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AN EXPONENTIALLY CONVERGENT NONPOLYNOMIAL FINITE ELEMENT

METHOD FOR TIME-HARMONIC SCATTERING FROM POLYGONS

A. H. BARNETT∗ AND T. BETCKE†

Abstract. In recent years nonpolynomial finite element methods have received increasing attention for the
efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency
comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method
for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence
purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions
that capture the singularities at corners, and representing the scattered field towards infinity by a combination
of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize
in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the
rate of convergence of the least-squares functional that are in very good agreement with the observed numerical
convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and
a cavity domain, are solved to 10 digits of accuracy with a few seconds of CPU time. The examples are implemented
concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed
by the authors. A code example is included.
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1. Introduction. Nonpolynomial finite element methods for wave problems such as the
PUFEM [3], the Least-Squares Finite Element Method [19] or the Ultra-Weak Variational Formu-
lation [7] have recently received much attention in the mathematics and engineering community.
The idea of these methods is to use Trefftz-type basis functions, i.e. exact solutions to the par-
tial differential equation inside each element, then to solve for the coefficients which best satisfy
the inter-element matching and/or boundary conditions. This better captures solution behavior
than standard polynomial bases, and is closely related to the method of particular solutions or
collocation methods [18]. Typical choices of basis functions are plane waves [21], Fourier-Bessel
expansions [11, 22], and fundamental solutions of the Helmholtz equation [6, 12, 4].

The main advantage of nonpolynomial finite element methods over standard Galerkin methods
is that they allow one to choose element sizes which are many wavelengths in diameter, while
standard Galerkin methods with linear elements typically need of order 10 elements per wavelength
to resolve a wave to any reasonable accuracy. Thus at high frequency the total number of degrees
of freedom is much reduced, and due to their high-order (often exponential) convergence, this
advantage is even more pronounced if high accuracy is required.

In this paper we analyze a nonpolynomial finite element method for time-harmonic scattering
from a sound-soft polygonally-shaped bounded obstacle Ω ⊂ R2. That is, we are looking for the
solution u of the problem

∆u + k2u = 0 in R2\Ω (1.1)

u = 0 on ∂Ω (1.2)

∂us

∂r
− ikus = o(r−1/2), (1.3)

where u = uinc + us is the total field, uinc is the incident wave and us the scattered field, and r is
the radial coordinate. The wavenumber is k = 2π/λ, where λ is the wavelength. The Sommerfeld
radiation condition (1.3) is to be understood to hold uniformly in all directions.

The main idea of the presented method is to use fractional order Fourier-Bessel functions at the
corners of the polygon to match the asymptotic behavior of u there, and to represent the scattered
field us towards infinity by fundamental solutions (i.e. effective sources), which automatically
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satisfy (1.3). The matching conditions between different elements are implemented using a least-
squares finite element formulation. A related approach was proposed without analysis by Stojek
in [22]. The main differences in our formulation are the choice of basis functions towards infinity
and the setup of the discretized problem.

Least-squares finite element methods were also analyzed by Monk and Wang in [19]. Their
analysis focused on Helmholtz problems on smooth domains with local absorbing boundary con-
ditions. For such problems they also proved interior error estimates based on the least squares
functional.

In this paper we choose each element as large as possible in such a way that each of the finite
subdomains contains one corner of the polygon. The accuracy is then improved by increasing the
number of basis functions in each subdomain. Hence, h-refinement is not necessary. This is similar
to the domain decomposition method of Descloux and Tolley for the Laplace eigenvalue problem
on polygonal domains [10].

We give exponential convergence bounds with a rate that can be numerically computed using
techniques from conformal maps (see also [5]). The asymptotic convergence rate is wavenumber-
independent. However, we observe that the minimum number of basis functions N required to
enter into the regime of exponential convergence depends linearly on k, leading to a complexity of
O(k3) for the fully discrete scheme due to the need for solving dense linear systems. But due to the
fast exponential convergence, and the relatively small preprocessing effort, the overall computation
time for this method is very attractive, and is competitive for low to medium frequencies with
the wavenumber independent approach recently introduced by Chandler-Wilde and Langdon [8].
Furthermore, the method presented here works on convex and nonconvex polygons while the
approach in [8] is restricted to convex polygons. We will demonstrate that high accuracy (up to
10 digits) is easily achievable.

Another advantage of the proposed approach compared to boundary element (or boundary
integral) methods is that no quadrature of singular integrals close to the corners is necessary.
Furthermore, the proposed method can be easily adapted to the sound-hard scattering case by a
small change in the basis functions close to the corners. In contrast, combined integral formulations
for sound-hard scattering involve the evaluation of hypersingular integral operators.

The paper is organised as follows. In Section 2 we present the formulation of the method.
Section 3 describes how we discretize this into a linear system. The approximation of the scattered
field us towards infinity is done using fundamental solutions approximations, which are presented
in more detail in Section 4. In particular, a combined monopole-plus-dipole formulation is given
that avoids problems with interior resonances. The convergence analysis in Section 5 depends
on approximation theoretic results for Bessel functions and an analysis of the convergence of
the fundamental solution approximations. A detailed analysis of the exponential convergence of
fractional order Fourier-Bessel functions in cornered domains based on techniques from complex
analysis was given by the Betcke in [5]. Here, we only state the main convergence result of that
paper adapted to our situation. Numerical examples are given in Section 6. All computations
are implemented quite simply in MPSpack, a MATLAB toolbox for wave computations developed
by the authors; a short example code to compute scattering from the square and plot Fig. 6.3 is
given in Appendix A. Finally, since maintaining reasonably small coefficients is important for high
accuracy, the numerical stability of the method is discussed in Section 7. We conclude in Section
8.

2. Formulation of the Method. Let Ω be a polygonal domain with boundary Γ having q
corners at the points p1, . . . , pq ∈ R2 and associated exterior angles 0 < π/αj < 2π, j = 1, . . . , q.
We define the artificial exterior boundary Γe := ∂Ωe to be an analytic Jordan curve whose simply
connected interior Ωe completely contains Ω, i.e. dist(Γ, Γe) > 0. We will also frequently need
the exterior domain Ω+

e = R2\Ωe. Also, denote by E := Ωe\Ω the part of Ωe exterior to Ω. The
geometry and notation are shown in Figure 2.1.

We subdivide E into q simply connected subdomains Ei, i = 1, . . . , q with boundaries Γi = ∂Ei

in such a way that the following conditions are satisfied:

• Ei ∩ Ej = ∅ for all i 6= j,
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Fig. 2.1. Geometry of subdomains, illustrated for the square scatterer. For the exterior angles π/α1, . . . , π/α4

at the corners p1, . . . , p4 we have in this example that α1 = · · · = α4 = 2/3. Left plot: The local coordinate systems
of the Fourier-Bessel basis functions are oriented along the boundary lines adjacent to the corners of the polygon.
Right plot: Fundamental solutions basis coordinate system, showing the charge points yj lying on a circle.

• ⋃
i Ei = E,

• Γi ∩ ∂Ω consists of two straight lines which meet at the corner pi and whose continuation
towards infinity does not intersect Ei.

1

Remark 2.1. The requirement that every subdomain Ei contains a corner of Ω is not strictly
necessary and is only used to simplify the description. An extension to the case of “free” elements
that have no intersection with Ω is straightforward. This is used in the cavity example in Section
6.3.

In each subdomain Ei we approximate the total field u by a linear combination of Fourier-
Bessel functions of the form

u(r, θ) ≈
Ni∑

j=1

c
(i)
j Jjαi

(kr) sin jαiθ. (2.1)

The local polar coordinate systems of the Fourier-Bessel functions are shown in Figure 2.1. This
guarantees that the basis functions automatically satisfy the zero boundary conditions on Γ. We
denote by Vi the linear space spanned by the Fourier-Bessel functions in the subdomain Ei.

The approximation by Fourier-Bessel functions is motivated by the corner behavior of Helmholtz
solutons. One can show that in a wedge with interior angle π/α any Helmholtz solution u that
satisfies zero Dirichlet boundary conditions on the sides of the wedge has close to the corner the
absolutely convergent expansion

u(r, θ) =

∞∑

j=1

cjJαj(kr) sin αjθ

for certain coefficients cj ∈ C [10]. If α 6∈ N then any nontrivial u has a singularity at the corner
of the wedge. Otherwise, if α ∈ N then u can be analytically continued across the corner of the
wedge [18].

In Ω+
e we approximate the scattered field us by a linear combination of fundamental solutions

whose origins lie in Ωe, as follows. Let ΓF ⊂ E be a closed analytic Jordan curve, and choose
points yj ∈ ΓF . Then our approximation, which satisfies the Helmholtz equation in Ω+

e , is

us(x) ≈
Ne∑

j=1

c
(e)
j

(
i

4

∂

∂ν(yj)
H

(1)
0 (k|x − yj|) −

η

4
H

(1)
0 (k|x − yj |)

)
, x ∈ Ω+

e , (2.2)

where ν(yj) is the outward-facing unit normal direction of the curve ΓF at the point yj , H
(1)
0 the

outgoing Hankel function of zeroth order, and η 6= 0 a real parameter. Typically, by a scaling

1The continuation condition is a technical condition needed for the convergence estimates on the finite subdo-
mains (see [5, Figure 6]) for an example violating this condition).
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argument we choose η = k. The space of all linear combinations of the fundamental solutions in
Ω+

e is denoted by Ve.
Remark 2.2. One could alternatively approximate the scattered field us by a multipole ex-

pansion of the form

us(r, θ) ≈
Ne∑

m=−Ne

αmH(1)
m (kr)eimθ .

This was proposed by Stojek in [22]. The disadvantage of this expansion is that when Γe is anything
other than a circle about the origin, severe numerical stability problems arise at large wavenumber
due to the huge dynamic range of Hankel functions at large m. Fundamental solutions do not
suffer from this problem, hence allow more flexibility (e.g. see Section 6.2).

Combining the above basis sets, the trial space V of the FEM is the space of functions v
such that vi := v|Ei

∈ Vi, ∀i, and ve := v|Ω+
e
∈ Ve. It is useful to express the number of basis

functions in each subdomain as a multiplier of a common factor N . Let Ni = niN , j = 1, . . . , q
and Ne = neN . The total dimension of the trial space is then

NV =

[
ne +

q∑

i=1

ni

]
N =: nV N. (2.3)

We now explain the least-squares finite element formulation as proposed by Stojek in [22] and
Monk and Wang in [19]. Let ν(x) be a unit normal to the curve Γij , i < j, defined for almost
every x ∈ Γij , pointing away from domain Ei. The jump of a function u defined on Ei and Ej is

[u](x) := lim
ǫ→0

u(x + ǫν(x)) − u(x− ǫν(x)), x ∈ Γij

Denoting by ∂ν := ∇ · ν the normal derivative with the sense explained above, and by [∂νu] its
jump, define the inter-element matching error functional

J(v) :=
∑

i<j

∫

Γij

|[∂νv]|2 ds + k2 |[v]|2 ds +

q∑

i=1

∫

Γi∩Γe

|[∂ν(ûinc + v)]|2 + k2 |[ûinc + v]|2 ds, (2.4)

where

ûinc(x) :=

{
uinc(x), x ∈ Ω+

e

0, x ∈ Ωe
(2.5)

Here we need the restriction ûinc of the incoming wave uinc to Ω+
e since inside Ωe we directly

approximate the full field u, while in Ω+
e we approximate the scattered field us.

The least-squares finite element approximation vLS is now defined as

vLS = arg min
v∈V

J(v). (2.6)

3. Implementation. In this section we give details of the numerical implementation of the

least-squares formulation (2.6). Denote by c =
[
c(1), . . . , c(q), c(e)

]T ∈ CnV N the coefficient vector
associated with all basis functions in the elements Ei, i = 1, . . . , q and Ω+

e . Since the basis
functions in each element are linearly independent every v ∈ V has a unique representation in
terms of a vector c ∈ CnV N . We can therefore reformulate (2.6) equivalently as

cLS = arg min
c∈CNV

J(c).

For notational convenience we use the same name for the least-squares functional J(v) defined in
(2.4) and its parameterized version in terms of a coefficient vector c.
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We now derive a matrix representation of J(c). Consider first the internal boundary Γij be-

tween two elements Ei and Ej , within which the basis functions are g
(i)
1 , . . . , g

(i)
Ni

and g
(j)
1 , . . . , g

(j)
Nj

.
We assume these functions and their derivatives are also defined on Γij . Furthermore, denote by
ξτ , τ = 1, . . . , mij quadrature points on Γij with corresponding weights ωτ > 0 appropriate for
integration with respect to arc length. Then from Γij the contribution to J(c) is

∫

Γij

k2

∣∣∣∣∣∣

Ni∑

p=1

c(i)
p g(i)

p (s) −
Nj∑

p=1

c(j)
p g(j)

p (s)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

Ni∑

p=1

c(i)
p ∂νg(i)

p (s) −
Nj∑

p=1

c(j)
p ∂νg(j)

p (s)

∣∣∣∣∣∣

2

ds

≈
∥∥∥∥
[
Wij

Wij

] [
kAi −kAj

∂νAi −∂νAj

] [
c(i)

c(j)

]∥∥∥∥
2

2

,

where for each i = 1, . . . , q, Ai is the matrix with elements (Ai)τp = g
(i)
p (ξτ ), and (∂νAi)τp =

∂νg
(i)
p (ξτ ) is the matrix of normal derivatives. Quadrature weights now reside in the diagonal ma-

trix Wij with elements (Wij)ττ = ω
1/2
τ , τ = 1, . . . , mij . On each outer boundary the contribution

to J(c) is

∫

Γi∩Γe

k2

∣∣∣∣∣
Ni∑

p=1

c(i)
p g(i)

p (s) −
Ne∑

p=1

c(e)
p gp(s) − uinc(s)

∣∣∣∣∣

+

∣∣∣∣∣
Ni∑

p=1

c(i)
p ∂νg(i)

p (s) −
Ne∑

p=1

c(e)
p ∂νgp(s) − ∂νuinc(s)

∣∣∣∣∣

2

ds

≈
∥∥∥∥
[
Wie

Wie

]([
kAi −kAe

∂νAi −∂νAe

] [
c(i)

c(j)

]
−

[
bi

b̃i

])∥∥∥∥
2

2

,

where gℓ is the ℓth fundamental solutions basis function with source at yℓ, and, analogous to the
above, (Ae)τp = gp(ξτ ), (∂νAe)τp = ∂νgp(ξτ ), and quadrature points now live on Γi ∩ Γe. The

inhomogeneous vector is filled with the known values (bi)τ = uinc(ξτ ) and (b̃i)τ = ∂νuinc(ξτ ) for
i = 1, . . . , mie.

Stacking up all contributions from the different interfaces we obtain

J(c) ≈ ‖W (Ac − b) ‖2
2.

The matrix A is built up from the subblocks Ai and ∂νAi as described above and the right-hand-
side vector b is zero apart from the contributions of the incident wave at the quadrature points
on Γe. In [22, 19, 13] the authors discretize the variational derivative of J(v) to obtain a linear
system of equations that they solve. This approach is equivalent to solving the normal equation

AHW 2Ac = AHW 2b. (3.1)

However, as long as the problem size is not too large we can, and do, equivalently solve directly
the least squares problem

min
c∈CNV

‖W (Ac − b) ‖2 (3.2)

using a dense least-squares solver, such as the backslash (mldivide) in MATLAB. This is numer-
ically more stable than solving (3.1) if WA is ill-conditioned.

4. The Method of Fundamental Solutions for scattering problems. In this section we
give a brief introduction to the Method of Fundamental Solutions (MFS) for Helmholtz problems
in exterior domains and motivate the combined MFS formulation (2.2). The results of this section
form the basis for the convergence analysis in Section 5.1.
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Let D be a simply connected domain with analytic boundary ∂D. Let us be the unique
solution [9] to the Helmholtz equation (1.1) in R2\D and the Sommerfeld condition (1.3) with
boundary value data us = f on ∂D. The idea of the MFS is to choose a closed curve ΓF ⊂ D
some distance inside D, and approximate us by a single-layer potential of the form

us(x) ≈
∫

ΓF

i

4
H

(1)
0 (k|x − y|)g(y)dsy.

Unlike boundary integral methods which enable a second kind formulation, this is necessarily
first kind. However, it has the advantages of easily provable convergence rate, of simplicity of
evaluation arbitrarily close to ∂D, and that no singular quadrature schemes are required.

We now focus on the case that D is a disk with radius r and ΓF is a circle with radius R < r
(see Figure 2.1 which shows this geometry for the case D = Ωe that we will use in Section 5.1).
We identify the plane R2 with C. Define the single-layer operator S : L2[0, 2π] → L2[0, 2π] by

(Sg)(θ) =

∫ 2π

0

i

4
H

(1)
0 (k|reiθ − Reiφ|)g(φ)dφ.

The task is to find a density g such that the boundary data is matched, that is, Sg ≈ f . For the
interior Helmholtz problem on the disk this was analyzed in [4]. Here, we focus on the eigenvalue
expansion of S in order to reveal some stability properties for exterior problems and to lay the
groundwork for Section 5.1.

Using Graf’s addition formula [1, Eq. 9.1.79] we obtain

i

4
H

(1)
0 (k|reiθ − Reiφ|) =

∑

m∈Z

i

4
H(1)

m (kr)e−imφJm(kR)eimθ.

Defining the Fourier coefficent ĝ(m) of a function g ∈ L2[0, 2π] by ĝ(m) = 1
2π

∫ 2π

0
g(φ)e−imφdφ it

follows that

(Sg)(θ) =
∑

m∈Z

ŝ(m)ĝ(m)eimθ,

where the eigenfunctions of S are the complex exponentials, and the eigenvalues of S are

ŝ(m) =
iπ

2
H(1)

m (kr)Jm(kR).

If kR hits a zero of the Bessel function of order m then ŝ(m) = 0. This occurs if and only if k2 is
a Dirichlet eigenvalue of the disk of radius R. But the exterior Helmholtz problem has a unique
solution for all k > 0, therefore we need a formulation that is not affected by interior resonances.
We achieve this by a combined formulation analogous to those for boundary integral equations [9].

We define the modfied operator Sη : L2[0, 2π] → L2[0, 2π] by

(Sηg)(θ) =
i

4

∫ 2π

0

(
∂

∂R
H

(1)
0 (k|reiθ − Reiφ|) + iηH

(1)
0 (k|reiθ − Reiφ|)

)
g(φ)dφ. (4.1)

This combines single and double layer densities. Its eigenvalues ŝη(m) are easily computed as

ŝη(m) =
π

2
H(1)

m (kr)

[
i

∂

∂R
Jm(kR) − ηJm(kR)

]
=

π

2
H(1)

m (kr)

[
ik

2
(Jm−1(kR) − Jm+1(kR)) − ηJm(kR)

]

(4.2)
Lemma 4.1. Let η ∈ R\{0}. Then ŝη(m) 6= 0 for all m ∈ Z.

Proof. For Hankel functions of the first kind it holds that |H(1)
m (z)| 6= 0 for all z ∈ C [20,

Chapter 7]. Then from the first expression in (4.2) we have ŝη(m) = 0 if and only if ∂
∂RJm(kR) = 0

and Jm(kR) = 0. But this is not possible since otherwise by Green’s representation theorem the
function v(r, θ) := Jm(kr)eimθ would be identically zero in the disk with radius R.
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We now claim that the eigenvalues ŝη(m) and their derivatives with respect to the outer disc
radius r decay exponentially with a rate that depends on the radius ratio of R to r.

Lemma 4.2. For η 6= 0 and ǫ > 0 arbitrarily small there exist constants cs > 0 and Cs > 0
such that for m ∈ Z both the following hold,

cs

( r

R

)−|m|
≤ |ŝη(m)| ≤ Cs

( r

R

)−|m|
, (4.3)

∣∣∣∣
∂

∂r
ŝη(m)

∣∣∣∣ ≤ Cs

[( r

R

)
− ǫ

]−|m|
, (4.4)

where cs and Cs depend on k, R and r, and Cs additionally depends on ǫ.

Proof. Consider the three terms in (4.2). Large-order asymptotics for Bessel functions [1,
9.3.1] yield

Jm(kR) ∼ 1√
2πm

(
ekR

2m

)m

, Ym(kr) ∼ −
√

2

πm

(
ekr

2m

)−m

for fixed z and m → ∞. Since Hm(z) = Jm(z) + iYm(z) it follows that Hm(z) ∼ iYm(z) and
therefore

H(1)
m (kr)Jm(kR) ∼ − i

πm

(
R

r

)m

,

H(1)
m (kr)Jm−1(kR) ∼ − 2i

ekRπ

(
R

r

)m

,

H(1)
m (kr)Jm+1(kR) ∼ −ekRi

2π

1

m2

(
R

r

)m

.

Inserting these into (4.2) we get

ŝη(m) ∼ 1

2eR

(
R

r

)m

+
iη

2m

(
R

r

)m

∼ 1

2eR

(
R

r

)m

.

Together with the reflection laws J−m(z) = (−1)mJm(z) and H
(1)
−m(z) = (−1)mH

(1)
m (z) the upper

bound in (4.3) follows. Furthermore, by Lemma 4.1 there exists cs > 0 such that also the lower
bound in (4.3) is valid. We apply similar estimates to the expression

∂

∂r
ŝη(m) =

kπ

4

[
H

(1)
m−1(kr) − H

(1)
m+1(kr)

] [
ik

2
(Jm−1(kR) − Jm+1(kR)) − ηJm(kR)

]
. (4.5)

to obtain

∂

∂r
ŝη(m) ∼ Cm

( r

R

)−|m|
,

for some constant C ∈ C. The dominant contribution is H
(1)
m+1(kr)Jm−1(kR). Absorbing the

algebraic factor m into the exponential bound and choosing Cs sufficiently large yields (4.4).

The MFS is now obtained by applying to the above layer potential formulation the discrete
sources ansatz g(φ) =

∑N
j=1 cjδ(φ − φj), where φj = 2πj

N , j = 1, . . . , N . It follows that

(Sηg)(θ) =
N∑

j=1

cj

[
i

4

∂

∂R
H

(1)
0 (k|reiθ − Reiφj |) − η

4
H

(1)
0 (k|reiθ − Reiφj |)

]
. (4.6)

Note g 6∈ L2[0, 2π], but Sη has a smooth bounded kernel so is well defined with g merely integrable.

7



We will also need the Fourier series for this choice of g, which we note converges only distri-
butionally. Denote by ĉ the discrete Fourier transform of the coefficient vector c =

[
c1, . . . , cN

]

defined by

ĉs =
1

N

N∑

j=1

cje
−isφj , −N

2
< s ≤ N

2
.

Then applying our ansatz to the definition of the Fourier coefficents,

ĝ(m) =
1

2π

N∑

j=1

cje
imφj =

N

2π
ĉ(m mod N), (4.7)

where m mod N denotes the unique integer lying in the range −N/2 + 1, . . . , N/2 which differs
from m by an integer multiple of N . This ‘wrapping’ of the vector ĉ is due to the delta-comb in g.

The above (4.6) is a special case of the general monopole-plus-dipole formulation (2.2), with
ΓF circular and the evaluation restricted to the concentric circle ∂D. The basis functions in (2.2),
viewed as functions on R2\D, automatically satisfy the Sommerfeld radiation conditions. Thus
the only remaining task to solve the boundary value problem laid out at the start of this section
would be to choose the coefficients cj to match the boundary data f , e.g. by collocation or a
least-squares method on ∂D. We remind the reader that in this work we instead couple the MFS
(with the choices D = Ωe and N = Ne) to other basis representations in E.

5. Convergence Analysis. Let u be the exact solution of (1.1)-(1.3) with given uinc. Since u
and its derivative are continuous across element boundaries we have by using the triangle inequality
and estimating the boundary L2 norm by the L∞ norm over the whole domain that

J(v) =
∑

i<j

∫

Γij

|[∂νv − ∂νu]|2ds + k2|[v − u]|2ds

+

q∑

i=1

∫

Γi∩Γe

|[∂ν(ûi + v − u)]|2 + k2|[ûi + v − u]|2ds

≤ C1

∑

i

{
k2‖us − ve‖2

L2(Γi∩Γe) + ‖∂νus − ∂νve‖2
L2(Γi∩Γe)

}

+ C2



k2

∑

i

‖u − vi‖2
L∞(Ei)

+
∑

i<j

‖∂νu − ∂νvi‖2
L∞(Γij)



 , (5.1)

where v ∈ V (recalling the definitions of vi, ve from Section 2), and C1, C2 are mesh-dependent
constants.

The analysis of the rate of convergence of approximating u by vi ∈ Vi in each subdomain Ei

is based on transforming the approximation problem involving Bessel functions into a polynomial
approximation problem in the complex plane. For this it is useful to work in the L∞ norm.
On Γe the rate of convergence of the fundamental solutions will be analyzed using Fourier series
estimates, for which the natural space is L2.

The convergence analysis for approximating solutions of ∆u + λu = 0 with fractional Bessel
functions on domains with one corner singularity and zero Dirichlet boundary conditions at the
wedges forming the singular corner was given by Betcke in [5]. The only notable new feature here
is that now complex rather than real functions are approximated. This can easily be achieved
by splitting up the approximation problem on the subdomains Ei into separate problems for the
approximation of the real and imaginary parts of u.

The following theorem summarizes the results of [5, Theorem 5.2 and Lemma 5.5] adapted to
our notation in this paper. We refer to [5, Section 5] for the proof.

Theorem 5.1. For every element Ei, i = 1, . . . , q the following statement holds. There exists
ρi > 1 such that for every 1 < τ < ρi it holds that

min
v∈Vi

‖u − v‖L∞(Ei) = O(τ−Ni )
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as Ni → ∞. Furthermore, there exist functions ṽ ∈ Vi such that ‖u − ṽ‖L∞(Ei) = O(τ−Ni) and
also

‖∇u −∇ṽ‖L∞(Γij) = O(τ−Ni )

for every 1 < τ < ρi as Ni → ∞.
The rates ρi may be computed; they are the conformal distance of the nearest singularity in

u to (a conformal map of) the domain Ei [5].
To estimate the convergence on Γe of the fundamental solutions approximation to the scattered

field us we consider (as in Section 4) only the case of concentric circles.2 The source points for
the fundamental solutions are given by yj = Reiφj , j = 1, . . . , Ne with φj = 2πj

Ne
, and the exterior

circle Γe has radius r. We impose maxi |pi| < R < r. The proof of the following theorem is given
below in Section 5.1.

Theorem 5.2. Let ǫ > 0 and ǫ̃ > 0 be arbitrarily small. Define ρ := mini
r

|pi| and ρǫ := ρ− ǫ.

Let ν be the outward normal direction at the disk with radius r and assume that Ne is even. Then

min
v∈Ve

(
‖∂νus − ∂νv‖2

L2(Γe) + k2‖us − v‖2
L2(Γe)

)
=





O
((

r
R − ǫ̃

)−2Ne

)
, r

R < ρ
1
2
ǫ

O
(
ρ−Ne

ǫ

)
, r

R > ρ
1
2
ǫ

(5.2)

as Ne → ∞.
Remark 5.3. If we only consider the rate of convergence for approximating the boundary

value of us by v ∈ Ve and not the normal derivatives then ǫ̃ = 0 is possible.
Combining (5.1), Theorem 5.1 and Theorem 5.2 we obtain immediately the following.
Theorem 5.4. Let ρ1, . . . , ρq be the measures of the exponential convergence rates given in

Theorem 5.1, ρe := min
{(

r
R

)2
, mini

r
|pi|

}
and let n1, . . . , nq and ne be the multipliers for the

number of basis functions as defined in (2.3). Assume that ne is even and let ω > 1 be defined by

ω2 := min{ρ2n1

1 , . . . , ρ2nq

q , ρne

e }.

Then

min
v∈V

J(v) = O
(
(ω − ǫ)−2N

)

for any ǫ > 0 arbitrarily small.
Remark 5.5. An ideal choice of the multipliers n1, . . . , nq and ne is such that

ρ2n1

1 ≈ · · · ≈ ρ2nq

q ≈ ρne

e .

This choice keeps the number of basis functions required for a certain accuracy to a minimum.
Remark 5.6. It is an open question whether there exists C > 0 such that

‖u − v‖2
L2(E) ≤ CJ(v). (5.3)

In [19, Theorem 3.1] such an estimate was proved for the case that Ω is a sufficiently smooth
domain and Γe has the impedance condition ∂νu− iku = 0. The crucial difference here is that we
use fundamental solutions approximations instead of local absorbing boundary conditions. Similar
estimates have also been investigated by Hiptmair, Moiola and Perugia in the context of Plane
Wave Discontinuous Galerkin Methods [16]. In Section 6 we present numerical examples, which
support the conjecture (5.3).

2The convergence analysis of the MFS for integral equations with periodic kernels on more general domains has
recently been considered by Kangro [17]. For the understanding of the method presented in this paper the case of
the MFS in the exterior of a disk is sufficient for many applications and can be treated completely using arguments
from Fourier analysis.
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5.1. Convergence of the MFS approximations. In this section we give a proof of The-
orem 5.2. The proof proceeds along similar lines as the proof of [4, Theorem 3]. We proceed by
finding a specific function v ∈ Ve, for which we show that (5.2) holds. In the following C > 0 will
always denote an unspecified constant that may change in the course of the derivation and that
depends on k, R, r and ǫ but not on Ne.

Let t[v] := ‖us − v‖L2(Γe) for v ∈ Ve. The multipole (Laurent-type) representation of us is

us(r, θ) =
∑

m∈Z

αmH(1)
m (kr)eimθ

for r > maxi |pi| and θ ∈ [0, 2π]. It follows immediately that the Fourier coefficients ûs(m) of the
angular function us(r, ·) are

ûs(m) = αmH(1)
m (kr).

The following lemma gives a bound on the decay of ûs(m) as m → ∞.
Lemma 5.7. Let ρ := mini

r
|pi| and ρǫ := ρ − ǫ. Then

|ûs(m)| ≤ Cρ−|m|
ǫ (5.4)

for any arbitrarily small ǫ > 0, where C depends on k, R, r and ǫ.
Proof. Let f(t) := us(r, 2πt) for t ∈ [0, 1]. We need to show that f can be analytically

continued as a holomorphic function to the strip t + iτ for |τ | < 1
2π log ρ. Denote by p̃ :=

arg maxi |pi| the corner of ∂Ω with largest absolute value. Reparameterize the scattered field
us(x, y) in the cartesian (x, y) coordinates as U(z, z) := u(x, y), where z = x + iy. Let Ωp̃ :=

{z : |p̃| < |z| < r2

|p̃| , Im{z} > 0} be a half annulus and define Ω∗
p̃ := {z : z ∈ Ωp̃}. By a result

from Vekua [14, 23] U can be analytically continued as a holomorphic function of two independent
complex variables z and z∗ into the whole of Ωp̃ × Ω∗

p̃, such that U(z, z∗) = u(x, y) if and only

if z∗ = z. From the definition of f it follows that f(t) = U(rei2πt, re−i2πt). Hence, by the
analyticity of U we have that f(t + iτ) = U(re−2πτ+i2πt, re2πτ−i2πt) is analytic for 0 < t < 1/2
and − 1

2π log ρ < τ < 1
2π log ρ. By rotating the half annulus and repeating the argument the

analyticity in this strip can be extended to the whole interval t ∈ [0, 1]. The estimate (5.4) now
follows from the decay of Fourier coefficients of analytic functions (see for example [15, §13.2]).

The Fourier series representation of v ∈ Ve, associated with density g, restricted to the circle
of radius r is given by (see Section 4)

v̂(m) = Ŝηg(m) = ŝη(m)ĝ(m),

where g(θ) =
∑Ne

j=1 cjδ(φ − φj) and ĝ(m) = Ne

2π ĉ(m mod Ne).

By reparamaterizing the L2 integral over Γe and using Parseval’s identity it follows that

t[v]2 = 2πr
∑

m∈Z

|ûs(m) − v̂(m)|2. (5.5)

We now take a specific v ∈ Ve by choosing the MFS coefficients of v such that for all −Ne/2 <
m ≤ Ne/2 we have,

ĝ(m) =
ûs(m)

ŝη(m)
=

αmH
(1)
m (kr)

π
2 H

(1)
m (kr)

[
ik
2 (Jm−1(kR) − Jm+1(kR)) − ηJm(kR)

] (5.6)

Then the terms involving −Ne/2 < m ≤ Ne/2 cancel out in (5.5) and we can estimate

t[v]2 ≤ C


 ∑

m 6∈[−Ne
2

+1,..., Ne
2

]

|ûs(m)|2 +
∑

m 6∈[−Ne
2

+1,..., Ne
2

]

|ŝη(m)ĝ(m)|2

 =: C(E2

u + E2
s )
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Using (5.4) we can now estimate E2
u as

E2
u ≤ C

∑

m 6∈[−Ne
2

+1,..., Ne
2

]

ρ−2|m|
ǫ ≤ Cρ−Ne

ǫ . (5.7)

In order to estimate E2
s we rewrite it as

E2
s =

Ne
2∑

n=−Ne
2

+1

ĝ(n)2
∑

b∈Z\{0}
ŝη(bNe + n)2.

Bounding the inner sum and substituting |ĝ(n)| =
∣∣∣ ûs(n)

ŝη(n)

∣∣∣ ≤ C
(

r
Rρǫ

)|n|
gives

E2
s ≤ C

Ne
2∑

n=−Ne
2

+1

|ĝ(n)|2
( r

R

)−2Ne+2|n|
≤ C

( r

R

)−2Ne

Ne
2∑

n=−Ne
2

+1

(
r2

R2ρǫ

)2|n|
. (5.8)

If ρǫ > r2

R2 it follows from (5.8) that E2
s ≤ C

(
r
R

)−2Ne
. This decays slower than the estimate in

(5.7). Hence, we have t[v]2 ≤ C
(

r
R

)−2Ne
. If ρǫ < r2

R2 it follows from (5.8) that

E2
s ≤ C

( r

R

)−2Ne

(
r2

R2ρǫ

)Ne

= Cρ−Ne

ǫ ,

which has the same exponential rate of decay as (5.7) and therefore t[v]2 ≤ Cρ−Ne
ǫ in this case.

We now show that up to an arbitrarily small correction in rate ǫ̃ > 0 the error t′[v] :=
‖∂νus − ∂νv‖L2(Γe) has the same exponential bounds as t[v]. Similar to (5.5) we have

t′[v] = 2πr
∑

m∈Z

|∂̂νus(m) − ∂̂νv(m)|2, (5.9)

where

∂̂νus(m) =
∂

∂r
ûs(m)

and

∂̂νv(m) =
∂

∂r
v̂(m) =

(
∂

∂r
ŝµ(m)

)
ĝ(m).

The second equality follows from the fact that ĝ(m) is independent of r (see (5.6)). Furthermore,
from (5.6) it follows that

∂
∂r ûs(m)
∂
∂r ŝµ(m)

=
ûs(m)

ŝη(m)
= ĝ(m)

for −N/2 < m ≤ N/2. Hence, the Fourier coefficients involving −N/2 < m ≤ N/2 also cancel
out for t′[v]. By Lemma 4.2, ∂

∂r ŝη(m) has up to an arbitrarily small rate correction ǫ̃ the same

exponential upper bound as ŝη(m). Also, since ∂
∂r us has its only possible singularities at the

corners pi its Fourier coefficients ∂
∂r ûs(m) have the same exponential bound (5.4) as those of us.

We can therefore apply the same arguments to estimate t′[v] as we did for t[v] and arrive (up to ǫ̃
coming from the bound on ∂

∂r ŝη(m)) at the same exponential bounds as for t[v], which concludes
the proof of Theorem 5.2.
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Fig. 6.1. Left plot: Convergence of t[vLS ] (solid-dotted line) for growing N for the case r = 0.9 compared to
the estimated rate of convergence from Theorem 5.4 (dashed line). Right plot: Same as left plot but now r = 1.3.
The convergence is much faster for this choice of r.

6. Numerical examples. In this section we demonstrate the numerical properties of the
method and present computational results for scattering on a square, a snowflake domain and a
cavity. All computations were performed under Matlab 2009a on a dual processor workstation
with two 2.8 GHz Intel Xeon quad-core processors and 64GB RAM. However, MATLAB’s mul-
tithreading rarely utilized more than one CPU core. Hence, the timings will be comparable on a
standard desktop machine.

6.1. Scattering from a square. Let Ω be the unit square given by Ω = (−0.5, 0.5)2. We use
a domain decomposition as shown in Figure 2.1. Γe is a circle with radius r and the source points
for the fundamental solutions are given by yj = Reiφj , φj = 2πj

Ne
, j = 1, . . . , Ne. We found the

fundamental solutions basis size Ne := 2N was sufficient, where N is the number of Fourier-Bessel
sine functions in each element Ei. For the fundamental solutions we use the combined formulation
(2.2) with η = k. (Code for this setup is given in the Appendix).

Rate of convergence. In Figure 6.1 we show the rate of convergence of t[vLS ] := J(vLS)1/2,
which measures the norm of the jumps in function values and normal derivatives on the interfaces.
We fix R = 0.8 and the wavenumber k = 1. The left plot shows the case r = 0.9 and the right plot
r = 1.3. The measured convergence (solid-dotted line) for the latter is much faster than for the
former. In both cases we have also plotted the asymptotic bound ω−N from Theorem 5.4. The
aymptotic estimates for the convergence on the finite elements E1, . . . , E4 can be computed using
numerical conformal mapping techniques (see [5] for more details). The convergence of the MFS
approximations is directly given by Theorem 5.2.

What is the optimal value of r? If r is small then the singular corners of the square have a
large relative distance to the neighboring elements, suggesting a fast convergence on these elements.
However, the rate of convergence for the MFS approximations will be slow since the radius r is
close to the radius of the corners of the polygon. If r is large then the MFS approximations
converge fast but the relative distance of a singular corner to a neighboring element Ei is very
small leading to slow convergence on the finite elements. This suggests that there is an optimal
radius r = ropt, which is achieved when the asymptotic rate of convergence of the MFS is identical
to the asymptotic rate of convergence on the finite elements.

In the left plot of Figure 6.2 we compute (using conformal mapping) the asymptotic expo-
nential convergence factor ω from Theorem 5.4 as a function of the radius r of the outer circle
Γe. The optimum asymptotic rate is achieved for r ≈ 1.036. In that case the rate of convergence
on the finite elements Ej and on Ω+

e is almost identical, with a rate of approximately 1.465−N .
The right plot of Figure 6.2 shows the convergence of t[vLS] in this case. For N = 80 the value of
t[vLS ] is close to machine precision.
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Fig. 6.2. Left plot: Asymptotic convergence factor ω in dependence of r. Large values of ω indicate faster
convergence of t[vLS ]. Right plot: Measured (solid-dotted line) and estimated convergence (dashed line) for the
optimal radius r = 1.036.

Full Field (Real Part)

 

 

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Full Field (Real Part)

 

 

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 6.3. Real part of the full field for sound-soft scattering on the square (left plot) and sound-hard scattering
on the square (right plot). In both cases k = 50 and the incident wave is a plane wave with angle −

π
6
.

Sound-hard boundary conditions. In this paper we have analyzed the case of sound-soft bound-
ary conditions for u, that is u = 0 on ∂Ω. However, the scheme presented in this paper can be
trivially extended to sound-hard boundary conditions, that is ∂νu = 0, where ∂ν denotes the
outward pointing normal derivative on ∂Ω. For this we switch from Fourier-Bessel sine function
approximations to Fourier-Bessel cosine function approximations in each Ei, replacing (2.1) by

u(r, θ) ≈
Ni∑

j=0

c
(i)
j Jjαi

(kr) cos jαiθ.

It is a simple to check that these functions satisfy the homogeneous boundary conditions for the
normal derivative. The fundamental solutions basis functions in Ω+

e do not change. This is a
great advantage compared to combined integral equation formulations, which usually involve the
approximation of a hypersingular integral operator for the sound-hard scattering case.

Timing results. In Figure 6.3 we show the real part of the full field for the sound-soft scattering
case (left plot) and the sound-hard scattering case (right plot) for k = 50, i.e. about 8 wavelengths
on a side. The incident field is a plane wave with direction −π

6 .
The solution time was approximately 11 seconds in both cases. This includes the setup of
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Fig. 6.4. Top plots: A snowflake shaped domain and the corresponding domain decomposition. Bottom plots:
The scattered (left) and full field (right) for sound-soft scattering on the snowflake domain.

the problem and the time for solving the least squares problem minc ‖W (Ac− b)‖2, where A is of
dimension 4816×600 (sound-soft case), or 4816×604 (sound-hard case), corresponding to N = 100
and mij = 200 Clenshaw-Curtis quadrature points on each interface Γij . In the sound-soft case we
have t[vLS ] ≈ 1.3 × 10−10 and in the sound-hard case t[vLS ] ≈ 9.2 × 10−11. Creating the solution
plots takes longer, since the solution needs to be evaluated on a large number of grid points.

6.2. Scattering from a snowflake domain. We now show results for a snowflake domain,
which is nonconvex but star-shaped. The domain and the corresponding decomposition are shown
in the top two plots of Figure 6.4. Note that the external boundary ΓE is not a circle but an
equipotential line of the exterior Green’s function of the domain. Although we have given the
analysis only for ΓE being a circle, we demonstrate in this example that domain-adapted analytic
curves also work well.

In the bottom two plots of Figure 6.4 we show the scattered field (left) and the full field (right)
for sound-soft scattering by an incident plane wave with angle −π

3 and wavenumber k = 100.
Setting up and solving the dense least-squares problem takes 64 seconds. The error t[vLS ] is
approximately 1.5 · 10−4.
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Fig. 6.5. Convergence of t[vLS ] (dashed line) for k = 50 (left plot) and k = 100 (right plot). The plots also

show an approximation to the convergence of the L∞ norm of the approximate scattered field u
(N)
s in dependence

on N to the exact scattered field us (solid line).

In Table 6.1 we show results for different wave numbers. N was chosen such that the error
t[vLS ] is roughly of the magnitude 10−4. m and n denote the dimension of the matrix A ∈ Cm×n

in the least-squares problem minc ‖W (Ac − b)‖2. The times are the total time for setting up the
matrix and solving the least-squares problem. Up to around k = 200 the solution time is excellent.

k N m n t[vLS ] time
50 80 3888 1120 7 · 10−4 18s
100 120 5808 1680 2 · 10−4 64s
200 180 8688 2520 2 · 10−4 3.5m
500 400 19248 5600 2 · 10−5 45m

Table 6.1

Results for different wavenumbers for sound-soft scattering on the snowflake domain.

For higher k the O(k3) dependence of the solution time becomes a problem. Here the attained
accuracy in t[vLS] varies from 7 · 10−4 to 2 · 10−5, although as Figure 6.5 shows, 10−6 is possible
at k = 50 (left plot) and smaller errors are possible at higher k (right plot). Due to the fast
exponential convergence a small increase in the number of basis functions leads to a large decrease
of t[vLS] once the number of basis functions is high enough to get into the regime of exponential
convergence. From our experiments the number of basis functions required to enter this regime
grows approximately linearly with k, as shown in Figure 6.5.

In Remark 5.6 we stated the conjecture that ‖u−v‖2
L2(E) ≤ CJ(v) for some C > 0. To support

this conjecture we also plotted in Figure 6.5 the convergence of the scattered field us. This was
done by first computing an approximate solution us for N = 200 and then approximating the L∞

error ‖u(N)
s − us‖L∞(R\Ω), where u

(N)
s is the approximate scattered field in step N , by evaluating

it on the same grid that was used to plot the solution in Figure 6.4. Notice that the L∞ errors
are always at least a factor of 30 smaller than t[vLS ]. Therefore this plot supports the stronger
conjecture

‖u − ûinc − v‖2
L∞(R2\Ω) ≤ CJ(v),

where ûinc was defined in (2.5) and C > 0 is a constant, which is however expected to be large if
exterior resonance effects occur.

6.3. A cavity domain. To conclude this section we demonstrate the example of scattering
from a non-star-shaped cavity domain, which allows strong resonances to occur. The domain
decomposition is shown in the left plot of Figure 6.6. Note that the left-most element does not
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Fig. 6.6. Sound-soft scattering from a cavity domain.

share a corner with the cavity domain; in this element we use a regular Fourier-Bessel expansion,
that is, (2.1) with αi = 1 and both sin and cos terms, whose origin is chosen inside the element.
The reason is to reduce the size of the elements at the corners of the entrance to the cavity,
which increases the relative distance to neighboring singularities and thereby increases their rate
of exponential convergence. Even though an extra basis set is required, at high accuracy the total
basis size is reduced, hence efficiency improved. The previous convergence analysis would easily
extend to this case.

In the right plot of Figure 6.6 we show the solution of sound-soft scattering by an incoming
plane wave with direction −π/10 for k = 100, i.e. 16 wavelengths on the longest edge. The setup
and solution of the associated least-squares problem takes 14 seconds (matrix size 1938 × 1521)
for an error of t[vLS ] ≈ 3 · 10−8. To evaluate and plot the solution on 6 · 104 points (a square grid
of spacing 0.01) takes a further 46 seconds.

7. Numerical stability of the method. The method discussed in this paper requires the
solution of least-squares problems of the form (3.2), where A ∈ Cm×NV is highly ill-conditioned
and W is a diagonal matrix containing quadrature weights. Sources of the ill-conditioning in
A are the large dynamic range of the Fourier-Bessel basis functions and the ill-conditioning of
fundamental solution bases. The ill-conditioning of the Fourier-Bessel functions can be improved
by rescaling these functions so that they have unit value at the subdomain’s maximum radius from
the corner, which is what we have done in all example calculations. By contrast, ill-conditioning
of the fundamental solutions is inextricably linked to the fast exponential decay of the eigenvalues
ŝη(m) of the associated layer potential operator Sη, thus cannot be removed by scaling.

Denote by cLS the solution of the least-squares problem (3.2). If we have sufficiently many
quadrature points then t[vLS ] is well approximated by the discrete error td[vLS ] := ‖W (AcLS−b)‖2.
Solving (3.2) using a backward stable least-squares solver—such as mldivide in MATLAB—
returns a solution c̃LS , which is the exact minimizer of

min
c∈CNV

‖(WA + E)c − (Wb + f)‖2

where E and f are small perturbations bounded by

‖E‖2, ‖f‖2 ≤ Cǫmach, (7.1)

where the constant C > 0 is small and the machine precision is ǫmach [2]. Because of ill-
conditioning, c̃LS may differ wildly from cLS . However, the following shows that the corresponding
least-squares functional cannot deviate much from its true minimum.
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Lemma 7.1. Let c̃LS be defined by the above perturbed problem. Then it holds that

td[vLS ] ≤ td[ṽLS ] ≤ td[vLS ] + C(2 + ‖cLS‖2 + ‖c̃LS‖2)ǫmach (7.2)

Proof. Using the property that cLS minimizes the unperturbed least-squares problem, and
the triangle inequality, results in

‖WAcLS − Wb‖2 ≤ ‖WAc̃LS − Wb‖2 ≤ ‖(WA + E)c̃LS − (Wb + f)‖2 + C(1 + ‖c̃LS‖2)ǫmach.

Exchanging perturbed and unperturbed quantities gives similarly

‖(WA + E)c̃LS − (Wb + f)‖2 ≤ ‖WAcLS − Wb‖2 + C(1 + ‖cLS‖2)ǫmach.

Combining the two estimates shows (7.2).
Thus, if the coefficient norms at the approximate and exact minima are small, the numerical

least-squares solution must converge at the same exponential rate (Theorem 5.4) as the exact
least-squares solution.

In [4] the blow-up of the coefficient vector of fundamental solutions approximations was in-
vestigated for interior Helmholtz problems. Now we prove an analogous theorem that will help us
choose a numerically useful fundamental solutions curve.

Theorem 7.2. Consider a sequence of fundamental solutions approximations, each of the

form v(x) =
∑Ne

j=1 c
(e)
j

(
i
4

∂
∂ν(yj)

H
(1)
0 (k|x− yj |) − η

4H
(1)
0 (k|x− yj |)

)
, with growing numbers Ne

(Ne even) of charge points, that attains the error bound from Theorem 5.2 as Ne → ∞. Let each

coefficient vector be written c(e) :=
[
c
(e)
1 , . . . , c

(e)
Ne

]T

. If R > maxi |pi|, then the sequence of norms

‖c(e)‖2 is bounded independently of Ne.
Proof. In the following C > 0 denotes an unspecified constant that depends on k, R, r and ǫ

but not on Ne and may change throughout the proof. By assumption maxi |pi| < R < r.
From (5.2) and (5.5) it follows that

k
√

2πr|ûs(m) − ŝη(m)ĝ(m)| ≤ Cτ−Ne , m ∈ N

where τ = min{
(

r
R

)
, ρ

1/2
ǫ } (note that by Remark 5.3, ǫ̃ = 0 in Theorem 5.2 is possible since we

only use the estimate for the function and not for the normal derivative). It follows that

|ĝ(m)| ≤ |ŝη(m)|−1
(
Cτ−Ne(2πr)−1/2 + ûs(m)

)
, m ∈ N

Now restrict m to the interval [−Ne/2 + 1, . . . , Ne/2]. If R >
√

r maxi |pi| then for sufficiently
small ǫ it follows that τ = r

R . Using (4.3) and (5.4) we have

|ĝ(m)| ≤ C
( r

R

)|m| [( r

R

)−Ne

+ ρ−|m|
ǫ

]
≤ C

( r

R

)|m| [( r

R

)−|m|
+ ρ−|m|

ǫ

]
(7.3)

since r > R and |m| ≤ Ne

2 . From maxi |pi| < R it follows for sufficiently small ǫ that ρ
−|m|
ǫ ≤(

r
R

)−|m|
. Inserting this into (7.3) gives

|ĝ(m)| ≤ C,

where all constants are absorbed into C. If R <
√

r maxi |pi| then for sufficiently small ǫ it holds
that τ = ρǫ. We obtain, absorbing constants into C,

|ĝ(m)| ≤ C
( r

R

)|m| [
ρ−Ne/2

ǫ + ρ−|m|
ǫ

]
≤ C

( r

R

)|m| [
ρ−|m|

ǫ + ρ−|m|
ǫ

]
≤ C

(
r

Rρǫ

)|m|
≤ C

for ǫ sufficiently small since maxi |pi| < R and therefore ρǫ > r
R .

17



From (4.7) it follows that ĝ(m) = Ne

2π ĉ(e)(m) for m ∈ [−Ne/2+ 1, . . . , Ne/2], where the vector

ĉ(e) ∈ CNe is the discrete Fourier transform of c(e). Hence, using the boundedness of ĝ(m) for
m ∈ [−Ne/2 + 1, . . . , Ne/2] we obtain together with the discrete version of Parseval’s identity
‖c(e)‖2

2 = Ne‖ĉ(e)‖2
2 that

‖c(e)‖2
2 = Ne‖ĉ(e)‖2

2 =
(2π)2

Ne

Ne
2∑

j=− Ne
2

+1

|ĝ(m)|2 ≤ (2π)2C2,

which concludes the proof.
Hence, the coefficient vector of the MFS approximations stays bounded in norm as long as

maxi |pi| < R. In [4] this was studied numerically for interior Helmholtz problems, in the general
case of analytic MFS and boundary curves. In that work we also showed that a large coefficient
norm forces a corresponding loss of accuracy in solution evaluation due to round-off error.

Consider again the problem of sound-soft scattering on the square (Section 6.1). We have

|pi| =
√

2
2 for all corners of the square Ω = (−1/2, 1/2)2. If the radius of the source points yj

is R = 0.4 then for k = 100 and N = 150 we find that the computed coefficient vector c̃LS has
‖c̃LS‖ ≈ 3 · 109. The measured boundary error td[ṽLS] ≈ 3.6 is terrible. On the other hand, if
R = 0.8 > maxi |pi| then ‖c̃LS‖ ≈ 6.2 and td[ṽLS ] ≈ 7 · 10−10 is excellent. Note that in both cases
the matrix WA is numerically singular with a condition number of around 1020.

To summarize this section, the crucial factor limiting the accuracy of the method is not the
condition number of WA, but the norm of the basis coefficients vector. This can be kept small by
rescaling Fourier-Bessel functions and by an informed choice of the fundamental solutions curve.

8. Conclusions. In this paper we have demonstrated that efficient and highly accurate com-
putation of scattering from a variety of convex and nonconvex polygons can be achieved by using
a small number of elements, one for each corner, with the right kind of basis functions on each
element. This allows one to tackle problems tens of wavelengths across quite rapidly, even with
dense linear algebra. An advantage of the latter is that a dense factorization would allow multiple
right-hand sides (e.g. incident wave directions) to be solved at minimal extra cost. Once the co-
efficients have been solved for, the user may choose where to evaluate the solution at a constant
cost per point—this may be slow on large grids, but is trivially parallelizable.

For high-frequency sound-soft scattering of plane waves on convex polygons the method an-
alyzed in this paper cannot compete with specialized high-frequency boundary element methods
(e.g. [8]). However, the approach in this paper is much more general. It allows for the computation
of convex and nonconvex polygons, sound-soft or sound-hard boundary conditions, and non-plane
wave incident fields. Due to its fast exponential convergence, up to medium frequencies (≤ 50
wavelengths in size) it is very competitive.

Our implementation is also much simpler than boundary element or boundary integral meth-
ods. At high frequency these usually need a careful treatment of oscillatory integrals with com-
plicated basis functions and weakly oscillatory kernels, or spectral quadrature schemes for (hy-
per)singular kernels. In addition they require careful mesh-refinement or quadrature schemes for
corner singularities. None of this complexity is needed in our approach. Moreover, with MPSpack

we have created a simple-to-use software tool that allows rapid and flexible implementation of our
methods, and more (see Appendix A).

The approach in this paper can easily be generalized to multiple scattering problems. For
example, Figure 8 shows the solution for sound-soft scattering with incident angle −π

3 from a disk
near a snowflake domain, at wavenumber k = 100. Setting up and solving the matrix problem
takes around 7.5 minutes with an error t[vLS ] ≈ 4 · 10−7. Here we used an additional basis of
fundamental solutions with charge points lying on a circle inside the disk domain.

The exponential convergence analyzed in this paper relies on asymptotic series for Helmholtz
solutions at corners, and their convergence properties, which are known analytically for sound-soft
and sound-hard boundary conditions on straight boundaries. For impedance, transmission, and
curved-wall corner problems, the solution is not separable close to a corner, and it is an open
problem what kind of basis functions to choose here to obtain fast exponential convergence.
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Fig. 8.1. Multiple scattering from a disk and a snowflake domain.

Another open problem is optimal mesh (subdomain) generation. The mesh should be chosen
in such a way that fast exponential convergence on each element is guaranteed by keeping the
relative distance of mesh elements to neighboring singularities large. But at the same time the
mesh should not contain too many elements, so that the overall numbers of basis functions and
matching points remains small.

Finally, the efficient solution of the least-squares linear algebra problem needs to be further
investigated. At the moment we use a dense, backward stable solver, which works well for medium
wavenumbers. However, it would be desirable to have iterative solvers for large, structured, ill-
conditioned least-squares problems in order to remove the O(k3) bottleneck at high wavenumbers.
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Barnett thanks Leslie Greengard (Courant) for helpful discussions.

Appendix A. MPSpack example: scattering from a square.

MPSpack is an object-oriented MATLAB toolbox developed by the authors to solve two-
dimensional Helmholtz/Laplace PDE problems with particular and fundamental solution methods.
The code can be obtained from http://code.google.com/p/mpspack. The Download section of
that webpage also includes an extensive tutorial and a technical manual.

The short human-readable code in Figure A.1 implements scattering from the square as in
Section 6.1, giving least-squares error 8 × 10−11 in 6 seconds of CPU time, and a further 11
seconds to plot the solution. The code is explained in more detail in the tutorial. Here we
will only mention that segments are first created as in Figure 2.1, then subdomains E1 through
E4 and Ω+

e are created. Fractional-order Bessel function bases are added to subdomains with
the command addcornerbases, fundamental solutions with addmfsbasis. Finally a scattering

object is created which contains methods to construct the matrix WA from Section 3, solve the
least-squares linear system, and plot the solution.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Dover, New York, tenth edition ed., 1964.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. D. Croz, S. Ham-

marling, A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK Users’ guide (third ed.), Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.
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