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Abstract

In this thesis we consider the adaptive solution of time-dependent partial differential

equations using a moving mesh technique. A moving mesh method is developed utilising

monitor functions to drive the mesh motion and is based on equidistribution ideas. The

method is derived in multidimensions from a conservation of monitor function principle

and from this initial principle a conservation law for the monitor function is derived

which generates the velocity of the mesh. In dimensions higher than one the mesh

velocity is underdetermined for this conservation law, therefore the curl of the velocity

field is prescribed to obtain a unique velocity field. The conservation law together

with the curl condition are combined to produce an elliptic equation for a mesh velocity

potential, from which the mesh velocity can be obtained. The moving mesh equations are

solved for the mesh velocity using standard linear finite elements and then a new mesh

is constructed by integrating the mesh velocity forward in time using finite differences.

The moving mesh method is applied to the adaptive solution of parabolic and hyperbolic

equations. The parabolic porous medium equation (PME) with a moving boundary

problem is solved taking advantage of scale invariant properties. For this problem the

solution to the PME is obtained through the conservation of monitor function for two

different monitor functions; a mass and a gradient monitor function. The method is then

applied to the solution of hyperbolic conservation laws in one and two spatial dimensions.

In one dimension the solution to the inviscid Burgers equation and the compressible

Euler equations are solved. However, in these cases the numerical solution is obtained

by solving the equation on the moving mesh using the Arbitrary Lagrangian Eulerian

(ALE) form of the equation. In two dimensions hyperbolic conservation laws are solved

using the moving mesh method in conjunction with the mass monitor function and also

a monitor function based on the gradient of the solution. The numerical solutions obtain

on the various moving meshes are found to be advantageous compared to a fixed mesh

Eulerian method for some standard test problems.
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Chapter 1

Introduction

Adaptive methods have been used for many years now for the solution of differential

equations (DEs) and have become an integral part of many numerical methods. One

of the attractive properties of adaptive methods is that they can often be incorporated

into existing numerical methods for solving DEs and in many cases have been found to

give increased efficiency and accuracy when compared to non-adaptive methods.

This thesis is primarily concerned with the adaptive solution of scalar and systems of

partial differential equations (PDEs) of the form

ut = Lu

where u is the solution to the PDE and may either be a scalar or an m-vector of

solution variables. In this work the differential operator L will either be of parabolic

or hyperbolic type and in general will be nonlinear. This type of equation is time-

dependent and therefore solutions to such equations will have transient features which

are often very localised and hard to approximate numerically. Also, at certain instants

the location of the feature may lie within a computational cell and this makes matters

worse. For this kind of equation and for this reason it can be advantageous to use an

adaptive numerical method which automatically resolves features of the flow.

There are various types of adaption that can be used to increase the accuracy and effi-

ciency of numerical methods. The main three types of adaption are called h−refinement,

p−refinement and r−refinement and are generally associated with finite elements. An

essential part of all these methods is a numerical solution indicator which is needed to

1



identify where adaption should take place and often determines the effectiveness of the

resulting numerical method. The solution indicator should ideally usually come from

error estimates; however in many circumstances they are not available and other more

heuristic techniques may have to be used. We will now briefly describe these three

adaption techniques.

The h-refinement method is a technique in which extra computational nodes are added

to a mesh in spatial regions where the solution is badly approximated, as identified

by an error indicator. The second type of adaption is the p-refinement technique which

consists of increasing the order of the numerical approximation to the solution in certain

regions of the domain, to improve the local accuracy of the numerical solution. Finally,

r-refinement is used to dynamically move the position of the computational nodes,

keeping the total number of nodes fixed in time, to improve the overall accuracy of

the numerical solution. These techniques have been used by many authors to improve

the accuracy of existing numerical methods and have also been combined to obtain a

more robust numerical method. For example, h-refinement and p-refinement have been

combined to produce an hp-refinement method.

In this thesis we will concentrate on the r-refinement method and present a method

for moving the mesh nodes. In general, the r-refinement method may be applied by

targeting either the position or the velocity of the mesh points. The mesh can be

construed as a mapping from a background computational space to the physical space

in which the PDE is being solved, and then the velocity of the mesh can be taken to

be the rate of change in time of this mapping. In this manner each computational

node will have associated with it a unique velocity, at which it moves, from which the

mesh can be advanced forward in time. Since there is an implicit mapping between the

computational and physical spaces this velocity can be regarded as a function of the

physical space variable. We therefore require a method for generating this velocity and

in this work it will be constructed through the use of a monitor function. This function

will be chosen to control the relative density of the mesh points in the physical domain

and hence the degree of mesh adaption. The method that we will use for generating

these mesh velocities will be based on a conservation of monitor function principle in

time, which can be utilised to induce a motion on the mesh. From this principle an
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Eulerian conservation law for the monitor can be derived, from which the mesh velocity

can be obtained. This conservation law governing the motion of the mesh will be used

in conjunction with a curl condition, which prescribes the rotational properties of the

mesh, to obtain a unique mesh velocity. The conservation law together with the curl

condition is then shown to generate an elliptic equation for the mesh velocity potential,

from which the mesh velocity can be obtained. This approach for generating a moving

mesh will be used for the adaptive solution of partial differential equations and in this

thesis we will consider two particular types of PDE; parabolic and hyperbolic. We now

describe the layout of the thesis.

Chapter 2 begins with a survey of some commonly used moving mesh methods in one

spatial dimension. It also introduces many of the ideas and techniques that are used

in constructing a moving mesh method. In particular, the idea of such a method being

viewed as a transformation from a background computational space to the physical

space in which the problem is solved is highlighted. The often used equidistribution

principle of de Boor [16] is also introduced, in which some measure of the solution is

equalised over each computational cell. We then outline the multidimensional extensions

of these moving mesh methods. The new research area of geometric integration [25] in

which properties of the continuous problem being solved are used to drive the numerical

solution process is also mentioned briefly.

In chapter 3 we use many of the ideas that were described in chapter 2 to derive a moving

mesh method. Since many moving mesh methods based on equidistribution are only

available in one spatial dimension and are not easily generalised to higher dimensions,

one of our aims will be to produce a method which can be used in an arbitrary number

of spatial dimensions. Our moving mesh method is based on the use of a monitor

function in a conservation principle. From this conservation principle an equation for

obtaining the velocities of the mesh points is derived. It is found that this equation is

insufficient to determine the mesh velocity field uniquely in spatial dimensions higher

than one; therefore an additional curl condition is prescribed to overcome this uniqueness

problem providing a mesh velocity potential. A weak form of the moving mesh equation

for the mesh velocity potential is then derived and discretised using standard linear finite

elements. A weak form is also used to obtain the mesh velocities from the mesh velocity
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potential. A simple time-stepping routine is used to advance the mesh forward in time

and hence generate a new mesh. In certain cases it is possible to recover the solution

to the problem through the conservation of monitor function principle. The resulting

method is related to some other moving mesh methods, such as the deformation map

method of Liao and Anderson [64], and this is also highlighted in this chapter.

We then apply this method, in one and two dimensions, to the solution of a variety of

different partial differential equations, firstly of parabolic type and secondly of hyperbolic

type. In chapter 4 we consider the solution of the porous medium equation (PME) using

scale invariant techniques similar to those found in [21, 22, 24, 13, 25]. The solution

method and mesh motion is firstly driven by the desirability of conserving the mass

of the solution in a discrete sense; therefore a mass monitor is utilised. Secondly we

describe how a gradient monitor function can be used in a similar way for the solution

of the PME. The monitor function based on the solution gradient moves mesh points

into regions of the spatial domain where the solution gradient is high, such as in moving

discontinuities. The end of the chapter details how to extend the method using the mass

monitor function to two spatial dimensions. The PME in two dimensions is solved using

the moving mesh method in a finite element framework on a unstructured triangular

mesh. It should be noted that for this scalar equation and for these choices of monitor

function it is possible to recover the solution to the PME directly from the mesh through

the initial conservation of monitor function principle itself.

In chapter 5 the adaptive solution of hyperbolic conservation laws in one spatial dimen-

sion will be considered. Both the inviscid Burgers equation and the compressible Euler

equations of gas dynamics will be solved using the adaptive mesh method derived in

chapter 3 for two different monitor functions, the mass monitor function and a monitor

function based on the gradient of the solution. It will be found that the solution to

the conservation law being solved cannot be recovered directly from the mesh, as was

the case in chapter 4 for the solution of the PME, and hence a finite volume method,

modified to take into account the motion of the mesh, will be used. This finite volume

method is based on the work of Harten and Hyman [43] and solves the Arbitrary La-

grangian Eulerian (ALE) form of the conservation laws. The ALE finite volume method

is then used in conjunction with an ALE version of the Roe approximate Riemann solver
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to evaluate intercell fluxes. The spatial and temporal accuracy of the resulting finite

volume method is only first order, therefore the order of the numerical method is in-

creased, modified by the use of flux limiters. This moving method with an ALE solver

is then used in one spatial dimension to solve a moving shock problem for the inviscid

Burgers equation and the Sod shock tube for the compressible Euler equations.

In chapter 6 the compressible Euler equations in two spatial dimensions are solved using

moving mesh techniques similar to the ones described in chapter 5. Again the moving

mesh method will be used along with the mass monitor function and a monitor function

based on the solution gradient. The Euler equations will again be solved on a moving

mesh, so the ALE version of the conservation laws will be used with a finite volume

method modified to take into account the motion of the mesh. The intercell fluxes are

evaluated with the use of an ALE HLLC approximate Riemann solver [94]. This leads

to a finite volume method which is first order in space and time, therefore the MUSCL

technique of Van Leer is utilised to increase the accuracy of the method in space. The

Euler equations are solved on an unstructured triangular mesh in two dimensions using

the cell-centred ALE finite volume method and again the mesh is moved in a finite

element framework. The resulting method is then used to solve two cylindrical shock

problems.

The final chapter summarises the work that has been carried out in this thesis and

considers some possible further work.
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Chapter 2

Mesh Generation and Adaption

Mesh generation and adaption techniques have been used for many years now to produce

irregular grids upon which both ordinary and partial differential equations can be solved.

A wide variety of methods have been devised which in general fall into one of two main

categories. These categories are referred to as velocity or location based methods. The

velocity based methods are derived by introducing the velocities of the computational

nodes in the mesh. Alternatively, the location based methods seek the position of the

computational nodes in terms of a mapping from a reference mesh. We will start this

chapter by introducing some of the commonly used ideas for generating non-uniform

meshes and then go on to describe some of the popular velocity and location moving

mesh methods.

2.1 Introduction

Most methods for generating an irregular mesh are constructed as a transformation from

a background computational domain into the physical domain in which the particular

problem is being solved. In this work we will let x and ξ denote physical and computa-

tional co-ordinates which are defined on the domains Ω and Ωc, respectively. Then we

suppose that there exists a one-to-one transformation denoted by

x = x(ξ, t),

which takes points in the computational space at a certain time into the physical space.

Such a mapping is shown in figure 2.1. The aim of an irregular mesh method is to
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Ωc Ω

x(ξ, t)

Figure 2.1: Figure showing the mapping x(ξ, t) from the background computational mesh

Ωc to the physical mesh Ω.

control this mapping to obtain the desired clustering of mesh points and alignment of

the computational cells.

We now consider ways of generating this mapping. One of the most widely used princi-

ples for generating a non-uniform mesh is that of equidistribution. The equidistribution

principle was originally introduced by De Boor [16] for obtaining a discrete approxi-

mation to a function on a non-uniform mesh and involves choosing the mesh points

such that the integral of some measure is equalised over each computational cell of the

mesh. This measure is user-defined and referred to as the monitor function. The moni-

tor function is chosen to reflect the characteristics of the numerical solution or function

being approximated on the mesh. It is required to be positive and may depend on the

solution and/or its derivatives. Therefore a general form of the monitor function in

multidimensions is given by

M = M(x, t, u, ux, uy, . . . ).

where u is the function being approximated. This function u may be a given function

or alternatively may be the solution to a differential equation.

We will now describe the equidistribution principle in one spatial dimension and then

go on to look at multidimensional extensions of it. Without loss of generality we have

taken the the domains Ω and Ωc to be the unit interval [0, 1] in real space, so x, ξ ∈ [0, 1].
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Figure 2.2: Figures illustrating the equidistribution principle. (Left) a function repre-

sented on equally spaced mesh (right) the same function represented using equal arc-

length. Both graphs are computed with 20 computational nodes.

We also have the boundary conditions for the mapping that x(0, t) = 0 and x(1, t) = 1.

Then the continuous form of the equidistribution principle in the integral form of White

[99] is given as

∫ x(ξ,t)

0

M (x (ξ, t) , t) dx = ξ

∫ 1

0

M (x (ξ, t) , t) dx, ∀t. (2.1)

We now give a simple illustration of the equidistribution principle. Consider the function

u(x) =
1

2
− 1

2
tanh

(
20

(
x2 − 1

4

))

defined on the interval x ∈ [0, 1]. We wish to represent this function discretely on a

mesh with only a finite number of mesh points given as

0 ≡ x0 < x1 < · · · < xN−1 < xN ≡ 1.

Figure 2.2 shows the function u represented on two different meshes. The left figure

shows the function on an equally spaced mesh, i.e. such that xi − xi−1 = xi+1 − xi for

i = 1, . . . N − 1. Note that this mesh can be seen as generated from the equidistribution

principle (2.1) with the monitor function taken to be M = 1. Alternatively the right
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figure shows the same function, but this time represented on a mesh generated from the

equidistribution principle with the arc-length monitor function

M =

√
1 +

(
du

dx

)2

.

This choice of monitor function causes mesh points to cluster more in and around regions

of large variation in the function and appears to give a“better” discrete approximation

of the function.

Following Huang, Ren and Russell [49], the equidistribution principle given by (2.1) can

be differentiated with respect to ξ to obtain

M (x (ξ, t) , t)
∂

∂ξ
x (ξ, t) = θ(t), (2.2)

where θ(t) =
∫ 1

0
M (x (ξ, t) , t) dx. The time-independent version of equation (2.2) was

solved numerically by White in [99] to produce an adaptive mesh for the solution of

two-point boundary-value problems. Differentiating the equidistribution principle twice

with respect to ξ gives

∂

∂ξ

(
M (x (ξ, t) , t)

∂

∂ξ
x (ξ, t)

)
= 0. (2.3)

Equations (2.2) and (2.3) are referred to as Quasi-static equidistribution principles

(QSEPs) in [49] since they contain no information about how the computational nodes

are moving. The time-independent version of equation (2.3) was solved numerically by

Baines in [7] using an iterative procedure, although there are queries over stability of

some solvers. Since the monitor function is in general a function of x, equation (2.3)

will be a non-linear equation for the mesh position, so the equation is solved iteratively

in the following manner,

∂

∂ξ

(
M(xp)

∂xp+1

∂ξ

)
= 0,

where p is the iteration counter. Discretising this equation leads to a tridiagonal system

which can be solved using a Jacobi iteration. When this process is used to produce an
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equidistributed mesh to give a good approximation of a given function, the values of the

monitor function are available and this iterative process is usually efficient. However,

when this process is used to generate a mesh for the solution of a differential equation it

is often more computationally efficient to use an interleaving approach where the mesh

and solution are updated alternatively. When an updated mesh has been generated,

interpolation can be used to transfer the solution from the old mesh to the new one.

In [3] Flaherty et al derive a moving mesh equation by differentiating the equidistribution

principle (2.1) with respect to time to obtain

M(x(ξ, t), t) ẋ(ξ, t) +

∫ x(ξ,t)

0

∂M

∂t
dx = ξθ̇(t), (2.4)

where ẋ = ẋ (ξ, t) is the rate of change of the mapping x with respect to time and is

called the mesh velocity. Assuming that ξi = i
N

and differencing equation (2.4) from

ξi−1 to ξi the discrete ODE system

Mi(t) ẋi(t)−Mi−1(t) ẋi−1(t) +

∫ xi(t)

xi−1(t)

∂M

∂t
dx =

1

N
θ̇(t) for i = 1, . . . , N

is obtained. This discretisation was later analysed in [33] to determine whether the

method is stable to linear perturbations. More will be said about this later in this

section.

In [79] Ren and Russell obtain a conservative form of a moving mesh equation by

differentiating (2.2) with respect to time to produce

∂

∂ξ
(M ẋ) +

∂M

∂t

∣∣∣∣∣
ξ fixed

∂x

∂ξ
= θ̇, (2.5)

This equation can be transformed into physical co-ordinates to give

∂

∂x
(M ẋ) +

∂M

∂t

∣∣∣∣∣
x fixed

=
M θ̇

θ
. (2.6)

In [79] Ren and Russell give a physical interpretation of these moving mesh equations

in terminology that is familiar in fluid dynamics literature. If θ̇(t) ≡ 0 then equation
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(2.6) becomes the Euler equation for the “fluid” with density function M(x, t). It is also

noticed that meshes generated using a static re-gridding procedure can be viewed as cor-

responding to the case of steady-flow where the density function M(x, t) is independent

of time and hence ∂M
∂t

= 0.

It is evident that the moving mesh equation of Flaherty et al (2.4) is mathematically

equivalent to the equations of Ren and Russell (2.5) and (2.6). However, Ren and Russell

[79] show that in actual fact the semi-discrete and stability properties of the moving mesh

equations may be different, depending on how the equations are discretised.

In [33, 79, 49] the continuous and discrete properties of equations (2.4) and (2.6) are

analysed. Linear perturbation analysis is applied by introducing the perturbation x→
x + δx, where the perturbation δx is assumed to be much smaller than unity. Then,

provided no additional errors are introduced, equation (2.6) is found to be stable to

linear perturbations provided that the condition

max
0≤ξ≤1

∣∣∣∣
M(x(ξ, 0), 0) θ(t)

M(x(ξ, t), t) θ(0)

∣∣∣∣ ≤ 1

holds. A condition on whether mesh crossing will occur is also derived. It is noted

that if the Jacobian ∂x
∂ξ

of the transformation from the computational to the physical

co-ordinates is positive for all t, then no mesh crossing will occur. Equation (2.6) can

be rearranged to give

d

dt

(
∂x

∂ξ

)
+

1

M

(
∂M

∂t
+ ẋ

∂M

∂x

)
∂x

∂ξ
=

θ̇

M
,

or

d

dt

(
∂x

∂ξ

)
+
Ṁ

M

∂x

∂ξ
=

θ̇

M
.

This is now a first order ordinary differential equation for the Jacobian ∂x
∂ξ

and has the

solution

∂x

∂ξ
(ξ, t) =

θ(t)− θ(0)

M(x(ξ, t), t)
+
M(x(ξ, t), 0)

M(x(ξ, t), t)

∂x

∂ξ
(ξ, 0).
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It can then be shown that that if ∂x
∂ξ

(ξ, 0) > 0 the Jacobian ∂x
∂ξ

(ξ, t) > 0 provided that

d

dt

∫ 1

0

M(x(ξ, t), t) dx ≥ 0.

Huang, Ren and Russell state in [49] that the quantity θ(t) in equation (2.6) is not

convenient for actual numerical simulations. They therefore go on to derive a series

of Moving Mesh Partial Differential Equations (MMPDEs) by eliminating this term.

Firstly, differentiating equation (2.3) with respect to time gives the equation

d

dt

(
∂

∂ξ

(
M (x (ξ, t) , t)

∂

∂ξ
x (ξ, t)

))
= 0,

which upon rearrangement produces the MMPDE

∂

∂ξ

(
M

∂ẋ

∂ξ

)
+

∂

∂ξ

(
∂M

∂ξ
ẋ

)
= − ∂

∂ξ

(
∂M

∂t

∂x

∂ξ

)
. (MMPDE1)

It can easily be seen that moving mesh method equation MMPDE1 does not contain the

troublesome quantity θ(t). Huang et al note that MMPDE1 has a zero speed solution

when ∂M
∂t

= 0 and therefore if the monitor function M(x, t) is independent of time the

mesh will not move. In this sense this term can be seen as the source of the mesh

movement for this MMPDE. They also state that ∂M
∂t

is hard to approximate in real

applications.

Huang et al also develop other MMPDEs which contain a correction term so that the

mesh can be required to satisfy the equidistribution principle at a later time given by

t + τ (0 < τ << 1), where τ is referred to as the relaxation parameter. Using this

methodology MMPDEs 2-4 are derived. The mesh is chosen to satisfy the quasi-static

equidistribution principle (2.2) at a later time, therefore

∂

∂ξ

(
M (x (ξ, t+ τ) , t+ τ)

∂

∂ξ
x (ξ, t+ τ)

)
= 0. (2.7)

Then using the Taylor series expansions
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∂

∂ξ
x (ξ, t+ τ) =

∂

∂ξ
x (ξ, t) + τ

∂

∂ξ
ẋ (ξ, t) +O

(
τ 2
)

and

M (x (ξ, t+ τ) , t+ τ) = M (x (ξ, t) , t) + τ ẋ
∂

∂x
M (x (ξ, t) , t) + τ

∂

∂t
M (x (ξ, t) , t) +O

(
τ 2
)

in equation (2.7) and neglecting the higher-order terms we obtain the MMPDE given

by

∂

∂ξ

(
M

∂ẋ

∂ξ

)
+

∂

∂ξ

(
∂M

∂ξ
ẋ

)
= − ∂

∂ξ

(
∂M

∂t

∂x

∂ξ

)
− 1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
. (MMPDE2)

The last term in MMPDE2 measures how well the mesh satisfies the equidistribution

principle. Also it is noted that even when the monitor function M(x, t) is independent

of t and the mesh is not equidistributed MMPDE2 still moves the mesh towards equidis-

tribution. Huang, Ren and Russell argue that since the forcing term involving ∂M
∂t

is

less important in MMPDE2 it is reasonable to discard it. This leads to two simplified

MMPDEs.

∂2

∂ξ2
(Mẋ) = −1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
(MMPDE3)

∂

∂ξ

(
M
∂ẋ

∂ξ

)
= −1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
(MMPDE4)

It is hoped that this regularisation of the moving mesh equations will produce smoother

mesh trajectories and hence meshes which are more stable.

Moving mesh partial differential equations are also derived based on attraction and

repulsion pseudo-forces [49]. In this work it is assumed that the computational nodes

are attracted to others when a measure of the error is larger than average, while if the

measure is smaller than average the surrounding nodes are repelled. The error measure,

denoted by W , can be chosen to be related to the monitor function in the following way,
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W = M
∂x

∂ξ
.

Anderson in [2] uses the moving mesh PDE

ẋ =
1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
=

1

τ

∂W

∂ξ
(MMPDE5)

to compute the mesh velocity. Notice that this MMPDE moves mesh points towards

regions where the error indicator W is large and when the mesh is equidistributed in

the sense that

M
∂x

∂ξ
= constant,

there will be no mesh movement. In MMPDE5 τ is again a positive relaxation constant.

Adjerid and Flaherty [1] use a method within a finite element framework which can be

seen as a discretisation of

∂2ẋ

∂ξ2
= −1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
(MMPDE6)

in which the monitor function is taken to be an local error estimator. In this manner they

seek to produce a mesh on which the local error is equidistributed. An h−refinement

strategy is also used in conjunction with this moving mesh equation to solve parabolic

partial differential equations.

Huang et al [49] also derive a seventh MMPDE, ignoring spatial smoothing, which can

be shown to correspond to the discrete mesh equation of Dorfi and Drury in [37] given

as

∂

∂ξ

(
M

∂ẋ

∂ξ

)
− 2

∂

∂ξ

(
M

∂x

∂ξ

)
∂ẋ

∂ξ

/
∂x

∂ξ
= −1

τ

∂

∂ξ

(
M

∂x

∂ξ

)
. (MMPDE7)

All the MMPDEs derived in [49] were theoretically analysed to show stability of the

resulting meshes if the MMPDE were solved exactly. This work followed on from earlier
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stability analysis of Flaherty et al [33]. Some of these moving mesh methods were later

analysed in greater detail by Li, Petzold and Ren in [63]. MMPDEs 1-7 have been used

by many authors to produce adaptive meshes for a variety of applications.

So far in this chapter we have described the derivation and analysis of a variety of moving

mesh methods, but up until now no choice for the monitor function has been made for

actual applications. One of the most popular choices is the arc-length monitor function

which was discussed earlier. This monitor function has been found to give good results

for many parabolic problems. However, for real applications with very steep fronts this

monitor function may move more mesh points than are necessary into the layer and

hence over-resolve the feature. Due to this the arc-length monitor function is often

modified and the gradient term may be weighted by a parameter to give

M =

√
1 + α

(
∂u

∂x

)2

. (2.8)

The parameter α allows the magnitude of the monitor function to be reduced in regions

where the gradient is large. In [86] Stockie, Mackenzie and Russell used this type of

monitor function along with MMPDE4 for the adaptive solution of hyperbolic conser-

vation laws. The conservation laws were solved using the high-resolution finite volume

software package CLAWPACK [59] which had to be modified to take into account the

motion of the mesh. The mesh equation and the physical PDE were then solved alter-

nately and this process was iterated until the mesh equation had converged. This work

was based on that of Harten and Hyman [43] who had originally shown how to use a

Godunov scheme on an adaptively moving mesh. The monitor function (2.8) was used

for the solution of the inviscid Burgers equation and the Buckley-Leverett equation us-

ing different choices of the parameter α. The Euler equations of gas dynamics were also

solved on a moving mesh. Two monitor functions were constructed to capture certain

features of the flow. These monitor functions are given by

MS =

√√√√1 + α

(
|vx|

max
x
|vx|

)2

(2.9)

and
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MC =

√√√√1 + α

(
|Sx|

max
x
|Sx|

)2

(2.10)

where v is the velocity of the gas and S is the entropy of the gas. The monitor functions

given by (2.9) and (2.10) were developed to resolve shock and contact discontinuities,

respectively. A convex combination of these two monitor functions was also used to

resolve both contact discontinuities and shock waves.

In early work by White [99] three monitor functions are derived for the solution of two-

point boundary problems. These are the aforementioned arc-length monitor and two

monitors based on error estimates. Monitor functions based on the single step error and

the local truncation error are given by

M = 6

√
1 + ||uxxx||22

and

M = 4

√
1 + ||uxxx||22

respectively. Qiu and Sloan [77] use the monitor function

M =

[
1 + α2 (1− u)2 + β2 (γ − u)2

(
∂2u

∂x2

)2
] 1

2

where α, β and γ are parameters which have to be chosen for the problem. This monitor

function was designed to be used with MMPDE6 for the solution of Fisher’s equation,

given as

∂u

∂t
=
∂2u

∂x
+ u (1− u) ,

once both arc-length and curvature monitors had previously failed to give good results.

The MMPDE approach for the solution of this reaction-diffusion equation was also

compared to the Moving Mesh Differential Algebraic Equation (MMDAE) technique of

16



Mulholland, Qiu and Sloan [71]. In the MMDAE method the mesh is moved through

the QSEP given by (2.3) which will approximately equidistribute the mesh at each time

level. The equation for the mesh is then coupled with the Lagrangian form of the PDE

being solved, which for the PDE ut = Lu is given by

Du

Dt
− ẋ ∂u

∂x
= Lu. (2.11)

The system of Differential Algebraic Equations (DAEs) is then integrated forward in

time using the stiff ODE/DAE solver DASSL [76]. It is found in this work that the

MMDAE leads to a more reliable approach when compared to that of the MMPDE,

this being due to the fact that the temporal smoothing parameter τ in MMPDE6 has

to be chosen carefully to be consistent with the solution being computed. Further

comparisons between the MMPDE and MMDAE approaches are made in [78] for the

solution of Burgers’ equation.

For many applications the monitor function is often modified by a smoothing pro-

cess. Dorfi and Drury [37] and Furzeland et al [40] found that, in order to obtain a

good approximation to a PDE on moving mesh, the mesh should be in some sense

smoothed. They argue that abrupt variations in the mesh can cause deterioration in

convergence and accuracy of the solution being approximated on the mesh and there-

fore mesh smoothness can become an important factor in moving mesh computations.

Also, large variations in the size of the computational cells can cause the system to

become stiff and hence harder to integrate forward in time. Verwer et al [96] proved

that smoothing the mesh will be basically equivalent to smoothing the monitor function

on the mesh. A common method for smoothing the monitor function over the mesh,

given in [48], is

M̃i =

√√√√√√√√

i+p∑
k=i−p

(Mk)
2
(

γ
γ+1

)|k−i|

i+p∑
k=i−p

(
γ
γ+1

)|k−i|

where M̃i is the smoothed value of the monitor function at the ith computational node,

γ is the smoothing parameter and p is a positive integer referred to as the smoothing
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index and determines how many nodes the monitor is smoothed over. This smoothed

monitor function has been used extensively in [86, 77, 78]. Huang and Russell [50] later

analysed MMPDEs when the monitor function had been smoothed by introducing the

PDE

M̃ +
1

λ2

∂2M̃

∂ξ2
= M,

where λ is a positive constant. Boundary conditions are also required for this smoothing

process. Using this type of continuous smoothing process the continuous properties

of the MMPDEs derived earlier are examined and conditions are derived which will

guarantee non-singularity of the resulting mesh.

In one spatial dimension many equations have been derived for moving the compu-

tational mesh. In the next section we will consider moving mesh methods in higher

dimensions. As we will see, many moving mesh methods in higher dimensions started

as static grid generation techniques, but were later extended to produce meshes for the

solution of time-dependent problems. One of the most popular ways for generating an

adaptive mesh in one-dimension was that of the equidistribution principle. However we

will see that this principle does not easily extend into higher dimensions.

2.2 Moving Mesh Methods in Higher Dimensions

2.2.1 Grid Generation

We begin this section by outlining some popular methods for generating a static mesh

in multidimensions. We will then go on to explain how these static mesh generation

techniques may be extended to cope with time-dependent problems. Perhaps one of the

earliest methods for generating a mesh in multi-dimensions is that of Winslow [101].

The ideas behind this method provided a setting for many mesh generation techniques

that were to follow.

The main idea behind Winslow’s method is to formulate the mesh generation problem

as a potential problem where the mesh lines behave as equipotential lines. The equipo-

tential lines can then be used to define the mesh. (The main body of [101] was devoted
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to the solution of quasi-linear PDEs on triangular meshes, with only the appendix re-

lating to the mesh generation problem.) The method is as follows. Let two sets of

equipotentials defined as ξ = ξ(x, y) and η = η(x, y) satisfy the Laplace equations

∇2ξ = 0 (2.12)

∇2η = 0 (2.13)

in some region Ω. The solution to equations (2.12) and (2.13) gives the equipotentials

ξ = constant and η = constant from which a mesh can be constructed by considering the

intersection of these lines. The desired mesh can be obtained numerically from inverting

the mappings to give x = x(ξ, η) and y = y(ξ, η). Using the Jacobian determinant

J = xξ yη − xη yξ equations (2.12) and (2.13) can be transformed to give

αxξξ − 2β xξη + γ xηη = 0 (2.14)

α yξξ − 2β yξη + γ yηη = 0 (2.15)

where

α = x2
η + y2

η

β = xξ xη + yξ yη

γ = x2
ξ + y2

ξ .

Therefore the solutions to the inverse Laplace equations (2.14) and (2.15) give the co-

ordinates x, y of a given equipotential directly.

These equations were discretised using a finite-difference method and then solved using

an iterative successive over-relaxation procedure. The details of this algorithm can be

found in the main section of [101]. This method was originally developed to generate

triangular meshes, but may also be used to generate meshes of quadrilateral cells.

A nice property of Winslow’s method is that the resulting mesh can in some sense be seen

as smooth since the mapping from the background domain into the physical one comes

from Laplace’s equation. However one problem with the method is that the structure
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of the interior mesh depends entirely on the boundary of the domain. Therefore it is

difficult to control the mesh point locations locally for arbitrarily shaped domains. It

should also be noted that there is no explicit control over the mesh through the use

of a function, although a modification was made to Winslow’s method to produce the

variable diffusion method [102]. In this method equations (2.12) and (2.13) are modified

to include a weight function w which can be used to control the adaption. The modified

equations are given as

∇ ·
(

1

w
∇ξ
)

= 0 (2.16)

∇ ·
(

1

w
∇η
)

= 0. (2.17)

The main use of Winslow’s method was to produce meshes which were adapted to

particular domains. Thompson, Thames and Mastin in [92] used Winslow’s method to

generate body-fitted meshes around multiple curvilinear boundaries. In particular they

generated meshes around multiple airfoil shapes.

Also in [92] Thompson et al extended the method of Winslow to allow some control

over the position of the interior mesh points. They introduced control functions as

inhomogeneous terms in the Laplace equations to give control over the mesh. Therefore

their mesh equations were given as

∇2ξ = P (2.18)

∇2η = Q (2.19)

where P and Q are called mesh control functions. Equation (2.18) and (2.19) are often

referred to as the TTM mesh generator after its developers.

Brackbill and Saltzman [18] developed a mesh generator that attempted to control

various properties of the mesh, such as smoothness, concentration and orthogonality.

In [18] Brackbill and Saltzman show that Euler-Lagrange variational equations for the

minimization of the functional

IS =

∫

Ω

(
|∇ξ|2 + |∇η|2

)
dΩ (2.20)
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are the Laplace equations given by (2.12) and (2.13). The concentration and orthogo-

nality of the mesh lines was incorporated into the method by adding extra terms to the

variational principle. Control on the orthogonality of the mesh can be included through

the use of the functional

IO =

∫

Ω

(∇ξ · ∇η)2 dΩ.

This functional is chosen since when the mesh is orthogonal ∇ξ ·∇η = 0, the functional

is minimised. A Jacobian weight function may also be included in functional IO so

that larger computational cells will be more strongly persuaded to be orthogonal. The

concentration of the mesh is then controlled by introducing the functional

IC =

∫

Ω

w(ξ, η) J dΩ,

where J is the Jacobian determinant as before and w(ξ, η) is a weight function which

causes the mesh cells to be small where it is large. The mesh is then generated by taking

a linear combination of the three functionals in the following manner.

I = λS IS + λO IO + λC IC (2.21)

The properties of the resulting mesh can now be controlled by the choice of the constants

λS, λO and λC . The effect of each term in the functional (2.21) was also shown in [18] for

certain numerical examples. The method was also investigated for the adaptive solution

of a steady PDE.

Brackbill [17] later introduced a directional control functional to generate a mesh for

the solution of unsteady magnetohydrodynamic flow in two spatial dimensions.

In [51, 52] Huang and Russell present a mesh adaption functional which can be seen as

a general form of the Winslow functional (2.20). This functional, in two dimensions, is

given as

I[ξ, η] =

∫

Ω

(
∇ξTG−1

1 ∇ξ +∇ηTG−1
2 ∇η

)
dΩ, (2.22)
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where G1 and G2 are some given symmetric positive definite matrices which are re-

ferred to as the monitor matrices. The functional gives the associated Euler-Lagrange

equations

∇ ·
(
G−1

1 ∇ξ
)

= 0, (2.23)

∇ ·
(
G−1

2 ∇η
)

= 0. (2.24)

(cf. (2.16), (2.17) ). When the monitor matrices G1 = G2 are equal to the identity

matrix then it is straightforward to see that the functional of Huang and Russell (2.22)

reduces to that of Winslow. Monitor matrices are also given which cause (2.22) to reduce

to Brackbill’s directional control functional.

The reason for the choice of the functional is due to its close relation to harmonic maps.

The Euler-Lagrange equations (2.23) and (2.24) together with appropriate boundary

conditions will define a harmonic map provided that the boundary of the computational

domain Ωc is convex. In [38] Dvinsky proves that the map will be guaranteed to exist

and be unique if G1 = G2 = G, say. It is unclear whether this result extends to when

G1 6= G2. Dvinsky [38] also notes that since no constraint on the monitor matrix G is

required to guarantee invertibility of the harmonic map, the monitor matrices may be

used purely for mesh adaption.

Azarenok [5] uses the functional

I [x, y] =

∫

Ωc

(
x2
ξ + x2

η

)
(1 + f 2

x) +
(
y2
ξ + y2

η

) (
1 + f 2

y

)
+ 2fxfy (xξyξ + xηyη)

(xξyη − xηyξ)
√

1 + f 2
x + f 2

y

dΩc,

which defines a harmonic map from the computational space Ωc to the physical space Ω.

This functional tends to cluster mesh points where the gradient of the given function f ≡
f (x, y) is large. In [5] this functional is used for the solution of hyperbolic conservation

laws in one and two spatial dimensions and the function f is taken to be one of the

solution variables.

More recently, work by Huang [47] has used local error distributions to derive a functional

for generating an adaptive mesh. He states that it is unclear whether any of the methods

described so far for generating an adaptive mesh will produce an optimal mesh in the
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sense of minimising the actual error in the solution. Huang observes that often the local

error distribution for a given discretisation can be written in the form

E (x) =

√
dξT J T GJ dξ,

where G is an n × n symmetric positive definite matrix, dξ = ξ − ξc where ξc is an

arbitrary point, and J is a Jacobian matrix of the transformation from the background

to physical domain. Here n denotes the spatial dimension of the problem. Huang then

states that a perfect mesh would have this error distribution equidistributed over it and

therefore would have

A ≡ J −1 G−1 J −T = c I, (2.25)

for some constant c. It is then stated that necessary conditions for (2.25) are

λ1 = λ2 = · · · = λn−1 = λn (Isotropy),

√∏

i

λi = constant (Uniformity),

where λi for 1 ≤ i ≤ n are the eigenvalues of the matrix A, are true. By satisfying these

conditions Huang shows that the functional

I [ξ] =
1

2

∫

Ω

√
g

(∑

i

(∇ξi)T G−1∇ξi
)n

2

dΩ,

where g is the determinant of the matrix G, can be used to control the isotropy of the

mesh and the functional

I [ξ] =

∫

Ω

√
g(

J
√
g
)q dΩ,

where J is the determinant of the Jacobian J , controls the uniformity of the mesh.

Here q is a constant greater than unity. A combination of these two functionals is used

in practice to give emphasis to either the mesh isotropy or uniformity. In [28] Cao et al

compare Huang’s method for generating an adaptive mesh with other commonly used

methods such as the Harmonic map method and Winslow’s variable diffusion method.
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2.2.2 Links with Equidistribution

In one dimension we considered various moving mesh equations which were derived from

the equidistribution principle. The equidistribution principle in one-dimension (2.1) can

also be written as the Euler-Lagrange equation for minimising the functional

I[ξ] =

∫

Ω

1

M(x)

(
∂ξ

∂x

)2

dx. (2.26)

However the multidimensional extension of this minimisation principle in the form (2.26)

is not well defined as it would require that we have

∂ξ

∂x
= M (x) ,

where M (x) is now an n by n matrix which controls the various properties of the

mapping. This system cannot be solved as it is, since it is over-determined. Therefore

Knupp uses the least-squares principle to determine the mapping in the following way

I[ξ] =

∫

Ω

∣∣∣∣
∣∣∣∣
∂ξ

∂x
−M (x)

∣∣∣∣
∣∣∣∣
2

F

dΩ

where || · ||F is the Frobenius norm of the matrix.

Baines in [7] considered a natural generalisation of the one dimensional equidistribution

principle. The equation

∇ζ · (M (n) ∇ζn) = 0, (2.27)

where n is a co-ordinate along the direction of the gradient of the solution, ∇u, and

ζ = (ξ, η), is employed to move the mesh points. This equation for the mesh reduces

to the one dimensional equidistribution principle perpendicular to ∇u. Baines also

notes that if n in equation (2.27) is replaced by either x or y the useful mesh adaption

technique

∇ζ · (M ∇ζx) = ∇ζ · (M ∇ζy) = 0 (2.28)
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is obtained. These equations using the arc-length monitor function is used to generate

meshes adapted to given functions using either Dirichlet or Neumann boundary condi-

tions. As with the one-dimensional approach highlighted in [7], the mesh and solution

are solved in an iterative manner and it is found that the resulting mesh does not strictly

equidistribute the monitor function. However, the method is found to cluster points in

regions of large M and therefore produces reasonably convincing meshes.

All the approaches detailed in two dimensions so far have only been described for gen-

erating a single adaptive mesh. However, when time-dependent problems are solved, an

adaptive mesh is required at each time step. There are two main ways of doing this. The

first is to simply use the static mesh generator at each time level and therefore produce

a series of meshes. Unfortunately this is not an efficient procedure in general and often

the mesh can change quite abruptly in time. Therefore, in an attempt to produce a

smoother transition of the mesh in time, Huang and Russell [51, 52] conjecture that one

way to minimise a given functional I is to follow the steepest descent direction given by

the first derivative of the functional. Thus the gradient flow equations

∂ξ

∂t
= −∂I

∂ξ
∂η

∂t
= −∂I

∂η

are used since the limit as t → ∞ is the Euler-Lagrange equations for minimising the

given functional. However in practice these parabolic gradient flow equations are regu-

larised by introducing the relaxation parameter τ so that the Euler-Lagrange equations

for the functional are satisfied when τ → 0. These modified gradient flow equations are

given by

∂ξ

∂t
= −P

τ

∂I

∂ξ
∂η

∂t
= −P

τ

∂I

∂η

where P is a preferred direction for the descent. It was highlighted in [52] that when the

functional being minimised is the equidistribution principle given by (2.26), the method

reduces to the one dimensional MMPDE approach. For particular choices of the function
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P MMPDEs 3-6 can be obtained. For example MMPDE5 from the previous section can

be obtained if we choose P = M 2
(
∂ξ
∂x

)−2
.

With suitable choices of the function P , which is given in terms of the determinants of

the matrices G1 and G2, the multidimensional MMPDEs become

∂ξ

∂t
= − 1

τ
√
g1

∂I

∂ξ
,

∂η

∂t
= − 1

τ
√
g2

∂I

∂η
,

where g1 = |G1| and g2 = |G2|. If the functional I is given as (2.22) then the MMPDEs

are given as

∂ξ

∂t
= − 1

τ
√
g1

∇ ·
(
G−1

1 ∇ξ
)
,

∂η

∂t
= − 1

τ
√
g2

∇ ·
(
G−1

2 ∇η
)
. (2.29)

In practice it often simpler to solve this MMPDE by interchanging the dependent and

independent variables as was done with Winslow’s method described earlier in this

section. On doing this the PDEs given by (2.29) become

∂x

∂t
= − xξ

τ
√
g1 J

{
+
∂

∂ξ

[
1

J g1

(
xTηG1xη

)]
− ∂

∂η

[
1

J g1

(
xTξ G1xη

)]}

− xη
τ
√
g2 J

{
− ∂

∂ξ

[
1

J g2

(
xTηG2xξ

)]
+

∂

∂η

[
1

J g2

(
xTξ G2xξ

)]}
. (2.30)

Suitable boundary conditions for this MMPDE are also required to define the co-ordinate

mapping. There are many ways in which the boundary conditions may be prescribed.

Firstly the MMPDE may be supplemented with Dirichlet conditions where the mesh

points on the boundary are held fixed. When all the mesh adaption is occurring inside

the domain this technique can produce satisfactory results. However when the adaption

is occurring at the boundary it is necessary for the mesh points to be allowed to move

along it. Secondly, Neumann boundary conditions could be used, but this type of

condition has been found to be not very robust and can lead to a non-smooth mesh

[46]. Thirdly, a lower dimensional moving mesh equation could be solved along the
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boundary to prescribe the required mesh boundary concentration. So for example, for

the two-dimensional mesh adaption a one-dimensional moving mesh equation could be

solved along the boundary. Several formulations of this boundary equation have been

proposed by Huang [46] and Huang and Russell [53]. One commonly used equation for

the boundary mesh distribution is

∂s

∂t
=

1

τ

(
M

∂s

∂χ

)−2
∂

∂χ

(
M

∂s

∂χ

)
,

where M is the matrix G projected on to the boundary of the domain, χ is the arc-length

variable and s is the arc-length along the boundary segment.

In [52] Huang and Russell use this MMPDE approach to solve partial differential equa-

tions of the form

ut = f (t, x, y, u, ux, uy, uxx, uyy) . (2.31)

The mesh PDE (2.30) and the physical PDE (2.31) have to be solved either simultane-

ously or alternately. In one dimension moving mesh methods often comprise of updating

the solution and mesh simultaneously; however this process is less straightforward in two

dimensions and therefore Huang and Russell use the Method Of Lines (MOL) approach

of integrating the mesh and solution alternately in time. The procedure for updating

the solution is now illustrated.

1. Given the solution un to the PDE, the mesh xn and the time-step ∆tn at tn,

compute the monitor matrices G1 = G1 (tn,xn, un) and G2 = G2 (tn,xn, un).

2. Compute the new mesh xn+1 by integrating the MMPDE given by (2.30) forward

in time from t = tn to t = tn + ∆tn using xn as an initial mesh and keeping Gn
1

and Gn
2 constant in time.

3. Compute the physical solution un+1 by integrating the physical PDE forward in

time from t = tn to t = tn + ∆tn using

x = xn +
t− tn
∆tn

(
xn+1 − xn

)

27



and

ẋ =
xn+1 − xn

∆tn
.

4. Choose ∆tn+1 as the next time-step size predicted during the physical PDE inte-

gration.

This solution procedure is then used to generate a mesh around a NACA0012 airfoil

configuration and also to solve Burgers equation and a model problem in combustion

theory.

Up until now nothing had been said about the choice of the monitor matrices. The use of

a variety of monitor matrices were discussed in [26] by Cao et al for the functional (2.22).

They consider the case when the monitor matrices are identical, i.e. G = G1 = G2 and

use an eigendecomposition of G given as

G = λ1 v1 v
T
1 + λ2 v2 v

T
2 ,

where v1 and v2 are the normalised eigenvectors corresponding to the eigenvalues λ1 and

λ2. They find, using this eigendecomposition and a Greens function analysis for elliptic

PDEs, that the eigenvectors and eigenvalues determine the mesh directions and strengths

of the mesh concentration. In particular the mesh concentrates points in regions of the

domain where the eigenvalues change rapidly. Once the eigenvector v1 has been suitably

chosen the second eigenvector is normally chosen to be orthogonal to v1, i.e. v2 = v⊥1 .

The eigenvalues λ1 and λ2 are then chosen to have variations in the v1 and v⊥1 directions

respectively. In this sense the mesh adaption in the directions of the eigenvectors is

determined by the ratio of the two eigenvalues λ1

λ2
. Generally speaking, the smaller this

ratio the larger the adaption in the v1 direction. Many solution dependent choices of

the monitor matrix are discussed in [26]; for example one such choice is to have

v1 =
∇u
|∇u| , v2 = v⊥1 , λ1 =

√
1 + |∇u|2

which will cause mesh adaption where there are large variations in the solution u. A

choice for the second eigenvalue also has to be made. One choice is to let λ1 = λ2 which
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will cause G = λ1I2, where I2 is a 2 × 2 identity matrix. This choice is equivalent to

using Winslow’s variable diffusion functional with a particular choice of the weighting

function. A second choice is λ2 = 1
λ1

which will result in the Harmonic map method

[38]. A third choice for the second eigenvalue is λ2 = 1 and this makes the monitor

matrix G =
(
I2 +∇u∇uT

) 1
2 which can be seen as a multidimensional extension of the

familiar arc-length monitor function.

In [12] Beckett, Mackenzie and Robertson use the monitor matrix

G =


1 +

µ1√
µ2 (x− x∗)

2 + 1


 I2,

for the adaptive solution of Stefan problems, to cluster mesh points around an evolving

phase change interface. Here x∗ is a point on a phase front which is closest to x, and µ1

and µ2 are constants.

Tang and Tang [88] solve hyperbolic conservation laws in one and two spatial dimensions

using a variational approach to generate the mesh. Their approach, based on work by

Li, Tang and Zhang [62], is to solve the PDE on a static mesh using an existing PDE

solver and then to redistribute the mesh points to obtain a better approximation. The

mesh redistribution is performed iteratively and the solution is interpolated between

meshes using a conservative method. Tang and Tang observe that the mesh equations

(2.30) are more complicated than the Euler-Lagrange equations given by (2.29) and the

solution of these equations requires more computational effort. Therefore they use the

functional of Ceniceros and Hou [31]

I [x, y] =
1

2

∫

Ωc

(
∇ζx

T G1∇ζx+∇ζy
T G2∇ζy

)
dΩc

to generate an adaptive mesh where ∇ζ =
(
∂
∂ξ
, ∂
∂η

)T
. Notice that if G = M I2 then

the Euler-Lagrange equations for this functional are the same as the equations (2.28)

derived by Baines [7]. Similar monitor functions to those used by Stockie, Mackenzie

and Russell [86] are employed to produce adaptive meshes for the one dimensional Euler

equations. However for two-dimensional calculations the monitor function G = ω I2 is

used where
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ω =
√

1 + α
(
ρ2
ξ + ρ2

η

)
.

Here ρ is the density of the gas being modelled and α is a constant. It should be noted

that when the domain Ωc is non-convex the grid generation technique of Ceniceros and

Hou [31] will not in general be able to produce a suitable mesh in the physical domain.

The method of Tang and Tang [88] is in contrast to Arbitrary Lagrangian-Eulerian

(ALE) methods, where instead of interpolating the solution between adaptive meshes

and then using a standard PDE solver, the PDE is solved in a moving reference frame.

Before describing the ALE method we will firstly introduce the Eulerian and Lagrangian

methods.

2.2.3 Links with Fluid Dynamics

The classical Lagrangian method is a technique for moving the computational mesh in

fluid problems in which the velocity of the nodes is taken to be equal to the actual fluid

velocity being modelled. Therefore we have that the mesh velocity is given by

ẋ = v,

where v is the velocity of the fluid. This method has many advantages, but unfortunately

has some serious downsides. The Lagrangian method maintains good resolution of

compressions and expansions in the solution and also preserves multi-material interfaces

in the fluid well. However, in higher than one spatial dimension the Lagrangian mesh

can quickly become singular for computations of compressible flow. Meshes become

more and more skewed when vorticity and shear is present in the flow and can become

singular in finite time.

In the Eulerian method the mesh is held fixed in time and the fluid which is being

modelled moves through the mesh. Thus the mesh velocity is taken to be ẋ = 0. Due

to this, Eulerian meshes do not tangle and become singular. But one problem with

numerical solutions calculated on Eulerian meshes is that they suffer from excessive

diffusion, and also material interfaces are hard to maintain.
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The aim of the Arbitrary Lagrangian-Eulerian (ALE) method of Hirt, Amsden and

Cook [45] is to try to combine the best components of the Eulerian and Lagrangian

methods. The main idea behind the ALE methodology is that the mesh movement does

not have to be constrained to be either Eulerian or Lagrangian and that it can be chosen

arbitrarily to improve accuracy and robustness of the solution procedure. Once the mesh

movement has been chosen the partial differential equation is solved in a moving frame

of reference. For example the integral conservation of mass equation

d

dt

∫

Ω(t)

ρ dΩ +

∫

Ω(t)

∇ · ρv dΩ = 0

in a general reference frame moving with velocity ẋ becomes

d

dt

∫

Ω(t)

ρ dΩ +

∫

Ω(t)

∇ · ρ (v − ẋ) dΩ = 0.

where ρ is the density of the fluid being solved. ALE methods have been successfully

used to solve a variety of applications.

In ALE simulations the mesh velocity is often constrained to satisfy the Geometric Con-

servation Law (GCL). Thomas and Lombard [91] considered the solution of conservation

laws on moving grids and conjectured that oscillations and instabilities in numerical so-

lutions can occur if geometric quantities, such as cell volumes and edge velocities, are

not approximated in a consistant manner. They argued that the the numerical discreti-

sation of these geometric quantities should satisfy a relevant conservation law and that

this conservation law comes from the consideration that a constant flow field should not

be affected by the motion of the mesh. When a constant flow field is substituted into

the ALE form of a conservation law the condition

d

dt

∫

Ω(t)

dΩ =

∫

Ω(t)

∇ · ẋ dΩ

is obtained. This is called the GCL since it deals purely with the geometric properties

of the spatial region Ω(t) and is often referred to as the space conservation law [35].

The GCL has been shown to be a necessary but not sufficient condition to ensure good

numerical solutions on dynamically moving meshes [39].
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An interesting method has recently been derived by Cao et al [27] which can be regarded

as a generalisation of the GCL. This method is therefore aptly named the GCL method

and has a close relationship with the Deformation map method which will be described

shortly. The GCL method will be discussed in greater detail in the next chapter.

The deformation map method of Liao and Anderson [64] is a technique for generating an

adaptive numerical mesh which can be used for grid generation or for the adaptive solu-

tion of partial differential equations. The method is based on a theorem in differential

geometry, due to Moser [70] and Dacorogna and Moser [34]. The method is derived from

the study of volume elements of a compact Riemannian manifold to prove existence of

C1 diffeomorphisms with specified Jacobian. The mesh velocity is calculated by solving

the equation

ẋ =
1

M
∇φ (2.32)

in some spatial domain. Here φ is a velocity potential coming from the solution of the

equation

∇2φ = −∂M
∂t

(2.33)

and M is the usual monitor function. A suitable boundary condition for the problem is

also required and is given as

∂φ

∂n
= 0, (2.34)

where n is the outward normal to the boundary of the domain. In this method the

monitor function may be chosen so as to control the Jacobian of the transformation. In

[82, 67] the monitor function is chosen by defining a distance function d which measures

the distance to some feature of the numerical solution. The monitor function is then

explicitly given as a function of d. One drawback to this technique for choosing the

monitor function is that some sort of a priori knowledge of the solution is required.

This technique for defining the monitor function has more recently been used by Liao et
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al [65] in conjunction with a technique based on level-sets [83] for the solution of Stefan

problems.

In [66] the steady Euler equations were solved using a monitor function designed for the

solution of steady state equations. This is done by defining a monitor function M(x)

which is dependent only on the spatial variable and targets how the mesh should be

distributed at steady state. A pseudo-time-dependent monitor function is then given in

terms of the spatially dependent monitor function M(x) by

M(x, t) = (1− t) + tM(x)

for 0 < t < 1. The moving mesh equations are then integrated forward in pseudo-time

until t = 1 to give the steady state mesh. The spatial dependent monitor function in

[66] was defined to be

M(x) = 1 + |∇p|2

where p is the pressure of the gas being modelled.

2.2.4 Moving Finite Elements

Another velocity-based method is that of Moving Finite Elements (MFE) which was

developed by Miller and Miller [69, 68]. The MFE method was originally used to ap-

proximate solutions of time-dependent partial differential equations of the form

ut = Lu

which had steep moving fronts. The main concept behind MFE was to minimise the

L2-norm of the residual of the differential form of the moving PDE (2.11). This can be

written in the form

min
Ẋ,DU

Dt

∫

Ω

(
DU

Dt
− Ẋ · ∇U − LU

)2

w dΩ, (2.35)
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where w is a weight function and U and Ẋ are linear finite element approximations given

as

U =
∑

j

Uj wj Ẋ =
∑

j

Ẋj wj

and here wj are the standard nodal finite element basis functions. In the original version

of MFE the weight function in (2.35) was taken to be w ≡ 1. However this weight

function may also be chosen to be solution dependent, so it may depend on the solution

u and or its derivatives. One common choice for the weight function is w ≡ 1√
(1+|∇U |2)

.

This choice of the weight function leads to Gradient Weighted Moving Finite Elements

(GWMFE) [29, 30]. The MFE minimisation is done by deriving the normal equations

∫

Ω

(
DU

Dt
− Ẋ · ∇U − LU

)
w dΩ = 0 (2.36)

∫

Ω

(
DU

Dt
− Ẋ · ∇U − LU

)
∇U w dΩ = 0 (2.37)

for the minimisation over DU
Dt

and Ẋ respectively. It is easily seen that these are in

fact weak forms of the PDE being solved. In certain circumstances the mesh velocity

obtained from the MFE method can be shown to be approximately Lagrangian [6]. The

main feature of the MFE method is that the movement of the mesh tries to minimise the

weighted L2-norm of the residual of the discrete PDE being solved. One of the problems

with the MFE method is that the matrices which are obtained from (2.36) and (2.37)

can become singular. Therefore for some problems careful regularisation of the method

is required to obtain satisfactory results. This regularisation process normally consists

of adding penalty terms onto the residual norm, and therefore the normal equations, to

prevent them becoming singular.

For most problems the techniques described so far in this chapter can lead to good

results for the numerical solution to partial differential equations on adaptively moving

meshes. However, for some problems unless extra care is taken these methods can lead

to poor results and often spurious solutions [23]. Therefore there has been recent interest

34



in geometric methods which are designed to inherit some or all of the structure of the

system being solved.

2.3 Geometric Integration

The aim of geometric integration is to devise discrete approximations to continuous

systems of differential equations which preserve key features of the system. An excellent

review article discussing geometric integration and its applications can be found in [25].

There has been a lot of research interest in the use of moving mesh methods for the

solution of partial differential equations which exhibit scale invariant behaviour and

self-similar solutions. One particular PDE which has been solved using this type of

geometric integration approach is the Porous Medium Equation (PME). In [21] Budd

and Collins construct a moving mesh discretisation of the PME. The aim of the work

is to produce discrete solutions to the PME which have the same asymptotic behaviour

as solutions to the underlying continuous problem. This is done by ensuring that the

numerical scheme inherits the properties of the continuous equation. In particular the

scheme is derived to have the same conservation properties and also the same invariants.

In their method the PME is semi-discretised using a finite difference MOL technique

and then the computational mesh is moved to preserve discrete conservation of mass

in the numerical solution. The resulting discrete system is then shown to have discrete

invariants which are analogous to the invariants in the continuous problem. They are

also able to show that the discretisation error is independent of time, which is in contrast

to non-invariant moving mesh techniques for which the errors will grow as the spatial

domain expands and the spatial step size increases. The PME is again considered in

[22] by Budd et al. The notion of scale invariance and self-similar solutions will be

introduced later in chapter 4 with specific reference to the porous medium equation.

The PME is also solved by Budd and Piggott [24, 25] again using a moving mesh

technique. They argue that the monitor function used in the moving mesh equation

MMPDE6 should be in some sense scale invariant when applied to PDEs exhibiting

scale invariant behaviour. Therefore they use the so called mass monitor function
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M = u.

This monitor function also ensures that the mesh moves to discretely conserve the mass

of the solution.

Budd, Huang and Russell in [23, 25] consider the adaptive solution of PDEs of the form

ut = uxx + f (u) , (2.38)

with particular reference to the cases when f (u) = up where p > 1 is a parameter and

f (u) = eu. It can be shown that when the initial condition u0(x) for these problems

is “sufficiently large” the solution to the PDE can blow-up in finite time. This type of

behaviour can be hard to approximate using traditional fixed grid methods since when

the spatial size of the singularity decreases to below the size of the fixed spatial step

size the accuracy will deteriorate significantly and in certain circumstances the blow-up

feature of the solution may be completely missed by the method. Budd et al construct

a moving mesh method using MMPDE6 with the monitor function

M (u) = up−1

for the case when f (u) = up. This monitor function is chosen because it makes the

mesh equation scale invariant to the scale inherent in the underlying continuous prob-

lem. By using a moving mesh method for the solution of blow-up problems Budd et al

cluster mesh points inside the blow-up region and hence capture this type of phenomena

accurately.

Budd et al in [20, 25] apply similar techniques used for the blow-up problem to the

solution of the non-linear Schrödinger equation. The non-linear Schrödinger equation is

given as

i
∂u

∂t
+∇2u+ |u|2u = 0.
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This equation was solved using a moving mesh method in radial co-ordinates using

scale invariant techniques to define a suitable monitor function. They consider the scale

invariant monitor functions M = |u|2 and M =
√
α|u|4 + β |ur|2 where r is the radial

co-ordinate and α and β are constants. The mesh was then moved using MMPDE6. The

blow-up problem for the non-linear Schödinger equation is considered and the moving

mesh calculations are found to give accurate predictions of the blow-up region.

In [13] Blake used geometric techniques to solve a variety of parabolic partial differential

equations. The moving mesh method used is primarily constructed for the solution of the

PME to produce a method which conserves the mass of the solution locally in a discrete

sense. The moving mesh equation is discretised using a finite difference method and

integrated forward in time using a Backward Differentiation Formula (BDF) method.

The first monitor function that was used was the mass monitor M = u due to the scale

invariance of this monitor. This monitor function was found to produce good results for

the PME when the solution gradient was not too large. However, the method is found

to give insufficient resolution of steep moving fronts, therefore the monitor function was

altered in an attempt to increase the accuracy of the method. The gradient monitor

function

M = |ux|

was chosen and led to a more accurate solution. The moving mesh method was also

coupled with an h-refinement method.

Until now all of the techniques described so far, for solving PDEs with scale invariant

properties, have only been solved in one spatial dimension. In Blake [13] the solution of

the PME is considered in more than one spatial dimension. However the moving mesh

equation was found to be a under-determined system in higher spatial dimensions and

the solution technique was ill-conditioned. Therefore the method gave limited success in

multi-dimensions. Blake [13, 14] also sucessfully considered the blow-up equation (2.38)

and a parabolic semi-conductor problem in one-dimension.

A variety of techniques have been illustrated in this chapter for the solution of par-

tial differential equations in both one and two spatial dimensions. Many of the ideas
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introduced will be used in the following chapters for the adaptive solution of PDEs.
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Chapter 3

A Moving Mesh Method

In this chapter, following Baines, Hubbard and Jimack [8, 9], we will present a novel

moving mesh method for the adaptive solution of partial differential equations. The

method is based on many of the ideas that have been presented in the previous chapter

and in particular the concept of a monitor function. In this chapter we will follow

the development of the method defined by an initial so-called conservation-of-monitor-

function principle. The method will be derived in a general framework, that is in multiple

spatial dimensions and for any given monitor function. From this initial conservation

principle we will construct a method in which the velocities of the computational nodes

in the mesh are sought and from these velocities we will be able to generate a new mesh

by using a simple time-stepping algorithm.

The link between the method derived here and the deformation map method of Liao

and Anderson [64] will be highlighted in this chapter and also the relationship with the

Geometric Conservation Law [91] will be illustrated.

Specific examples of the moving mesh method will follow in subsequent chapters for

parabolic and hyperbolic partial differential equations and for two different monitor

functions.

3.1 A Conservation Principle

We begin by introducing a monitor function which is taken to be positive definite (M >

0). This function will be dependent on the problem that we are solving, but in general

will depend on the temporal variable t, the spatial variables x and the solution of the
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partial differential equation u and its partial derivatives with respect to x. Therefore a

general form of the monitor function in multiple spatial dimensions is taken to be

M ≡M(t,x, u, ux, uy, . . . ).

As stated before, the monitor function reflects the difficulty in approximating the so-

lution to the underlying partial differential equation being solved and in particular is

often designed to resolve key features of the solution.

The movement of a control volume Ω(t) is now defined to satisfy the conservation-of-

monitor-function principle

∫

Ω(t)

M dΩ = constant in time. (3.1)

The conservation principle (3.1) states that the total integral of the monitor function

should be equal to a constant for all time, as a result of which the monitor function

induces a motion on the control volume such that (3.1) holds.

In general there may not be a motion such that the integral of a general monitor function

will satisfy (3.1) since (3.1) may be inconsistent with the solution of the problem being

solved. Therefore, so as to not restrict our choice of the monitor we need to be able to

modify a given monitor so that (3.1) is true. Hence we shall scale the given monitor

function in such a manner that (3.1) always holds for a modified monitor function M̃ .

There are two ways of generating this scaled monitor function M̃ . Firstly we can use a

normalisation process so that the new transformed monitor function is given by

M̃ =
M

θ(t)
,

where

θ(t) =

∫

Ω(t)

M dΩ. (3.2)
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(cf. equidistribution (2.1)). We then have that

∫

Ω(t)

M̃ dΩ =

∫

Ω(t)

M

θ(t)
dΩ = 1

which is certainly constant in time, for any problem. However, it is then necessary to

solve an extra equation for θ (t).

Alternatively, we may have some a priori information about how certain key quantities,

such as the solution, scale in a given problem and from this we may be able to scale the

monitor function M so that (3.1) holds. One possible source of this information comes

from scale invariance arguments in geometric integration and it is this approach that

will be used in the solution of the porous medium equation in the next chapter. For

now we will assume that the monitor function M satisfies (3.1).

We now wish to generate nodal velocities for the moving mesh method defined by the

conservation principle given by (3.1). This can be done by requiring the computational

nodes to move in such a manner as to satisfy the conservation principle in each com-

putational cell. Since the conservation principle contains no explicit information about

how the control volume Ω(t) is moving, we differentiate (3.1) with respect to time to

extract this information, giving

d

dt

∫

Ω(t)

M dΩ = 0. (3.3)

Equation (3.3) can be seen as a Lagrangian form of a conservation law for some fluid in

which the integral of the monitor function M (density) is conserved. We now transform

(3.3) to an Eulerian form which explicitly contains the velocity using the Reynolds

Transport Theorem [72]. If M is a differentiable scalar field we have that

d

dt

∫

Ω(t)

M dΩ =

∫

Ω(t)

∂M

∂t
dΩ +

∮

∂Ω

M ẋ · dΓ

=

∫

Ω(t)

(
∂M

∂t
+∇ · (M ẋ)

)
dΩ = 0 (3.4)

holds, where ẋ is the velocity of the moving frame of reference Ω(t). Equations (3.3)

and (3.4) can be interpreted as forms of conservation law for a pseudo-fluid which has
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the monitor function as its pseudo-density function and is moving with pseudo-velocity

ẋ. Since Ω(t) is arbitrary we have the strong form of (3.4) given as

∂M

∂t
+∇ · (M ẋ) = 0. (3.5)

The term ∂M
∂t

in (3.4) can be written in terms of the partial differential equation that

we are solving. For example, if we are solving the PDE given by ut = Lu and M is a

function of both u and ∇u then

∂M

∂t
=

(
∂M

∂u
+

∂M

∂ (∇u)
· ∇
)
∂u

∂t
=

(
∂M

∂u
+

∂M

∂ (∇u)
· ∇
)
Lu (3.6)

and is therefore a known function of the space variables. Therefore, for a given M , the

only unknown function in equation (3.4) or (3.5) is the velocity field ẋ and it is this

function that will eventually become the mesh velocity. We also note that the term ∂M
∂t

and hence the right hand side of (3.6) can be regarded as the “source” of the velocity

field ẋ.

Now, given the monitor function M the aim is to solve equation (3.4) numerically

for the velocity field ẋ of the pseudo fluid. This equation was solved in one spatial

dimension by Blake in [13] using finite differences for a variety of applications and in

particular the porous medium equation, but the approach was found to be ill-conditioned

when the number of spatial dimensions was higher than one. This is due to the fact

that equation (3.4) is insufficient to determine the velocity field ẋ uniquely, as it only

stipulates the divergence of the vector field. Therefore this equation is not well-posed

for ẋ in spatial dimensions higher than one, so we need some other condition for the

solution to be unique. In this work we have followed Cao, Huang and Russell [27] in

using the Helmholtz Decomposition Theorem to prescribe the curl of the vector field to

obtain a unique solution. Therefore we will impose the condition that

∇× ($ ẋ) = ∇× ($ q) , (3.7)

where q is some given vector field and $ is a weight function which introduces extra

control on the vector field ẋ. Thus we have prescribed the velocity field ẋ to have similar
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rotational properties as the prescribed vector field q. Equation (3.7) can be rearranged

to give

∇× ($(ẋ− q)) = 0. (3.8)

Since the curl in (3.8) is equal to zero there exists a differentiable scalar field φ (velocity

potential) such that

$ (ẋ− q) = ∇φ,

i.e.

ẋ = q +
1

$
∇φ. (3.9)

Then substituting equation (3.9) into equation (3.5) gives an elliptic equation for the

velocity potential φ,

∇ ·
(
M

$
∇φ
)

= −∂M
∂t
−∇ · (Mq) (3.10)

A boundary condition is also required for the velocity potential φ. Therefore, either φ

or ∂φ
∂n

will need to be given on the boundary of the region Ω(t), where n is measured

along the outward normal coordinate to the boundary of the domain.

There are a variety of boundary conditions that may be given for φ, but perhaps the

most obvious one is to require that the velocity ẋ has no component in the outward

normal direction to the boundary of Ω(t) and hence none of the pseudo-fluid leaves the

(moving) domain. This can be written as

ẋ · n = 0

on the boundary ∂Ω, where n is the unit outward normal, which through using (3.9)

gives the condition on φ that
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∂φ

∂n
= −$ q · n. (3.11)

An alternative approach can be obtained if instead of seeking the velocity potential φ

of the velocity field ẋ the streamlines of the velocity field are sought. In certain circum-

stances the stream function for the velocity field ẋ, denoted by ψ, may be obtained. For

example, consider the case when we are solving a PDE in conservative form given as

ut = ∇ · F (3.12)

and using the moving mesh method with the monitor function taken to be M = u. Then

the strong form (3.5) of the velocity equation becomes

∇ · (u ẋ) + ut = 0.

We can substitute the PDE we are solving, given by (3.12), into this equation to obtain

∇ · (u ẋ + F) = 0.

Then a stream function ψ (in two spatial dimensions) exists such that

u ẋ + F =

(
−∂ψ
∂y
,
∂ψ

∂x

)
.

This equation for the velocity field ẋ can be substituted into the curl condition (3.7) to

obtain

k · ∇ ×
(
$

u

(
−∂ψ
∂y
,
∂ψ

∂x

)
− $

u
F

)
= k · ∇ × ($ q)

where k is a unit vector in the direction perpendicular to the plane. The equation can

be manipulated to give an elliptic equation for the stream function ψ given as

∇ ·
($
u
∇φ
)

= k · ∇ ×
($
u

F +$ q
)
. (3.13)
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A boundary condition is also required on the stream function ψ and can easily be

obtained in a similar way as for the velocity potential. Although this streamline formu-

lation will not be used in this thesis it represents another useful way of obtaining the

mesh velocity in two spatial dimensions. Note that the monitor function appears in the

denominator in (3.13).

We have now derived an equation, given by (3.10), for the pseudo-fluid velocity potential

from the conservation principle (3.1) and it is this equation that we will use to create

a moving mesh method. The pseudo-fluid velocity ẋ will eventually become our mesh

velocity which can be used to generate an adaptive mesh. So we need a numerical method

to solve equation (3.10) and a way of recovering the velocity ẋ. Blake in [13] used a

finite difference/finite volume discretisation of (3.4) to obtain a discrete approximation

to the velocity field ẋ which gave good results in one dimension. However, in two spatial

dimensions the matrix systems resulting from the discretisations were found to be non-

square and difficult to solve accurately without introducing instabilities. Therefore in

this work we use a finite element discretisation of equation (3.10) as this will lead to

well-behaved square matrix systems via assembly procedures.

However, to be able to apply a finite element formulation of the problem we will need

to derive weak forms of the equations (3.1), (3.9) and (3.10) and this will be done in

the following section.

3.2 Weak Formulations

We now want to derive weak formulations of the equations in section 3.1, as eventu-

ally finite elements will be used to solve these equations to obtain a moving numerical

method. A weak form of the conservation principle (3.1) is introduced by definition as

∫

Ω(t)

wM dΩ = constant in time, (3.14)

where w is a test function which is continuous and once differentiable. (It is assumed

that M is suitably normalised to allow (3.14) to hold.) Following the same procedure as

in the previous section we differentiate (3.14) with respect to time to extract information

about how the control volume Ω(t) is moving, thus we have that
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d

dt

∫

Ω(t)

wM dΩ = 0.

Again we can use the Reynolds Transport Theorem to change from a Lagrangian de-

scription to an Eulerian one. In this way we obtain the equation (cf. (3.4))

∫

Ω(t)

(
∂

∂t
(wM) +∇ · (wM ẋ)

)
dΩ = 0.

The test function w now sits inside the partial differentials in the above equation, but

we can use the product rule of differentiation to produce

∫

Ω(t)

[
w

(
∂M

∂t
+∇ · (M ẋ)

)
+M

(
∂w

∂t
+ ẋ · ∇w

)]
dΩ = 0. (3.15)

Now, assuming that the test function w is moving with the control volume Ω(t) and

therefore travelling with velocity ẋ, the test function will satisfy the advection equation

Dw

Dt
=
∂w

∂t
+ ẋ · ∇w = 0. (3.16)

Using (3.16) in equation (3.15) we obtain the weak form of equation (3.4) as

∫

Ω(t)

w

(
∂M

∂t
+∇ · (M ẋ)

)
dΩ = 0.

We can also use the curl condition (3.9) that was derived in the previous section to

finally obtain the weak form analogue of equation (3.10),

∫

Ω(t)

w∇ ·
(
M

$
∇φ
)

dΩ = −
∫

Ω(t)

w

(
∂M

∂t
+∇ · (Mq)

)
dΩ. (3.17)

We shall also require a weak way of recovering the velocity ẋ from the velocity potential

φ and the velocity field q in (3.9). We choose to do this by enforcing the condition (3.9)

in the obvious weak sense (equivalent to a least squares minimisation)

∫

Ω(t)

w ẋ dΩ =

∫

Ω(t)

w

(
q +

1

$
∇φ
)

dΩ. (3.18)
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xi−1 xi xi+1

Figure 3.1: Linear finite element basis functions in 1D (left) and in 2D (right).

Now we have the weak forms (3.14), (3.17) and (3.18) of our proposed moving mesh

method and we are able to introduce finite element discretisations of these equations to

obtain a working numerical method. This discretisation procedure will be described in

the following section.

3.3 Finite Element Approximations

Now that we have weak forms of equations (3.1), (3.10) and (3.9) given by (3.14), (3.17)

and (3.18) respectively we are able to solve them using a finite element discretisation.

We introduce finite element basis functions wi for i = 1, . . . , N which in this work will

be defined to be either linear hat functions defined on intervals in one dimension or

linear pyramid functions defined on triangular cells in two dimensions, both forming a

partition of unity, that is

N∑

i=1

wi = 1.

Typical basis functions are shown in figure 3.1.

We also introduce finite element approximations to the variables ẋ, φ and u, given as

Ẋ, Φ and U , respectively. These approximations are taken to be

Ẋ =
N∑

j=1

Ẋj wj
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Φ =
N∑

j=1

Φj wj (3.19)

U =
N∑

j=1

Uj wj

where Ẋj, Φj and Uj are the coefficients corresponding to the same basis function wj.

Thus substituting these approximations into the weak form of the distributed conser-

vation of monitor function equation (3.14) and letting the test function w ≈ wi we

obtain

∫

Ωi(t)

wiM dΩ = θi, (3.20)

where θi is a constant defined by (3.20) and is determined by the initial mesh and

solution. Notice that since the basis functions are non-zero on a patch of computational

cells, denoted by Ωi(t), we need only integrate over this patch.

After introducing the same approximations and integrating by parts, the velocity po-

tential equation (3.17) becomes

∮

∂Ωi(t)

wi
M

$

∂Φ

∂n
· dΓ−

∫

Ωi(t)

∇wi · ∇Φ
M

$
dΩ = −

∫

Ωi(t)

wi

(
∂M

∂t
+∇ · (Mq)

)
dΩ,

(3.21)

where ∂Ωi(t) is the boundary of the patch of computational cells Ωi(t). (For internal

nodes the line integral vanishes.) The approximations given by (3.19) can now be

substituted into the right hand side of this equation to give

N∑

j=1

Φi

(∮

∂Ωi(t)

wi
M

$

∂wj
∂n
· dΓ−

∫

Ωi(t)

∇wi · ∇wj
M

$
dΩ

)
.

The discretisation of (3.21) then leads to the matrix system

K Φ
˜

= f
˜
,
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where the entries of K are given by

Kij =

∮

∂Ωi(t)

wi
M

$

∂wj
∂n
· dΓ−

∫

Ωi(t)

∇wi · ∇wj
M

$
dΩ

and

fi = −
∫

Ωi(t)

wi

(
∂M

∂t
+∇ · (Mq)

)
dΩ.

Here K is a weighted finite element stiffness matrix. The equation (3.18) for the velocity

becomes

∫

Ωi(t)

wi Ẋ dΩ =

∫

Ωi(t)

wi

(
q +

1

$
∇Φ

)
dΩ

and leads to the matrix system

A Ẋ
˜

= b
˜

(3.22)

where

Aij =

∫

Ωi(t)

wiwj dΩ

and

bi =

∫

Ωi(t)

wi

(
q +

1

$
∇Φ

)
dΩ

Here A is the standard finite element mass matrix. Once the velocity of the mesh Ẋ
˜

has been obtained the mesh can be advanced forward in time by using any particular

time-stepping scheme. The system of equations for X
˜

has the form

Ẋ
˜

= F
˜

(X
˜

)

and is a set of n ordinary differential equations. In this work this system will be solved

with the forward Euler time-stepping method, which has the form
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X
˜
n+1 −X

˜
n

∆t
= F

˜
(X

˜
n).

For certain applications the conservation-of-monitor-function principle (3.20) can be

used to recover the solution U to the PDE that we are solving on the moving mesh.

However this will be highlighted later for specific examples.

In the following chapters we will solve these equations using a variety of monitor func-

tions and for different PDEs. However before we do so we will highlight some of the

properties of the moving mesh method that has been derived and also illustrate the close

connection of the method with the Deformation map method of Anderson and Liao.

3.4 Relationship with the Geometric Conservation

Law

The geometric conservation law (GCL) was briefly introduced in chapter 2 in the context

of moving meshes. The integral form of the Geometric Conservation Law (GCL) [91] of

fluid dynamics, often referred to as the space conservation law [35], was given as

d

dt

∫

Ω(t)

dΩ =

∫

Ω(t)

∇ · ẋ dΩ (3.23)

and states that when considering a constant flow field the only change in the volume

of the region Ω(t) should be due to the movement of its boundary. The GCL is easily

derived from the Arbitrary-Lagrangian-Eulerian (ALE) form of the conservation of mass

equation given by

d

dt

∫

Ω(t)

ρ dΩ = −
∫

Ω(t)

∇ · ρ (v − ẋ) dΩ. (3.24)

It is straightforward to see that if a constant flow field is considered, that is, the density

(ρ) and velocity (v) of the fluid are constant, then the conservation of mass equation

(3.24) reduces to the GCL given by (3.23).
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When ALE numerical methods are used to solve problems on a dynamic mesh, which

may be moving and deforming, it is useful to have the GCL as a constraint on the

discretisation of geometric variables (such as cell volumes and edge velocities), although

more recently Boffi and Gastaldi [15] have shown that the GCL is neither necessary or

sufficient to guarantee stability of space-time ALE discretisations. They study the finite

element approximation of the ALE form of a parabolic problem in a two-dimensional

deforming domain and analyse the accuracy and stability of the approximation under

several time marching schemes. The concept behind the GCL is that any ALE numerical

scheme should preserve the trivial solution of a constant flow field under the motion of

the mesh.

In [27] Cao, Huang and Russell derive a moving mesh method based on the geometric

conservation law and is hence referred to as the GCL method. The GCL method and

the method derived in the previous section are very similar, although they are derived

in a very different manner.

To illustrate the connection between the geometric conservation law and the GCL

method of Cao et al [27] we will now derive the GCL method. Consider the Jaco-

bian determinant, J , of the transformation which takes the computational/static frame

of reference Ωc with co-ordinates (ξ, t) into the moving frame Ω(t) with co-ordinates

(x, t). This transformation can be shown as the mapping

Ωc(ξ, t)→ Ω(t)(x, t),

where the Jacobian determinant is explicitly given by

J =

∣∣∣∣
∂ξ

∂x

∣∣∣∣ .

The integral form of the GCL can now be transformed into the static frame of reference

Ωc. Therefore the left hand side of (3.23) becomes

d

dt

∫

Ω(t)

dΩ =
d

dt

∫

Ωc

J−1 dΩc =

∫

Ωc

dJ−1

dt
dΩc
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where d
dt

= ∂
∂t

+ ẋ · ∇, while the right hand side becomes

∫

Ω(t)

∇ · ẋ dΩ =

∫

Ωc

(∇ · ẋ) J−1 dΩc.

Therefore the GCL written in the static frame of reference Ωc becomes

∫

Ωc

dJ−1

dt
dΩc =

∫

Ωc

(∇ · ẋ) J−1 dΩc. (3.25)

The GCL is sometimes written in the strong form as

1

J−1

dJ−1

dt
= ∇ · ẋ. (3.26)

Since the relationship

dJ−1

dt
= − 1

J2

dJ

dt

holds, the GCL (3.25) can finally be written in physical co-ordinates as

∫

Ω(t)

J−1

(
∂J

∂t
+∇ · (J ẋ)

)
dΩ = 0.

If the Jacobian determinant of the transformation from the background to physical co-

ordinate is now chosen to be the monitor function M then the above equation is the same

as equation (3.4) derived in the previous section, although the integrand is now weighted

by the inverse of the Jacobian determinant. Conversely, if the transformation has a

Jacobian equal to the monitor function M , then we have that the GCL is automatically

satisfied. Also, provided that the Jacobian determinant comes from a non-singular co-

ordinate transformation that is never zero we can use the differential form of the GCL

method which is given as

∂J

∂t
+∇ · (J ẋ) = 0.

(cf. (3.26)). This derivation of the GCL method differs slightly from the derivation used

in [27] since in their derivation they consider the inverse of the co-ordinate transforma-

tion used here. Cao, Huang and Russell also highlight the closeness of this method to
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the deformation map method of Liao and Anderson [64], which was described in chapter

2 and is now reviewed here.

3.5 Relation to the Deformation Map Method

It can easily be seen that when we take $ = M and q = 0 in equations (3.9), (3.10)

and (3.11) we obtain the mesh velocity equation

ẋ =
1

M
∇φ,

where the velocity potential is given by

∇2φ = −∂M
∂t

and is subject to the boundary condition

∂φ

∂n
= 0.

These equations are the same as the deformation map equations given by (2.32), (2.33)

and (2.34) in chapter 2. It is possible to show that the choice of $ and q to produce

the deformation map method are probably not the best. This is due to the fact that the

deformation map method will not produce an irrotational mesh in general and therefore

meshes generated by this method may become highly skewed. This can be shown simply

by considering the curl condition (3.7) with the choices $ = M and q = 0. Then we

find that

∇× (M ẋ) = 0,

which upon rearrangement implies that

∇× ẋ = − 1

M
∇M × ẋ.

Therefore the mesh velocity ẋ is not irrotational in general.
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3.6 Summary

In this chapter we have derived a moving mesh method based on the use of monitor

functions. Based on the previous experience of others we have decided to solve the

resulting moving mesh equation with finite elements. Therefore we have derived weak

forms of the moving mesh equations and then considered the matrix forms arising from

a finite element discretisation of these equations. The connection of the method with

both the Geometric Conservation Law and the Deformation Map method has also been

highlighted in this chapter. In the next chapter we will consider the use of this method

for the solution of the porous medium equation.

54



Chapter 4

The Porous Medium Equation

4.1 Introduction

We will begin this chapter by introducing the porous medium equation (PME) and

go on to establish some of its properties. The PME is a non-linear partial differential

equation which is of parabolic type and arises primarily in the study of ideal gas flowing

through a porous medium. It also arises naturally as a model for many other physical

phenomena such as the swarming of various insect species [73], the spreading of thin

liquids under gravity [19] and radiative heat transfer [11, 56].

In multi-dimensions the porous medium equation is given as

ut = ∇ · (um∇u) , (4.1)

where u = u(x, t) is a scalar function depending on the spatial and temporal variables x

and t, respectively and m is a constant, which is usually taken to be a positive integer.

The porous medium equation may be derived from considering the diffusion of gas

through a porous medium under the action of Darcy’s law relating the velocity to the

pressure gradient. The flow of the gas is characterised in terms of the variables density

(u), pressure (p) and velocity (v). It is assumed that the gas obeys the conservation of

mass equation given by

ρ ut +∇ · (uv) = 0, (4.2)
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where ρ is the constant porosity of the medium, and Darcy’s law which is given as

µv = −κ∇p. (4.3)

Darcy’s law is an empirical law for the dynamics of the flow through a porous medium.

Here µ is the viscosity of the gas and κ is the permeability of the medium, both assumed

to be constant. The gas is also assumed to be ideal, so the pressure is related to the

density by

p = p0 u
γ, (4.4)

where p0 is the reference pressure and γ is the ratio of specific heats for the gas. If

equations (4.3) and (4.4) are substituted into equation (4.2) the equation

ut = c∇ · (uγ∇u) ,

is obtained, where c is a constant given as

c =
κ p0 γ

µ ρ
.

The constant c can be scaled out of the problem and if this is done and m is taken to

be equal to γ then we obtain the PME (4.1).

There has been an extensive study of the analytical properties of the PME, most of

which can be found in [4, 55, 95]. Given an initial condition u(x, 0), solutions to the

PME conserve two important quantities, namely, mass and centre of mass. Given a

solution to the PME which satisfies the conditions that both u→ 0 and um∇u→ 0 as

x→∞, the total mass of the solution satisfies

d

dt

∫
u dΩ =

∫
ut dΩ =

∫
∇ · (um∇u) dΩ =

∮
um∇u · dΓ→ 0 as x→∞. (4.5)

Thus the PME conserves mass. Similarly, if the centre of mass is given by
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x̄ =

∫
xu dΩ

then

d

dt

∫
xu dΩ =

∫
xut dΩ =

∫
x∇ · (um∇u) dΩ.

=

∮
xum∇u · dΓ− 1

m+ 1

∫
(∇ · x) ∇

(
um+1

)
dΩ

=

∮
xum∇u · dΓ− 1

m+ 1
∇ · x

∮ (
um+1

)
dΓ→ 0 as x→∞.

Thus the PME also conserves the centre of mass of a given solution.

Special solutions to the PME which conserve both mass and centre of mass arise from

the study of scale invariance and are referred to as similarity solutions. In the next

section we will define scale invariance and how, from this, similarity solutions to the

PME can be constructed.

4.2 Scale Invariance and Similarity Solutions

Scale invariance can be described as follows. Given the set of variables (u,x, t) which

satisfy the PDE under consideration, introduce a mapping to a new system (û, x̂, t̂)

given by the scaling transformation

û→ λα u, x̂→ λβ x t̂→ λ t (4.6)

where α and β are exponents to be found and the constant λ is arbitrary. Then the

system is said to be scale invariant if the mapping from (u,x, t) to (û, x̂, t̂) leaves the

PDE unchanged.

We will now seek the transformation of the form (4.6) which leaves the PME, in radial

co-ordinates, given as

ut =
1

rd−1

(
rd−1 um ur

)
r
, (4.7)
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where r is the radial co-ordinate and d is the number of spatial dimensions, invariant.

Carrying out a change of variables of the form (4.6) the radial porous medium equation

(4.7) becomes

λ1−α ût̂ = λ2β−(m+1)α 1

r̂d−1

(
r̂d−1ûm ûr̂

)
r̂
.

Therefore the radial PME will be scale invariant under the transformation (u, r, t) →
(û, r̂, t̂) provided that

1− α = 2β − (m+ 1)α,

or

mα− 2β + 1 = 0 (4.8)

holds. We shall also require that the conservation of mass principle should hold in the

transformed co-ordinates. The conservation of mass principle in radial co-ordinates in

d dimensions is given by

∫ ∞

0

u rd−1 dr = constant ∀t.

Substituting the change of variables into the above conservation principle we find that

λ−α−d β
∫ ∞

0

û r̂d−1 dr̂ = constant ∀t

provided that

α + d β = 0. (4.9)

Therefore using the algebraic equations (4.8) and (4.9) we find that the radial porous

medium equation and its conservation property are invariant under the transformation

û→ λα u, r̂ → λβ r t̂→ λ t (4.10)
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if

α = − d

dm+ 2
and β =

1

dm+ 2
. (4.11)

We notice that the conservation of centre of mass property is not scale invariant under

these scalings, however.

We now describe self-similar solutions to the PME. Any solution of the PME must also

be invariant under the transformation given by (4.10) and (4.11), and will therefore

satisfy

u(r, t) = λα u(λβ r, λ t). (4.12)

To find the self-similar solutions which satisfy (4.12) we look for co-ordinates which are

invariant, and from the scale invariance arguments it can be seen that there are two of

these quantities in our problem, which are

f =
u

tα
and z =

r

tβ
.

Therefore for self-similarity we seek a solution of the radial PME of the form

u(r, t)

tα
= f

( r
tβ

)
.

Substituting this expression into (4.7) we obtain a second order ordinary differential

equation for f which can be solved by using techniques found in [11] and yields the set

of self-similarity solutions

u(r, t) =





1
λ(t)d

(
1−

(
r

r0 λ(t)

)2
) 1

m

if |r| ≤ r0 λ(t),

0 if |r| > r0 λ(t),

(4.13)

where

rd0 =
QΓ( 1

m
+ d

2
+ 1)

Γ(d
2
) Γ( 1

m
+ 1)

, t0 =
mr2

0

2(dm+ 2)
and λ(t) =

(
t

t0

) 1
dm+2

.
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Figure 4.1: Figure depicting the radial similarity solution given by (4.13) in one spatial

dimension (d = 1) at three different times t1 < t2 < t3 with m = 4.

Here Q denotes the total mass of the solution and Γ is the usual gamma function defined

to be

Γ(x) =

∫ ∞

0

tx−1 e−t dt.

This similarity solution was originally found by Barenblatt [10] and Zel’dovich and

Kompaneets [103] and was subsequently found by Pattle [75]. It is often referred to as

the Barenblatt solution or the source-type solution, because as t→ 0 the solution tends

towards a delta function with mass Q. The similarity solution can be seen at three

different time instances in figure 4.1 for d = 1 and m = 4.

There are certain key properties of this solution. Firstly, the similarity solution has

compact support in space and this compact support grows with time. Due to this the

solution has a moving boundary which has a finite speed of propagation. The speed

of the moving boundary can be found easily by considering the conservation of mass

principle in radial coordinates

d

dt

∫ r0 λ(t)

0

u rd−1 dr = 0. (4.14)
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Differentiating, (4.14) becomes

∫ r0 λ(t)

0

[
ut r

d−1 +
(
u rd−1 ṙ

)
r

]
dr = 0

and using the radial PME (4.7) we obtain

∫ r0 λ(t)

0

[(
rd−1 um ur

)
r

+
(
u rd−1ṙ

)
r

]
dr = 0.

This equation can be integrated to give

[
rd−1 um ur + u rd−1 ṙ

]r0 λ(t)

0
= 0.

Now using the conditions that ur = 0 and ṙ = 0 at r = 0 we obtain

um ur

∣∣∣
r0 λ(t)

+ u ṙf

∣∣∣
r0 λ(t)

= 0,

which upon using a limiting procedure (since u = 0 at r = r0 λ(t)) gives an explicit

expression for the speed of the moving boundary ṙf given by

ṙf = −um−1 ur

∣∣∣
r0 λ(t)

.

The second property of the solution to notice is that the solution gradient ur is not

continuous at the moving boundary and therefore u does not explicitly satisfy the radial

porous medium equation (4.7), i.e. it is not a classical solution. Therefore the solution

is seen to satisfy the PME in some generalised sense and in fact only satisfies it in a

weak sense. The similarity solution is said to be a weak solution to the porous medium

equation.

The set of similarity solutions (4.13) will help us in our numerical work by allowing

us to compare our numerical results with an exact solution, and the scale invariance

properties obtained will also be used to derive a scale invariant numerical method.

Another property of similarity solutions in general is that they are global attractors for

other general solutions of the given PDE. So if we take an arbitrary solution v of the
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PME which has a given mass and centre of mass, then the similarity solution u which

has the same mass and centre of mass as v will be a global attractor for v in the sense

that

t
d

dm+2 ||u− v||L2 → 0 as t→∞.

The details of this proof can be found in [4, 95]. This attraction property of similarity

solutions allows us to determine the long time asymptotic behaviour of a solution. So

although we may not know what the analytic solution to the PME will be for a general

given initial condition, we will be able to say something about the long time behaviour

of that solution. We would therefore also like any numerical method used to solve this

equation to have the property that the numerical solution tends towards the correct

similarity solution.

The scale invariance property has been used by Budd et al [21, 22] as the driving force

behind the construction of numerical methods. Budd states that by the principles of

geometric integration any numerical method should accurately reproduce the qualitative

dynamics of the PDE it is solving and therefore it will only be likely to do this if it is

constructed in such a way that it has discrete features which are analogous to the

continuous PDE being solved. By constructing a numerical method in this manner it is

hoped that it would be less likely to generate spurious solutions.

In particular, if the partial differential equation being solved has inherent scales then

any numerical method should also respect them. In this way, if a numerical mesh is

fixed in time it will be imposing an artificially fixed spatial structure on the problem

and therefore have no hope of obtaining the dynamics of the continuous problem in the

numerical discretisation. Thus it will be advantageous to have a mesh which respects

the length scales in the problem and one way to do this is to use an adaptive mesh which

moves to preserve the spatial length scales.

In the next section we consider the application of the moving mesh method derived in

chapter 3 to the solution of the porous medium equation.
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4.3 A Mass Conserving Monitor Function

We now consider the numerical solution of the porous medium equation in one spatial

dimension (d = 1) and solve it using the moving mesh method that was derived in

chapter 3. The aim will be to derive a method which produces numerical solutions

which have the same asymptotic behaviour as the continuous solutions. We hope that

this can be done by constructing a scheme which has the same conservation and scaling

properties as the PME.

The method outlined in chapter 3 gave us three equations, which were the conservation

principle (3.1), the velocity potential equation (3.10) and the velocity recovery equation

(3.9). Weak forms of these equations were also derived, given by (3.14), (3.17) and

(3.18). Therefore in one dimension the distributed conservation of monitor function

principle (3.14) becomes

∫ xi+1(t)

xi−1(t)

wiM dx = θi (4.15)

and the mesh velocity potential equation (3.17) is given as

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
M
∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂M

∂t
dx (4.16)

for i = 1, . . . , N − 1.

We now need to chose a suitable monitor function for our problem. The initial choice

will be M = u which is motivated by the fact that the mass of the solution to the PME

is conserved for all time and also by the fact that (4.15) is then scale invariant. This

monitor function is also used in the work of Budd [24] and Blake [13]. From this monitor

function we hope to develop a method which conserves mass in a discrete manner.

Therefore, with this choice of monitor function the equation (4.15) becomes for interior

nodes

∫ xi+1(t)

xi−1(t)

wi U dx = θi,
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where θi is determined by the initial mesh and solution. If we now expand the finite

element approximation U in terms of the basis functions wj we obtain the matrix system

A(X
˜

)U
˜

= θ
˜
, (4.17)

where A is the usual finite element mass matrix with entries given by

Aij =

∫ xi+1(t)

xi−1(t)

wiwj dx.

We have also enforced the boundary condition that U = 0 on the boundary of the

domain. With the same choice of monitor function the velocity potential equation

(4.16) becomes

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
u
∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂u

∂t
dx.

A weak form of the PME can be substituted into the right hand side of the velocity

potential equation above to give

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
u
∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
um

∂u

∂x

)
dx.

To obtain a weak form of the velocity potential equation we integrate by parts to give

[
wi u

∂φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

u
∂φ

∂x
dx = −

[
wi u

m ∂u

∂x

]xi+1(t)

xi−1(t)

+

∫ xi+1(t)

xi−1(t)

∂wi
∂x

um
∂u

∂x
dx.

The first term vanishes for interior nodes since the basis function wi is equal to zero at

xi−1(t) and xi+1(t). We will use the boundary conditions that u = 0 and φ = 0 at the

boundary of the domain to produce

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

u
∂φ

∂x
dx =

∫ xi+1(t)

xi−1(t)

∂wi
∂x

um
∂u

∂x
dx (4.18)

for all nodes. Once the finite element approximations have been substituted in this

equation and expanded in terms of the basis functions we obtain a weighted stiffness

matrix system for the mesh velocity potential Φ and has the form
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K Φ
˜

= f
˜

where the entries of the weighted stiffness matrix are given by

Kij = −
∫ xi+1(t)

xi−1(t)

∂wi
∂x

U
∂wj
∂x

dx.

The mesh velocity can then be recovered by solving the mass matrix system which

results from enforcing

∫ xi+1(t)

xi−1(t)

wi Ẋ dx =

∫ xi+1(t)

xi−1(t)

wi
∂Φ

∂x
dx. (4.19)

leading to

AẊ
˜

= b
˜
.

The matrices that are generated using the monitor function M = u are tridiagonal and

may be solved by using a direct tridiagonal solver.

The mesh will be integrated forward in time using a forward Euler time stepping method.

The method is conditionally stable, but otherwise robust. However, if a standard algo-

rithm for solving the ODE system

Ẋ
˜

= F
˜

(X
˜

)

given by

X
˜
n+1 −X

˜
n

∆t
= F

˜
(X

˜
n)

is used we will not obtain a scale invariant method in general. This is due to the fact

that the local truncation error for the numerical method will have an intrinsic length

scale and therefore will not be independent in time. One way of circumventing this

problem and recovering a scale invariant method is to instead solve the ODE system
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dX
˜

dtβ
= β tβ−1Ẋ

˜
= β tβ−1F

˜
(X

˜
),

which leads to the forward Euler discretisation given by

X
˜
n+1 −X

˜
n

(tn+1)β − (tn)β
= β (tn)β−1F

˜
(X

˜
n). (4.20)

The local truncation error of this discretisation is independent of time and hence scale-

invariant if the new variable tβ satisfies

(
tn+1

)β − (tn)β = c,

where c is a constant which is chosen through a stability condition at the initial time.

Thus the size of the time-step ∆tn = tn+1 − tn is given

∆tn =
(
c+ (tn)β

) 1
β − tn (4.21)

and is a monotonically increasing function of time. Scale invariance shows that larger

time-steps are allowed as time increases and the diffusion becomes weaker. However we

still need to chose an appropriate initial time-step for the numerical solution. This is

chosen from stability analysis and is given as

∆t0 ≤ 1

2

min (∆x)2

max um
.

The subsequent time-steps are then calculated from (4.21) with c = (∆t0 + t0)
β − (t0)

β
.

The outline of the numerical method is:

• Given an initial mesh, solution and time-step, solve the stiffness matrix system

(4.18) for the mesh velocity potential Φ.

• Recover the mesh velocity Ẋ using (4.19) and time-step the mesh using the scale

invariant forward Euler time stepping procedure given by (4.20).
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• Obtain the solution U on the new mesh by solving the conservation of monitor

principle equation (4.17).

• Repeat until the desired output time is reached.

In the next section we will numerically illustrate this adaptive method for the solution

of the porous medium equation.
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Figure 4.2: Node trajectories for m = 1 (left) and m = 4 (right).

4.4 Numerical Results I

The following section contains results obtained using the moving mesh method with the

mass monitor M = u. Solutions to the PME have been obtained for three different

meshes having 11, 21 and 41 computational nodes, respectively, and for a variety of

values of the power m in (4.1). The similarity solution was used as an initial condition

for the computation with Q = 1 and t0 = 0.01. Initially the mass in each computational

cell was equidistributed using the algorithm which can be found in Baines [7], although

the method may also be used with different amounts of mass in each cell. The PME

was then integrated forward in time to a final time of t = 10. Figures 4.5 and 4.6 show

the solutions obtained for m = 1 and m = 4 and are compared with the exact analytical

solutions. The results obtained show a good approximation to the true solution given

by (4.13).

The trajectories of the mesh points are shown in figure 4.2 for m = 1 and for m = 4.

These figures were produced on a mesh with 41 computational nodes. It can be seen in

these figures that the mesh expands as time increases to cover the compact support of

the solution to the problem.

Figures 4.3 and 4.8 show the invariant behaviour of the numerical solution. From the

self-similar results obtained in section 4.2 we know that the similarity solution has two

invariant quantities, namely t
1

m+2u and t−
1

m+2x. Therefore we would hope that any

numerical method approximating this similarity solution should also have a discrete
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version of these invariant quantities. In figures 4.3 and 4.8 we have plotted these in-

variant quantities using the discrete values from our numerical approximation and they

clearly suggest that the numerical method is indeed scale invariant.

The error in the height of the numerical solution at the origin (x = 0) and the position

of the moving boundary have been calculated for the solutions and are shown in figures

4.7 and 4.9. These figures also show plots of the quantities

t
1

m+2 ||u− U || and t−
1

m+2 ||x−X||.

If our numerical solution is scale invariant we would hope that the solution should

respect the scalings given by (4.10) and (4.11) and therefore the errors should satisfy

the equalities

t̂
1

m+2 ||û− Û || = t
1

m+2 ||u− U ||

and

t̂−
1

m+2 ||x̂− X̂|| = t−
1

m+2 ||x−X||,

so therefore be constant in time. These quantities do indeed appear to tend to a constant

value as the time of the numerical simulation increases.

The nominal error measure

||u− U ||2L2
=
∑

i

∫ xi(t)

xi−1(t)

(u− U)2 dx (4.22)

has also been calculated for the numerical solutions obtained on the three different

meshes and for a variety of the values m. The results are summarised in figure 4.19. It

can be seen from this figure that the numerical solution is first order accurate in this

norm for m = 1, but for higher values of m the order of the numerical method seems to

be degraded. Also the precision of the numerical scheme, in the sense of (4.22), seems to

lower as m increases. This is probably due to the fact that the solution has an infinite
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Figure 4.3: Invariant behaviour of solution (left) and mesh (right) for m = 1 computed

on a mesh with 41 nodes.

gradient at the moving boundary for m > 1 and is therefore harder to resolve accurately,

particularly with the monitor function M = u which does not overly seek to place nodes

near the moving boundary. It should also be noted that we would expect the method

to be second order accurate since linear finite elements have been used. The order of

accuracy can be increased by using a more suitable projection of the initial conditions.

For example a least-squares fit with adjustable nodes of the initial conditions results in

a method which is second order accurate, at least for m = 1 (see [9]).

It is quite straightforward to show that the method that has been used is a scale invariant

method. If the scalings given by (4.10) and (4.11) are substituted into the mesh velocity

equation we obtain

∫
w

∂

∂x̂

(
û ˙̂x
)

dx̂ =

∫
w ût̂ dx̂.

Notice that the basis functions w are independent of scale. Thus the mesh velocity

equation is invariant to scalings of the form (4.10) and (4.11). Similarly the conservation

of monitor function principle is scale invariant, since

∫
w udx = λ−α−β

∫
w ûdx̂

and from the scaling arguments at the start of the chapter we know that α + β = 0,

so therefore the conservation of monitor function is scale-invariant for this choice of
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Figure 4.4: Figures showing the discrete comparison theorem of the method. Three initial

conditions at t = 0 (left) and the three final solutions at t = 1 (right), both shown on

scaled meshes for m = 1.

monitor. The time-stepping algorithm that is used to integrate the mesh points forward

in time is also scale-invariant by construction.

Although no asymptotic properties of the moving mesh method have been proved an-

alytically, there is strong numerical evidence to show that the moving mesh method

that has been developed does indeed tend towards the correct solution as t → ∞ and

has therefore inherited the underlying properties of the porous medium equation. One

example of this is the fact that the continuous PME satisfies a comparison principle in

the scaled variables u and x t−
1

m+2 , i.e. given three initial conditions u1, u2 and u3 at

tinit, which all have the same mass, such that

u1 ≤ u2 ≤ u3

in the scaled variables then these inequalities hold for all time [25, 8]. Results appear to

show that the numerical solutions also satisfy a discrete comparison theorem. Results are

shown in figure 4.4 to this effect for three solutions which all have the same mass. Two

of the initial solutions are given by exact self-similar solutions and the third, which is

‘sandwiched’ inbetween the other two, is a random (though symmetrical) perturbation.

These initial conditions are then integrated forward in time and it is found that the

random initial condition remains bounded by the two self-similar solutions and hence
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asymptotically tends towards the self-similar soluton as time increases. A similar test

was performed in [24].

The next section deals with the extension of the method to other monitor functions.
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Figure 4.5: Numerical and exact solutions to the PME with m = 1 at six different times.

Numerical solution computed with 41 nodes using the mass monitor function.
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Figure 4.6: Numerical and exact solutions to the PME with m = 4 at six different times.

Numerical solution computed with 41 nodes using the mass monitor function.
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Figure 4.7: Left figure showing the error in the height of the solution (red) and the scaled

error (blue). Right figure showing the error in the position of the moving boundary (red)

and the scaled error (blue), both for m = 1.
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Figure 4.8: Invariant behaviour of the computational solution (left) and mesh (right) for

m = 4 and 41 nodes.
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Figure 4.9: Left figure showing the error in the height of the solution (red) and the scaled

error (blue). Right figure showing the error in the position of the moving boundary (red)

and the scaled error (blue), both for m = 4.
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4.5 General Monitor Functions

We now want to extend the ideas developed in the previous section to obtain a numerical

solution to the PME using a general form of monitor function. When we used the mass

monitor function in the previous section we took advantage of the fact that the global

integral of the monitor function was constant in time and therefore we didn’t need to

calculate the change in the mass of the solution (see (4.5)). However if we want to use

a different monitor function, its global integral will not be constant in time in general

and therefore a normalisation needs to be taken into account. One way to do this is to

generate a scale invariant monitor function.

Firstly, however, we will look at generating a scale invariant gradient monitor. It would

be quite advantageous to use a gradient monitor function for the solution of this problem

as it would cluster the computational nodes in and around the moving boundary to

give better resolution. Unfortunately the integral of the gradient monitor is not scale

invariant under the scalings (4.10) and therefore it is not constant in time. This can be

seen if we substitute the scalings (4.10) and (4.11) into the gradient monitor to obtain

∫
|ux| dx = λ−β

∫
λβ−α|ûx̂| dx̂ = λ−α

∫
|ûx̂| dx̂. (4.23)

Since λ still appears on the right hand side of the above equation we know that the

gradient monitor as it stands is not scale invariant, and hence the integral is not constant

in time. However, if we use the fact that

λ =
t̂

t
,

in (4.23), we find that

t−α
∫
|ux| dx = t̂−α

∫
|ûx̂| dx̂. (4.24)

So the integral of the scaled monitor function M = t−α |ux| is scale invariant since (4.24)

is independent of λ. Motivated by (4.24) we define the scale invariant conservation

principle

77



∫ xi+1(t)

xi−1(t)

t
1

m+2 |ux (x, t)| dx = θi.

Incidentally, (4.24) tells us the dependence of θ (t) on t in (3.2).

This argument can be generalised to determine other scale invariant monitor functions

that can be used in our moving mesh method. Given a monitor function M , in d dimen-

sions, which is not scale invariant, we can produce a scale invariant monitor function M̃

given by

M̃(t, x, u, ur, . . . ) = t−d βM(1, t−βr, t−αu, tβ−αur, . . . ).

In the case of the PME α = − d
dm+2

and β = 1
dm+2

.

The rest of this section will be used to detail the use of the scale invariant gradient mon-

itor function M = t
1

m+2 ux. The distributed conservation of monitor function principle

(3.14) with this choice of monitor function becomes

t
1

m+2

∫ xi+1(t)

xi−1(t)

wi
∂U

∂x
dx = θi (4.25)

for interior nodes. We have assumed without loss of generality that ∂U
∂x

> 0 since in

each half of the spatial domain the solution of the PME is either monotone increasing

or monotone decreasing (see figure 4.1). Expanding the finite element approximation U

in terms of the basis functions we obtain

t
1

m+2

N∑

j=1

Uj

∫ xi+1(t)

xi−1(t)

wi
∂wj
∂x

dx = θi,

which leads to the matrix form

B(X
˜

)U
˜

= θ
˜

(4.26)

where the individual elements of the matrix B are given as

Bij = t
1

m+2

∫ xi+1(t)

xi−1(t)

wi
∂wj
∂x

dx.
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Notice that when the linear basis functions wi are substituted into (4.25) the resulting

matrix form has zero diagonal entries and therefore can no longer be solved by a standard

tridiagonal solver. The resulting matrix system is therefore solved using a direct matrix

solver with pivoting. It should also be noted that the N × N bi-diagonal matrix B is

singular when the number of nodes N is taken to an even number.

The mesh velocity potential equation (3.17) with the gradient monitor gives

t
1

m+2

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
∂u

∂x

∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂

∂t

(
t

1
m+2

∂u

∂x

)
dx

The product rule of differentiation can now be used to expand the right hand side of

the mesh velocity potential equation to give

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
∂u

∂x

∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂

∂t

(
∂u

∂x

)
dx− 1

(m+ 2)t

∫ xi+1(t)

xi−1(t)

wi
∂u

∂x
dx

where we have also divided by the factor t
1

m+2 . Using the fact that u is smooth we can

interchange the order of differentiation in the following way

∂

∂t

(
∂u

∂x

)
=

∂

∂x

(
∂u

∂t

)
,

and so, enforcing this in a weak sense and using the PME, we obtain

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
∂u

∂x

∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂

∂x2

(
um

∂u

∂x

)
dx− 1

(m+ 2)t

∫ xi+1(t)

xi−1(t)

wi
∂u

∂x
dx.

(4.27)

The left hand side of the mesh velocity potential equation can now be integrated by

parts to give

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
∂u

∂x

∂φ

∂x

)
dx =

[
wi
∂u

∂x

∂φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂u

∂x

∂φ

∂x
dx (4.28)

The first term on the left hand side of the velocity potential equation (4.27) may also

be integrated by parts to give
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∫ xi+1(t)

xi−1(t)

wi
∂

∂x2

(
um

∂u

∂x

)
dx =

[
wi

∂

∂x2

(
um

∂u

∂x

)]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂

∂x

(
um

∂u

∂x

)
dx

(4.29)

Once the finite element approximations to the velocity potential φ and the solution u

have been introduced and expanded in terms of the linear basis functions equations

(4.28) and (4.29) become a stiffness matrix system for the approximation to the velocity

potential Φ. However, we can simplify matters somewhat since the finite element basis

functions are piecewise linear functions. Thus ∂wi
∂x

is constant in each computational

cell, so we can remove these terms from inside the integral to obtain

∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂

∂x

(
Um∂U

∂x

)
dx =

(
∂wi
∂x

)

i+ 1
2

∫ xi+1(t)

xi(t)

∂

∂x

(
Um∂U

∂x

)
dx

+

(
∂wi
∂x

)

i− 1
2

∫ xi(t)

xi−1(t)

∂

∂x

(
Um∂U

∂x

)
dx,

=

(
∂wi
∂x

)

i+ 1
2

[
Um∂U

∂x

]xi+1(t)

xi(t)

+

(
∂wi
∂x

)

i− 1
2

[
Um∂U

∂x

]xi(t)

xi−1(t)

where
(
∂wi
∂x

)
i+ 1

2

denotes the value of the derivative of the basis function wi in the cell

[xi, xi+1]. The cell boundary terms will be approximated by central differences, so

Um∂U

∂x

∣∣∣
xi(t)
≈ 1

2
Um
i

(
Ui+1 − Ui
xi+1 − xi

+
Ui − Ui−1

xi − xi−1

)
.

Our velocity potential equation for Φ is now given by

[
wi
∂U

∂x

∂Φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂U

∂x

∂Φ

∂x
dx = −

[
wi

∂

∂x2

(
Um∂U

∂x

)]xi+1(t)

xi−1(t)

+

(
∂wi
∂x

)

i+ 1
2

[
Um∂U

∂x

]xi+1(t)

xi(t)

+

(
∂wi
∂x

)

i− 1
2

[
Um∂U

∂x

]xi(t)

xi−1(t)

− 1

(m+ 2)t

∫ xi+1(t)

xi−1(t)

wi
∂U

∂x
dx,

for interior nodes. We also enforce the boundary condition that Φ = 0 on the boundary

of the domain. The mesh velocity is then recovered from Φ in the usual manner (4.19).
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Again the mesh will be advanced in time by the scale invariant forward Euler time-

stepping method given by (4.20). However, the solution to the PME will be recovered

by inverting the system (4.25). We now go on to present some results obtained by using

the scale invariant gradient monitor function.
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4.6 Numerical Results II

This section summarises the results obtained using the scale invariant monitor function

M = t
1

m+2ux. We solved the same problem as in the case when M = u. So, again the

initial condition for the problem was given by the similarity solution with Q = 1 and

t0 = 0.01. The initial solution was also equidistributed in the monitor function. The

initial condition was then integrated forward in time until t = 10 using the method

outlined in the previous section.

Results are shown in figure 4.11 for the case when m = 4. The results show that this

choice of monitor function leads to a method which is less accurate in comparison with

the results obtained with M = u, although the method tended to cluster most of the

computational nodes in and around the moving boundary as can be seen in figure 4.12.

Due to this, the solution around the peak tended to be less well resolved. It was also

found that the error in the position of the moving front was much higher for the gradient

monitor. This is probably caused by the fact that there is no constraint on the numerical

solution to conserve the mass of the solution in a discrete manner, and since the position

of the front is characterised by this conservation the numerical solution is attracted to

a solution with a slightly different mass.

This conservation of mass problem can be avoided if instead of recovering the solution

to the PME by inverting the matrix system (4.26) we were to solve the ALE equation

d

dt

∫
u dx =

∫ (
∂u

∂t
+

∂

∂x
(u ẋ)

)
dx

=

∫ (
∂

∂x

(
um

∂u

∂x

)
+

∂

∂x
(u ẋ)

)
dx

on the moving mesh. In this way the solution to the PME is updated by using an

integral form which would conserve mass.

The scale invariance properties of the method are shown are figure 4.13.
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Figure 4.11: Numerical and exact solutions to the PME with m = 4 at six different

times. Numerical solution computed with 41 nodes using the gradient monitor function.
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Figure 4.12: Node trajectories for m = 4.
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Figure 4.13: Invariant behaviour of solution (left) and mesh (right) for m = 4.
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4.7 The PME in Two Spatial Dimensions

The aim of this section is to extend the method developed in one spatial dimension to

the solution of the porous medium equation in two spatial dimensions. As the method

outlined in chapter 3 was derived in multiple dimensions we expect that the extension of

the method into two spatial dimensions should be reasonably straightforward. We have

restricted attention to the mass monitor function given in section 4.3 as it gave more

accurate results in one dimension in the nominal error measure when compared to the

gradient monitor. We have also chosen to solve the PME on an unstructured triangular

mesh as it will represent non-trival geometries more easily.

In section 4.2 we considered the self-similar solution to the porous medium equation

in radial co-ordinates. We were motivated to use the mass monitor function in one-

dimension since mass is conserved for this equation. The distributed conservation prin-

ciple in two spatial dimensions for M = u is

∫

Ωi(t)

wi U dΩ = θi

where Ωi(t) is now a patch of triangular cells on which the basis function wi is non-zero.

Following the same procedure as in one spatial dimension, we can expand our finite

element approximation U in terms of the basis functions wj as

U =
N∑

j=1

Uj wj,

where wj are now pyramid functions. So the distributed conservation of monitor function

principle becomes

N∑

j=1

Uj

∫

Ωi(t)

wiwj dΩ = θi,

for i = 1, . . . , N , which produces the mass matrix system

A(X
˜

)U
˜

= θ
˜
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where the entries of the mass matrix A are given by

Aij =

∫

Ωi(t)

wiwj dΩ.

The condition that U = 0 on the boundary of the domain is also used. The velocity

potential eqution in two dimensions with q = 0 and $ = 1 becomes

∫

Ωi(t)

wi∇ · (u∇φ) dΩ = −
∫

Ωi(t)

wi ut dΩ.

Again we can follow the same methodology as in one dimension and substitute a weak

form of the PME into the velocity potential equation to give

∫

Ωi(t)

wi∇ · (u∇φ) dΩ = −
∫

Ωi(t)

wi∇ · (um∇u) dΩ.

To obtain a weak form of the velocity potential equation we can use Green’s Theorem

to give

∮

∂Ωi(t)

wi u
∂φ

∂n
· dΓ−

∫

Ωi(t)

∇wi · (u∇φ) dΩ = −
∮

∂Ωi(t)

wi (um∇u) · dΓ

+

∫

Ωi(t)

∇wi · (um∇u) dΩ,

which upon using the conditions that wi = 0 around the edge of the patch Ωi(t) and

u = 0 on the boundary of the domain, gives

−
∫

Ωi(t)

∇wi · (u∇φ) dΩ =

∫

Ωi(t)

∇wi · (um∇u) dΩ

for i = 1, . . . , N . The finite element approximations for the mesh velocity potential and

the solution to the PME can now be introduced and expanded in terms of the linear

basis functions to obtain a discrete system to be solved. The mesh velocity potential

again becomes a weighted stiffness matrix system which has the form

K Φ
˜

= f
˜
,
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where the entries of the stiffness matrix are given by

Ki j = −
∫

Ωi(t)

∇wi · (U ∇wj) dΩ

and the entries of the vector f
˜

are given by

fi =

∫

Ωi(t)

∇wi · (Um∇U) dΩ.

The condition that Φ = 0 on the boundary of the domain is also used. The mass and

stiffness matrices in two spatial dimensions are sparse and have a banded structure that

depends on the connectivity of the mesh that is being used, but remain symmetric.

The mesh velocity Ẋ is again recovered in a weak sense from the mesh velocity potential

Φ. Therefore we use the weak form

∫

Ωi(t)

wi Ẋ dΩ =

∫

Ωi(t)

wi∇Φ dΩ

to recover the mesh velocity. Discretisation of this recovery equation with finite elements

results in a series of mass matrix systems. Notice that now we have to solve two mass

matrix systems, one for each component of the mesh velocity. Then the scale invariant

time-stepping method described in section 4.3 is used to advance the mesh forward in

time. Results for this moving mesh method for the solution of the two-dimensional PME

are shown in the following section.
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4.8 Numerical Results III

This section contains the numerical results for the solution of the PME in two spatial

dimensions using the monitor function M = u. The PME was solved on three meshes,

of varying size, consisting of triangular computational cells. These initial meshes are

shown in figure 4.14 and were produced by the anisotrophic grid generator ANGENER

[36]. Given an initial coarse mesh and boundary information ANGENER generates a

mesh with a prescribed number of computational nodes.

The matrix systems resulting from the finite element discretisation were solved by a

preconditioned conjugate gradient solver. The mass matrix systems were solved using

a Jacobi preconditioner and the stiffness matrix system was not preconditioned. Nu-

merical quadrature was used to evaluate many of the integrals, in particular Gaussian

quadrature on triangles of order 13, which integrates bivariate polynominals of degree

7 exactly, was used with corresponding weights and abscissae found in [32]. This high

degree numerical quadrature was used so that it was possible to solve the PME with

high values of the exponent m, although lower numerical quadrature could be used for

simulations with lower values of m.

Again the initial condition for the problem came from the similarity solution with the

parameters Q = 1 and t0 = 0.01. The solutions were then calculated from an initial

time of t = 0.01 to a final time of t = 10.0 for various choices of the parameter m.

Solutions for values of m = 1, m = 2 and m = 4 are shown in figures 4.15, 4.16 and

4.17. Also the solutions have been plotted against the radial similarity solution to give

an indication of their accuracy in figure 4.18.

As with the results in 1D, the error measure

||u− U ||2L2
=
∑

i

∫

∆i

(u− U)2 dΩ

where ∆i denotes the ith triangle has been calculated for the numerical solutions ob-

tained on the three different meshes and for a variety of the values m. These results are

summarised in figure 4.19. It can be seen from this figure that the numerical solution

is second order accurate in space for m = 1, but for higher values of m the order of
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the numerical method seems to be degraded. The error is now second order in space in

contrast to results obtained in one spatial dimension where we found that the error was

only first order accurate. This difference in the order of the numerical method may be

attributed to how the initial mesh is designed and shows that it is important to obtain

a good initial mesh for computations.

The precision of the numerical scheme also seems to lower as m increases. Again, this is

probably due to the fact that the solution has an infinite gradient at the moving bound-

ary for m > 1. This loss of accuracy and precision may be overcome by using different

initial meshes which have more mesh points clustered in and around the boundary of

the computational domain.

The moving mesh method was also applied to the PME with an initial condition which

is different from the self-similar solution. The boundary of the support for the initial

condition was designed to be non-circular and is described by the radial distance

r =
a+ b cos (4 θ)

a+ b
,

where a = 1.0 and b = 0.2 and the variable θ = atan
(
y
x

)
. The initial condition for the

PME on this initial mesh was then taken to be u = 1 − r
rmax

. The PME with m = 1

and this inital condition was then solved with the moving mesh method. Solutions and

meshes are shown for this test case in figures 4.20 and 4.21 at four different output

times. It can be seen from these figures that both the solution and mesh are attracted

towards the self-similar solution defined by the amount of mass contained in the initial

condition.
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Figure 4.14: Initial meshes for the PME. Mesh 1 has 125 nodes and 208 computational

cells. Mesh 2 has 315 nodes and 568 computational cells. Mesh 3 has 941 nodes and

1780 computational cells.
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Figure 4.15: Numerical solutions to the PME with m = 1 at four different times. Nu-

merical solution computed with 941 nodes.
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Figure 4.16: Numerical solutions to the PME with m = 2 at four different times. Nu-

merical solution computed with 941 nodes.
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Figure 4.17: Numerical solutions to the PME with m = 4 at four different times. Nu-

merical solution computed with 941 nodes.
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similar initial condition and m = 1 times t = 0.01 and t = 0.1. Numerical solution

computed with 941 nodes.
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Figure 4.21: Numerical solutions (left) and meshes (right) to the PME with a non-self-

similar initial condition and m = 1 times t = 1 and t = 10. Numerical solution computed

with 941 nodes.
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4.9 Summary

In this section the results that have been obtained for the solution of the porous medium

equation using the moving mesh method derived in chapter 3 will be summarised.

We began this chapter by illustrating some of the analytical properties of the PME,

in particular the scale invariant nature of the equation was shown. Also self-similar

solutions to the PME in radial co-ordinates were given, and the analytical self-similar

solutions were used throughout as a yardstick for the numerical solutions obtained. The

properties of the PME were then used to construct suitable monitor functions which

could be used in the moving mesh method that was derived in the previous chapter.

Firstly, the moving mesh method was used in conjunction with the monitor function

M = u. This monitor function had been used by various other authors as it is consistent

with the scaling properties of the PME. The resulting equation could then be solved

for the mesh velocity potential and from this the mesh velocity. The system of ODEs

was then integrated forward in time using a scale invariant forward Euler time-stepping

procedure to obtain the position of the updated mesh. We were then able to recover

the solution to the PME at the next time-level by inverting the conservation of monitor

function principle.

Numerical solutions were then obtained from this method with an initially equidis-

tributed mesh and initial solution. On comparison of the numerical solutions with the

exact solutions the method was found to be accurate in both the solution value and the

mesh position. The solutions were also found to exhibit many of the properties of the

continuous PME.

To obtain better resolution of the moving front in the problem we then chose to solve

the PME using the same method, but this time using a gradient monitor function.

Since the integral of the gradient monitor function is not conserved in time globally for

this problem, a scaled version of the gradient monitor function was derived which was

conserved. This modified monitor function was derived from considering the scaling

properties of the variables in the problem. We also considered how to adapt a general

monitor function into a scale invariant one so that it could be used within this method.

The numerical results obtained from the scaled gradient monitor function showed that
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the method clustered most of the nodes tightly in the moving front and hence other

regions of the solution were not as well resolved. Also due to the fact that mass was not

discretely conserved in this solution the front was found to be in the incorrect position

and therefore numerical errors increased with this choice of monitor function.

It should also be noted that for the mass and scaled gradient monitor function we were

able to recover the solution to the PME directly through the conservation of monitor

function principle, but for a general monitor function this may not be feasible due to

difficulties with inversion. In that case the solution can still be recovered by using the

ALE equation

d

dt

∫
u dΩ =

∫ (
∂u

∂t
+∇ · (u ẋ)

)
dΩ

=

∫
(∇ · (um∇u) +∇ · (u ẋ)) dΩ = 0 (4.30)

to obtain
∫

Ω(t)
u dΩ on the moving mesh and then recovering u as in the case of the mass

monitor. This choice has the advantage of conserving mass.

The remainder of the chapter was concerned with the solution of the PME in two

spatial dimensions. In two dimensions we chose to use the mass monitor function to

generate our moving mesh, due to the fact that it gave better results in one dimension

when compared with the scale invariant gradient monitor function. This mass monitor

function was found to give satisfactory results in two dimensions. However it was found

that the method became less successful as the power in the porous medium equation

increased in terms of the error measure, although the front is clearly well resolved.

As a final note we outline what happens when there is a lack of scale invariance in the

problem being solved. For example, if we were solving the equation

ut = ∇ · (um∇u) + f (u) ,

where f is a general function, then it would be unclear whether this problem is scale

invariant and for many choices of the function f it would not be possible to scale the

equation in a manner which leaves it invariant. In this case we still want to be able
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to apply the moving mesh method for a general monitor function and unless we could

identify a natural conserved quantity in the problem which could be used as a monitor

function to drive the mesh movement, we would have to normalise the monitor function

as described in chapter 3. The distributed conservation of monitor function principle

(3.20) then becomes

∫

Ωi(t)

wiM dΩ = κi θ(t), (4.31)

where θ(t) is now a function of time and hence the monitor function is not conserved in

time (cf. (3.2)). The constants κi are chosen so that they sum up to unity and may be

chosen for example by an equidistribution strategy. Then, since no scale invariance exists

so that we can scale the monitor function in such a way so that the monitor function

is conserved in time, we must carry the extra variable θ (t). From the conservation

principle (4.31), using a normalisation process, we can obtain the modified velocity

potential equation for the moving mesh method given as

∫

Ωi(t)

wi∇ · (M ∇φ) dΩ = −
∫

Ωi(t)

wi
∂M

∂t
dΩ + κi θ̇,

where the variable θ̇(t) = dθ
dt

. It can be seen that if θ̇ = 0, and hence the monitor

function is conserved, we obtain the previous equation for the velocity potential (3.4).

To be able to solve this equation for the velocity ẋ we need to determine θ̇(t). An

equation for the rate of change of the integral of the monitor function may come from

various assumptions. If the condition φ = 0 is used on the boundary of the domain then

an independent equation for θ̇ is given as

∫

Ω(t)

∇ · (M ∇φ) dΩ = −
∫

Ω(t)

∂M

∂t
dΩ + θ̇,

if boundary conditions for this equation, coming from the PDE being solved, are pre-

scribed. Then we are able to solve this system for the velocity potential for internal

nodes and also θ̇(t) sumultaneously [9].

In the next chapters we will consider the solution of both scalar and systems of hyperbolic

conservation laws using the moving mesh method derived in chapter 3. It will be found
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that, since the solutions to these problems may be discontinuous in space (and the fact

that we may be solving a system of equations), the solution to the PDE being solved

will not be able to be recovered through the use of the conservation of monitor function

principle as for the solution of the PME in this chapter. Therefore the solution will

have to be obtained through solving the PDE on the moving mesh, as in (4.30). In the

following chapters we will outline the use of a finite volume solver for the solution of the

Arbitrary Lagrangian Eulerian (ALE) form of the conservation law being solved. Also,

in the absense of scale invariance properties of the equation being solved we will have

to base our choice for the monitor function on properties of the solutions.
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Chapter 5

Hyperbolic Conservation Laws

5.1 Introduction

In this chapter the moving mesh method derived in chapter 3 is applied to the solution

of first order partial differential equations including hyperbolic conservation laws. Some

of the work may also be found in [98]. Hyperbolic conservation laws are time-dependent

partial differential equations which often arise from the mathematical modelling of phys-

ical processes where certain quantities are conserved. For example, in many fluid dy-

namics problems mass, momentum and energy are conserved and this leads to a system

of conservation laws. This type of equation also arises when viscous and dissipative

effects are ignored in higher order equations. Hyperbolic conservation laws take the

differential form

∂u

∂t
+∇ · f (u) = 0, (5.1)

where u (x, t) = (u1, . . . , um)T is an m-vector of conserved variables which depends on

the spatial variable x and the temporal variable t. The vector-valued function f is called

the flux function for the system and determines how the conserved variables change in

time. In general, the flux function is non-linear in the conserved variables u. The

underlying principle behind hyperbolic conservation laws is that, given the amount of

each conserved variable u (x, t) at a given place and instant, we are able to determine

the rate of flow, or flux f (u (x, t)), of this variable across any surface. Hence the change

in the conserved variables within a closed surface can be found. The variables ui for

i = 1, . . . ,m can be shown to be conserved in the following sense. The rate of change in
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time of the total integral of each of the variables, in the domain Ω with boundary ∂Ω,

is given by

d

dt

∫

Ω

ui dΩ = −
∮

∂Ω

fi (u) · dΓ for i = 1, . . . ,m (5.2)

and therefore if boundary fluxes are ignored then the quantities

∫

Ω

ui dΩ for i = 1, . . . ,m

are constant in time and hence conserved.

The system of conservation laws given by (5.1) can be written in the quasi-linear form

∂u

∂t
+
∂f

∂u
· ∇u = 0

and is referred to as hyperbolic if any real linear combination of the Jacobian matrices

∂f
∂u have m real valued eigenvalues and a complete set of right eigenvectors. All the

conservation laws considered in this work will have this hyperbolic property.

To be able to solve the system of conservation laws given by (5.1), on the whole real

line, an initial condition, given by

u(x, 0) = u0(x), (5.3)

is needed. The problem of solving the system (5.1) together with the initial condition

(5.3) is referred to as a Cauchy problem. In general the Cauchy problem cannot be

solved analytically to obtain an exact solution, thus there is a need for accurate numerical

methods to investigate the solutions to such problems. An example of a Cauchy problem

for a conservation law is that of the Riemann problem. The Riemann problem has initial

data of two constant states uL and uR separated by a single discontinuity. As we shall

see later, many numerical methods for the solution of hyperbolic conservation laws rely

on the solution of the Riemann problem, e.g. Godunov’s method [42].

One characteristic feature of hyperbolic conservation laws is that solutions can evolve to

have unbounded derivatives even with smooth initial data. These solutions do not satisfy
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Figure 5.1: Figure showing how cell averages are updated by the fluxes through the cell

boundaries.

the differential form (5.1) in the classical sense at all spatial points since derivatives are

not defined at discontinuities in the solution gradient. Therefore the conservation law

has to be understood in some generalised sense and the notion of a weak solution is

introduced. A weak solution of the conservation law is defined as one that satisfies the

integral form of the conservation law given by

d

dt

∫

Ω

φ u dΩ +

∮

∂Ω

φ f · dΓ−
∫

Ω

∇φ · f (u) dΩ = 0

for all once differentiable functions φ belonging to a suitable space. It can be shown that

the weak form of the conservation laws admits discontinuous solutions, such as shock

waves.

Some of the theory of hyperbolic conservation laws can be found in [57, 84, 100] with

good reviews of numerical methods for solving them in [60, 61, 93].

We now introduce some details of how hyperbolic conservation laws can be solved numer-

ically. There are special difficulties associated with the numerical solution of hyperbolic

conservation laws, many of them arising because solutions may be discontinuous. One

problem which arises for hyperbolic conservation laws is that the numerical solution may

not converge to the correct weak solution of the problem. A condition on the method

for it to converge to the correct weak solution can be obtained and will now be outlined.

A sufficient requirement on the numerical method for it to converge to the correct

solution is that the discretisation is written in conservative form. We will now consider
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the conservative form of the hyperbolic conservation law in one spatial dimension in

finite volume form. If we consider the conservation law (5.1) in one spatial dimension

and integrate over the control volume [xi, xi+1]× [tn, tn+1], shown in figure 5.1, we obtain

∫ xi+1

xi

u
(
x, tn+1

)
dx =

∫ xi+1

xi

u (x, tn) dx−
[∫ tn+1

tn
f (u (xi+1, t)) dt−

∫ tn+1

tn
f (u (xi, t)) dt

]
.

(5.4)

Now defining un
i+ 1

2

to be the cell average of the solution within the control volume at tn,

given by

un
i+ 1

2
=

1

∆x

∫ xi+1

xi

u (x, tn) dx (5.5)

where ∆x = xi+1 − xi, then (5.4) becomes

un+1
i+ 1

2

= un
i+ 1

2
− 1

∆x

[∫ tn+1

tn
f (u (xi+1, t)) dt−

∫ tn+1

tn
f (u (xi, t)) dt

]
. (5.6)

If we now approximate the flux function by a time averaged one, given by

Fi

(
ui− 1

2
, ui+ 1

2

)
≈ 1

∆t

∫ tn+1

tn
f (u (xi, t)) dt (5.7)

where ∆t = tn+1 − tn, then (5.6) becomes

un+1
i+ 1

2

= un
i+ 1

2
− ∆t

∆x

[
Fi+1

(
ui+ 1

2
, ui+ 3

2

)
− Fi

(
ui− 1

2
, ui+ 1

2

)]
. (5.8)

This equation is a discrete conservative form of the conservation law in the sense that

∆x
N−1∑

i=0

un+1
i+ 1

2

= ∆x
N−1∑

i=0

un
i+ 1

2
−∆t

N−1∑

i=0

[
Fi+1

(
ui+ 1

2
, ui+ 3

2

)
− Fi

(
ui− 1

2
, ui+ 1

2

)]
,

= ∆x
N−1∑

i=0

un
i+ 1

2
−∆t

[
FN

(
uN− 1

2
, uN+ 1

2

)
− F0

(
u− 1

2
, u 1

2

)]
,

= ∆x

N−1∑

i=0

un
i+ 1

2
,
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apart from boundary fluxes and is analogous to the continuous equation (5.2). Therefore

neglecting the boundary flux terms, the total amount of the conserved variables does not

change in time. This discrete form can be used to define a numerical method to evolve

the cell average values of the conserved variables. The time-averaged flux function Fi

at the ith cell boundary is often referred to as the numerical flux function, as it is an

approximation to the true flux at this boundary. Equation (5.8) can now be used as a

method for updating the cell average of the solution in a given control volume and a

method resulting from this equation is referred to as a finite volume method. However,

if (5.8) is to be used as a numerical method we need to make a choice for the numerical

flux function. There are many ways in which this might be done, but perhaps one of

the most celebrated choices is that of Godunov. In [42] Godunov proposed a method for

solving the Euler equations of gas dynamics by solving local Riemann problems between

computational cells. Since the solution of the Riemann problem for the Euler equations

can be found analytically, Godunov suggested that given piecewise constant data in each

computational cell, local Riemann problems can be solved exactly or approximately

between cells using the wave structure of the solution and then these local Riemann

solutions can be pieced together to give a numerical solution to the conservation law.

This can be seen in figure 5.2. The size of the time-step ∆tn = tn+1−tn is assumed to be

small enough so that the waves from neighbouring Riemann problems do not interact.

This method has been generalised by constructing polynomial approximations in each

computational cell at each time level and then solving local Riemann problems with

polynomial initial data [58].

Denoting the number of computational cells by N , Godunov’s method uses these N

constant states as the initial data for a series of N − 1 Riemann problems which can

be solved and pieced together to give a numerical approximation to the true solution.

In principle these non-linear Riemann problems could be solved exactly at each cell

interface, but this process can be expensive numerically since it often involves solving

a (complicated) set of non-linear equations using an iterative procedure. Therefore, in

practice an approximate Riemann solver is usually employed since this is much cheaper

to implement, and in any case the “piecing together” step is of low order.

Godunov’s method was extended by Harten and Hyman [43] to solve hyperbolic conser-
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Figure 5.2: Figure showing the local wave structure of the Riemann problem in x − t

space.

vation laws on self-adjusting adaptive meshes. They used simple conservation principles

to derive the generalisation of (5.8) in a moving reference frame and found that the flux

function in the conservation law had to be shifted to take into account the motion of

the mesh. This led to the Arbitrary Lagrangian Eulerian (ALE) form of the conserva-

tion law. This method has been used for example by Stockie, Mackenzie and Russell

in [86] for the solution of one-dimensional hyperbolic conservation laws. The Arbitrary

Lagrangian Eulerian (ALE) form of the conservation law will be introduced in the next

section.

5.2 Arbitrary Lagrangian Eulerian (ALE) Form of

the Conservation Law

The idea behind the Arbitrary Lagrangian Eulerian (ALE) form of a conservation law,

originally introduced by Hirt, Amsden and Cook [45], was to improve the accuracy

of methods for solving the equations of fluid motion. As stated in chapter 2 Hirt et

al observe that the motion of the mesh does not have to be exclusively Eulerian or

Lagrangian; that is it does not have to be either in a frame fixed in time or moving

with the local fluid velocity. Therefore they transform the fluid equations into a general

frame of reference which is moving with an arbitrary velocity which could give Eulerian,

Lagrangian or some intermediate type of reference frame.

We now consider what happens to a conservation law when it is derived in a moving
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Figure 5.3: Figure showing the motion of computational cells in (x, t) space. The dotted

and bold lines show the true and approximate trajectories of the computational nodes.

reference frame Ω(t). We will assume that this reference frame is moving with velocity

ẋ which will be referred to as the ALE velocity. By the Reynolds Transport Theorem

[72]

d

dt

∫

Ω(t)

u dΩ =

∫

Ω(t)

(ut +∇ · (u ẋ)) dΩ

and, using the differential form of the conservation law ut = −∇ · f and rearranging, we

obtain the ALE form of the conservation law in the frame moving with ẋ as

d

dt

∫

Ω(t)

u dΩ +

∫

Ω(t)

∇ · (f − u ẋ) dΩ = 0.

Given ẋ this equation can be solved to obtain a solution to the conservation law in a

moving reference frame. Notice that in the ALE form of the conservation law the flux

function has been shifted to take into account the motion of the reference frame. Also

when ẋ = 0 we obtain the Eulerian form of the conservation law given by (5.1) and

when ẋ is the same as the fluid velocity v, i.e. ẋ = v, we obtain the Lagrangian form

of the conservation law.

5.3 Godunov’s Method on a Moving Mesh

We will now derive an ALE version of Godunov’s method in one spatial dimension. First

we define a set of finite volumes for the method. The spatial domain [a, b] is split into
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Figure 5.4: Figure showing the piecewise constant approximations in each computational

cell.

N non-overlapping elements, [xi(t), xi+1(t)] for i = 0, . . . , N − 1, which move in time.

The mesh points are also ordered as

a ≡ x0(t) < x1(t) < · · · < xN−1(t) < xN (t) ≡ b

and time is discretised into a series of (unequally) spaced times tn with the size of

the time-step given by ∆tn = tn+1 − tn. Having a varying time-step allows the use

of an adaptive time-stepping procedure, more details of which will be mentioned later.

Typical computational cells are shown in figure 5.3 in (x, t) space.

Godunov’s method assumes a piecewise constant approximation to the cell average in

each computational cell [xi(t), xi+1(t)] and this is shown in figure 5.4. Therefore the

approximate value (the generalisation of (5.5) on a non-uniform moving mesh) is given

by

un
i+ 1

2
=

1

∆xn
i+ 1

2

∫ xni+1(t)

xni (t)

u (x, tn) dx

where ∆xn
i+ 1

2

= xni+1 − xni . A discrete approximation to the conservation law written in

conservative form can then be derived based on conservation principles and is given as

(cf. (5.8))
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Figure 5.5: Figure showing the Riemann problem for the linearised system at node xi

with the initial states uL and uR for a 3-characteristic family of waves. The dashed line

shows the approximate motion of the computational node between tn and tn+1.

un+1
i+ 1

2

=

(
∆xn

i+ 1
2

∆xn+1
i+ 1

2

)
un
i+ 1

2
− ∆tn

∆xn+1
i+ 1

2

[
F̄i+1

(
ui+ 1

2
, ui+ 3

2

)
− F̄i

(
ui− 1

2
, ui+ 1

2

)]
. (5.9)

In Godunov’s method on a moving mesh, the time-averaged flux function is defined to

be

F̄i

(
ui− 1

2
, ui+ 1

2

)
≈ 1

∆tn

∫ tn+1

tn
f̄ (u (xi, t)) dt

(cf. (5.7)) where f̄ is now the ALE flux function taken to be f̄ = f− u ẋ.

In this work Roe’s approximate Riemann solver [80] will be used to evaluate the numer-

ical flux function in 1D. The main concept behind Roe’s approximate Riemann solver

is that rather than solving the original non-linear system of conservation laws, a locally

linearised version is solved. The linearised system of conservation laws is given by

ut + Ã ux = 0,

where Ã is a locally linearised form of the Jacobian matrix ∂f
∂u. Within each cell this

matrix is taken to be a function of the left and right data uL, uR, i.e. Ã = Ã(uL, uR)

and these states are regarded as the left and right states of a Riemann problem. The

waves associated with the solution of this Riemann problem are shown in figure 5.5. The
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linearised system, together with the initial data for the Riemann problem, is much easier

to solve than the original non-linear problem since it is a constant advection problem

and can be solved exactly.

In [80] Roe suggested that at each interface between the states uL and uR the matrix

Ã should have the following three properties in order to keep some of the properties of

the original system:

1. The linearised system should keep the hyperbolic nature of the original non-linear

system.

Ã(uL, uR) is diagonalisable with real eigenvalues

and linearly independent right eigenvectors. (5.10)

2. The linearised system should be consistent with the exact Jacobian.

Ã(uL, uR)→ ∂f

∂u
(u) smoothly as uL, uR → u (5.11)

3. The linearised system should be conservative across discontinuities.

Ã(uL, uR)(uR − uL) = f(uR)− f(uL) (5.12)

Properties 1 and 2 ensure that the linearised system is consistent with the original

problem and also that the hyperbolic nature of the non- linear system is preserved by

the linearisation. Property 3 ensures that the linearised system is conservative and

treats shocks correctly.

Since the linearised system is hyperbolic the eigenvalues and the right eigenvectors of

the matrix Ã can be found. The eigenvalues and eigenvectors of Ã will be denoted by

λi and ri respectively for i = 1, . . . ,m. These represent wavespeeds and wave profiles of

the system being solved.

The jumps ∆u in the conservative variables u can then be decomposed across the cells

onto the eigenvectors rp as
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∆u = uR − uL =

m∑

p=1

αp rp, (5.13)

where αp are called the wave strengths. Equation (5.13) is a set of m algebraic equations

which can be solved to obtain the wave-strengths αp for p = 1, . . . ,m. It is shown in

[93] and [60] that the upwinded numerical flux for Roe’s method can be formulated in

three equivalent ways. These are given as

F(uL, uR) = f(uL) +
m∑

p=1

λ−p αp rp,

F(uL, uR) = f(uR)−
m∑

p=1

λ+
p αp rp,

F(uL, uR) =
1

2
(f(uL) + f(uR))− 1

2

m∑

p=1

|λp|αp rp,

where λ−p = min(0, λp) and λ+
p = max(0, λp).

In the moving case the numerical flux function needs to be modified to take into account

the movement of the mesh. This is done by shifting the eigenvalues of the original

linearised system in an Eulerian frame by the mesh velocity. The flux function f also

changes to the ALE flux function f̄ = f− ẋ u. Therefore the numerical flux function at

the ith intercell boundary with left and right data states uL and uR on a moving mesh

is given by

F(uL, uR) =
1

2

(̄
f(uL) + f̄(uR)

)
− 1

2

m∑

p=1

|λ̃p|αp rp (5.14)

where λ̃p = λp− ẋni is the shifted wave speed. Once we have calculated the eigenvalues,

the right eigenvectors and the wave strengths for the system, we can then evaluate the

numerical flux function given by equation (5.14). (Of course we still need the ALE

velocities ẋni for i = 0, . . . , N .) This numerical flux function can then be used in the

conservative update formula to evolve the cell average values forward in time.

The finite volume method, together with this choice for the numerical flux function,

leads to a method that is only first order accurate. The method will therefore introduce
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diffusion into the numerical solution and hence tend to smear out discontinuities. It is

possible to include second order corrections to the finite volume method to produce a

second order accurate method. However, doing so may also introduce spurious oscilla-

tions near discontinuities. One way to obtain higher order accuracy without oscillations

is to use flux limiters [60, 93] which operate near discontinuities. In this way the flux

function is limited so that in regions where the solution is smooth we have second order

accuracy, but in the vicinity of discontinuities (where order of accuracy is less important

than monotonicity) we only have first order accuracy. We can write the limited form of

the flux function as

F(uL, uR) = FLow(uL, uR) + Φ(θ)
[
FHigh(uL, uR)− FLow(uL, uR)

]
, (5.15)

where FLow and FHigh denote low (first) and high (second) order flux functions respec-

tively. The function Φ(θ) is called the flux limiter and is a function of a variable θ which

identifies the local behaviour of the solution. The variable θ is conveniently taken to

be the ratio of consecutive wave strengths. It can easily be seen from (5.15) that when

Φ(θ) = 0 we obtain a first order flux function and when Φ(θ) = 1 we obtain a second

order flux function. When Φ(θ) has a value somewhere in between zero and one we

obtain some composite flux function. We now need to make a choice for the flux limiter

Φ(θ).

It was shown by Sweby [87] that the flux limiter Φ (θ) should have certain properties to

ensure that the resulting method is total variation diminishing, that is the total variation

in the numerical solution is not increasing in time. One choice of Φ(θ) that we will use

in our numerical calculations is the superbee flux limiter of Roe [81] which is given by

Φ(θ) = max(0,min(1, 2θ),min(θ, 2))

and takes the greatest possible amount of flux up to the point where the ratio of con-

secutive wave strengths is 1
2

or 2. If we use the Lax-Wendroff flux as the high-order flux

function in (5.15), given as

FHigh(uL, uR) =
1

2

(̄
f(uL) + f̄(uR)

)
− 1

2

∆tn

∆xni

m∑

p=1

λ̃2
p αp rp,
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then can write our limited flux function as

F(uL, uR) = FLow(uL, uR) +
1

2

m∑

p=1

|λ̃p|
(

1− ∆tn

∆xni
|λ̃p|
)

Φ(θp)αp rp, (5.16)

where FLow is the first order Roe flux function given by (5.14) and ∆xi = 1
2
(∆xi+ 1

2
+

∆xi− 1
2
). The variable θp is given by the ratio of consecutive wave strengths to the left

if λ̃p is greater than zero and to the right if λ̃p is less than zero.

Since the Roe scheme is explicit in time we also require that the mesh and time-step

satisfy a CFL condition. This condition is given by

CFL = ∆t max
i, p





∣∣∣∣∣∣

(
λ̃+
p

)
i

∆xi+ 1
2

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣

(
λ̃−p

)
i+1

∆xi+ 1
2

∣∣∣∣∣∣∣




≤ 1 (5.17)

and constrains the time-step to be small enough that neighbouring waves do not inter-

sect.

It has been found that Roe’s Riemann solver does not satisfy an entropy condition and

so can produce non-physical solutions. This entropy violating solution may arise if a

sonic rarefaction occurs in the solution relative to the motion of the mesh. In this case

we will have that λ̃p < 0 to the left of the wave and λ̃p > 0 to the right of the wave. It is

therefore essential to modify the approximate Riemann solver when we have this case.

One method for doing this on a moving mesh is outlined by Harten and Hyman in [43]

and consists of modifying the wave speeds to obtain an entropy satisfying solution.

We will now consider a particular example of a hyperbolic conservation law that the

moving mesh method can be applied to. The equation that will be solved is a first order

scalar partial differential equation.
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5.4 Inviscid Burgers’ Equation

The inviscid Burgers equation in one spatial dimension has the form

ut +

(
1

2
u2

)

x

= 0. (5.18)

This equation may also be written in quasi-linear form as

ut + uux = 0

The inviscid Burgers equation is perhaps the simplest conservation law which exhibits

non-linear effects and is often studied to illustrate the structure of solutions. The equa-

tion is derived from the advection-diffusion equation

ut + uux = ε uxx, (5.19)

when ε → 0. Equation (5.19) is the simplest equation to include both non-linear and

viscous effects (and can be reduced to the linear heat equation by a Cole-Hopf trans-

formation as shown in Whitham in [100]). The case of vanishing viscosity (ε → 0) is

considered for the solution of (5.18) in [100].

We now consider the scale invariance of the inviscid Burgers equation. We will seek a

set of transformations of the form

û→ λα u x̂→ λβ x t̂→ λ t

which leave the inviscid Burgers equation, given by (5.18), invariant. Substituting these

transformations into the inviscid Burgers equation given by (5.18) we obtain

λ1−α ût̂ + λβ−2α

(
1

2
û2

)

x̂

= 0.

Therefore the inviscid Burgers equation will be scale invariant under the transformation

(u, x, t)→
(
û, x̂, t̂

)
provided that
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1− α = β − 2α,

or

α− β + 1 = 0

holds. A further condition is also required to uniquely determine the transformation; one

suitable condition comes from imposing the Dirichlet boundary conditions u(a, t) = A

and u(b, t) = B where a and b are the end points of the spatial domain and A and B

are constants. These boundary conditions can be written as

∫ b

a

ux dx = u (b)− u (a) = B − A = constant.

Therefore we shall require that the total jump in the variable u should be constant

in time and hold in the transformed co-ordinates
(
û, x̂, t̂

)
. Substituting the change of

variables into this condition we obtain

∫ b

a

ux dx = λ−α
∫ b

a

ûx̂ dx̂,

which is scale invariant provided that α = 0. Therefore we have found that the inviscid

Burgers equation given by (5.18), together with Dirichlet boundary conditions, is scale

invariant under the transformation

û→ u x̂→ λx t̂→ λ t.

From these scale invariant arguments it can be seen that there are two invariant quanti-

ties in this problem, given as u and x
t

and hence self-similar solutions may be sought of

the form u = f
(
x
t

)
. Also, these arguments suggest that the monitor function M = ux

may be used for the solution of the inviscid Burgers equation. However, the gradient of

the solution is likely to be equal to zero in parts of the domain and therefore is unsuit-

able for use as a monitor function. Hence the modified monitor function M = 1 +α |ux|
is used here so that in regions where the gradient of the solution is zero, the mesh will

remain Eulerian.
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5.4.1 Details of an ALE Solver

In this subsection we briefly describe the application of Roe’s approximate Riemann

solver for the solution of the ALE form of the inviscid Burgers equation, which is given

by

d

dt

∫

Ω(t)

u dx+

∫

Ω(t)

∂

∂x

(
1

2
u2 − u ẋ

)
dx = 0

To be able to use the Roe approximate Riemann solver outlined in section 5.3 we need

to obtain the eigenvalues and eigenvectors of the Jacobian matrix for the equations

flux function. However, since the equation being solved is a scalar system, the single

eigenvalue of the equation is λ = u. In the case of the Riemann problem the eigenvalue

is calculated by considering the Rankine-Hugoniot jump condition for the equation.

Therefore

λ =
[f (u)]

[u]
,

where [·] = ·R − ·L denotes the jump in the variable. Then since the flux function for

the inviscid Burgers equation is f (u) = 1
2
u2 we have that

λ =

[
1
2
u2
R − 1

2
u2
L

]

[uR − uL]
=

1

2
(uR + uL) .

From equation (5.13) we have that the jump in the variable u is given simply by

∆u = uR − uL

and replaces the product of the wave strength and eigenvector in the numerical flux

function given by (5.16). Therefore the ALE finite volume equation derived in section

5.3 has a much simpler form for the inviscid Burgers equation and is given by

un+1
i+ 1

2

=

(
∆xn

i+ 1
2

∆xn+1
i+ 1

2

)
un
i+ 1

2
− ∆tn

∆xn+1
i+ 1

2

[
F̄i+1

(
ui+ 1

2
, ui+ 3

2

)
− F̄i

(
ui− 1

2
, ui+ 1

2

)]
,

where the limited flux function (5.16) is given by
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F̄ (uL, uR) =
1

2

(
f̄(uL) + f̄(uR)

)
− 1

2
|λ̃|
(

1−
(

1− ∆tn

∆xni
|λ̃|
)

Φ(θ)

)
∆u.

Here f̄ = 1
2
u2− uẋ is the ALE flux function and λ̃ = λ− ẋi is the shifted eigenvalue for

the inviscid Burgers equation.

In subsections 5.4.2 and 5.4.3 we will outline the use of two different monitor functions to

produce an ALE velocity for the solution of the one-dimensional inviscid Burgers equa-

tion by the method above. The results obtained using the different monitor functions

will then be compared with each other and with the traditional Eulerian method, which

can be seen as arising from the monitor function M = 1. The first monitor function

that we will consider for the adaptive solution of the inviscid Burgers equation is the

mass monitor function.

5.4.2 A Mass Monitor Function

In this section the moving mesh method derived in chapter 3, along with the finite

volume solver outlined in the previous section, will be used to solve the inviscid Burgers

equation in one spatial dimension. The first choice for the monitor function is the

“mass” monitor which is defined as M = u. This choice leads to the mesh movement

being approximately Lagrangian. Therefore the nodes will move approximately with

the local fluid velocity 1
2
u. This can be shown by considering the continuous version of

the moving mesh method derived in chapter 3 with the monitor function M = u. Thus,

from (3.4),

∫
∂

∂x
(u ẋ) dx = −

∫
ut dx,

which upon using the inviscid Burgers equation (5.18) and rearranging becomes

∫
∂

∂x

(
u ẋ− 1

2
u2

)
dx = 0.

Therefore, simply integrating and using the condition that u = 0 when ẋ = 0, we obtain

u ẋ− 1

2
u2 = 0,
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which, using a limiting argument, finally gives us that ẋ = 1
2
u. We will now outline the

use of the mass monitor function in the moving mesh method. Substituting this choice

for the monitor function into equation (3.17) gives

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
u
∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi ut dx.

The right hand side of this equation can be written in terms of the PDE being solved,

which in this case is Burgers’ equation. Therefore, substituting equation (5.18), we

obtain

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
u
∂φ

∂x

)
dx =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
1

2
u2

)
dx

To obtain a weak form of the velocity potential equation we can integrate the left-hand

side by parts to remove one of the differential operators from φ to give

[
wi u

∂φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

u
∂φ

∂x
dx =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
1

2
u2

)
dx.

The basis functions wi are equal to zero at the extremities of the integral and at the

edge of the domain φ = 0, so the first term disappears to give

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

u
∂φ

∂x
dx =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
1

2
u2

)
dx

for internal nodes. The finite element approximations can now be substituted and

expanded in terms of the linear basis functions to obtain a discrete numerical method.

The result of this is a weighted stiffness matrix system given by

K Φ
˜

= f
˜
, (5.20)

where

Ki j = −
∫ xi+1(t)

xi−1(t)

∂wi
∂x

U
∂wj
∂x

dx
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and

fi =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
1

2
U2

)
dx.

Once the numerical approximation to the mesh velocity potential has been obtained,

the mesh velocity can then be recovered weakly, as in chapter 4 for the PME, through

using equation (4.19). The mesh positions are then integrated forward in time using the

standard forward Euler time-stepping routine given as

X
˜
n+1 = X

˜
n + ∆tn Ẋ

˜

n
, (5.21)

where a suitable time-step ∆tn is calculated through (5.17). The velocity obtained from

this choice of the monitor function can then be used in the ALE integral form of Burgers’

equation to update the solution variable. The solution procedure will be highlighted at

the end of the next subsection and results obtained using this monitor function will be

shown in the subsequent section.

5.4.3 A Geometric Monitor Function

The next monitor function that will be considered is given by M = 1 + α | ∂u
∂x
|, where

α is a constant. This monitor function is chosen from more geometrical considerations

of the solution structure. Since non-linear hyperbolic equations exhibit solutions which

contain regions where the solution gradient is very high, such as close to shock waves,

we would hope that a monitor function based on the gradient of the solution would

move mesh points into these regions and hence give better resolution of these features.

We will assume from now on that ∂u
∂x

> 0 (or ∂u
∂x

< 0) everywhere. The presence of

the 1 is because in regions of the domain the gradient ux will be equal to zero and

hence the matrices being solved will become singular. Therefore we require that when

this occurs the mesh movement should be Eulerian in these regions. The constant α is

included so that the relative amount of mesh adaption can be increased/decreased by

increasing/decreasing this constant. Also it should be noted that in practice the monitor

function will be smoothed to obtain a more regularised mesh, however this process will

be described in the numerical results section.
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Substituting this geometric monitor function into equation (3.17) gives

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

((
1 + α

∂u

∂x

)
∂φ

∂x

)
dx = −α

∫ xi+1(t)

xi−1(t)

wi
∂

∂t

(
∂u

∂x

)
dx. (5.22)

We now need to deal with the right hand side of the above integral and in particular

the term ∂
∂t

(
∂u
∂x

)
. If the derivatives exist we can interchange the order of space and time

differentiation in the right hand side integrand of this equation. Then we may use the

inviscid Burgers equation given by (5.18) to obtain

∫ xi+1(t)

xi−1(t)

wi
∂

∂t

(
∂u

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂2

∂x2

(
1

2
u2

)
dx,

giving

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

((
1 + α

∂u

∂x

)
∂φ

∂x

)
dx = α

∫ xi+1(t)

xi−1(t)

wi
∂2

∂x2

(
1

2
u2

)
dx.

To obtain a suitable weak form of this velocity potential equation we need to integrate

the right and left hand sides of the above integral equation by parts to obtain

[
wi

(
1 + α

∂u

∂x

)
∂φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

(
1 + α

∂u

∂x

)
∂φ

∂x
dx

=

[
αwi

∂

∂x

(
1

2
u2

)]xi+1(t)

xi−1(t)

− α
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂

∂x

(
1

2
u2

)
dx.

Again, standard linear finite element approximations are substituted and expanded in

terms of the linear basis functions to obtain a discrete numerical method. The condition

that φ = 0 on the boundary of the domain is also used. The result of this discretisation

is a weighted stiffness matrix system given by

K Φ
˜

= f
˜
, (5.23)

where

Ki j =

[
wi

(
1 + α

∂U

∂x

)
∂wj
∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

(
1 + α

∂U

∂x

)
∂wj
∂x

dx
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and

fi =

[
αwi

∂

∂x

(
1

2
U2

)]xi+1(t)

xi−1(t)

− α
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂

∂x

(
1

2
U2

)
dx.

The mesh velocity is recovered weakly using (4.19). The mesh is then integrated forward

in time with the standard forward Euler time-stepping routine (5.21) and the solution

to the inviscid Burgers equation is updated with the Roe scheme on a moving mesh.

The outline of the numerical method is therefore:

• Given an initial mesh and solution, calculate a suitable time-step using equation

(5.17).

• Solve the stiffness matrix system (5.20) or (5.23), depending on which monitor

function is being used, for the mesh velocity potential Φ using the boundary con-

dition Φ = 0.

• Recover the mesh velocity Ẋ using (4.19) and time-step the mesh using the forward

Euler time stepping procedure given by (5.21).

• Obtain the solution U on the new mesh by solving the ALE form of the inviscid

Burgers equation1.

• Repeat until the desired output time is reached.

Results will be shown for the adaptive solution of Burgers’ equation in the next section.

1If the solution to the problem is smooth then the solution may be recovered using the conservation

of monitor function principle as in chapter 4 for the solution of the porous medium equation.

121



5.5 Numerical Results IV

In this section we consider the solution to the inviscid Burgers equation on an adaptively

moving mesh generated from the moving mesh method derived in chapter 3. The solution

has been obtained for two different test cases which have been chosen to demonstrate the

features of the equation. The first problem that we will solve has the initial condition

u0(x) =





1 for 0 ≤ x ≤ 1
10

,

1
6

(7− 10x) for 1
10
≤ x ≤ 2

5
,

1
2

for 2
5
< x < 1,

(5.24)

which is a continuous ramp-type function and demonstrates the phenomenon that shocks

can arise from smooth initial data. This problem has the solution

u(x, t) =





1 for 0 ≤ x ≤ 1
10

+ t,

7−10 x
6−10 t

for 1
10

+ t ≤ x ≤ 2
5

+ 1
2
t,

1
2

for 2
5

+ 1
2
t < x < 1,

(5.25)

for 0 < t < t∗, where t∗ = 3
5
. At t = t∗ a shock forms and the solution to the weak form

of the problem is a shock wave given by

u(x, t) =





1 for x ≤ 7
10

+ 3
4

(t− t∗),
1
2

for x > 7
10

+ 3
4

(t− t∗),
(5.26)

for t ≥ t∗. In all the numerical simulations for this test case we will integrate the

problem forward in time until t = 0.7 so that the shock has formed. The second test

case consists of initial data which is already discontinuous, with initial condition

u0(x) =





1 for 0 ≤ x ≤ 1
2

1
2

for 1
2
< x < 1

(5.27)

The solution to the inviscid Burgers equation with this initial condition can be found

simply using the Rankine-Hugoniot jump condition and is given as

u(x, t) =





1 for 0 ≤ x ≤ 1
2

+ 3
4
t

1
2

for 1
2

+ 3
4
t < x < 1

. (5.28)
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Figure 5.6: Eulerian solution to Burgers’ equation at t = 0.7 with initial condition

(5.24), computed on a mesh with 100 mesh points and CFL = 0.5. The bold red line

and the blue dotted line represent exact and numerical solutions respectively.

In the numerical simulations for this test case we will integrate the problem forward in

time until t = 0.6 and transmissive boundary conditions will be used for the ALE solver.

These two test problems were solved on an adaptive mesh generated by the moving

mesh method using each monitor function. However, the test problems were first solved

on a fixed equispaced Eulerian mesh (as generated from the monitor function M = 1).

The problems were solved using four different sized meshes having 50, 100, 200 and 400

mesh points. The solution obtained using 100 mesh points for the first test problem

can be seen in figure 5.6 and results for the second in figure 5.7. These solutions were

computed with a CFL limit of 0.5 and used the superbee flux limiter.

The two test problems were then solved on a moving mesh generated from the monitor

function M = u, which led to approximately Lagrangian mesh movement. The problem
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Figure 5.7: Eulerian solution to Burgers’ equation at t = 0.6 with initial condition

(5.27), computed on a mesh with 100 mesh points and CFL = 0.5. The bold red line

and the blue dotted line represent exact and numerical solutions respectively.

was solved on initially equispaced meshes comprising of 50, 100 and 200 mesh points.

The solutions obtained on the mesh having 100 points can be seen in figures 5.10 and 5.8

for the first and second test problems respectively. Again the solutions were computed

with a CFL limit of 0.5 and the superbee flux limiter was employed. The mesh velocity

and the trajectories of the mesh points can be seen in figures 5.9 and 5.11 again for

the two test problems. It can easily be seen that the mesh movement is approximately

Lagrangian since the mesh velocity at the relevant output times is approximately ẋ =

1
2
u. The Lagrangian mesh movement tends to compress the mesh points into the region

of the moving discontinuity and hence gives better resolution of it, which can be seen

in the mesh point trajectories in figures 5.11 and 5.9.

Lastly, the problems were solved using the monitor function M = 1 + α|ux|, where α is

a constant. The constant α was normalised by the maximum gradient by setting
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Figure 5.8: Solution to Burgers’ equation at t = 0.7 with initial condition (5.24) obtained

with the moving mesh method with M = u, computed on a mesh with 100 mesh points

and CFL = 0.5. The bold red line and the blue dotted line represent exact and numerical

solutions respectively.
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Figure 5.9: Figures showing the velocity of the mesh points at the output time t = 0.7

(left) and the trajectories of the mesh points (right) arising from the use of the monitor

function M = u.
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Figure 5.10: Solution to Burgers’ equation at t = 0.6 with initial condition (5.27) ob-

tained with the moving mesh method with M = u, computed on a mesh with 100 mesh

points and CFL = 0.5. The bold red line and the blue dotted line represent exact and

numerical solutions respectively.
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Figure 5.11: Figures showing the velocity of the mesh points at the output time t = 0.6

(left) and the trajectories of the mesh points (right) arising from the use of the monitor

function M = u.
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α =
β

max
x
|ux|

,

where β is a constant chosen to determine the degree of mesh adaption. The problems

were solved on meshes comprising of 50, 100 and 200 mesh points. An initial mesh was

generated for the first test problem with the initial ramp function by equidistributing the

monitor function over the mesh and the initial mesh for the second test problem with the

initial discontinuous data given by (5.27) was produced by replacing it by a hyperbolic

tangent function. This function was then used to equidistribute the monitor function

over the mesh. Both the initial meshes were equidistributed using the algorithm found

in Baines [7]. It should be noted that the initial data given by (5.27), not the hyperbolic

tangent function, was then used on the adapted mesh as the initial setup for the second

test problem. To maintain accuracy of the numerical solution on the adaptive mesh it

is usually necessary to smooth either the mesh or the monitor function. However, since

the monitor function is solution dependent it is possible to merely smooth the solution

variable u. This was done by diffusing the solution in the following manner,

(ui)smoothed = ui +

(
ui+1−ui
xi+1−xi −

ui−ui−1

xi−xi−1

)

(xi+1 − xi−1)
.

This smoothing process can be applied as many times as required to obtain a smoothed

monitor to be used to generate the moving mesh. The solutions obtained on the mesh

having 100 points can be seen in figures 5.14 and 5.12. Again the solution was computed

with a CFL limit of 0.5 and the superbee flux limiter was employed. The mesh velocity

and the mesh trajectories can be seen in figure 5.15 for this choice of monitor function.

It can be seen from these figures that this monitor function causes mesh points to cluster

around the shock region and hence give better resolution of the solution.

The errors in the resulting numerical solution were computed for all three methods using

a weighted L1−norm given as

||u− U ||L1
=

N∑

i=0

∣∣∣u(xi+ 1
2
, t)− U(xi+ 1

2
, t)
∣∣∣ ∆xi+ 1

2
.

The errors in the solutions are summarised in table 5.1 and 5.2 for the two test problems

and give a quantitative measure of the accuracy of the method. The errors are shown for
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Figure 5.12: Solution to Burgers’ equation at t = 0.7 with initial condition (5.24) ob-

tained with the moving mesh method with M = 1+α |ux|, computed on a mesh with 100

mesh points and CFL = 0.5. The bold red line and the blue dotted line represent exact

and numerical solutions respectively.
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Figure 5.13: Figures showing the velocity of the mesh points at the output time t = 0.7

(left) and the trajectories of the mesh points (right) arising from the use of the monitor

function M = 1 + α |ux|.
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Figure 5.14: Solution to Burgers’ equation at t = 0.6 with initial condition (5.27) ob-

tained with the moving mesh method with M = 1+α |ux|, computed on a mesh with 100

mesh points and CFL = 0.5. The bold red line and the blue dotted line represent exact

and numerical solutions respectively.
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Figure 5.15: Figures showing the velocity of the mesh points at the output time t = 0.6

(left) and the trajectories of the mesh points (right) arising from the use of the monitor

function M = 1 + α |ux|.
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Figure 5.16: Figure showing plots of the time-steps for the Eulerian and moving mesh

methods.

both the first and second order in space versions of the Roe method. It can be seen from

these tables that the moving mesh methods give rise to much more accurate numerical

solutions in comparison with the Eulerian fixed grid method. For example, for the second

test problem the moving mesh method using the monitor function M = 1 + α |ux| on a

mesh with 200 points can give a more accurate solution in comparison with the Eulerian

method calculated on a mesh with 400 mesh points.

Figure 5.16 shows the change in size of the time-step as the simulation with initial data

given by (5.27) is carried out. It can be seen that the magnitude of the time-steps, for

the moving mesh method with the monitor function M = 1 + α |ux|, oscillate in time.

This phenomena is caused by the fact that the mesh points cannot be restrained to lie

within the shock wave region and therefore periodically enter and leave the shock region.

This feature of the mesh movement is usually referred to as mesh racing.
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Method Error Error

(1st order) (2nd order)

Eulerian

(Fixed)

N=50 0.03471 0.00987

N=100 0.02183 0.00551

N=200 0.01199 0.00254

N=400 0.00631 0.00127

Lagrangian

M = u

N=50 0.02030 0.00753

N=100 0.01074 0.00377

N=200 0.00538 0.00188

Geometrical

M = 1 + α |ux|
N=50 (β = 0.5) 0.02403 0.00416

N=100 (β = 0.5) 0.01294 0.00216

N=200 (β = 0.5) 0.00692 0.00107

Table 5.1: L1 errors for fixed and moving mesh methods for inviscid Burgers’ equation

with initial data (5.24).
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Method Error Error

(1st order) (2nd order)

Eulerian

(Fixed)

N=50 0.02377 0.01391

N=100 0.01644 0.00508

N=200 0.00887 0.00254

N=400 0.00449 0.00127

Lagrangian

M = u

N=50 0.01780 0.00755

N=100 0.00893 0.00377

N=200 0.00449 0.00189

Geometrical

M = 1 + α |ux|
N=50 (β = 1) 0.01592 0.00222

N=100 (β = 1) 0.00711 0.00185

N=200 (β = 1) 0.00387 0.00098

Table 5.2: L1 errors for fixed and moving mesh methods for inviscid Burgers’ equation

with initial data (5.27).
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5.6 The Compressible Euler Equations Of Gas

Dynamics

In this section we will consider the adaptive solution of the compressible Euler equations

of gas dynamics in one spatial dimension. The Euler equations in one spatial dimension

are a set of three time-dependent hyperbolic conservation laws which govern the motion

of a compressible, inviscid fluid. The Euler equations in differential form are given as




ρ

ρv

E



t

+




ρv

ρv2 + p

v (E + p)



x

= 0, (5.29)

where ρ is the density, v is the velocity, p is the pressure and E is the total energy

of the fluid being modelled. These three equations represent the conservation of mass,

momentum and energy. The Euler equations are a simplification of the more general

compressible Navier-Stokes equations of fluid dynamics, which model fluids with viscous

effects. The Euler equations are obtained by ignoring these effects, rather as ε → 0 in

the viscous Burgers equation of the previous section.

Since the Euler equations are three equations in four unknowns we need another equation

to close the system. The system is usually closed by prescribing an empirical law called

the equation of state (EOS) which attempts to describe the thermodynamic relationship

between the variables. In this work we will use the ideal gas equation of state so that

the total energy can be written as

E =
p

(γ − 1)
+

1

2
ρu2,

where γ is the ratio of specific heats for the gas, and in this work will be taken to be

γ = 1.4.

To be able to use the Roe scheme outlined in section 5.3 for the solution of the compress-

ible Euler equations, given by (5.29), we need to find the eigenvectors and eigenvalues of

the Jacobian matrix for the flux function in the Euler equations. The Euler equations

can be written in quasi-linear form as
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ut + A ux = 0,

where u = (ρ, ρ v, E)T and the Jacobian matrix A is given as

A =




0 1 0

(γ − 1)− v2 − c2 (3− γ) v γ − 1

1
2

[(γ − 3) H − c2] H − (γ − 1) v2 γ v


 .

Here H is defined as the enthalpy of the gas and is given as

H =
E + p

ρ
=

c2

γ − 1
+

1

2
v2

and c =
√

γ p
ρ

is the speed of sound in the gas. It can be shown that the eigenvalues λp

for the Jacobian matrix A are

λ1 = v − c λ2 = v λ3 = v + c

and the right eigenvectors for the system are

r1 =




1

v − c
H − v c


 r2 =




1

v

1
2
v2


 r3 =




1

v + c

H + v c


 .

The wave-strengths αp are also needed for the solution of the Euler equations using

the Roe approximate Riemann solver and are obtained by solving the set of algebraic

equations that result from (5.13). Once these equations have been solved it is found

that the wave-strengths in a cell are given by

α1 =
1

2 c
(∆ρ (v + c)−∆ (ρ v)− c α2) ,

α2 =
γ − 1

c2

(
∆ρ
(
H − v2

)
− v∆ (ρ v)−∆E

)
,

α3 = ∆ρ− (α1 + α2) .
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where ∆ (·) denotes the jump in the corresponding conserved variable. To obtain a

conservative discrete numerical method, the eigenvalues, eigenvectors and the wave-

strengths for the system need to be evaluated at a consistent cell-averaged state. In [80]

Roe found that a sufficient condition to satisfy the three properties (5.10), (5.11) and

(5.12) was that the Roe matrix should be evaluated at the Roe-averaged states given by

ρ̂ =
√
ρL ρR, v̂ =

√
ρL vL +

√
ρR vR√

ρL +
√
ρR

, Ĥ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

.

Here the subscripts L and R denote the left and right states at the cell boundary. The

sound speed is also evaluated at this Roe-averaged state and is given by

ĉ2 = (γ − 1)

(
Ĥ − 1

2
v̂2

)
.

We now have all the information that is required to apply the Roe Riemann solver for

the solution of the Euler equations. In the following subsections we will outline the

application of the moving mesh method derived in chapter 3 to the Euler equations

for specific choices of the monitor function M . We will begin by considering the mass

monitor function.

5.6.1 A Mass Monitor Function

In this section we will consider the adaptive solution of the compressible Euler equations

given by (5.29). Using similar monitor functions to those which were used for the solution

of the inviscid Burgers equation we will solve the Euler equations using the moving mesh

method outlined in chapter 3. The first choice for the monitor function is the mass

monitor M = ρ and, as with Burgers’ equation, this will lead to a moving mesh method

which is approximately Lagrangian. Therefore we expect that the computational nodes

move with the local fluid velocity, i.e. ẋ = v. This is easily shown using the same

technique as in section 5.4.2. Let us consider the continuous version of the moving mesh

method derived in chapter 3 together with the monitor function M = ρ, so that

∫
∂

∂x
(ρ ẋ) dx = −

∫
ρt dx.
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Now using the conservation of mass equation ρt + (ρ v)x = 0, given by the first Euler

equation in (5.29), in the above equation we obtain

∫
∂

∂x
(ρ (ẋ− v)) dx = 0,

which can be integrated, using the condition that v = 0 when ẋ = 0, to give

ρ (ẋ− v) = 0.

Since the density ρ is positive we have that ẋ = v. Therefore we conclude that this

choice for the monitor function will cause the mesh points to move approximately with

the fluid velocity.

We now describe the use of the monitor function M = ρ in the moving mesh method. If

we substitute this choice for the monitor function into the moving mesh equation (3.17)

we obtain the equation

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
ρ
∂φ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi ρt dx.

The right-hand side of this equation can be written in terms of the Euler equations that

we are solving by using the conservation of mass equation ρt + (ρ v)x = 0 to give

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

(
ρ
∂φ

∂x

)
dx =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x
(ρ v) dx.

We integrate the left-hand side of the above expression by parts to remove one of the

differentials from φ, giving

[
wi ρ

∂φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

ρ
∂φ

∂x
dx =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x
(ρ v) dx.

Since the basis functions are equal to zero at the end points of the region of integration

and also we have the that φ = 0 at the ends of the domain the boundary term in the

above integral disappears. Therefore we obtain the velocity potential equation
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−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

ρ
∂φ

∂x
dx =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x
(ρ v) dx,

for all internal nodes. Once the finite element approximations have been introduced we

obtain the weighted stiffness equation

K Φ
˜

= f
˜
,

where

Ki j = −
∫ xi+1(t)

xi−1(t)

∂wi
∂x

ρ
∂wj
∂x

dx

and

fi =

∫ xi+1(t)

xi−1(t)

wi
∂

∂x
(ρ v) dx.

To avoid proliferation of notation the finite element approximations to the density and

velocity of the gas are still denoted by ρ and v. Again, once the numerical approximation

to the mesh velocity potential has been obtained, the mesh velocity can be recovered

weakly using equation (4.19). The mesh is then integrated forward in time using a

standard forward Euler time-stepping routine with a suitable time-step given by (5.17).

The velocity obtained from this choice of the monitor function can then be used in the

ALE Godunov method (5.9) to update the solution variables. Results generated from

this choice of monitor function will be shown in section 5.7.

5.6.2 A Geometric Monitor Function

In this subsection we will outline the use of the geometric monitor function M = 1 +

α |ρx|, where α is a constant to be chosen. We will assume that ∂ρ
∂x
> 0 (or ∂ρ

∂x
< 0) in

the remainder of the section. If we substitute this choice for the monitor function into

the moving mesh equation (3.17) we obtain the equation

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

((
1 + α

∂ρ

∂x

)
∂φ

∂x

)
dx = −α

∫ xi+1(t)

xi−1(t)

wi
∂

∂t

(
∂ρ

∂x

)
dx. (5.30)

137



We now need to deal with the right hand side of the above integral and in particular the

term ∂
∂t

(
∂ρ
∂x

)
. This term is dealt with in similar manner as in subsection 5.4.3 for Burgers’

equation. Therefore, following a similar procedure, we assume we can interchange the

order of differentiation on the right hand side. We now need to obtain an equation for

ρt. This can be found from the conservation of mass equation given by ρt = − (ρ v)x.

Therefore

∫ xi+1(t)

xi−1(t)

wi
∂

∂t

(
∂ρ

∂x

)
dx = −

∫ xi+1(t)

xi−1(t)

wi
∂2

∂x2
(ρ v) dx.

Hence equation (5.30) becomes

∫ xi+1(t)

xi−1(t)

wi
∂

∂x

((
1 + α

∂ρ

∂x

)
∂φ

∂x

)
dx = α

∫ xi+1(t)

xi−1(t)

wi
∂2

∂x2
(ρ v) dx.

Integrating by parts to derive a weak form of the velocity potential equation, we obtain

[
wi

(
1 + α

∂ρ

∂x

)
∂φ

∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

(
1 + α

∂ρ

∂x

)
∂φ

∂x
dx

=

[
αwi

∂

∂x
(ρ v)

]xi+1(t)

xi−1(t)

− α
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂

∂x
(ρ v) dx.

Again, finite element approximations for ρ and v can be substituted and expanded

in terms of the linear basis functions wi to obtain a discrete numerical method. The

condition that φ = 0 on the boundary of the domain is also used. The result of this is

a weighted stiffness matrix system given by

K Φ
˜

= f
˜
,

where the individual entries of the stiffness matrix are given as

Ki j =

[
wi

(
1 + α

∂ρ

∂x

)
∂wj
∂x

]xi+1(t)

xi−1(t)

−
∫ xi+1(t)

xi−1(t)

∂wi
∂x

(
1 + α

∂ρ

∂x

)
∂wj
∂x

dx

and the entries of f
˜

are

fi =

[
αwi

∂

∂x
(ρ v)

]xi+1(t)

xi−1(t)

− α
∫ xi+1(t)

xi−1(t)

∂wi
∂x

∂

∂x
(ρ v) dx.
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The finite element approximations to the density and velocity of the gas are still denoted

by ρ and v. We now have a matrix system that can be solved to obtain the velocity

potential Φ and from this we can recover the mesh velocity Ẋ through equation (4.19).

The mesh can then be time-stepped using the same standard Euler time-stepping algo-

rithm that was used for the inviscid Burgers equation. The solution to the compressible

Euler equations is then advanced in time approximately by using the ALE Godunov

scheme with the approximate Roe Riemann solver.

Results for the Euler equations will be presented in the next section, solved on both static

and adaptive meshes generated using the monitor functions M = ρ and M = 1 +α |ρx|.
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5.7 Numerical Results V

In this section we will show results obtained for the compressible Euler equations of gas

dynamics using the Roe approximate Riemann solver on an adaptive mesh generated

by the method derived in chapter 3. For our test case we have taken the shock tube

problem of Sod [85]. This problem has a material interface which separates two regions

of gas initially at rest with constant, but different densities, pressures and energies. At

t = 0 the interface is broken and the gases are allowed to move into one another. The

resulting solution of the problem consists of a left travelling rarefaction wave and right

travelling contact and shock waves. The initial conditions for this problem are given as

(ρ, v, p) =





(1.0, 0.0, 1.0) for 0 ≤ x ≤ 1
2

(0.125, 0.0, 0.1) for 1
2
< x < 1

(5.31)

In all the numerical simulations we will output the solutions at t = 0.2.

The Sod shock tube problem is firstly solved on an Eulerian mesh, that is one which is

static in time and equispaced. The problem was solved on four different meshes having

different numbers of computational nodes. These meshes had 50, 100, 200 and 400

nodes. The solution to the problem computed on a mesh with 100 nodes can be seen in

figure 5.17 and was computed with a CFL limit of 0.5 and the superbee flux limiter.

The same problem was then solved using the moving mesh method using the mass

monitor function M = ρ. This problem was solved on three meshes comprising of 50,

100 and 200 mesh points. The solution to the problem on the adaptive mesh with 100

nodes is shown in figure 5.18 and was again computed with a CFL limit of 0.5 and used

the superbee flux limiter. The velocity of the mesh points at the output time t = 0.2

and the trajectories of the mesh points are shown in figure 5.19. It can be seen from

these figures that the mesh velocity is very similar to the true fluid velocity and therefore

the mesh is approximately moving with the fluid velocity. This type of mesh movement

tends to cluster points in regions where the gas is being compressed and expands the

mesh in regions where the gas is being rarefied.

The problem was then solved by the moving mesh method using the geometric monitor

function M = 1 + α |ρx| where the constant α was taken to be
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α =
β

max
x
|ρx|

,

where β is a second constant which is selected to obtain the best possible solution error.

The moving mesh method with this choice of monitor function was used to solve the Sod

shock tube problem on three different meshes comprising of 50, 100 and 200 mesh points.

Again, as with the work presented for the solution of the inviscid Burgers’ equation,

we began the numerical simulation by producing an initial adapted mesh. Since the

initial conditions to the Sod shock tube problem are discontinuous we replaced it with a

hyperbolic tangent function and then equidistribute the geometric monitor function over

it to produce an adapted mesh using the algorithm found in Baines [7]. The problem

was then solved using this initial mesh and the initial conditions for the Euler equations

given by (5.31). The solution variables were also smoothed as in the inviscid Burgers’

section 5.5 to produce a smoothed monitor function. The solution to this problem on the

mesh with 100 nodes is shown in figure 5.20 and was again computed with a CFL limit

of 0.5 using the superbee flux limiter. The velocity of the mesh points at the output

time t = 0.2 and the trajectories of the mesh points are shown in figure 5.21. It can be

seen from the figure that the velocity of the mesh is very different when compared to the

real fluid velocity and tends to move mesh points into regions of the domain where the

gradient of the density is large. It can also be seen from these figures that this choice

for the monitor function tends to cause the mesh movement to approximately inherit

some of the wave structure of the solution.

Again, as with the results that were produced for the inviscid Burgers’ equation, we

calculated the error in the resulting numerical solution for all three methods using the

weighted L1−norm given as

||u− U||L1
=

m∑

p=1

N∑

i=0

∣∣∣up(xi+ 1
2
, t)− Up(xi+ 1

2
, t)
∣∣∣ ∆xi+ 1

2
,

where m is the number of conserved variables.

The exact solution for the Sod shock tube problem does not exist in closed form, however

the solution may be obtained iteratively to any degree of precision by using an exact

Riemann solver. The exact solution used here was computed using the exact Riemann

solver found in [93]. The errors for the three different methods can be seen in table 5.3.
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Figure 5.17: Eulerian solution to the Euler equations. Figure shows plots of the density,

velocity, pressure and internal energy of the gas at t = 0.2. The bold and dotted lines

represent the exact and numerical solutions respectively. The solution was calculated

with 100 mesh points.

The error table 5.3 shows that again the moving mesh method along with the geometrical

monitor function M = 1 + α |ρx| gives rise to numerical solutions at least twice as

accurate in comparison with both the Eulerian method and the moving mesh method

with the monitor function M = ρ. It can be seen from this table that the results obtained

from the moving mesh method with the mass monitor function produces results which

are less accurate than those computed with the Eulerian method. This is partly due to

the fact that the mesh movement causes slight oscillations in the solution around the

contact surface. The results using this monitor function are improved if smoothing is

employed.
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Figure 5.18: Solution calculated by the moving mesh method with M = ρ. The figure

shows plots of the density, velocity, pressure and internal energy of the gas at t = 0.2.

The bold and dotted lines represent the exact and numerical solutions respectively. The

solution was calculated with 100 mesh points.
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Figure 5.19: Figures showing the velocity of the mesh points at the output time t = 0.2

(left) and the trajectories of the mesh points (right) arising from the use of the monitor

function M = ρ.
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Figure 5.20: Solution calculated with moving mesh method with M = 1 + α |ρx|. Figure

shows plots of the density, velocity, pressure and internal energy of the gas at t = 0.2.

The bold and dotted lines represent the exact and numerical solutions respectively. The

solution was calculated with 100 mesh points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

x

M
es

h 
Ve

lo
cit

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

tim
e

Figure 5.21: Figures showing the velocity of the mesh points at the output time t = 0.2

(left) and the trajectories of the mesh points (right) arising from the use of the monitor

function M = 1 + α |ρx|.
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Method Error Error

(1st order) (2nd order)

Eulerian

(Fixed)

N=50 0.11282 0.03061

N=100 0.07234 0.01422

N=200 0.04461 0.00695

N=400 0.02473 0.00349

Lagrangian

M = ρ

N=50 0.13313 0.04034

N=100 0.08523 0.02012

N=200 0.05315 0.01069

Geometrical

M = 1 + α |ρx|
N=50 (β = 2.5) 0.06369 0.01003

N=100 (β = 2.5) 0.03579 0.00576

N=200 (β = 2.5) 0.02532 0.00396

Table 5.3: L1 errors for fixed and moving mesh methods for the compressible Euler equa-

tions.
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5.8 Summary

In this chapter we have used the moving mesh method derived in chapter 3 to generate

adaptive meshes on which hyperbolic conservation laws have been solved. The chapter

began by considering how to adapt fixed grid finite volume methods onto moving grids.

Based on the work of Harten and Hyman [43], a finite volume method for the solution

of hyperbolic conservation laws was derived. It was found that to take into account

the motion of the mesh the flux function had to be shifted. The subsequent numerical

method employed the approximate Roe Riemann solver to solve local Riemann problems

between computational cells and was utilised to solve both the inviscid Burgers equation

and the compressible Euler equations on both moving and fixed grids.

Two monitor functions were used to drive the moving mesh method. One was the mass

monitor and was found to lead to the mesh motion being approximately Lagrangian.

The other monitor function was based on geometrical properties of the solution and was

designed to move mesh points into spatial regions where the gradient of the solution was

large. In this manner it was seen that the resulting adaptive mesh gave better resolution

of moving discontinuities.

For the inviscid Burgers equation we considered the test problem of a single moving

discontinuity. This problem was solved with the two types of mesh movement and

was compared to the numerical solution obtained on a fixed grid. It was found that

the moving mesh calculations gave more accurate numerical solutions in an aggregated

L1-norm.

The method was then extended to generate an adaptive mesh for the compressible Euler

equations. Using similar monitor functions to those which had been used for the solution

of the inviscid Burgers equation we obtained two different moving meshes. Again a mass

monitor function led to the mesh motion being approximately Lagrangian and a monitor

function based on the gradient of the fluid density led to a mesh movement that was

neither Eulerian or Lagrangian, but inherited some of the wave-structure of the solution

and hence clustered mesh points in shock, contact and to a lesser extent in rarefaction

waves. Again, the combined L1-norm of the solution error was computed for this test

problem and it was found that the results for the geometric monitor function were much
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more accurate when compared with the Eulerian method and the moving mesh method

with the mass monitor function M = ρ.

One drawback of the geometric monitor function M = 1 + α|ρx| was that the constant

α is undetermined and hence in numerical calculations we had to tune this parame-

ter. Although the solution seems not to be particularly sensitive to the choice of this

parameter, we would, in practice, not like to tune parameters. In the numerical exper-

iments it was found that the parameter α could be used to control the amount of grid

deformation and hence the amount of adaptivity. If the constant was taken to be too

small it was found that the resulting mesh adaption was slight. Alternatively, if it was

taken to be too large there would be large deformations in the mesh which would cause

the time-step of the numerical calculation to decrease significantly in time. Therefore it

would be advantageous to have some technique for choosing the parameter α depending

on the solution to the problem.

Another field of extended study could be the design of other monitor functions for this

test problem such as the ones found in [86]. In the next chapter we will use ideas

developed in this chapter to solve the two dimensional Euler equations on an adaptive

mesh.
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Chapter 6

The Euler Equations In Two

Dimensions

6.1 Introduction

In this chapter we will consider the adaptive solution of the compressible Euler equations

of gas dynamics in two spatial dimensions. In two dimensions the Euler equations are

given as




ρ

ρ u

ρ v

E




t

+




ρ u

ρ u2 + p

ρ u v

u (E + p)




x

+




ρ v

ρ u v

ρ v2 + p

v (E + p)




y

= 0 (6.1)

where ρ is the density, v = (u, v)T are the velocity components in the x and y directions

respectively, p is the pressure and E is the total energy of the fluid. Now the compressible

Euler equations in two spatial dimensions are a set of four hyperbolic conservation

laws since the conservation of momentum equation comprises of one equation for each

component of the momentum. Again, as with the one-dimensional system of Euler

equations, an equation of state (EOS) is required to close the system since we have four

equations in five unknowns. In this work we will again use the ideal gas equation of

state which in two spatial dimensions, given as

E =
p

(γ − 1)
+

1

2
ρ |v|2 ,
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where |v|2 = u2 + v2. We will solve the compressible Euler equations given by (6.1)

using the moving mesh method that has been derived in chapter 3, and use a similar

solution procedure to the one for the solution of the one dimensional conservation laws

used in chapter 5. Therefore we will have to solve the ALE form of the Euler equations

which are given as




ρ

ρ u

ρ v

E




t

+




ρ (u− ẋ)

ρ u (u− ẋ) + p

ρ v (u− ẋ)

E (u− ẋ) + u p




x

+




ρ (v − ẏ)

ρ u (v − ẏ)

ρ v (v − ẏ) + p

E (v − ẏ) + v p




y

= 0, (6.2)

where ẋ = (ẋ, ẏ) are the ALE velocity components in the x and y directions, respectively.

In the next section we will consider the solution of the two-dimensional compressible

Euler equations in ALE form given by (6.2).

6.2 A Finite Volume Solver in 2D

In this section we describe a method for solving hyperbolic conservation laws in two

spatial dimensions. In chapter 5 we considered the solution of one dimensional hyper-

bolic conservation laws on adaptively moving meshes by using the Arbitrary-Lagrangian

Eulerian (ALE) formulation of the equations. Using this formulation of the conservation

laws in a moving spatial domain, we derived a finite volume method which could then

be used to solve the equation being considered, when ẋ was given. In two dimensions

we will use a similar methodology and determine the two-dimensional generalisation of

the ALE finite volume method.

Since we aim to solve the Euler equations on an unstructured triangular mesh we will

derive the finite volume method using triangular volume elements. We begin by consid-

ering a general system of hyperbolic conservation laws on a moving triangular control

volume ∆i. This triangular control volume can be seen in figure 6.1 and comprises of

three edges denoted by ∂∆1, ∂∆2, ∂∆3 and has size |∆i|. We now consider the ALE

form of a two-dimensional conservation law in this moving control volume given as
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Figure 6.1: Figure showing the triangular control volume ∆i.

d

dt

∫

∆i

u dΩ +

∫

∆i

∇ · (f − u ẋ) dΩ = 0,

where f = (f, g). We will denote the ALE flux function as f̄ = f − u ẋ. From this initial

statement of the integral ALE form of the conservation law we construct a conservative

numerical method analogous to the one that was produced in one spatial dimension.

We can use the divergence theorem to write the flux terms of this conservation law in

terms of a boundary integral to obtain

d

dt

∫

∆i

u dΩ +

∮

∂∆i

f̄ · n dΓ = 0. (6.3)

We can write this path integral around the boundary of the control volume ∆i as a sum

of integrals around the boundary segments. Therefore

∮

∂∆i

f̄ · n dΓ =
3∑

j=1

∮

∂∆j

f̄ · nj dΓ,

where nj is the unit outward normal to the jth edge of the triangular control volume as

shown in figure 6.2. From figure 6.2 it is straightforward to see that the outward normal

150



y

x

xj

xj+1

ŷ
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Figure 6.2: Figure showing the jth edge ∂∆j of the control volume ∆i and the unit

outward normal nj to this edge.

to the jth side can be written in terms of the angle θj between the x-direction and the

outward normal nj. Therefore we may write the unit outward normal as

nj = (cos θj, sin θj) .

Using this notation, the flux term for the conservation law can be written as

3∑

j=1

∮

∂∆j

f̄ · nj dΓ =

3∑

j=1

∮

∂∆j

(
cos θj f̄ + sin θj ḡ

)
dΓ,

where f̄ and ḡ are the ALE flux functions in the x and y-direction respectively. Therefore,

substituting this expression for the flux of the conservation law into equation (6.3) we

obtain

d

dt

∫

∆i

u dΩ +
3∑

j=1

∮

∂∆j

(
cos θj f̄ + sin θj ḡ

)
dΓ = 0. (6.4)

If we take the cell average value of the conserved variables in the control volume ∆i to

be
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ui =
1

|∆i|

∫

∆i

u dΩ,

where |∆i| is the size of the control volume, then equation (6.4) becomes an equation

for the evolution of the cell average value of the conserved variables and is given as

d

dt
(|∆i| ui) +

3∑

j=1

∮

∂∆j

(
cos θj f̄ + sin θj ḡ

)
dΓ = 0. (6.5)

Up until now we have made no numerical approximations in the derivation of equation

(6.5), but to obtain a numerical finite volume method we now need to make a choice for

the method of approximating both the time derivative and the intercell flux. We will

use the forward Euler approximation for the time derivative in equation (6.5) to obtain

the semi-discrete system

un+1
i =

|∆n
i |∣∣∆n+1
i

∣∣ uni −
∆tn∣∣∆n+1
i

∣∣
3∑

j=1

∮

∂∆j

(
cos θj f̄ + sin θj ḡ

)
dΓ. (6.6)

We still need to make a choice for the approximation to the flux functions. This can be

done by exploiting the rotational invariance of the hyperbolic conservation laws being

solved. For example, the ALE flux terms for the two-dimensional Euler equations can

be written as

cos θj f̄ + sin θj ḡ = R−1
j f̄ (Rj u) ,

where Rj ≡ R (θj) is a rotation matrix given as

R (θ) =




1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1




(6.7)

and R−1
j ≡ R−1 (θj) is given as
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R−1 (θ) =




1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



. (6.8)

With this simplification equation (6.6) becomes

un+1
i =

|∆n
i |∣∣∆n+1
i

∣∣ uni −
∆tn∣∣∆n+1
i

∣∣
3∑

j=1

∮

∂∆j

R−1
j f̄ (Rj u) dΓ. (6.9)

Notice that the quantity û = Rj u is the value of the conserved variables rotated to align

with the outward normal nj in the new rotated cartesian co-ordinate system x̂ = (x̂, ŷ).

The conservation laws in this new co-ordinate system become a one-dimensional system

given by

ût + f̄ (û)x̂ = 0.

Therefore, for the compressible Euler equations this system becomes




ρ

ρ û

ρ v̂

E




t

+




ρ
(
û− ˆ̇x

)

ρ û
(
û− ˆ̇x

)
+ p

ρ v̂
(
û− ˆ̇x

)

E
(
û− ˆ̇x

)
+ û p



x̂

=




0

0

0

0



. (6.10)

We can make the approximation for the integrals around the control volume

∮

∂∆j

R−1
j f̄ (Rj u) dΓ ≈ Lj R

−1
j f̄j ,

where Lj is the length of the jth edge of the triangular control volume ∆i. Our finite

volume scheme (6.9) together with this approximation then becomes

un+1
i =

|∆n
i |∣∣∆n+1
i

∣∣ uni −
∆tn∣∣∆n+1
i

∣∣
3∑

j=1

Lj R
−1
j f̄j (Rj u) . (6.11)
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xj+1

xj

f̄j

uL

uR

Figure 6.3: Figure showing the local Riemann problem between the two constant cell

centered states uL and uR.

We now have a cell-centred finite volume method which can be used to evolve the

cell averages of the conserved variables. However, we still need to make a choice for

determining the flux through the computational cell. As in one dimension we will use

Godunov’s method to determine the intercell flux by solving local Riemann problems

between neighbouring cells using the cell centred values as initial conditions. This can

be seen in figure 6.3. The Riemann problem for the Euler equations only needs to be

solved in the direction normal to the edge that separates the neighbouring cells. So we

may rotate the initial conditions for the Riemann problem using the rotation matrix

(6.7) so that the variables align with the outward normal of the edge and then solve

the x-split system of equations given by equation (6.10). The solution of the Riemann

problem can then be obtained by rotating the solution back onto the original cartesian

co-ordinates by using the matrix (6.8).

In two spatial dimensions we will use the HLLC approximate Riemann solver of Toro,

Spruce and Speares [94] to determine the intercell flux. The details of this approximate

Riemann solver will be given in the following section.
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6.3 An ALE HLLC Riemann Solver

In this section we will outline the use of the HLLC Riemann solver of Toro et al [94].

Harten, Lax and Van Leer [44] originally proposed a method for obtaining intercell

Godunov fluxes referred to as the HLL approximate Riemann solver after its authors.

This Riemann solver assumes a wave configuration of the solution consisting of two

waves separating three constant states, where the speeds of the waves are given by some

suitable algorithm. However the HLL Riemann solver can lead, in some cases, to poor

accuracy of contact and shear waves, as the solution technique does not explicitly include

these in the wave configuration. Therefore, due to this deficiency in the HLL Riemann

solver Toro, Spruce and Speares [94] developed the HLLC Riemann solver, where the C

stands for contact. They restored the contact wave into the assumed wave configuration

so that the solution to the Riemann problem consists of three waves separating four

constant states. The speeds of these three waves will be be denoted by SL, S∗ and SR

and are assumed to separate the four constant states uL, u∗L, u∗R and uR. Also ẋ will

denote the velocity of the intercell boundary. The five possible cases for the structure of

the assumed ALE HLLC Riemann solution are shown in figure 6.4. Using conservation

principles it is possible to obtain expressions for the numerical flux function. We will

briefly outline how the flux function can be obtained for case (b) of figure 6.4.

We now apply the conservation law over the control volume between the left cell bound-

ary and the motion of the intercell boundary at the start and end of the time-levels.

At the start of the time-level the amount of the conserved variable between the left cell

boundary and the intercell boundary is 1
2

∆x uL. This amount then changes in time by

the flux through the left and intercell boundary FL and FHLLC . Therefore the amount

of the conserved variable at time ∆t is given as

1

2
∆x uL + ∆t (FL − FHLLC) . (6.12)

Alternatively, the amount of the conserved variable can be calculated by considering the

amount of the conserved variable at ∆t. Thus we can write this as

1

2
∆x uL − (SL − ẋ) ∆t uL + (SL − ẋ) ∆t u∗L. (6.13)
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Therefore equating the expressions (6.12) and (6.13) and rearranging we obtain the

HLLC flux function for case (b) given as

FHLLC = FL + (SL − ẋ) (u∗L − uL) .

Applying similar techniques for the rest of the possible wave configurations it is possible

to write the ALE HLLC flux function as

FHLLC =





FL if SL − ẋ > 0,

F∗L = FL + (SL − ẋ) (u∗L − uL) if SL − ẋ ≤ 0 < S∗ − ẋ,

1
2

(F∗L + F∗R) if S∗ − ẋ = 0,

F∗R = FR + (SR − ẋ) (u∗R − uR) if S∗ − ẋ < 0 < SR − ẋ,

FR if SR − ẋ < 0.

(6.14)

Estimates for the wave speeds SL, S∗ and SR and also the values u∗L, u∗R of the conserved

variables in the star region, i.e. the region between the waves SL and SR, now need to

be obtained to fully determine the HLLC flux function given by (6.14).

The value of the conserved variables for the compressible Euler equations u∗L and u∗R

can be obtained by applying the Rankine-Hugoniot jump conditions across the waves

SL, S∗ and SR. By doing this we obtain the conditions

F∗L = FL + SL (u∗L − uL) ,

F∗R = F∗L + S∗ (u∗R − u∗L) ,

F∗R = FR + SR (u∗R − uR) .





(6.15)

We also enforce the conditions that the velocity of the fluid in the x-direction and the

pressure does not jump across the central wave S∗. The condition that the velocity

component v in the y-direction does not to jump across the waves SL and SR is used.

These conditions can be written as

u∗L = u∗R = u∗,

p∗L = p∗R = p∗,

v∗L = vL v∗R = vR.





(6.16)
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(a)
x

xL

ẋ SL t S∗ SR

u∗L u∗R

uRuL

xR

∆t

(b)
x

xL

SL t S∗ SR

u∗L u∗R

uRuL

xR

∆t

ẋ

(c)
x

xL

SL t S∗ = ẋ SR

u∗L u∗R

uRuL

xR

∆t

(d)
x

xL

SL t S∗ SR

u∗L u∗R

uRuL

xR

∆t

ẋ

(e)
x

xL

SL t S∗ SR

u∗L u∗R

uRuL

xR

∆t

ẋ

Figure 6.4: Figure showing the five possible cases for the ALE HLLC approximate Rie-

mann solver.
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We also set S∗ = u∗. Using the Rankine-Hugoniot conditions given by (6.15) and the

conditions (6.16) we obtain an expression for the values of the conserved variables in

the star region given by

u∗K = ρK

(
SK − uK
SK − S∗

)




1

S∗

vK

Ek
ρK

+ (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

]



. (6.17)

Here the subscript K denotes either the left state L or the right state R.

We will now state the choice of the wave speeds SL, S∗ and SR. Given estimates for the

pressure p∗ and the velocity u∗ in the star region then we may choose the wave speeds

to be

SL = uL − cL qL S∗ = u∗ SR = uR + cR qR (6.18)

where

qK =





1 if p∗ ≤ pK ,[
1 + γ+1

2γ

(
p∗

pK−1

)]
if p∗ > pK .

(6.19)

This quantity distinguishes between whether we have a shock or rarefaction wave. If the

wave is a shock then the first case in (6.19) is chosen and the wave speed estimates are

approximations to the shock speeds. Alternatively, if we have a rarefaction wave then

the second case in (6.19) is chosen, and gives us an estimate for the speed of the head

of the rarefaction wave.

We also need to obtain estimates for the velocity u∗ and pressure p∗ in the star region. In

this work we will use the wave speed estimates from [93] which are based on the exact

Riemann solver of Toro. The pressure and velocity estimates will now be described.

Given an initial estimate of the pressure in the star region given as

p∗init =
1

2
(pL + pR)− 1

2
(uR − uL) ρ̄ c̄

where ρ̄ = 1
2

(ρL + ρR) and c̄ = 1
2

(cL + cR),

158



• If pmin < p∗init < pmax and pmax
pmin

< 2 where pmin = min (pL, pR) and pmax =

max (pL, pR) then

p∗ = max (tol, pinit) ,

u∗ =
1

2
(uL + uR)− (pR − pL)

2 c̄ ρ̄
,

where tol = 0.0001.

• If p∗init < pmin then

p∗ =

[
cL + cR − γ−1

2
(uR − uL)

cL
(pL)z

+ cR
(pR)z

] 1
z

,

u∗ = uL −
2 cL

(γ − 1)

[(
p∗

pL

)z
− 1

]
,

where z = γ−1
2 γ

.

• Otherwise

p∗ =
gL (p0) pL + gR (p0) pR − (uR − uL)

gL (p0) + gR (p0)

u∗ =
1

2
(uL + uR) + [(p∗ − pR) gR (p0)− (p∗ − pL) gL (p0)]

where

gK (p) =

√
A

p+BK

,

A =
2

(γ + 1) ρK
, B =

γ − 1

(γ + 1)
pK

for K = L, R and p0 = max (pinit, 0).
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rBB′

B

B′

A′
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rAA′

rAB

rA′B

∆S2

∆S1

Figure 6.5: Figure showing the area swept out by the edge A−B in time ∆t.

We also need to obtain a value for the speed of the intercell boundary ẋ. Since we will be

solving the Riemann problem across the common edge in the normal direction between

two computational cells this intercell boundary speed ẋ translates into the speed of the

edge in the normal direction. The evaluation of the edge velocity is considered by Zhang

et al in [104]. They obtain the speed of the edge by calculating the area ∆S swept out

by the edge of the moving control volume and dividing this by the size of the time-step

and the length of the edge L. Therefore the velocity is given by

ẋ =
∆S

L∆t
. (6.20)

In [104] the area swept out by the edge is calculated in the following manner. Consider

the edge connecting the points A and B which are located at the positions xA and xB

which move in time to the points A′ and B′ which are located at the positions xA′ and

xB′ , respectively. This motion of the edge is shown in figure 6.5.

The total area swept out by the edge is then calculated by splitting it into two triangular

regions where the size of these regions add up to the total area in the sense that

∆S = ∆S1 + ∆S2,
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where

∆S1 =
1

2
|rAA′ × rAB|

=
1

2
(xB′ − xA′ −∆t (ẋB − ẋA)) ∆t ẏA −

1

2
(yB′ − yA′ −∆t (ẏB − ẏA)) ∆t ẋA

and

∆S2 =
1

2
|rBB′ × rA′B|

=
1

2
(yB′ − yA′ −∆t ẏB) ∆t ẋB −

1

2
(xB′ − xA′ −∆t ẋB) ∆t ẏB.

An outline for the use of the ALE HLLC approximate Riemann solver is therefore

• Given initial estimates for the velocity of the fluid in the x-direction u∗ and the

pressure p∗ in the star region, compute the wave speeds given by (6.18).

• Then compute the states of the conserved variables in the star region given by

(6.17) and also calculate the velocity of the intercell boundary given by (6.20).

• Calculate the ALE HLLC approximate Riemann flux function given by (6.14) and

use it in the finite volume scheme given by (6.11).

The resulting finite volume method with the use of the HLLC approximate Riemann

solver is only first order accurate in space and time, but in the following section we will

describe how higher spatial accuracy can be achieved.

6.4 The MUSCL Technique of Van Leer

The finite volume method together with the HLLC approximate Riemann solver which

has been described in sections 6.2 and 6.3, respectively, will result in a first order accurate

method in space and time. Therefore to obtain higher order numerical approximations

to the conservation laws being solved we need to use some other technique. The tech-

nique that will be used in this work to obtain a high resolution solution is the Monotone

Upwind Schemes for Conservation Laws (MUSCL) technique of Van Leer [58]. This
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i

k j

0

Figure 6.6: Figure showing the three surrounding computational cells used to construct

a gradient plane.

technique is a multidimensional slope limiting method which constructs piecewise poly-

nomial data from the initial piecewise constant data. The values of the reconstructed

data are then calculated at the cell boundary of each side and these values are then

used to solve the local Riemann problem. This procedure will now be outlined in more

detail.

As stated above, we can attain a higher order of numerical accuracy for the solution of

hyperbolic conservation laws by producing a higher order polynomial reconstruction of

the solution in each computational cell. In this work we will produce a linear recon-

struction of the conserved variables in each computational cell, given initial constant

data. This reconstruction technique will lead to a numerical method which is second

order accurate in space, that is a method for which the exact solution is obtained for

linear data.

This process of reconstructing linear functions in each computational cell is outlined in

Hubbard [54] for use on unstructured triangular and quadrilateral meshes. Let ū denote

the constant cell average value of the solution in a computational cell, then we can

produce a linear reconstruction within the computational cell in the following manner,

u = ū + r · L, (6.21)
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where r is the position vector relative to the centroid of the triangular computational

cell and L is a gradient operator. This gradient operator can be constructed by tak-

ing the three computational cells surrounding triangle 0 and forming a triangle with

anti-clockwise ordering of its indexes. This triangle with vertices ijk formed from the

centroids of the three surrounding computational cells is shown in figure 6.6. The gra-

dient operator is then defined for each conserved variable ul for l = 1, . . .m as

∇ (∆ijk) =






 −

nx
nul

− ny
nul


 for nul > ε


 0

0


 otherwise

(6.22)

where ε is a set tolerance taken to be 10−10. The components of the vector n =

(nx, ny, nul) come from

n = (Pi −Pk)× (Pj −Pk) ,

where

Pz = (xz, yz, (ul)z) for z = i, j, k.

Choosing the linear operator L to be the gradient operator (6.22) leads to a second-

order accurate method. Given the linear reconstruction to the piecewise constant data

in each computational cell we can then calculate the value of the conserved variables

immediately to the left and right of a common edge; for example for the triangles denoted

by 0 and j these values of the conserved variables are denoted by u0 j and uj 0 and shown

in figure 6.7. These values are calculated by taking the value of the position vector r

in equation (6.21) to be the vector from the centroid of the cell to the midpoint of the

edge. These values of the conserved variables at the common edge of the computational

cells are then used as the initial values for solving the local Riemann problem in the

HLLC approximate Riemann solver.

Although this procedure will lead to a method which is second order accurate in space it

can cause the numerical method to create new extrema if the solution is rapidly varying.
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Figure 6.7: Figure showing the gradient planes constructed in a set of computational

cells.

Therefore to eliminate the formation of unphysical oscillations we need to modify this

gradient so that the scheme will satisfy a local maximum principle at the midpoints of

the computational cells. The scheme can be made to satisfy a maximum principle if a

limiting process is applied to the gradient planes which have been reconstructed.

This limiting process is carried out by applying a limiter function to the gradient oper-

ator to ensure that no local extrema are created at the intercell boundary. In this work

we will use the Limited Central Differences (LCD) limiter described in [54]. The limited

gradient plane is given as

LLCD = αL

where α = min
k=1,2,3

αK and

αK =





max(uk−u0,0)

r0 k·L
if r0 k · L > max (uk − u0, 0),

min(uk−u0,0)

r0 k·L
if r0 k · L < min (uk − u0, 0),

1 otherwise.

Since the resulting finite volume scheme with the HLLC and MUSCL linear reconstruc-

tion is explicit in time it must satisfy a CFL type condition. It has been shown that
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schemes using this type of limiting process will not produce new local extrema at the

cell edge mid-points if the time-step satisfies the condition that

∆tn ≤ |∆i|
3 max
k=1,3

|λk · nk|
, (6.23)

where λk is the wave speed of the system being solved across the edge k of the compu-

tational cell ∆i.

We have now outlined the use of a high resolution method for the solution of hyperbolic

conservation laws on an unstructured adaptively moving mesh. In the following sections

we will describe the use of the moving mesh method detailed in chapter 3, using both

the mass monitor function and a geometric monitor function.

6.5 A Mass Monitor Function

In this section we describe the use of the mass monitor function in the moving mesh

method that was derived in chapter 3 to generate an adaptively moving mesh for the

solution of the two dimensional compressible Euler equations of gas dynamics. The mass

monitor which was used for the solution of one dimensional hyperbolic conservation laws

in the previous chapter is given as M = ρ. If this monitor function is substituted into

the moving mesh velocity potential equation given by (3.21), taking q = 0 and $ = 1,

we obtain the equation around the patch of computational cells ∂Ωi

∮

∂Ωi(t)

wi ρ
∂Φ

∂n
· dΓ−

∫

Ωi(t)

∇wi · ρ∇Φ dΩ = −
∫

Ωi(t)

wi
∂ρ

∂t
dΩ.

The boundary integral around the patch of computational cells is equal to zero since the

basis function wi is equal to zero on this boundary and on the boundary of the domain

we have the boundary condition ∂Φ
∂n

= 0. Therefore the velocity potential equation for

Φ becomes

∫

Ωi(t)

∇wi · ρ∇Φ dΩ =

∫

Ωi(t)

wi
∂ρ

∂t
dΩ.
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We now need to obtain an expression for ρt to substitute into the above equation.

This relationship for the rate of change in time of the density function comes from

the conservation of mass equation, which is the first equation in the system of Euler

equations (6.1) and given as ρt = −∇· (ρv). Therefore substituting this expression into

the velocity potential equation we obtain

∫

Ωi(t)

∇wi · ρ∇Φ dΩ = −
∫

Ωi(t)

wi∇ · (ρv) dΩ.

This equation for the approximate velocity potential Φ becomes a stiffness matrix system

once the linear finite element approximations have been made. This stiffness matrix

system has the form

K Φ
˜

= f
˜
,

where the elements of the stiffness matrix are given as

Ki j =

∫

Ωi(t)

∇wi · ∇wj ρ dΩ

and the elements of the load vector are

fi = −
∫

Ωi(t)

wi∇ · (ρv) dΩ.

Once the numerical approximation to the mesh velocity potential has been obtained, the

mesh velocity can then be recovered weakly by solving the mass matrix system (3.22).

The mesh is then integrated forward in time using a standard forward Euler time-

stepping routine. The ALE velocity resulting from this choice of the monitor function

can then be used in the 2D ALE finite volume method that has been outlined in sections

6.2, 6.3 and 6.4 to update the solution variables. Results generated from this choice of

monitor function will be shown in section 6.7.

6.6 A Geometric Monitor Function

In this section we will outline the use of the geometric monitor function M = 1+α |∇ρ|2

in the moving mesh method derived in chapter 3. This monitor function will be used to
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generate an adaptive mesh on which the two-dimensional compressible Euler equations

can be solved. If this monitor function is substituted into the moving mesh velocity

potential equation given by (3.21), taking q = 0 and $ = 1, we obtain the equation

∮

∂Ωi(t)

wi
(
1 + α |∇ρ|2

) ∂φ
∂n
· dΓ−

∫

Ωi(t)

∇wi ·
(
1 + α |∇ρ|2

)
∇φ dΩ =

−
∫

Ωi(t)

wi
(
1 + α |∇ρ|2

)
t

dΩ

on the patch of computational cells ∂Ωi. We now need to obtain an expression for the

rate of change of the monitor function

(
1 + α |∇ρ|2

)
t

= α
(
|∇ρ|2

)
t
.

Expanding the differentiation of time and reversing the order of spatial and temporal

differentiation we obtain

α
(
|∇ρ|2

)
t

= 2α∇ρ · (∇ρ)t

= 2α∇ρ · ∇ρt (6.24)

We now need to obtain an expression for ρt to substitute into the above equation.

This relationship for the rate of change in time of the density function comes from

the conservation of mass equation, which is the first equation in the system of Euler

equations (6.1) and given as ρt = −∇· (ρv). Therefore substituting this expression into

equation (6.24) we obtain

2α∇ρ · ∇ρt = −2α∇ρ · ∇ (∇ · (ρv)) .

Thus we have obtained the relationship that

(
1 + α |∇ρ|2

)
t

= −2α∇ρ · ∇ (∇ · (ρv))

which can be weakly enforced and substituted into equation (5.30) to give
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∮

∂Ωi(t)

wi
(
1 + α |∇ρ|2

) ∂φ
∂n
· dΓ−

∫

Ωi(t)

∇wi ·
(
1 + α |∇ρ|2

)
∇φ dΩ =

2α

∫

Ωi(t)

wi∇ρ · ∇ (∇ · (ρv)) dΩ.

The variables ρ and v will both be approximated by piecewise linear functions, so the

integral on the right-hand side of this equation has to be integrated by parts since the

momentum ρv will be a quadratic function and the second derivatives will not be well-

defined. The right hand side of this equation can be dealt with by writing this integral

as a sum of integrals over each cell in the patch. Therefore we have that

∫

Ωi(t)

wi∇ρ · ∇ (∇ · (ρv)) dΩ =

∆′is inΩi(t)∑

j

∫

∆j(t)

wi∇ρ · ∇ (∇ · (ρv)) dΩ

We will assume that ∇ρ is constant over the cell and therefore can be taken out of the

integral to give

∆′is inΩi(t)∑

j

∫

∆j(t)

wi∇ρ · ∇ (∇ · (ρv)) dΩ =

∆′is inΩi(t)∑

j

∇ρ ·
∫

∆j(t)

wi∇ (∇ · (ρv)) dΩ.

This integral may now be integrated by parts to give

∆′is inΩi(t)∑

j

∇ρ ·
{∮

∂∆j(t)

wi∇ · (ρv) dΓ−
∫

∆j(t)

∇wi∇ · (ρv) dΩ

}

Once the finite element approximations to the density, velocity and the velocity potential

denoted by ρ, v and Φ respectively have been introduced and expanded in terms of

linear basis functions the equation for the approximation to the mesh velocity potential

becomes a stiffness matrix system given by

K Φ
˜

= f
˜
,

where the elements of the stiffness matrix are given as

Ki j =

∮

∂Ωi(t)

wi
(
1 + α |∇ρ|2

) ∂wj
∂n
· dΓ−

∫

Ωi(t)

∇wi ·
(
1 + α |∇ρ|2

)
∇wj dΩ
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and the elements of the load vector f
˜

are

fi = 2α

∆′is inΩi(t)∑

j

∇ρ ·
{∮

∂∆j(t)

wi∇ · (ρv) dΓ−
∫

∆j(t)

∇wi∇ · (ρv) dΩ

}
.

Once the numerical approximation to the mesh velocity potential has been obtained,

the mesh velocity can then be recovered weakly by solving the mass matrix system

(3.22). The mesh is then integrated forward in time using a standard forward Euler

time-stepping routine given by

x
˜
n+1 = x

˜
n + ∆tn ẋ

˜
n.

The velocity generated from this choice of the monitor function can then be used in the

2D ALE finite volume method that has been outlined in sections 6.2, 6.3 and 6.4 to

update the solution variables. Results generated from this choice of monitor function

will be shown in section 6.7.
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6.7 Numerical Results VI

In this section we will show results obtained for the two dimensional compressible Euler

equations of gas dynamics using the HLLC approximate Riemann solver on a genuinely

two-dimensional adaptive mesh generated by the method derived in chapter 3. As our

test problem we have chosen to solve the cylindrical generalisation of Sod’s shock tube

problem. The problem consists of a circular region with radius 1
2

containing gas at high

pressure and density which is initially at rest. Outside of this circular region the gas is

at low pressure and density and is also at rest. At t = 0 the membrane between the two

regions of gas is removed and the two regions of gas are allowed to move into one another.

The resulting solution to the problem has the same structure in the radial direction r

as the one-dimensional Sod shock tube problem. Therefore the solution consists of a

shock and contact wave which move away from the high pressure, density region and a

rarefaction wave travelling into the high pressure, density region. The solution to the

problem differs slightly from the one-dimensional Sod shock tube problem in that the

solution has depressions caused by the cylindrical geometry of the problem. The initial

conditions for this problem are given as

(ρ, u, v, p) =





(1.0, 0.0, 0.0, 1.0) for 0 ≤ r ≤ 1
2

(0.125, 0.0, 0.0, 0.1) for 1
2
< r < 1

(6.25)

In all the numerical simulations we will give the solutions at t = 0.2.

This problem was first solved using the HLLC method on an Eulerian mesh with 20000

computational cells and 10201 nodes and can be seen in figure 6.8. The numerical

solution obtained for this problem is shown in figure 6.9 and shows plots of the density,

velocity components in the x and y directions, respectively, pressure and the specific

internal energy of the gas. There does not exist an exact solution to this problem

in closed form, so as a reference solution we solved the problem as a one-dimensional

radially symmetric problem. The compressible Euler equations written in radial co-

ordinates r are given as
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Figure 6.8: Initial mesh generated for the Eulerian computations.
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where vrad is the radial velocity of the gas. This system of conservation laws was then

solved using a one-dimensional Roe approximate Riemann solver with 5000 mesh points

to produce a comparative “exact” solution. The two-dimensional solutions obtained were

plotted against the radial distance and compared with the one-dimensional reference

solution. These results can be seen in figure 6.10.

The same problem was then solved using the moving mesh method along with the mass

monitor function M = ρ. The initial mesh for the computation was equally spaced

and is shown in figure 6.8. The solution on the moving mesh is shown in figure 6.11
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min |∆i| max |∆i| max|∆i|
min|∆i|

Eulerian 2.0× 10−4 2.0× 10−4 1

Lagrangian 3.6343× 10−5 6.0584× 10−4 16.6699

Geometric 5.6867× 10−5 5.2327× 10−4 9.2017

Table 6.1: Table showing the maximum and minimum size of computational mesh cells

in the final mesh at t = 0.2.

and again these solutions are plotted against the radial distance so that they could be

compared with the reference solution. The final mesh at t = 0.2 for this computation is

also shown in figure 6.13. It can be seen from this figure that the computational cells

are compressed in regions of the solution where the gas is also compressed. Therefore

many of the mesh points tend to cluster in the spatial region between the contact and

shock waves.

The cylindrical shock problem was then solved on a moving mesh obtained from the

use of the moving mesh method with the monitor function M = 1 + α |∇ρ|2. In the

simulations the constant α was taken to be

α =
β

max
x
|∇ρ|2

,

where β is a second constant which determines the degree of mesh adaption. In numerical

computations it was found that we obtained adequate numerical results with β = 20.

Solutions for the compressible Euler equations for this choice of monitor function can

be seen in figure 6.14. The solution obtained has also been plotted against the radial

distance and is shown in figure 6.15. The final mesh for the problem at t = 0.2 has also

been displayed in figure 6.16 and shows mesh points being clustered in regions of high

density gradient, such as in the shock and contact waves and also in the rarefaction

wave.

In table 6.1 the maximum and minimum size of the computational cells for the three

different methods is shown and gives us an indication of the stiffness of the mass matrices
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being solved. The stiffness of the mass matrix systems is known to be proportional to

the relative size of the largest to the smallest computational cell [97]. Therefore

κ =
max |∆i|
min |∆i|

We find that the moving mesh method with the mass monitor function produces the

stiffest matrices to be solved.

As a final test problem for the two-dimensional Euler equations we considered a con-

verging cylindrical shock problem. Initially at t = 0 the problem comprises of a circular

region with radius 100 containing gas at low pressure and density which is initially at

rest. Outside of this circular region the gas is at high pressure and density and is also

at rest. At t = 0 the membrane between the two regions of gas is removed and the two

regions of gas are allowed to move into one another. The solution then consists of a

converging shock wave followed by a converging contact wave and a diverging rarefaction

wave. The shock then reflected at the origin of the domain and shock then interacts

with the converging contact wave. The result of this interaction is a diverging shock

wave, a converging contact wave and also a weak shock wave converging towards the

origin. The initial conditions for this problem are taken to be

(ρ, u, v, p) =





(1.0, 0.0, 0.0, 1.0) for 0 ≤ r ≤ 100

(4.0, 0.0, 0.0, 4.0) for 100 < r < 250
(6.26)

The problem was solved by Glaister in [41] as a one-dimensional cylindrically symmetric

problem. The results for this problem were computed until t = 90 when the shock and

contact waves interact on the domain [−250, 250] × [−250, 250]. This problem was

simulated with the three methods used here and results are shown for the Eulerian

method in figures 6.17 and 6.18. The results obtained for the moving mesh method

together with the mass and the geometric monitor functions are shown in figures 6.19.

6.20 and 6.22, 6.22 respectively. The final meshes for the moving mesh computational

are shown in figures 6.21 and 6.24 for the mass and geometric monitor functions.

On comparing the three solutions obtained for this problem we find that the moving

mesh method together with the geometric monitor function leads to a more accurate
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numerical solution. The region in which the shock and contact waves interact is better

resolved and hence gives a better numerical solution in this region. Also with this type

of mesh movement we have found that multidimensional effects are less pronounced,

therefore the solution has retained its cylindrical symmetry better in comparison with

both the Eulerian method and the moving mesh method with the mass monitor function.

It can also be seen from the figures that none of the methods resolve the fine features

of the solution. The problem was also solved with the Eulerian method on a finer mesh

which has 40401 nodes and 80000 computational cells. The solutions obtained for this

simulation are shown in figure 6.25 and show that, even when the number of compu-

tational cells had been quadrupled, the solution to the problem was still possibly not

as accurate as the moving mesh method together with the geometric monitor function.

This Eulerian solution is still very smeared in the region of the shock, contact wave

interaction. The peak in the density in this region is much higher in comparison with

the moving mesh method, but it seems to be in the wrong position. This error in the

position and the smearing of the shock is probably due to a break in the symmetry

of the problem as the initial shock wave is reflected off the origin of the domain. The

moving mesh method with the geometric monitor function obtains a better solution due

to the fact that is it able to cluster mesh points tightly at the origin when the shock is

reflected and hence symmetry errors are kept to a minimum.
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Figure 6.9: Solution of the Euler equations with initial data (6.25). Figure shows plots of

density, velocity components in x and y directions, pressure and specific internal energy

computed with the Eulerian method.
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Figure 6.10: Solution of the Euler equations with initial data (6.25). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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Figure 6.11: Solution of the Euler equations with initial data (6.25). Figure shows plots

of density, velocity components in x and y directions, pressure and specific internal

energy computed with the moving mesh method with M = ρ.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

x

e

Figure 6.12: Solution of the Euler equations with initial data (6.25). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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Figure 6.13: Plot of the final mesh at t = 0.2 obtained for the solution of the Euler

equations with the moving mesh method with M = ρ.
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Figure 6.14: Solution of the Euler equations with initial data (6.25). Figure shows plots

of density, velocity components in x and y directions, pressure and specific internal

energy computed with the moving mesh method with M = 1 + α |∇ρ|2.
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Figure 6.15: Solution of the Euler equations with initial data (6.25). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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Figure 6.16: Plot of the final mesh at t = 0.2 obtained for the solution of the Euler

equations with the moving mesh method with M = 1 + α |∇ρ|2.
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Figure 6.17: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, velocity components in x and y directions, pressure and specific internal

energy computed with the Eulerian method.
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Figure 6.18: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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Figure 6.19: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, velocity components in x and y directions, pressure and specific internal

energy computed with the moving mesh method with M = ρ.
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Figure 6.20: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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Figure 6.21: Plot of the final mesh at t = 90 obtained for the solution of the Euler

equations with the moving mesh method with M = ρ.

187



−200
−100

0
100

200

−200
−100

0
100

200

3

3.5

4

4.5

xy

ρ

−200
−100

0
100

200

−200
−100

0
100

200

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

xy

u

−200
−100

0
100

200

−200
−100

0
100

200

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

xy

v

−200
−100

0
100

200

−200
−100

0
100

200

3

3.5

4

4.5

5

5.5

6

xy

p

−200
−100

0
100

200

−200
−100

0
100

200

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

xy

e

Figure 6.22: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, velocity components in x and y directions, pressure and specific internal

energy computed with the moving mesh method with M = 1 + α |∇ρ|2.
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Figure 6.23: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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Figure 6.24: Plot of the final mesh at t = 90 obtained for the solution of the Euler

equations with the moving mesh method with M = 1 + α |∇ρ|2.
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Figure 6.25: Solution of the Euler equations with initial data (6.26). Figure shows plots

of density, radial velocity vrad =
√
u2 + v2, pressure and specific internal energy plotted

against the radial direction. (Note that the numerical solution obtained at all points has

been plotted against the radial distance.)
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6.8 Summary

In this chapter the moving mesh method derived in chapter 3 has been used to generate

moving meshes upon which the two dimensional compressible Euler equations of gas

dynamics have been solved. In two dimensions a finite volume method was obtained

in section 6.2 on an unstructured triangular mesh for the solution of the arbitrary

Lagrangian Eulerian (ALE) form of hyperbolic conservation laws. This ALE finite

volume method was then used in conjunction with an ALE HLLC approximate Riemann

solver which was outlined in section 6.3. Due to the fact that this numerical method led

to a scheme that was only first order in both space and time we then used a MUSCL

technique with the LCD limiter, described in section 6.4, to obtain higher order in space

results.

The use of multidimensional generalisations of the monitor functions used in one spatial

dimension for the compressible Euler equations was then outlined in sections 6.5 and

6.6. In two dimensions we used the mass monitor function M = ρ and the geometric

monitor M = 1 + α |∇ρ|2 to generate an adaptively moving mesh.

In section 6.7 we applied the moving mesh method using both the mass and geometric

monitor functions. We produced results for a two dimensional generalisation of the one

dimensional Sod shock tube problem, which has similar conditions to the Sod shock

tube problem, but against the radial distance. The moving mesh methods were then

compared which each other and the standard fixed grid Eulerian method. The computed

solutions were all compared with the one dimensional reference solution.

It was found that the mass monitor led to an approximately Lagrangian method and

tended to cluster mesh points in between the shock and contact wave where the gas was

being compressed, as in the one-dimensional results. The moving mesh method together

with the geometric monitor function produced a mesh in which points were clustered

in regions of the solution where its gradient was high, such as in shock, contact and

rarefaction waves.
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Chapter 7

Discussion

7.1 Summary

In this chapter we summarise the findings of the work carried out in this thesis and

suggest some further research that could be carried out. The extent of the original work

carried out by the author is also detailed. The thesis begins in chapter 1 by outlining

different types of adaptive methods for the solution of differential equations. Also in this

chapter we described the main three types of numerical adaption, techniques which were

referred to as h-, p- and r-adaption. It was also stated that in the thesis we would only

consider the r-adaption technique, which consists of dynamically moving the positions

of the computational mesh nodes in time in an attempt to increase the accuracy of the

numerical method. The outline and aims of the thesis were also stated.

In chapter 2 some commonly used moving mesh methods and grid generation techniques

were described. The notion of an adaptive mesh being produced as a one-to-one map-

ping from a background computational domain onto the physical domain in which the

problem is being solved was introduced and it was shown how the various properties of

the mesh in the physical domain can be controlled by this mapping. We then went on

to introduce the notion of the of a monitor function in the context of the equidistribu-

tion principle, due to de Boor [16]. It was pointed out that in one spatial dimension

many moving mesh methods are based on this equidistribution principle and from this

principle the concept of moving mesh partial differential equations (MMPDEs) can be

derived. We also gave examples of several monitor functions that have been used for

the solution of both ordinary and partial differential equations.
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In chapter 2 we also noted that in general moving mesh methods fall into one of two

categories, velocity and location based methods, which differ in the fact that velocity

based methods target the rate of change of the mapping from the computational to

physical domain ẋ(x(ξ, t), t) and location based methods target the mapping x(ξ, t).

We then went on to consider multidimensional extensions of the ideas introduced in

one spatial dimension. It was found that the equidistribution principle does not easily

extend to higher dimensions, since the natural extension is an underdetermined system.

Therefore in higher dimensions we described alternative routes which researchers have

followed in generating an adaptive mesh. Many of the methods outlined in this chapter

can be formulated as minimisation problems. In most cases, functionals were derived

which could be used to control properties of the mesh. Also the idea of a monitor matrix

to control the properties of the mesh was described.

Subsequently in chapter 2 we described the classical Lagrangian method in fluids in

which the motion of the mesh is chosen to move with the local fluid velocity, and the

generalisation of this known as the Arbitrary Lagrangian Eulerian (ALE) method.

Finally in chapter 2 we considered geometric integration techniques in which discrete

approximations to systems are constructed in such a manner so that the discrete system

inherits as many properties of the continuous problem as possible.

In chapter 3 we derived a moving mesh method using monitor functions. This moving

mesh method was based on a conservation of monitor function principle in time. It was

then shown that a mesh velocity is induced by prescribing that the mesh obeys this

conservation principle. The resulting Eulerian form of the conservation law obtained

for the velocity of the mesh is an equation for the velocity, but is known to be an

underdetermined system for spatial dimensions higher than one. Therefore we chose

to prescribe the curl of the mesh velocity to obtain a unique velocity field. Using this

condition we then obtained an elliptic PDE for a mesh velocity potential, from which

the velocity of the mesh could be recovered. An interpretation of the method was also

given in terms of modelling the mesh as a pseudo-fluid in which the monitor function

acts as the pseudo-density function. The mesh velocity was then found to be the velocity

of the pseudo-fluid.
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We chose to generate the velocity of the mesh through a finite element method, therefore

in this chapter we derived weak forms of the equations for the mesh velocity potential

and the equation for the recovery of the mesh velocity. These weak forms could then

be used in a finite element framework to obtain a unique mesh velocity. The velocity is

used to advance the mesh forward in time using an ODE time-stepping method.

In chapter 4 we considered the solution of the porous medium equation (PME) using

the moving mesh method derived in chapter 3. We began this chapter by examining the

scale invariance properties of the PME and detailing how a radial self-similar solution

can be constructed. The scale invariance properties of the PME were then utilised to

develop a scale invariant moving mesh method. We first considered the moving mesh

method with the monitor function M = u, which is designed to conserve “mass” in the

discrete sense. A scale invariant time-stepping routine was used to advance the mesh

forward in time. In the case of the PME with M = u we found that once the new

adaptive mesh had been found, the solution to the problem could be recovered directly

through the use of the conservation of monitor function principle. Results for this choice

of monitor function were shown and it was found that the method produced accurate

numerical solutions in a suitable norm. We also found that the solutions seemed to be

correctly attracted to the self-similar solution as time increased. Also it was found that

the scaled error in the solution was approximately invariant in time.

We then went on to consider the solution of the PME using the same moving mesh

method but with other choices for the monitor function. It was described how to modify

general monitor functions to produce scale invariant monitor functions, with particular

reference to the gradient monitor function M = |ux|. This monitor function was chosen

as we expected that it would cluster many of the computational nodes within the steep

moving front of the solution. Results were shown for the moving mesh method together

with the gradient monitor function. It was found that recovering the solution directly

with this choice of monitor function led to a less accurate method overall in the norm

chosen in comparison with the mass monitor which was probably due to the fact that

there was no constraint for the numerical solution to conserve mass in the discrete sense.

Since this problem is characterised by the total mass in the solution this turned out to

have a detrimental effect. It was however noted that the mass conserving property of
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the solution could be maintained by using the Arbitrary Lagrangian Eulerian (ALE)

form of the PME to solve the PME on the mesh generated from the gradient monitor

function.

At the end of chapter 4 we extended the moving mesh method together with the mass

monitor to the solution of the PME in two spatial dimensions. Results were shown

for solutions to the PME with a variety of the powers m. The solution to a problem

with non-self-similar initial conditions was also presented and it could be seen how the

solution was attracted towards the self-similar solution as time increased.

Chapters 5 and 6 described the development of the moving mesh method to solve non-

linear hyperbolic conservation laws, both in one and two spatial dimensions. In chapter

5 we considered the adaptive solution of the one-dimensional inviscid Burgers equa-

tion and the compressible Euler equations of gas dynamics. Since the solution to the

equations being solved could not be recovered through the use of the conservation of

monitor function principle the ALE approach was needed to recover the solution on the

moving mesh. A finite volume scheme was used to solve the conservation law. It was

found that to incorporate the velocity of the mesh in the method we had to solve the

conservation law in a general frame of reference and hence we derived the ALE form of

the conservation law.

In chapter 5 we also solved both the inviscid Burgers equation and the compressible

Euler equations on an adaptively moving mesh generated from one of two monitor

functions. The first monitor function we considered was the mass monitor and it was

found that this choice led to the mesh motion being approximately Lagrangian. The

second monitor function was designed by considering the structure of the solution to

hyperbolic conservation laws. A geometric monitor function based on the gradient of

the solution was utilised to move mesh points into regions of the domain where the

gradient of the solution is high, such as in moving discontinuities. For both the inviscid

Burgers equation and the Euler equations it was found for various test problems that

the moving mesh method together with the geometric monitor function led to more

accurate numerical solutions.

Chapter 6 considered the solution of the compressible Euler equations in two spatial
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dimensions. In this chapter a generalisation of the one-dimensional ALE finite volume

method was derived which was then used in conjunction with an ALE HLLC approx-

imate Riemann solver. This method gives only first order accuracy in both space and

time. Therefore to increase the accuracy of the numerical approximation we used the

MUSCL method of Van Leer together with the LCD slope limiter. We then outlined the

use of the mass monitor function and a generalisation of the one dimensional geometric

monitor function which was used for the compressible Euler equations. These monitor

functions were then used in the moving mesh method to generate a moving mesh in two

spatial dimensions. We applied the method to a cylindrical shock problem, which can

be seen as a generalisation of the one-dimensional Sod shock tube problem in the radial

direction. Results were obtained for the two monitor functions and then compared to

the standard Eulerian method.

The introductory chapters 1 and chapter 2 and the applications to hyperbolic problems

in chapters 5 and 6 are entirely the work of the candidate. The method chapter 3 and

the PME application chapter 4 parallel the work of Baines, Hubbard and Jimack [8, 9],

but there are some original sections, namely sections 4.4 to 4.8.

7.2 Discussion of Similarity in Hyperbolic Systems

In this thesis we solved both the porous medium equation and the compressible Eu-

ler equation of gas dynamics using the moving mesh method. However, the solution

procedure of these two equations was based on very different aims. The aim of the

moving mesh method for the solution of the PME was to produce a numerical method

which was scale invariant and hence inherited many of the continuous properties of the

continuous equation. Using this property of the continuous equation we were able to

construct solutions to the problem which were attracted to the self-similar solution as

time advanced. In contrast, the solution technique for the Euler equations consisted

of designing monitor functions which characterised the geometrical properties of the

solution and in this manner we hoped that certain features of the flow would be well

resolved by the mesh.
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Figure 7.1: Self-similar solution to the compressible Euler equations in radial co-

ordinates. Figure shows plots of density, velocity and pressure at four different times.

An interesting extension of this work could be to solve the Euler equations using similar

scale invariant techniques that were used for the PME. For example one problem for the

Euler equations which does exhibit scale invariance is that of the point source solution

derived by Taylor [89, 90] and Von Neumann [74], which is also often referred to as the

Sedov blast wave problem [11]. This problem consists of a very intense blast wave which

propagates outwards from an initial high energy state. The early stages of this problem

are described by the PME with the specific choice for the power m taken to be roughly

5 [11]. However later stages of the evolution are described by the compressible Euler

equations in radial co-ordinates given as




ρ

ρ v

E



t

+




ρ v

ρ v2 + p

v (E + p)



r

= −(d− 1)

r




ρ v

ρ v2

v (E + p)


 ,

where d is the number of spatial dimensions. It can be shown [11] that the variables of

the radial Euler equations, together with the condition that the total energy is conserved

in time,

∫ ∞

0

E rd−1 dr =

∫ ∞

0

(
p

γ − 1
+

1

2
ρ v2

)
rd−1 dr = constant in time,

are invariant under the scalings

r̂ = λ
2
d+2 r, ρ̂ = ρ, v̂ = λ−

d
d+2 v, p̂ = λ−

2 d
d+2 p, t̂ = λ t,
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where the variables ρ, v and p are the density, velocity and pressure of the gas and r and

t are the spatial and temporal variables respectively. It can also be shown that under

these scalings the Euler equations have a unique self-similar solution. The structure of

the self-similar solution consists of a shock moving outward from the origin of the domain

with speed s and a continuous transition of the solution behind the shock. Ahead of

the shock the gas is at rest and has a constant density ρ0. This region also has zero

pressure. Applying the Rankine-Hugoniot jump conditions across this blast wave we

find that

uf =
2

γ + 1
s, ρf =

γ + 1

γ − 1
ρ0, pf =

2

γ + 1
ρ0 s

2

where the subscript f denotes the value of the variable immediately to the left of the

shock. From scaling arguments we know that

t̂−
2
d+2 r̂ = t−

2
d+2 r = a,

where a is a constant. Therefore the trajectory of the blast wave must have the form

rf = a t
2
d+2

and hence the speed of the blast wave is given by

s =
2

d+ 2
a t

2
d+2
−1.

Substituting this expression for the shock speed into the Rankine-Hugoniot jump con-

ditions we obtain the relationships

uf =
2

γ + 1

2

d+ 2
a t

2
d+2
−1, ρf =

γ + 1

γ − 1
ρ0, pf =

2

γ + 1
ρ0

(
2

d+ 2
a t

2
d+2
−1

)2

.

(7.1)

Also from this scale invariance argument it is easy to see that the quantity

ξ =
r

a t
2
d+2
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is invariant in time, and hence we may seek a self-similar solution to the problem in

terms of a function of this invariant quantity. Thus we may assume that the solution to

the radial Euler equations have the form

ρ = ρ0 R (ξ) v =
2

d+ 2

r

t
V (ξ) p =

4

(d+ 2)2 ρ0
r2

t2
P (ξ) (7.2)

which upon substituting these ansatzs into the radial Euler equations we obtain a set

of three ODEs,

(V − 1)
∂ (lnR)

∂ (ln ξ)
+

∂V

∂ (ln ξ)
+ d V = 0

(V − 1) R
∂V

∂ (ln ξ)
+

∂P

∂ (ln ξ)
+ 2P +RV

(
V − d+ 2

2

)
= 0 (7.3)

∂

∂ (ln ξ)

(
ln

(
P

Rγ

))
+

(V − (d+ 2))

(V − 1)
= 0

for the solution of V , P and R. Boundary conditions for this ODE system at ξ = 1 are

obtained by equating the relations (7.1) and (7.2) and are given as

R (1) =
γ + 1

γ − 1
, V (1) =

2

γ + 1
, P (1) =

2

γ + 1
, (7.4)

It is possible to solve the ODE system given by (7.3) together with the boundary condi-

tions (7.4) for the functions R, V , P from which the self-similar solution can be obtained

and is given by

ρ =
γ + 1

γ − 1
ρ0θ

d
2(γ−1)+d

(
θ + γ

γ + 1

)− 2(d−1)
d(γ−1)+2

(
d(2− γ)θ + 2(γ − 1) + d

(2− d)γ + (3d− 2)

) γ2(d2+4)−(d−2)(3d−2)γ+4d(d−2)
(2−γ)(2(γ−1)+d)(d(γ−1)+2)

,

u =
4

(d+ 2)(γ + 1)
at−

d
d+2 θ

γ−1
2(γ−1)+d

(
1 + θ

2

) d
d+2
(
θ + γ

γ + 1

)− (d−1)(γ−1)
d(γ−1)+2

×
(
d(2− γ)θ + 2(γ − 1) + d

(2− d)γ + (3d− 2)

)− γ2(d2+4)−(d−2)(3d−2)γ+4d(d−2)
(d+2)(2(γ−1)+d)(d(γ−1)+2)

,
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Figure 7.2: Scaled variables for self-similar solution to the compressible Euler equations

in radial co-ordinates. Figure shows plots of scaled density, velocity and pressure.

p =
8

(d+ 2)2(γ + 1)
ρ0a

2t−
2d
d+2

(
1 + θ

2

) 2d
d+2
(
θ + γ

γ + 1

)− 2(d−1)γ
d(γ−1)+2

×
(
d(2− γ)θ + 2(γ − 1) + d

(2− d)γ + (3d− 2)

) γ2(d2+4)−(d−2)(3d−2)γ+4d(d−2)
(d+2)(2−γ)(d(γ−1)+2)

,

where θ is a new variable which ranges between zero and one. It should be noted that

this solution is only valid for 1 < γ < 2. This solution can be seen in figure 7.1 and the

scale invariant quantities can be seen in figure 7.2.

We could therefore use ideas from chapter 4 to produce scale invariant monitor functions

to produce an adaptive mesh for this problem. For example, it is straightforward to show

that the monitor functions

∫ ∞

0

t
2(d−1)
d+2 ρr r

d−1 dr and

∫ ∞

0

E rd−1 dr,

where E is the total energy, are scale invariant for this problem.
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7.3 Further Research

We conclude this thesis by considering some other possible areas of further research.

There are a variety of avenues for further research using the moving mesh method that

has been used in this thesis. One could solve many other partial differential equations or

apply the method to the PDEs already solved in other contexts, as well as devising more

complicated test problems such as the Mach reflection test problem for the compressible

Euler equations.

Alternatively, we could pursue the design of different monitor functions which could

result in a more accurate and robust method [13]. Error estimates may be used as

monitors if available, or monitor functions may be designed to bring out particular

features of the solution. For example, it may be advantageous for the solution of the

compressible Euler equations to have a monitor function based on the curvature of

the density, or some other variable, to move mesh points into shock and contact wave

regions. This type of monitor function may also be combined with the already utilised

gradient monitor function. Therefore a more general form of a monitor function for the

solution of the Euler equations could be

M = 1 + α ρ2
x + β ρ2

y + γ ρ2
xx + δ ρ2

x y + ε ρ2
y y,

where α and β are constants to be chosen. The monitor function may also be based on

other variables such as entropy in the case of the Euler equations, as in [86].

Also the velocity q and the variable $ in the moving mesh have not been exploited

in this work. In all the results produced in this thesis these two quantities have been

chosen to be q = 0 and $ = 1. Since these values lead to the mesh generated being

irrotational. However, in some circumstances it may be advantageous to have a mesh

which has some rotational properties. For instance, if a mesh is generated which is

highly skewed due to the presence of large amounts of vorticity in the solution then

we may want to choose the curl of the mesh velocity in such a way as to minimise the

amount of skewness in the mesh.

We may also investigate how the solution of the problem being solved depends on the ini-

tial mesh chosen. For the two-dimensional results obtained for both the porous medium
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equation and the Euler equations we used a relatively uniform initial mesh, however we

may be able to obtain more accurate results by using an initially adapted mesh. For

example, we could use a least-squares fit with adjustable nodes to produce an initial

mesh [6]. Alternatively it may be possible to construct a non-uniform mesh from an

uniform mesh by using the moving mesh method described in this thesis. This could be

done by considering the initial grid generation as a steady state problem and advancing

the mesh forward in pseudo-time to produce an adapted mesh.

Lastly, the computational efficiency of the moving mesh method may be investigated to

discover whether the method is more or less efficient when compared to other commonly

used methods.
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