρ is the pressure and a is the

wave speed.

We consider the system for general initial conditions ρ(x, 0) = ρ0(x) and v(x, 0) =

v0(x), and periodic boundary conditions.
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6.2.1 The Lagrangian Formulation

As in the case of scalar conservation laws we apply Leibniz integral rule to find

the Lagrangian formulation of the problem. Application to the conservation of mass

equation (6.1) gives

d

dt

∫ x̂2(t)

x̂1(t)

ρdx =

∫ x̂2(t)

x̂1(t)

ρtdx+ [ρx̂t]
x̂2(t)
x̂1(t)

= −
∫ x̂2(t)

x̂1(t)

(ρv)xdx+ [ρx̂t]
x̂2(t)
x̂1(t)

= [ρx̂t − ρv]
x̂2(t)
x̂1(t), (6.3)

and similar application to the momentum equation (6.2) gives

d

dt

∫ x̂2(t)

x̂1(t)

ρvdx =

∫ x̂2(t)

x̂1(t)

(ρv)tdx+ [ρvx̂t]
x̂2(t)
x̂1(t)

= −
∫ x̂2(t)

x̂1(t)

(ρv2 + P )xdx+ [ρvx̂t]
x̂2(t)
x̂1(t)

= [ρvx̂t − ρv2 − P ]
x̂2(t)
x̂1(t). (6.4)

All that remains is to decide on the monitor function which will be used. The two

obvious choices for monitor functions are the density, ρ, and the momentum, ρv,

however we note that the monitor function must be one-signed and hence momentum

is not suitable since v may be zero or negative.

Taking density, ρ, as the monitor function implies that the left hand side of the

balance equation (6.3) is identically zero for all x̂1, x̂2. Hence

[ρ(x̂t − v)]
x̂2(t)
x̂1(t) = 0 (6.5)
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for all x̂1, x̂2 which, since ρ is one-signed, implies that x̂t = v. The Lagrangian

formulation given by the density monitor is therefore

x̂t = v, (6.6)∫ x̂2(t)

x̂1(t)

ρdx = A(x̂1(t), x̂2(t)), (6.7)

d

dt

∫ x̂2(t)

x̂1(t)

ρvdx = −[P ]
x̂2(t)
x̂1(t) (6.8)

where A(x̂1(t), x̂2(t)) is constant in time.

Our aim is to solve the system (6.6)-(6.8) for x̂(t) = x̂2(t) (given an anchor point

x̂1(t)) and then recover the solutions ρ and v at these positions.

6.2.2 A Lagrangian Numerical Scheme

Having found the Lagrangian formulation (6.6)-(6.8) based on the density monitor

in the previous section, we now discretise this set of equations by following a similar

approach to the one applied to scalar conservation laws. The first step is to use the

Mean Value Theorem (MVT) to re-write (6.7) as

∫ x̂2(t)

x̂1(t)

ρ(x, t)dx = ρ(ζ1, t)(x̂2(t)− x̂1(t)) = A(x̂1(t), x̂2(t)), (6.9)

for some ζ1 ∈ (x̂1, x̂2), and the integral (6.8) as

∫ x̂2(t)

x̂1(t)

ρ(x, t)v(x, t)dx = ρ(ζ2, t)v(ζ2, t)(x̂2(t)− x̂1(t)), (6.10)

for some ζ2 ∈ (x̂1, x̂2) where A is constant in time and we have used (6.9) to simplify

(6.10).
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Introduce a set of discrete points {x̂j(t)} at time t and let x̂1(t) = x̂j(t) and

x̂2(t) = x̂j+1(t) define an individual cell of the discrete scheme. Assuming that

ρ and v are constant within a cell (x̂j, x̂j+1) leads to the spatial discretisations of

equations (6.9) and (6.10), which are

ρj(x̂j+1(t)− x̂j(t)) = Aj+1/2 (6.11)

and

ρjvj(x̂j+1(t)− x̂j(t)) = Bj+1/2(t), (6.12)

where Bj+1/2(t) is the semi-discrete approximation to the momentum integral B(t) =∫ x̂j+1(t)

x̂j(t)
ρ(t)v(t)dx.

We note that in the above, all constant approximations of ρ and v in a cell are

chosen to be biased by taking the value at the left hand side of the cell. Further we

note that equations (6.11) and (6.12) lead to a simple relationship between Aj+1/2

and Bj+1/2(t), namely

Aj+1/2vj(t) = Bj+1/2(t). (6.13)

Together equations (6.6), (6.8), (6.11) and (6.12) form a semi-discrete numerical

scheme in which the spatial co-ordinate x̂(t) is discretised and time remains continu-

ous. To obtain a fully discrete formulation it remains to discretise the time evolution

in equations (6.6) and (6.8).

Application of the forward Euler method to equation (6.6) yields

x̂n+1
j = x̂nj + ∆tvnj , (6.14)
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while application of the backward Euler method to equation (6.8) gives

Bn+1
j+1/2 = Bn

j+1/2 − a2∆t(ρn+1
j+1 − ρn+1

j ). (6.15)

Finally we use equation (6.13) to replace equation (6.15) by

vn+1
j = vnj −

a2∆t

Aj+1/2

(ρn+1
j+1 − ρn+1

j ). (6.16)

The final form of the discrete scheme is therefore

x̂n+1
j = x̂nj + ∆tvnj , (6.17)

ρn+1
j =

Aj+1/2

x̂n+1
j+1 − x̂n+1

j

, (6.18)

vn+1
j = vnj −

a2∆t

Aj+1/2

(ρn+1
j+1 − ρn+1

j ). (6.19)

It is clear that this scheme is consistent with the PDEs (6.6)-(6.8), as for scalar

conservation laws. We first update the mesh using equation (6.17) and then use

equations (6.18) and (6.19) to recover the variables ρ and v at the new timestep.

We now attempt to follow the method for finding a stability criterion that was

laid out in the scalar case and hence we apply the reference space transformation to

equations (6.1) and (6.2).

6.2.3 Reference Space Transformation

In this section we derive the reference space transformations of equations (6.1)

and (6.2). As is the case for scalar conservation laws the reference space is defined

such that the interval (x̂0(t), x̂N(t)) maps to (0, 1) for all time, t. Points moving

with speed v in physical space are stationary in the reference space.

125



The transformation of the independent variables is given by x̂(ξ, τ) → ξ, t → τ ,

following from Equation (4.13), leading to the transformations

∂t = ∂τ −
x̂τ
x̂ξ
∂ξ, (6.20)

and

∂x =
1

x̂ξ
∂ξ, (6.21)

in the derivatives, following from the similar scalar case in Equation (4.14).

Applying (6.20) and (6.21) to equation (6.1) yields

ρτ −
v

x̂ξ
ρξ +

1

x̂ξ
(ρv)ξ = 0, (6.22)

where x̂τ is substituted using Equation (6.6). Equation (6.22) then simplifies to give

ρτ +
ρ

x̂ξ
vξ = 0. (6.23)

Similarly, application of equations (6.20) and (6.21) to equation (6.2) gives

(ρv)τ −
v

x̂ξ
(ρv)ξ +

1

x̂ξ
(ρv2 + ρa2)ξ = 0. (6.24)

Expanding out and using equation (6.23) to eliminate ρτ terms then yields

vτ +
a2

x̂ξ

ρξ
ρ

= 0. (6.25)

Since we have mass conservation in physical space for any x̂1(t), x̂2(t) we consider

the transformed mass integral between the left hand boundary and an arbitrary
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point ξ̃ ∈ (0, 1] giving

A(ξ̃) =

∫ ξ̃

0

ρx̂ξdξ. (6.26)

We may now differentiate (6.26) to give

Aξ = ρx̂ξ, (6.27)

where we note that Aξ is a constant. This follows from the scalar case and involves

comparing the right hand side of (6.26) with the equidistribution principle for ρ.

Inserting (6.27) into equations (6.23) and (6.25) gives the reference space isother-

mal equations,

ρτ +
ρ2

Aξ
vξ = 0, (6.28)

vτ +
a2

Aξ
ρξ = 0. (6.29)

In the scalar case, having found the reference space transformations of the original

PDEs we applied Harten’s Theorem to show that the transformed scheme was TVD

under certain timestep restrictions. We cannot use the same method here since it

does not apply for systems of equations and we must therefore consider a new notion

of stability.

Instead of concerning ourselves with the stability of the system (6.28)-(6.29) we

instead look at the mesh stability. The motivation for this is found by considering

equations (6.6) and (6.27) which show relationships between ρ, v and the derivatives
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of our mesh variable x̂, namely

x̂τ = v and x̂ξ =
Aξ
ρ
.

Differentiating (6.6) with respect to τ and using (6.29) and (6.27) eliminates ρ

and v and gives

x̂ττ = vτ = − a
2

Aξ
ρξ = −a2

(
1

x̂ξ

)
ξ

(6.30)

which may be rearranged to give the mesh PDE

x̂ττ = a2 x̂ξξ
x̂2
ξ

. (6.31)

Since equation (6.31) is a non-linear wave equation we could use existing theory

concerning finite difference schemes for second order equations in an attempt to show

that the transformed scheme derived from equations (6.17)-(6.19) is stable under

some condition, however this is not a common form of nonlinear wave equation

and standard results such as assuming a2

x̂ξ
is constant over a single timestep do not

seem to work, as attempts to use this method lead to large instability regardless of

timestep.

In the next section we work around this restriction by introducing a new numerical

method based on moving the mesh using equation (6.31) instead of equation (6.6).

6.2.4 Furihata’s Method

In this section we introduce a class of finite difference methods for solving non-

linear wave equations that conserve an energy integral. This method is proposed by

D. Furihata in “Finite-difference schemes for nonlinear wave equation that inherit
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energy conservation property” [Fur01] and presented in a general Eulerian u(x, t)

framework.

The family of nonlinear wave equations that are considered in [Fur01] take the

form

∂2u

∂t2
= −δG

δu
, (6.32)

where G = G(u, ux) is a function of both u and ux and δG
δu

= ∂G
∂u
− ∂

∂x

(
∂G
∂ux

)
is the

variational derivative of G with respect to u. Furthermore x ∈ [0, L], L < ∞ is the

one-dimensional spatial variable and t is the time variable.

Definition 6.2.1. Given u(x, t) and a function G of u, ux the energy integral is

defined to be

I =

∫ L

0

(
1

2
u2
t +G

)
dx. (6.33)

Theorem 6.2.2. [Fur01] If the boundary conditions satisfy

[Guxut]
L
0 = 0, (6.34)

then the energy integral, I, is conserved in time, i.e.

d

dt

∫ L

0

(
1

2
u2
t +G

)
dx = 0. (6.35)

Proof. Applying Leibniz integral rule to the left hand side of equation (6.35),

d

dt

∫ L

0

(
1

2
u2
t +G

)
dx =

∫ L

0

(uttut +Guut +Guxuxt) dx. (6.36)
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Now use integration by parts on the final term of the integrand and apply the

definition of the variational derivative,

d

dt

∫ L

0

(
1

2
u2
t +G

)
dx =

∫ L

0

ut

(
utt +Gu−

∂

∂x
Gux

)
dx+ [Guxut]

L
0

=

∫ L

0

ut

(
utt +

δG

δu

)
dx+ [Guxut]

L
0 . (6.37)

Using the general form of the PDE (6.32) shows that the integrand is identically

zero, hence

d

dt

∫ L

0

(
1

2
u2
t +G

)
dx = [Guxut]

L
0 . (6.38)

Using the assumption on the boundary conditions (6.34) yields the required result.

In order to derive a numerical scheme using Furihata’s method we first make an

approximation to G which we call Gd. In general G has the form

G(u, ux) =
m̃∑
l=0

fl(u)gl(ux), (6.39)

where fl(u) are functions of u and gl(ux) are functions of ux. Note that this is

not a restrictive assumption for our purposes since the functions fl and gl can be

constants.

To discretise G we therefore take some m > m̃ and construct an approximation

of the form

Gd(uj) =
m∑
l=0

fl(uj)g
+
l (uj)g

−
l (uj), (6.40)
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where fl(uj) are functions of uj, g
+
l (uj) are functions of uj which approximate ux

using an upwind difference and g−l (uj) are functions of uj which approximate ux

using a downwind difference.

Having found a consistent approximation Gd we now use it to calculate a discrete

equivalent to the variational derivative δG
δu

which we denote δGd
δ(uj ,vj)

. This is achieved

by considering the following property of the variational derivative, namely

∫ L

0

G(u)dx−
∫ L

0

G(v)dx≈
∫ L

0

δG

δu
(u− v)dx+ [Gux(u− v)]L0 . (6.41)

Before we can consider a discrete equivalent to (6.41) we first consider a discrete

equivalent of integration by parts.

Theorem 6.2.3 (Summation by Parts). The summation by parts formula,

N∑
k=0

fkδ
+gk∆x = −

N∑
k=0

δ−fkgk∆x+ boundary terms (6.42)

is a consistent discrete equivalent to integration by parts, where δ+fj =
fj+1−fj

∆x
and

δ−fj =
fj−fj−1

∆x

The proof of the above theorem can be found in chapter 3 of Furihata’s book

[FM11]. We note that we do not consider the boundary terms here since they are

not important to deriving the numerical method.

Furihata shows that a discrete equivalent to equation (6.41) is given by

N∑
j=0

Gd(uj)∆x−
N∑
j=0

Gd(vj)∆x =
N∑
j=0

δGd

δ(uj, vj)
(uj − vj)∆x+ boundary terms.

(6.43)
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Equation (6.43) can easily be verified by applying the summation by parts formula

to the left hand side of (6.43).

Equation (6.43) suggests that if we insert our approximation Gd into the left hand

side of (6.43) and apply the summation by parts formula then we should arrive at

the right hand side with our equivalent approximation, δGd
δ(uj ,vj)

, of δG
δu

.

Theorem 6.2.4. The explicit finite difference scheme,

un+1
j − unj − un−1

j + un−2
j

2∆t
= − δGd

δ(unj , u
n−1
j )

, (6.44)

is consistent and conserves the discrete energy integral.

The proof of this theorem can be found in Furihata’s paper [Fur01] as theorem 4.

In this section we have given an overview of how the Furihata method is applied

to a nonlinear wave equation. In the next section we will show how this can be used

as part of a Lagrangian scheme to solve the isothermal equations.

6.2.5 An Alternative Lagrangian Scheme Based on Furi-

hata’s Method

In section 6.2.3 we found the mesh PDE to be

x̂ττ = a2 x̂ξξ
x̂2
ξ

. (6.45)

which is a nonlinear wave equation. In section 6.2.4 we gave an overview of Furihata’s

method for developing an energy conserving finite difference method for solving such

nonlinear wave equations. In this section we will put these two items together to find
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a stable scheme for the mesh movement and use this in a new Lagrangian scheme

for solving the isothermal equations.

The main difference between the Lagrangian scheme derived in section 6.2.2 and

the one we will derive here is the equations that we are approximating. In Section

6.2.2 our approximations were of the system of equations (6.6)-(6.8): now we choose

to approximate equations (6.31), (6.27) and (6.6) which we restate for clarity,

x̂ττ = a2 x̂ξξ
x̂2
ξ

, (6.46)

x̂ξ =
Aξ
ρ
, (6.47)

x̂τ = v. (6.48)

The method we propose uses the Furihata scheme on (6.46) to update the mesh

and once the desired time has been reached, approximations to (6.47) and (6.48) to

recover the density and velocity respectively.

To find the Furihata scheme we must first relate equation (6.46) with the general

nonlinear wave equation (6.32). It can be easily verified that equation (6.46) is

indeed of the desired form with

G(x̂, x̂ξ) = −a2 ln(x̂ξ). (6.49)

We approximate the function G using (6.40) in the form

Gd(x̂j) = −a
2

2

(
ln(δ+x̂j) + ln(δ−x̂j)

)
. (6.50)
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Inserting (6.50) into the left hand side of equation (6.43) gives

N∑
j=0

(Gd(x̂
n
j )−Gd(x̂

n−1
j ))∆ξ = −a

2

2

N∑
j=0

( ln(δ+x̂nj ) + ln(δ−x̂nj )

− ln(δ+x̂n−1
j )− ln(δ−x̂n−1

j ))∆ξ, (6.51)

and applying the summation by parts formula gives

N∑
j=0

(Gd(x̂
n
j )−Gd(x̂

n−1
j ))∆ξ =

a2

2

N∑
j=0

(
δ−

(
ln(δ+x̂nj )− ln(δ+x̂n−1

j )

δ+x̂nj − δ+x̂n−1
j

)

+δ+

(
ln(δ−x̂nj )− ln(δ−x̂n−1

j )

δ−x̂nj − δ−x̂n−1
j

))
(x̂nj − x̂n−1

j )∆ξ

+boundary terms. (6.52)

Comparison with the right hand side of equation (6.43) then shows that

δGd

δ(x̂nj , x̂
n−1
j )

= a2

(
ln(∆x̂nj+1/2)− ln(∆x̂n−1

j+1/2)

∆x̂nj+1/2 −∆x̂n−1
j+1/2

−
ln(∆x̂nj−1/2)− ln(∆x̂n−1

j−1/2)

∆x̂nj−1/2 −∆x̂n−1
j−1/2

)
,

(6.53)

where ∆x̂j+1/2 = x̂j+1 − x̂j.

It would now seem that we could simply insert (6.53) into the numerical scheme

(6.44) and be finished. However, there is a computational issue with this form of

the discrete variational derivative since as the denominator of either fraction → 0

the fraction is unbounded.
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In order to get around this issue we rewrite (6.53) as

δGd

δ(x̂nj , x̂
n−1
j )

= a2

(
ln(1 + α)

α∆x̂nj−1/2

− ln(1 + β)

β∆x̂nj+1/2

)
(6.54)

where α =
∆x̂n

j−1/2
−∆x̂n−1

j−1/2

∆x̂n
j−1/2

and β =
∆x̂n

j+1/2
−∆x̂n−1

j+1/2

∆x̂n
j+1/2

.

Assuming that we are taking sufficiently small timesteps such that α and β are

small then we may approximate (6.54) using the Taylor expansion of ln(1+ε). Hence

δGd

δ(x̂nj , x̂
n−1
j )

≈ a2

(
1

∆x̂nj−1/2

(
1− α

2

)
− 1

∆x̂nj+1/2

(
1− β

2

))

= a2

(
3

2

(
1

∆x̂nj−1/2

− 1

∆x̂nj+1/2

)
− 1

2

(
∆x̂n−1

j−1/2

(∆x̂nj−1/2)2
−

∆x̂n−1
j+1/2

(∆x̂nj+1/2)2

))
.

(6.55)

We may now insert (6.55) into (6.44) to obtain our scheme for the mesh move-

ment. It remains to be shown however if our Taylor series approximation affects the

conservation of the energy integral.

All that remains is to approximate equations (6.47) and (6.48) in order to recover

the desired variables from the mesh. We do this using a centred difference and a

backward difference respectively.

6.2.6 Numerical Results

In this section we apply the scheme derived in the previous section to a test

problem. The chosen test problem is a ‘lump’ of mass in the centre with zero
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velocity everywhere. The initial condition is given by

ρ(x, 0) =

 (1− x2)2 + 0.1 |x| 6 1

0.1 otherwise
, (6.56)

and

v(x, 0) = 0. (6.57)

It is also augmented by the boundary conditions

v(−4, t) = 0 and v(4, t) = 0. (6.58)

The scheme is run until time t = 1.5 with 41 computational nodes and a time

step of ∆t = 0.001. The solutions for density and velocity are plotted in Figure 6.1.

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1
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−4 −3 −2 −1 0 1 2 3 4

−2

0

2

x

v

Figure 6.1: The conservation base moving mesh scheme derived in Section (6.2.5)
applied to the isothermal equations with initial data (6.56)-(6.57) and boundary
conditions (6.58).
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It is clear from Figure 6.1 that the scheme is oscillatory in both solutions and the

mesh. To further show this we plot the trajectories of the mesh in Figure 6.2.

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

x

t

Figure 6.2: The mesh trajectories of the conservation base moving mesh scheme
derive in Section (6.2.5) applied to the isothermal equations with initial data (6.56)-
(6.57) and boundary conditions (6.58).

Figure 6.2 shows that our attempts to find a scheme in which the mesh does not

tangle were successful however the mesh still oscillates near solution discontinuities

which causes the solution oscillations. These oscillations appear to occur regardless

of timestep leading to the conclusion that the Furihata scheme may not be sufficient

for the mesh PDE. Further work is required to see if another Eulerian solver in

reference space can lead to a non-oscillatory mesh.
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Chapter 7

Summary and Further Work

In this chapter we summarise the work done in this thesis and suggest some further

research which may be carried out. The novel contributions of the thesis are also

noted.

7.1 Summary

Chapter 1 introduced the work of the thesis, giving an overview of the work that

would be carried out and the original work done.

In Chapter 2 we discussed the background knowledge required for the work in the

rest of the thesis. In addition we also briefly noted some of the recent developments

in the surrounding areas of research. The chapter was broken into three sections

which focused on hyperbolic conservation laws, relocation refinement (r-refinement)

methods and the conservation based Lagrangian moving mesh methods. The hyper-

bolic conservation laws section introduced some example problems that we would

use later while the final two sections helped introduce the methods we studied.
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The main aim of Chapter 3 was to take the two main areas studied in the back-

ground chapter and use them to develop a general conservation based moving mesh

method for solving hyperbolic conservation equations. The main discussion in this

chapter focused around the choices made to derive the numerical method as well as

some of the issues surrounding how to reformulate fixed frame Eulerian conservation

problems as Lagrangian moving frame problems.

Chapter 4 was based on using a transformation from physical space to a reference

space as a mathematical tool for analysing the numerical methods introduced in

Chapter 3. This chapter started with a description of the difficulties that arise

in attempting to analyse moving mesh numerical methods before introducing the

transformation that would be used for our analysis. The final three sections of the

chapter studied a method for determining the accuracy, stability and convergence

of the conservation based moving mesh methods. At the end of the convergence

section we did numerical experiments to verify our findings.

Based on a notion introduced while attempting to show convergence of the numer-

ical methods, Chapter 5 introduced a new approach to deriving Lagrangian moving

mesh methods by using well established fixed mesh schemes in reference space and

performing the inverse transform on the method. In this chapter we showed that it

is always possible to do this if the numerical scheme could be written in conservative

form and that the Lagrangian schemes derived are only unique down to a choice of

quadrature to approximate the local mass constant. Based on the work in Chapter

4, we conclude that the derived Lagrangian schemes have the same accuracy and

stability conditions as the scheme from which they were generated and we end the

chapter by comparing the Lagrangian schemes with the schemes from which they

were generated.
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Finally, in Chapter 6 we attempted to use the work from scalar conservation laws

to generate a scheme for systems of hyperbolic conservation laws. We discussed

several issues that arise when considering systems of equations before attempting

to solve the isothermal Euler equations. At the end of the chapter we successfully

generated a scheme which was not prone to mesh tangling, however this scheme is

still oscillatory.

The original work in this thesis appears in Chapters 3-6. This consists of:

• In Chapter 3 we gave a more in-depth discussion of how Eulerian boundary

conditions are applied to Lagrangian schemes than appears in the literature.

• The notion of the transform to reference space from Chapter 4 was taken from

the MMPDE methods but was applied as an analytical tool for the first time

to find accuracy, stability and convergence.

• Chapter 5 discussed a novel approach to generating new moving mesh methods

from existing conservative Eulerian methods.

• The attempt to solve the isothermal Euler equations in Chapter 6 provided a

moving mesh which does not tangle.

7.2 Further Work

There are many ways in which the work in this thesis could be continued. The

most obvious of these are the extension to multi-dimensional problems and a more

general approach to systems of equations, however both of these are non-trivial.

In the case of extension to higher dimensional problems, the method itself is

very difficult to even implement. Reconstruction of the mesh in particular can be
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difficult and care needs to be taken since vorticity can add new ways of tangling

which cannot be stopped in a trivial manner. While the Lagrangian formulation can

still be derived by using Reynolds transport theorem, it can be difficult to find the

mesh velocity without making assumptions on the flow.

Extension to systems of equations is also difficult since the mesh PDE derived

will have the same order in time as the number of equations in the system. In our

isothermal Euler equations example this leads to problems since the two equations

led to a PDE with an x̂ττ term. This gets even worse if we consider the full Euler

equations where a x̂τττ term appears in the mesh PDE.

There is also a lot of scope for doing similar analysis with other monitor functions.

It is not clear that the mass monitor is the best in all circumstances and analysis of

general monitor functions would be beneficial.

There are many other small ways in which the work could be extended. In Chapter

3 we discussed that other ways of partitioning the domain were possible and it is

not clear that the standard partition chosen is indeed the best option, hence further

comparisons are required. In Chapter 5, we introduced a method for deriving new

moving mesh schemes from existing conservative schemes, this could be studied

further to see if there are benefits to applying more advanced fixed grid methods

here such as flux/slope limiters. Finally, a large improvement of the mass conserving

methods would be to combine it with h-refinement to add nodes in front of shocks.
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