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Abstract

In this thesis we study the biological problem of high plasma cholesterol levels. These levels are

widely acknowledged as a major risk factor in the development of coronary heart disease. For

this purpose we study the genetic regulatory mechanism responsible for liver cell cholesterol

homeostasis. Cellular cholesterol concentration has important ramifications on the ability of the

liver to clear cholesterol containing low density lipoprotein particles from the plasma efficiently.

Failure to do so results in elevated plasma cholesterol.

We present a mathematical model involving nonlinear ordinary differential equations describ-

ing the genetic regulation of enzyme synthesis. This regulation is effected via a two step feedback

inhibition mechanism specifically applicable to biochemical pathways involved in the mainte-

nance of cell cholesterol. The inhibitory process involves end product repression mediated by

a transcription factor and is described by a Hill function. The Hill coefficients of the model

we derive are biologically feasible, in contrast with other models derived in a similar manner.

Model analysis and results illustrate that this model system can generate self sustained, small

amplitude limit cycles. These results suggest that the process of homeostasis may be dynamic,

characterised by oscillatory solutions, as opposed to the traditional steady state viewpoint.

We conclude by integrating the genetic regulation model with a previously derived model of

low density lipoprotein receptor mediated uptake. Numerical solutions of this integrated model

demonstrate that oversimplification of the subcellular processes may obscure behaviour at the

cellular level. The integrated model is used to investigate and make conclusions on the regula-

tory response of the cell for a number of genetic mutations responsible for the condition familial

hypercholesterolaemia.
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1
Introduction

The aim of this thesis is to create and investigate a mathematical model which describes the bi-

ological mechanism of cellular cholesterol homeostasis (physiological regulation to ensure sta-

bility in response to fluctuations in the outside environment) within hepatocytes (liver cells).

Why is this particular mechanism of significance? Abnormal control of cholesterol levels within

hepatocytes can lead to aberrant processing of dietary cholesterol by the liver. Consequential

high levels of circulating plasma cholesterol are widely acknowledged as a major risk factor for

coronary heart disease (CHD).

CHD refers to the failure of the coronary circulation to adequately supply blood (and therefore

nutrients and oxygen) to the cardiac muscle and surrounding tissue. Disruption of blood flow

to the heart clinically manifests itself in symptoms of worsening severity. This ranges from re-

1



Chapter One

duced flow (ischaemia) causing angina pectoris (chest pain), to a complete blockage of blood

flow where the resultant death of heart muscle can lead to myocardial infarction (heart attack).

If severe enough, complete cessation of blood flow to an area of the heart can lead to sudden

death. CHD falls within the general class of disorders of the heart and blood circulatory system

(the cardiovascular system) known as cardiovascular disease (CVD). In addition to CHD, CVD

describes some major clinical conditions, including hypertension (raised blood pressure) and

cerebrovascular disease (disruption of blood supply to the brain causing stroke).

Both CVD and CHD are a significant concern for health. Each year, over 4.3 million deaths in

Europe are caused by CVD accounting for nearly half of all mortality (European Heart Network).

As illustrated in Figure 1.1, CVD is also the main cause of mortality in the UK, resulting in more

than one in three deaths each year.

Injuries and 

Poisoning

5%

Lung Cancer

7%

Other Cancer

3%
Colorectal 

Cancer

19%

All Other Causes

18%

Coronary Heart 

Disease

19%

Stroke

8%

Other CVD

8%

Respiratory 

Disease

13%

Fig. 1.1: Mortality by cause in 2006 for men in the United Kingdom. The red segments

represent deaths as a result of cardiovascular disease, of which deaths from coronary

heart disease constitute the majority. (Data adapted from British Heart Foundation

Statistics (British Heart Foundation, b)).

In particular, approximately 45% of all deaths from CVD are directly attributable to CHD. CHD

by itself is the most common cause of both mortality and premature mortality (death before the

age of 75) in the UK, with statistics indicating that one in five men and one in seven women die

2



Chapter One

as a result of the disease (British Heart Foundation, b).

Aside from these major human costs, the economic consequences of CVD for the UK are sub-

stantial. In 2006 alone, CHD was estimated to have cost the UK economy approximately nine

billion pounds, in terms of direct and indirect health care and productivity loss due to associ-

ated mortality and morbidity in those of working age (British Heart Foundation, a).

Statistics from the World Health Organisation suggest that since 1990 more people have died

from CHD than from any other single cause (World Health Organisation). CHD risk is deter-

mined by a range of non-modifiable and modifiable risk factors which contribute to the de-

velopment of underlying pathology leading to morbidity. Non-modifiable risk factors include

genetic predisposition, age, gender and ethnicity. Modifiable risk factors include, for example,

body weight, blood lipids and blood pressure which can be influenced by lifestyle choices such

as smoking, exercise levels and diet. Of particular concern are plasma cholesterol levels which

can be altered by changing dietary fat composition including dietary cholesterol intake.

The bulk of dietary cholesterol is delivered to the liver in the form of complex molecules called

lipoproteins. Lipoproteins enter hepatocytes via a specialised uptake pathway known as re-

ceptor mediated endocytosis (RME). Once within the cell, lipoproteins are catabolised (bro-

ken down) to release their cholesterol content. This clearance pathway of lipoprotein from the

plasma, and hence circulating plasma cholesterol level, is controlled by the intracellular con-

centration of cholesterol.

Understanding the mechanisms involved in the biological process described above is therefore

crucial to understanding how plasma cholesterol levels are determined. This in turn can lead

to a better understanding of how to reduce these levels which may contribute to more effective

intervention against the initial development of CHD.

In conjunction with the inaccessibility of the liver as an organ, the importance of the liver in

whole body metabolism complicates in vivo (within a living organism) biological investigation.

While in vitro (within a controlled environment e.g. test tube) experiments can provide us with

significant insight, the advantage of mathematical modelling lies in the provision of an approach
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Chapter One 1.1. Thesis outline

whereby the effects of certain system parameters, and their perturbation, can be examined both

quickly and cost effectively. This approach can help to clarify the underlying mechanisms of a

biological process, and further, can be used to identify and investigate parameters which would

not be easily isolated by experimental means. These methods can also provide direction for

future biological investigation.

1.1 Thesis outline

In Chapter 2 of this thesis we review the biology underlying cholesterol, lipoproteins and CHD.

This chapter begins with a description of the role of high plasma cholesterol in the development

of CHD. The structure and function of lipoproteins is discussed and the link between lipopro-

tein cholesterol and CHD risk is emphasised. This is followed by a brief overview of lipopro-

tein metabolism in which we describe the formation of lipoproteins, their transport through

the plasma and their eventual uptake and metabolism by the liver. The subsequent alteration

in intracellular cholesterol concentration, and the means by which this is managed by the cell

completes the biological discussion. The chapter concludes with a review of the existing math-

ematical models in this area.

The regulation of intracellular cholesterol, which controls both cholesterol uptake via lipopro-

tein and de novo (from new) cholesterol synthesis within the cell, occurs at the level of the gene.

Chapter 3 introduces the fundamental biological concepts of gene expression or protein synthe-

sis, as well as reviewing some primary mathematical approaches related to modelling of gene

regulatory networks. Notable modelling approaches including Boolean networks, Hill functions

and ordinary differential equations (ODEs).

This provides a prelude to the development of an ODE model of gene expression in the context

of cholesterol and lipoprotein metabolism. In the second part of this chapter, the concept of

transcription factors in relation to cholesterol homeostasis is introduced. The gene expression

model derived in the first part of this chapter is then extended to take into account the processes

involved in transcriptional control of protein synthesis. Hence, we create a three variable ODE
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model of regulated gene expression which is used to describe cholesterol biosynthesis within

the cell; this model is parameterised, where possible, using predominantly in vitro experimental

data.

In Chapter 4 we consider an analytic investigation of the cholesterol biosynthesis model. The

stability of the unique, physiologically valid, steady state of the system is analysed and we con-

sider firstly the case in which the steady state may be stable; either the system tends directly

to this steady state or undergoes oscillatory convergence to steady state. Secondly, we consider

the case in which the system exhibits limit cycle behaviour giving rise to oscillatory solutions.

This indicates the existence of a local bifurcation, in the dynamics of the system, called a Hopf

bifurcation and its existence is proved for critical parameter values.

The oscillatory solution is further analysed by the reduction of the three variable model to two

variables using Centre Manifold Theory. The resulting two dimensional model is then expressed

in polar coordinates and, using averaging, we identify the stability of the oscillations. Expres-

sions describing the amplitude and period of the oscillations are also derived. The analytic re-

sults obtained here are discussed in the biological context of homeostasis and of existing gene

expression models.

In Chapter 5 we present numerical solutions of the cholesterol biosynthesis model. The first half

of this chapter contains numerical results which support the analytical findings of Chapter 4.

In the second half of this chapter we explore the regions of parameter space for the parameters

which were not able to be derived from experimental data. For these undetermined parameters,

the results indicate that the genetic regulation model is much more sensitive to degradation

rates than to parameters which reflect the chemical structure of the reactions.

In Chapter 6 the genetic regulation model that has been the subject of this thesis thus far, is

integrated with an existing model of the receptor mediated uptake of low density lipoprotein

structure, previously discussed in Chapter 3. The lack of experimental data available in this area

for both parameter estimation and validation make quantitative analysis problematic. However,

we use the integrated model to make qualitative conclusions about the nature of cellular re-

sponse to incoming lipoprotein cholesterol. These results suggest that the oversimplification of

5



Chapter One 1.1. Thesis outline

the genetic pathways regulating these processes may mask behaviour occurring at long times.

In the final part of this chapter, we use our integrated model to investigate cellular responses to

disease states, in particular those pertaining to the disease familial hypercholesterolaemia.

Finally in Chapter 7 we summarise the overall implications of this work and discuss avenues for

further investigation. The appendices provide details on mathematical results employed in this

thesis together with calculations used in deriving the parameter values of the models contained

within.

A glossary of the major biological terms appearing throughout the thesis is included as a refer-

ence for the reader.
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2
Coronary Heart Disease, Lipoproteins

and Cholesterol Metabolism

In order to develop our mathematical model we must first fully understand the biological pro-

cesses we wish to model. In this chapter we begin by summarising the principal physiological

processes involved in lipoprotein and cholesterol metabolism. Following this, some of the ex-

isting mathematical models in this area are briefly reviewed. We begin by describing how high

plasma cholesterol levels are linked to the development of CHD.

High levels of circulating cholesterol predispose human blood vessels to atherosclerosis, the ac-

cumulation of cholesterol deposits within the walls of the vessels. Proliferation of these deposits

in the walls of arteries is the pathological basis of this progressive, chronic inflammatory process.
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Chapter Two

The inner surfaces of arteries are lined by a single layer of semi-permeable endothelial cells,

the principal function of which is to form a physical barrier between the artery wall and blood

flowing through the artery lumen. Damage to the endothelial wall increases its permeability

and allows larger, cholesterol containing molecules to enter the space between the artery lumen

and the arterial wall. Endothelial injury also causes vascular inflammation, and the interaction

between the inflammatory response mechanism, increased permeability and numerous other

factors, eventually results in the formation of lesions known as plaques. These plaques grow

and expand outward into the lumen of the artery, gradually causing occlusion as illustrated in

Figure 2.1(a). As a result, blood flow through these arteries is reduced compromising oxygen

supply to organs supplied by the affected blood vessels (Falk, 2006; Ross, 1999).

(a) Partial occlusion of an artery lumen. (b) Complete occlusion of an artery lumen.

Fig. 2.1: Microscopic arterial cross sections illustrating lumen stenosis occurring

due to atherogenesis. Figure 2.1(a) illustrates a partial blockage of the artery lu-

men due to plaque formation, the section of the artery shown has only 25% -

35% of the area it once had (Image courtesy of Nephron). In Figure 2.1(b) the

mottled white region indicates the plaque while the dark red area to the right of

the artery lumen illustrates a thrombus causing complete blockage of the artery

(http://pathcuric1.swmed.edu/PathDemo/cvd1/cvd130.htm).

During the final stages of atherogenesis (the development of atherosclerosis), disruption of the

plaques can initiate a series of coagulation events causing thrombus (blood clot) formation

(Davies et al., 1993). This may lead to the complete blockage of arteries as seen in Figure 2.1(b).

Atherosclerosis is the most common cause of disturbance to blood flow in CHD and estimates

have indicated that over 60% of CHD in developed countries is due to total plasma cholesterol

levels in excess of a theoretical recommended value.
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Chapter Two 2.1. Lipoproteins and lipoprotein metabolism

Current European medical guidelines for blood lipids advise that the total plasma cholesterol

level should be no more than 5.0 mmol/l. In conjunction with this, explicit recommendations

are made for levels of low density lipoprotein (LDL) cholesterol levels, which should ideally fall

under 3.0 mmol/l (Graham et al., 2007).

What is a lipoprotein? In the next section we discuss the structure and biological function of

lipoproteins and highlight the reason why LDL cholesterol levels are such a concern for cardio-

vascular health.

2.1 Lipoproteins and lipoprotein metabolism

Owing to the insoluble nature of cholesterol and other lipids in the plasma, their redistribution

throughout the body requires specialised carriers which are capable of solubilising and trans-

porting them. This is the function of the lipoproteins; macromolecular aggregates of lipid and

proteins held together by noncovalent forces, as illustrated in Figure 2.2.

Lipids, mainly triglycerides (TGs), and sometimes smaller amounts of esterified cholesterol, are

packaged into a core surrounded by a monolayer surface unique to lipoproteins. This surface is

composed mainly of phospholipids and smaller amounts of free cholesterol and protein.

Phospholipids have a dual or amphipathic nature. Their hydrophobic tails, which are repelled

by water, are positioned toward the core of the particle. Their hydrophilic heads, which are

attracted by water, are aligned toward the surface. This creates a spherical particle by which

insoluble lipids are thus able to move through the plasma.

The protein molecules interwoven within the monolayer surface are known as apolipoproteins.

Apolipoproteins have three major roles as part of lipoprotein structure. Firstly, they act as lig-

ands (binding agents) for various lipoprotein receptors found on the surface of cells. As such

they are involved in the transport and redistribution of lipids amongst tissues by allowing the

delivery of a particular lipoprotein to the location required for its metabolism. Secondly, they

act as cofactors or activators for lipolytic enzymes involved in lipoprotein metabolism.
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Fig. 2.2: A schematic illustration of the structure of a lipoprotein molecule. The inner

lipid core of triglyceride (TG) and cholesterol esters (CE) is surrounded by a surface

layer of phospholipids (P), free cholesterol (C) and interwoven apolipoproteins.

Apolipoproteins are also amphipathic in nature; their hydrophobic sections interact chemically

with TGs and cholesterol ester within the lipoprotein core whilst their hydrophilic sections bind

with the surface phospholipids. In doing so they fulfil their third role, which is to confer struc-

tural stability to the lipoprotein molecule.

Lipoproteins have traditionally been separated into operational fractions dependent on their

physical properties, for eexample, density, size and electrophoretic mobility (which reflects the

electric surface charge of the particle). It is important to note that divisions are arbitrary; het-

erogeneity exists within lipoprotein classes due to differing amounts and types of lipids. This

separation results in a widely accepted division of lipoproteins into five major classes, chylomi-

crons (CM), very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low

density lipoproteins (LDL), and high density lipoproteins (HDL). The average composition of

each type of lipoprotein with respect to the major lipids, together with average sizes and densi-

ties, is illustrated in Figure 2.3.
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Fig. 2.3: Major lipoprotein classes, their physical properties and composition. Densi-

ties are measured in g/ml and size is calculated in nm. The fraction of average protein

and lipid amounts present in each particle is illustrated as a percentage of the total

composition.

2.1.1 LDL cholesterol and CHD risk

Figure 2.3 illustrates that cholesterol is the predominant lipid in LDL and accounts for approx-

imately 50% of the particle composition. The role of LDL as the major cholesterol carrying

lipoprotein identifies plasma LDL-cholesterol levels as a serious risk factor in the development

of CHD (Tabas, 2008).

Epidemiological cohort studies have consistently demonstrated that LDL-cholesterol levels are

related to CHD risk. These include, for example, the Framingham Heart Study, a long term (three

generation) cardiovascular study of the residents of the town of Framingham, Massachussetts

(Framingham Heart Study).
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The Multiple Risk Factor Intervention Trial, a CHD prevention study designed to assess the com-

bined influence of various risk factors has also provided valuable insight (Stamler et al., 1986).
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Fig. 2.4: Log-linear relationship between LDL cholesterol levels and relative risk for

CHD as reported in Grundy et al. (2004). Every 30 mg/dl increase or decrease in LDL

cholesterol corresponds to the relative risk for CHD increasing or decreasing in pro-

portion by roughly 30%. The relative risk is set at 1.0 for an LDL cholesterol concen-

tration of 40 mg/dl.

Figure 2.4 illustrates the log-linear correlation between plasma LDL cholesterol levels and the

relative risk for CHD as demonstrated in both epidemiologic data and LDL cholesterol lowering

therapy clinical trial data (Grundy et al., 2004).

This relationship suggests that a given absolute reduction in plasma LDL cholesterol levels will

produce an equivalent reduction in the relative risk of CHD. For this reason quantities of circu-

lating LDL are a major target for improving cardiovascular health and the primary focus for lipid

lowering therapies.

Lifestyle education and pharmaceutical treatments, all developed to aid reduction of both total

and LDL cholesterol levels, have achieved some success in decreasing the prevalence of raised
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Chapter Two 2.1. Lipoproteins and lipoprotein metabolism

cholesterol. However, proportions of the population with cholesterol levels at or above the rec-

ommended levels remain substantially high. Effective interventions for the lowering of plasma

LDL cholesterol levels thus remain an important strategy for reducing the burden of CVD and

CHD internationally.

To understand how LDL cholesterol levels in the plasma are determined requires an understand-

ing of how LDL is metabolised. LDL concentration within the plasma is determined by the bal-

ance of its entry to and removal from the circulation; this forms part of the lipoprotein metabolic

pathway.

Conceptually the metabolism of lipoproteins is divided into three non distinct pathways dealing

with the transport of dietary lipids (exogenous pathway), the transport of endogenously synthe-

sised lipids (endogenous pathway), and finally reverse cholesterol transport.

2.1.2 Lipoprotein metabolism

In this section we provide further biological details of the lipoprotein metabolic process. We

begin with a description of the mechanisms resulting in dietary cholesterol uptake, more com-

monly known as the exogenous pathway of lipoprotein metabolism.

Exogenous lipoprotein metabolism

Exogenous lipoprotein metabolism describes the transport of dietary lipids, that is, lipids orig-

inating from outside the liver. The bulk of these take the form of TGs whilst the remainder are

composed of cholesterol, free fatty acids (FFAs) and phospholipids. These lipids undergo var-

ious biochemical processes to create micelles that can be directly absorbed from the lumen of

the small intestine into the blood.

Here, these lipids are incorporated with apolipoprotein B48 and their amalgamation synthesises

nascent CMs. Nascent CMs are secreted into the lymphatic system before entering the blood-

stream where they accept other apolipoproteins to become mature CMs (van Greevenbroek and
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Chapter Two 2.1. Lipoproteins and lipoprotein metabolism

de Bruin, 1998). Immediately on maturation, these newly acquired apolipoproteins, in particu-

lar apolipoprotein CII, activate lipoprotein lipase. This lipolytic enzyme catalyses the hydrolysis

of TGs in the lipoprotein core producing FFAs which are taken up by the surrounding tissue (e.g.

skeletal muscle or adipose tissue).

The subsequent decrease in core size leads to the formation of cholesterol enriched CM rem-

nants (Goldberg, 1996). These remnants then travel to the liver to undergo clearance as shown

in Figure 2.5. Following uptake by the liver, the remaining CM lipids are hydrolysed to liberate

FFAs, and cholesterol which is ultimately utilised in the synthesis of VLDL (Redgrave, 2004).

VLDL1

VLDL2

IDL

LDL

CMR CM

HDL

liver

peripheral cell 

e.g. fibroblast

cholesterol

efflux

gut

FFA

FFA

FFA

FFA

LPL

LPL

LPL

HL

CE, APO

TGCETP

Fig. 2.5: The pathways of lipoprotein metabolism. Exogenous lipoprotein metabolism

describes the fate of dietary cholesterol via the chylomicron pathway (red molecules);

endogenous lipoprotein metabolism deals with the metabolism of VLDL synthesised

within the liver (blue molecules); reverse cholesterol transport describes the HDL

pathway (grey molecule) which explains the movement of cholesterol from the pe-

ripheral cells. (CMR: chylomicron remnant; HL: hepatic lipase; LPL: lipoprotein li-

pase; CETP: cholesterol ester transfer protein; CE: cholesterol ester; APO: apolipopro-

tein; TG: triglyceride; FFA: free fatty acids).

14



Chapter Two 2.1. Lipoproteins and lipoprotein metabolism

Endogenous lipoprotein metabolism

The endogenous pathway of lipoprotein metabolism refers to the hepatic secretion and sub-

sequent metabolism of VLDL, that is, lipids which originate in the liver. The process of VLDL

synthesis is similar to that of CMs, but in contrast to CMs, VLDL carry only apolipoprotein B100

(APO-B100) on their surface. They also have a significantly higher ratio of cholesterol to TG con-

tent. The liver is generally thought to give rise to two major subfractions of nascent VLDL, one of

which is the initially assembled VLDL2 particle, TG poor but high in cholesterol ester (CE) (Olof-

sson et al., 1999). VLDL1 is produced from VLDL2 by bulk lipidation. This addition of an extra

TG load is dependent on hepatic TG availability. VLDL1 thus has a smaller ratio of cholesterol to

TG than VLDL2.

Nascent VLDL particles secreted by the liver acquire other apolipoproteins on their release into

the bloodstream and become mature VLDL. Almost immediately, this results in the activation of

lipoprotein lipase, leading to a depletion of the VLDL TG content. The resulting decrease in the

size of the VLDL particle causes its density to increase and the TG depleted VLDL falls into the

density range of IDL particles.

Approximately half of the IDL thus produced is cleared by the liver. The remaining IDL is subject

to the action of hepatic lipase, another lipolytic enzyme, causing further depletion of both TG

core content and core cholesterol esters (Nicoll and Lewis, 1980). This creates LDL particles with

a high cholesterol to TG content ratio, whose primary function is the delivery of cholesterol to

peripheral cells.

The delipidation cascade described above does not consistently occur via a single pathway, in-

stead parallel routes exist (Millar and Packard, 1998). VLDL1 does not always completely delipi-

date to LDL. Cessation can occur in the VLDL2 and IDL ranges where these remnants either per-

sist in the circulation or are slowly converted to LDL. Small amounts of VLDL1 may be cleared by

direct removal from the circulation. VLDL2 can be either directly cleared or metabolised quickly

to form LDL which is cleared rapidly from the circulation (Packard et al., 1984; Packard and Shep-

herd, 1997). This occurs either by delivery to the liver or to peripheral cells such as fibroblasts or

adrenal tissue, as illustrated in Figure 2.5.
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Reverse cholesterol transport

The reverse cholesterol transport pathway describes the movement of cholesterol from the pe-

ripheral cells governed by HDL (Tall, 1990). HDL’s primary function is as an extracellular choles-

terol acceptor, removing excess cholesterol from various tissues and delivering it to the liver (see

Figure 2.5). This occurs by one of two possible routes.

Firstly, HDL lipids can be directly taken up by the liver in a selective uptake process in which the

lipoprotein is not internalised. Secondly, by the action of the cholesterol ester transfer protein,

HDL cholesterol ester may be exchanged for the triglycerides contained in VLDL, IDL and LDL;

these particles are subsequently cleared by the liver.

Synonymous to the three pathways described above is the final step of clearance of the rele-

vant lipoproteins. Almost all cells have the capability to do this. However, via the conversion of

cholesterol to bile acids, the liver is the only organ through which cholesterol can be eliminated

from the body. For this reason, hepatocytes play a major role in whole body LDL metabolism

and defective hepatic LDL uptake is associated with elevated circulating LDL cholesterol con-

centrations.

The next section reviews the major pathway responsible for the hepatic uptake of LDL.

2.1.3 Hepatic lipoprotein uptake and receptor mediated endocytosis

Although nonspecific means of lipoprotein entry exist, the predominant mechanism involved

in the uptake of LDL cholesterol by hepatocytes is the receptor mediated endocytosis (RME)

pathway, which is regulated by the LDL receptor (LDLR) and is illustrated in Figure 2.6.

LDLRs are biosynthesised in the cell and are surface receptor proteins responsible for specific

binding and internalisation of LDL. They were originally identified during studies of the disease

familial hypercholesterolaemia by Goldstein and Brown (1977), which led to the identification

of the major steps of the RME pathway (Brown and Goldstein, 1979; Goldstein et al., 1979).
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Fig. 2.6: Receptor mediated endocytosis in a hepatocyte illustrating LDL binding,

internalisation and its subsequent degradation. LDL binds to the LDLR situated in

clathrin coated pits on the cell surface. It is then internalised together with the re-

ceptor it is bound to. Within the lysosome LDL is broken down releasing degradation

products; the receptor is either also degraded or is recycled to the cell surface. Recep-

tors are newly synthesised within the cell and inserted onto the cell membrane (B100:

Apolipoprotein B100).

RME is the sequential mechanism of lipoproteins binding to the surface of the cell, and their

subsequent internalisation into the cell, where they are eventually degraded. The process be-

gins with the binding of LDL to the LDLR. This binding is mediated by APO-B100, the only

apolipoprotein present on the surface of the LDL particle.

Newly synthesised LDLR are inserted directly into the cell surface where they cluster in clathrin

coated pits. APO-B100 directs and attaches LDL to the APO-B100 binding site on the LDLR. LDL

containing clathrin coated pits then invaginate into the cell, pinch off, and form coated endo-
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cytotic vesicles which are internalised. Pits empty of LDL also undergo this process. Following

internalisation, the clathrin coat is shed and vesicles fuse together to form larger endosomes,

within which the LDL dissociates from the receptor. In the next step, either some receptors are

recycled and returned to the cell surface or the receptors remain in the endosome. The endo-

somes fuse with lysosomes within the cell and and the contents are degraded by lysosomal en-

zyme hydrolysis (Goldstein et al., 1985). This degradation releases amino acids and cholesterol

for use in cellular metabolism.

The mechanisms of lipoprotein metabolism described thus far end at the endocytosis of LDL

into the cell, resulting in the entry of exogenous cholesterol. However, this is not the sole con-

tributor to intracellular cholesterol concentration. The next section considers levels of choles-

terol within the cell and how they are maintained.

2.2 Intracellular cholesterol

This section begins with a discussion of the endogenous cholesterol production within the cell

and reviews the biochemistry of the de novo synthesis of cholesterol (synthesis of the com-

plex cholesterol molecule from simpler constituent molecules). Following this, mechanisms by

which the cell maintains its cholesterol level are discussed.

2.2.1 Cholesterol biosynthesis

Slightly less than half of the body’s cholesterol content derives from de novo synthesis of which

10% of the amount produced each day is accounted for by the liver. It is the major contributor to

the hepatocyte cholesterol content. The process itself begins with substrates of acetyl-CoA and

acetoacetyl-CoA. These substrates are commonly found in all cells as the products of various

cellular metabolic reactions. As an example, they are derivatives of fatty acid metabolism (Bloch,

1965).

The initial step of cholesterol synthesis consists of the formation of 3-hydroxy-3-methylglutaryl
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coenzyme A (HMG-CoA) controlled by the enzyme HMG-CoA synthase.

2 acetyl-CoA + acetoacetyl-CoA
HMG-CoA synthase

GGGGGGGGGGGGGGGGGGGGAHMG-CoA .

The next step in the reaction involves the formation of mevalonic acid from HMG-CoA in a re-

action catalysed by the enzyme HMG-CoA reductase (HMGR).

HMG-CoA
HMG-CoA reductase (HMGR)

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGAMevalonate .

Mevalonate is subsequently converted, via a number of intermediate reactions to squalene. This

last reaction is catalysed by squalene synthase, the first enzyme in the pathway strictly devoted

to the formation of sterol. Squalene is eventually converted to cholesterol, which requires a

series of twenty additional steps (Myant, 1981).

The rate-limiting, or slowest step of this thirty step biosynthetic pathway, is the reduction of

HMG-CoA in the step catalysed by HMGR. As such this enzyme is subject to complex regulatory

controls. The rate of cholesterol production is therefore governed by the rate of production of

mevalonic acid; HMGR thus being the key protein involved in endogenous cholesterol produc-

tion.

In view of the fact that a cell can both produce its own cholesterol and receive it from endoge-

nous sources, we may now ask whether there exists an upper bound on the concentration of

cholesterol that a cell can contain.

2.2.2 Intracellular cholesterol homeostasis

Cholesterol is an essential constituent of the plasma membrane of mammalian cells and is used

for the maintenance of both membrane structural integrity and selective permeability. In addi-

tion, it is vital for the proper function of membrane transport processes and enzyme activities

(Simons and Iknonen, 2000).

In mammalian cells cholesterol is a metabolic end product; aside from transport reactions,
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cholesterol serves only as a reaction product and does not participate in any other biochemical

processes. Consequently, cholesterol can accumulate in cells and its overaccumulation results

in cellular toxicity. Direct ramifications of excess cholesterol induced toxicity include loss of

membrane fluidity (Yeagle, 1991), induction of apoptosis (a process of programmed cell death)

(Tabas, 1997), and intracellular cholesterol crystallisation (in which the precipitation of needle-

shaped cholesterol crystals damage cells by physically disrupting the integrity of intracellular

structures (Tangirala et al., 1994)).

All cells have the capacity to esterify free cholesterol. The esterification reaction, catalysed by

the rate-limiting enzyme acyl-CoA cholesterol acyltransferase, produces cholesterol ester from

cholesterol and fatty acyl coenzyme A. Cholesterol ester, a neutral lipid stored as droplets in the

cell cytosol (the intracellular fluid enclosed by the cell membrane but not held within cellular

organelles), allows for a non toxic method of excess cellular cholesterol storage.

Specialised cell types may also channel cholesterol into other pathways. One such example is

steroidogenesis; the synthesis of steroid hormones by the adrenal glands and gonads. In partic-

ular, hepatic cells can incorporate cholesterol into newly formed lipoproteins or utilise it in the

synthesis of bile acids.

Levels of cholesterol which are too low are also cytotoxic; they result in compromised membrane

structure and permeability which can be fatal for the cell. It is therefore crucial that choles-

terol levels are strictly regulated. Cellular cholesterol homeostasis, the property to keep choles-

terol concentration to within narrow ranges results from a balance of three pathways. These are

cholesterol influx to the cell, utilisation and efflux of cholesterol from the cell, see Figure 2.7.

Over accumulation or excessive depletion of free cholesterol is prevented by a negative feedback

loop that responds to elevations or depressions in intracellular cholesterol (Figure 2.7). This

feedback loop exerts the majority of its control by regulating the two key contributors to cellular

cholesterol, HMGR and LDLR.

Thus far the biological aspects of lipoprotein metabolism, intracellular cholesterol homeostasis

and high levels of plasma cholesterol have been introduced. However, our intention is to cre-
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Fig. 2.7: Factors effecting cholesterol balance in the hepatocyte. This diagram il-

lustrates the influx and efflux pathways from a hypothetical pool of free cholesterol

within the cell; homeostasis is the balance of these mechanisms. (CE: cholesterol es-

ter; H: HMGR; R: receptor).

ate a mathematical model pertaining to these pathways. Consequently, the literature regarding

mathematical modelling in this area is briefly reviewed in the next section.

2.3 Mathematical modelling of lipoprotein metabolism

Previous mathematical modelling of lipoprotein metabolism has varied in both scope and mod-

elling formalism. Extensive modelling has led to an in depth understanding of the processes

involved in RME in the context of cell surface receptors and coated pits.

For example, a considerable amount of work exists on the mechanisms by which receptors in-
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teract with coated pits on the cell surface. Receptors are inserted randomly on the cell surface

following synthesis and must then diffuse until bounded in clathrin coated pits.

The significance of this process lies in the concentration of receptors located in the pits which

determine how much LDL can be bound and internalised at any given time.

Goldstein et al. (1981) modelled this mechanism to derive estimates for the diffusion limits of

kd+, the forward rate constant for the trapping of LDLRs by coated pits and td c , the mean time

from random insertion of an LDLR into the plasma membrane to its capture by a coated pit.

They considered coated pits as absorbing discs, with radius s , having exponentially distributed

lifetimes with mean lifetime 1/λ, and calculated p (r, t ), the probability density associated with

the LDLR’s first arrival at the coated pit’s location.

Using q (r, t ), the probability density associated with capture at time t of an LDLR initially at

distance r from the centre of the coated pit, they arrived at

∂ p (r, t )
∂ t

= D∇2p (r, t ), (2.1a)

q (r, t ) = p (r, t )e−λt , (2.1b)

where D is the two-dimensional diffusion coefficient for an LDL particle.

Boundary conditions for p (r, t ), where b is the outer boundary of the coated pit, are given by

p (r, 0) = 0 for s < r ≤b , (2.2)

p (s , t ) = δ(t ), (2.3)

∂ p (r, t )/∂ r = 0 at r =b , (2.4)

where the final condition treats the outer boundary at r =b as a reflecting wall and δ is the Dirac

delta function. The solution of system (2.1) provided p (r, t )with which parameter values for kd+

and td c were estimated.

Similar modelling frameworks were considered in other work investigating receptor trapping by
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Chapter Two 2.3. Mathematical modelling of lipoprotein metabolism

coated pits (Goldstein et al., 1984; Peacock-Lopez and Ramirez, 1986). Keizer et al. (1985) also

derived a related model using statistical mechanic theory of nonequilibrium dynamics. They

did not consider that the distribution of receptors around coated pits is random, but rather that

this distribution increases with distance from the pit with a characteristic length dependent on

kinetic rates of other endocytotic processes.

Echavarria-Heras (1988) and Goldstein et al. (1988) extended these diffusion based models by

exploring convection as a candidate for the transport mechanism. They assessed the impor-

tance of convective flow in the transport of receptors to coated pits by modelling movement of

receptors to coated pits, assuming that receptors can both diffuse on the cell surface and be

transported by membrane flow. This created a convection-diffusion equation which was then

solved in order to determine parameter values such as the mean time, τ, for a diffusing receptor

to reach a coated pit in the presence of membrane flow.

The mechanics of RME have also been investigated, for example in the work of Gao et al. (2005).

In order to determine how particle size affects the RME process, they studied how a cell mem-

brane containing diffusive mobile receptors wraps around a coated particle. Their approach

modified a diffusion equation describing membrane receptor density during the wrapping pro-

cess. This results in a Stefan problem; a boundary value problem adapted to the case in which a

phase boundary can move with time.

In order to evaluate kinetic parameters such as those involved in ligand receptor interaction and

ligand receptor internalisation, Wiley and D (1981) and Gex-Fabry and DeLisi (1984) modelled

an RME process in which receptors do not recycle, using the epidermal growth factor receptor as

an example. They used an enzyme substrate approach whereby the receptor (R) was considered

to be the enzyme and the ligand, epidermal growth factor, (L) was considered to be the substrate

as illustrated in (2.5),

L+R GGBFGG LRGGALRi . (2.5)

Thus they took the association of the ligand with the receptor at the cell surface to be anal-

ogous to enzyme substrate complex formation and the internalised receptor ligand complex

(LRi ) to be analogous to the product. The resulting ODE models, derived using first order kinet-
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ics, were evaluated under the assumption of the existence of a cellular steady state. As such they

allowed for the determination of parameter values when compared with experimental data. Fur-

ther work on these models centred on improving the methods of analysis for determining rate

constants. For example, Truskey et al. (1984) considered Scatchard analysis and Bayesian param-

eter estimation techniques and Wiley and Cunningham (1982) developed specialised graphical

analysis forms.

Harwood Jr and Pellarin (1997) extended the enzymatic approach to RME model for application

to the LDLR system in which receptors recycle. They added a further step in which the inter-

nalised receptor ligand complex dissociates intracellularly with the receptor being recycled to

the cell surface. This is similar to the release of the enzyme to participate in further reactions

following a catalytic reaction, and is illustrated in (2.6),

L+R GGBFGG LRGGALRiGGAL i +R . (2.6)

Their derived kinetic model enabled determination of rate constants for the LDL RME process.

Similar models were developed by Chun et al. (1985) and Yuan et al. (1991), who also considered

the means by which the LDL RME process results in cholesterol release into the cell. This allowed

for specific fitting of parameters to the experimental results of Goldstein et al. (1979).

The models mentioned thus far concentrate on specific aspects involved in the metabolism of

lipoproteins and are useful in both elucidating and quantifying mechanisms of the endocytotic

process. However, to further understand the effect of uptake processes in the context of lipopro-

tein metabolism requires modelling which considers, as much as is possible, the larger reactions

involved in the metabolic pathway. An example of this is the use of compartmental models.

Lipoprotein kinetic studies can provide data about the dynamics of physiological processes such

as lipoprotein production rates. Traditionally these studies are conducted using stable isotope

tracer kinetic studies. The main choice of mathematical model to analyse the resulting data is

compartmental modelling. Briefly, a compartment is a mathematical abstract defining a well

mixed, kinetically homogeneous amount of material which may or may not correspond to any

physiological volume. A compartmental model is a system made up of a finite number of such
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compartments interconnected in some specific manner, allowing for the transfer of material

from one to another. Such models of lipoprotein metabolism have considered lipoprotein den-

sity classes (e.g. VLDL, IDL, LDL) as compartments.

Phenomenological transition rates between these compartments are determined by fitting to

data. An example compartmental model as applied to VLDL delipidation is illustrated in Fig-

ure 2.8 in which compartment 1 represents the precursor pool of VLDL APO-B100, and com-

partments 2, 3, and 4 represent VLDL, IDL, and LDL, respectively.

1

3
(IDL)

4
(LDL)

2
(VLDL)

U(1)

k(4,3)k(3,2)

k(0,2) k(0,3) k(0,4)

k(2,1)

Fig. 2.8: An example three compartmental model illustrating possible application to

the VLDL delipidation pathway. Compartments are shown as circles; connectivities

are shown as arrows and are labelled with transfer rates (e.g. k(i,j) is the rate of transfer

of material from compartment j to compartment i (mass/time)). The rate of input into

the system (production rate) is U(1).

With a few exceptions (for example, the comprehensive compartmental model developed by

Knoblauch et al. (2000)) most compartmental models are centred on subsets of the lipopro-

tein metabolism pathway. For example, models developed for the kinetic determination of

HDL metabolism or mechanisms of the reverse cholesterol pathway (Cheung and Albers, 1982;

Chetiveaux et al., 2004; Packard et al., 1984) or those based on APO-B100 pathways and mecha-

nisms involved in endogenous lipoprotein metabolism (Beltz et al., 1985; Parhofer et al., 1991).

More recently work by Packard et al. (2000) and Adiels et al. (2005) has investigated more com-

plex aspects of lipoprotein metabolism related to subfractions of lipoproteins.
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However, compartmental models have significant limitations. For example, the labelling of a

single lipoprotein density class as a compartment neglects the natural heterogeneity of lipopro-

teins. Furthermore, the transition from one compartment to another (the delipidation of

lipoprotein to another density class) is not a single process but is composed of various reactions

such as cholesterol transfer or removal of triglyceride. This simplicity in the empirical transition

rates between compartments highlights the lack of dependence on the underlying physiological

processes occurring.

In previous sections the importance of elevated LDL cholesterol levels to CHD have been em-

phasised. In order to investigate hypotheses relating to the mechanisms by which high plasma

LDL cholesterol can occur, dynamic models, derived from the physiological and biochemical

processes characterising the uptake of LDL from the plasma, are required.

August et al. (2007) developed a dynamic model of the physiological delipidation cascade of

endogenous lipoprotein metabolism (VLDL→ IDL→ LDL) coupled with cellular receptor medi-

ated uptake of LDL and de novo receptor synthesis. This is regulated by negative feedback from

intracellular cholesterol concentration creating a system of nonlinear ODEs more tightly linked

to the underlying physiological processes. This allows parametric investigation corresponding

to various medical and genetic conditions for which they obtain results coinciding with exper-

imental observation. Their model looks in detail at plasma cholesterol levels for which they

demonstrate bistability with hysteresis between a high and low cholesterol state.

However, while most processes of this model are based on physiological properties, we note

that they make the assumption that all cholesterol in the cell is delivered by lipoproteins. Thus

August et al. ignore a significant pathway, that of cholesterol biosynthesis. In the case of zero

concentration of extracellular lipoprotein, intracellular cholesterol concentration in their model

drops to zero; physiologically a fatal consequence for the cell.

Similarly, the model of Wattis et al. (2008) is a system of nonlinear ODEs derived directly from

the biochemical processes. However, their work focuses only on the endocytotic uptake of LDL

by a single hepatocyte. Unlike previous models of RME, Wattis et al. explicitly model the pres-

ence of receptors within coated pits on the cell surface. This results in equations describing the
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evolution of full and empty cell surface pits, intracellular receptors, and extracellular, bound and

internalised LDL. Receptor synthesis is modelled as a function of cholesterol content whereby

low levels lead to high receptor density and high cholesterol causes low receptor density (nega-

tive feedback).

By extending their model to include new variables analogous to variables measured in biological

LDL binding studies, Wattis et al. have been able to demonstrate a very good fit of internalised

LDL and LDL degradation time evolution to in vitro experimental data from Goldstein et al.

(1979), as illustrated in Figure 2.9.
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Fig. 2.9: Comparison of the experimental results of Goldstein et al. (1979) with the

theoretical predictions of the Wattis et al. (2008) ODE model. The dashed lines indi-

cate experimentally measured variables and the solid lines represent the respective

numerical solutions for those variables.

However, simulations for the amount of bound LDL show a discrepancy with the experimental

data at long times. Wattis et al. have postulated that this may be due to the nonspecific binding

of LDL to other parts of the cell membrane; this results in a nonzero steady state value for this

parameter and is in contrast with the simulation result which decays to zero.
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This issue is considered in the work of Ratushny (2006) whose approach is to consider a more

biologically accurate scenario in which not all receptors are present in coated pits. Instead, some

receptors are located on other parts of the cell membrane in the process of diffusing to coated

pits. This results in a nonzero steady state of bound LDL since LDL bound outside of coated pits

is not internalised.

We also note that, as in the model of August et al. (2007), cholesterol biosynthesis is not treated

explicitly. The rate of change of cholesterol with time is modelled as

d c

d t
= f (l i )−λ(c − ce ), (2.7)

where incoming LDL cholesterol is modelled by a function, f , of l i , internalised LDL. Other

cholesterol influx or efflux is modelled by the function λ(c − ce ), where λ is a rate constant and

ce is the equilibrium level of cholesterol in the cell. This ensures that if c < ce , that is, cholesterol

concentration is too low in the cell then intracellular cholesterol concentration will increase.

However, if c > ce , that is, cholesterol is too high then this function ensures intracellular choles-

terol concentration will decrease.

While this results in qualitatively correct behaviour, this term does not completely account for

the underlying biological mechanisms. In particular the interplay between cholesterol biosyn-

thesis, receptor mediated uptake and cholesterol mediated negative feedback is not fully appre-

ciated. Furthermore, this also results in a bound on the cholesterol concentration within the cell

given by the value of ce .

A consequence of this is that intracellular cholesterol concentration in the model reaches equi-

librium rapidly (on a timescale of the order of minutes) after extracellular LDL is delivered to

the cell. However, experimental results suggest that this may not be the case, with changes in

intracellular cholesterol concentration occurring on timescales of twelve to twenty four hours

and resulting in up to a two fold increase in cell cholesterol concentration (Liscum and Faust,

1987; Liscum et al., 1989).

This suggests the possibility that the physiological process of de novo cholesterol synthesis not

incorporated in the model of Wattis et al. could have a significant effect on intracellular choles-
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terol concentration and, as a result, cell surface receptor concentration and LDL internalisation.

Another distinctive feature of the work of both August et al. (2007) and Wattis et al. (2008) is the

modelling of the regulation of receptor synthesis as basic reciprocal feedback due to cholesterol

concentration. This is the simplest type of mathematical function which represents feedback in-

hibition, (Murray, 2002). However, the interdependence of the pathways of cholesterol biosyn-

thesis, receptor synthesis and intracellular cholesterol concentration previously discussed sug-

gest that this approach may be too simplistic.

This review of the existing literature indicates a lack of rigorous modelling of both cholesterol

biosynthesis and of the feedback regulation of both this pathway and receptor concentration.

How important is the cholesterol biosynthesis pathway? As the major contributor to choles-

terol concentration within the cell, this pathway is already the basis of the most common form

of pharmaceutical treatment for high plasma cholesterol levels. HMGR inhibitors, more com-

monly known as statins act as competitive inhibitors of the binding site of HMGR. By inhibiting

the biosynthesis of cholesterol, statins deplete the intracellular cholesterol pool and promote

the transcription of both HMGR and the LDLR, thereby increasing the uptake of plasma LDL.

Thus a model of LDL uptake, which aims to describe how changes in the rate of this uptake can

affect CHD development, should ideally include this pathway and the receptor related biological

mechanisms to which it is linked.

The ultimate aim of this thesis is to develop a model which can describe not only the cellular

processes of LDL binding and internalisation, but also the consequential subcellular processes

which must respond in order to regulate cell cholesterol content. Therefore, the first aim of

this thesis is the development of a model which can describe the cholesterol mediated genetic

regulation of cholesterol biosynthesis. This is the subject of the next chapter in which we derive

an ODE model of regulated cholesterol biosynthesis directly from the biological mechanisms of

protein synthesis from DNA.
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3
Regulated Gene Expression and

Cholesterol Biosynthesis

In Chapter 2 it was noted that both cell surface LDLR levels and intracellular cholesterol concen-

tration (via HMGR protein levels) are controlled at the level of the gene. This control is exerted

by the turning on or off of the process of gene expression which is the biological mechanism of

protein synthesis. A brief review of this process is the subject of the first part of this chapter. This

is followed by a discussion of the various mathematical approaches adopted in developing mod-

els of regulated gene expression. The mathematical models of lipoprotein metabolism reviewed

in Section 2.3, whilst acknowledging the influence of intracellular cholesterol concentration on

LDLR levels, lack an accurate physiological description of the regulation pathway. Furthermore,

they have neglected the significance of cholesterol biosynthesis. The concluding part of this
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chapter contains the derivation of the model we will use to describe the process of regulated

gene expression, in the context of the cholesterol biosynthetic pathway.

3.1 Gene expression

Gene expression is localised to the cell nucleus and begins at the level of a DNA nucleotide se-

quence or gene. When the cell requires a particular protein, its nucleotide sequence is copied

from the appropriate location in the DNA molecule to produce RNA (a mirror image of the DNA)

in a process termed transcription. These RNA copies of DNA segments form templates which di-

rect protein synthesis; this process is known as translation. This principle of flow of genetic in-

formation in cells from DNA to RNA to protein is the central dogma of molecular biology. Before

we describe protein synthesis, we provide a brief overview of the general structure of a eukary-

otic mammal cell as a reference for the cellular organelles which are mentioned in the biology

that follows.

golgi apparatus
nucleus

rough endoplasmic

reticulum

smooth 

endoplasmic

reticulum

lysosome

mitochondrion

plasma

membrane

cytoplasm

rough 

endoplasmic

reticulum

lysosome

mitochondrion

Fig. 3.1: Schematic illustration of a typical eukaryotic cell highlighting the major cel-

lular organelles. Organelle functions are outlined in the list which follows.
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The functions of the major eukaryotic cell organelles highlighted in Figure 3.1 are briefly de-

scribed below.

• Cytoplasm: The part of the cell enclosed within the cell membrane.

• Golgi apparatus: The organelle responsible for the processing and packaging of macro-

molecules such as proteins and lipids after their synthesis.

• Lysosome: The organelles containing enzymes (hydrolases) which break up waste, en-

gulfed materials and cellular debris.

• Mitochondrion: The organelle which converts oxygen and nutrients into ATP to power

the cell’s metabolic activities.

• Nucleus: The regulatory centre of the cell containing most of the cell’s genetic material.

• Plasma membrane: A semipermeable membrane forming the interface between subcel-

lular components and external environment, controlling the movement of substances in

and out of cells.

• Rough endoplasmic reticulum : An organelle studded with ribosomes which are the com-

ponent of the cell responsible for protein synthesis.

• Smooth endoplasmic reticulum : The organelle responsible for lipid synthesis, providing

surface area for the action and anchoring of enzymes.

We now provide details of the gene expression process necessary for this thesis. For the inter-

ested reader further details can be found, for example, in Alberts et al. (2008).

3.1.1 Transcription

The majority of genes carried in a cell’s DNA specify the amino acid sequence of proteins; the

RNA molecules that are copied from these genes are called messenger RNA (mRNA) molecules.

The enzyme responsible for mRNA transcription is RNA polymerase II (RNAP II) which initiates
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transcription at a region of the gene known as the promoter (see Figure 3.2). This initiation is

mediated by transcription factors; RNAP II will only bind to the promoter following attachment

of the relevant transcription factors. Once attached, RNAP II must clear the promoter, and dur-

ing this time there is a tendency for abortive initiation to occur, when truncated transcripts are

produced and released. Once the promoter is cleared, elongation occurs, whereby RNAP II tra-

verses the DNA template region to create an mRNA copy (the polymerase is subject to pauses

during this period). Transcription halts at a terminator site and both the DNA and completed

mRNA molecule are released from the RNAP II enzyme. These mRNAs then pass through nu-

clear pores into the cell cytoplasm.

3.1.2 Translation

Located in the cell cytoplasm are large protein assemblies known as ribosomes, on which the nu-

cleotide sequence of the mRNA molecule is translated into a protein. Translation is initiated by

the binding of a ribosome to mRNA. The ribosomes synthesise or elongate proteins by catalysing

the assembly of individual amino acids into polypeptide chains. Sequences of three nucleotides

in the mRNA sequence form the code for inserting a particular amino acid. The complete mRNA

molecule acts as a template for the correct amino acid sequence for the protein.

Elongation is followed by termination and the release of the completed polypeptide. The final

step of protein synthesis is the folding of the newly synthesised protein into its correct three-

dimensional conformation.

In principle, all of the steps from DNA to protein production can be regulated, the main control

points are shown in Figure 3.2. A cell can control the protein it makes by controlling how often

a gene is transcribed or by selecting which mRNAs in the cytoplasm are translated. Control

may also be exerted through the degradation of mRNA molecules. Following protein synthesis,

selective activation, inactivation or degradation of protein molecules allows further regulation.

Paramount for most genes is regulation of the first step, that is, control at the transcriptional

level. Transcriptional regulatory networks continuously sense a set of certain intracellular sig-
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Fig. 3.2: Pathways controlling gene expression in a eukaryotic cell. (1) Transcriptional

control; (2) Translational control; (3) mRNA degradation control; and (4) Protein ac-

tivity control. (TF: Transcription Factor; aa: Amino Acid; A: Active).

nals, for example the concentration of a particular molecule within the cell. This information

is then relayed to the cell nucleus in order to adjust transcription appropriately. Sensing these

signals is often a fundamental problem for the cell. This is overcome by the action of a partic-

ular type of protein known as a transcription factor, which binds to sites on the cell’s DNA to

control gene expression and the transfer of genetic information to mRNA. Transcription factors

usually contain a signal sensing domain which on interaction with the signal allows activation

or deactivation of the transcription factor.

Having characterised the essential biological features of gene expression our next step is to trans-

late these into a mathematical model which we will use to describe regulated gene expression.

Before doing so, we will give a brief overview of mathematical modelling approaches of tran-

scriptional control in genetic networks.
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3.2 Mathematical models of regulated gene expression

Mathematical models used to describe regulated gene expression differ both in their underlying

assumptions and in the level of resolution (how many biological variables) they contain. In this

section we consider time dependent mathematical approaches; a broad classification of these

approaches separates the resulting models into two classes depending on how the time variable

is treated. Discrete in time models are designed to describe the state of the physical system at

a selected set of distinct times whereas continuous in time mathematical models are valid for

any value of the time variable. Continuous models can be further divided into stochastic and

deterministic models.

Discrete in time models, also known as Boolean or logical network methods, use relatively sim-

ple levels of detail, and were introduced by Kauffman (1969). The assumptions of this approach,

due to Somogyi and Sniegoski (1996), can be summarised in the following manner:

(i) the expression of a gene is either on (active, (1)) or off (inactive, (0));

(ii) no intermediate activity levels are considered; and

(iii) the dynamic behavior of each variable, that is, whether it will be on or off at the next mo-

ment, is governed by a Boolean function. In general, a Boolean or logical function is written

as a statement acting on the inputs using the logical operators ‘and’, ‘or’ and ‘not’ and its

output is 1 if the statement is true and 0 if false.

We demonstrate the use of Boolean models by means of a simple example. Figure 3.3 illustrates

a Boolean network, G(V,F), of three nodes, V = a ,b , c , where a node may represent either a gene

or a biological stimulus, for example, a chemical factor which influences the network and is itself

not a gene or gene product.

A node has an associated steady-state expression level representing the amount of gene product

(in the case of a gene) or the amount of stimulus present in the cell. This level is approximated

as high or low and represented by the binary value 1 or 0, respectively.
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Fig. 3.3: An example of a Boolean network containing three nodes. Each of the entities

a , b and c in the network can be in state 0 or 1. State transitions obey the regulation

functions shown in the diagram, which describe the rules of the model. For example,

if b is in state 1 and c is in state 0, at the next time step the state of a will be 1. Arrows

indicate the regulators of each node.

The set F = (Fa , Fb , Fc ) of Boolean functions assigned to the nodes, defines the value of a node

on the next step depending on values of other nodes which influence it. The functions F are

uniquely defined using the Boolean function truth tables in Figure 3.3, for example, the value of

the node b at time n +1 depends on the value of a at time n , that is, bn+1 = Fb (a n ).

For the network depicted in Figure 3.3, expression of c directly depends on expression of b ,

which directly depends on a . However, the influence of b and c on a is more complex; for

example, a high level of expression of both b and c leads to inhibition of a .

This approach is useful when modelling molecular concentration changes associated with gene

activity which are often characterised by rapid change (Bornholdt, 2008). The switch-like dy-

namics produced by Boolean networks are not unlike the steep changes and plateaus that are

typically observed in cellular protein concentrations.

The work of Kervizic and Corcos (2008) has applied the Boolean network modelling method to

the cholesterol biosynthesis pathway and its regulation. Whilst their work has shown qualitative
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agreement with the known biochemical features of the pathway, there are obvious limitations

of a method which assumes a gene as being either on or off, since gene expression rates are

continuous in time (Glass and Kauffman, 1973). This limited level of detail cannot, for example,

correctly model the dynamics of a transcription factor that downregulates its own expression

(Kauffman et al., 2003).

A further problem lies in the computational expense of analysing large networks; however, when

the number of nodes is small and only qualitative knowledge is available, Boolean networks can

provide important insights, such as the existence and nature of steady states. More importantly

this approach cannot, for example, identify the key physiological parameters to which the be-

havior of the genetic regulatory system is sensitive. We require an approach which models fun-

damentally the underlying biological reactions governing the gene network, thus allowing us to

investigate the response of the system to biological parameters.

Continuous in time models generally use (linear or nonlinear) differential equations to describe

the rate of change of gene product (mRNA and protein) concentrations. Stochastic differen-

tial equations are an example of a continuous model often used to model genetic systems. The

governing philosophy is that molecular populations are whole numbers and when they change,

they do so by discrete amounts. Furthermore, the low average number of important molecules

in some cells (i.e. low intracellular concentrations) can lead to randomness in the times of syn-

thesis or degradation of individual molecules.

This level of detail can be incorporated by modelling stochastic fluctuations. Stochastic models

address deviations from population homogeneity by considering numbers of molecules rather

than concentrations and modelling reaction rates as probabilities (Smolen et al., 1999; McAdams

and Arkin, 1997). However, stochastic modelling introduces considerable complexity. More

specifically, algorithms for the solution of stochastic models involve procedures that simulate

every reaction event which requires considerable computational power.

Cellular processes such as transcription and translation may be considered as systems of distinct

chemical reactions. These can be described using the law of mass action (see Section 3.2.1) to

yield a set of ODEs which describe the successive concentrations of model species over time.
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Generally, these equations take the form

d x i

d t
= f i (x) , 1≤ i ≤ n , (3.1)

x = [x1,x2, . . . ,xn−1,xn ]T , (3.2)

with the arbitrary initial conditions given by

x1 6= 0, x2 = 0, . . . , xn−1 = 0, xn = 0, (3.3)

where x is a vector of nonnegative real numbers which describes the concentrations of reacting

species, and f i is some function describing the interaction (reactions) between them.

ODEs are arguably the most common formalism for modelling regulated gene expression and it

is this approach that will be used in this thesis.

One of the first instances of the use of ODEs in modelling gene transcription is based on the

operon models postulated by Jacob and Monod (1961), describing the mechanism of enzyme

induction and repression. The early work of Goodwin (1963, 1965) used the Jacob and Monod

model to provide a general multistep ODE framework for modelling regulated transcription of

mRNA.

We now provide a brief description of Goodwin’s model as the basis for the derivation of our

model in Section 3.3. The reaction mechanism described in the work of Goodwin (1963), which

considers the mediation of mRNA synthesis by an end product it synthesises, is reproduced in

the following diagram

// X1
// X2

// . . . // Xn

���
�
�•�

�
�
oo_ _ _ oo_ _ _ _ oo_ _ _ _ oo_ _ _ _

(3.4)

Reaction (3.4) describes a multistep process in which the final product of the reaction, Xn influ-

ences its own synthesis by affecting the production of the first reactant in the pathway, X1. The

simplest model equations that can be used to describe the above reaction mechanism as derived
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in the work of Goodwin (1963), are given by

d x1

d t
= f (xn )−k1x1, (3.5a)

d x j

d t
= x j−1−k j x j , j = 2, . . . , n , (3.5b)

where lowercase letters denote concentration and n is the number of variables of the multistep

reaction. The function f (xn ) is always positive and is the feedback function which describes

the effect of xn on x1. If f (xn ) is an increasing function of xn then f ′(xn ) > 0 and system (3.5)

describes a positive feedback loop. If, however, f (xn ) is a monotonically decreasing function of

xn then f ′(xn )< 0 and system (3.5) represents a negative feedback loop.

As an example we consider the simple case with n = 3 given by,

d x1

d t
=

α1

1+βx3
−k1x1, (3.6a)

d x2

d t
= α2x1−k2x2, (3.6b)

d x3

d t
= α3x2−k3x3, (3.6c)

which has the initial conditions

x1 6= 0, x2 = 0, x3 = 0. (3.7)

Since f (x3) = α1/
�

1+βx3
�

is monotonically decreasing with f ′(x3) < 0, this is a negative feed-

back loop in which the metabolite x3 directly represses its own synthesis. The αi are rates of

synthesis, k i are rates of degradation and β is an equilibrium constant for the reaction between

x3 and x1.

This model can describe the process whereby a structural gene codes for mRNA (x1), which

then goes on to produce a protein (x2) which is responsible for metabolite production (x3). The

metabolite may directly influence its own transcription via the function f (x3). This is a repres-

sion function in which one molecule of x3 can inactivate mRNA transcription.

A further modification proposed by Griffith (1968) was to incorporate the reaction mechanism

whereby m molecules of the repressor are required to inactivate transcription; in this case (3.6a)
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is given by the modified equation

d x1

d t
=

α1

1+β (x3)m
−k1x1. (3.8)

The parameter m , which here represents the number of binding sites on the gene available to

the repressor is also known as a Hill coefficient. Hill coefficients are commonly used in math-

ematical models of gene expression, however, the use of this coefficient in the form of (3.8) is

valid only under certain conditions. To understand these conditions, it is first necessary to give

a description of the rationale behind the formulation of ODEs from chemical reactions.

3.2.1 The law of mass action

The mass action kinetic formula is the most fundamental type of kinetic formula. It results from

the empirical observation that the rate of an elementary reaction is proportional to the product

of the concentrations of the chemical species participating in that reaction (Segel, 1984). This

observation is known as the law of mass action. An elementary chemical reaction corresponds

to a fundamental, instantaneous physical event, for example the collision of two molecules to

form a product.

Suppose that two chemicals A and B react to form a chemical product C in a reaction described

by

A + B −→C . (3.9)

This reaction will proceed with a speed dictated by the thermodynamics of the chemical reac-

tion, known as the kinetic rate constant. Since thermodynamically all reactions are reversible in

principle, a more accurate representation of (3.9) is

A + B
k f
GGGGBFGGGG

kr

C , (3.10)

where k f is the rate constant for the forward reaction and kr is the rate constant for the reverse

reaction.
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The law of mass action states that the rate of increase of c (which we use to denote the con-

centration of product C ) is proportional to the product of the concentrations of A and B with

proportionality constant k f . The rate of decrease of c is proportional to its own concentration

with proportionality constant kr .

The total rate of change of c is then given by the difference between the rate of its creation and

the rate of its depletion,
d c

d t
= k f ab −kr c , (3.11)

where a , b represent the concentrations of the chemicals of A, B respectively. Similarly the law of

mass action allows us to write equations for the time derivatives of the reactant concentrations

a and b ,
d a

d t
=−k f ab +kr c ,

d b

d t
=−k f ab +kr c . (3.12)

(3.11) together with (3.12) comprise the system of ODEs which describe the chemical reaction

occurring in (3.10). We note that

d

d t
(a + c ) = 0 and

d

d t
(b + c ) = 0, (3.13)

and integrating,

a + c = a 0 and b + c =b0, (3.14)

where a 0 and b0 are the concentrations of a and b at initial time. Since one molecule of each

reactant is converted into one molecule of product, each reactant, original and converted to

product, is conserved.

These ideas can also be extended to generalised chemical reactions composed of a number of

elementary reactions

a 1X1+a 2X2+a 3X3+ . . .+a m Xm

k f
GGGGBFGGGG

kr

b1Y1+b2Y2+b3Y3+ . . .+bn Yn , (3.15)

where the a i and b i are the stoichiometric coefficients which describe how many molecules

of a particular chemical species is taking part in that particular reaction. The system of ODEs
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representing (3.15) is given by

d x i

d t
= kr

n
∏

i=1

y b i
i −k f

m
∏

i=1

x a i
i , (3.16a)

d yi

d t
= k f

m
∏

i=1

x a i
i −kr

n
∏

i=1

y b i
i . (3.16b)

We note that the law of mass action described above assumes chemical reactions are occurring

in a homogeneous, well mixed environment, and that reactions are continuous and determinis-

tic, that is, there is no randomness involved in the occurrence of a chemical reaction event.

However, it is well known that chemical reactions involve discrete, random collisions between

individual molecules, which can be continuously approximated given a high enough concentra-

tion of molecules involved in the collisions.

The validity of this approach ceases to hold as smaller intracellular environments are considered

and stochastic effects become more significant (Cai et al., 2006).

Furthermore, intracellular environments are significantly different from the homogeneous envi-

ronment chemical reactions are assumed to occur in. They are characterised by a high degree of

macromolecular crowding, especially in cell cytoplasm; this can have important consequences

in cell thermodynamics and also on diffusion processes, with resultant effects on reaction rates

and enzyme activity (Grima and Schnell, 2006; Schnell and Turner, 2004).

In deriving our model, we will assume the reactants are present in high enough concentrations

to allow the approximation of continuity and that the cellular environment is essentially homo-

geneous.

3.2.2 The Hill function

Hill functions were introduced by Hill (1913) to describe the binding of oxygen to haemoglobin,

and have been employed in the mathematical models of gene repressor interaction since the
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work of Goodwin (1963) and Griffith (1968). Traditionally the Hill coefficient is used to describe

the number of molecules that are required to bind to a gene in order to produce a functional

effect.

The Hill equation is readily derived from a binding reaction scheme in which m molecules of,

for example, repressor (R) bind to a gene (G ), i.e.

G +m R
k f
GGGGBFGGGG

kr

G Rm . (3.17)

At equilibrium, the following relation, derived using the law of mass action, holds

[G ][R]m =
kr

k f
[G Rm ], (3.18)

and, given that the number of genes in a cell is inherently constant, we also have that,

[G ]+ [G Rm ] = [G t ot ]. (3.19)

mRNA transcription is traditionally taken to be proportional to the fraction of active genes, that

is, the fraction of genes not bound to a repressor,

[G ]
[G t ot ]

=
[G ]

[G ]+ [G Rm ]
=

[G ]

[G ]+
k f

kr
[G ][R]m

=
1

1+
�

[R]
κD

�m , (3.20)

where κD is the dissociation constant for reaction (3.17) and is given by κ m
D = kr/k f .

Then the rate of mRNA synthesis is given by

α

1+β [R]m
, (3.21)

where α is a proportionality constant representing the maximum transcription rate, β = 1/κ m
D ,

and we have recovered the form of (3.8) with mRNA = x1 and repressor, [R] = x3.

Although the above reaction is mathematically possible, it is not biologically plausible except

in the case m = 1. For m > 1 the reaction implies the simultaneous interaction of multiple
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molecules in which no intermediate states occur.

A more realistic binding scheme for genes with multiple individual binding sites is given by the

reaction,

G +m R
m k f 1
GGGGGGGBFGGGGGGG

kr 1

G R +(m −1)R
(m −1)k f 2
GGGGGGGGGGGBFGGGGGGGGGGG

2kr 2

G R2+(m −2)R GGBFGG . . .

. . .
2k f (m−1)
GGGGGGGGGBFGGGGGGGGG

(m −1)kr (m−1)

G Rm−1+R
k f m
GGGGGGBFGGGGGG

m kr m

G Rm , (3.22)

in which any binding site can be occupied independently of another.

Here, for example, the first forward rate of reaction represents the fact that when the G is un-

bound, any of the m binding sites for R are available to be filled and so the total forward rate

from the unbound gene is m times the individual forward rate constant k f 1. The converse ap-

plies to the coefficients of the backward rate constants.

In this case, the fraction of active genes at equilibrium is given by

[G ]
[G t ot ]

=
1

1+
m
∑

i=1

 

m !

(m − i )! i !

i
∏

j=1

1

κD j
[R]i

! , (3.23)

where κD j = kr j/k f j is the dissociation constant for the step forming G R j (Segel, 1993).

The only condition under which reaction (3.22) can be approximated by reaction (3.17) is when

the intermediate states, G R ,G R2 . . .G Rm−1, never accumulate significantly. This can occur only

when κD1 >> κD2 >> . . . >> κD(m−1) >> κDm , that is, when marked positive cooperativity is

present, in which case reaction (3.23) reduces to

[G ]
[G t ot ]

=
1

1+ β̂ [R]m
, (3.24)

where

β̂ =
� 1

κD1

�� 1

κD2

�

. . .

�

1

κD(m−1)

�

� 1

κDm

�

, (3.25)
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that is, to the form of the simultaneous binding approximation in reaction (3.17).

Thus, the Hill coefficient is strictly used as a means of quantification of the enhancement of

binding affinity of a ligand to a receptor, in the case where other ligands are already bound to

the receptor. The conditions under which the Hill coefficient provides an accurate estimate of

the number of binding sites are very specific.

It is solely appropriate in the limiting case when the only possible binding configurations are

either all binding sites to be empty or all to be occupied, known as extreme positive cooperativity,

(Hill, 1985). Under these conditions, the constant κD of reaction (3.17) is also an approximation

to the actual dissociation constant of the actual reaction (3.22), given by β̂ .

In the next section we will derive an ODE model of regulated protein synthesis using reasoning

congruous to that of Goodwin (1963, 1965) and Griffith (1968). In these models, it has been con-

sidered that the end product of the reaction represses mRNA synthesis. However, we will derive

our model to consider the case in which mRNA synthesis occurs as a result of gene activation via

a transcription factor.

This transcription factor interacts with the end product of the mRNA reaction to become inac-

tivated and in including this biological process, which is not present in the models discussed

above, we arrive at a model in which we account explicitly for the Hill coefficient characterising

the interaction between gene and transcription factor in the cholesterol biosynthesis pathway.

3.3 Regulated gene expression model formulation

As the first step in our model development we describe the derivation of a general process of

regulated protein synthesis (illustrated in Figure 3.4) using the law of mass action described in

Section 3.2.1. This results in a system of nonlinear ODEs describing the rate of mRNA produc-

tion. The system is modified by an efficiency factor reflecting the binding equilibria between the

transcription factor and DNA promoter and subsequent protein synthesis from mRNA. We de-

rive our model in a manner similar to Goodwin (1965). However, we adapt the model to include
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processes related to transcription factor activity. In particular, we consider the case where the

transcription factor can activate mRNA synthesis.

M

P

Ø

Ø

transcription

translation

mRNA
mRNA

degradation

PROTEIN

NUCLEAR REGION

ENDOPLASMIC RETICULUM

CELL CYTOPLASM

protein

degradation

M

DNA

P

P
P

TF

TF
TF

Fig. 3.4: General gene expression and regulation. Transcription of mRNA, M, occurs

from DNA. This mRNA can continue to participate in translation, the synthesis of pro-

tein, P; this is the central dogma of molecular biology. Both mRNA and protein are

also subject to degradation, (pathways leading to ;). The complete reaction can be

influenced by the action of transcription factors, TF interacting with the gene.

We begin with the central dogma of molecular biology,

DNA
transcription

GGGGGGGGGGGGGGA mRNA
translation

GGGGGGGGGGGGA protein, (3.26)

and rewrite (3.26) as a reaction mechanism,

DNA
µ̄d

GGGGA M̄
µ̄p

GGGGAP̄ , (3.27)

where µ̄d is the rate of transcription of mRNA, M̄ , and µ̄p is the rate of translation of protein, P̄ .
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In our simplified representations of transcription and translation in (3.27), we have not included

the separate mechanistic steps of these processes (see Section 3.1), but group them together as

immediate effects on the overall rate at which mRNA and protein are produced. This is because

we would like to create a mathematical representation which can reproduce as far as possible the

underlying physiological mechanism, whilst reducing the model complexity and minimising the

number of parameters required.

For this reason, we also ignore the presence of basal transcription levels, and assume that tran-

scription rates may be downregulated to zero. To complete our reaction pathway we include

degradation pathways for variables which describe the biological half life of these molecules, as

shown in Figure 3.4.

Thus we arrive at the reaction mechanism, shown below, describing gene expression,

DNA
µ̄d // M̄

δ̄m

��

µ̄p // P̄ ,

δ̄p

��
; ;

(3.28)

where δ̄m represents the degradation rate of mRNA, M̄ , and δ̄p represents the degradation rate

of protein, P̄ . The empty set, ;, is used to indicate that after degradation, the molecule is as-

sumed to play no further part in the reaction mechanism.

We note that this pathway models a case of constant protein production (as mRNA production

is simply the copying of the DNA strand; DNA is not used up in this reaction). The gene (or DNA)

in (3.28) is modelled by a constitutive promoter, that is, an unregulated promoter allowing for

continuous transcription of its associated gene. Herein, we consider any reference to DNA as

being analogous to the gene promoter region.

However, most genes are not constitutively expressed; as we have previously discussed, their

expression is dependent on the presence of regulatory transcription factors which can activate

or inhibit the promoter of the gene in question. Consequently the system must be extended to

take into account the presence of the transcription factor.
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We consider a model of regulated transcription in which a transcription factor (T̄f ) activates

mRNA production by interacting with the gene. For our model, we consider the simplest case of

interaction which assumes reversible binding of T̄f to DNA,

DNA+nT̄f

k̄ f
GGGGBFGGGG

k̄r

DNA : nT̄f , (3.29)

where n is the number of binding sites available for T̄f on the DNA promoter region. (Further

details on the interaction between DNA and transcription factor may be found in Appendix A.)

Since our model describes activation by a transcription factor, [DNA : nT̄f ] represents the con-

centration of activated DNA capable of creating mRNA, and [DNA] the concentration of inacti-

vated DNA. Including this in the reaction pathway we arrive at the following

DNA+nT̄f

k̄ f // DNA : nT̄f
k̄r

oo
µ̄d // M̄

δm

��

µp // P̄ .

δ̄p

��
; ;

(3.30)

Before we apply the law of mass action to (3.30) we reiterate two important biological concepts,

introduced in Section 3.1 ,which will affect the derived ODEs.

• [DNA : nT̄f ] represents the concentration of activated DNA. From Section 3.1.1, we recall

that activated DNA is copied by the action of an enzyme to produce mRNA, and as the

concentration of DNA is an inherent constant within the cell, mRNA, M̄ , production does

not affect the concentration of [DNA : nT̄f ]. That is, synthesis of M̄ will not deplete [DNA :

nT̄f ].

• Similarly, from Section 3.1.2, we recall that mRNA synthesises protein via the action of

ribosomes. Following protein synthesis, mRNA detaches from the ribosome and is free

to participate in further synthesis reactions until it is degraded according to its half life.

Therefore, protein, P̄ , synthesis does not affect the concentration of M̄ . That is, synthesis

of P̄ will not deplete M̄ .
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Together with the points made above, application of the law of mass action to (3.30) results in

the following system of nonlinear ODEs describing regulated protein synthesis

d d̄

d t
= k̄r t̄c − k̄ f t̄ n

f d̄ , (3.31a)

d t̄ f

d t
= nk̄r t̄c −nk̄ f t̄ n

f d̄ , (3.31b)

d t̄c

d t
= k̄ f t̄ n

f d̄ − k̄r t̄c , (3.31c)

d m̄

d t
= µ̄d t̄c − δ̄m m̄ , (3.31d)

d p̄

d t
= µ̄p m̄ − δ̄p p̄ , (3.31e)

which has the initial conditions

t̄ f (0) = t0, d̄ (0) = d 0, t̄c (0) = 0, m̄ (0) =m0, p̄ (0) = p0. (3.32)

Here d̄ = [DNA], t̄ f = [T̄f ], t̄c = [DNA : nT̄f ], m̄ = [M̄ ] and p̄ = [P̄] where square brackets denote

concentration and k̄ f and k̄r are, respectively, the forward and reverse reaction rates for the

binding of DNA to T̄f . µ̄d and µ̄p represent the rates of synthesis, and δ̄m , δ̄p represent the rates

of degradation of m̄ and p̄ respectively. We note the multiplicative factor of n in the right hand

side of (3.31b); this results from the fact that dissociation of the complex tc releases n molecules

of t f whilst the creation of tc requires n DNA binding sites.

We wish to arrive at a functional form for t̄c in conjunction with reducing the dimensions of the

ODE system. To do so we consider (3.29) in greater detail. The number of genes within a cell is

always constant. This conservation law also comes immediately on adding (3.31a) and (3.31c)

to obtain
d d̄

d t
+

d t̄c

d t
= 0 ⇒ d̄ (t )+ t̄c (t ) = d 0, (3.33)

on using the initial conditions (3.32). Thus we can reduce the three equations of (3.31a) to (3.31c)

to two equations given by

d t̄ f

d t
= nk̄r t̄c −nk̄ f t̄ n

f (d 0− t̄c ), (3.34a)

d t̄c

d t
= k̄ f t̄ n

f (d 0− t̄c )− k̄r t̄c , (3.34b)
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with the initial conditions

t̄ f (0) = t0, t̄c (0) = 0. (3.35)

We now assume that (3.34b) reaches equilibrium rapidly (see Appendix A) and so we make a

quasi-steady-state approximation in which d t̄c/d t ≈ 0 such that

k̄ f t̄ n
f d 0− k̄ f t̄ n

f t̄c = k̄r t̄c , (3.36)

and thus

t̄c =
d 0t̄ n

f
�

k̄r /k̄ f

�

+ t̄ n
f

=
d 0t̄ n

f

κ̄T + t̄ n
f

(3.37)

where κT = k̄r/k̄ f defines the complex dissociation constant for reaction (3.29).

We note that if we consider the concentration of variables in units of molecules ml−1, and time

in units of seconds, then k̄r has units of s−1 and k̄ f has units of ml n molecules−n s−1.

Therefore, κ̄T has units of molecules n ml−n . We now define the new quantity κ̄D, where

κ̄D =
�

κ̄T

�

1
n

=

�

k̄r

k̄ f

�
1
n

, (3.38)

such that κ̄D has units of molecules ml−1 and we write

t̄c =
d 0t̄ n

f

κ̄ n
D + t̄ n

f

. (3.39)

We substitute the value of t̄c in (3.39) into the now reduced system (3.31). Upon using the con-

servation law in (3.33) the system of equations becomes

d t̄ f

d t
= nk̄r

 

d 0t̄ n
f

κ̄ n
D + t̄ n

f

!

−nk̄ f t̄ n
f

 

d 0−
d 0t̄ n

f

κ̄ n
D + t̄ n

f

!

, (3.40a)

d m̄

d t
= µ̄d

 

d 0t̄ n
f

κ̄ n
D + t̄ n

f

!

− δ̄m m̄ , (3.40b)

d p̄

d t
= µ̄p m̄ − δ̄p p̄ . (3.40c)
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Expanding equation (3.40a), we find that

d t̄ f

d t
=

�

nk̄r +nk̄ f t̄ n
f

�

 

d 0t̄ n
f

κ̄ n
D + t̄ n

f

!

−nk̄ f d 0t̄ n
f . (3.41)

Using the definition of κD given in (3.38) we have that

n

 

k̄r + k̄ f t̄ n
f

κ̄ n
D + t̄ n

f

!

= n

 

k̄r + k̄ f t̄ n
f

k̄r/k̄ f + t̄ n
f

!

= nk̄ f . (3.42)

Thus (3.41) becomes
d t̄ f

d t
= nk̄ f d 0t̄ n

f −nk̄ f d 0t̄ n
f = 0, (3.43)

and we see that the total concentration of t̄ f within the cell is conserved. Using the initial con-

dition in (3.32), t̄ f is constant and given by t̄ f = t0.

We also note that equations (3.31b) and (3.31c) provide a conservation law for the total concen-

tration of transcription factor within the cell given by

d t̄ f

d t
+n

d t̄c

d t
= 0, (3.44a)

⇒ t̄ f (t )+ t̄c (t ) = t0. (3.44b)

As we have shown above from (3.43) t̄ f is constant, and so (3.44a) becomes

n
d t̄c

d t
= 0 ⇒ t̄c (t ) = 0, (3.45)

on using the initial condition in (3.32). From (3.44b), we now have

t̄ f (t ) = t0− t̄c (t ) ⇒ t̄ f = t0, (3.46)

Thus we may reduce the original system (3.31) of five equations to the two dimensional system

d m̄

d t
= µ̄m

�

t n
0

κ̄ n
D + t n

0

�

− δ̄m m̄ , (3.47a)

d p̄

d t
= µ̄p m̄ − δ̄p p̄ , (3.47b)
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together with the initial conditions

m̄ (0) =m0, p̄ (0) = p0. (3.48)

In the system above, we have expressed the function which describes mRNA synthesis as

m̄(synth) = µ̄m

�

t n
0

κ̄ n
D + t n

0

�

where µ̄m = µ̄d d 0. (3.49)

We refer to µ̄m as the maximal rate of transcription; in the case of no transcription factor (t0 = 0)

m̄(synth) = 0, whereas when transcription factor is present at a maximum (t0), µ̄m describes

the maximum number of molecules/ml the DNA can transcribe per second. The action of the

transcription factor is described by the term in brackets, which we refer to as a gene activation

function. This can only have a value of between zero and one; thus it describes the fraction of

genes capable of producing mRNA. This gene activation function is plotted in Figure 3.5 using

arbitrary values.
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Fig. 3.5: Response of gene activation to the number of transcription factor binding

sites, n , with s̄0 = 50. Dashed line illustrates the value of κ̄D .

From Figure 3.5, we can see that as the number of binding sites on the gene, n , increases from 1,

the behaviour of the activation function changes from being hyperbolic to sigmoidal in shape.

Thus the greater the number of binding sites, the greater the sensitivity of the concentration of

activated genes to the concentration of transcription factor. Higher values of n confer better
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levels of control by the gene; the sigmoidal behaviour suggests a switch-like behaviour for ac-

tivation of the gene. This is the type of behaviour we would expect given that the role of the

transcription factor is to activate or deactivate gene expression, as discussed in Section 3.1.

Information from the work of Vallett et al. (1996), that the HMGR gene contains one main bind-

ing site for its transcription factor and two additional binding sites in the promoter region, in-

dicates that the value of n = 3. The dashed line in Figure 3.5 illustrates that the value of κ̄D is

equivalent to the concentration of transcription factor at which half of the gene binding sites are

occupied. Figure 3.6 demonstrates the effect of varying κ̄D on the gene activation function for

the case n = 3.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Transcription factor concentration

F
ra

ct
io

n 
of

 a
ct

iv
at

ed
 g

en
es

 

 

κ
D
 = 5

κ
D
 = 15

κ
D
 = 25

κ
D
 = 25

Fig. 3.6: Sensitivity of gene activation to various values of the binding affinity param-

eter, κ̄D , for the case n = 3 with s̄0 = 50.

We see that smaller values of κ̄D confer greater sensitivity to transcription factor concentration,

and this sensitivity decreases as κ̄D increases. Figure 3.6 also illustrates that for κ̄D >> t0, the

gene activation function→ 0; in this case the gene is unlikely to ever reach full activation state,

and the action of the transcription factor becomes redundant. Similarly, for κ̄D << t0, the gene

activation function → 1; here the gene will reach full activation very quickly regardless of how

much transcription factor is available. This is better understood by considering the constant κ̄D

in greater detail,

κ̄ n
D =

k̄r

k̄ f
=

dissociation rate

association rate
, (3.50)
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Smaller values of κ̄D occur when the rate of association is large compared with the rate of disso-

ciation, that is, the higher the binding affinity between the transcription factor and DNA. Higher

affinity binding implies that a relatively low concentration of transcription factor is adequate to

maximally occupy the transcription factor binding sites on the gene and trigger a physiological

response. Similarly, for larger values of κ̄D , when the rate of association is small compared with

the rate of dissociation, the resulting low affinity binding implies that a relatively high concen-

tration of a ligand is required before the binding sites are maximally occupied and any response

in gene expression is seen.

The underlying reason for the development of a model of regulated gene expression was to

describe the synthesis of HMGR and LDLR. For both these proteins, cholesterol is the signal

molecule whose concentration regulates synthesis. It does so via the action of a family of tran-

scription factors known as sterol regulatory element binding proteins (SREBPs). Before attempt-

ing a mathematical formulation of this transcription factor pathway we give a brief review of

SREBP biology.

3.4 The SREBP pathway and transcriptional regulation

Three SREBP proteins exist, encoded by two genes present in humans. Of these three isoforms,

SREBP2 is responsible for enhancing the transcription of the LDLR (Horton et al., 2002). SREBPs

are found in the membranes of the cellular organelle called the endoplasmic reticulum (ER), (see

Figure 3.1), where they are inserted following their own synthesis. Here, they exist in a tight com-

plex with the SREBP cleavage activating protein (SCAP). SCAP consists of two domains, one of

which is responsible for the association with SREBP. The other domain contains a region known

as the sterol sensing domain (SSD).

When the cellular cholesterol concentration becomes depleted, SCAP escorts SREBP to the Golgi

apparatus of the cell, where it undergoes sequential cleavage by proteases. The net effect of this

is to liberate the transcription factor, nuclear SREBP (nSREBP) which can then enter the cell

nucleus (Eberlé et al., 2004; Brown and Goldstein, 1997). Here it binds to a regulatory binding
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Fig. 3.7: The action of the SREBP transcription factor. In low cholesterol situations

the SREBP-SCAP complex is active and free to move, undergoing sequential cleavage

to form nSREBP which eventually reaches the nucleus to influence transcription. In

replete cholesterol conditions, cholesterol binds to the SSD of the SREBP-SCAP com-

plex forming an anchored inactive complex with INSIG proteins.(C: cholesterol; SSD:

sterol sensing domain; nS: nuclear SREBP; IN: INSIG).

site (a short sequence of DNA) on the promoter region of the LDLR gene known as the sterol

regulatory element (SRE) and activates its transcription (Soutar and Knight, 1990). In addition

to activating the LDLR gene, SREBP2 preferentially activates the genes involved in cholesterol

biosynthesis (Horton et al., 2002). The SRE site on the HMGR gene is structurally analogous to

the SRE site on the LDLR gene and indeed the gene activation process for HMGR by nSREBP

is identical to that for the LDLR (Osborne, 1995). Thus the regulation of HMGR synthesis by

intracellular cholesterol concentration occurs via the same SREBP pathway that regulates LDLR

synthesis.

In the presence of replete sterol concentrations, cholesterol binds directly to the sterol sensing
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domain of SCAP. This causes a conformational change in SCAP which results in the binding of

the SCAP-SREBP complex to INSIGs, resident ER membrane proteins that serve as anchors (Yang

et al., 2002). This process is responsible for the retention of the SCAP-SREBP complex within the

ER. Transcription of the target genes declines and consequently the production of LDLR and

HMGR mRNA ceases.

In summary, when the cell is low in cholesterol the SCAP-SREBP complex is active and free to

move. In such a state nSREBP is formed and is able to reach the nucleus activating LDLR and

HMGR mRNA transcription and thus both LDLR and HMGR synthesis, thereby increasing the

cholesterol concentration in the cell. If conversely there are high cholesterol levels in the cell

then SCAP-SREBP is unable to move and effectively inactive. Consequently both LDLR and

HMGR mRNA transcription and LDLR and HMGR translation decreases, as illustrated in Fig-

ure 3.7.

3.5 A model of regulated cholesterol biosynthesis

We have, in Section 3.3, derived equations to describe genetic regulated protein synthesis. We

now consider the derivation of a mathematical model which describes the mechanism of the

synthesis of the protein HMGR, subsequent cholesterol synthesis and the regulation of this path-

way via the action of SREBP. This is illustrated in Figure 3.8, which is an extension of Figure 3.4

as applied to cholesterol biosynthesis.

We are now in a position to derive the full system of ODEs describing the reactions of cholesterol

biosynthesis (illustrated in Figure 3.8) reproduced as a reaction mechanism below, where the

transcription factor SREBP is denoted by S̄.

DNA
µ̄m h // M̄ h

δ̄m h

��

µ̄h // H̄

δ̄h

��

µ̄c // C̄ .

δ̄c

��
S̄

OO�
�
�

; ; ;

(3.51)

Here, HMGR mRNA (M̄ h ) is transcribed at a rate µ̄m h and degraded at a rate δ̄m h . The mRNA
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Fig. 3.8: A simplified overview of HMGR synthesis and regulation. The liver cell syn-

thesises HMGR mRNA which in turn is translated into the enzyme HMGR. HMGR

catalyses the synthesis of cholesterol which in turn influences its own transcription by

interacting with the transcription factor SREBP; transcription increases when choles-

terol is low in the cell and declines when cholesterol is high. (SRE: Sterol Regulatory

Element; Mh: HMGR mRNA; C: Cholesterol).

is translated at a rate µ̄h to create HMGR which subsequently produces cholesterol at a rate µ̄c .

HMGR degrades at rate δ̄h while cholesterol is used up at a rate δ̄c .

In developing the reaction mechanism for cholesterol synthesis from HMGR, we use the fact that

the HMGR reaction is the rate limiting (or slowest) step of the complete multistep pathway, and

so this rate imposes an upper limit on the rate of the biosynthesis pathway as a whole, allowing

its reduction into a single step mechanism.

Following the general derivation of Section 3.3, we can adapt the equations of system (3.47) to

model the production of mRNA, M̄ h , and HMGR protein, H̄ .
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We apply the law of mass action to (3.51), and using the results of the previous section, obtain

the system of equations

d m̄h

d t
= µ̄m h

�

s̄ n

(κ̄m h )n + s̄ n

�

− δ̄m h m̄h , (3.52a)

d h̄

d t
= µ̄h m̄h − δ̄h h̄, (3.52b)

d c̄

d t
= µ̄c h̄ − δ̄c c̄ , (3.52c)

with initial conditions

m̄h (0) = m̄h0, h̄(0) = h̄0, c̄ (0) = c̄0, (3.53)

where s̄ = [S̄] and the parameter κ̄m h reflects the binding efficiency between the transcription

factor s̄ and the HMGR gene promoter.

In system (3.52) the transcription factor s̄ represents the active SREBP-SCAP complex (described

in Section 3.4). To complete our model system we now go on to model the interaction between

the active transcription factor SREBP, s̄ , and cholesterol, c̄ by considering that the binding of

cholesterol to active SREBP results in the transcription factor becoming inactive.

This is a simplified representation of the biological process of SREBP-SCAP complex retention

in the wall of the ER when cholesterol binds to the sterol sensing domain of SCAP.

3.5.1 Modelling the interaction of SREBP and cholesterol

The final step in our cholesterol biosynthesis model derivation is to determine how the tran-

scription factor interacts with cholesterol.

We know from Section 3.4 that SREBP is deactivated upon the binding of cholesterol, and we

describe this reaction by

S̄+qC̄
k̄a
GGGGBFGGGG

k̄d

¯SC q , (3.54)
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in which k̄a describes the rate of transcription factor-cholesterol complex formation and the

complex dissociates with rate k̄d . Here q represents the number of molecules of cholesterol, C̄ ,

that can bind to one molecule of active SREBP, S̄.

We consider that SREBP, S̄, can exist in one of two states, the active (or free) form, S̄, which can

initiate transcription, and the inactive form, ¯SC q , which is bound to cholesterol. Applying the

law of mass action to (3.54) leads to,

d s̄

d t
= k̄d s̄b − k̄a s̄ c̄ q , (3.55a)

d c̄

d t
= qk̄d s̄b −qk̄a s̄ c̄ q , (3.55b)

d s̄b

d t
= k̄a s̄ c̄ q − k̄d s̄b , (3.55c)

with initial conditions

s̄ (0) = s0, c̄ (0) = c0, s̄b (0) = 0, (3.56)

where s̄ = [S̄], c̄ = [C̄ ] and s̄b = [ ¯SC q ].

We note that within system (3.55), the total concentration of cholesterol is conserved. This result

is obtained on adding (3.55b) and (3.55c) giving

d c̄

d t
+q

d s̄b

d t
= 0 ⇒ c̄ (t )+qs̄b (t ) = c0, (3.57)

on using the initial conditions (3.56).

Furthermore, a conservation law for the transcription factor is obtained immediately on adding

(3.55a) and (3.55c) to obtain

d s̄

d t
+

d s̄b

d t
= 0 ⇒ s̄ (t )+ s̄b (t ) = s0, (3.58)

on using the initial conditions (3.56).

We assume that the binding reaction of active SREBP, s̄ , and cholesterol, c̄ , reaches equilibrium
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rapidly and thus make a quasi-steady-state approximation in which d s̄b/d t ≈ 0 such that,

k̄a s̄ c̄ q − k̄d s̄b = 0, (3.59)

from (3.55c). We can now use the conservation law in (3.58) and replace s̄b with (s0− s̄ ), to find

k̄a s̄ c̄ q = k̄d (s0− s̄ ), (3.60)

which upon rearranging gives

s̄ =
k̄d s̄0

(k̄d + k̄a c̄ q )
. (3.61)

Thus we have an expression for the concentration of active SREBP, s̄ , in terms of its initial con-

centration, s̄0, and cholesterol, c̄ ,

s̄ =
s̄0

1+
� c̄

κ̄C

�q , (3.62)

where the constant κ̄c describes the binding affinity between s̄ and c̄ and is defined such that,

κ̄c =

�

k̄d

k̄a

�1/q

. (3.63)

We note that considering the concentration of variables in units of molecules/ml, and time in

units of seconds, k̄d has units of s−1 and k̄a has units of ml q molecules−q s−1. Therefore, κ̄c has

units of molecules ml−1.

Before deriving the full system of equations we take into account that, in comparison to enzymes

and proteins, transcription factors are present in low intracellular concentrations (Sanguinetti

et al., 2006).

Therefore, we will consider that the concentration of cholesterol required to bind to the active

transcription factor, and the concentration of cholesterol resulting from the dissociation of the

complex s̄b will not cause any significant decrease or increase, respectively, in the total cell con-

centration of cholesterol.
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Now, substituting the derived value of s̄ in (3.62) into (3.52a) and rearranging we obtain

d m̄h

d t
=

µ̄m h
�

1+
�

κ̄m h
�

1+(c̄/κ̄c )q
�

s̄0

�n� − δ̄m h m̄h , (3.64a)

d h̄

d t
= µ̄h m̄h − δ̄h h̄, (3.64b)

d c̄

d t
= µ̄c h̄ − δ̄c c̄ , (3.64c)

which, with the initial conditions

m̄h (0) = m̄h0, h̄(0) = h̄0, c̄ (0) = c̄0, (3.65)

composes the system of equations derived to model the pathways of Figure 3.8.

The behaviour of active SREBP, s̄ , as a function of cholesterol concentration in equation (3.62),

is illustrated in Figure 3.9. From Figure 3.9, we can see that if there is only one cholesterol bind-

ing site on SREBP, the concentration of s̄ decreases hyperbolically as cholesterol concentration

increases. As the number of binding sites increases, this behaviour changes to be sigmoidal.

This allows active SREBP to switch between maximum state and zero within a definite range of

cholesterol concentration. Experimental support for the derived mathematical form (3.62), of
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Fig. 3.9: Response of SREBP, s̄ , to variation in the number of cholesterol binding sites,

q , with s̄0 = 50. Dashed line illustrates the value of κ̄C .
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the interaction between s̄ and c̄ , comes from the work of Radhakrishnan et al. (2004), whose

results indicate a sigmoidal relationship between SREBP and ER cholesterol. Their later work,

Radhakrishnan et al. (2008), one of the results of which is reproduced in Figure 3.10, further

confirmed this relationship and demonstrated a Hill coefficient of 3.7±0.23.

These experiments investigated the processing of nuclear SREBP2 in response to the concen-

tration of cholesterol within the ER. Their results cannot be quantitatively matched, as in our

equations SREBP response is modelled as a function of whole cell cholesterol concentration.

However, Figure 3.10 confirms a qualitative fit of the sigmoidal nature of the interaction between

SREBP and cholesterol.
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Fig. 3.10: Results of four experiments to determine the behaviour of nuclear SREBP2

in response to cholesterol concentration within the ER, (data reproduced from Figure

4c of Radhakrishnan et al. (2008)).

Using the assumption that the binding reaction (3.54) displays marked positive cooperativity

(see Section 3.2), that is assuming all q molecules of cholesterol bind to SREBP simultaneously,

we take a value of q = 4.

Thus in our model, we assume the binding of cholesterol to SREBP to be tetrameric, as have

Radhakrishnan et al. (2004, 2008). The response of the function to changes in κ̄c is illustrated in

Figure 3.11 for the case q = 4.
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We see that for smaller values of κ̄C there is greater sensitivity in the response of SREBP to the

concentration of cholesterol, and this sensitivity decreases as κ̄C increases.

This can be understood by considering κ̄c as equivalent to the concentration of cholesterol re-

quired to deactivate half of the total concentration of SREBP; the greater the value of κ̄C , the

larger the concentration of cholesterol needed to deactivate SREBP, and therefore, the less sen-

sitive the mechanism.
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Fig. 3.11: Sensitivity of SREBP, s̄ , to various values of the binding affinity parameter,

κ̄C , for the case q = 4 with s̄0 = 50.

The regulated cholesterol biosynthesis model

The equations describing regulated cholesterol biosynthesis are thus given by system (3.64) with

n = 3 and q = 4. Thus the time evolution of the variables HMG-CoA reductase mRNA, M̄ h , HMG-

CoA reductase, H̄ and cholesterol, C̄ are governed by

d m̄h

d t
=

µ̄m h

�

s̄0 κ̄
4

c

�3

�

s̄0 κ̄
4

c

�3
+
�

κ̄m h

�

κ̄ 4
c + c̄ 4

��3
− δ̄m h m̄h , (3.66a)

d h̄

d t
= µ̄h m̄h − δ̄h h̄, (3.66b)

d c̄

d t
= µ̄c h̄ − δ̄c c̄ , (3.66c)
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with the initial conditions

m̄h (0) = m̄h0, h̄(0) = h̄0, c̄ (0) = c̄0. (3.67)

Parameterisation of the above model system is discussed in the following section.

3.5.2 Model parameterisation

The next step in our model construction is the determination of parameter values. We use, wher-

ever possible, data taken from human liver cells, or the HepG2 cell line, a liver cell line derived

from a human hepatoblastoma cancer cell line that has been found to express a wide variety of

liver-specific metabolic functions. If this data is unavailable, values from the closest possible

counterpart, for example, human liver microsomes or Chinese hamster cells, have been used,

(see Table 3.1).

Where no experimental data was available for particular parameters, the latter were approxi-

mated using calculations based on the biochemical reactions occurring; the main references for

these calculations are given in Table 3.1. Further details and references pertaining to the specific

calculations are to be found in Appendix B.1.

We note that there are as yet undetermined parameters in our model. Specifically, these are the

parameters δ̄c , κ̄m h and κ̄c .

The rate of degradation of cholesterol, δ̄c , is unlike the other degradation rates in the model,

in that it is not a simple decay rate dependent on the half life of the molecule, as cholesterol

cannot be degraded. Instead it is a measure of the extracellular or intracellular demands on

the intracellular cholesterol concentration. As such, this rate is variable and so for numerical

simulations we assign an initial value for δ̄c based on the values of δ̄m h and δ̄h and vary this

parameter in the model investigation (see Chapter 5).

The binding affinity parameter, κ̄m h , is representative of the interaction between SREBP and
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Parameter Description Value Reference

µ̄m h HMGR mRNA transcription rate 5.36×106 molecules ml−1 s−1 Goldstein and Brown (1984)

µ̄h HMGR translation rate 5.10×10−1 s−1 Luskey and Stevens (1985)

µ̄c Cholesterol synthesis rate 4.33×10−2 s−1 Tanaka et al. (1982)

δ̄m h HMGR mRNA degradation rate 4.48×10−5 s−1 Wilson and Deeley (1995)

δ̄h HMGR degradation rate 6.42×10−5 s−1 Brown et al. (1974)

κ̄c Cholesterol-SREBP dissociation constant undetermined

s̄0 Total concentration of SREBP 8.21×1016 molecules ml−1 Lange et al. (1999)

δ̄c Cholesterol utilisation rate undetermined

κ̄m h SREBP-HMGR gene dissociation constant undetermined

Initial Description Value

m̄h0 Initial HMGR mRNA concentration 3.00×1010 molecules ml−1 Rudling et al. (2002)

h̄0 Initial HMGR concentration 9.04×1014 molecules ml−1 Istvan et al. (2000)

c̄0 Initial cholesterol concentration, 1.89×1019 molecules ml−1 Lange et al. (1999)

Table 3.1: Dimensional parameter values and initial conditions of the HMGR model.

the gene. Although this parameter has a biological interpretation, we note that it arises from

the approximations and reductions that we have used to derive and simplify the model equa-

tions. Thus κ̄m h may not have a direct biochemical interpretation and so we have not found any

experimental data which allows calculation of this parameter.

The binding affinity parameter, κ̄c , describes the interaction between SREBP and cholesterol. Al-

though this parameter has both an explicit biological and biochemical meaning, we have been

unable to find an experimental value which allows us to approximate this parameter. The rea-

sons for this are twofold.

Firstly, s̄ in our model is assumed to react in response to whole cell cholesterol concentration,

whereas in reality it is thought to respond to a much smaller pool of cholesterol that resides

within the endoplasmic reticulum.

Secondly, both cholesterol and SCAP, which represents the binding region for cholesterol on

SREBP, are both completely insoluble and so cannot be used in standard in vitro binding assays.

Both the ligand and the binding protein must be added to assays in detergents and so cannot be

analysed using the standard techniques for binding assays, (Radhakrishnan et al., 2004). These

parameters will be considered in greater detail in Chapter 5.
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Summary

In this chapter we have derived and parameterised an ODE model of intracellular cholesterol

biosynthesis and genetic regulation. This model has been derived in a similar manner to a classic

ODE model of genetic regulation developed by Goodwin (1963) and modified by Griffith (1968).

However, we have explicitly proposed a novel two step feedback mechanism in which end prod-

uct repression occurs via the inactivation of a specific transcription activator involved in the

biological pathway of de novo synthesis. This repression is described using a Hill equation, and

the repressor reaction mechanism has been derived from the biological processes underlying

cellular cholesterol homeostasis. In the next chapter we explore the behaviour of the system

using analytic techniques.
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4
Analysis of The Cholesterol Biosynthesis

Model

In the previous chapter we have derived an ODE model of the genetic regulation of cholesterol

biosynthesis. In this chapter we consider an analytic investigation of the model, and determine

that the model has only one physiologically valid steady state, which can exhibit different sta-

bility properties. The steady state may be stable, in which case either the system tends mono-

tonically to this steady state or undergoes oscillatory convergence before reaching steady state.

Alternatively the steady state may undergo a local Hopf bifurcation and exhibit limit cycle be-

haviour which gives rise to oscillatory solutions. Further analysis, by means of centre manifold

theory, is performed on the limit cycle to obtain results on the nature of the limit cycle stabil-

ity, and the physical properties, the amplitude and time period of the oscillations. We conclude
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this chapter by considering the significance of the analytic conclusions made, both in relation

to the biological phenomenon of homeostasis, and in reference to the work of Goodwin (1963)

and Griffith (1968) discussed in Chapter 3.

4.1 Nondimensionalisation

Before proceeding to a complete analysis of the model, the equations of system (3.66) are nondi-

mensionalised. To nondimensionalise, we rescale time with respect to the degradation rate of

m̄h ,

τ= δ̄m h t , (4.1)

where τ represents nondimensional time. Variables describing concentration are rescaled with

respect to the concentration of total (free and bound) SREBP, s̄0,

mh =
m̄h

s̄0
, h =

h̄

s̄0
, c =

c̄

s̄0
, (4.2)

where overbars denote the dimensional counterparts of the variables.

If the model system (3.66) is now formulated in terms of the rescaled variables (4.1) and (4.2), we

obtain the following system of dimensionless equations

d mh

dτ
=

µm h κ
12

c

κ 12
c +

�

κm h

�

κ 4
c + c 4

��3
−mh , (4.3a)

d h

dτ
= µh mh −δh h, (4.3b)

d c

dτ
= µc h −δc c , (4.3c)

with nondimensional initial conditions

mh (0) =
m̄h0

s̄0
, h(0) =

h̄0

s̄0
, c (0) =

c̄0

s̄0
. (4.4)
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The model in this form is dependent on the new nondimensional parameters

µh =
µ̄h

δ̄m h
, µc =

µ̄c

δ̄m h
, µm h =

µ̄m h

s̄0δ̄m h
, (4.5)

κm h =
κ̄m h

s̄0
, κc =

κ̄c

s̄0
, δc =

δ̄c

δ̄m h
, δh =

δ̄h

δ̄m h
,

where overbars denote the dimensional counterparts of the parameters. Here, µm h ,µh and µc

represent rates of synthesis of mh , h and c respectively, δh and δc are the rates of degradation of

h and c , and κm h and κc are association constants between s and the HMGR gene and s and c

respectively. We now consider the steady state solutions of the system.

4.2 Steady state analysis

The steady states of system (4.3) are given by the solution of the following system

0 =
µm h κ

12
c

κ 12
c +

�

κm h

�

κ 4
c + c 4

s s

��3
−mhs s , (4.6a)

0 = µh mhs s −δh hs s , (4.6b)

0 = µc hs s −δc cs s , (4.6c)

where mhs s , hs s and cs s are the steady state values of mh , h and c respectively. The form of this

solution is now investigated.

From (4.6c) we have

hs s =
δc

µc
cs s , (4.7)

and therefore from (4.6b) we see that

mhs s =
δhδc

µhµc
cs s = αcs s , (4.8)
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where

α=
δhδc

µhµc
. (4.9)

Substituting this value of mhs s into (4.6a) we obtain

αcs s

�

1+
�

κm h

�

1+
�cs s

κc

�4
��3

�

−µm h = 0. (4.10)

Expanding the powers then leads to

�

β

κ 12
c

�

c 13
s s +

�

3β

κ 8
c

�

c 9
s s +

�

3β

κ 4
c

�

c 5
s s +

�

α+β
�

cs s −µm h = 0, (4.11)

where

β =ακ3
m h . (4.12)

Since (4.11), a polynomial equation of degree thirteen and hence with thirteen roots, does not

admit analytic solutions, we use the results of Descartes’ rule of signs to deduce the nature of its

roots (see Appendix C.1). As all parameters are real and positive valued, we can apply Descartes’

rule of signs for positive roots (Theorem IV of Appendix C.1) which states that the number of

positive real roots of (4.11) is either equal to the number of variations of signs in the coefficients

of (4.13) or less than this by an even integer. We have

p (cs s ) =
�

β

κ 12
c

�

c 13
s s +

�

3β

κ 8
c

�

c 9
s s +

�

3β

κ 4
c

�

c 5
s s +

�

α+β
�

cs s −µm h = 0. (4.13)

It is clear that there is only one sign change in the sequence of coefficients of (4.13); therefore

(4.11) has only one positive real root.

To calculate the number of negative real roots of (4.11) we apply Descartes’ rule of signs for

negative roots (Theorem V of Appendix C.1), where we consider the polynomial q (cs s ) = p (−cs s )

given by

q (cs s ) = −
�

β

κ 12
c

�

c 13
s s −

�

3β

κ 8
c

�

c 9
s s −

�

3β

κ 4
c

�

c 5
s s −

�

α+β
�

cs s −µm h = 0. (4.14)
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There are no sign changes in the sequence of coefficients of (4.14) which indicates that q (cs s )

has no positive real roots. Consequently (4.11) has no real negative roots, and we conclude that

the remaining twelve roots are six pairs of conjugate complex roots.

Therefore we conclude that system (4.3) has exactly one positive real root, corresponding to a

physiologically valid fixed point of the system.

Let c ∗ be cs s , the positive real root of (4.11). The physiologically valid fixed point of system (4.3)

can thus be described by

(mhs s , hs s , cs s ) =
�

δhδc

µhµc
c ∗,
δc

µc
c ∗, c ∗

�

. (4.15)

We now consider the stability of this fixed point by investigation of the eigenvalues of the lin-

earised Jacobian matrix J of system (4.3), which is given by

J=













−1 0 −ϕ

µh −δh 0

0 µc −δc













, (4.16)

with

ϕ = −
�

∂ φ

∂ c

�

�

�

�

�

c = cs s

, (4.17)

where

φ =
µm h κ

12
c

κ 12
c +

�

κm h

�

κ 4
c + c 4

��3
, (4.18)

and so,

ϕ = −
�

∂ φ

∂ c

�

�

�

�

�

c = cs s

=
12µm hκ

3
m hκ

12
c c 3

s s

�

κ 4
c + c 4

s s

�2

�

κ 12
c +

�

κm h

�

κ 4
c + c 4

s s

��3
�2

. (4.19)

We note that ϕ ≥ 0 as all parameter values are positive and cs s ≥ 0 for physiologically valid

parameter values.
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The eigenvalues of J satisfy the characteristic equation

λ3+(1+δh +δc )λ2+(δh +δc +δhδc )λ+
�

δhδc +µhµcϕ
�

= 0, (4.20)

which has three roots, λ1, λ2 and λ3. Firstly we note that ϕ ≥ 0 ensures all coefficients of (4.20)

are positive and thus by Descartes’ rule of signs there can be no purely positive real eigenvalues.

There are then two cases for the roots of (4.20),

either three negative real eigenvalues,

or one negative real eigenvalue and a pair of complex conjugate eigenvalues.

The fixed point is stable iff the real parts of λ1, λ2 and λ3 are negative. To determine for which

conditions this occurs, we apply the Routh-Hurwitz criteria to (4.20). Routh-Hurwitz’s criteria

(see Appendix C.2) applied to a cubic equation

λ3+a 2λ
2+a 1λ+a 0 = 0, (4.21)

are satisfied if and only if a 0 > 0, a 1 > 0, a 2 > 0 and a 1a 2 − a 0 > 0. That is, the necessary and

sufficient condition for the roots of (4.20) to have negative real part requires

1+δh +δc > 0, (4.22a)

δh +δc +δhδc > 0, (4.22b)

δhδc +µhµcϕ > 0, (4.22c)

(1+δh +δc ) (δh +δc +δhδc )−
�

δhδc +µhµcϕ
�

> 0. (4.22d)

Since all parameters are positive and real, condition (4.22a) and condition (4.22b) evidently hold,

and further asϕ ≥ 0, condition (4.22c) also holds. Thus the stability of the roots is dependent on

condition (4.22d), which is now considered in detail.

• Case I : (1+δh +δc ) (δh +δc +δhδc )−
�

δhδc +µhµcϕ
�

> 0.

In this case the steady state is stable. This implies that all three eigenvalues must have
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negative real part. This encompasses two possibilities. Firstly, there may be three negative

real eigenvalues in which case the equilibrium is a stable node. Secondly, there may be

one negative real eigenvalue and a pair of complex conjugate eigenvalues with negative

real part, which corresponds to the equilibrium being a stable focus or spiral.

• Case II : (1+δh +δc ) (δh +δc +δhδc )−
�

δhδc +µhµcϕ
�

= 0.

Substituting (1+δh +δc ) (δh +δc +δhδc ) =
�

δhδc +µhµcϕ
�

into (4.20), we now have the

characteristic equation given by

λ3+(1+δh +δc )λ2+(δh +δc +δhδc )λ+(1+δh +δc ) (δh +δc +δhδc ) = 0,

(λ+(1+δh +δc ))
�

λ2+(δh +δc +δhδc )
�

= 0,

and so the characteristic equation has two conjugate roots λ1,2 on the imaginary axis and

one negative real eigenvalue λ3 given by

λ1,2 = ±i
p

(δh +δc +δhδc ), (4.23)

λ3 = − (1+δh +δc ) . (4.24)

The existence of a pair of pure imaginary eigenvalues means that we cannot determine

the stability of the equilibrium using these means.

• Case III : (1+δh +δc ) (δh +δc +δhδc )−
�

δhδc +µhµcϕ
�

< 0.

In this case the steady state is unstable. This implies that at least one eigenvalue must have

positive real part. As, from above, there can be no positive real eigenvalues it must be the

case that there is one negative real eigenvalue and a pair of complex conjugate eigenvalues

with positive real part and this will result in a saddle focus or spiral saddle.

Of particular interest is Case II, as here the possibility arises whereby the fixed point will lose

stability as a result of a pair of complex conjugate eigenvalues crossing the imaginary axis.

This type of behaviour is a local bifurcation called a Hopf (or Poincare-Andronov-Hopf) bifurca-

tion, and in the next section we will explore this bifurcation in greater detail.
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4.2.1 Existence of the Hopf bifurcation

From the stability condition (4.22c) and the three cases described in the previous section, we

can see that a variation in any single one of the parameters of system (4.3) may result in a loss

of stability via complex conjugate eigenvalues crossing the imaginary axis. In this section we

prove the existence of a Hopf bifurcation for two system parameters, µc and δc . The choice

of a synthesis rate and a degradation rate as the critical bifurcation parameters is made on the

assumption that it is, in biological terms, more feasible that this type of parameter will be subject

to fluctuations, rather than κm h and κc which reflect more structural aspects of the chemical

reactions occurring (they are, nevertheless, highly significant and are considered in greater detail

in Chapter 5).

We begin by considering µc as the critical bifurcation parameter and analyse this case in detail

to illustrate the proof, following which results are presented proving the existence for δc as the

critical parameter.

According to the Hopf bifurcation theorem (Guckenheimer and Holmes, 1983), a bifurcation

occurs for a critical value µc = µ∗c , for which the following two conditions are fulfilled, at the

equilibrium point (mhs s , hs s , cs s ),

1. The matrix J has two complex eigenvalues

λ2,3 = θ
�

µc
�

± iω
�

µc
�

, (4.25)

in some neighbourhood of µ∗c and for µc =µ∗c these eigenvalues are purely imaginary, that

is,

θ
�

µ∗c
�

= 0 and ω
�

µ∗c
�

6= 0. (4.26)

This non-hyperbolicity condition is a necessary condition for the Hopf bifurcation.

2. The relation
dθ
�

µc
�

dµc

�

�

�

�

µc =µ∗c
6= 0, (4.27)
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holds in some neighbourhood of µ∗c .

This is a sufficient condition for the Hopf bifurcation and is also known as the transver-

sality or Hopf crossing condition. It ensures that the eigenvalues cross the imaginary axis

with non zero speed and thus ensures the crossing of the complex conjugate pair at the

imaginary axis is not tangent to the imaginary axis. If this is not the case we may observe,

for example, the occurrence in which the eigenvalues move up to the imaginary axis and

then reverse direction without crossing.

We notice that the first condition has already been shown to hold at the critical value of µc given

by the solution of

µ∗c =
1

µhϕ
((1+δh +δc ) (δh +δc +δhδc )−δhδc ) , (4.28)

(whereϕ is given by (4.19)), together with the equation determining the equilibrium value of cs s

for µ∗c ,
c 13

s s

κ 12
c
+3

c 9
s s

κ 8
c
+3

c 5
s s

κ 4
c
+

�

1

κ3
m h

+1

�

cs s −
�

µhµm h

κ3
m hδhδc

�

µ∗c = 0. (4.29)

From the results of Case II of the previous section, we know that at this value of µ∗c the charac-

teristic polynomial (4.20) has two purely imaginary roots ±iω
�

µ∗c
�

, given in (4.23), where

ω
�

µ∗c
�

=
p

(δh +δc +δhδc ) 6= 0. (4.30)

To show that the second condition holds we use the Implicit Function Theorem. For each µc ∈R

and the corresponding system (4.3), define

F
�

µc ,λ
�

= p (λ) , (4.31)

as a function of two variables µc and λ, where p (λ) is the characteristic polynomial of the sys-

tem (4.3) defined by (4.20).

Let the complex eigenvalues λ
�

µc
�

= θ
�

µc
�

± iω
�

µc
�

be roots of the characteristic polynomial.
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Hence, for these eigenvalues we have

F
�

µc ,λ
�

µc
��

= 0, (4.32)

where (4.32) represents an implicit function of two variables µc and λ. The Implicit Function

Theorem tells us that we may define µc as a function of λ near the point
�

µ∗c ,λ
�

µ∗c
��

, and the

derivative of this function is given by

dλ

dµc

�

µ∗c
�

�

�

�

�

µc =µ∗c
=−

��

∂ F
∂ µc

�

Á

�

∂ F
∂ λ

��

�

�

�

�

µc =µ∗c
, (4.33)

providing
∂ F
∂ λ
6= 0. (4.34)

We begin by computing the derivative of the function F
�

µc ,λ
�

µc
��

with respect to λ, and eval-

uating this at the critical point µ∗c . Thus we have,

∂ F
∂ λ

�

µc ,λ
�

�

�

�

�
�

µc ,λ
�

=
�

µ∗c ,±iω
�

µ∗c
��

= 3λ2+2 (1+δh +δc )λ+(δh +δc +δhδc )

�

�

�

�
�

µc ,λ
�

=
�

µ∗c ,±iω
�

µ∗c
��

,
(4.35)

= 3
�

±iω
�

µ∗c
��2+2 (1+δh +δc )

�

±iω
�

µ∗c
��

+(δh +δc +δhδc ) . (4.36)

Simplifying and using the fact thatω2
�

µ∗c
�

= (δh +δc +δhδc ) from (4.30), we obtain

∂ F
∂ λ

�

�

�

�
�

µ∗c ,±iω
�

µ∗c
��

= −3ω2 �µ∗c
�

±2i (1+δh +δc )ω
�

µ∗c
�

+ω2 �µ∗c
�

, (4.37)

= −2ω2 �µ∗c
�

±2i (1+δh +δc )ω
�

µ∗c
�

6= 0. (4.38)
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Also, from the characteristic polynomial (4.20), we have

∂ F
∂ µc

�

µc ,λ
�

�

�

�

�
�

µc ,λ
�

=
�

µ∗c ,±iω
�

µ∗c
��

= µhϕ, (4.39)

where, we have previously noted that ϕ ≥ 0. However, in the case ϕ = 0, the Jacobian matrix in

(4.16) becomes

J=













−1 0 0

µh −δh 0

0 µc −δc













, (4.40)

which is lower triangular and hence has three negative real eigenvalues given by the entries of

the leading diagonal, specifically −1,−δh and −δc . This violates the requirement of condition

1 that the matrix J has two complex eigenvalues. Therefore we can conclude that in this case,

ϕ 6= 0 and we need only be concerned with the strict inequality ϕ > 0.

Equations (4.38) and (4.39) together with (4.33) yield

dλ

dµ

�

µ∗c
�

=
1

2ω
�

µ∗c
�

�

µhϕ

−ω
�

µ∗c
�

± i (1+δh +δc )

�

. (4.41)

Upon the rationalising the denominator of this complex fraction we obtain

dλ

dµc

�

µ∗c
�

=
1

2ω
�

µ∗c
�

�

−ω
�

µ∗c
�

µhϕ

ω2
�

µ∗c
�

+(1+δh +δc )2

�

+ i
1

2ω
�

µ∗c
�

�

∓µhϕ (1+δh +δc )

ω2
�

µ∗c
�

+(1+δh +δc )2

�

,

and since ϕ > 0,

dθ
�

µc
�

dµc

�

�

�

�

µc =µ∗c
=Re

dλ

dµc

�

µ∗c
�

=
1

2

�

−µhϕ

ω2
�

µ∗c
�

+(1+δh +δc )2

�

< 0 6= 0, (4.42)

and the second condition of the Hopf theorem is fulfilled. Thus we have proved the existence of

a Hopf bifurcation at the critical value µc =µ∗c .

Due to the dependence of the stability condition (4.22c) on all of the system parameters, it is

in fact possible to illustrate existence of critical values at which a Hopf bifurcation may occur
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for each system parameter. We are especially interested in where these bifurcations occur for

those parameters which are as yet undetermined, and here, following the method above, we

prove analytically for δc , a critical value exists and that for this critical value the two conditions

of the Hopf theorem are satisfied at the equilibrium point. The effect of other parameters will be

considered numerically, in Chapter 5.

To calculate the critical value δc = δ∗c , we must solve the critical condition of Case II in terms of

δ∗c . In conjunction with this, we must find also find the equilibrium value of cs s for this value of

δ∗c . Hence, the critical value δ∗c for which a Hopf bifurcation may occur is given by the solution

of the equation

(1+δh )(δ∗c )
2+(1+δh )2δ∗c +(1+δh )δh −µhµcϕ = 0, (4.43)

together with the equation determining the equilibrium value of cs s ,

δ∗c
c 13

s s

κ 12
c
+3δ∗c

c 9
s s

κ 8
c
+3δ∗c

c 5
s s

κ 4
c
+

�

δ∗c

κ3
m h

+δ∗c

�

cs s −
�

µhµm hµc

κ3
m hδh

�

= 0. (4.44)

The eigenvalues at this critical point are given by

λ1,2 = ±i
p

(δh +δc +δhδ
∗
c ), (4.45)

λ3 = −
�

1+δh +δ∗c
�

, (4.46)

and so the first Hopf bifurcation condition holds.

Proceeding in the manner of the calculation for µ∗c , we find

dθ (δc )
dδc

�

�

�

�

δc =δ∗c
=Re

dλ

dδc

�

δ∗c
�

=
1

2

�

ω2 (δ∗c )+ (1+δh ) (1+δh +δ∗c )−δh

ω2 (δ∗c )+ (1+δh +δ∗c )
2

�

> 0, (4.47)

and therefore the second condition of the Hopf theorem also holds.

Having proved the existence of a Hopf bifurcation in the dynamics of system (4.3) for one of the

known and one of the, as yet, unknown parameters, we now consider the biological significance

of this phenomenon. Hopf bifurcations show the birth or the demise of closed period orbits
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known as limit cycles. The stability of the equilibrium point at a Hopf bifurcation is shifted from

the original stationary solution to the periodic one. This loss of stability can occur generically in

one of two ways.

In the supercritical Hopf bifurcation, a stable limit cycle is produced at the bifurcation, and a

stable equilibrium point becomes unstable with increasing amplitude oscillations that are fi-

nally attracted by the stable limit cycle. At the critical value of the bifurcation parameter, µ∗c , the

limit cycle has zero amplitude. For values of µc slightly larger than the critical value, a small-

amplitude limit cycle exists near the steady state solution from which the limit cycle has bi-

furcated. Thus the limit cycle is being created at the Hopf bifurcation point as µc is increased

through µ∗c . Although the steady state solution loses stability, the system remains in the neigh-

bourhood of the equilibrium. This is also known as a soft loss of stability.

In the subcritical Hopf bifurcation, an unstable limit cycle, which exists before the bifurcation,

becomes smaller and eventually disappears as it combines with a stable equilibrium point at

the bifurcation. For values of µc slightly smaller than the critical value µ∗c , a small-amplitude

limit cycle exists near the steady state solution from which the limit cycle has bifurcated. Thus

in this case, the limit cycle is being destroyed at the Hopf bifurcation point as µc is increased

through µ∗c . After the bifurcation, the equilibrium point becomes unstable resulting in diverging

oscillations. In this case the system is moved away from the neighbourhood of the equilibrium.

This is called a hard loss of stability.

Distinction between these two qualitatively different types of bifurcation is essential to under-

standing the genetic regulatory mechanism of system (4.3). If a system loses stability in a soft

manner, the long time solution changes by a small amount since the limit cycle has small am-

plitude. Further, since the limit cycle is stable, any small perturbation from the closed trajectory

causes the system to return to the limit cycle. This phenomenon can result in self sustained os-

cillations in the region of some equilibrium value. The resulting mechanism of control of the

system to within narrow limits is the principle of the biological mechanism of homeostasis.

The focus of the next section is to determine which type of Hopf bifurcation the equation sys-

tem (4.3) exhibits.
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4.3 Analysis of the Hopf bifurcation

In this section we analyse the Hopf bifurcation whose existence was proved in Section 4.2. We

use centre manifold reduction techniques to isolate the two dimensional manifold to which the

dynamics of the bifurcation phenomena are restricted (Guckenheimer and Holmes, 1983). The

stability properties of the limit cycles, their amplitudes and period are then determined using

integral averaging (Chow and Mallett-Paret, 1977). We begin by outlining some of the theory to

be used in order to motivate the analysis that follows.

Centre manifold theory allows us to isolate only those dimensions of the system on which the

interesting dynamics occur. Since at a bifurcation, the number of eigenvalues of the system

whose real part crosses zero is usually less than the dimension of the system, this isolation is

effectively a reduction of the dimension of the system.

This subspace of the original state space is called a centre manifold, that is, a manifold tangent

to the eigenvectors of the zero crossing eigenvalues at the bifurcation point. Since the other

eigenvalue of the regulated cholesterol biosynthesis system has negative real part, the centre

manifold is an attractor in the state space; thus it is sufficient to consider the dynamics on the

centre manifold for the purposes of stability analysis. Before presenting the analysis we briefly

review the centre manifold theorem and its implications. Further details may be found in Carr

(1981) or Guckenheimer and Holmes (1983).

Theorem I (The centre manifold theorem)

Let f ∈C r (Rn ) be a vector field on Rn vanishing at the origin ( f (0) = 0), and let A =D f (0), where

D f is the Jacobian matrix of f . Divide the eigenvalues, λ of A into three setsσs ,σc andσu with

Re λ < 0 if λ∈σs , (4.48)

Re λ = 0 if λ∈σc , (4.49)

Re λ > 0 if λ∈σu . (4.50)

Let E s ,E c and E u be the corresponding generalised eigenspaces. Then there exist stable and un-

80



Chapter Four 4.4. A centre manifold reduction for the Hopf bifurcation

stable invariant manifoldsW u ∈ C r andW s ∈ C r tangent to E u and E s at 0 and a centre man-

ifoldW c ∈ C r−1 tangent to E c at 0. All manifolds are invariant for the flow of f . The stable and

unstable manifolds are unique but the centre manifold is not necessarily unique.

The centre manifold theorem implies that at a bifurcation point (whereσc 6= ;), any ODE system

can be written locally in coordinates
�

x , y , z
�

∈W c ×W s ×W u on invariant manifolds as

ẋ = f (x ), (4.51)

ẏ = −y , (4.52)

ż = z . (4.53)

The flow onW s is toward the stationary point and the motion onW u is away from the station-

ary point, and thus the local behaviour can be understood by the solution of (4.51), that is by

computing the reduced vector field f . This is the subject of the next section.

4.4 A centre manifold reduction for the Hopf bifurcation

In this section we wish to isolate the centre manifold of the equation system (4.3), that is, to

compute the reduced vector field of system (4.3). This is a complex calculation, and so we begin

by providing an outline of the structure of this section. To simplify the following analysis, the

bifurcation point, µ∗c , of system (4.3) is translated to the origin, and this translated system is

separated into its linear and nonlinear components. Following this, the system is subjected to a

coordinate transformation which will bring it into a canonical (simple) form, diagonalising the

linear part of the translated system.

Calculation of the centre manifold of the translated system requires an explanation of the theory

which underlies the approximation technique. This is explained with reference to the translated

system. However, since we seek the stability properties of the limit cycle which bifurcates from

the origin, we must consider how the system behaves under small perturbations from the bi-

furcation point. We present a method of approximation of the system for values close to the
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bifurcation point, resulting in what is known as the suspended system, using which the required

centre manifold flow is determined. The final part of the analysis is the determination of the

stability and properties of the periodic solutions bifurcating from the origin. In order to simplify

this, the centre manifold is expressed in polar coordinates, from which we obtain the solution

describing the limit cycle of the system. Using this solution the stability properties, in addition

to the amplitude and period properties, of the orbits are determined.

4.4.1 Coordinate transformations

We begin with system (4.3), which is written in the form

u̇= g(u,µc ) where u= (mh , h, c )T , (4.54)

for which the equilibrium value u∗ = (m ∗h , h∗, c ∗) and parameter value µ∗c at the bifurcation point

have been identified. Our first step is to translate the system to place the bifurcation point at the

origin using

v≡u−u∗, ρ ≡µc −µ∗c , (4.55)

giving the system

v̇= g(v,ρ), (4.56)

with bifurcation point at v∗ = 0 and ρ = 0. Now let

v1 =mh −m ∗h , v2 = h −h∗, v3 = c − c ∗, ρ =µc −µ∗c , (4.57)

and system (4.3) becomes

d v1

dτ
=

µm h

1+γm

�

1+γc (v3+ c ∗)4
�3
−
�

v1+m ∗h
�

, (4.58a)

d v2

dτ
= µh v1−δh v2, (4.58b)

d v3

dτ
=

�

ρ+µ∗c
�

v2−δc v3. (4.58c)
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where

γm = (κm h )3 and γc = (1/κc )4 . (4.59)

We recall from (4.6a) that

m ∗h =
µm h

1+γm

�

1+γc (c ∗)4
�3

, (4.60)

and so (4.58a) becomes

d v1

dτ
=

µm h

1+γm

�

1+γc (v3+ c ∗)4
�3
−

µm h

1+γm

�

1+γc (c ∗)4
�3
−v1. (4.61)

If we let

f (v3+ c ∗) =
µm h

1+γm

�

1+γc (v3+ c ∗)4
�3

, (4.62)

the first term of (4.58a) can be approximated by a Taylor expansion,

f (v3+ c ∗) = f (c ∗)+ f ′(c ∗)v3+
f ′′(c ∗)

2
v 2

3 + . . . . (4.63)

Since

f (c ∗) =
µm h

1+γm

�

1+γc (c ∗)4
�3

, (4.64)

equation (4.61) can be rewritten as

d v1

dτ
=
∞
∑

n=1

�

f (n )(c ∗)
n !

(v3)n
�

−v1. (4.65)

Thus system (4.3) with the bifurcation point translated to the origin is approximated using

d v1

dτ
= −v1− f 1v3+ f 2v 2

3 , (4.66a)

d v2

dτ
= µh v1−δh v2, (4.66b)

d v3

dτ
=

�

ρ+µ∗c
�

v2−δc v3, (4.66c)
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where

f 1 =
12µm hγmγc (c ∗)3

�

1+γc (c ∗)4
�2

�

1+γm
�

1+γc (c ∗)4
�3�2

, (4.67)

and

f 2 = f 1

�

3

c ∗
+

8γc (c ∗)3
�

1+γc (c ∗)4
� −

24γmγc (c ∗)3
�

1+γc (c ∗)4
�2

1+γm
�

1+γc (c ∗)4
�3

�

. (4.68)

Next, the linear and nonlinear terms in g(v,ρ) are separated and we obtain

v̇=Mv+Nρ+k(v,ρ), (4.69)

where

M=
�

∂ g(v,ρ)
∂ v

�

�

�

�

�

v= 0,ρ = 0
and N=

�

∂ g(v,ρ)
∂ ρ

�

�

�

�

�

v= 0,ρ = 0
, (4.70)

and k(v,ρ) contains the nonlinear terms. We note that for our system, N = 0 and thus the non-

linear system (4.66) under consideration can be written in matrix form as













v̇1

v̇2

v̇3













=













−1 0 − f 1

µh −δh 0

0 ρ+µ∗c −δc

























v1

v2

v3













+













f 2v 2
3

0

0













, (4.71)

that is in the form

v̇=Mv+k(v,ρ), (4.72)

where k(v,ρ) is not dependent on ρ and is O
�

v2
�

.

The matrix M has the characteristic equation given by

λ3+(1+δh +δc )λ2+(δh +δc +δhδc )λ+
�

δhδc +µh
�

ρ+µ∗c
�

f 1
�

= 0, (4.73)

which from the results of Section 4.2 reduces to

λ3+a 1λ
2+a 2λ+a 1a 2 = 0, (4.74)
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at the bifurcation point
�

v1, v2, v3,ρ
�

= (0, 0, 0, 0). Here,

a 1 = 1+δh +δc , (4.75)

a 2 = δh +δc +δhδc , (4.76)

and equation (4.74) has roots given by

λ1 = −i
p

a 2 = −i
p

δh +δc +δhδc , (4.77a)

λ2 = +i
p

a 2 = +i
p

δh +δc +δhδc , (4.77b)

λ3 = −a 1 = −1−δh −δc . (4.77c)

We note that since there are no eigenvalues with positive real part, the unstable manifold is

empty.

The next step of the calculation requires the transformation of system (4.72) evaluated at the

bifurcation point into a canonical form which will preserve the qualitative dynamics of M.

We achieve this by seeking a transformation matrix P such that

v=Pz, z=P−1v, (4.78)

transforming system (4.69) into the form,

ż=P−1MPz+P−1k (Pz) . (4.79)

P is chosen to be a nonsingular linear transformation such that

P−1MP=







Mc 0

0 Ms






, (4.80)

where Mc and Ms are the blocks in canonical form whose diagonals contain the eigenvalues with

Re(λ) = 0 and Re(λ)< 0 respectively. For system (4.69) the matrix [Mc ] is the 2×2 matrix whose

eigenvalues have zero real part and the matrix [Ms ] is the 1× 1 matrix whose eigenvalue has
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negative real part.

Canonical forms of the Jacobian derivatives evaluated at bifurcation points for various types of

bifurcation have been previously evaluated. Following Guckenheimer and Holmes (1983), we

seek a P for system (4.69) such that

P−1MP=



















0 −pa 2

p
a 2 0






0

0
�

−a 1

�













. (4.81)

P is constructed as the basis formed by the eigenvectors corresponding to the eigenvalues given

by (4.77a)-(4.77c). To achieve the transformation of (4.81) we take

P=
�

Re
�

e T
1

�

Im
�

e T
1

�

e T
3

�

. (4.82)

Here e T
1 is the eigenvector corresponding to the imaginary eigenvalue λ1 =−i

p
a 2,

e T
1 =

�

−
f 1

1− i
p

a 2

(−i
p

a 2−1)µh f 1

(1− i
p

a 2) (1+ i
p

a 2) (δh − i
p

a 2)
1

�

. (4.83)

Cancelling common terms, and rationalising denominators results in

e1 =













− f 1 (δh − i
p

a 2)

−µh f 1

(1− i
p

a 2) (δh − i
p

a 2)













=













− f 1δh + i f 1
p

a 2

−µh f 1

−δc (δh +1)− i (1+δh )
p

a 2













, (4.84)

using the value of a 2 in (4.76).

Thus we have,

Re (e1) =













− f 1δh

−µh f 1

−δc (δh +1)













, Im (e1) =













f 1
p

a 2

0

− (1+δh )
p

a 2













. (4.85)
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The eigenvector e T
3 corresponds to the real eigenvalue λ3 =−1−δh −δc and is given by

e3 =
�

f 1

δh +δc
−

µh f 1

(δh +δc ) (1+δc )
1

�

. (4.86)

Equation (4.85) together with (4.86) give the columns of the transformation matrix P, where

P=



























− f 1δh f 1
p

a 2
f 1

δh +δc

−µh f 1 0 −
µh f 1

(δh +δc ) (1+δc )

−δc (δh +1) − (1+δh )
p

a 2 1



























, (4.87)

and inverting (4.87) we obtain,

P−1 =































−
1+δh

ψ f 1
−
(1+δc ) (a 1+δh )

ψ f 1µh
−

1

ψ

a 2+δc a 1

ψ f 1
p

a 2
−
(1+δc )

�

δ2
h −δc

�

ψ f 1µh
p

a 2
−

a 1

ψ
p

a 2

(1+δh ) (1+δc ) (δh +δc )
ψ f 1

−
(1+δh ) (1+δc ) (δh +δc )2

ψ f 1µh

(1+δc ) (δh +δc )
ψ































(4.88)

whereψ= a 2
1+a 2 with a 1 and a 2 as in (4.75) and (4.76) respectively.

We note that the physical variables of the transformed system, v, are related to the normal coor-

dinates through the relation v=Pz. Using (4.87) we obtain

v1 = −δh f 1x1+
�

f 1
p

a 2
�

x2+
�

f 1

(δh +δc )

�

y , (4.89a)

v2 = −µh f 1x1−
�

µh f 1

(δh +δc ) (δc +1)

�

y , (4.89b)

v3 = −δc (δh +1)x1− (1+δh )
p

a 2x2+ y , (4.89c)
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which leads to,

k(v,ρ) =













f 2v 2
3

0

0













⇒ k (Pz) =













f 2
�

(δh +1) (−pa 2x2−δc x1)+ y
�2

0

0













. (4.90)

Therefore using (4.88)

P−1k (Pz) =
f 2

f 1
�

a 2
1+a 2

�



























− (δh +1)
�

(δh +1) (−pa 2x2−δc x1)+ y
�2

a 2+δc a 1p
a 2

�

(δh +1)
�

−
p

a 2x2−δc x1
�

+ y
�2

(1+δh ) (1+δc ) (δh +δc )
�

(δh +1) (−pa 2x2−δc x1)+ y
�2



























, (4.91)

which we write as

P−1k (Pz) =













n 1m1x 2
1 +n 1m2x 2

2 +n 1m3x1x2+n 1m4x1y +n 1m5x2y +n 1m6y 2

n 2m1x 2
1 +n 2m2x 2

2 +n 2m3x1x2+n 2m4x1y +n 2m5x2y +n 2m6y 2

n 3m1x 2
1 +n 3m2x 2

2 +n 3m3x1x2+n 3m4x1y +n 3m5x2y +n 3m6y 2













, (4.92)

with

n 1 = −
f 2 (1+δh )

f 1
�

a 2
1+a 2

� , n 2 =
f 2 (a 2+δc a 1)

f 1
p

a 2
�

a 2
1+a 2

� , (4.93)

n 3 =
f 2 (1+δh ) (1+δc ) (δh +δc )

f 1
�

a 2
1+a 2

� ,

and

m1 = δ2
c (1+δh )2 , m2 = a 2 (1+δh )2 , (4.94)

m3 = 2
p

a 2δc (1+δh )2 , m4 = −2δc (1+δh ) ,

m5 = −2
p

a 2 (1+δh ) , m6 = 1.
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The successive application of coordinate transformations in this section has separated the bifur-

cating system into linear and nonlinear parts, with the linear part expressed in block diagonal

form, bringing the system into the form of (4.79). We note that expression of the system in this

form indicates that the centre manifold has been isolated from the stable manifold at leading

order; the centre manifold is given by (x1,x2, y )with y = 0 and the stable manifold by x1 = x2 = 0

with y ∈ R. We are now in a position to apply the centre manifold theorem and reduce the di-

mension of the system. In the following section, we begin with an explanation of the application

of this technique.

4.4.2 Centre manifold theory

The previous calculations have separated the bifurcating system into linear and nonlinear parts,

with the linear part expressed in block diagonal form, bringing the system into the form of (4.79).

Next the vector z is separated into two vectors, x= (x1,x2)T and y,

ẋ = Ax+ g
�

x, y,ρ
�

, (4.95a)

ẏ = By+ l
�

x, y,ρ
�

, (x, y)∈R2×R1, (4.95b)

ρ̇ = 0, ρ ∈R1. (4.95c)

where x corresponds to the purely imaginary eigenvalues of M, and y to those eigenvalues with

negative real part.

A and B are 2× 2 and 1× 1 matrices respectively, whose eigenvalues have zero real parts and

negative real parts, and g and l vanish along with their partial first derivatives at the origin.

The addition of the trivial equation (4.95c) is in order that we may include the bifurcation param-

eter µc as part of the centre manifold. This allows us to obtain a centre manifold which stretches

into the parameter space.

At (x, y,ρ) = (0, 0, 0) there is a (2+1)-dimensional centre manifold tangent to E c (the y = 0 space)

and ρ = 0. Since the centre manifold W c is tangent to both E c and ρ, it can be represented
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locally as the graph of a function of x and ρ

W c = {(x, y) |y= h(x,ρ)}; h(0, 0) = 0, Dh(0, 0) = 0, (4.96)

where h : U → R1 is defined on some neighbourhood U ⊂ R2 of the origin. We consider the

projection of y= h(x,ρ) onto E c which is given by

ẋ = Ax+ g (x, h(x,ρ),ρ), (4.97a)

ρ̇ = 0, (4.97b)

where (4.97b) is trivial to solve and the local dynamics on the centre manifold are given by the

solutions of (4.97a). (This is the flow of (4.51) restricted toW c , that is, the ’reduced’ vector field

that we wish to compute.) We now use the following theorem.

Theorem II (Carr (1981)a)

If the origin of x = 0 of (4.97a) is locally asymptotically stable (or unstable) then the origin of

system (4.95) is also locally asymptotically stable (or unstable).

Thus we see that calculating the centre manifold allows a simplified method of determining the

stability of the original system. The centre manifold itself is given by the equation

y = h(x,ρ). (4.98)

To obtain a functional form for h we substitute (4.98) into (4.95a), and apply the chain rule to

obtain

y = h(x,ρ) ⇒ ẏ = Dh(x,ρ)[ẋ, ρ̇]T ,

= Dh(x,ρ).
�

Ax+ g (x, h(x,ρ),ρ), ρ̇
�T , (4.99)

where Dh(x,ρ) is the Jacobian matrix of h. Using (4.95b) we also have that

ẏ = Bh(x,ρ)+ l (x, h(x,ρ),ρ). (4.100)
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If we now define the operatorM by

M (h(x,ρ)) = Dh(x,ρ).
�

Ax+ g (x, h(x,ρ),ρ), ρ̇
�T − Bh(x,ρ)− l (x, h(x,ρ),ρ), (4.101)

with boundary conditions

h(0, 0) =Dh(0, 0) = 0, (4.102)

then the function h whose graph is the centre manifold of system (4.95), is a solution of the

equation

M (h(x,ρ)) = 0. (4.103)

The solution for the partial differential equation in h above can be approximated arbitrarily

closely as a Taylor series at x= 0 using the following theorem.

Theorem III (Carr (1981)b)

If a function Φ(x )with Φ(0) =DΦ(0) = 0 can be found such thatM (Φ(x )) =O (|x |p ) for some p > 1

as |x | → 0 then it follows that

h(x ) = Φ(x )+O (|x |p ) as |x | → 0. (4.104)

Before we compute h(x,ρ), however, we note that the invariance properties of centre manifolds

guarantee that any small solutions bifurcating from (0, 0, 0)must lie in any centre manifold.

Thus we may follow the local evolution of bifurcating families of solutions in what is termed the

suspended family of centre manifolds.

4.4.3 Calculation of the suspended system

To calculate the suspended form of (4.79), we must consider what happens to the matrix P−1MP

in equation (4.81), for values of µc close to the bifurcation point µ∗c .

That is, we consider what happens in the case where 0<ρ << 1.
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The characteristic equation ((4.73)) of the original system at the bifurcation point is given by

λ3+a 1λ
2+a 2λ+δhδc +

�

ρ+µ∗c
�

µh f 1 = 0, (4.105)

λ3+a 1λ
2+a 2λ+δhδc +ρµh f 1+µ∗cµh f 1 = 0, (4.106)

with a 1 and a 2 given by equations (4.75) and (4.76). But at the critical point µ∗c , we have that

a 1a 2 =δhδc +µ∗cµh f 1. (4.107)

Therefore for the perturbed matrix M̃, where ρ 6= 0, the characteristic equation is given by

λ3+a 1λ
2+a 2λ+a 1a 2+ρµh f 1 = 0. (4.108)

Let the eigenvalues of the perturbed matrix M̃ be given byω and let

ζ=ρµh f 1. (4.109)

Therefore we consider solutions of the equation

ω3+a 1ω
2+a 2ω+a 1a 2+ζ= 0. (4.110)

We calculate the eigenvaluesω using regular perturbation expansions of the form

ω1 = λ1+ζω
(1)
1 +O (ζ

2), (4.111a)

ω2 = λ2+ζω
(1)
2 +O (ζ

2), (4.111b)

ω3 = λ3+ζω
(1)
3 +O (ζ

2), (4.111c)

noting that in the case ζ= 0, equation (4.110) reduces to the characteristic equation (4.74) with

eigenvalues λ as in (4.77a) - (4.77c). The values ofω given in system (4.111) are substituted into

(4.110) in turn and higher order terms (i.e. terms of O (ζ2) , O (ζ3) etc.) are neglected. Forω1 we

find, to O (ζ), that

1−2a 2ω
(1)
1 −2i a 1

p
a 2ω

(1)
1 = 0, (4.112)
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and therefore

ω
(1)
1 =

1

2 (a 2+ i a 1
p

a 2)
. (4.113)

Rationalising we find that

ω
(1)
1 =

1

2
�

a 2+a 2
1

� − i
a 1

2
p

a 2
�

a 2+a 2
1

� , (4.114)

and therefore

ω1 =−i
p

a 2+

�

1

2
�

a 2+a 2
1

� − i
a 1

2
p

a 2
�

a 2+a 2
1

�

�

ζ+O (ζ2). (4.115)

In a similar manner we find

ω2 = i
p

a 2+

�

1

2
�

a 2+a 2
1

� + i
a 1

2
p

a 2
�

a 2+a 2
1

�

�

ζ+O (ζ2). (4.116)

Forω3 we find

ω3 =−a 1−
1

�

a 2+a 2
1

� +O (ζ2). (4.117)

For ease of the analysis that follows we express the eigenvalues calculated above as

ω1 = r ′ζ−
�p

a 2+χ ′ζ
�

i , (4.118a)

ω2 = r ′ζ+
�p

a 2+χ ′ζ
�

i , (4.118b)

ω3 = −a 1+ s ′ζ, (4.118c)

where the coefficients r ′, χ ′ and s ′ are given by

r ′ =
1

2
�

a 2+a 2
1

� , (4.119a)

χ ′ =
a 1

2
p

a 2
�

a 2+a 2
1

� , (4.119b)

s ′ = −
1

�

a 2+a 2
1

� . (4.119c)
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Thus for values of µc close to the bifurcation point µ∗c , we approximate the matrix P−1MP with

P̃−1M̃P̃=













r ′ζ −
�p

a 2+χ ′ζ
�

0
p

a 2+χ ′ζ r ′ζ 0

0 0 −a 1+ s ′ζ













. (4.120)

The suspended system we require is given by

ż= P̃−1M̃P̃z+P−1k (Pz) , (4.121)

which, from (4.92), is given by the system below

ẋ1 = r ′ζx1−
�p

a 2+χ ′ζ
�

x2+n 1m1x 2
1 +n 1m2x 2

2 +n 1m3x1x2 (4.122a)

+n 1m4x1y +n 1m5x2y +n 1m6y 2,

ẋ2 =
�p

a 2+χ ′ζ
�

x1+ r ′ζx2+n 2m1x 2
1 +n 2m2x 2

2 +n 2m3x1x2 (4.122b)

+n 2m4x1y +n 2m5x2y +n 2m6y 2,

ẏ =
�

−a 1+ s ′ζ
�

y +n 3m1x 2
1 +n 3m2x 2

2 +n 3m3x1x2 (4.122c)

+n 3m4x1y +n 3m5x2y +n 3m6y 2,

ρ̇ = 0, (4.122d)

where ζ is given in (4.109) and the coefficients n i and m i are found in system (4.93) and sys-

tem (4.94) respectively.

4.4.4 Determination of the centre manifold

We seek a centre manifold of the form

y = h(x,ρ),

= h(x1,x2,ρ),

= ξ1x 2
1 +ξ2x 2

2 +ξ3ρ
2+ξ4x1x2+ξ5x1ρ+ξ6x2ρ+O (3), (4.123)
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where the ξi are coefficients to be determined, and where, by O (3) we mean terms of orders

x 3
1 ,x 3

2 ,ρ3,x 2
1x2 . . .

Using this approximation of h, together with (4.120) and (4.92), we have

Dh(x,ρ) =
�

∂ h

∂ x1
,
∂ h

∂ x2
,
∂ h

∂ ρ

�

=













2ξ1x1+ξ4x2+ξ5ρ

2ξ2x2+ξ4x1+ξ6ρ

2ξ3ρ+ξ5x1+ξ6x2













T

, (4.124)

and













A







ẋ1

ẋ2







ρ̇













+













g (x1, h(x1,x2,ρ))

g (x2, h(x1,x2,ρ))

0













=













r ′ζx1−
�p

a 2+χ ′ζ
�

x2

�p
a 2+χ ′ζ

�

x1+ r ′ζx2

0













+













n 1m1x 2
1 +n 1m2x 2

2 +n 1m3x1x2+n 1m4x1h +n 1m5x2h +n 1m6h2

n 2m1x 2
1 +n 2m2x 2

2 +n 2m3x1x2+n 2m4x1h +n 2m5x2h +n 2m6h2

0













. (4.125)

We know also that,

− Bh(x,ρ)− l (x, h(x,ρ)) = a 1h − s ′ζh −n 3m1x 2
1 −n 3m2x 2

2 −n 3m3x1x2

−n 3m4x1h −n 3m5x2h −n 1m6h2. (4.126)

Using (4.124), (4.125) and (4.126) we calculateM (h(x,ρ)).

The value of h in (4.123) is then substituted intoM (h(x,ρ)) = 0 and equating the powers of

x 2
1 ,x 2

2 ,x1x2,ρ2,x1ρ and x2ρ we find that

ξ3 = 0, ξ5 = 0, ξ6 = 0, (4.127)
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and furthermore we find the nontrivial values given by

ξ4 =
n 3m3 (a 1− s ′ζ+2r ′ζ)+2n 3 (m1−m2)

�p
a 2+χ ′ζ

�

(a 1− s ′ζ+2r ′ζ)2+4
�p

a 2+χ ′ζ
�2

, (4.128a)

ξ1 =
n 3m1−ξ4

�

χ ′ζ+
p

a 2
�

a 1− s ′ζ+2r ′ζ
, (4.128b)

ξ2 =
n 3m2+ξ4

�

χ ′ζ+
p

a 2
�

a 1− s ′ζ+2r ′ζ
, (4.128c)

and thus the centre manifold we require is given by

y = ξ1x 2
1 +ξ2x 2

2 +ξ4x1x2. (4.129)

The reduced system which describes the suspended centre manifold flow of the system, and

which determines stability, is given by

ẋ1 = r ′ζx1−
�p

a 2+χ ′ζ
�

x2+ J1(x1,x2), (4.130a)

ẋ2 =
�p

a 2+χ ′ζ
�

x1+ r ′ζx2+ J2(x1,x2), (ρ̇ = 0), (4.130b)

obtained by substituting y from (4.129) into equations (4.122a) and (4.122b), where,

J1(x1,x2) = n 1m1x 2
1 +n 1m2x 2

2 +n 1m3x1x2+n 1m4ξ1x 3
1 + (4.131a)

(n 1m4ξ2+n 1m5ξ4)x1x 2
2 +(n 1m4ξ4+n 1m5ξ1)x 2

1x2+n 1m5ξ2x 3
2 ,

J2(x1,x2) = n 2m1x 2
1 +n 2m2x 2

2 +n 2m3x1x2+n 2m4ξ1x 3
1 + (4.131b)

(n 2m4ξ2+n 2m5ξ4)x1x 2
2 +(n 2m4ξ4+n 2m5ξ1)x 2

1x2+n 2m5ξ2x 3
2 ,

on neglecting the higher order terms.

Having found the centre manifold, and reduced the original system of equations to two dimen-

sions, we are now in a position to determine the stability of the bifurcation and to derive expres-

sions for the amplitude and frequency of the resulting oscillations.
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4.4.5 Averaging

If we introduce polar coordinates in the form

x1 = Rcosθ , x2 = Rsinθ , (4.132)

we find that under this transformation

Ṙ=
x1ẋ1+x2ẋ2

R
, Rθ̇ =

x1ẋ2−x2ẋ1

R
. (4.133)

Using the above, system (4.130) can be written as

Ṙ = r ′ζR+ J1(Rcosθ ,Rsinθ )cosθ + J2(Rcosθ ,Rsinθ )sinθ , (4.134)

Rθ̇ =
�p

a 2+χ ′ζ
�

R+ J2(Rcosθ ,Rsinθ )cosθ − J2(Rcosθ ,Rsinθ )sinθ . (4.135)

Equation (4.134) has the form

Ṙ= r ′ζR+A1(θ )R2+A2(θ )R3, (4.136)

where the functionsA1(θ ) andA2(θ ) are 2π periodic in the angular coordinate θ and calculated

using system (4.131), giving

A1(θ ) = n 1m1 cos3θ +(n 1m2+n 2m3)sin2θ cosθ + (4.137)

(n 1m3+n 2m1)sinθ cos2θ +n 2m2 sin3θ ,

A2(θ ) = n 2m5ξ2+(n 2m4ξ2+n 1m5ξ2+n 2m5ξ4)sinθ cosθ + (4.138)

(n 2m4ξ4−2n 2m5ξ2+n 1m5ξ4+n 2m5ξ1+n 1m4ξ2)cos2θ +

(n 2m5ξ2−n 2m5ξ1+n 1m4ξ1−n 1m5ξ4−n 1m4ξ2−n 2m4ξ4)cos4θ +

(n 1m4ξ4−n 2m4ξ2+n 2m4ξ1−n 1m5ξ2−n 2m5ξ4+n 1m5ξ1)sinθ cos3θ .

If (4.136) is averaged over one cycle in θ , we obtain an equation with constant coefficients,

Ṙ= r ′ζR+B1R2+B2R3, (4.139)
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where

B1 =
1

2π

∫ 2π

0

A1(θ )dθ , (4.140)

and

B2 =
1

2π

∫ 2π

0

A2(θ )dθ . (4.141)

Substituting (4.137) into (4.140) and evaluating, we find that the integral yields even trigono-

metric powers and thus evaluates to zero. Substituting (4.138) into (4.141) and evaluating the

integral, we find

B2 =
1

8
(3n 1m4ξ1+n 1m4ξ2+n 1m5ξ4+n 2m4ξ4+n 2m5ξ1+3n 2m5ξ2) , (4.142)

where the ξi are found in system (4.128). And so, the averaged form of (4.134) is given by

Ṙ= r ′ζR+B2R3. (4.143)

Similar averaging can be performed for (4.135) which has the form

θ̇ =
�p

a 2+χ ′ζ
�

+U1R+U2R2, (4.144)

where under the assumption R 6= 0, the functionsU1(θ ) andU2(θ ) are 2π periodic.

The integral of U1(θ ) between the limits 0 and 2π evaluates to zero and the function U2(θ ) is

given by

U2(θ ) = (n 2m5ξ2−n 1m4ξ2−n 1m5ξ4)sinθ cosθ −n 1m5ξ2+ (4.145)

(n 1m4ξ4−n 2m4ξ2+n 2m4ξ1−n 1m5ξ2−n 2m5ξ4+n 1m5ξ1)cos4θ +

(2n 1m5ξ2−n 1m4ξ4+n 2m5ξ4−n 1m5ξ1+n 2m4ξ2)cos2θ +

(n 1m4ξ2+n 2m4ξ4−n 1m4ξ1−n 2m5ξ2+n 1m5ξ4+n 2m5ξ1)cos3θ sinθ .

Therefore, the averaged form of (4.144) is given by the equation

θ̇ =
�p

a 2+χ ′ζ
�

+V2R2, (4.146)
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where

V2 =
1

2π

∫ 2π

0

U2(θ )dθ . (4.147)

The system of equations (4.143) and (4.146) exhibits the same stability properties as the system

in polar coordinates given by equations (4.139) and (4.144), (Chow and Mallett-Paret, 1977). This

stability is studied next.

4.4.6 Limit cycle analysis

As (4.143) separates from (4.146), we can see that the nonzero solutions of R in (4.143), given by

R2 =
−r ′

B2
ζ, (4.148)

are circles where R is constant. This is the equilibrium solution corresponding to a periodic

solution or limit cycle in the coordinates x1 and x2. As r ′ is always positive (see (4.119a)), the

existence of these periodic solutions depends on the value ofB2, given in (4.142). Specifically

• ifB2 < 0, periodic solutions exist for ζ > 0 that is µc > µ∗c ,

• ifB2 > 0, periodic solutions exist for ζ < 0 that is µc < µ∗c .

The Floquet exponent of (4.143) in the vicinity of (4.148) is given by −2r ′ζ, and therefore

• if periodic solutions exist for ζ > 0 they are stable, and

• if periodic solutions exist for ζ < 0 they are unstable.

The results outlined above allow us to determine the stability of any limit cycle generated as a

result of µc passing through a critical value µ∗c . The first (stable) case is referred to as the super-

critical Hopf bifurcation, whilst the second (unstable) case is the subcritical Hopf bifurcation,

(Glendinning, 1994).
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The determination of the stability coefficient B2 is dependent on the coefficients ξi in sys-

tem (4.128), n i in system (4.93), and m i in system (4.94). Therefore B2 is dependent on the

magnitude of the values of the parameters appearing in the system. In Chapter 5, we evaluate

B2 with the set of parameters detailed in Table 5.1 for µc as the bifurcation parameter, and show

that sinceB2 < 0, a stable limit cycle is generated for µc greater than the critical value µ∗c . Thus

the Hopf bifurcation dependent on µc is supercritical.

4.4.7 Limit cycle properties

To calculate the period, T, of these limit cycles, we use the fact that the angular frequency θ̇ is

equivalent to 2π/T. Substituting (4.148) in (4.146), we find

T =
2π

�p
a 2+χ ′ζ

�

+V2R2
=

2πB2
p

a 2B2+ζ
�

χ ′B2−V2r ′
� ,

=

2πB2p
a 2B2

1+
ζ

p
a 2B2

�

χ ′B2−V2r ′
�

, (4.149)

and so we have an estimate for the period of oscillations given by

T≈
2π
p

a 2

�

1−
χ ′B2−V2r ′
p

a 2B2
ζ

�

+O (ζ2). (4.150)

The amplitude of the limit cycles is computed using the equations of system (4.89) to obtain

an expression in terms of the original variables. In system (4.89) the variable v3 represents the

concentration of cholesterol, c , where

v3 = −δc (δh +1)x1−
�

(1+δh )
p

a 2
�

x2+ y , (4.151)

and on substituting the values of x1, x2 and y from equations (4.132) and (4.129) we obtain

v3 = −Rδc (δh +1)cosθ −R
�

(1+δh )
p

a 2
�

sinθ

+R2ξ1 cos2θ +R2ξ2 sin2θ +R2ξ4 sinθ cosθ . (4.152)
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Rearranging and using trigonometric identities, we find v3 in (4.152) can be written as

R2 (ξ1+ξ2)
2

+R (1+δh )
�p

a 2 sinθ −δc cosθ
�

+
�

R2 (ξ1+ξ2)
2

�

cos 2θ +
�

R2ξ4

2

�

sin 2θ ,

which on further manipulation becomes

R2 (ξ1+ξ2)
2

+
�

R (1+δh )
p

a 2+δ2
c

�

sin

�

θ + tan−1
�

δcp
a 2

��

(4.153)

+

 

R2
p

ξ2
4+(ξ1−ξ2)2

2

!

sin

�

2θ + tan−1
�

ξ1−ξ2

ξ4

��

.

The maximum amplitude of the expression above, obtained on substituting values of the rele-

vant coefficients and reading the amplitude of the resulting wave, is then used to approximate

the amplitude of the oscillations in cholesterol concentration from numerical simulation of the

equations in system (3.66).

The analytic values relating to the amplitude and period of the limit cycle calculated in this sec-

tion, along with the results which determine stability will be verified with numerical solutions

to the regulated cholesterol biosynthesis model presented in Chapter 5. Before doing so, we

consider the implications of the analysis presented in this chapter on the biological processes

modelled in this thesis.

4.5 Biological implications of the model analysis

We have developed a mathematical model that describes the genetic regulation of cholesterol

biosynthesis within the cell. Biologically, many variables are kept tightly controlled within a nar-

row range around a certain optimal level. In particular intracellular cholesterol concentration is

always maintained to within a fairly narrow range of values; this is termed homeostasis. Home-

ostasis literally means same state and it refers to the process of keeping an internal environment

in a steady state either with or without changes in the external environment. Broadly speaking,

there are two schools of thought on how homeostatic mechanisms function.
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The first and more traditional of these is the focus on static stability. Deviations from a fixed

steady point are corrected by placing parameters within normal ranges to restore the steady

point. This type of behaviour is exhibited by our model in the case where the system eventually

reaches a steady state value, either monotonically or via oscillatory convergence to steady state.

This is the behaviour described in Case I of Section 4.2.

The second is the consideration of dynamic stable states, such as oscillatory behaviour, de-

scribed in Case II of Section 4.2. All homeostatic mechanisms use negative feedback to maintain

a constant value (often called the set point). Negative feedback describes the situation whereby

a change occurring in a system automatically intitates a corrective mechanism, which reverses

the original change and brings the system back towards the set point. Generally, the bigger the

change occurring, the bigger the corrective mechanism.

Therefore, in a system controlled by negative feedback, the set level is never perfectly main-

tained, but constantly oscillates about the set point. An efficient homeostatic system minimises

the size of the oscillations, although if variation is not present both corrective mechanisms

would try to operate at once. This is especially true in enzyme controlled homeostatic mech-

anisms where there is a significant time lag before the corrective mechanism can be activated

due to the time it takes for protein synthesis to commence.

Furthermore, there are possible functional advantages to oscillatory homeostatic mechanisms;

it could be that limiting the time during which cholesterol concentration is necessarily elevated

within the cell (e.g. due to increased demand from the plasma membrane) may decrease the

risk of cytotoxicity that could result due to this high concentration. Additionally, increasing cell

cholesterol levels in this manner may incur less demand on cellular energy supplies than sus-

tained elevation.

Oscillatory behaviour has also been demonstrated in other biological homeostatic systems, for

example, in the regulation of intracellular calcium levels (Carafoli, 1987; Berridge et al., 2003).

Closely associated with calcium oscillations is the periodic release of insulin by β-cells in the

pancreas where insulin is synthesised (Aspinwall et al., 1999).
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Fig. 4.1: Ca2+ oscillations induced by glucose in a single β-cell. The horizontal axis

represents time in minutes. Illustration reproduced from Figure 1 of Gilon et al. (2002).

Figure 4.1 illustrates the periodic response of β-cell calcium concentration in response to in-

sulin stimulation by glucose. Insulin oscillations are believed to be significant in preventing

downregulation of insulin receptors in cells.

This behaviour maintains insulin sensitivity and protects against the development of insulin

resistance; loss of this periodicity is a precursor to the development of Type II diabetes.

Oscillatory behaviour has also been shown to exist in enzyme synthesis. Glycolytic oscillations

represent the best known example of periodic behaviour, due to the action of the regulatory en-

zyme phosphofructokinase (Ghosh and Chance, 1964). Oscillations have also been exhibited as

a result of end product repression in heme (a component of haemoglobin) biosynthesis (Wax-

man et al., 1966).

There is, therefore, biological precedence for periodicity in systems of regulated enzyme synthe-

sis; thus the existence of limit cycle behaviour in our model of regulated cholesterol biosynthesis

via the synthesis of HMGR may be significant.

However, there is as yet very little experimental data concerning cholesterol biosynthesis with-

out any interference from extra or intracellular pathways, one of the reasons being the highly

complex network of reactions within which de novo synthesis falls.
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4.6 Comparison with Griffith’s model

In this section we consider some implications our model has on one of the classic models of

regulated gene expression developed by Goodwin (1965) and modified by Griffith (1968). Hopf

bifurcations have been shown to exist in Griffith’s modification to Goodwin’s classic negative

feedback model discussed in Section 3.2, given by

d x1

d t
=

α1

1+βx m
3

−k1x1, (4.154)

d x2

d t
= α2x1−k2x2, (4.155)

d x3

d t
= α3x2−k3x3. (4.156)

Previous analysis on these equations have shown that for a three variable system, the coopera-

tivity of feedback, that is the Hill coefficient, must be very high (m > 8), (Griffith, 1968; Murray,

1977). As such, genetic regulatory systems modelled using this framework have been considered

unsatisfactory. Biologically, this corresponds to an unphysiologically high number of repressor

molecules required to bind to a gene in order to cause deactivation. Experimental results indi-

cate that the number of transcription factor binding sites on a gene is rarely higher than four.

We now consider the effects of cooperativity and number of gene binding sites in respect to

our model. In order to do this, we make some simplifying assumptions. First, we assume that

δm h =δh =δc =δ in system (3.66). Secondly, we alter the nondimensionalisation of the system

for ease of calculation

τ= µ̄h t mh =
m̄h

s̄0
, h =

h̄

s̄0
, c =

c̄

s̄0
, (4.157)

which results in the following system of equations, where n and q are considered generally

d mh

dτ
=

µm h

1+γm
�

1+γc c q
�n −δmh , (4.158a)

d h

dτ
= mh −δh, (4.158b)

d c

dτ
= µc h −δc , (4.158c)
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where γm = κn
m h and γc =

�

κ
q
c

�−1
. We note that the conclusions made previously in this chapter

about the steady states of the system apply here also; thus system (4.158) has one physiologically

valid, positive real root, given by the solution of

1

1+γm

�

1+γc c
q

s s

�n = ϑcs s , (4.159)

where

ϑ=
δ3

µcµm h
. (4.160)

The Jacobian matrix, J, of system (4.158), is given by

J=













−δ 0 −µm h Λ

1 −δ 0

0 µc −δ













, (4.161)

where

Λ = −
∂

∂ c







1

1+γm

�

1+γc c
q

s s

�n







c = cs s

,

=
nqγmγc c

q−1
s s

�

1+γc c
q

s s

�n−1

�

1+γm

�

1+γc c
q

s s

�n�2
. (4.162)

We note that Λ from (4.162) can be rewritten as,

Λ = nqγmγcϑ
2c

q+1
s s

�

1+γc c
q

s s

�n−1
, (4.163a)

= nqγcϑc
q

s s

�

ϑcs sγm

�

1+γc c
q

s s

�n−1
�

, (4.163b)

and also from (4.159), we have

1−ϑcs s = ϑcs sγm

�

1+γc c
q

s s

�n
. (4.164)
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Using the above and (4.159) we may rewrite Λ in (4.163b) as

Λ= nqϑ (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

. (4.165)

Thus the characteristic equation of the Jacobian in (4.161) can now be written as

(λ+δ)3+µm hµcΛ= 0, (4.166)

where

µm hµcΛ=δ3nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

. (4.167)

Using the result above, the characteristic equation (4.166) becomes

(λ+δ)3+δ3nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

= 0, (4.168)

the solutions of which provide the eigenvalues which characterise the stability of the system.

These eigenvalues are given by

λ1 = −δ−δ
�

nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

�
1/3

, (4.169)

λ2,3 = −δ+δ
�

nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

�
1/3
�

cos
π

3
± i sin

π

3

�

. (4.170)

The fixed point of this system is stable if and only if Re(λ2,3)< 0, that is if and only if

−δ+δ
�

nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

�

1
3 1

2
< 0. (4.171)

Since δ is a positive real parameter, the inequality (4.171) is dependent on

−1+
1

2

�

nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

�
1/3

, (4.172)
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which can be rewritten as

nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

< 8. (4.173)

At the Hopf bifurcation point, equality holds and so

nq (1−ϑcs s )
γc c

q
s s

1+γc c
q

s s

= 8. (4.174)

From (4.159) we may calculate

1−ϑcs s = 1−
1

1+γm

�

1+γc c
q

s s

� =
γm

�

1+γc c
q

s s

�

1+γm

�

1+γc c
q

s s

� , (4.175)

and thus we know 0< 1−ϑcs s < 1. Similarly, we also know

0<
γc c

q
s s

1+γc c
q

s s

< 1. (4.176)

Therefore we find

nq =
8

(1−ϑcs s )

�

γc c
q

s s

1+γc c
q

s s

�
> 8. (4.177)

Hence, we find from (4.177), that for the possibility of a Hopf bifurcation to arise it is necessary

that nq > 8. At first glance it may seem that we have simply reproduced similar criteria as for

oscillatory solutions to occur in the Goodwin model equations, but there are significant differ-

ences in our model. Here, the exponent describing cooperativity in the reaction is a product of

two factors, the number of cholesterol molecules able to bind to a molecule of SREBP, (q = 4)

and the number of binding sites for SREBP on the HMGR gene (n = 3) which gives nq = 12, thus

allowing for the possibility of limit cycles.

Previous work has suggested that oscillatory solutions of Goodwin’s model equations are unfea-

sible due to the unphysiological degree of cooperativity required. However the analysis above

indicates that the model we have constructed can reproduce oscillatory behaviour without be-

ing biologically unsound. Specifically, our inclusion of an end product repressor coupled with
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the action of a transcription factor creates a feedback mechanism containing two steps. The

Hill coefficients of each of these steps are biologically valid, and have been supported by exper-

imental evidence. Thus our model reduces the restrictive cooperativity constraint that Griffith’s

model imposes. We have also shown that the simplicity of the Goodwin model equations, and

therefore the number of parameters required to be determined, need not be compromised in

order to create a genetic regulatory model capable of producing oscillations.

We note briefly that other modifications of Goodwin’s model equations have also been postu-

lated to allow for the possibility of oscillations without unreasonable constraints on cooperativ-

ity. Bliss et al. (1982) proposed a model based on the Goodwin equations which undergoes a

transition to oscillations under more reasonable conditions. In their model the feedback step is

no longer cooperative, and the linear degradation of the end product is replaced by a Michaelis-

Menten function. The latter is appropriate in the case when the end product is consumed in

an enzyme catalysed reaction described by Michaelis-Menten kinetics; the presence of the ad-

ditional nonlinear term in the rate law of the last component of the reaction chain is sufficient

to cause oscillation. In deriving the regulated model of cholesterol biosynthesis, we have explic-

itly modelled the efflux of cholesterol as a single term. However, as one of the major reactions

intracellular cholesterol participates in is its esterification, mediated by the enzyme ACAT, this

modification is applicable to our model.

In Goodwin’s equations and the modified models of both Griffith (1968) and Bliss et al. (1982),

it is assumed implicitly that there are no time delays in the processes of transcription, trans-

lation, or end product repression. However, there are delays in transcription and translation

associated with mRNA and protein processing following synthesis. Furthermore, delays in the

feedback term are also likely to be present as the end product must move into the nucleus to

bind with transcription factors and subsequently interact with the regulatory sites of the gene.

MacDonald (1977) analyzed a generalisation of Goodwin’s equations incorporating time lags in

the production of one biochemical component of the model based on the history of another

chemical component, resulting in a system of delay differential equations. This system has been

shown to generate oscillations in two variables, compared with the minimum of three variables

required using Griffith’s modification. Again, this modification is also applicable to our model
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Chapter Four 4.6. Comparison with Griffith’s model

since we have also ignored the effect of time delays occurring in genetic processes.

We have demonstrated the possibility of oscillatory behaviour in a model of gene expression

regulation by improving the equations developed by Goodwin (1965) to provide a more realistic

physiological framework to the mathematical equations.

Summary

In this chapter we have analysed the model of regulated cholesterol biosynthesis which was de-

veloped in Chapter 2. We have shown that this model may admit oscillatory solutions, and the

transition to periodic behaviour can occur under biologically feasible conditions, as compared

with other models derived in a similar manner. The oscillatory behaviour occurring was shown

to be the result of a supercritical Hopf bifurcation; thus the oscillations generated are stable with

small amplitude. The significance of these periodic solutions in the context of biological home-

ostasis has been discussed, and although there is no suitable experimental data available for

direct comparison, the possibility that this type of behaviour for regulated cholesterol biosyn-

thesis may be correct is high. The conclusions made thus far, however, have been based on

mathematical analysis alone. In the following chapter we will solve our model numerically to in-

vestigate parameter spaces for oscillatory and non-oscillatory solutions and investigate whether

or not these regions of parameter space are physiologically valid. Numerical solutions will also

be used to determine both the effect and range of values for the three undetermined parameters

in the system, δc , κm and κc .
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5
Numerical Analysis of The Cholesterol

Biosynthesis Model

In this chapter we present numerical solutions to the cholesterol biosynthesis ODE model (sys-

tem (3.66)) derived in Chapter 3 and nondimensionalised in Chapter 4 (system (4.3)). The nu-

merical results of the first half of this chapter show simulations in whichµc is considered the crit-

ical parameter, and the solutions presented are used to verify the analytical conclusions made in

Chapter 4. The second half of this chapter contains results which investigate the response of the

system to model parameters. In particular we investigate the effects of the three undetermined

system parameters, δc , κm h and κc , using the results obtained to isolate regions of steady state

and oscillatory behaviour in the parameter space.
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Chapter Five 5.1. Nondimensional model parameter values

The model was simulated using the Matlab stiff differential equation solver ODE 15s, (Hunt et al.,

2006), which uses a backward differentiation formula (also known as Gear’s Method) of order

5. The characteristics of bifurcations and limit cycles of the system were explored using the

Matlab numerical continuation package MatCont (Dhooge et al., 2003). MatCont is a collection

of numerical algorithms implemented as a Matlab Toolbox, for the detection and continuation

of equilibria, limit cycles and bifurcations in differential equations.

5.1 Nondimensional model parameter values

The set of nondimensional parameters and initial conditions used to investigate the model are

listed in Table 5.1; further details on the calculations of the dimensional parameters may be

found in Appendix B.1. The parameters of Table 5.1 result from the nondimensionalisation de-

scribed by equations (4.1) and (4.2), which leads to the parameters in (4.5). In the case of the

three undetermined parameters δc , κm h and κc , we estimate starting values for these based on

their biological function. We recall from Section 3.3 that κ̄m h is representative of the concentra-

Parameter Description Nondimensional Value

µm h Rate of HMGR mRNA transcription 1.46×10−6

µh Rate of HMGR translation 1.14×104

µc Rate of cholesterol production (HMGR activity) 9.67×102

δh Rate of HMGR degradation 1.43

κc Dissociation constant between cholesterol and SREBP 100

δc Rate of cholesterol degradation 1.00

κm h Dissociation constant between SREBP and HMGR gene 1.00

Initial Condition Description Nondimensional Value

mh (0) =mh0 Initial HMGR mRNA concentration 3.65×10−7

h(0) = h0 Initial HMGR concentration 1.10×10−2

c (0) = c0 Initial cholesterol concentration 2.30×102

Table 5.1: Nondimensional parameter and initial values of the HMGR model.

tion of s̄ required for half of the genes to be active. Therefore as a starting point we set κ̄m h to be

O (s̄0). From (4.5) we have an initial nondimensional value of κm h = 1. We estimate a value for

κ̄c using similar reasoning, noting that κ̄c is representative of the concentration of c̄ producing

half occupation in the binding reaction of c̄ and s̄ . Therefore as an initial estimate we set κ̄c to
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be O (c̄ ) = c0. From (4.5) we have an initial nondimensional value of κc = 1× 102. Finally, to as-

sign an initial estimate for δ̄c we consider that this value will be of the same order of magnitude

as δm h and δh . Therefore as an initial estimate we set δ̄c to be O (δ̄m h ). From (4.5) we have an

initial nondimensional value of δc = 1. These values will be varied in order to gauge their effect

on the response of the system.

5.2 Model results for µc as a bifurcation parameter

Having, in Section 4.2, analysed the different dynamical responses of the system with respect

to µc , we begin by presenting results of the system where all parameters are fixed except for µc

which we vary. The analysis of the previous section tells us that we may expect to see at least

three types of equilibrium, the stable node, the stable focus and a limit cycle, corresponding

to monotonic convergence to steady state, oscillatory convergence to steady state and pure os-

cillatory system behaviour respectively. This is confirmed by the numerical results presented

below. For the system parameters detailed in Table 5.1, we find that the solution trajectories

tend directly to the stable equilibrium point (see Figure 5.1). To confirm that the system is

tending to a steady state smoothly, a phase space portrait was constructed (i.e. a plot in the

three-dimensional variable space, where each trajectory corresponds to a different set of initial

conditions). This can be seen in Figure 5.4(a), where the trajectory travels directly to the fixed

point of the system. This is a stable node equilibrium point corresponding to three negative real

eigenvalues of the linearised Jacobian matrix of the system.

We also note the behaviour of the system response in Figure 5.1. Initially, all three variables

decrease in concentration, the effect of the degradation terms in the equation. However, after

a short delay, the decrease in cholesterol concentration feeds back to the regulation term in the

mRNA equation, and at τ ≈ 1 mRNA concentration starts to rise. This is followed by a similar

delayed increase in HMGR concentration at τ≈ 1.7.

As µc is increased by at least one order of magnitude there is a distinct change of system be-

haviour. Concentrations of variables exhibit oscillations that decay and are eventually com-

112



Chapter Five 5.2. Model results for µc as a bifurcation parameter

pletely damped to a steady state value. As illustrated in Figure 5.2, when µc is increased by

greater amounts, the time taken for the initial oscillatory behaviour to decay fully increases. This

is a stable focus equilibrium point where the decaying oscillations are governed by the existence

of a pair of complex conjugate eigenvalues. The third eigenvalue of this system is real and nega-

tive, and results in the equilibrium being stable. This corresponds to the phase space portrait of

Figure 5.4(b) where the solution trajectory spirals in toward the equilibrium point.

Still further increases in the magnitude of µc result in the equilibrium point eventually losing

stability altogether, as predicted by the analysis of the previous chapter. Here, µc reaches its

critical value µ∗c , and the real parts of the complex conjugate pair of eigenvalues of the linearised

Jacobian matrix cross the imaginary axis. As they do so, they become a pair of pure imaginary

eigenvalues, at which point a periodic trajectory is generated. This is exhibited in the results

of Figure 5.3. The equilibrium point loses stability and becomes a limit cycle due to the Hopf

bifurcation determined in Section 4.2. This limit cycle behaviour is illustrated in Figure 5.4(c).

Based on the numerical results presented in Figure 5.3, we expect a bifurcation point to exist for

µc somewhere in the region of≈O (105). Analytic calculation of the bifurcation point, that is, the

solution of the simultaneous equations (4.28) and (4.29), provides an exact value for the critical

value µ∗c . Numerical computation of the critical bifurcation values are illustrated in Figure 5.5.

The values obtained using both methods are in excellent agreement and are found in Table 5.2,

together with analytically and numerically determined eigenvalues at the bifurcation point in

Table 5.3.

Parameter Analytic Value Numerical Value

µ∗c 433785.42 433786.01

cs s 124.48 124.48

Table 5.2: Analytic and numerical solutions for bifurcation value of µ∗c and cs s .

Eigenvalue Analytic Value Numerical Value

λ1 −1.966 −1.966

λ2 1.966 1.966

λ3 −3.433 −3.433

Table 5.3: Analytic and numerical values of eigenvalues at bifurcation point, µ∗c .
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Fig. 5.1: Solution trajectories tending directly to a stable equilibrium point with

nondimensional values of κm h = 1,κc = 100,δc = 1 and µc = 9.67×102 (Figure 5.1(a):

mRNA; Figure 5.1(b): HMGR and Figure 5.1(c): cholesterol).
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Fig. 5.2: Solution trajectories undergoing oscillatory convergence to a stable equilib-

rium. As µc increases the oscillatory decay occurs for longer times before reaching

steady state (Figure 5.2(a): mRNA; Figure 5.2(b): HMGR and Figure 5.2(c): choles-

terol).
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Fig. 5.3: Solution trajectories displaying oscillatory behaviour. Continued increases

in µc eventually result in the system exhibiting sustained oscillations (Figure 5.3(a):

mRNA; Figure 5.3(b): HMGR and Figure 5.3(c): cholesterol).
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Fig. 5.4: Phase space portraits illustrating the types of different dynamical behaviour.

Figure 5.4(a): Stable node with µc = 9.660× 102; Figure 5.4(b): Stable focus with µc =

3.864×104 and Figure 5.4(c): Limit cycle with µc = 4.830×105.
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Fig. 5.5: Equilibrium manifold in the µc , c plane, with all parameter values other than

µc as detailed in Table 5.1. As µc is increased the system undergoes a Hopf bifurcation

(represented by H) at some critical value µ∗c for a corresponding value of cs s .

Having demonstrated numerically the generation of a limit cycle for the bifurcation point µ∗c

as detailed in Table 5.2, we now investigate whether the simulations match the analysis of Sec-

tion 4.4.6 and Section 4.4.7. For the case µc = 1.00005µ∗c , the cubic coefficient B2 (equation

(4.142)) which dictates the nature of the resulting limit cycles is negative and is given byB2 =

−0.01491. Thus from the analysis of the previous section we predict that a supercritical bifurca-

tion occurs at this value of µ∗c . That is, we may expect to see an oscillatory response approaching

zero when µc <µ
∗
c and stable limit cycles bifurcating when µc >µ

∗
c .

Figure 5.6 illustrates the family of limit cycles generated at the Hopf bifurcation when varying µc

with all other parameters held at the values given in Table 5.1. When µc crosses its bifurcation

value, µ∗c , and increases, a stable limit cycle is expelled from the bifurcation point which grows

in amplitude. To confirm these limit cycles are stable, the convergence to the numerically com-

puted limit cycle of trajectories using different initial conditions, when µc > µ
∗
c is illustrated in

Figure 5.7.

Analytically predicted approximations of the time period and amplitude, compared with esti-

mates obtained from the numerical solution for the evolution of c , are presented in Table 5.4.
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Fig. 5.6: Family of limit cycles bifurcating from the Hopf bifurcation point of Fig-

ure 5.5, in the (mh , c ) plane, as µc is varied. Limit cycles of increasing amplitude are

generated as µc becomes progressively greater than µ∗c .
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Fig. 5.7: Phase space plot of differing initial conditions illustrating trajectories con-

verging to the limit cycle when µc >µ∗c .
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The numerical and analytical values of the limit cycle properties show reasonable agreement;

the reason for discrepancy may lie in the use and calculation of the approximation of the eigen-

values near the bifurcation point in the determination of the analytic period (calculated using

the matrix (4.120)).

Property Analytic Value Numerical Value

Period 3.168 3.344

Amplitude 16.105 16.269

Table 5.4: Analytic and numerical limit cycle properties of c when µc = 1.00005µ∗c .

Oscillatory solutions for the case µc = 1.05µ∗c are illustrated in Figure 5.8 where the concentra-

tion of h has been rescaled, and the results displayed for a non zero initial time, to allow for

clearer comparison. We note that the concentrations are out of phase, and as to be expected,

the maximum in the enzyme HMGR follows the maximum in mRNA. The maximum in choles-

terol concentration follows after both. Thus the system demonstrates a homeostatic mechanism
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Fig. 5.8: Time evolution of system variables for µc = 1.05µ∗c . Note that h has been

rescaled in order to allow for phase comparison. The left hand y-axis corresponds to

the nondimensional concentration of c and h; the right hand y-axis represents the

nondimensional concentration of m .

whereby increases in cholesterol feed back to mRNA which then responds. As mRNA synthesis

is decreased, less enzyme is created and cholesterol production falls. This information is once

again relayed to mRNA and the system cycles in this manner, keeping cholesterol concentration
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restricted between upper and lower bounds, as determined by the parameter values.

Thus far the analyses of Chapter 4, with respect to µc as a bifurcation parameter have been

confirmed. We now go on to investigate the response of the system to the remaining model

parameters using local sensitivity analysis. By varying a single parameter at a time whilst keeping

all other parameters constant, we find that there exist critical values for all model parameters

at which the cholesterol biosynthesis model undergoes a supercritical Hopf bifurcation, that

is, at which a stable limit cycle is generated. Of particular interest in the model are the three

parameters for which values could not be determined from the experimental data. The results

of the system behaviour in response to these values is now presented.

5.3 Model results for δc as a bifurcation parameter

We begin by considering the parameter δc . This undetermined parameter is the rate of choles-

terol degradation, equivalent to the efflux of cholesterol from the cell. We examine the effects of

varying this parameter on the system, and consider the following two cases

i) the nonoscillatory system with µc = 9.67×102,

ii) the oscillatory system with µc = 4.55×105,

where all other parameters, except for δc , are kept constant with the values given in Table 5.1.

The results of varying δc on the nonoscillatory system can be seen in Figure 5.9. Here we see

that greater values of δc result in lower steady states of cholesterol which are reached progres-

sively faster as cholesterol depletion from the cell is increased (Figure 5.9(b)). This is reflected in

differing speeds of response in the mRNA concentration, the faster cholesterol is lost from the

cell, the more rapid the response of mRNA (Figure 5.9(a)).

The effect of varying δc on the oscillatory system is seen in Figure 5.10 demonstrating interest-

ing results. (Only results for mRNA concentration are provided here; the other two variables
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of the system (HMGR and cholesterol) display qualitatively similar behaviour.) It is clear that

within the range of values investigated, oscillatory behaviour can be lost by either increasing or

decreasing δc to a sufficient degree. That is, the system can regain stability in two directions;

suggesting that for the oscillatory system, there exist two Hopf bifurcation points for δc as the

bifurcation parameter. This is confirmed by the numerically computed continuation of the equi-

librium of δc illustrated in Figure 5.11.

The reason for the existence of two bifurcation points is seen explicitly in Figure 5.12, which plots

the course of one of the complex eigenvalues of the Jacobian matrix of the cholesterol biosynthe-

sis system as δc varies. Following the first crossing of the imaginary axis, the eigenvalue changes

direction and recrosses the axis, resulting in the second bifurcation point. This is confirmed an-

alytically from the solutions of equations (4.43) and (4.44); results are displayed in Table 5.5.

Parameter Analytic Value Numerical Value

First Hopf δ∗c 0.702 0.702

Point c (s s ) 130.657 130.656

Second Hopf δ∗c 1.174 1.174

Point c (s s ) 123.778 123.778

Table 5.5: Analytic and numerical solutions of bifurcation values for δc and cs s .

Figure 5.13 illustrates that between the two bifurcation points, there exists a family of stable limit

cycles. In this case, a supercritical bifurcation occurs at the first Hopf point at δc = 0.702; peri-

odic solutions exist for δc > 0.702. At the second Hopf point, at δc = 1.174, we see that periodic

solutions exist for δc < 1.174. These conclusions were confirmed by investigating the behaviour

of trajectories for the interval 0.702 < δc < 1.174; in all cases examined, the trajectories con-

verged to the numerically computed limit cycle.

We note these results indicate the system is extremely sensitive to δc , as the range of values in

which periodic solutions are obtained for this parameter is very narrow. This will not affect cel-

lular behaviour under conditions where cell cholesterol efflux is fairly constant; however, even a

small perturbation from its resting value, will result in a significant change in the behaviour of

the system.
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Fig. 5.9: Variation of stable cholesterol biosynthesis system (with µc = 9.67 × 102)

showing continued stability in response to altering the value of δc . Figure 5.9(a):

mRNA concentration; Figure 5.9(b): cholesterol concentration.
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4.55×105. H represents a Hopf bifurcation point.
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125



Chapter Five 5.4. Model results for κm h and κc as bifurcation parameters

5.4 Model results for κm h and κc as bifurcation parameters

In this section we will consider the effect of the two remaining undetermined parameters κm h

and κc , investigating the nonoscillatory and oscillatory cases detailed at the beginning of Sec-

tion 5.3.

We begin by examining the effect of κm h , which represents the dissociation constant between

the transcription factor s and the HMGR gene. Simulation results on the nonoscillatory system

have elucidated the system’s response to this parameter and we summarise the main findings.

For κm h > 1, as cholesterol concentration decreases so does mRNA synthesis, whereas for values

of κm h ≤ 1, a decrease in cholesterol concentration causes a resultant increase in the synthesis

of mRNA. Intuitively, it is the latter behaviour require the model to exhibit, as we require the cell

to create more cholesterol in response to its depletion in the intracellular environment.

A dissociation constant is the measure of the propensity of a complex to separate (dissociate) re-

versibly into component molecules. The smaller the dissociation constant the higher the affin-

ity between the component molecules of the complex, thus the model simulations suggest the

tighter the binding between the transcription factor and the gene, the better the negative feed-

back regulation occurring due to cholesterol concentration.

When κm h is varied for the oscillatory system, we find that for κm h ≈ 2 a bifurcation occurs and

the oscillatory behaviour is lost; this persists for all κm h > 2. For κm h ≤ 1, no change in dynamic

behaviour was found. Continued reductions in the value of κm h lead to the conclusion that

either the system possesses periodic solutions for all κm h ≤ 1 or that the value of κm h at which

another qualitative change in behaviour occurs is too small for machine precision.

We next investigate the effect of κc , which represents the dissociation constant between the

transcription factor s and cholesterol c . Beginning with the nonoscillatory case, we find that

decreasing κc gradually alters the stability of the equilibrium, with solutions ranging from stable

steady state, to those with oscillatory convergence to steady state and eventually to periodic

solutions. Still further reductions in the value of κc results in continued generation of periodic

solutions. In addition, as κc becomes smaller the delay before the onset of oscillations increases.
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Fig. 5.14: The effect of increasing κc on the stable steady state system with κm h = 1

and δc = 1. Figure 5.14(a) shows the response of mRNA. Figure 5.14(b)shows how the

rate of mRNA synthesis is affected by cholesterol concentration and by varying values

of κc . The line c (0) = 230 is the initial concentration of cholesterol used in the model

simulations.

Increasing κc up to values of 1×1012 has no effect on the dynamical behaviour of the system. In

this case the system always exhibits behaviour which tends to a stable steady state; only the final

steady state values differ. However, increasing κc is interesting in that it shows the effect that the
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switching response mechanism in the mRNA equation has on the system.

Figure 5.14(a) illustrates the initial behaviour of mRNA concentration as κc is changed. We can

see that as κc increases the evolution of mRNA changes from an initial decrease followed by

an increase, to an immediately increasing response. This can be explained by considering the

synthesis term for mRNA given by

mh(synth) =
µm h κ

12
c

κ 12
c +

�

κm h

�

κ 4
c + c 4

��3
, (5.1)

which is plotted in Figure 5.14(b) for the values of κc corresponding to those in Figure 5.14(a).

We can see that altering κc alters the position at which the initial concentration of cholesterol

falls on the synthesis switch function.

The behaviour of mRNA responds to where on this switch cholesterol concentration falls. The

further away from the maximal rate of synthesis at initial time, the greater the effect of mRNA

degradation on mRNA concentration, resulting in the primary decrease seen for κc = 100 and

κc = 200. Eventually cholesterol concentration falls low enough to increase the mRNA synthesis

rate to greater than that of degradation, causing the secondary increase.

Having characterised the essential features of the three undetermined system parameters δc ,

κm h , and κc , we now wish to try and determine the regions of parameter space in which the

differing types of dynamical behaviour occur.

This is problematic with three unknowns to investigate; therefore our approach has been to ob-

tain two dimensional parameter space plots, and track how these plots alter as the third param-

eter is varied. Results of this are found in Figure 5.15.

In this figure, bounded regions in the (κm h ,δc ) parameter space are illustrated for steadily de-

creasing values of κc . Values of κm h and δc which fall within these regions will result in the

system exhibiting periodic solutions (the oscillatory solution regions in Figure 5.15).

Values in the parameter space which fall outside of this region result in solutions which have
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a stable steady state; this includes both monotonic and oscillatory convergence to the steady

state. Distinguishing between the two types of stable solutions has not been possible; cases of

monotonic and oscillatory convergence to steady state are distributed nonuniformly around the

oscillatory regions. The results of Figure 5.15 show as κc decreases, the range of values for both
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Fig. 5.15: Regions in the κm h ,δc parameter space as κc is varied. Parameter values

falling within the bounded region result in the system producing only periodic solu-

tions (oscillatory solution region). Parameter values falling outside of the bounded

region correspond to the system displaying stable behaviour, either tending directly

to or exhibiting decaying oscillations to a stable steady state. Figure 5.15(a) : κc = 100;

Figure 5.15(b) : κc = 80; Figure 5.15(c) : κc = 40; Figure 5.15(d) : κc = 20.

κm h andδc , in which periodic solutions exist, increases. This range is far greater for the response

in κm h than for the response in δc .
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Summary

In this chapter we have presented numerical solutions for the model of regulated cholesterol

biosynthesis which was derived in Chapter 3. These solutions have confirmed the analytic con-

clusions which were formed in Chapter 4 regarding the appearance of and the stability of the

Hopf bifurcation, together with the physical properties of the limit cycle generated by this bifur-

cation. In particular, the numerical simulations have allowed the exploration of and evaluation

of system behaviour for parameters which were unable to be determined from experimental

data.

In the final part of this thesis we integrate the model of cholesterol biosynthesis and its genetic

regulation with an existing model of LDL uptake by hepatocytes. In doing so, we wish to inves-

tigate whether the inclusion of the genetic regulatory processes in the LDL uptake model cap-

tures important behaviour that may not be seen in the existing model, where the intracellular

processes are simplified.
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6
An Integrated Model of Liver Cell LDL

Uptake and Genetic Regulation

Chapter 2 highlighted the lack of mathematical models describing LDL receptor mediated up-

take with adequate description of the genetic processes occurring. In this chapter we will adapt

an existing model of LDL RME developed by Wattis et al. (2008) to include these mechanisms. We

extend this model by including ODEs, developed in Section 3.5.1, which describe the pathway

of regulated cholesterol biosynthesis. We also apply the ideas of genetic regulation developed in

Section 3.3 to the mechanism of LDLR synthesis. In doing so we will create an integrated model

of LDL RME which describes the pathways occurring at both the cellular and subcellular level.

This chapter begins with a brief description of the Wattis et al. model following which we derive
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Chapter Six 6.1. The Wattis model of LDL receptor mediated uptake

the integrated model. Numerical solutions of the model are presented and discussed in the

context of LDL uptake and intracellular cholesterol homeostasis.

6.1 The Wattis model of LDL receptor mediated uptake

In this section we provide a brief description of the model developed by Wattis et al. (2008). This

model describes the process of hepatic LDLR mediated LDL uptake, as reviewed in Section 2.1.3,

and is based on a system of nonlinear ODEs which describe the evolution of spatially averaged

concentrations of LDL and cholesterol. The focus of the model is on the dynamics of LDL ad-

hesion, internalization, and receptor regulation; the biological processes modelled are summa-

rized in Figure 6.1. The model contains two quantities which describe the attachment of LDL
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Fig. 6.1: Pictorial view of LDL endocytosis in a hepatocyte as modelled by Wattis et al.

(2008). LDL binds to cell surface receptors clustered in coated pits, is internalised

and subsequently degraded to release cholesterol. Receptors are either degraded or

recycled to the cell surface. See text for variables and Table 6.1 for parameters.

particles to coated pits on the cell surface; coated pits containing bound LDL particles (N ) and

coated pits completely free of LDL particles (Ne ). The model also explicitly accounts for LDL
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Chapter Six 6.1. The Wattis model of LDL receptor mediated uptake

particles in the extracellular medium (L e ), surface bound LDL particles (Lb ), and internalised

LDL particles (L i ), the intracellular cholesterol concentration, (C ), and the number of pits per

unit volume in the cell’s internal store (R).

Quantitative validation of this model with the experimental results of Goldstein et al. (1979) is

illustrated in Figure 2.9 of Chapter 2. The classical results of Goldstein et al. were obtained using

in vitro assays, where an amount of lipoprotein containing radiolabelled LDL is added to cell

culture medium following which the movement of radiolabelled LDL into the cell is tracked over

time. However, as comparison with this experimental data is not the the purpose of our model,

we focus on the reduced system given below, in which we consider the case of a single delivery

of LDL to the system. This leads to the following equations

d n̄ e

d t
= ḡ r̄ − Āpm l̄ e n̄ e − b̄0n̄ e , (6.1a)

d n̄

d t
= Āpm l̄ e n̄ e − b̄ n̄ , (6.1b)

d r̄

d t
=

k̄s

K̄ + c̄
+ f b̄ n̄ + f b̄0n̄ e − ḡ r̄ , (6.1c)

α
d l̄ e

d t
= −Ā l̄ e

�

pm n̄ +pm n̄ e − l̄b

�

, (6.1d)

d l̄b

d t
= Ā l̄ e

�

pm n̄ +pm n̄ e − l̄b

�

− b̄ l̄b , (6.1e)

d l̄ i

d t
= b̄ l̄b − k̄ i d l̄ i , (6.1f)

d c̄

d t
= ηk̄ i d l̄ i − δ̄c (c̄ − c̄e ) , (6.1g)

with the initial conditions

n̄ (0) = n̄ 0νp , n̄ e (0) = n̄ 0−
pm
∑

p=1

n̄ 0νp (1≤ p ≤ pm ), r̄ (0) = 0, (6.2)

l̄ e (0) = l̄ 0, l̄b =
pm
∑

p=1

p n̄ 0νp , l̄ i (0) = 0, c̄ (0) = θ c̄e (0<θ < 1),

where νp is the fraction of pits with p labelled LDL particles already bound at t = 0 and θ is a

fraction which describes the initial cholesterol concentration relative to the equilibrium choles-

terol concentration ce . The concentration of LDL particles present in the external medium is l̄ 0

while pits on the cell surface are present at the maximum level n̄ 0. Here, lowercase letters denote
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concentrations of variables. Parameter values of the model are listed in Table 6.1.

We note that the first term of (6.1c) describes de novo synthesis of pits, regulated by the two

constants k̄s and K̄ . This gives a lower pit production rate when the cell’s internal cholesterol

level is high and a higher production rate when c̄ is low. The values of ks and K are chosen so

that pit production is equal to 10% of its maximum value when c̄ = c̄e .

Parameter Description Value

pm Maximum number of receptors per pit 200

α Volume ratio of extracellular to cellular media 1.50×104

Ā Rate of LDL binding to a receptor 6.64×10−17 ml molecules−1 s−1

ḡ Rate of release of pits from store 1.08×10−2 s−1

b̄ Rate of internalisation of LDL-bound pits 4.60×10−3 s−1

b̄0 Rate of internalisation of empty pits 6.10×10−3 s−1

c̄e Intracellular cholesterol concentration 2.65×1019 molecules ml−1

K̄ Cholesterol regulation of pit production 2.94×1018 molecules ml−1

k̄s Rate of production of new pits 4.87×1027 molecules2 ml−2 s−1

f̄ Fraction of internalised pits recycled [0.7, 1]

k̄ i d Rate of degradation of LDL to cholesterol 2.00×10−4 s−1

η̄ Number of cholesterol molecules per LDL 3.40×103

δ̄c Timescale of cholesterol regulation 3.30×10−3 s−1

n̄ 0 Concentration of pits 1.81×1011 molecules ml−1

l̄ 0 Initial concentration of extracellular LDL 1.17×1013 molecules ml−1

Table 6.1: Dimensional parameter values of the reduced Wattis et al. (2008) model.

The results of simulations using the model described by system (6.1) are shown in Figure 6.2 for

typical experimental initial conditions, in which the cell has been deprived of LDL, with θ taken

to be 0.7. These initial conditions are defined in Table 6.2.

Variable Description Initial Condition

n̄ (0) Concentration of bound LDL containing pits 0

n̄ e (0) Concentration of empty pits 1.81×1011 molecules ml−1

l̄ e (0) Initial concentration of extracellular LDL 1.17×1013 molecules ml−1

l̄ i (0) Initial concentration of internalised LDL 0

l̄b (0) Initial concentration of bound LDL 0

r̄ (0) Initial concentration of pits in the internal store 0

c̄ (0) Initial concentration of intracellular cholesterol 1.17×1013 molecules ml−1

Table 6.2: Initial conditions of the reduced Wattis et al. (2008) model.
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In Figure 6.2 we see that at initial times, as extracellular LDL, l e binds to receptors on the cell

surface, the concentration of pits containing LDL, n increases rapidly. This is accompanied by

a similarly rapid, opposing response in the concentration of empty pits, n e , which decreases.

We can see in the bottom right hand panel of Figure 6.2 that bound LDL, lb , increases quickly

and this is followed by an increase in internalised LDL, l i . As pits on the cell surface become

occupied with lb , this slower response of l i results in n overshooting its steady state value. The

high initial concentration of l e , corresponding to a large single dose of extracellular LDL, is the

reason why very little change is seen in l e .
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Fig. 6.2: Results of pit related, LDL related and cholesterol concentrations of the re-

duced (Wattis et al., 2008) RME model, system (6.1). Top left: concentrations of occu-

pied, empty and internal pits (n̄ , n̄ e , r̄ ) over two hours; top right: concentration of in-

tracellular cholesterol (c̄ ) over two hours; bottom left: concentration of extracellular,

bound and internalised LDL (l̄ e , l̄b , l̄ i ), over two hours; bottom right: concentration of

extracellular, bound and internalised LDL (l̄ e , l̄b , l̄ i ), over fourteen hours.
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The results of Figure 6.2 also illustrate that most of the system variables reach steady state in

approximately two hours, however, internalised LDL, l̄ i , takes significantly longer to equilibrate.

The bottom right hand figure of Figure 6.2 demonstrates that l i does not reach equilibrium until

at least twelve hours later. This has been shown, in Wattis et al. (2008), to be due to the fact that

the intracellular cholesterol level is predominantly determined by its rate of regulation, δ̄c .

We also see that cholesterol concentration regains its equilibrium level within approximately

half an hour of LDL entry to the cell. Biologically, as the cell has been deprived of cholesterol, de

novo cholesterol synthesis will be at a maximal rate within the cell. As LDL cholesterol enters,

the cell should move toward switching off the energy consuming biosynthesis reaction. This

process is regulated at the genetic level, and experimental evidence suggests that the repression

of HMGR synthesis via cessation of HMGR mRNA synthesis occurs on a timescale of approx-

imately 24 hours (Molowa and Cimis, 1989). Further experimental evidence suggests that the

LDL mediated suppression of cellular cholesterol synthesis can take from approximately 12 to

well over 20 hours (Liscum and Faust, 1987; Liscum et al., 1989). Thus this rapid time to steady

state for intracellular cholesterol concentration seems to be too fast.

In the next section we describe the extension of the LDL RME model presented here. The ad-

ditional pathways will provide missing information on cholesterol biosynthesis and both the

regulation of HMGR synthesis, as well as that of LDLR. It is hoped this will result in a model that

is better able to model the experimental evidence regarding intracellular cholesterol concentra-

tion mentioned above. In doing so, the model will be able to provide a better description of the

behaviour of intracellular cholesterol within the cell. Therefore, it will also allow the investiga-

tion of how the genetic pathways which control cellular processes influence the uptake of LDL,

and the effect of these mechanisms on the long time behaviour of the model variables.

6.2 Model extension

Figure 6.3 summarises the biological mechanisms to be included in this integrated model and

Figure 6.4 summarises the kinetic parameters of the integrated model. The equations describ-
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HMGR pathway. Both genetic processes are controlled by negative feedback from the

concentration of intracellular cholesterol.

ing cholesterol biosynthesis were previously derived in Chapter 3. To complete our model, we

now derive the equations required to describe the synthesis of the LDLR protein. The reaction

mechanism being considered is given by

DNA
µ̄m r // M̄ r

δ̄m r

��

µ̄r // R̄ ,

δ̄r

��
S̄

OO�
�
�

; ;

(6.3)

where S̄ is the transcription factor SREBP responsible for the regulation of LDLR mRNA tran-

scription in the manner described in Chapter 3. LDLR mRNA (M̄ r ) is transcribed with rate µ̄m r

and degraded with rate δ̄m r . LDLR is translated with rate µ̄r and degraded at a rate δ̄h .
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Following the general derivation of Section 3.3, we can adapt the equations of system (3.47) to

model the production of M̄ r and R̄ as given in the mechanism (6.3). We obtain the following

system of equations with m̄r = [M̄ r ] and r̄ = [R̄],

d m̄r

d t
= µ̄m r

�

s̄ w

(κ̄m r )w + s̄ w

�

− δ̄m r m̄h , (6.4a)

d r̄

d t
= µ̄r m̄r − δ̄r r̄ , (6.4b)

with initial conditions

m̄r (0) = m̄r 0, r̄ (0) = r̄0, (6.5)

where the parameter κ̄m r reflects the binding efficiency between the transcription factor s̄ and

the HMGR gene promoter. Here, w is the number of binding sites for s̄ on the LDLR gene. We use

the information that in the case of the LDLR gene, there exists only one binding site for SREBP

within its sterol regulatory element (Smith et al., 1990), and so w = 1. Furthermore, we know
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from the underlying biology described in Section 3.4, that SREBP functions in the same manner

for both the LDLR and HMGR gene. Hence we may apply the derivations of Section 3.5.1 to sys-

tem (6.4), and arrive at the following system of equations describing regulated LDLR synthesis,

d m̄r

d t
=

µ̄m r

�

s̄0 κ̄
4

c

�

�

s̄0 κ̄
4

c

�

+
�

κ̄m r

�

κ̄ 4
c + c̄ 4

�� − δ̄m r m̄r , (6.6)

d r̄

d t
= µ̄r m̄r − δ̄r r̄ , (6.7)

with the initial conditions

m̄r (0) = m̄r 0, r̄ (0) = r̄0. (6.8)

We are now in a position to derive the full integrated system, and note that extending the original

model system (6.1) in this way will result in alterations to the equations describing both c and r .

The full integrated system is given by

β
d m̄h

d t
=

µ̄m h

�

s̄0 κ̄
4

c

�3

�

s̄0 κ̄
4

c

�3
+
�

κ̄m h

�

κ̄ 4
c + c̄ 4

��3
− δ̄m h m̄h , (6.9a)

β
d m̄r

d t
=

µ̄m r

�

s̄0 κ̄
4

c

�

�

s̄0 κ̄
4

c

�

+
�

κ̄m r

�

κ̄ 4
c + c̄ 4

�� − δ̄m r m̄r , (6.9b)

d n̄ e

d t
= ḡ r̄ − Āpm l̄ e n̄ e − b̄0n̄ e , (6.9c)

d n̄

d t
= Āpm l̄ e n̄ e − b̄ n̄ , (6.9d)

d r̄

d t
= µ̄r m̄r + f b̄ n̄ + f b̄0n̄ e − δ̄r r̄ − ḡ r̄ , (6.9e)

α
d l̄ e

d t
= −Ā l̄ e

�

pm n̄ +pm n̄ e − l̄b

�

, (6.9f)

d l̄b

d t
= Ā l̄ e

�

pm n̄ +pm n̄ e − l̄b

�

− b̄ l̄b , (6.9g)

d l̄ i

d t
= b̄ l̄b − k̄ i d l̄ i , (6.9h)

d h̄

d t
= µ̄h m̄h − δ̄h h̄, (6.9i)

d c̄

d t
= µ̄c h̄ + η̄k̄ i d l̄ i − δ̄c c̄ , (6.9j)
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with initial conditions

n̄ (0) = n̄ 0νp (1≤ p ≤ pm ), n̄ e (0) = n̄ 0−
pm
∑

p=1

n̄ 0νp , r̄ (0) = 0, (6.10)

l̄ e (0) = l̄ 0, l̄b =
pm
∑

p=1

p n̄ 0νp , l̄ i (0) = 0, c̄ (0) = θ c̄0 (0<θ < 1),

m̄h (0) = m̄h0, m̄r (0) = m̄r 0, h̄(0) = h̄0.

In the system above the equations describing the evolution of HMGR mRNA, M̄ h , and HMGR, H̄ ,

are those previously explained and derived in Chapter 3 given by equations (3.66a) and (3.66b).

We have also introduced the parameter β to describe the ratio of the nuclear to cytoplasmic

volume of the cell. A commonly cited value for the volume of a cell nucleus is 10% of the total

cell volume (Alberts et al., 2008), and so we take β = 0.1. The effect of this parameter will be

investigated later in this chapter.

The new parameter values introduced are estimated from information in the literature and de-

tails of their calculations can be found in Appendix B.2. The initial conditions of system (6.9) are

stated in Table 6.3. The parameter values of system (6.9) are stated in Table 6.4 and Table 6.5.

Variable Description Dimensional Value Nondimensional Value

n̄ 0 Concentration of pits 1.81×1011 molecules ml−1 2.20×10−6

l̄ 0 Initial concentration of extracellular LDL 1.17×1013 molecules ml−1 1.43×10−6

m̄h0 Initial HMGR mRNA concentration 3.00×1010 molecules ml−1 3.65×10−7

m̄r 0 Initial HMGR mRNA concentration 4.80×1010 molecules ml−1 5.84×10−7

h̄0 Initial HMGR concentration 9.04×1014 molecules ml−1 1.10×10−2

c̄0 Initial cholesterol concentration, 1.89×1019 molecules ml−1 2.30×102

Table 6.3: Dimensional and nondimensional initial conditions of integrated LDL

model.

We note that there are three parameters given as control parameters for the model, κc , δc , κm h .

These are the parameter values that were the subject of the latter half of Chapter 5.

Using the information gained from the numerical analysis of Section 5.3 and Section 5.4, we will

consider two cases for these parameters. The first case results in limit cycles in the regulated
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Parameter Description Dimensional Value

pm Maximum number of receptors per pit 200

α Volume ratio of extracellular to cellular media 1.5×104

β Volume ratio of nuclear to cellular media 0.1

f̄ Fraction of internalised pits recycled [0.7, 1]

η̄ Number of cholesterol molecules per LDL 3.4×103

Table 6.4: Dimensionless parameter values of the integrated LDL model.

Parameter Description Dimensional Value Nondimensional Value

Ā Rate of LDL binding to a receptor 6.64×10−17 ml mol−1 s−1 1.185×103

ḡ Rate of release of pits from store 1.08×10−2 s−1 2.34

b̄ Rate of internalisation of LDL-bound pits 4.60×10−3 s−1 1.00

b̄0 Rate of internalisation of empty pits 6.10×10−3 s−1 1.32

f̄ Fraction of internalised pits recycled [0.7, 1] [0.7, 1]

k̄ i d Rate of degradation of LDL to cholesterol 2.00×10−4 s−1 4.30×10−2

s̄0 Total concentration of SREBP 8.21×1016 mol ml−1 1.00

µ̄m h Rate of HMGR mRNA transcription 1.67×108 mol ml−1 s−1 1.42×10−8

µ̄m r Rate of LDLR mRNA transcription 4.56×106 mol ml−1 s−1 1.21×10−8

µ̄h Rate of HMGR translation 5.10×10−1 s−1 1.11×102

µ̄r Rate of LDLR translation 5.10×10−1 s−1 1.11×102

µ̄c Rate of cholesterol production (HMGR activity) 4.33×10−2 s−1 9.41

δ̄m h Rate of HMGR mRNA degradation 4.48×10−5 s−1 9.74×10−3

δ̄m r Rate of LDLR mRNA degradation 1.75×10−4 s−1 3.80×10−2

δ̄h Rate of HMGR degradation 6.42×10−5 s−1 1.40×10−2

δ̄r Rate of LDLR degradation 1.34×10−5 s−1 2.91×10−3

κ̄c Dissociation constant between cholesterol and SREBP control parameter control parameter

δ̄c Rate of cholesterol degradation control parameter control parameter

κ̄m h Dissociation constant between SREBP and HMGR gene control parameter control parameter

κ̄m r Dissociation constant between SREBP and LDLR gene undetermined undetermined

Table 6.5: Dimensional and nondimensional parameter values of the integrated LDL

model. Here the unit mol represents molecules. Control parameters and undeter-

mined parameters are discussed in the text.

cholesterol biosynthesis system, while the second nonoscillatory case causes stable behaviour.

We approximate the value of the remaining undetermined parameter, κm r , in a similar manner

to the approximation of κc in Section 5.1. Thus we consider that κ̄m r is representative of the

concentration of s̄ required for half of the genes to be active. Therefore as a starting point we set

κ̄m r to be O (s̄0).
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6.2.1 Nondimensionalisation

All concentration variables are rescaled with respect to s̄0, the total concentration of SREBP tran-

scription factor within the cell, and time is rescaled with respect to b̄ , the internalisation rate of

LDL containing pits. Here τ is nondimensional time.

τ = b̄ t , n e =
n̄ e

s̄0
, n =

n̄

s̄0
, l e =

l̄ e

s̄0
, (6.11)

lb =
l̄b

s̄0
, l i =

l̄ i

s̄0
, mh =

m̄h

s̄0
, mr =

m̄r

s̄0
,

h =
h̄

s̄0
, r =

r̄

s̄0
, and c =

c̄

s̄0
.

This results in the following system of nondimensional equations

β
d mh

dτ
=

µm h κ
12

c

κ 12
c +

�

κm h

�

κ 4
c + c 4

��3
−δm h mh , (6.12a)

β
d mr

dτ
=

µm r κ
4

c

κ 4
c +

�

κm r

�

κ 4
c + c 4

�� −δm r mr , (6.12b)

d n e

dτ
= g r −Apm l e n e −b0n e , (6.12c)

d n

dτ
= Apm l e n e −n , (6.12d)

d r

dτ
= µr mr + f n + f b0n e −δr r − g r, (6.12e)

α
d l e

dτ
= −Al e

�

pm n +pm n e − lb
�

, (6.12f)

d lb

dτ
= Al e

�

pm n +pm n e − lb
�

− lb , (6.12g)

d l i

dτ
= lb −k i d l i , (6.12h)

d h

dτ
= µh mh −δh h, (6.12i)

d c

dτ
= µc h +ηk i d l i −δc c , (6.12j)
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with the nondimensional initial conditions

n (0) = 0, r (0) = 0, lb (0) = 0, l i (0) = 0, (6.13)

l e (0) =
l 0

s0
, n e (0) =

n 0

s0
, c (0) =

c0

s0
,

mh (0) =
mh0

s0
, mr (0) =

mr 0

s0
, h(0) =

h0

s0
,

making the assumption that νp = 0, that is, all pits on the cell surface are free of LDL at τ= 0.

This produces the new nondimensional parameters,

A =
Ā s̄0

b̄
, b0 =

b̄0

b̄
, k i d =

k̄ i d

b̄
, g =

ḡ

b̄
, (6.14)

µr =
µ̄r

b̄
, µh =

µ̄h

b̄
, µc =

µ̄c

b̄
, µm h =

µ̄m h

s̄0b̄
,

κm r =
κ̄m r

s̄0
, κm h =

κ̄m h

s̄0
, κc =

κ̄c

s̄0
, µm r =

µ̄m r

s̄0b̄
,

δc =
δ̄c

b̄
, δh =

δ̄h

b̄
, δr =

δ̄r

b̄
, δm r =

δ̄m r

b̄
, δm h =

δ̄m h

b̄
,

which are described in Table 6.5. The nondimensional initial conditions are stated in Table 6.3.

We now go on to consider numerical solutions of the system (6.12).

6.3 Integrated model results for the oscillatory case

In this section we investigate model solutions for the system (6.12), in which the control param-

eters, δc , κm h and κc , are known to cause oscillatory behaviour in the cholesterol biosynthesis

model given by system (4.3); the parameter values used can be found in Table 6.6. The model

was simulated using Matlab as described previously in Chapter 5.
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δc κm r κm h κc

9.74×10−3 1 1 20

Table 6.6: Oscillatory case for the control parameter values.

We begin by simulating the model for a two hour period to examine the behaviour of the model

at initial times. The results of this can be seen in Figure 6.5.
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Fig. 6.5: Integrated model results for the oscillatory case over 2 hours. Top left: con-

centrations of HMGR and LDLR mRNA (mh ,mr ); top right: concentration of occu-

pied, empty and internal pits (n , n e , r ); bottom left: concentrations of extracellular,

bound and internalised LDL (l e , lb , l i ); bottom right: cholesterol and HMGR enzyme

concentration (c , h).

We see that both the concentrations of HMGR mRNA and LDLR mRNA are initially decreasing.

As can be seen in the bottom right hand figure, there is very little change in cholesterol concen-
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tration, c , close to τ = 0; thus here the degradation mechanism is dominating and both mRNA

concentrations are declining. The binding of extracellular LDL, l e to the receptors on the cell

surface results in an increase in the concentration of bound LDL, lb , which is accompanied by

a large increase in the concentration of pits containing LDL, n . This increase in n is explained

by the preceding increase in receptor synthesis driven by the nonzero initial concentration of

LDLR mRNA. The increase in the concentration of lb on the cell surface contributes to the large

incoming concentration of l i which can be seen in the bottom left hand figure. However, choles-

terol concentration remains fairly constant following the increase in l i . The contribution to in-

tracellular cholesterol is offset by the decreasing concentration of HMGR, h, which reduces the

contribution of cholesterol biosynthesis.

The subsequent decrease in l i that is visible in Figure 6.5 follows a similar decrease in the con-

centration of n , which itself is a result of the decrease in r . Reduced receptor synthesis results

in reduced cell surface receptor concentration leading to reduced LDL internalisation. The de-

crease in r is a direct consequence of the decreasing concentration of mr , which is a direct result

of the cholesterol concentration remaining fairly constant.

The results of Figure 6.5 also suggest that the concentrations of the receptor related variables,

n , n e , r , seem to tend towards a steady state of zero. This seems unlikely given that extracellular

LDL has remained fairly constant, thus there is l e available for uptake, and the declining levels

of HMGR suggest that the cell will need to bolster its cholesterol concentration. To clarify the

exact nature of the evolution of variables, we consider long time solutions where the system

is simulated until all variables reach steady state as illustrated in Figure 6.6. This occurs on a

dimensional timescale of approximately 60 hours or 2.5 days.

We see in the bottom right hand figure of Figure 6.6 that there is a continued decrease in h.

Coupled with the drop in incoming LDL, cholesterol concentration begins to fall. Decreasing

cholesterol concentration activates the feedback mechanism controlling the synthesis of mr and

synthesis is switched on. This upregulation in mr concentration results in increased synthesis

of r and hence an increase in cell surface receptors, n . This is accompanied by an increase in

l i which eventually settles to a steady state following the equilibration of r and n . What is clear

from these results is that a corrective mechanism exists whereby the receptor variables exhibit
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Fig. 6.6: Integrated model results for the oscillatory case run to steady state with a

final time of approximately sixty hours. Top left: concentrations of HMGR and LDLR

mRNA (mh ,mr ); top right: concentration of occupied, empty and internal pits (n , n e ,

r ); bottom left: concentrations of extracellular, bound and internalised LDL (l e , lb , l i );

bottom right: cholesterol and HMGR enzyme concentration (c , h).

over and undershooting behaviour before settling to steady state; this evolution is mirrored by

l i . This type of behaviour is common in systems controlled by negative feedback mechanisms

where the cell is attempting to maintain certain concentrations, in this case c , within the cell,

and has been discussed in Chapter 4.

We also note, in the top left hand figure of Figure 6.6 that there is no upregulation in the con-

centration of HMGR mRNA, mh . To understand why, we consider the action of the transcription

factor, s . The falling cholesterol concentration seen in the bottom right hand figure of Figure 6.6

results in a decrease in the concentration of s that is bound to c . There is a subsequent increase
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in free or active s which is then available to enhance transcription. However, there is only one

binding site on the LDLR gene that must be bound by s before LDLR mRNA transcription can be

initiated, compared to three binding sites on the HMGR gene, and so mr synthesis is activated

first.

The availability of extracellular LDL ensures that the decline in cholesterol concentration is

halted as a result of the increased internalisation of LDL. This increase in l i is a direct con-

sequence of increased receptor synthesis due to the activation of the genetic pathway which

controls this process. As c is no longer decreasing, the increase in active s stops and so s does

not reach a high enough concentration to bind the three binding sites on the HMGR gene, and

HMGR mRNA transcription is not activated.

This suggests a cellular mechanism whereby, in order to supplement falling intracellular choles-

terol levels, LDL uptake is activated rather than cholesterol biosynthesis. This result has biologi-

cal significance, as cholesterol biosynthesis requires more energy than LDL uptake (Stryer et al.,

2002), and preferential activation of the LDL uptake pathway relative to cholesterol biosynthesis

could enable the cell to conserve energy stores.

6.3.1 Sensitivity analysis for the oscillatory case

In this section we present the results of local sensitivity analysis on the model system (6.12).

Each parameter was varied whilst keeping all other constant at the values given in Table 6.6 and

Table 6.5.

The results of the analyses using parameters pertaining to the LDL uptake pathway demonstrate

that the model behaves in a similar manner to varying the same parameters in the reduced Wat-

tis et al. model (system (6.12)). For example, reducing the rate at which LDL is degraded to

cholesterol, that is decreasing the parameter k i d causes an initial decrease in cholesterol c . This

is followed by an upregulation in most other system variables. Lower c feeds back to both HMGR

mRNA and LDL mRNA and increases their synthesis. This results in upregulated receptor syn-

thesis which increases the number of bound pits on the cell surface, and decreases the number
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of empty pits leading to increased l i . These processes are followed by an eventual increase in c .

The next set of results we present are the results of local sensitivity analyses on the parameters

which define the genetic component of the model and will allow us to determine how this com-

ponent exerts its control on the other cellular pathways. These parameters were chosen because

they illustrate the differences in dynamic behaviour of the system which occur as a direct result

of the new genetic processes that have been incorporated into the model, and therefore provide

new insight.

The numerical results we show here are for the parameters κm h , κm r , and δc , which have been

specifically chosen as they best represent the effect of the genetic regulatory pathways and illus-

trate interesting results. The other new parameters introduced behaved in an obvious manner.

As an example, increasing the rate of synthesis of HMGR mRNA, µm h , had no significant effect

on the dynamic behaviour of the system, but resulted in higher steady state values of model

variables.

In the results that follow, we do not display the simulations for all model variables; those vari-

ables shown are chosen on the basis of how useful they are in explaining the effect of the param-

eter variations on the system’s response. Thus variables for which no significant response was

seen have not been presented. Where variables exhibited similar responses, one such variable

was chosen as representative. All cases were simulated until they reached a steady state.

We begin by considering the effect of κm h , and find that increasing this parameter results in no,

or no significant change to the behaviour of the system. The results for decreasing κm h can be

seen in Figure 6.7, and they show that smaller values of this parameter confer greater sensitivity

on the cell to cholesterol concentration (not illustrated as there is only a slight decrease in c for

all decreases in κm h ). The smallest value of κm h illustrated in Figure 6.7 causes a huge upreg-

ulation in HMGR mRNA, and consequently HMGR for a relatively small decrease in cholesterol

concentration.

Here the low κm h , or low dissociation constant between s and the HMGR gene, implies that

there is a high binding affinity between the two, and hence a small concentration of s is enough
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to cause a response in HMGR mRNA. As a result of this l i reaches a lower steady state value

as κm h decreases; this is the response of the cell to the increased input to cholesterol from the

biosynthesis reaction.
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Fig. 6.7: Sensitivity of integrated model to decreasingκm h for oscillatory case. Top left:

concentration of HMGR mRNA (mh ); top right: concentration of internalised LDL

(l i ); bottom left: concentration of LDLR mRNA (mr ); bottom right: HMGR enzyme

concentration (h).

The effect of increasing κm r is seen in Figure 6.8. Increasing κm r is equivalent to decreasing the

binding affinity between s and the LDLR gene. Consequently receptor synthesis decreases, ex-

plaining the reduction in the concentration of LDL being internalised. This reduces the amount

of cholesterol incoming to the cell, and as a consequence we see upregulation in both HMGR

mRNA and HMGR.
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Decreasing κm r results in the opposite behaviour; LDLR mRNA responds rapidly to declining

cholesterol concentration, receptor synthesis and therefore, the concentration of LDL occupied

cell surface receptors (n) increases, and so more LDL is internalised, as illustrated in Figure 6.9.
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Fig. 6.8: Sensitivity of integrated model to increasing κm r for oscillatory case. Top

left: concentration of HMGR mRNA (mh ); top right: concentration of internalised

LDL (l i ); bottom left: HMGR enzyme concentration (h); bottom right: cholesterol

concentration (c ).

The final parameter we illustrate is δc . Interesting responses occur for increasing this parameter

as can be seen in Figure 6.10. The overall behaviour of the variables is as would be expected as

cholesterol is taken out of the system. As cholesterol concentration declines by greater amounts,

both LDLR mRNA and HMGR mRNA are upregulated. As a consequence, much larger amounts

of LDL are internalised.

However, we see that for the values of δc illustrated, there is a distinct region wherein variable
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Fig. 6.9: Sensitivity of integrated model to decreasing κm r for oscillatory case. Top left:

concentration of internalised LDL (l i ); top right: concentration of internal receptors

(r ); bottom left: concentration of occupied pits (n); bottom right: cholesterol concen-

tration (c ).

concentrations undergo damped oscillations whilst reaching a steady state, surrounded by re-

gions where the variables tend monotonically to a steady state.

In this case, increasing the rate δc results in a rapid loss of cholesterol from the cell. This dra-

matic change in cholesterol concentration results in a rapid increase in the concentration of

unbound transcription factor which immediately activates the feedback mechanism to mRNA

concentrations. As seen in the top left hand figure of Figure 6.10, HMGR mRNA undergoes a

fairly quick upregulation. The corresponding upregulation which occurs in LDLR mRNA con-

centration, results in similar increases in receptor concentrations and consequently, in the con-

centration of l i as seen in the top right hand illustration in Figure 6.10.
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The resulting contribution to the cellular cholesterol concentration results in opposing feedback

to mRNA which is then downregulated causing corresponding decreases in the concentrations

of their protein products and hence also for l i . This eventually results in cholesterol concentra-

tion declining once again, and the system cycles in this manner resulting in damped oscillations

until a steady state is reached as is visible in Figure 6.10.

Interestingly, no similar damped oscillations are seen in HMGR concentration, h. This may sug-

gest that the estimated rate of translation µh is too small for the oscillatory behaviour in mh to

be conferred upon the evolution of h.
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Fig. 6.10: Sensitivity of integrated model to increasing δc for oscillatory case. Top

left: concentration of HMGR mRNA (mh ); top right: concentration of internalised

LDL (l i ); bottom left: HMGR enzyme concentration (h); bottom right: cholesterol

concentration (c ).
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6.4 Integrated model results for the nonoscillatory case

In this section we now go on to consider model solutions for the integrated model, in which

the control parameters, δc , κm h and κc , do not cause oscillatory behaviour in the cholesterol

biosynthesis model given by system (4.3); these parameter values can be found in Table 6.7. We

δc κm r κm h κc

9.74×10−3 1 1 100

Table 6.7: Nonoscillatory case for control parameter values.

simulate the model as before for a two hour period and until the system reaches a steady state.

The results of this can be seen in Figure 6.11. We can see that the short time behaviour for the

nonoscillatory case is qualitatively very similar to that of the oscillatory case. However, some

subtle differences are present and we now discuss the reasons for these.

Essentially, the difference between the sets of parameter values for the two cases lies in the value

of κc , the dissociation constant for the reaction between cholesterol and the transcription factor.

In the nonoscillatory case, κc is greater. As discussed previously in Chapter 3, smaller values of

κc confer greater sensitivity in the response of the transcription factor to the concentration of

cholesterol.

Thus, while the cholesterol concentration, c , in the bottom right hand panels of Figure 6.11 and

Figure 6.5 is qualitatively identical, in the oscillatory case transcription factor is more sensitive

to c and hence exists in a larger bound or inactive concentration than in the nonoscillatory case

(Figure 6.11).

This explains the difference in the LDLR mRNA concentrations seen in the top left hand panels of

Figure 6.11 and Figure 6.5. In Figure 6.5 where κc = 20, mr drops to zero, whereas in Figure 6.11

where κc = 100 and a higher concentration of active transcription factor is present, mr plateaus

at a nonzero value over the course of two hours.

Following the elucidation of the initial behaviour, the nonoscillatory system was simulated until

a steady state was reached. These results are shown in Figure 6.12 where we can see that the
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Fig. 6.11: Integrated model results for the nonoscillatory case over 2 hours. Top left:

concentrations of HMGR and LDLR mRNA (mh ,mr ); top right: concentration of oc-

cupied, empty and internal pits (n , n e , r ); bottom left: concentrations of extracellular,

bound and internalised LDL (l e , lb , l i ); bottom right: cholesterol and HMGR enzyme

concentration (c , h).

system takes approximately forty days to reach a complete steady state. In this case the cell

continues to respond to the extracellular LDL concentration, l e until it is completely depleted.

Following this, lb , and after a short delay, l i , also drop to zero, followed by a similar decrease in

the number of pits containing bound LDL, n .

The net effect of this is a drop in the intracellular cholesterol concentration which is not supple-

mented by the presence of a steady concentration of h. This seems to suggest that the estimate

of µc , the rate of cholesterol synthesis from h is too small.
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Fig. 6.12: Integrated model results for the nonoscillatory case run to steady state. Top

left: concentrations of HMGR and LDLR mRNA (mh ,mr ); top right: concentration of

occupied, empty and internal pits (n , n e , r ); bottom left: concentrations of extracel-

lular, bound and internalised LDL (l e , lb , l i ); bottom right: cholesterol and HMGR

enzyme concentration (c , h).

6.4.1 Sensitivity analysis for the nonoscillatory case

In this section we present the results of local sensitivity analysis on the nonoscillatory case. Rea-

sons for the choice in both parameter values and variable responses illustrated are as given in

Section 6.3.1. The effect ofκc was explained previously when considering the difference between

the results of the oscillatory and nonoscillatory cases.

We found no significant changes in response to alterations in κm h , which describes the dissocia-

tion constant between transcription factor and the HMGR gene, for any of the system variables.
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As discussed above, in the nonoscillatory case, the larger value ofκc implies that there is less sen-

sitivity of the transcription factor to the concentration of cholesterol within the cell. This lower

sensitivity results in the strength of κm h becoming redundant, and thus no significant change in

behaviour is seen. Increasing κm r gave similar results as for the oscillatory case, but with higher

final steady state values.

The effect of decreasing κm r for the nonoscillatory case is seen in Figure 6.13. Decreasing κm r

is equivalent to increasing the binding affinity between s and the LDLR gene. Variables related

to LDLR mRNA, mr , thus become very sensitive to increases in cellular cholesterol. However,

in this case, increases in cholesterol concentration result in a higher steady state value of LDLR

mRNA. This results in a higher concentration of synthesised and cell surface receptors; conse-

quently the cellular response to increasing cholesterol concentration is to increase LDL uptake.

Hence, for the nonoscillatory case we can state that κm r must be ≥ 1, since we require a cellular

response whereby LDL uptake is reduced for high intracellular concentrations.

We now consider the parameter δc for which results are illustrated in Figure 6.14. Again we see

similar results as for the oscillatory case, with increased output of cellular cholesterol resulting

in increased input from the LDL uptake pathway. However, the damped oscillations observed in

the oscillatory case are no longer seen. This is explained by the lower sensitivity of transcription

factor to intracellular cholesterol, caused by the larger value of κc . This results in lowered sensi-

tivity of mRNA response; the overall slowing down of the regulatory process causes the damping

behaviour to be much less pronounced.

6.4.2 The effect of nuclear size on the nonoscillatory system

In this section we investigate the effect of β on the system. β describes the change in volume

that occurs between the nucleus and the cytoplasm. We vary this value from 0.1 through to

0.2. It is important to note that higher values of β do not have any physiological meaning, for

example, β = 0.5 suggests that nuclear volume is half of total cell volume. The value of β =

0.1 is obtained from the estimate of nuclear volume being approximately 10% of the whole cell

volume. Hepatic cells are known to exhibit the phenomenon of double nuclei, and henceβ = 0.2
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Fig. 6.13: Sensitivity of integrated model to decreasing κm r for nonoscillatory case.

Top left: concentration of HMGR mRNA (mh ); top right: concentration of LDLR

mRNA (mr ); centre left: concentration of occupied pits (n); centre right: concen-

tration of internal receptors (r ); bottom left: concentration of internalised LDL (l i );

bottom right: cholesterol concentration (c ).

is also physiologically valid. Finally, we consider the case β = 1; this is equivalent to modelling

the cell as one whole compartment, that is, we do not consider the nucleus as a separate region

of the cell. The results of this sensitivity analysis can be seen in Figure 6.15. Results obtained for

both cases were qualitatively similar; we present only the results of the nonoscillatory case.
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Fig. 6.14: Sensitivity of integrated model to δc for nonoscillatory case. Top left: con-

centration of HMGR mRNA (mh ); top right: concentration of HMGR enzyme (h); cen-

tre left: concentration of occupied pits (n); centre right: concentration of internal re-

ceptors (r ); bottom left: concentration of internalised LDL (l i ); bottom right: choles-

terol concentration (c ).

It is clear that as β increases, the response in HMGR mRNA, mh , becomes slower. Concurrently,

the response in LDLR mRNA, mr , begins to exhibit damped oscillations, which persist for longer

as β increases. Corresponding damped oscillations are seen in r (top right in Figure 6.15; note

the logarithmic scale on the y axis here to illustrate the changes better) and consequently in the
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Fig. 6.15: Sensitivity of the nonoscillatory integrated model case to β over 24 hours.

Top left: HMGR mRNA concentration (mh ); top right: concentration of internal recep-

tors (r ); bottom left: concentration of internalised LDL (l i ); bottom right: cholesterol

concentration (c ).

concentration of LDL internalised, l i , by the cell (bottom left in Figure 6.15) which is propagated

to cholesterol concentration (bottom right in Figure 6.15). We suggest a possible reason for this

based on previous discussions within this chapter in which it was stated that the HMGR gene

responds to cell cholesterol changes more slowly than LDLR, owing to the number of transcrip-

tion factor binding sites. It may be possible that the even slower or delayed response in mh for

the case β = 1 drives the oscillatory convergence to steady state, as time delays are known to

produce oscillatory behaviour (see Section 4.5).

We also compare the response of mh for β = 0.1 and β = 1, with experimental data from the

work of Molowa and Cimis (1989) to compare the qualitative behaviour of the time evolution of

this variable, as seen in Figure 6.16. As is clear from this figure, it is the case β = 1 which gives
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a better qualitative fit. Although the qualitative fit in this case is somewhat unsatisfactory, we

note possible reasons for this. Firstly, the experimental results of Molowa and Cimis measure a

particular type of mRNA (hybridisable mRNA) which is known to be more stable than ‘ordinary’

mRNA. Hence the gradient of mRNA decay in the experimental results may be slower than the

actual rate of decay.

Secondly, comparison with experimental results suggest that the system as a whole is responding

too rapidly. In fact, there are delays inherently present in the system which are unaccounted for

by our ODE model. This is discussed further in Chapter 7. Finally, the experimental results

indicate a basal expression of approximately 45% of control HMGR mRNA.
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Fig. 6.16: Comparison of model results for mh in the case β = 0.1 and β = 1 with

experimental results of Molowa and Cimis (1989) describing the time course of HMGR

mRNA repression.

Many genes have a nonzero minimal expression level, called the basal expression level. Thus for

the HMGR gene, basal transcription describes HMGR mRNA transcription rate in the absence

of transcription factor. Our model has not accounted for this; we have considered a system

in which transcription factor must be present for the system reactions to function. To include

this mechanism would involve adapting the regulated function which describes the synthesis of

mRNA.
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As an example, for HMGR mRNA, we have

mh(synth) = µm h0+
µ∗m h κ

12
c

κ 12
c +

�

κm h

�

κ 4
c + c 4

��3
, (6.15)

where µm h0 is the basal expression rate, and µ∗m h is the expression rate which is modulated by

transcription factor.

In this section and the previous one, we have illustrated the effect of adding genetic regulatory

pathways to an existing model of LDL binding, uptake and internalisation developed by Wattis

et al. (2008). The behaviour of the Wattis et al. model suggests that most variables reach steady

state after two hours and, after approximately 12 hours, all variables are at steady state. The

results presented here demonstrate that if the genetic regulation pathways which control LDL

uptake are explicitly modelled, significantly different behaviour occurs.

The cellular response is that of a corrective mechanism, with key variables, for example both

internal receptors, r , cell surface receptors, n , and internalised LDL, l i exhibiting overshooting

and undershooting behaviour before settling to steady state. Thus we suggest that the dynamic

features of cellular cholesterol homeostasis, which is the governing mechanism behind all the

processes being modelled, control long time cellular responses. In this long time cellular be-

haviour, model variables do not reach a steady state either rapidly or directly. Instead, evolution

to steady state is slower and demonstrates adjustment to the cell’s demands.

The results presented thus far raise the possibility that oversimplification of important subcel-

lular processes can obscure dynamic behaviour of the cell. However, the conclusions we have

made are based on qualitative results only. In order to validate our model, we are lacking in

experimental data. This is due in part to the difficulty of conducting binding studies over long

times, and also due to the difficulty in experimental measurement of genetic variables such as

mRNA. Quantitative validation of the model requires further experimental work in these areas

to generate the data needed. However, the qualitative conclusions we have made are both use-

ful and interesting. In the next section, we extend these ideas to consider cellular response to

disease states.
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6.5 Parameters pertaining to familial hypercholesterolaemia

Thus far we have investigated the effect of parameters related to the genetic control mechanisms

we introduced to the LDL uptake model in order to create the integrated model. In this section

we will investigate the effect of certain parameters which correspond to the genetic causes of

the disease familial hypercholesterolaemia (FH), characterised by increased total plasma choles-

terol and plasma LDL cholesterol.

By altering specific model parameters we can quantitatively represent the effect of genetic muta-

tions responsible for FH and demonstrate the reasons whereby this condition results in elevated

plasma cholesterol. This is important for understanding the high incidence of CHD amongst FH

sufferers. We can also use the integrated model to illustrate how current strategies for treatment

of this disease are effective.

6.5.1 Familial hypercholesterolaemia

FH is a genetic disorder primarily attributable to a mutation in the gene for the LDL receptor

and, as previously mentioned, is characterised by high levels of plasma LDL cholesterol. The

gene for the LDLR is located on chromosome 19 and numerous mutations have been identified

in the DNA of individuals affected with this disorder (Dammerman and Breslow, 1995). Five cat-

egories of functional LDLR defects (defects that result in a loss of LDLR function) resulting from

LDLR gene mutations have been identified (Hobbs et al., 1990); these classes are summarised in

Table 6.8. The third column of Table 6.8 highlights which model parameter is directly affected

by the mutation (see Figure 6.4 for reference).

The only LDLR defect our system is not able to model is the Class II mutation as our ODE model

does not compartmentalise the cell into subcellular organelles other than the nucleus. Therefore

we do not take into account transport processes between these structures.

Defective LDLR classes can also be categorised more simply as receptor-negative in which either
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Class Description Parameter

I (Receptor Negative) LDLR not synthesised. µm r

II (Receptor Defective) LDLR not transported to the Golgi apparatus.

III (Receptor Defective) LDLR does not bind properly to LDL particles. A

IV (Receptor Defective) Bound surface receptors are not properly internalised. b

V (Receptor Defective) Receptors do not recycle properly. f

Table 6.8: LDLR mutation classes.

no protein is produced or the protein that is produced has little or no function, and receptor-

defective, in which a mutant protein that retains some residual receptor function is produced.

The clinical phenotype is more severe for homozygotes (those FH individuals who have inher-

ited two defective LDLR genes) than for heterozygotes (those with only one mutated gene); the

former group frequently suffer fatal CHD by their third decade of life unless treated. The rarity of

homozygotes means the more frequent heterozygous condition has the greater impact on public

health (Austin et al., 2004).

Traditionally, models simulating FH do not distinguish between mutation classes, however, the

processes included in our model will allow us to investigate the difference between some of the

mutations resulting in FH. We present here results to illustrate the effects of two classes of LDLR

mutations. These classes have been chosen on the basis that one mutation affects a parameter

related to the genetic processes; the other mutation affects a parameter related to the LDL RME

process.

6.5.2 Class I familial hypercholesterolaemia

We first consider the Class I case where receptors are not synthesised, for a heterozygous indi-

vidual. In this case, we begin by varying the rate of LDLR transcription, µm r , and investigate

whether the model responds correctly. The results are illustrated in Figure 6.17.

As expected, if no receptors are synthesised at all, (µm r = 0) the concentration of mr in the

system drops to zero. This results in no LDL being internalised; biologically this will result in

a build up of LDL levels in the plasma. The resulting decline in intracellular cholesterol levels
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Fig. 6.17: Response of the integrated model to µm r (Class I FH) over 24 hours. Top

left: HMGR mRNA concentration (mh ); top right: LDLR mRNA concentration (mr );

bottom left: concentration of internalised LDL (l i ); bottom right: cholesterol concen-

tration (c ).

results in a large upregulation of HMGR mRNA. Simulations over a longer time illustrate that

this upregulation increases the concentration of HMGR within the cell, and this is followed by

an increase in cholesterol.

Successively increasingµm r , the rate of receptor synthesis, results in successively increasing lev-

els of LDLR mRNA, mr , and the concentration of LDL internalised, l i , increases accordingly. Us-

ing the model parameters we have estimated, the results suggest that a 10 fold reduction in the

rate of transcription µm r can lead to a three fold reduction in the concentration of internalised

LDL. This corresponds biologically to increased uptake from the plasma, and hence lower LDL

plasma cholesterol levels.
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6.5.3 Class V familial hypercholesterolaemia

The Class V mutation can be investigated by varying the recycling parameter, f , and the results

of this simulation are shown in Figure 6.18.
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Fig. 6.18: Response of the integrated model to f (Class V FH) over 24 hours. Top left:

HMGR mRNA concentration (mh ); top right: LDLR mRNA concentration (mr ); bot-

tom left: concentration of internalised LDL (l i ); bottom right: cholesterol concentra-

tion (c ).

These results illustrate that as the amount of receptors recycled decreases, the concentration of

internalised LDL also decreases, as there are now fewer receptors on the cell surface available for

LDL to bind. This reduces the concentration of cholesterol within the cell, and as a consequence

both LDLR mRNA and HMGR mRNA are upregulated. From Figure 6.18 we see that when no

receptors are recycled, the concentration of internalised LDL drops by 30%. This is a much less

165



Chapter Six 6.5. Parameters pertaining to familial hypercholesterolaemia

significant drop compared to that seen for a reduction in receptor synthesis.

Comparison with the results of Figure 6.17 demonstrates that the effect of the Class I mutation

is much more damaging than the effect of the Class V mutation. Even in the case where no

receptors are being recycled ( f = 0), LDLR mRNA is still being synthesised. Therefore the op-

tion of LDL uptake is still available to the cell, in direct contrast with the case where µm r = 0.

The model results therefore confirm the physiological finding that the receptor negative defect

causes more severe effects, in terms of LDL uptake and corresponding plasma cholesterol levels,

than receptor defective mutations.

Having used the results presented thus far to verify that the model reproduces appropriate bio-

logical behaviour, we use the Class V defect to provide insight into the action of two most com-

monly used treatments for high plasma cholesterol levels. These therapies and how their effects

may be simulated with the model are summarised below.

• Bile acid sequestrants

The liver is the major site for bile acid synthesis. This is the only pathway for cholesterol

excretion from the body. However, a significant proportion of these bile acids are returned

to the liver, via the intestine, in a process termed the enterohepatic cycle. Bile acid seques-

trants bind bile acids in the intestine, removing them from the enterohepatic circulation

via faecal elimination. The resulting loss of cholesterol from the liver cell stimulates the

upregulation of LDLR synthesis and increases uptake from the plasma. We simulate this

effect by increasing δc .

• Statins

Statins (or HMGR inhibitors) are a class of drug used to lower cholesterol levels by inhibit-

ing the HMGR enzyme. Statins act by competitively inhibiting HMGR. Because statins

have a similar molecular structure to HMG-CoA (the substrate for the HMGR enzyme re-

action) they take the place of HMG-CoA in the enzyme and reduce the rate by which it

is able to produce mevalonate, the next molecule in the cascade that eventually produces

cholesterol (see Section 2.2.1). Thus cholesterol synthesis is reduced. When the cell can no

longer produce cholesterol, negative feedback from falling intracellular cholesterol levels
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results in an upregulation of LDLR synthesis, increasing LDL uptake from the plasma. We

simulate this effect by setting µc = 0.

The results of Figure 6.19 demonstrates the action of bile acid sequestrants, where we have

shown only the response in internalised LDL, l i as it is the best indicator of LDL uptake from

the plasma. The blue lines in Figure 6.19 correspond to the parameter values of Table 6.5 and

Table 6.7 in the case where f = 0 (dark blue line) and f = 0.7 (light blue line). The red line corre-

sponds to the response of the system to a two and a half fold increase in δc for the case f = 0 in

which no receptors are recycled.
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Fig. 6.19: Internalised LDL response from the integrated model to f and changes in

δc as an illustration of the effect of bile acid sequestrant treatment.

As we can see, this increase in δc approximately restores internalised LDL to levels correspond-

ing to the normal working of the receptor recycling pathway.

We now repeat this simulation, this time setting µc = 0. We see in Figure 6.20 that this has very

little effect on internalised LDL. This is, however, an incorrect response since we know from

experimental data that this is one of the most effective methods of reducing plasma cholesterol

levels. This may suggest that the rate of µc estimated for the purposes of our model is inaccurate.

In fact, the in vitro estimates used may not be reliable. Enzyme concentration is usually the

most significant difference between routine in vitro assays and in vivo conditions, as it is well

167



Chapter Six 6.5. Parameters pertaining to familial hypercholesterolaemia

0 50 100 150 200 250 300 350 400
0

0.002

0.004

0.006

0.008

0.01

0.012

Nondimensional time

N
on

di
m

en
si

on
al

 c
on

ce
nt

ra
tio

n

 

 

f = 0.7
f = 0
µ

c
 = 0

Fig. 6.20: Internalised LDL response from the integrated model to f and inhibition of

µc as an illustration of the effect of statin treatment.

known that many intracellular enzymes are present in vivo at much higher concentrations than

used in vitro. Another reason for the possible inaccuracy of in vitro data is the disruption of

organelles and compartments in which the in vivo enzyme resides, which may lead to the release

of activators or inhibitors that can artificially affect enzymatic activity.

To examine whether this was the case, the simulation of Figure 6.20 was repeated, this time

setting the initial value of µc to be one hundred fold bigger than its estimated value as given in

Table 6.5. Results are presented in Figure 6.21, where the upregulatory effect on internalised LDL

on setting µc = 0 can now be seen clearly (green line).

Summary

In this chapter we have used a model of genetic regulation that was derived in Chapter 3 and

incorporated this into an existing model of LDL receptor mediated uptake developed by Wattis

et al. (2008). This has created an integrated model of both the cellular and subcellular processes

responsible for LDL RME and its regulation which is governed by cholesterol homeostasis. We

have shown in this chapter, that for short times the model can reproduce the results of a reduced

form of the Wattis et al. model. However, for long times the integrated model displays signifi-
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Fig. 6.21: Internalised LDL response from the integrated model to f and changes in

µc as an illustration of the effect of statin treatment. In this simulation the initial value

of µc was set at a larger level than for previous simulations.

cantly different behaviour. This behaviour illustrates the existence of a corrective mechanism

which adjusts the long time concentration of internalised LDL in order to maintain the cellular

cholesterol concentration.

Model simulations have been shown to accurately reproduce qualitative behaviour of genetic

mutations causing FH, and the action of therapeutic strategies used in the treatment of this

condition.
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7
Discussion

The primary achievement of this work has been the development and investigation of an ODE

model of gene expression regulation by a two step mechanism of end product repression medi-

ated by a transcription factor.

Integration of this model with an existing model of the mechanism of hepatic LDL uptake has

illustrated the importance of including subcellular pathways when modelling processes occur-

ring at the cellular level.

In this chapter we summarise the findings of the work carried out in this thesis and suggest areas

for further work both in terms of mathematical modelling and biological experiment.
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7.1 Summary

The impact of CHD and the broader spectrum of CVD has been described by the World Health

Organisation as a global epidemic. Of the many modifiable risk factors which can lead to the

development and enhance the progression of CHD, high plasma cholesterol levels have long

been recognised as one of the more significant causes. Understanding the reason for elevated

levels of plasma cholesterol is crucial to developing strategies for its treatment.

In Chapter 2 the biological processes involved in the development of CHD were discussed, and

the correlation between risk of development of this disease and plasma cholesterol levels was

highlighted. In this chapter, we introduced the function of lipoproteins as the carriers of choles-

terol within the plasma and outlined the pathways by which lipoproteins are metabolised. Cen-

tral to this metabolic pathway is lipoprotein uptake by the liver; it is this clearance which controls

plasma cholesterol levels.

Mathematical models have been widely used in an attempt to clarify the specific mechanisms of

this process. Our review of the mathematical literature indicated that while processes occurring

at the cellular level have been well characterised, less well explored are the subcellular mech-

anisms which govern these processes. Cholesterol concentration within cells is strictly main-

tained, and uptake of extracellular cholesterol exists in a fine balance with intracellular de novo

synthesis; these processes are controlled by intracellular cholesterol concentration.

The main aim of this thesis was summarised as the development of a model to describe the

pathway of de novo synthesis and its regulation by cell cholesterol content.

In Chapter 3, a three variable ODE model of regulated gene expression describing cholesterol

biosynthesis within the cell was developed. The chapter began with an overview of the biolog-

ical background necessary to understand the pathways being modelled and a brief review of

mathematical approaches to gene regulation modelling.

The first gene regulation system to be studied in detail was that responsible for the control of

lactose metabolism in Escherichia coli, the lac operon studied in the classical work of Jacob and
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Monod (1961). This work led Goodwin (1963) and later, Griffith (1968), to the mathematical

study of systems containing genes and gene products controlled by inhibitory or negative feed-

back loops. The derivation of the model in this thesis followed this modelling framework.

The full ODE system was derived from the biochemical reactions describing gene transcription

factor interaction, using the law of mass action. We showed by means of quasi-steady state as-

sumptions and conservation laws that these equations can be modelled with Hill type functions.

The specific reaction mechanism modelled is illustrated below

g // m // p //// c

��

OO�
�
�
oo_ _ _ tfoo_ _ _

��X tfoo_ _ _ oo

(7.1)

where g denotes the gene, m denotes mRNA, p is protein, c represents cholesterol, the end prod-

uct of the reaction, and tf is the transcription factor that activates the process. In the presence

of excess end product, tf binds to c and activation is halted (X). The ODE model described a

general case in which multiple transcription factor binding sites are available on the gene. The

reaction between cholesterol and the transcription factor was also described by a Hill function

which modelled the repressive effect of this binding. Thus we created an ODE model in which

the overall repressive effect of cholesterol on genetic regulation occurs as the result of repression

of an activation mechanism.

The regulated cholesterol biosynthesis model we developed in Chapter 3 was analysed in Chap-

ter 4. Using centre manifold theory the three-dimensional model was reduced to two variables.

Averaging of this two-dimensional model, with respect to a critical bifurcation parameter, al-

lowed the determination of the stability of the limit cycle generated. The analysis further al-

lowed measurement of the physical properties, the amplitude and time period, of the resulting

oscillations.

We demonstrated that limit cycles could be generated by the ODE system for a variation in any

system parameter as a result of supercritical Hopf bifurcations. Thus the model produces only
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small amplitude, stable oscillations. Such dynamic behaviour is of biological relevance when

considering the mechanism of homeostasis, whereby the cell acts to maintain a certain value

within a narrow range.

Griffith (1968) proved analytically, for his ODE model of genetic regulation, that the Hill coeffi-

cient had to be greater than eight in order for his model to generate oscillations. However, we

have proved that such a high Hill coefficient, which is biologically infeasible, is not necessary.

Our two step repression mechanism results in two Hill functions with physiologically valid Hill

coefficients; this interaction is sufficient for oscillatory behaviour.

The results discussed above were confirmed numerically in Chapter 5, and demonstrated that

the centre manifold analysis provides accurate approximations of both the stability and physi-

cal properties (amplitude and period of oscillation) of the limit cycles obtained. Chapter 5 also

contained local sensitivity analysis to determine the behaviour of the model with respect to all

model parameter values, including those that were unable to be determined from the experi-

mental literature. Results illustrated greater model sensitivity to parameters such as synthesis

and degradation rates which are more likely to fluctuate. Sensitivity to degradation rates were

more significant than the sensitivity to synthesis rates. The model was less sensitive to the κ

parameters which represent binding affinities; these parameters are biologically unlikely to un-

dergo a change in value.

In Chapter 6, the model of genetic regulation was used to adapt and extend a simplified version

of an LDL uptake model developed by Wattis et al. (2008). Although experimental data is lacking

for quantitative comparison, investigation of the qualitative behaviour of the model suggested

that the lack of rigorous modelling of intracellular processes masks possible long time behaviour

of the system. In the original Wattis et al. model, most variables reached a steady state value

within two hours. Our integrated model showed that over longer simulation time periods it is

possible for the cellular responses to result in a corrective behaviour by which variables describ-

ing receptor concentrations and internalised LDL overshoot and undershoot before reaching

steady state; depending on parameter values this could take from between one to three days.

This integrated model was then used to illustrate system behaviour for two cases of genetic mu-
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tations causing familial hypercholesterolaemia. The model illustrated correct responses of de-

clining LDL internalisation as the relevant parameters decreased in value, mimicking parameter

ranges for heterozygous sufferers with one faulty gene. We were able to illustrate restoration of

LDL internalisation by varying parameters corresponding to current pharmaceutical treatments

for high plasma cholesterol levels.

7.2 Conclusions and further work

In this section we discuss the model results in the context of lipoprotein uptake models and

suggest areas for both further work and model improvement.

The model of regulated de novo cholesterol biosynthesis derived in Chapter 3 was based on a

number of assumptions in order to allow the use of an ODE modelling formalism. These as-

sumptions are outlined below and possible model improvements or related areas for further

work are suggested.

• The cellular environment is essentially homogeneous.

This assumption relates to the use of the law of mass action, which assumes that reactions

are taking place in a homogeneous, well mixed environment. While this assumption is

applicable to the chemical solutions typical of in vitro experiments, its validity is tenuous

when one considers the intracellular environment. Such environments are well structured

and highly compartmented (see Figure 3.1), and are characterised by a high total macro-

molecular content, known as macromolecular crowding (Minton, 2001).

• Reactions are continuous and deterministic.

Molecular reactions are discrete random processes; it is impossible to be completely cer-

tain at which the time a reaction within a volume will occur. In macroscopic systems,

which contain large numbers of interacting molecules, the randomness of this behaviour

averages out so that the overall state of the system becomes highly predictable; this allows

the use of deterministic, continuous approaches.

However, the validity of this assumption becomes strained in small scale in vivo reaction
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environments, such as those described above. Furthermore, genetic variables such as

mRNA are present in low concentration within the cell. In this case the probability that

two molecules will undergo a biochemical reaction decreases, and discrete or stochastic

effects are introduced. These effects can be highly important; cells are intrinsically noisy

and low reactant numbers can lead to significant statistical fluctuations in both molecule

numbers and reaction rates (Isaacs et al., 2003; Cai et al., 2006).

A possible improvement would be to consider the use of stochastic modelling, and thus account

for the fluctuations in the system. Such an approach considers discrete numbers of molecules

of n reacting species, and studies the evolution of the state vector x(t ) = (x1(t ), . . . ,xn (t )), where

xi (t ) denotes the number of molecules of a given species, i , in the system at time t .

The idea behind the approach is to calculate the probability distribution P(x, t |x0, t0), that is,

the probability that, given x(t0) = x0, at time t , x(t ) will contain x1 molecules of species 1, x2

molecules of species 2, and so on.

Calculation of this probability distribution requires solution of the chemical master equation;

typical methods for its solution are stochastic simulation algorithms (Gillespie, 1977, 1976).

To simplify the modelling process itself, and reduce the number of parameters required, gene

expression was modelled using the reaction mechanism below

DNA
transcription

GGGGGGGGGGGGGGA mRNA
translation

GGGGGGGGGGGGGA protein. (7.2)

A more accurate description of the process is the mechanism below

DNA
transcription

GGGGGGGGGGGGGGA

processing
GGGGGGGGGGGGA mRNA

translation
GGGGGGGGGGGGGA (7.3)

processing
GGGGGGGGGGGGA

post translational modification
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGA protein. (7.4)

There are multiple mechanistic reactions involved in the processes of transcription and transla-

tion. These processes do not occur instantaneously, and may have considerable delays associ-

ated with them. A more suitable approach to modelling these pathways may be the use of delay
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differential equations, taking the form

d m

d t
= µm f (p (t −τm ))−δm , (7.5)

d p

d t
= µp m (t −τp )−δp , (7.6)

where τm represents the transcriptional delay associated with the production of mRNA, m and

τp represents the translational delay which occurs during the production of protein, p .

The inclusion of delays is significant, as comparison with experimental data in Chapter 6 illus-

trated that the genetic regulatory processes in the model seemed to respond too rapidly.

The results of the nonlinear ODE model derived to model regulated de novo cholesterol synthe-

sis suggest that homeostatic mechanisms may well be dynamic, constantly fluctuating around

a set point, as opposed to a static mechanism where a single value is maintained. However,

no experimental evidence exists for cholesterol biosynthesis. One reason is the highly complex

metabolic network in which this pathway exists; isolation of one section of the network is highly

difficult and, consequently, the availability of experimental data for comparison with the model

results is sparse.

Determination of the precise nature of the dynamic behaviour of this pathway is necessary. Os-

cillatory dynamic behaviour (although seen in some biological systems) is traditionally thought

to be indicative of a disease state, for example, insulin and diabetes. This work raises the possi-

bility that for cholesterol biosynthesis, periodic behaviour may be the norm.

Circadian (24 hour) rhythms in cholesterol synthesis have been previously demonstrated in bi-

ological investigations and are thought to be a response to regular feeding (Mayer, 1976; Jones

and Schoeller, 1990). The results of Chapter 5 suggest an approximate period of 20 hours which

is close to circadian rhythm. It may be possible that this response to feeding may be entrainment

of the feeding cycle with an underlying circadian rhythm in cholesterol biosynthesis. To confirm

or disprove these conjectures requires further experimental work in this area.

With little available data for quantitative validation, determination of accurate values for the

kinetic processes and structural parameters is paramount. The difficulty of obtaining good es-
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timates for model parameters was demonstrated in Chapter 6 where simulations of the inte-

grated model illustrated that the value used for the rate of cholesterol biosynthesis was too low.

Other model parameters were also difficult to evaluate, especially structural parameters such as

binding affinities. This is due not only to a lack of experimental data, but also to simplifying

assumptions made in deriving the governing ODEs. Many of the parameter values derived in

Appendix B.1 were calculated using experimental data dating to two or more decades ago. The

advent of newer, more sophisticated techniques in the intervening period could provide much

more accurate parameter estimates and this needs to undertaken if accurate models of LDL up-

take are to be created.

A primary motivation for this work was the mechanism of action of statins, currently the most

commonly used pharmaceutical treatment for lowering plasma cholesterol levels. Statins act on

the cholesterol biosynthesis pathway, by inhibiting HMGR and so reducing the level of synthe-

sis. The resultant decline in cell cholesterol levels upregulates receptor synthesis, cell surface

receptors, and subsequently LDL uptake from the plasma.

Therefore, any model of LDL uptake which aims to make conclusions about mechanisms for in-

creasing this uptake should also include this pathway. The integrated model results in Chapter 6

have illustrated that the modelling of this pathway, and the coordinate regulation of the receptor

pathway, provided useful information on the dynamics of long time LDL uptake by the cell, and

enabled us to create a model that can replicate qualitative behaviour of both diseased states and

their treatment. This treatment could be more thoroughly explored in the case of statins. In the

model, cholesterol biosynthesis is a linear function of HMGR concentration; a more appropri-

ate formulation would be to model the action of the enzyme using Michaelis-Menten kinetics;

the action of statins could then be investigated in depth, by integrating the effect of competitive

inhibition into the Michaelis-Menten rate law.

Throughout this work we have considered the total concentration of cholesterol within the cell

to be free cholesterol. Cholesterol actually exists in two forms within the cell, free and esterified,

as discussed in Chapter 2. A useful extension to the integrated model would be to consider the

two forms as two variables and model the acyl-CoA cholesterol acyltransferase (ACAT) catalysed

esterification of cholesterol explicitly.
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Esterified cholesterol provides a valuable nontoxic mode of cholesterol storage within the cell,

and LDL uptake is known to stimulate the ACAT pathway. Extra capacity for cholesterol in the

cell may have an effect on LDL uptake; new therapeutic strategies based on ACAT inhibitors are

currently being developed and trialled (Heinonen, 2002; Insull Jr et al., 2001). Further develop-

ment of the model to include the ACAT-regulated pathway would allow for the investigation of

the cellular response to this treatment, and an evaluation of whether this could lead to excess,

toxic unesterified cholesterol in the cell.

In conclusion, it is hoped that the importance of the combined modelling of cellular processes

(LDL binding, internalisation and uptake) and subcellular processes (regulation of cholesterol

biosynthesis and de novo receptor synthesis), as demonstrated in this thesis, will be utilised in

future work. We have provided scope for both future experimental work and mathematical mod-

elling, which may be applied to better understanding of, and therefore improving therapeutic

strategies for, high plasma cholesterol levels.
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A
DNA Transcription Factor Interaction

In this appendix we carry out a singular perturbation analysis, using the approach of Murray

(2002), for the equations describing the interaction of DNA and transcription factor as derived

in Section 3.3.

We consider the binding reaction

D̄ +nT̄f

k̄ f
GGGGBFGGGG

k̄r

T̄c , (A.1)

where D̄ represents DNA, T̄f represents transcription factor, n the number of molecules of T̄f

that must bind to D̄ for the reaction to occur, and T̄c is the complex they form on reaction.
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Using the law of mass action we can describe (A.1) using the following system of ODEs.

d d̄

d t
= k̄r t̄c − k̄ f t̄ n

f d̄ , (A.2a)

d t̄ f

d t
= nk̄r t̄c −nk̄ f t̄ n

f d̄ , (A.2b)

d t̄c

d t
= k̄ f t̄ n

f d̄ − k̄r t̄c , (A.2c)

with the initial conditions

t̄ f (0) = t0, d̄ (0) = d 0, t̄c (0) = 0. (A.3)

Here d̄ = [ ¯DN A], t̄ f = [T̄ ] and t̄c = [T̄c ]where square brackets denote concentration.

We note that within system (A.2), the total concentration of transcription factor is conserved.

This conservation law is obtained from (A.2b) and (A.2c) to give

d t̄ f

d t
+n

d t̄c

d t
= 0 ⇒ t̄ f (t )+nt̄c (t ) = t0, (A.4)

on using the initial conditions (A.3).

We note also that the number of genes within a cell is always constant. This conservation law

comes immediately on adding (A.2a) and (A.2c) to obtain

d d̄

d t
+

d t̄c

d t
= 0 ⇒ d̄ (t )+ t̄c (t ) = d 0, (A.5)

on using the initial conditions (A.3). Thus the ODE system reduces to only two equations, for t̄ f

and t̄c ,

d t̄ f

d t
= nk̄r t̄c −nk̄ f t̄ n

f (d 0− t̄c ), (A.6a)

d t̄c

d t
= k̄ f t̄ n

f (d 0− t̄c )− k̄r t̄c , (A.6b)

with the initial conditions

t̄ f (0) = t0, t̄c (0) = 0. (A.7)
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We nondimensionalise system (A.6) using the rescalings

τ= k̄ f d 0t n−1
0 t , t f =

t̄ f

t0
, tc =

t̄c

d 0
, (A.8)

where overbars indicate dimensional variables and τ is nondimensional time.

The nondimensionalised system is given by

d t f

dτ
= −nt n

f +ntc t n
f +n

�

k̄r

k̄ f t n
0

�

tc , (A.9)

d tc

dτ
=

t0

d 0
t n

f −
t0

d 0
tc t n

f −
t0

d 0

�

k̄r

k̄ f t n
0

�

tc . (A.10)

We now let the nondimensional parameters appearing in the above system be written as

γ=
k̄r

k̄ f t n
0

and ε=
d 0

t0
, (A.11)

and note that since the concentration of genes within a cell is much less than that of the con-

centration of transcription factor, (d 0 << t0), we can see that ε<< 1.

The nondimensionalised system now becomes

d t f

dτ
= −nt n

f +ntc t n
f +nγtc , (A.12a)

ε
d tc

dτ
= t n

f − tc t n
f −γtc , (A.12b)

with the initial conditions

t f (0) = 1, tc (0) = 0. (A.13)

We now seek a regular Taylor expansion solution to t f and tc in the form

t f (τ;ε) =
∑

m=0

εm t (m )f (τ) and tc (τ;ε) =
∑

m=0

εm t (m )c (τ) . (A.14)

We substitute the above into (A.12a) and (A.12b) and then equate powers of ε.
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The outer solution, valid for τ> 0, of system (A.12) is given by

O(1)























d t (0)f

dτ
= −n

�

t (0)f

�n
+nt (0)c

�

t (0)f

�n
+nγt (0)c ,

0 =
�

t (0)f

�n
− t (0)c

�

t (0)f

�n
−γt (0)c ,

(A.15)

with the initial conditions

t (0)f (0) = 1, t (0)c (0) = 0. (A.16)

Solving system (A.15) we find

t (0)c =

�

t (0)f

�n

�

t (0)f

�n
+γ

⇒
d t (0)f

dτ
= 0, (A.17)

and so

t (0)c =

�

t (0)f

�n

�

t (0)f

�n
+γ

, t (0)f = K , (A.18)

where K is an arbitrary constant.

However the solution (A.18) is not uniformly valid for all τ ≥ 0 since t (0)c (0) 6= 0. To find the

solution valid near τ= 0 we use the following transformations

σ=
τ

ε
, t f (τ;ε) = u (σ;ε) , tc (τ;ε) = v (σ;ε) , (A.19)

under which the equations of system (A.12) become

d u

dσ
= −εnu n +εnv u n +εnγv, (A.20)

d v

dσ
= u n −v u n −γv, (A.21)

with the initial conditions

u (0) = 1, v (0) = 0. (A.22)
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Thus the inner solution, valid for 0≤τ<< 1 , of system (A.12) is given by

O(1)



















d u (0)

dσ
= 0,

d v (0)

dσ
=

�

u (0)
�n −v (0)

�

u (0)
�n −γv (0).

(A.23)

The solution of system (A.23) is given by

u (0)(σ) = 1, v (0)(σ) =
1

1+γ

�

1− e−(1+γ)σ
�

. (A.24)

We require that

lim
σ→∞

[u (σ;ε) , v (σ;ε)] = lim
τ→0

�

t f (τ;ε) , tc (τ;ε)
�

, (A.25)

thus

lim
σ→∞

v (0)(σ) =
1

1+γ
= lim

τ→0
t (0)c (τ), (A.26)

⇒ t (0)c (0) =
1

1+γ
=

�

t (0)f

�p

�

t (0)f

�p
+γ

, (A.27)

⇒ t (0)f (0) = 1 ⇒ K = 1. (A.28)

In summary to O(1) for small ε

t f (τ;ε) = t (0)f (τ)+O(ε), t (0)f (τ) = 1, (A.29)

tc (τ;ε) = v (0)(σ)+O(ε), v (0)(σ) =
1

1+γ

�

1− e−(1+γ)σ
�

, 0<τ<< 1, (A.30)

= t (0)c (τ)+O(ε), t (0)c (0) =

�

t (0)f

�p

�

t (0)f

�p
+γ

, 0<ε<<τ. (A.31)
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The rapid change in the DNA-transcription factor complex tc (τ,ε) takes place in dimensional

times τ=O(ε)which is very small.

The relevant solution is then the O(1) outer solution, t (0)f (τ) and t (0)c (τ) in (A.18), obtained from

the system (A.12) on setting ε= 0 and satisfying only the initial condition on t f (τ), the transcrip-

tion factor concentration.

Thus the reaction for the complex tc (τ) is so fast it is essentially in a steady state. We can then

make the quasi-steady state hypothesis that

ε
d tc

dτ
≈ 0. (A.32)
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B
Parameter Values

This appendix is concerned with the calculations of the parameter values used within the models

derived and discussed in this thesis. Note that the experimental data found in the literature have

been converted so that we consider numbers of molecules, with volumes in ml, and time in units

of s−1.

B.1 Parameter values of the HMGR system

In this section we detail the calculations used to estimate parameters pertaining to the biosyn-

thesis of cholesterol and its regulation. These are the parameters which have previously been

considered in Section 3.5.2 and detailed in Table 3.1.
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B.1.1 Rate of transcription µ̄m h

To produce an estimate for the transcription rate we assume that any time delays involved in the

initiation of transcription, promoter clearance and elongation are negligible. We also assume

that no abortive transcripts are produced. We know that liver cells are somatic cells, therefore

the majority are diploid, that is they contain two genes per cell. We make the assumption that all

liver cells are diploid and ignore the existence of both tetraploidy and double nuclei that can be

present within some liver cells. From Darzacq et al. (2007), we find that in a typical mammalian

gene, 14000 base pairs can be transcribed in 20 minutes which gives a rate of 12 bases per second.

We use these assumptions, to provide a rough estimate of the rate of transcription, equivalent to

the number of mRNA molecules produced per cell per unit time.

One human HMG-CoA reductase mRNA transcript is 4475 bases long (Goldstein and Brown,

1984). To transcribe one molecule of HMG-CoA reductase mRNA, from one gene, assuming a

rate of 12 bases per second, takes

4475 bases

12 bases/s
= 372.92 s . (B.1)

Then per gene, this equates to

1

372.92 s
= 2.68×10−3 molecules HMGR mRNA s−1 . (B.2)

Therefore one gene can synthesise 2.68×10−3 molecules of HMG-CoA reductase mRNA per sec-

ond. Since a liver cell contains two genes, we have 5.36× 10−3 molecules HMG-CoA reductase

mRNA being synthesised per cell per second.

Given an average cell volume of 1pl, (1× 10−12 l = 1× 10−9 ml), we have a rate of HMGR tran-

scription is given by,

µ̄m h =
5.36×10−3 molecules s−1

1×10−9 ml
= 5.36×106 molecules ml−1 s−1 . (B.3)
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Thus we take a value

µ̄m h = 5.36×106 molecules ml−1 s−1 . (B.4)

B.1.2 Rate of translation µ̄h

To calculate an estimate of the rate of translation, we again outline our assumptions. Firstly, we

ignore any effects that are caused by the transport of mRNA from the nucleus to its localisation

in the cytoplasm. We also ignore the effects of protein folding on transcriptional regulation as

well as biochemical interactions amongst proteins. Finally we assume that any time delays in

the elongation phase of protein synthesis are negligible.

We then use the in vivo estimate from Slobin (1991) that the translation rate for eukaryotic cells is

6 amino acids per second, where one amino acid contains 3 nucleotides or bases. From Granner

and Weil (2006) we find that many ribosomes can translate the same mRNA molecule simulta-

neously. Because of their large size, ribosomes cannot attach to an mRNA any closer than 35

nucleotides apart. This detail allows us to create a rough estimate of the rate of transcription,

equivalent to proteins synthesised per unit time from mRNA.

A human HMG-CoA reductase mRNA transcript contains 888 amino acids, (Luskey and Stevens,

1985). For one ribosome to transcribe one molecule of HMG-CoA reductase protein, from one

HMG-CoA reductase mRNA, assuming a translation rate of 6 amino acids per second, takes

888 amino acids

6 amino acids/s
= 148 s . (B.5)

Then per ribosome, this equates to

1 molecule

148 s
= 6.76×10−3 molecules s−1 . (B.6)

Thus, 6.76× 10−3 molecules of HMG-CoA reductase protein being synthesised per second per

ribosome.

Given that the coding region of the HMG-CoA reductase mRNA is 888 amino acids × 3 = 2664
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nucleotides long, and a ribosome can attach every 35 nucleotides, we have 76.11 ribosomes

attached per mRNA molecule. Therefore, per HMG-CoA reductase mRNA molecule we have,

6.76×10−3 molecules s−1 ribosome−1 ×76.11 ribosomes = 0.51 molecules s−1 . (B.7)

That is, there are 0.51 molecules of HMG-CoA reductase protein being synthesised per second.

We take as an approximation of the rate of HMGR translation,

µ̄h = 0.51 s−1. (B.8)

B.1.3 HMG-CoA reductase activity µ̄c

From Tanaka et al. (1982) for human liver microsomes, we find a value of 52 pmol mevalonate

formed per minute per mg protein. This must now be converted into a turnover number.

The turnover number (Kcat) of an enzyme is the maximum number of substrate molecules that

an enzyme can convert to product per mole of catalytic site of the enzyme per unit time. The

activity of an enzyme is the moles of substrate converted per unit time and is a measure of the

quantity of active enzyme present and the specific activity is the activity of an enzyme per mg of

total protein, i.e. a measure of enzyme efficiency.

HMG-CoA reductase is a tetrameric protein, composed of monomers arranged in two dimers.

Each dimer has two active sites, (Istvan et al., 2000) and M r = 99906 Dalton . The Dalton, (Da),

(alternatively atomic mass unit) is a unit of mass used to express atomic and molecular masses.

It is defined so that one mole of a substance with atomic or molecular mass 1 Da will have a mass

of precisely 1 g.

Therefore the full HMG-CoA reductase molecule is an enzyme containing 4 active sites with a

molecular mass M r = 2× 99906 = 199812 Da , i.e. 1 mole HMG-CoA reductase has a mass of

199812 g. The reaction catalysed by HMG-CoA reductase is given by

HMG-CoA +2NADPH+2H+ −→mevalonate+2NADP++ CoASH (B.9)
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which indicates a stoichiometry of one mole mevalonate being produced from one mole HMG-

CoA. (Note we have assumed in our model that all other substrates of this reaction are present

in excess).

The specific activity of the enzyme, (52×10−12 mol per minute per mg protein) is equivalent to

52×10−12×NA = 52×10−12 mol min−1 mg−1 ×6.022×1023 molecules mol−1,

= 3.13×1013 molecules min−1 mg−1, (B.10)

where

NA = 6.022×1023 molecules mol−1, (B.11)

is the Avogadro Constant which describes the number of ‘elementary entities’ (usually atoms or

molecules) in one mole.

We take the assumption of Segel (1993) that there are approximately 1000 different enzymes in a

cell. Thus the moles of enzyme in 1mg of protein is equivalent to

�

1×10−3 g

199812 g mol−1 ×1000

�

= 5.00×10−12 mol , (B.12)

and given 4 active sites per HMG-CoA reductase enzyme, there are 2.00×10−11 moles of enzyme

active sites in 1mg of protein.

Thus, given the specific activity of an enzyme, 52×10−12 mol min−1 mg−1, we have

52×10−12 mol min−1 mg−1

2.00×10−11 mol mg−1
= 2.60 min−1. (B.13)

And so the turnover number for HMG-CoA reductase is given by,

µ̄c h = 4.33×10−2 s−1. (B.14)
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B.1.4 Degradation rates δ̄m h , δ̄h

The calculation of degradation rates of proteins and mRNAs are based on their half-lives, t1/2,

derived from an exponential decay model. For a decay constant δ, the rate of degradation of the

variable is given by

δ =
ln 2

t1/2
. (B.15)

From Wilson and Deeley (1995), we have a half-life of t1/2 = 4.3 hr for HMG-CoA reductase

mRNA, measured in Hep G2 cells and so

δ̄m h =
ln 2

15480 s
= 4.48×10−5 s−1. (B.16)

From Brown et al. (1974), we have a half-life of t1/2 = 3 hr for the HMG-CoA reductase protein,

measured in human fibroblast cells and so

δ̄h =
ln 2

10800 s
= 6.42×10−5 s−1. (B.17)

B.1.5 Concentration of total activator s̄0

In general, transcription factors have low gene expression, and are therefore present in rela-

tively low concentrations within the cell, (Sanguinetti et al., 2006). Since we have simplified the

SREBP signalling pathway, we make some assumptions to obtain an estimate for this value. We

know that the majority of cellular cholesterol is located within the plasma membrane of the cell,

and its concentration is governed by multiple regulatory proteins regulated in the endoplasmic

reticulum, (ER), which are themselves under the control of a small regulatory pool of ER choles-

terol, (Lange et al., 1999). We therefore assume that the concentration of s0 is of the order of this

concentration, which allows small changes in the cellular cholesterol pool, to be magnified in

the transcription factor pathway. From Lange et al. (1999), we have an average of 0.45 nmol ER

cholesterol/mg cell protein.
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Taking Avogadro’s number, NA = 6.022× 1023, and the assumption that one cell has approxi-

mately 300 pg of cell protein and a volume of 1 pl; 1 mg of cell protein is thus equivalent to

0.0033 ml, we obtain

s̄0 =
0.45×10−9 mol×6.022×1023molecules mol−1

0.0033 ml
,

= 8.21×1016 molecules ml−1. (B.18)

B.1.6 Initial conditions m̄h0, h̄0, c̄0

To calculate the initial conditions for the model, we make the assumption that to begin with the

cell is functioning at a normal capacity, i.e. the cholesterol concentration within the cell is at or

near its equilibrium level.

From Lange et al. (1999), we take a value of resting cholesterol for the cell of 40 µg cell choles-

terol/mg cell protein. Using the molecular weight of cholesterol, M r = 386.65 g and the fact that

1 mg of cell protein is equivalent to 0.0033 ml, we obtain

c̄0 =
40×10−6 g ×6.022×1023 molecules mol−1

386.65 g mol−1 ×0.0033 ml
, (B.19)

= 1.89×1019 molecules ml−1.

To calculate the initial condition for HMGR mRNA we use information from Rudling et al. (2002),

which details copy numbers of mRNA found in human liver cells under basal conditions. We take

a value of 30 copies of HMGR mRNA per cell, i.e. per 1×10−9 ml. This gives

m̄h0 =
30 molecules

1×10−9 ml
= 3.0×1010 molecules ml−1. (B.20)

To approximate the initial concentration of HMGR enzyme within a cell, we use the fact that one

liver cell contains roughly 300 pg cell protein, and has a volume of 10−9 ml. Using the molecular

weight of HMGR, M r = 199812 g mol−1 (Istvan et al., 2000), we calculate that the number of
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moles of HMGR is
300×10−12 g

199812 g mol−1
= 1.50×10−15 mol per cell . (B.21)

Thus we have 1.50× 10−15 mol per 10−9 ml which is equivalent 1.50× 10−6 mol ml−1 or 1.50×

10−6 ×NA = 9.04× 1017 molecules/ml. Taking into account that a cell contains on average a

thousand different enzymes (Segel, 1993) we have

h̄0 = 9.04×1014 molecules ml−1. (B.22)

B.2 Parameter values of LDLR synthesis

In this section we detail the calculations used to estimate parameters pertaining to the biosyn-

thesis of the low density lipoprotein receptor and its regulation. These are the parameters which

have previously been considered in Section 6.2 and detailed in Table 6.5.

B.2.1 Rate of transcription µ̄m r

The estimate for the transcription rate of LDLR is produced using the same assumptions and

initial information as for the estimation of the HMGR transcription rate. We proceed in a similar

manner.

One human LDL Receptor mRNA transcript is 5265 bases long 1. To transcribe one molecule of

LDLR mRNA, from one gene, assuming a rate of 12 bases per second, takes

5265 bases

12 bases/s
= 438.75 s . (B.23)

Then per gene, this equates to

1

438.75 s
= 2.28×10−3 molecules LDLR mRNA s−1 . (B.24)

1www.nbci.nlm.nih.gov/Genomes
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Therefore one gene can synthesise 2.28× 10−3 molecules of LDLR mRNA per second. Since a

liver cell contains two genes, we have 4.56×10−3 molecules LDLR mRNA being synthesised per

cell per second.

Given an average cell volume of 1pl, (1×10−12 l= 1×10−9 ml), we have a rate of LDLR transcrip-

tion is given by,

µ̄m r =
4.56×10−3 molecules s−1

1×10−9 ml
= 4.56×106 molecules ml−1 s−1 . (B.25)

Thus we take a value

µ̄m r = 4.56×106 molecules ml−1 s−1 . (B.26)

B.2.2 Rate of translation µ̄r

To calculate an estimate of the rate of translation, we again use similar assumptions as for the

HMGR calculation, and estimate in the same manner.

A human LDL Receptor mRNA transcript contains 839 amino acids, (Soutar and Knight, 1990).

For one ribosome to transcribe one molecule of LDLR protein, from one LDLR mRNA, assuming

a translation rate of 6 amino acids per second, takes

839 amino acids

6 amino acids/s
= 139.83 s . (B.27)

Then per ribosome, this equates to

1 molecule

139.83 s
= 7.15×10−3 molecules s−1 . (B.28)

Thus, 7.15×10−3 molecules of LDLR are protein being synthesised per second per ribosome.

Given that the coding region of the LDLR mRNA is 839 amino acids ×3= 2517 nucleotides long,

and a ribosome can attach every 35 nucleotides, we have 71.91 ribosomes attached per mRNA
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molecule. Therefore, per LDLR mRNA molecule we have,

7.15×10−3 molecules s−1 ribosome−1 ×71.91 ribosomes = 0.51 molecules s−1 . (B.29)

That is there are 0.51 molecules of LDLR protein synthesised per second. We take as an approx-

imation of the rate of LDLR translation,

µ̄r = 0.51 s−1. (B.30)

B.2.3 Degradation rates δ̄m r , δ̄r

The calculation of degradation rates of proteins and mRNAs are based on their half-lives, t1/2

and is derived as for HMGR.

From Vargas et al. (2009), we have a half-life of t1/2 = 66 min for LDLR mRNA, measured in Hep

G2 cells and so

δ̄m r =
ln 2

3960 s
= 1.75×10−4 s−1. (B.31)

From Graadt van Roggen et al. (1995), we have a half-life of t1/2 = 14.4 hr for the LDLR protein,

measured in human fibroblast cells and so

δ̄r =
ln 2

51840 s
= 1.34×10−5 s−1. (B.32)

B.2.4 Initial conditions m̄r 0

To calculate the initial condition for HMGR mRNA we use information from Rudling et al. (2002),

which details copy numbers of mRNA found in human liver cells under basal conditions. We take

a value of 48 copies of HMGR mRNA per cell, i.e. per 1×10−9 ml. This gives

m̄r 0 =
48 molecules

1×10−9 ml
= 4.8×1010 molecules ml−1. (B.33)
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C
Mathematical Results

In this appendix we provide the details of mathematical theorems and stability results which

were used in Chapter 4 of this thesis.

C.1 Descartes’ rule of signs

Descartes’ rule of signs is used to find zeros of polynomial functions that are not factorable. In

particular, it can be used to determine the number of possible positive and negative real zeros,

and the number of possible nonreal zeros, of a polynomial function arranged in order of highest

to lowest power, that is in standard form (Murray, 2002).
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Theorem IV (Descartes’ rule of signs I)

Let p (x ) be any polynomial with real coefficients. The number of positive, real roots of p (x ) = 0 is

either equal to the number of variations of sign in the coefficients of p (λ) or else is less than this

number by an even integer. A zero coefficient is not counted as a change of sign.

Theorem V (Descartes’ rule of signs II)

Let p (λ) be any polynomial with real coefficients and let the polynomial q (ω) = p (−λ). The num-

ber of negative, real roots of p (λ) = 0 is either equal to the number of variations of sign in the

coefficients of q (ω) or else is less than this number by an even integer. A zero coefficient is not

counted as a change of sign.

As an example, consider the application of Theorem IV to a cubic polynomial given by

p (λ) = a 3λ
3+a 2λ

2−a 1λ+a 0 = 0, (C.1)

where a i > 0 for all i = 0, 1, 2. We note that there are two sign changes in the sequence of coeffi-

cients, and so the polynomial has either two or zero real, positive roots.

Now using Theorem V, we have

q (ω) = p (−λ) = −a 3λ
3+a 2λ

2+a 1λ+a 0 = 0, (C.2)

where one change of sign in the coefficient sequence indicates (C.2) has only one positive real

root and consequently (C.1) has exactly one negative real root.

C.2 The Routh-Hurwitz stability criterion

The Routh-Hurwitz stability criterion is an algebraic procedure for determining whether a poly-

nomial has any zeros in the right half plane, that is, a method for determining whether or not a

linear system is stable, by examining the location of the roots of the charcteristic equation of the

system (Murray, 2002).
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The method does not indicate the relative degree of stability or instability; it simply determines

the necessary and sufficient conditions for stability.

C.2.1 Routh-Hurwitz stability of a cubic polynomial

We consider this method for the general form of a cubic characteristic equation, described by

A(λ) = a nλ
3+a n−1λ

2+a n−2λ+a n−3 = 0. (C.3)

A necessary (but not sufficient) condition for A(λ) to be Hurwitz, i.e., for all of its roots to have

strictly negative real part, is that all polynomial coefficients be nonzero and positive. If any co-

efficient is zero or negative, then there is at least one root in the closed right-half plane. If this

condition is satisfied, the Routh-Hurwitz array for (C.3) may be computed as follows

�

�

�

�

�

�

�

�

�

�

�

�

a n a n−2 a n−4

a n−1 a n−3 a n−5

b1 b2 b3

c1 c2 c3

�

�

�

�

�

�

�

�

�

�

�

�

, (C.4)

where the a i are the polynomial coefficients and the other coefficients are calculated using,

b1 = −
�

1

a n−1

�

(a n a n−3−a n−2a n−1) , (C.5a)

b2 = −
�

1

a n−1

�

(a n a n−5−a n−4a n−1) , (C.5b)

b3 = −
�

1

a n−1

�

(a n a n−7−a n−6a n−1) , (C.5c)

c1 = −
� 1

b1

�

(a n−1b2−a n−3b1) , (C.5d)

c2 = −
� 1

b1

�

(a n−1b3−a n−5b1) , (C.5e)

c3 = −
� 1

b1

�

(a n−1b4−a n−7b1) . (C.5f)

The necessary and sufficient condition that all roots of (C.3) have negative real parts is that all

the elements of the first column of the Routh-Hurwitz array have the same sign. If there are sign
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changes in these elements, then the number of roots with nonnegative real parts is equal to the

number of changes of sign.

Thus the characteristic equation given by,

a 3λ
3+a 2λ

2+a 1λ+a 0 = 0, (C.6)

has the nonzero Routh-Hurwitz coefficients given by

b1 = −
� 1

a 2

�

(a 3a 0−a 1a 2) , (C.7)

c1 = −
� 1

b1

�

(a 20−a 0b1) = a 0, (C.8)

and the Routh-Hurwitz array is given by

�

�

�

�

�

�

�

�

�

�

�

�

a 3 a 1 0

a 2 a 0 0

−
�a 3a 0−a 1a 2

a 2

�

0 0

a 0 0 0

�

�

�

�

�

�

�

�

�

�

�

�

. (C.9)

And so, all roots of (C.6) have negative real parts if and only if the following relations hold

a 0 > 0, a 1 > 0, a 2 > 0, a 3 > 0, (C.10)

together with the condition

−
�a 3a 0−a 1a 2

a 2

�

> 0, (C.11)

⇒ a 3a 0−a 1a 2 < 0, (C.12)

⇒ a 1a 2−a 3a 0 > 0. (C.13)
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Glossary of Biological Terms

• Catabolism

General term for the enzyme catalysed reactions in a cell by which complex molecules are

degraded to simpler ones with release of energy.

• Cytoplasm

Contents of a cell that are contained within its plasma membrane but, in the case of eu-

karyotic cells, outside the nucleus.

• De novo synthesis

De novo is a Latin phrase meaning from the beginning. De novo synthesis refers to the

synthesis of complex molecules from simple molecules.

• Endocytosis

Uptake of material into a cell by invagination of the plasma membrane and its internali-

sation in a membrane-bounded vesicle.

• Endoplasmic reticulum

Labyrinthine compartment in the cytoplasm of eukaryotic cells, where lipids are synthe-

sised and membrane bound proteins and secretory proteins are made.

• Enzyme

Protein that catalyses a specific chemical reaction.

• Eukaryote

Organism composed of one or more cells that have a distinct nucleus.

• Feedback inhibition

The process in which a product of a reaction feeds back to inhibit a previous reaction in

the same pathway.

• Gene

Region of DNA that carries information for a discrete hereditary characteristic, usually

corresponding to a single protein.

• Gene expression

Production of an observable molecular product (RNA or protein) by a gene.
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• Hepatocyte

The major cell type in the liver.

• Homeostasis

The property of a system, either open or closed, which regulates its internal environment

in order to maintain a stable, constant condition.

• In vitro

Taking place in an isolated cell free extract, as opposed to a living cell. Sometimes used to

distinguish between cell culture studies from studies in intact organisms.

• In vivo

Taking place in an intact cell or organism.

• Messenger RNA

RNA molecule that specifies the amino acid sequence of a protein.

• Metabolism

The sum total of the chemical processes that take place in living cells.

• Nucleus

Prominent membrane bounded organelle in eukaryotic cells containing DNA.

• Plasma

The liquid component of blood in which the blood cells of whole blood are normally sus-

pended.

• Promoter

Nucleotide sequence in DNA to which RNA polymerase binds to initiate transcription.

• Transcription

Copying of one strand of DNA into a complementary RNA sequence.

• Transcriptional activator

Gene regulatory protein that binds to a specific DNA sequence to activate the transcription

of a gene.

• Transcription factor

Any protein required to initiate or regulate transcription in eukaryotic cells.

• Translation

Process by which the sequence of nucleotides in a mRNA molecule directs the incorpora-

tion of amino acids into protein.
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