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Abstract

In this thesis we examine overturned solutions of scalar partial differential
equations in one and two dimensions using moving finite element methods with
particular emphasis on scalar conservation laws. These equations are the simplest
nonlinear equations to exhibit the formation of shocks and expansions as their
solutions evolve with time.

Both analytic and numerical techniques are examined in one and two dimen-
sions, analytic techniques being considered as a background to the numerical
methods, which are adaptive and finite element in nature. They include the
classical moving finite element method (MFE) of Miller in its various forms and
Lagrangian methods.

The analytic and numerical solution to these equations yield multivalued
curves and surfaces. Weak solutions however exist in which shocks feature and
these can be obtained from the multivalued solutions by applying a recovery
technique to locate the shock position.

To enable this technique to be implemented, in the case of MFE methods,
they must be rewritten as a two stage procedure, so as to properly define the
method mathematically.

The shock recovery techniques used are based on conservation. One method is
based directly on conservation of area, while a second method uses this indirectly
after the application of a Legendre transformation. A third method considered
is based on the Transport Collapse operator of Brenier. All methods are entropy
satisfying. In 2-D the shock recovery method used is 1-D in nature normal to the
shock and involves several applications of the 1-D construction in order to find

the shock position.
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Chapter 1

Introduction

Partial Differential Equations (PDE’s) and the techniques for their solution have
been widely studied for more than 200 years. One of the reasons that there is
such great interest in these equations stems from the fact that they can be used
to describe physical systems. PDE’s may be used to model the behaviour of
many natural phenomena such as the weather, the motion of the sea or the flow
of a river. They may also be used to describe the interaction between natural
phenomena and man-made structures such as the flow in harbours or around
aircraft.

Initially interest in this type of equation occurred after Newton and Leib-
niz independently introduced the ideas of the calculus in the late 17th century.
Once the relationship between differentiation and integration became known, this
marked the beginning of the study of solutions of Ordinary Differential Equations
(ODE’s). ODE’s grew in popularity throughout the 18th century as their ability
to represent physical situations became known. By the mid 18th century partial
differential equations had been introduced and simple methods of solution were
being developed. For example, whilst studying the properties of vibrating strings,
D’Alembert was led to the PDE 88%‘ = % and subsequently gave its solution as
u = f(x+1t)+ gle —t) where f, g are arbitrary functions. Similar advances
were made by other mathematicians, of which one of the most famous was Euler.
Euler was responsible for the introduction of systematic methods of solution of
differential equations and introduced techniques such as the use of integrating

factors.



It is therefore no secret that over the past 200 years a great deal of progress
has been made in the classical solution of in particular, linear PDE’s. Unfortu-
nately, the same is not true of the nonlinear equations, which have many more
practical applications. Disregarding numerical techniques, the classes of equa-
tions for which analytic solutions are available remains distressingly small and
still only the simplest nonlinear problems have analytic solutions.

PDE’s may be classified in many ways so that their behaviour may be gener-
alized. For example second order linear PDE’s may be divided into three classes,
hyperbolic, parabolic and elliptic equations depending on the coefficients of the
second order derivatives. For each of these classes not only do solution techniques
vary, but different boundary conditions are needed for the formation of well posed
problems. Other types of behaviour are categorised by physical analogies, such
as a u,, term being regarded as a diffusion term whereas a u, term is an advec-
tion term. Other examples of this qualitative behaviour include the well known
phenomena of blow-up (see chapter 2, section 2.5).

Although during the last 30-40 years with the advent of numerical techniques,
the solution of PDE’s has become increasingly practical, it however remains highly
desirable to know something about the type of behaviour of the solution of the
equation. This knowledge of the behaviour usually comes from the analytical
or classical theory and may be used to facilitate the choice of an appropriate
numerical method.

In this thesis we shall concentrate on first order scalar PDE’s and their proper-
ties, and in particular on conservation laws. We shall be concerned with the study
of the discontinuities via overturning solutions and the numerical representation
of this phenomena using moving elements.

Consider the general first order scalar PDE in n-dimensions,

F(x,u,m) =0 (1.1)

where x = (21,...,2,), v = u(x) and m = (my,...,m,) where m; = % (1 =
k2

1,...,n). This equation is too general to be solved analytically although it is

possible to associate it with a system of ODE’s or characteristics (Courant &



Hilbert (1962)),

dx:
dil = F, i=1,.,n (1.2)
du i
=1

dmi .

= — w oy L= 1,....Nn. .
: (Pami 4 F) =1 (14
S

This gives a system of 2n + 1 ODE’s and the equation F' = 0 for the 2n + 1
unknowns xy, ..., T, u, My, ..., m,. Also, it may be shown that F' is an integral of
the characteristics, the only requirement being that F' = 0 at some initial point
t =0, hence F' is satisfied for all ¢ (John (1971)). These characteristic equations
may be used to examine the underlying structure of the PDE (1.1), but little
progress may be made analytically until it is simplified.

Equation (1.1) may be simplified by considering x,=time ¢ as a preferred
or distinguished variable. This separates ¢ from the other variables z; leaving
x containing only spatial variables. If ¢ does not occur anywhere else in the

equation, (1.1) reduces to the important practical form
u + H(x,u,m) =0 (1.5)

where x = (2y,...,2,_1), m = (My,...,m,_y), u is as above and where n— 1 is the
number of space dimensions. The characteristics can be simplified very slightly

for this equation because the ¢ time variable can be extracted from the equations

to give
dt du
The remaining characteristics are given by
dz; ,
CZ; = H, 1=1..,n-1
du n—1
=1
dm,; ,
Z = —(Hm;+H,,) i=1,...,n—1

From (1.6), ¢ may replace s in (1.7). The problem is characterized by data given
on some initial line. This equation is still too general to be solved analytically
and the characteristics (1.6), (1.7) have not been simplified very much from those

of equation (1.1).



Equation (1.1) may be simplified further by assuming only linear dependence
of H on u,, so as to separate it into two new functions a and b which are dependent

on x and u. The equation is now given by
u; + a(x, u). Vu = b(x, u). (1.8)

The characteristics can be simplified further to give

da; .

dx = axu) i=1,..n—1 (1.9)
S

du nol

- = 2 alsu)mitu = b(x,u) (1.10)

=1

dm; .

Zln = —((a,.Vu—b,)m; +a,.Vu—15b,) i=1,...n—1. (L.11)
S

We can simplify equation (1.8) yet again by allowing a to be dependent only

on v and b = 0. This gives the equation
ur + w(u).Vu = 0. (1.12)

This equation is a conservation law if w is integrable so that w(u).Vu may be

written as L(u),, where VL(u) = w(u). The characteristics of this equation are

given by

do:

dxl = wu) i=1,..n—1 (1.13)
s

d n—1

CT“ = > wlu)im; +u; =0 (1.14)
= i=1

dmi .

e —w(u).Vu 1=1,...,n—1. (1.15)

The conservation laws exhibit the types of behaviour which we are investigat-
ing in this thesis and, since they are much simpler than (1.1), they provide our
main set of examples. Conservation laws form shocks and/or expansions, which
allow multivalued solutions to be formed by following the characteristics. It is
this type of behaviour that we are interested in and so we concentrate on the
conservation laws.

In chapter 2 we examine conservation laws in 1-D, discussing both their prop-
erties and their method of solution using characteristics. In the section on char-

acteristics, weak forms are introduced in order to allow discontinuous solutions



to exist (shocks). As a consequence, the notion of entropy (Lax (1972)) has to be
introduced as a solution to the problem of non-uniqueness arising from the use
of such weak solutions. A second approach is then introduced using the method
of characteristics in which the solution is allowed to follow the characteristics
through their intersection point (i.e. initial time of forming a shock) so that a
multivalued solution is obtained. From this multivalued curve, the shock position
can then be calculated in several ways. One method is based upon the ideas of
conservation, in conjunction with transformations to Hamilton-Jacobi equations
and ODE’s. A second method, proposed by Brenier, uses an averaging technique
which is applied to the multivalued curve.

Chapter 3 contains the background to numerical methods used in 1-D to
solve conservation laws. Initially we focus on finite difference and finite element
methods appropriate for the solution of such conservation laws. This leads to a
discussion of the possible use of adaptive finite element methods. The moving
finite element method of (Miller & Miller (1981)) and its derivatives are examined
together with Lagrangian methods. Since the adaptive element methods permit
multivalued solutions to form, numerical techniques analogous to those in chapter
2 can be used to find the shock position. This is the main aim of this thesis.

In chapter 4, it is noted that the formal procedure used in the MFE method
may not be valid when the solution overturns. This occurs because the norm
used in the L, minimisation is no longer a true norm. In this chapter the norm
is rewritten as the sum of two norms, each of which remains valid. A variety of
MFE type methods are then examined in the context of multivalued solutions and
their implementations are explained. The final section of this chapter is devoted
to the numerical methods of recovery of the shock position from the multivalued
curve.

Chapter 5 concludes the discussion of the problem in 1-D by giving numerical
examples and results to highlight the points made in chapters 2-4. Examples
are given to show both the methods of obtaining overturned solutions and the
methods of recovering the shock position.

Chapters 6-9 cover the same subjects as in chapters 2-5, but for higher dimen-

sions. In chapter 6 conservation laws in two and higher dimensions are considered



analytically, together with possible methods of solution. In 2-D only a few equa-
tion have known analytic solutions, although it has been shown that for general
initial data solutions to conservation laws in 2-D exist. The general behaviour
and properties of these equations are discussed before the numerical methods are
introduced in chapter 7.

Corresponding to chapter 3, chapter 7 introduces MFE methods in higher di-
mensions. In general, the MFE method has the same formal structure as in 1-D
but a few important differences do occur. For example in 1-D the global and local
implementation of the MFE method are identical since their basis functions span
the same space, however in two and higher dimensions the spaces spanned by
the basis functions are different and consequently the methods are not identical.
There are also some problems which occur in higher dimensions due to the in-
creased complexity of the discretised algebraic equations. For example there are
more cases of singularity. As in 1-D, the L, norm in higher dimensions becomes
invalid as the solution overturns which again leads to a need for the methods to
be rewritten in a valid form.

Chapter 8 introduces the modifications needed to the MFE methods in order
that they may be used to generate multivalued solutions. The concluding sections
in chapter 8 discuss a method for obtaining the shock position in 2-D from an
overturned solution. The technique introduced is 1-D in nature, based upon the
ideas described in chapter 4, but is capable of giving a realistic 2-D shock in many
cases.

Numerical results and examples are given for 2-D problems in chapter 9 to
illustrate the points made in chapters 6-8. Examples are given of both overturned
solutions and of the shock position recovered from the multivalued solutions using
the 1-D technique described in chapter 8.

Chapter 10 contains a summary of the work given in this thesis. Ideas on how

this work may be extended are also discussed.



Chapter 2

Analytical Properties Of

Conservation Laws In 1-D

2.1 Introduction

The types of problem considered here arise from solving one-dimensional scalar,
nonlinear, partial differential equations. This general heading encompasses an
extremely large field and includes equations of many different types with widely
varying properties. In order to examine both analytic and numerical methods of
solution it is necessary to reduce this range to a class of equations which show
the type of properties that are of particular interest here. We shall concentrate
on nonlinear equations which give rise to shocks or discontinuities since the cal-
culation of shocks or discontinuities occur in many physical simulations and pose
a challenge both analytically and numerically. Taking this into consideration, a
class of equations which are both widely used and exhibit the above properties is
the conservation laws.

In 1-D these are equations of the form
ur+ fr=0 (2.1)

where f is a function of u, and u is a function of « and t. Equation (2.1) is given
on a 1-D region R with initial conditions specified and boundary conditions given
where necessary.

Initially we shall concentrate on the method of characteristics, which has



been the most effective tool for analytic solutions of these equations in 1-D
(Courant & Hilbert (1962)). The possibility of the occurrence of shocks then
leads to the introduction of jump conditions and weak solutions. However the
use of weak solutions means that the solution to the problem is not uniquely
defined, hence another (entropy) condition is imposed for uniqueness (Smoller
(1983)). Several examples are given to demonstrate the formation of shocks and
expansions, using both the entropy and the jump conditions.

Allowing the introduction of multivalued solutions calculated by the method
of characteristics leads to a discussion of how the physically based discontinuity or
shock is to be recovered. One of the simplest methods applied to this problem is
the calculation of the shock position by application of the principle of conservation
(Courant & Hilbert (1962)). This type of method may be looked at in several
forms which are equivalent and based upon this physical condition. A second type
of method considered is the use of the so-called Transport Collapse Operator given
by (Brenier (1984)). This involves replacing the multivalued curve by a single-
valued solution using an averaging technique. The solution obtained is entropy

satisfying.

2.2 Basics Of The Problem

We shall start by concentrating on equations of the form
ur+ fr=0 (2.2)

where f = f(u), u = u(x,t). For a well posed problem equation (2.2) is given
on a 1-D region R with initial conditions uy = u(x,0) and boundary conditions
given where data enters the region along characteristics. The equation is known
as a conservation law, since it comes from the property that some quantity w is
conserved, as follows.

Suppose there is some material of density u distributed along a line, then the
rate of change of the ‘mass’ [udz in a fixed interval is balanced by the flux f(u)

through the boundaries of the interval. Then the conservation of mass within the



interval [z, 2 4+ Ax] is expressed by the equation

jt/xﬁﬂ udz + [f(u(z + Az)) — f(u(z))] = 0. (2.3)

i.e.

ol ox

By the mean value theorem for integrals (2.4) becomes

/;+M Ou T (2.4)

ou Of
0= Ax (at + 6:1;) ‘1:0 for some 0 € (z,2 + Ax). (2.5)

Then, since (2.5) holds for arbitrary small Az, this means that it is equivalent to
the differential equation (2.2). (This argument is known as Lagrange’s Lemma.)

Equation (2.2) may also be written in the form
u; + a(u)u, =0, (2.6)

where a(u) = f'(u), and a is known as the wave speed. The behaviour of so-
lutions of these equations is wavelike (see e.g. Whitham (1974)). The presence
of the nonlinearity gives rise to solutions which blow up in finite time. However
the methods investigated here will permit multivalued solutions to form. Sub-
sequently, techniques will be investigated for obtaining a physically based single

valued solution from the multivalued curve.

2.3 Characteristics

Before considering numerical methods for the solution of conservation laws (see
chapters 3 and 4), we shall discuss the analytic techniques available. This will
enable us to see the form of the solution and to examine some of the problems
which may occur. First consider the total time derivative of v = u(x,t) when «
is allowed to depend on t,

du  OJu dxdu

Equation (2.6) may be substituted in (2.7) to give

f;; - {CZ - a(u)} gZ' (2.8)



From (2.8) it can be seen that, if

dx du
i a(u), then i 0. (2.9)

Equations (2.9) are known as the equations of characteristics of (2.6). The char-
acteristics of (2.6) may also be obtained by writing (2.2) in a Lagrangian moving
framework. A coordinate transform is defined (assumed non-singular) between

x,t and new independent variables &, 7 by
r=z(,71), t=71, ulx,t)=u(,1). (2.10)

Using the new variables (2.2) may now be written in the Lagrangian form as

i Oudzr
i = 0. 2.11
Jor  Odx Ot + flu) =0 (2.11)
Hence using the notation
au oz du
= — = — = — 2.12
“Tor TToar T oe (2.12)
equation (2.11) becomes
U —uyd + f(u) =0. (2.13)
The function f(u) is now replaced by a(u)u, from (2.6) to give
U — uyd + a(u)u, = 0. (2.14)
If we now compare the coefficients of u, we obtain the equations
u=0 and & =a(u) (2.15)

(c.f. (2.9)) which are also the equations of characteristics of (2.6). (It should be
noted that the Lagrangian method and the method of characteristics are only the
same for certain special cases, which include the conservation laws. If we consider
the equation u;+ H(x, u, u;) = 0 which becomes @ —u,2+ H = 0, the Lagrangian
method has @ = 0 giving © = % For the method of characteristics we obtain the
equations & = % and @ = —H—I—ux% (see (1.7)) which are obviously different.)

The equations of characteristics may be partially solved to give

d
u = ug (constant) on o a(u) (2.16)

dt

10



as in (2.9). Since u is constant along the curve, the second equation of (2.16)

may be integrated to give the straight lines
= a(u)t 4+ xo, (2.17)

where ¢ is a constant (the intersection point on the ¢ = 0 axis, see Fig. 2.1), and
the first equation of (2.16) gives u = ug(xg), where ug is the initial data function.

The general solution is therefore
u(x, ) = uo(x — a(u)t) (2.18)

which gives u implicitly. Note: One of the reasons that numerically calculated
solutions are required for this type of problem is that often the solution may only

be obtained implicitly.

X

Figure 2.1: Characteristics of a nonlinear PDE.

It is interesting to note that ‘blow-up’ occurs in the solution to (2.14). Dif-

ferentiating (2.18) with respect to x gives

up = ug(z — a(u)t)(l — a (u)uyt) (2.19)
ol — a(u)t
S, = Ul alw)l) (2.20)
(L + o (u)ugt)
Ast — ﬁ, u, — oo, which shows that u, blows-up in finite time if ﬁ is

positive. For further discussion see section 2.5.

2.3.1 Overturning Solutions

Fig. 2.1 shows a family of characteristics, crossing t = 0 at xg. The characteristics

have slope 1/a(ug), different for each characteristic, so that for a general nonlinear

11



conservation law with arbitrary initial data, the lines may intersect in finite time

(see Fig. 2.2).

X

Figure 2.2: Characteristics intersecting after finite time, ¢ = #,.

If the solution to (2.6) is allowed to overturn (i.e. the characteristics are
followed beyond the blow-up time) a smooth multivalued solution may be ob-
tained. See Fig. 2.3. Suppose the initial data is a monotonic decreasing function
up = u(x). Then since (2.2) is a nonlinear advection equation the point at which
u = ug is moved spatially by a distance a(ug)t. If a(u) is strictly increasing, then
for large ug points on the curve move further than for small ug. This gives a
multivalued solution after ¢ > ¢; where ¢; is the time the first of intersection of

the characteristics.

to<ti<to<ts

Figure 2.3: Solution overturning as time increases.

Conservation laws are used to model physical processes where, although a
smooth overturning solution can be found, it will be multivalued and this does
not occur physically (nor does it satisfy (2.2), incidentally). If the solution is

required for a time t¢,, where ¢, > t; then the conservation law breaks down as

12



a description of the physical process but a discontinuous solution may be found,
using the conservation principle to give a jump condition at a discontinuity. We

describe this in the context of an example.

2.3.2 Example 1 - Part 1

The first example uses the inviscid Burgers’ equation as the conservation law.

The initial data is given by a ramp, which steepens to form a shock. We solve

»
with initial data
1 x <0
up=u(z,0)=49 1—2z 0<z<1 (2.22)
0 1<z
shown in Fig. 2.4.
u
1
4 A g B 4 C

Figure 2.4: Initial data, uo = u(x,0).

The characteristics of (2.21) are given by

dr

e a(u) = u(xg, 0)
=x = u(xg,0)t+ a0 (2.23)
= = ug(xo)t + o (2.24)

where xg is the point that the characteristic cross the x-axis. This leads to three
distinct regions of characteristics (see Fig. 2.5). In region A, the characteristics

all have slope 1, while in region C , the characteristics all have infinite slope. In

13



17 y

0 1 X

Figure 2.5: Regions of characteristics.

the centre region B, 0 < x < 1 hence the characteristics are not parallel and have
slope ﬁ which is dependent upon .

From Fig. 2.5, it can be seen that the characteristics will first cross at * =1
t =1 and it is at this point the shock is formed. In general, it will not be as easy
to find the shock position (see below).

The solution up to the point t; = 1, where the characteristics cross, may be
found by tracing back along the characteristics. In region A, and region C, the
solutions are v = 1 and u = 0 respectively, however in region B, more calculation

is needed, viz
U(l’,t) = U(l’o,O)
= 1— zo. (2.25)

But @ = u(xg,0)t 4+ o from (2.23), hence

r = (1 —x0)t+ a0
T —1
1 —t

jwo =

Now returning to (2.25), xg can be substituted in (2.25) to give the solution

1 —x
1) = : 2.26
()= L7 (2.26)
Therefore until t = 1, the solution is
1 <0
1—
u=1{ "% o<a<1. (2.27)
11—t
0 l<e

14
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Figure 2.6: Solution at t=1.

See Fig. 2.6. This example shows how the solution until the characteristics cross
can be found by tracing back along the characteristics. If we ignore the fact
that the characteristics have crossed and continue to follow them after ;7 = 1
then the curve overturns and we do not have a physical solution. Note that the

characteristic equations still have a solution, however.

2.3.3 Weak Solutions

To consider discontinuous solutions of (2.2) we need to generalise (2.2) and an-
other concept is needed. If (2.2) is multiplied by a test function ¢(x, ) of compact
support, where ¢ € C'! the space of once-differentiable functions, then after inte-

gration by parts over the region IR, this gives

//IRX[O,T](u¢t + f(u)¢,)dxdt + /]R,tzo upp(x,0)de =0 (2.28)

where T is the final time. This is known as the weak form of (2.2) (Smoller (1983)).
This equation allows discontinuous solutions u to be admitted since, from (2.28)
it can be seen that derivatives of u are no longer present. It can be shown that if
(2.28) holds V ¢ € C*, and ug is bounded and measurable then wu is the classical
solution of the differential equation (Smoller (1983)). In (2.28), u is known as a
weak solution of (2.2).

We will now describe how, when characteristics meet, (2.2) can be replaced by
a jump condition which allows discontinuous solutions to be found. The argument
follows (Smoller (1983)). Suppose that I' is a smooth curve in (x,t) space and

that u has a discontinuity across I', u is smooth away from I' and has well defined

15



limits on both sides of I'. Let P be a point on I' and D be a small ball centred
at P. Let « = (1) be the equation of the curve I' in D and let D, Dy be parts
of D split by I'. Let ¢}y, ()3 be the points which lie on both I' and D. See Fig.
2.7 below.

)

Q.

Q

X

Figure 2.7: The test region D.

Let ¢ be a once differentiable function with compact support in D and let
¢ = 0 on the boundary dD. Multiplying (2.2) by ¢ and integrating by parts over
D gives

0= / /D (uds + f(u)d,)dedt, (2.29)

since ¢ = 0 on dD. Equation (2.29) can be written as the sum of integrals over
the two regions Dy, Dy. Now use the divergence theorem on each region Dy, D,

to give

/‘/Di(u¢t + f(u)oy)dadt = //Dl(u(é)t + (f&)pdudt
= /aDi o(—udzr + fdt), (2.30)

where ¢ = 1, 2.

Since ¢ = 0 on the boundary, these line integrals are non-zero only along T'.
Let ug, = u(x(t) — 0,¢) and up = u(x(t) + 0,1) be the values of v on I' from each
side, hence (2.30) becomes

Q2
/8D1 d(—udx + fdt) = /Ql d(—urde + f(ug)dt) (2.31)
/8D2 d(—udx + fdt) = — /Qib d(—updx + f(ug)dt). (2.32)
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From (2.29), (2.31) and (2.32)

0 = //D(uqﬁt-l-f(u)qﬁx)dxdt
/éﬁmﬁjwmgwﬁ+/éfmﬁjWMQMﬁ
=0 ZLAM—WMWHﬂWWﬂ (2.33)

=0

where [u] denotes the jump [u] = vy — ug and [f(u)] = f(up) — f(ug). Since ¢

is arbitrary, then

d
Il = [f(w)) (2:31)
which is known as the jump condition. The quantity s = CC% is known as the

shock speed (i.e. the speed of the discontinuity).

2.3.4 Example 1 - Part 2

Using the initial data and equation given in (2.21), (2.22) the solution has been

calculated to be

0 x <0
1 —
u={ — 2 0<a<1 (2.35)
1t
1 1<

before the crossing of the characteristics at ¢t; = 1. For a discontinuous solution,

after ¢; the jump condition may be used to find out the speed s of the shock,

ui  uh

L. 3y
[u] Uy — Up
s = 4(ur+ur)

After t;, therefore the solution becomes

u(x,t) =

{1 < L4+t —1) (2.36)

0  a>1+3(t—1)

which is a shock moving with speed 1. The characteristics now move into the

shock. See Fig. 2.8. This now gives a weak solution for equation (2.2).
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1

Figure 2.8: Shock position and characteristics as ¢ increases.

Although it is possible to consider discontinuous solutions of conservation
laws, these have only been weak solutions. Discontinuous functions are not dif-
ferentiable hence they cannot strictly satisfy the partial differential equation. The
differential equation is only satisfied in the sense of distributions (2.28).

The problem with permitting weak solutions of the PDE is that the uniqueness
of the solution is lost and and a so-called entropy condition is required to pick out
the physical solution (Smoller (1983)). This is most easily shown by considering

another example.

2.3.5 Example 2 - Part 1

Consider the equation
2
u + (%) =0 (2.37)

with initial data

—1 x <0

ugp(x,0) = (2.38)

1 2>0
The characteristics of this region are shown in Fig. 2.9. There are several possible

solutions two of which are given below.
u(x,t) = up(x) (2.39)

is a solution, with characteristics shown in Fig. 2.10.
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Similarly

X

Figure 2.9: Characteristics of the initial data.

t

X

Figure 2.10: Characteristics of solution.

—1 T < —t1
z
— —t<ax<t
1

1 t<wx

(2.40)

is a solution of the equation (2.37), which may be checked by substituting u(x,)

into the equation. This solution has characteristics shown in Fig. 2.11.

This now gives us two different solutions which both satisfy the equation

(2.37). It is now clear that for a unique solution another condition must be

applied.

2.3.6 Entropy Condition - 1

One way of choosing the correct physical solution may be obtained by considering

the viscous form of equation (2.2),

Uy —I_ f(u)ac = CUgy

19
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X

Figure 2.11: Characteristics of solution.

where € > 0, in the limit as ¢ — 0. This equation is used because it has a
continuous solution with a very steep front, steepening as € — 0 to approach the
discontinuous solution of (2.2). The idea that the viscous equation may be used
to derive a condition to impose on the non-viscous equation, so that in the limit
(‘as € — 0 ) the two solutions would be identical, is due to (Oleinik (1957)) and
is known as the entropy condition.

This condition may be expressed in many forms, one of the simplest being

given by the inequality (Lax (1972)),

fllur) > s> f'(ug) (2.42)

where s is the jump speed, ' > 0 and uy, ug are the values of u just to the left
and right of the shock position. This condition forces the characteristics to go
into the shock as ¢ increases hence giving the correct type of solution. Another

less restrictive form of the entropy condition which holds Vf was given in 1957
by Oleinik as
(2.43)

Vu € {u:uy, <u<ug}.

2.3.7 Entropy Condition - 2

An alternative entropy condition (Lax (1972)) may also be given by considering

a convex function V(u) and associating it with a function F'(u) defined by
F=vrF. (2.44)

20



V' is known as the entropy function and F' is its associated entropy flux. Now

return to the viscous equation (2.41), where € > 0, and multiply (2.41) by V' to

give
Viu+V () = eV ug, (2.45)
= V'(wu+ V' (wuy = V' up, (2.46)
= V(u) + Flu)u, = (Viug), — V' u?) (2.47)
SVi+F, = eV —V'dd) (2.48)
= Vi+1l, < Vi (2.49)

since V is convex (V" > 0) . Now let € — 0, then
Vit Fy <0 (2.50)

which holds in the weak sense. Note: For smooth solutions equality holds whereas
for discontinuous solutions, strict inequality holds. If f is convex, and if (2.50)
is satisfied by any convex V, then (2.50) will be satisfied for all V. If f is not
convex, (2.50) must be checked for all convex V, (see Kruzkov (1970)).

As we shall see, the solution of equations of the form of (2.2) where shocks are
formed may also be effected by following the solution along the characteristics
and then using the jump condition to find the discontinuous solution. When
expansions are formed the entropy condition is used to obtain a valid solution of

the original equation.

2.3.8 Example 2 - Part 2

Returning to example 2 part 1 (section 2.3.5), we found that there was a non-
uniqueness of solution. Let us now apply one of the simplest entropy conditions
described above to determine if either of the solutions (2.39) or (2.40) are correct.
If we let the value of u at the left of the shock to be -1, then from the problem
the value of u at the right of the solution is 1. The speed of the shock can now

be calculated to be
2

1(02 _
oo ML TR g (2.51)
uy, — UR

Now calculating the derivative of f to be u, so that f'(uy) = —1 and f'(ugr) = 1,

consequently the entropy condition (2.42) is not satisfied for the solution v =
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ug. It should also be noted that this solution cannot be acceptable as there are

characteristics emerging from a line which carries no data.

2.3.9 Envelopes And The Shock Position

An alternative, more general, way of finding the shock position, by calculating
where the characteristics first cross, is to obtain their envelope (Courant & Hilbert
(1962)). Two neighbouring characteristics will cross at ¢ = #; provided both «
values are the same. If a small change in the initial position gives no change
in the subsequent location of the characteristic then neighbouring characteristics
must have crossed. Mathematically this can be expressed in terms of the solution
of the equations of the characteristics, (o), when this equation occurs

dx

doe =0 (2.52)
for the first time. The example below uses this technique to find the shock

position.

2.3.10 Example 3

In this example, the conservation law chosen is again the inviscid Burgers’ equa-

tion (2.21) but this time the initial data is the smooth curve (see Fig. 2.12),

up = tanh(5 —10z) 0<a < 1. (2.53)

Figure 2.12: Initial data.
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The characteristics are given as before by

dx

il a(u) = u(xg,0)

= tanh(5 — 10x0)

= = tanh(b — 10x0)t + 2.

The characteristics will first cross at the instant ¢; where x(¢;,22) = z(tr, z}).

Using the envelope construction this first occurs when

v _y (2.54)

dzg

first holds. This implies that ¢t = ¢ satisfies

0 = —10sech®(5 — 10z0)t + 1
1 COSh2(5 — 10z0)
1086Ch2(5 — 10z0) 10 ( )

To find the minimum ¢ such that (2.55) holds cosh®(5 — 10x4) must be as small

as possible. i.e. cosh(0) =1, hence 5 — 1029 =1 = 29 = 1 and t = 1.

Fort < 11—0, the solution can be found by tracing back along the characteristics,

i.e., since u remains constant and only x changes,

u(z,t) = wu(xo,0)

= tanh(5 — 10x0) (2.56)

where

x = u(xg, 0)t + wo. (2.57)

If 29 can be found from the implicit equation (2.57) it can be substituted into

(2.56) to give the solution for { < :=. An explicit solution for u(x,t) is not

obtainable, but a parametric solution is given by (2.56) and (2.57).

Now for ¢t > 11—0 consider the jump condition to find the speed of the shock.

This is given as before by

ur, + ur
2

I+-1
5 =

0

which means that the shock is stationary (the vertical line in Fig. 2.13).
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Figure 2.13: Shock position.

2.4 Reduction Of Conservation Laws To
Inviscid Burgers’ Equation

It is interesting to note that a general conservation law of the form (2.6) may be
reduced to the Inviscid Burgers’ Equation by a simple substitution. Let ¢ = a(u),

then ¢; = a'(u)u; and ¢, = a'(u)u,, which when substituted into (2.7) give
¢+ e, =0 (2.58)

provided that f in (2.2) is either convex or concave. i.e. f' = a'(u) # 0. This
equation is a considerable simplification of the original, but care must be taken
when applying both the jump and entropy conditions over what quantity is being
conserved since conservation of ¢ does not imply conservation of u. The following
example shows the problems that can arise if care is not taken in deciding which

variable is to be conserved.

2.4.1 Example 4
It we consider Burgers’ equation
Uy + uu, =0 (2.59)
and multiply it by u to give
uuy + ulu, =0, (2.60)
this is equivalent to the equation

(), )=
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Let v = Lu?, then this gives a conservation law in v as

8 3
L o)

The characteristics for the equations (2.59) and (2.62) are the same, consequently

the shock forms at the same time. If we now calculate the shock speed for (2.59)

it 1is
up  up
9 9  up —UR
= = 2.63
1 Uy, — UR 2 ( )

whereas the shock speed of (2.62) is

@—@ 2 3 3
_ 3 3 _=(ULTURr 2.64
T 3(—) 20
2 2

It is clear that s; and s; are not equal, hence this demonstrates that care is needed
in deciding which variable is being conserved. Expansions are not a problem when

variables are changed.

2.5 Blow Up Of Solution

An alternative but equivalent method of solution is given as follows. Consider

again the equation (2.6) with characteristic equations

du dr

Now differentiate (2.6) with respect to x to give
Uy + a/(u)ui + a(u)uz, = 0. (2.66)

In a frame of reference moving with speed & (c.f. section 2.3), this becomes

Uy — Upy T + a/(u)ui + a(u)uzy =0 (2.67)
where
U — uyd + a(u)u, =0 (2.68)
and if & = a(u)
U, = —a/(u)ui. (2.69)



(If a(u) = w this equation is of Hamilton-Jacobi type (Courant & Hilbert (1962)).)

Now let ¢ = a(u), (the ¢, of section 2.4), giving

!

¢ = —(a(u)u)’ (2.70)
=q = —¢. (2.71)
This ODE may be readily solved when ¢ = ¢q say at ¢ = 0 and gives

q = o
qot +1°

This shows that when ¢ = — ql—o the solution ‘blows up” and illustrates analytically

(2.72)

the unboundedness in the derivative u, of solutions to (2.6) within finite time. It
is the analytic counterpart of the ‘geometrical’ characteristics solution breakdown
discussed earlier.

The above examples all deal with the case where, once the characteristics
have crossed, the shock position is found and a discontinuous solution allowed
immediately. Another way of obtaining the solution using the characteristics is
to allow them to cross and continue to follow their paths so that a multivalued
function is obtained. From this multivalued curve, a single-valued discontinuous

solution may then be calculated, as follows.

2.6 Calculation Of Shock Position Using
Conservation

The calculation of the shock position from an overturned solution may be done in
several ways. One method of replacing the multivalued solution by a discontinu-
ous solution is by using the conservation property (Whitham (1974)). Both the
multivalued curve and the discontinuous curve satisfy the conservation property
(see Fig. 2.14) so that [ udx under each curve remains the same for all time.
This means that the overturned part of the curve in Fig. 2.14. may be replaced
by the vertical line drawn below, in which area A = area B. This satisfies the
conservation of [ udz and the discontinuity replaces the multivalued solution. The
discontinuity only replaces those regions which have overturned leaving the single-
valued regions unaffected. This will automatically satisty the jump condition

which is also based on the conservation property.
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Figure 2.14: Equal area construction.

It is interesting to note that the conservation argument for finding the dis-
continuity may be written in several forms (Sewell (1987)). This can involve the

transformation of the problem into a different set of variables.

2.7 Multivalued Solutions And Transformations

The solution of a nonlinear PDE evolving with time will translate the initial
data (single-valued) to a multivalued solution once the ‘shock formation’ time
has been reached. Here we will examine a conservation law and see how the
multivalued solution forms, then a variety of transformations will be applied to
the conservation law in order to investigate the behaviour of the solutions of the

transformed equations at the time the shock is formed.

2.7.1 Catastrophe Form

First consider the PDE
Uy + uu, =0 (2.73)

whose solution may be obtained from the implicit equation
u = up(x — ut) (2.74)

where ug is a piecewise differentiable function in « (the initial data). Suppose for

example that ug is given by

up = ug(x) where = —gug. (2.75)
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This gives the solution of (2.73) as

1
— gu?’ = — ut, (2.76)

as the classic ‘bifurcation set” Sewell (1987). The figure below shows how the
solution changes as time increases, from a single-valued curve to a multivalued
curve. In Fig. 2.15, consider the initial data to be the cubic (2.75), then apply
(2.73) to see how the solution (2.76) moves with time.

Uyttt ts

to<t<t,<t;

X

Figure 2.15: Solution becomes multivalued as time increases.

2.7.2 Conservation Laws And Hamilton-Jacobi Equations

Conservation laws and Hamilton-Jacobi equations are related via a simple trans-
formation (Courant & Hilbert (1962)). This transformation is used in order to
obtain an insight into the ‘overturning’ or shock formation of the conservation
laws. We then consider the behaviour of the solution to the Hamilton-Jacobi
equation, using the initial data described above, in order to see what is the corre-
sponding transformation of the overturned manifold. If (2.73) is integrated with
respect to x it gives a Hamilton-Jacobi type equation for the function ¢ = [udx.
For a general conservation law, i.e. u; 4+ f(u), = 0, a family of Hamilton-Jacobi
equations may be obtained by this transformation.

Consider the conservation law
u+ f»=0 (2.77)

on a region R with vy = u(x,0) and boundary conditions given where appropriate.
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Integrating with respect to = gives

/x:(ut—l—g—i(u))dx ~ 0

d = zdf
= 7 5 udx + 5 a—x(u)dx = 0. (2.78)

xr

Now let a = / udz, then (2.78) becomes

Zo

da
§+(f(u(x))—f(U($o))) =0
= %-I—f(%) = constant, (2.79)

where the constant is dependent on the boundary conditions of (2.77). The
constant may be included in a new function H to give a form of Hamilton-Jacobi
equation

o +H(a)=0. (2.80)

Consider now a specific case of the cubic initial data (2.75) applied to a con-
servation law which becomes multivalued as time increases. Once the solution
becomes multivalued, under the transformation above, the resulting curve is a

swallow-tail. See Fig. 2.16.

ts

to

Figure 2.16: Swallow-tail forming as time increases.

2.7.3 Conservation Laws And ODE’s

It a slightly different transformation is applied to the conservation law with cubic
initial data, a quartic curve results. The transformation involves the integration
with respect to the other variable, u, to give a pair of ODE’s. This means that

there is also a relationship between the conservation laws and a pair of ODE’s.
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Consider the conservation law

u+fr = 0 (2.81)
= u+ f(wu, = 0. (2.82)

Now the characteristics of (2.82) are given by
i=0 (2.83)

and

!

&= f(u) (2.84)
where the dot means differentiation in the sense of (2.12). Consider (2.84) and

integrate with respect to u to give
/:i;du = /f/(u)du
:ﬁ/im = f(u). (2.85)

Let

b = /:L'du

. 0
—b = 5;/xdu. (2.86)

Comparing (2.85) and (2.86) and using (2.83) gives

b= ;_/xdu = /:i;du = f(u) (2.87)

which gives the ODE system of (2.83) and (2.87)
i=0 (2.88)

and
b= f(u). (2.89)
If the initial data is cubic in w,x variables (2.75) and moves with time under

(2.73), the solution becomes multivalued. In the case of the variables u, b, the

cubic becomes a quartic and changes shape (Sewell (1987)). See Fig. 2.17.
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u

Figure 2.17: Canonical quartic moving with time.

2.7.4 Legendre Transform

There is a way of connecting the conservation law, the Hamilton-Jacobi Equa-
tion and the system of ODE’s using a Legendre Transform. We show that the

Hamilton-Jacobi equation

a;+ H(a,) =0 (2.90)

can be transformed to the ODE system (2.88), (2.89) under the Legendre trans-
formation (Courant & Hilbert (1962)), defined implicitly by

a(x) 4+ blu) —ux =0 (2.91)

Using (2.90), (2.91) the Hamilton-Jacobi equation may be written as

a; + H(u) = 0. (2.92)
However
a4y = a4 — ayT
= a-—uzw, (2.93)

then differentiating (2.91) with respect to ¢,

Q4+b—ur—ui = 0
=4 —ui+b—ur = 0
= a+b—ur = 0. (2.94)
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Now substitute for a; from (2.94) into (2.92) to give
— (b—dx) 4+ H(u) =0 (2.95)

and b; may be written in a similar way to (2.93) as b; = b+ dx, hence (2.95)

becomes
— b+ H(u) =0 (2.96)

which is an ODE since it no longer contains any = derivatives. It may be rewritten
as b= f(u) and @& = 0 (c.f. (2.88), (2.89)). It is possible to see the relationship

between the variables in a diagram. See Fig. 2.18.

X,U

Conservation Law

c1=fud>< b=f><du

a,x a—xu+b=0 b,u

Hamilton—Jacobi Egn ODE’s

Figure 2.18: Illustration of relationship between the variables a, z, b, u.

From these transformations it can be seen that the solution of conservation
laws may be carried in an equivalent way using different types of equations:
equally once the solution to a conservation law has been found, we immediately

have solutions to other types of equations.

2.8 A Second Legendre Transformation

Another Legendre transformation, completely separate from the one above, may

be given between the variables u, x and the new variables v, m where
u(z)+v(m) —ma =0 (2.97)
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m=uy T =0, (2.98)

The aim of using this transformation is to carry the equation to be solved into a
more significant form when numerical versions of the method are given in chapters
3 and 7.

Consider the equation

u+ fr =0 (2.99)

which can be written as

U —uzd + f(u), = 0. (2.100)

Using (2.98) this can be transformed to
— 0 4 vy + a(mo,, —v)m = 0. (2.101)

In the case of Burgers’ equation, where ¢ = u = max—v, comparing the coefficients
of v, gives

= —m? (2.102)

so that
D = —mo. (2.103)

These equations can be solved exactly where mg and vy are the initial conditions,

to give
1 o
m = 1 V= mol . (2104)
t+ . t 4+ .

It should be noted that the equations arising from this method are the same as
those which arise in section 2.5 (with mg = ¢o). For other equations, a projection
onto a piecewise linear space is required before identifying the variables. This is

described in more detail in chapter 3, section 3.14.

2.9 Calculation Of Shock Position From
Multivalued Solutions

From the diagrams above (see Figs. 2.15, 2.16, 2.17) it can be seen that the
problem of obtaining a discontinuous solution from the multivalued curve may

be reconsidered in light of the above transformations. Consider Fig. 2.14, a
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diagram of an overturned solution where the shock position has been calculated

using the principle of conservation (Smoller (1983)), (Whitham (1974)). The

Shock position

Figure 2.19: Swallow tail with shock position.

shock position calculated using the equal area argument is equivalent to the shock
position calculated from the swallowtail curve using deletion (see Fig. 2.19). This
occurs since the swallowtail obtained from the integration of the initial curve
represents the area and hence when two areas are equivalent the curve intersects
itself. It is obvious (because of the equal area argument) that the shock position
found using the conservation idea is equivalent to the removal of the swallow tail,
i.e. the shock position is marked in Fig. 2.19.

In a similar way the transformation to b,u variables gives a different way
of calculating the shock position although it is again based on the principle of
conservation. The curves shown below in Fig. 2.20 demonstrate how the curve
appears before and after the shock occurring in the u,x variables has been in-
troduced. The calculation of the shock position may be found by removing the
region A, and replacing it by a straight line as shown (the convex hull). The
shock position in the original variables may now be calculated using the inverse

transform.

2.10 The Transport Collapse Operator
Of Brenier

The aim of the method proposed by (Brenier (1984)) is to obtain a single valued

approximation which satisfies the entropy condition and conservation to the mul-
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Figure 2.20: Shock position in quartic.

tivalued curve given by the classical method of characteristics (section 2.3). This
method is applicable to time discretised scalar conservation laws. Although the
theory of this method proposed by Brenier is given for higher dimensions in this
chapter we are only concerned with one dimension.

The conservation law is given by the equation
u; + f(u), =0 (2.105)

where v = u(x,t) € R and @ € IR, ¢t > 0. The entropy inequality given by
(Lax (1972)), (2.50) can be written as follows. For each convex function V, the
differential inequality

(V(w))e + Fu). <0 (2.106)

is satisfied in the sense of distributions with

Fu) = /0 F (w0)V (w0)dw (2.107)

where f', V' denote the derivatives of f and V. (See section 2.3.7 on ‘Entropy
Condition - 2’ for more information about f,V, and F.) The introduction of
(2.106) and (2.107) allow a global existence and uniqueness theorem to be proved
for the initial value problem given by (2.105) (see Brenier (1984)). The following
discussion leads to the introduction of the Transport Collapse operator (TC)
which is an operator T'(t) which combines an averaging technique (which satisfies
the entropy condition) with the method of characteristics.

First let us introduce the notation required for the construction of the TC

operator. Equation (2.105) may be rewritten as
ue + f (u)uy =0 (2.108)
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where v = u(x,t) € IR, + € IR and £ > 0. The characteristics are given by the

ordinary differential system

du dx /
Let (2,w) € IR x IR, where
(X ), U ) = F( ) (2.110)

is defined to be the unique solution to (2.109), with (z,w) as the initial value at
t=0.
The graph G/(t) at time ¢ of the solution of (2.108) is given by

Gt)={(z,w) e R xR:w=u(z,1)}, (2.111)
and from the method of characteristics, we get for any C'! solution to (2.108),
G(t) = F'G(0). (2.112)

After finite time (see section 2.3.1), the single-valued graph G(t) becomes multi-
valued, hence it is no longer a solution to (2.108).

Now consider the subgraph SG(t) of G(t) at time £,
SG(t) = {(z,w) e R x R:w < wu(x,1)}. (2.113)

Provided u(z,t) remains smooth, SG(t) = F'SG(0), and F'SG(0) defines the
same multivalued solution as F'G(0). See Fig. 2.21, where G(0), F'G(0) are
the solution and SG(0), F*'SG(0) are the areas under the curves. Following the

method of characteristics, and integrating (2.109), we get
Fleyw) = (X (0y), Ule,0) = (2 + 4 (w)w)  (2114)

and

F'G0) = {(z 4+ tf (w), w), (z,w) € G(0)}. (2.115)

2.10.1 Geometrical Equal Area Construct

The equal area construction is a geometrical construction which permits the exact
entropy solution to be found from the multivalued curve given by the method of

characteristics. See Fig. 2.22.
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Initial value Multivalued solution

F'G(0)

Figure 2.21: Initial and multivalued curve.

Initial value Multivalued solution

; /
\ Entropy solution

Figure 2.22: Multivalued curve with equal area construction.

Mathematically, it may be considered to be that the area between the graph
G/(t) of the entropy solution and the multigraph F*(G(0)) must be zero i.e.

meas(SG(#)\ F'SG(0)) = meas(F'SG(0)\SG(#)) (2.116)

where meas is defined as the Lebesgue measure. It should be noted that the
conservation law described in section 2.2 is satisfied by this method. For (2.116)

to be satisfied f is required to be either convex or concave.

2.10.2 Vertical Average Of Multivalued Solution

A geometrical construct (similar to the equal areas) is introduced by Brenier,
which gives an approximation to the entropy condition.

For each point x, an average of the values on the multivalued curve is taken,

so that they satisty
meas, (SG(t)\F'SG(0)) = meas,(F'SG(0)\SG(t)) (2.117)
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where meas;(A) is the one-dimensional Lebesgue measure of the vertical slice
{w e R : (x,w) € A} for any measurable subset A of IR x IR . Since meas(A) =
Jr meas,(A)dx, by Fubini’s theorem, (2.116) is satisfied when (2.117) holds a.e.
x € IR. A method is now required to satisfy (2.117).

2.10.3 Practical Method Of Calculation

Choose x € IR and let wy, ..., wq, be the values of the multivalued solution at z.

Let these be ordered so that
Let @ be the average value, then

meas, (F'SG(0)\SG(1)) = Z max(w, way ) — max(w, way_1 ) + max(w, wy) — W

k=1,....p
(2.119)
meas, (SG(t)\F'SG(0)) = Z min(e, wogy1 ) —min(b, wag )+wW—min(w, wsy,).
k=0,...,p—1
(2.120)

Hence

meas, ([ SG(0)\SG()) — meas, (SG()\ F'SG(0)) = Z (—1)kwk—ﬁ). (2.121)
Hence to satisfy (2.117)
= (—1)*wy. (2.122)

k=0,2p

2,

and hence 1 satisfies wy < W < wy,. It also satisfies the convex inequality
V() =V( Y (=Dfwe) < D0 (=1 V(wy) (2.123)
k=0,2p k=0,2p
which guarantees that the construction satisfies a discrete version of the entropy
condition. Consequently, we have constructed from the multivalued solution to
(2.105) at time ¢, a new single valued function which is a good approximation
to the entropy solution . The operator which transforms the initial data u(0, )
onto this new function is called the TC operator, (T(t)).
Geometrically, the above discussion can be seen as vertical slices through the

curve. The multivalued solution at x is equivalent to the vertical slice
{weR: (x,w) € FI'SG(0)} =] — 0o, wg] U [wy, wy] U ... U [y, 1, wq,]  (2.124)
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which is not connected and the single-valued function is obtained by replacing
(2.124) by a connected curve of equivalent measure.
Note: w0 —m = (wq, — wap_1) + ... + (w3 —wq) + (wg — m) for any m € R

where m < wg and m < 0, and this is equivalent to (2.122).

Initial value Multivalued solution

w |
w
\ ih Collapsed solution

Figure 2.23: Multivalued curve with TC operator solution marked.

Using the TC operator, we have now constructed a single-valued entropy satis-
fying solution from the multivalued curve given by the method of characteristics.

See Fig. 2.23.

2.11 Summary

In this chapter several important concepts concerning the solution of conserva-
tion laws have been introduced. Characteristics have allowed us to see how shocks
and expansions form as the solution of conservation laws evolve with time. From
examining both shocks and expansions the ideas of weak solutions became nec-
essary, which in turn led to the jump and entropy conditions.

Another solution technique based upon characteristics allows the formation
of multivalued solutions and the subsequent recovery of the shock position. The
multivalued solutions are obtained by following the characteristics through the
shock position. There are several recovery techniques discussed which are all
based upon the principle of conservation.

It has been seen that the analytic calculation of the solution to conservation
laws is not simple and conservation laws are the simplest nonlinear PDE’s which

exhibit shocks. This leads us to consider numerical methods of solution and in the
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next chapter we will consider several numerical techniques for the solution of these
equations. In chapter 4 a method of implementing the calculation of overturned
solutions which is based on the numerical methods described in chapter 3 will
be introduced. Moreover in chapter 4 the techniques for recovery of the shock

position described in sections 2.9 and 2.10 will be implemented numerically.
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Chapter 3

Numerical Methods In 1-D

3.1 Introduction

There are many numerical techniques available for the solution of scalar nonlinear
partial differential equations each with their own advantages and disadvantages.
This means that the choice of the numerical method should be made using the
information known about the type of problem. In particular, solutions of nonlin-
ear conservation laws generally form shocks or moving fronts (chapter 2). As a
consequence there are regions within the solution which need high resolution and
other regions which are relatively uninteresting. The resolution required may be
obtained by either increasing the number of nodes or using an adaptive method.

An adaptive method is here defined as one where the grid moves with the
solution, so that regions in which there are large changes in the solution have
many nodes while in others the solution can be represented to the same accuracy
with only a few. If a large number of uniformly spaced nodes is used instead
of an adaptive grid then the grid will be expensive and wasteful, since most of
the nodes will not be needed (see Fig. 3.1). Since the solutions of conservation
laws generally contain moving fronts, it would therefore seem more natural to use
an adaptive method as this could be more flexible and cheaper computationally
(Hawken, Gottlieb & Hansen (1991)).

The numerical scheme will depend on the type of grid chosen but, disregarding
our preference for adaptive methods for the moment, let us consider finite element

and finite difference methods in general.
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X X
Equally spaced nodes. Equidistributed nodes.

Figure 3.1: Node placement on curves.

Finite difference methods on fixed grids have been widely used for many years
and a great deal is known about these schemes (see for example (Mitchell &
Griffiths (1980)), (Richtmyer & Morton (1967))). Explicit and implicit methods
exist using either central differences or upwind differences. Methods which com-
bine first order central differences in space with forward differences in time are
well-known to be unstable for simple linear first order differential equations and
upwinding is then required. First order upwinding solves the stability problem
but introduces heavy smearing. Second order schemes reduce the smearing but
introduce oscillations. Recently there has been a large amount of work on second
order Total Variation Diminishing (TVD) schemes, which have been very success-
ful in reducing smearing for this type of problem while avoiding oscillations (see
e.g. (Boris & Book (1973)), (Harten (1983)), (Sweby (1984)), (van Leer (1979)),
(Roe (1983))).

Another important point to consider is conservation (Smoller (1983)). If we

consider the equation
up + f(u)e =0, (3.1)
then integrate with respect to @ on a region [A, B], to give
B
this may be rewritten as
d B
E/A wde + f5— fa=0 (3.3)

where fa, fg are boundary terms. Conservation was defined in chapter 2 as the

integral of u over the region remaining constant provided that boundary terms

42



are not included. If the boundary terms are ignored in equation (3.3) we get

B
/ udzr = constant (3.4)
A

which shows that the equation is conservative.

Numerically, a finite difference scheme will be conservative if it is of the form

At Az '
where hy 1 = h(uf_y,...,uf,,.) and A is a consistent numerical flux, i.e. h(u,...,u)

= f(u). This has a similar form to (3.3) and in 1960 (Lax & Wendroff (1960))
showed that if the scheme (3.5) converges as Ax — 0, with % fixed, then
it converges to a weak solution of (3.1). Since weak solutions are non-unique
(see chapter 2), in order to obtain the correct physical solution an entropy con-
dition is required. Various numerical entropy conditions have been suggested
(Osher (1984)), (Lax (1972)), (Oleinik (1957)) as well as classes of schemes which
are guaranteed entropy satisfying (Osher (1984)), (Tadmor (1984)), (Harten, Hy-
man & Lax (1976)).

Now consider finite element methods. These are less popular and less well
developed than finite difference methods for the problems considered here and,
on a fixed grid, oscillations occur in the neighbourhood of steep fronts when
using the Galerkin approach (Herbst (1982)). More sophisticated methods such
as Petrov-Galerkin (Morton (1985)) and Taylor-Galerkin (Donea (1984)) have
improved the performance of finite element methods, which have the advantage
of great flexibility in the mesh used. If a finite element method is applied to
a conservation law, using piecewise constant or piecewise linear elements on an
arbitrary grid, the integral of the initial data is conserved. This can be shown by
using any Galerkin weak form of the equation. Let o;(x) (¢ = 1,...,n) be the test
functions where >_" , o; = 1. Consider (3.1), then write it in the Galerkin weak

form
B
/ (ue 4 fo)agde =0 o=1,...,n. (3.6)
A

Now summing over ¢ gives
n

Z/AB(ut + fo)oude =0 (3.7)

=1
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= /AB(ut + fo) i%dw =0 (3.8)
= /AB(ut + fo)dz =0 (3.9)

d (B
= %/A ude = fa — [B. (3.10)

This shows that apart from boundary conditions the integral of the initial area
is conserved.

The types of methods generally used for PDE’s are based on the Galerkin
finite element approach which normally has fixed grids and fixed basis functions.
From the discussion of analytic methods for the solution of scalar nonlinear par-
tial differential equations in chapter 2, it is clear that a method which permits
a solution to overturn is of interest. However, in all fixed grid methods the nu-
merical solution can never overturn or become multivalued. Since solutions of
conservation laws are wavelike, often leading to overturning, it seems reasonable
to introduce a moving grid and basis functions which are themselves dependent

on time.

3.2 Global Moving Finite Elements

In 1981 (Miller & Miller (1981)), (Miller (1981)) introduced the Moving Finite
Element (MFE) procedure to cope with problems whose solutions include steep
moving fronts. This was achieved by allowing the grid to move automatically
with the solution, ideally to regions where high resolution was required. The idea
is now described in a general (1-D scalar) setting with ¢ (time) as a distinguished
variable.

Consider the equation

u — Lu) =0, (3.11)

on a region {2 € IR, where v = u(x,t) € H* H? is a Hilbert space of functions
whose second derivatives are square integrable and £ is an operator containing
space derivatives u, and u,,. The problems we are considering in this thesis
(see chapter 2) do not contain second derivatives of x, but the MFE method was

originally developed to solve problems with near shocks in parabolic problems.
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It is for this reason our description of the MFE method will include these terms.
Note: we will not consider systems of PDE’s in this thesis.

Let U(t) be an approximate solution to (3.11) where U(?) lies in a finite di-
mensional trial space C H? with linear basis functions a; (i = 1,...,N). Note:
The approximation U(t) could be chosen to lie in a different linear space and
the basis functions «a; could be quadratics, cubics or other functions. For de-
scriptions of MFE using other types of basis functions (see (Jimack (1988a)),
(Jimack (1988b))).

Let U(t) be given by

N
Ut) = ; a;(t)ey(x,s(t)) (3.12)
where a;, (j = 1,..., N) are the nodal amplitudes. The nodes are ordered so that
51 < ... < 8; < ...<spn,s(t) = (s1,....,sy) and the end values are chosen so that
the boundary conditions are consistent with the solution to be found. Here we
assume Dirichlet boundary conditions are applied.

Differentiating (3.12) with respect to ¢ gives
N
Vo= 3 aslt)as(,s(8)) + 65(0)55(, 0, 5(1), (313
7=1

so that U; has 2N unknowns (neglecting boundary conditions), @; and $; (j =
L,...,N) (Miller & Miller (1981)), (Miller (1981)), (Baines & Wathen (1988)), (Ji-
mack (1988a)), (Jimack (1988b)). In (3.13) a; and f3; are basis functions which

may be defined as

ou ou
(a) a; = da, (b) B = Js,” (3.14)
Equation (3.14)(b) leads to
i = —mja; (3.15)

m,_1 S;1 < T <S8
m; = mr ! (3.16)
mipL §; < x < 85541
and
a; — a;_
m_1 =L (3.17)
2SS4
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However for higher order basis functions (3.15) is not always valid (Jimack (1988a)),
(Lynch (1982)).
The basis functions considered here are piecewise linear and compact so that

a, (3 are defined by

! s;01 < x <s;
o = ST << s (3.18)
! Sj41 — 85 I =T =i
0 elsewhere
—mj_%oz] Sio1 < T < 8y
B; = ey s <@ < sjpr - (3.19)
0 elsewhere

See Fig. 3.2. (3; is not defined at node 7). It should also be noted that the basis

Si S; Sin Si S; Sin
Figure 3.2: « and 3 basis functions.

functions 3; (j = 1,..., N) are discontinuous at @ = s; which implies that U; in
(3.13) is discontinuous at all nodes.
In Millers’ method the equations for the solution of a and s where a =

T are obtained by minimising the L, residual of

(ay,....an)t, s = (s1,...,5n)
U; — L(u). It is here that (Miller & Miller (1981)) add penalty functions in order
to prevent nodes or slopes from becoming too close, and hence causing numerical
problems (see section 3.5), but we will first describe the basic method without

such additions.

Define the usual weighted Ly inner product by
< fg>= [ fla)g(@)W (2)de (3.20)
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where f, g are integrable in the region  and W(x) is a positive weight function.

The L, norm squared may now be defined as
lgll* =< 9.9 > (3.21)

where this notation will be used throughout this text.

The d; and s;’s (j = 1,..., N) are obtained by minimising
1U: = £(U)]1%, (3.22)
which yields, on differentiation with respect to a; and s;,

<Oé],Ut—£(U) >=10

j=1,..,N (3.23)

where < .,. > is defined by (3.20) . Equations (3.23) with (3.13) lead to a system

of ordinary differential equations,

Aly)y = g(y) (3.24)
where
}./': (...;C'l]‘_l,é]‘_l;a‘j,s'j;...)T, (325)
<op,op > < Oéi,ﬂ]‘ >
A=A{A;}, Ay= (3.26)
<ﬂi7aj> <527ﬂ]>
and
<o, L(U) >
g={a}. 9= . (3.27)
< ﬂi, ,C(U) >

Since «, [ straddle two intervals, A is a symmetric, 2 x 2 block tridiagonal,
positive semi-definite matrix. It is easy to show that A is positive semi-definite
since it arises from the minimisation of the term [|U4]|? in (3.22), which by itself
is

1U* = y" Ay (3.28)
This shows that the quadratic form y? Ay is positive semi-definite, being zero

only for non-zero y when A is singular (Wathen & Baines (1984)).
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3.2.1 Solution Of Global MFE Equations

The system (3.24) needs to be solved for y and this may be done in a variety of
ways. For example, a block tridiagonal solver (see e.g. Golub & Van Loan (1983))
may be used. Alternatively, other approaches include the use of the pre-conditioned
conjugate gradient semi-iterative method (Golub & Van Loan (1983)) or more
conventional iterative methods. Providing that A is non-singular then Jacobi,

Gauss-Seidel and SOR all converge in 1-D because of the properties of A.

Eigenvalue Clustering

The eigenvalues of D™ A, (where A is the global MFE matrix and D is a positive
definite matrix comprised of the diagonal blocks of A) are L and % in pairs. For
the Dirichlet case there are also two eigenvalues of 1. Proof of this is given in

(Wathen (1987)). This result is important since it implies that the generalized
conjugate gradient method will converge rapidly when applied to D71 A.

3.3 Time-stepping

The MFE method gives rise to a system of ODE’s in time, which require integra-
tion to obtain the complete solution. There are two entirely different views on
how the ODE’s should be integrated, dependent upon the type of approach used.

For MFE methods without penalty functions it has been suggested by (Wa-
then (1984)), (Johnson (1986)), (Johnson, Wathen & Baines (1988)), (Baines &
Wathen (1988)) that for a wide range of problems explicit time-stepping is suffi-
cient and that implicit methods do not give any advantage. Here time-stepping

is carried out using the explicit Fuler method

y" ="+ Aty" (3.29)
where

y = (...;aj,sj;...)T. (3.30)
Ideally we want the time-step to be as large as is consistent with good accuracy

while remaining within the stability region. However to avoid node overtaking in
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cases where a single-valued solution is expected, the time-step must be no larger
than that which would allow it to catch up with its neighbour.

The alternative view is held by Miller, who introduced penalty functions in
the original papers. On the grounds that the system of ODFE’s that are obtained
are stiff he argues that an implicit method must be used. In recent papers the
systems of ODE’s obtained by this method have been solved by Miller using the

implicit Euler time-stepping method,
y T =y 4 Aty t (3.31)

with a Newton solver. The iteration doesn’t always converge, however, and both
At and the parameters in the penalty functions have to be tuned so that conver-

gence takes place.

3.4 Local MFE

The local MFE approach was introduced by (Baines (1985)) who observed that
U; in (3.13) could be written in terms of local elementwise basis functions. This
allows the rewriting of the original expression for U; (3.13) as a sum over the
elements in the space of piecewise linear discontinuous basis functions, instead of

over the nodes. This gives

N N
Uy = (dja; +5:8) = 3 (w el + w6, (3.32)
7=0 k=1

(v)

where qb;;) are basis functions, w,’ are coefficients related to a;, s; and where j

(2)

is a node and k is an element. The element basis functions qﬁg), ¢, are shown in

Fig. 3.3 and are defined for piecewise linears as

1 T — 81

s {Sj L ey (3.33)
2 S, — X

s {ij_sj_l s <a<s, (3.34)

Let Sy be the space spanned by the basis functions qbgf) which in 1-D can be
shown to be the same as the space S, 3 space spanned by the «;, 3; basis functions

(Baines (1985)). As in the MFE method proposed by (Miller & Miller (1981)),
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(1) (2)
j j

Si S; S s
Figure 3.3: Local Basis Functions.

the residual |U; — L(U)]]* is minimised. This is now however minimised over

(1) . (2)

w,. ', wy to obtain
<oV U, —LWU)> = 0 (3.35)
<P U, —L(U)y> = 0 (3.36)

for each element k. The system (3.35), (3.36) with U; given by (3.32), decouples

and may be written as N systems, each 2 x 2,

Cka :bk k= 1,...,N (337)
where
e
k
Wi = , (3.38)
e
k
<ol ol > <ol ol >
O = (2) (1) (2) ,(2) (3:39)
< @0 > < o0 >
and
(1)
< L LU) >
by, = ¢k2 =1 (3.40)
<o, L) >
From (3.18), (3.19) and (3.33), (3.34) it is easily seen that
o = o ol )
B = —mj—gqﬁf_)% - mj+%¢;:_)%7 (3.42)

where qb;l_)l, ¢(2)1 are the ¢ basis functions in the element (7—1, ), i.e. the element
2 2

k in the present notation. From (3.41), (3.42) and (3.32), the relationships

= w!? (3.43)



: : 1 1
dj —mj1s; = wl) = w,(g_gl (3.44)

are obtained for all nodes j. Equations (3.44), (3.43) can be written as the 2 x 2

system
M;y; = w; (3.45)
where
a
vi=| |, (3.46)
S']‘
1 —Mm . 1
M; = 72 (3.47)
1 Ml
and
w?,
w
]+§

Since in 1-D both the Miller method and local method minimise the same
residual in the same space, the MFE equations derived will be identical. Hence

by writing

O = C, , M= M, (3.49)
0 0
this leads to the ‘Miller’ global MFE matrix of (3.24) being decomposed into

A=M'CM (3.50)

where C', M are both 2 x 2 block diagonal (Wathen & Baines (1984)). Although
both M and C are both block diagonal, the blocks are staggered with respect to

each other since those in M are node based and those in C' are element based.

3.5 Singularities Of A

In section 3.2, it was described how the MFE equations can now be solved when A
is non-singular. The case when A has singularities is still to be discussed. In the
local method provided that C} and M; are non-singular, the solution is trivial.
Again, however, the singularities need to be considered. Since the introduction
of the local method has provided a decomposition for A, the cases of singularities

can be discussed more clearly.
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3.5.1 Coincident Nodes

If we consider A = MTCM, then when A is singular, this implies that either M
and/or C' is singular. If C' is singular then this implies that at least one As = 0.
It however C' is singular, then, as we shall see, this does not necessarily imply
that A is singular.

The case where two nodes merge and become coincident was originally thought
to cause a singularity. However the problem was considered by (Sweby (1987))
who showed this to be generally false in the sense described below for both the
local and global approach.

If two nodes become coincident (but not three) then, although C' becomes
singular, it can be shown that its product with M remains non-singular. If
however three neighbouring nodes become coincident then Asj_% = Asj_l_% =0
for some node j where Asj_% = s; — sj_1. This implies that two C}’s become
singular, and A does become singular.

To establish these results note that C' can alternatively be decomposed into 3

matrices

C=E'CE (3.51)
where F is diagonal and C" is block diagonal such that £ = {F;}, C' = {C}}
Cp = EI'CLE), (3.52)

where

1
As; 0 o121

b, = ], == ) (3.53)
0 As;

This shows that, since C,; is non-singular, then any singularity must be in Fj.
Now, returning to the global matrix A, it can be seen that it has a five matrix

decomposition
= MTETC'EM
= A = NIC'N. (3.54)

say, where N = F'M so that each block of N becomes

AS% —my_ AS%
N, = it TR (3.55)
Asp —mpAs;
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_ As%_l —AUk_lAs,j:éll .
As; —AUpAs, 2
by the definition of my;_y, m;. Since N is block diagonal only one of the blocks
N; (3.56) need be considered.

One technique of analysis was given by (Sweby (1987)). Here we give an
alternative version based upon QR decomposition. Using Gram-Schmidt orthog-
onalization (Golub & Van Loan (1983)) we write the N, matrix in terms of a
matrix product of ); and R;. Let N; = (n1,n2), @; = (q1,qz2) and R; be an
upper triangular with elements ryy, 712, 792. For N; to be invertible it is necessary

that ry; and ry9 are non-zero.

Using the Gram-Schmidt orthogonalization we obtain

R n
q = . then ry; = ny where ny = |1’11|- (357)
ny

For r1; to be non-zero we require that %, | |As;| # 0 which means that either
Asgp_y # 0 and/or Asy, # 0.

The second equation becomes

7“22612 = H2—(Q1-H2)Q1 (3-58)
= n,— (“1‘;‘2)n1 (3.59)
ni
1
= 721'11 X (HQ X 1’11). (360)
ny

This means that for ry; to be non-zero we require ny # 0, n; X ny # 0 and n,
to not be parallel to n; x ny. We already require that ny is non-zero, so let
us consider the case of n; x ny # 0. For this to occur we again require ny to
be non-zero however we also require n, to be non-zero. This is equivalent to
SF 1 |Asiim? # 0 which is evidently true. The cross product term requires
my # my_q1 which is clearly the parallelism singularity. If we assume that no
parallelism occurs then N, and therefore A is non-singular. Finally it should be
noted that by definition, n; cannot be parallel to n; x nj.

Therefore provided at least one of the elements next to the node remains
non-zero and parallelism does not occur then it is possible to pass through the
singularity (although the matrix N may not have bounded elements at the sin-
gularity.)
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3.5.2 A Second View Of Parallelism

Parallelism can also be analysed with the original MFE system (3.24). From
(3.50) A can be decomposed into MTC M. Consider the cases where two adjacent

slopes in the solution are equal (see Fig. 3.4.), i.e. let ML =m;_ 1 = m; for

X

Figure 3.4: Piecewise linear curve showing parallelism.

some j. Then since §; = —mja; (3.15), it can be seen that there are two linearly
dependent equations in the MFE system, consequently A is singular. However
A has a simple null space spanned by U; = (0,0, ...,m;, 1,...,0,0)T, which can
be used to obtain a solution despite the parallel nodes, i.e. a new system can be
formed, after one of the two linearly dependent equations has been removed from
the system. The new system can then be solved in the usual way and remains
consistent provided §; is set (Wathen & Baines (1984)). This is sometimes set
as s = 0, giving MFE with one fixed node although in general the method will

depend on the specific properties of the differential equation.

3.6 Penalty Functions

Now returning to the original (Miller & Miller (1981)) method, Miller added
penalty functions so as to prevent nodes moving too close to each other. In-

stead of minimising (3.22), he minimised
N
10 = LEO)I* + 3 _le(s; — 5,-0)]° (3.61)
j=1

where ¢ is a parameter, which is dependent on the problem. The penalty functions

act as springs, forcing the nodes which approach each other too closely to remain
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apart. According to Miller this inhibits the parallelism singularities referred to
above, which otherwise may occur during the solution of (3.24). This method
now requires a different solution procedure, since the simple techniques applied
to (3.24) in section 3.21 will now not work (although Baines (1986) showed cases
where the method of section 3.21 goes through). Moreover an implicit solver
(Miller & Miller (1981)) is required because the system is now stiff.

A lot of work has been done on moving finite elements where regularisation
techniques are used (e.g. Baines (1986), Juarez-Romero, Sargent & Jones (1988)).
However since this type of method will not allow nodes to overtake each other
it is not applicable to the present approach to overturning solutions. There is

however a version of the method which is an exception to this, which is Gradient

Weighted MFE (Miller (1986)), of which more later.

3.7 Variational Derivation Of MFE

The standard MFE method proposed by Miller can also be derived using a varia-
tional approach. In 1983 (Mueller & Carey (1985)) considered a time-dependent
coordinate transformation in conjunction with a finite element method. We will
describe this approach since the transformation is related to the Lagrangian ver-
sion of the conservation law (2.11) in which the characteristics are investigated.
This derivation should also be considered in conjunction with the later section
3.10 where the link between MFE and characteristics is discussed.

The equation considered is a PDE of the form

Ou
5 L(u)=0 (3.62)

where © € Q, t € (0, T) with T being the final time.
The coordinate transform between x,t and the new independent variables &, 7

is of the form

r=z,71), t=r71 (3.63)

(c.f. section 2.3) and has Jacobian

(3.64)



where |.J| = det(g—z’). The transformation is constrained to satisfy
|J| >0 Va,t; (3.65)

which has a similar effect to the application of penalty functions in Miller’s
method. Similarly to (3.63), u has a coordinate transform between x,t and ¢, 7

since u is dependent on x and ¢, u becomes
u=u(¢,T), t=r71 (3.66)
(c.f. section 2.3). Using the chain rule u; becomes
Uy = Uy + Uely (3.67)

and the inverse transformation is given by

Jl(fx &)(% é) (3.68)
T, Ty 0 1

hence )
du 04 di gw)
—=_—— | (3.69)
ot or  0¢ (gg
and
Ju 04 OJudzr
5= i (3.70)
This gives (3.62) as
U — du, — L(u) =0 (3.71)

where 4 = %. Let R be the residual defined by (3.71) for admissible trial func-
tions x and u so that

R =14 —du, — L(u). (3.72)
The variational problem is now given by
[= ;/QRde (3.73)

and is minimised over all admissible solutions v and admissible maps . If the

variations are given by v = §(5%), z = §(5Z) then (3.73) gives

/ (¢ — du, — Lu)vde = 0 (3.74)
Q

. ou
/Q(u — Tuy — Eu)zad:p = 0 (3.75)
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for all admissible test functions (z,v), 7 > 0 such that all admissible transfor-
mations are invertible and (x,u) satisfies the initial and boundary conditions.
We may obtain an approximate version of these equations by writing the test

functions x, u as discrete approximations xy, uy.

wa(6,1) =N 2(7)x(€) (3.76)
un(6,1) = XK, ui(r)¢i(é) (3.77)

and letting v, = ¢; z;, = x; (¢ = 1,..., N). If we take ¢; and x; to be the basis
functions «; and 3;, then we get the MFE equations (3.23) given by Miller.

To apply the constraints (for example |J| > 0) the functional [ is replaced by
I.=1+P, (3.78)

where P. is a penalty term defined by

b1 e i
PE_/a scaear ~ S gp)% (3.79)

and e is the strength of the penalty function and s is a parameter. A minimum

value of J,;, of the Jacobian .J of the coordinate transform is specified and ¢

J=Jmin )

min

is chosen as e(x) = w( 2 where w is a parameter chosen to regulate the

relative size of the residual and penalty functionals.

3.8 Gradient Weighted MFE

Miller introduced (Miller (1986)) Gradient Weighted MFE (GWMFE) because of
problems controlling nodes with near shocks. Where there is a very steep front,
the time derivative of u was found to be almost a delta function, which is not in
Ly even in the limit. This implies that for certain types of problems, the standard
Ly norm used for the minimisation of the residual is inappropriate.

The basic MFE method remains as before, but a new norm is introduced to

combat the problem of steep fronts. The L, norm is replaced by

M = [ (s (3.80)
- /(.)QW(m)d:z; (3.81)
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where W(m) = (14m?2)~2, m = |u,|. This means that the L, norm of the speed
of u normal to the graph integrated with respect to arc length s has been used
as the norm. This is done because iy = @(1 + ui)_% is always bounded and its
effect in the norm is to reduce the emphasis on the steep regions near shocks.
A consequence of using the new norm is that instead of integrating the residual
with respect to =, a component of the residual is now being integrated along the
curve. This means that overturned solutions can be found using this method
(even with penalty functions), so that it avoids problems with coincident nodes
(Sweby (1987)). Note: The singularity which occurs in Global and Local MFE
as one element tends to zero does not occur in this method since the integration
within the minimisations is carried out along the arc length of the solution, due
to the use of the weight function.

Using the basis functions and approximations for u given in section 3.2, the

equations become

(aj, Uy = L(U))n =0
(6]7 Ut - 'C(U))N =

j=1,..,N (3.82)

where (.,.)n is the inner product associated with the norm (3.80). This gives rise

to the ODE system

Aly)y = sgly) (3.83)
where
}./': (...;dj_l,éj_l;cij,éj;...)T, (384)
A={A;}, Ay= (o ) (e By (3.85)
(52',04]‘)N (52'7 5]‘)N
and
g={st}. 9= (@i L) : (3.86)

(B, L(U)) v
A is symmetric, 2 X 2 block tridiagonal and positive semi-definite. The equations
given above can be solved using for example a block tridiagonal solver or precon-
ditioned conjugate gradient methods (Golub & Van Loan (1983)). Parallelism

remains a singularity of this method.
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3.9 Higher Derivatives

Up to this point we have assumed that the range of the operator £ can be rep-
resented with linear elements. However for completeness if £ contains second (or
higher) derivatives, a way of approximating the wu,, terms, in terms of the piece-
wise linear basis functions, which only exist in the sense of distributions, must be
found. In this case U,, will not have a finite L, norm and the minimisation of
(3.22) does not exist.

There are basically three techniques for dealing with this type of problem. The
first was introduced by (Miller & Miller (1981)) in their original paper on MFE
and involves smoothing the « basis functions so that U,, terms may be defined
(6 - mollification). The second method was given by (Mueller & Carey (1985))
and involves the application of Green’s theorem to reduce the order of the differ-
entiation. This method can be applied in higher dimensions. The third method
(Johnson, Wathen & Baines (1988)) is the so-called recovery method, which in-
volves fitting a polynomial (W) of sufficiently high order to the U or U, term
so that the W,, term may be defined and used in place of U,,. These meth-
ods are described below. Note: An alternative approach, avoiding the problem
altogether (and considered by Jimack), is to replace the piecewise linear basis
functions in the MFE method with quadratics or other functions so that the
problem in representing the higher order terms does not occur (Jimack (1988a)),

(Jimack (1988b)).

3.9.1 6 - Mollification

Consider minimising the residual
Ui — L(S(U)) (3.87)
instead of U; — L(U), where § is a smoothing operator defined by Miller as

SW)) = [ 5o = 9)U(y)dy (3.8)

— 00

where p? is a CZ° function of unit total integral which has support within a radius

6 about the origin. The «; and 3; (j = 1,..., N) basis functions are replaced by
s 0S(U) ou
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sy LU .
Gn =S5, =5 (3.90)

g =

)

where af now has sufficient continuity to ensure

< U, — L(S(U)), B; > (3.91)

exists in the limit as § — 0. It also is assumed that the discontinuous basis

function §; takes the mean value 1(m;_; +m;) at node s; and this gives
< g, B > H(m] —miy), (3.92)

which is independent of the smoothing of 6 as 6 — 0. As a consequence, the
u,, terms may be evaluated and the MFE method using piecewise linear basis

functions may be applied to u, terms (Miller & Miller (1981)), (Miller (1981)).

3.9.2 Mueller’s Method

In the variational formulation of MFE given by (Mueller & Carey (1985)), (see

section 3.7), the inner products involving 2nd order operators are evaluated using

88 (U)

Green’s theorem. If we assume that e

is continuous across element edges,
then in 1-D integration by parts may be applied, which will reduce the order
of the derivatives. This method may also be extended to higher dimensions for
which Green’s theorem is again required to reduce the order of the operator.

Consider the example

in 1-D where ; = —%ai. This becomes
Xit1 Xit1
/ U,y Bidx = —/ U, Uycdx (3.94)
Xi1 Xi1

where (X;_1, X;y1) is the interval of support of ;. This can now be rewritten as

Xig1 Xig1 2 Xiy1 [J2 .
—/ ! U, U,c,dr = —/ ! % o;dx :/ ! %a%d:p (3.95)
Xi_q Xi_q 2 . Xi_q 2 8:1:

which contains only U, derivatives; consequently this may be evaluated using

piecewise linear elements. Note: This method also can be applied to more general

problems (Johnson, Wathen & Baines (1988)).
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3.9.3 Recovery

There have been many different types of recovery implemented (Johnson (1984),
Johnson, Wathen & Baines (1988)). This type of method introduced by Morton
is similar to mollification. It is based on the idea that U is approximated by a

smoother, recovered, function W defined as
Wi(x) =SU)(x) (3.96)

where S(U)(x) is some smoothing operator (see section 3.9.1). W(x) may be
constructed from the piecewise linear MFE approximation U or the piecewise
constant U, so that there is enough continuity to ensure that the L, norm of the

second derivative of
L(S)U (3.97)
exists. One method of doing this is fitting a polynomial of sufficiently high order

to U or U,. For example, consider the function W(x) on element k between nodes
J — 1 and j as the Hermite cubic function satisfying

Wisj—1) = Ujmr Wolsj1) = 5(m; + mj1) (3.98)

Wisj) =U;  Walsj) = 3(m; +mjp) (3.99)

U,—U;_4

SJ _5]—1

defined by (3.98) and (3.99). Evaluating

where m; = . Then we approximate the operator Lu by LW where W is

< Wa, i >= /+ W, Bid (3.100)

gives —1(m?,, —m?) Consequently, it can be seen that this particular recovery
method is equivalent to using é-mollification (Johnson (1986)).
However, in this thesis we shall not consider derivatives of orders higher than

u, since these inhibit the formation of shocks, which is the main focus of this

work.

3.10 Lagrangian Approach To Characteristics

Before considering other adaptive finite element methods it is interesting to note
that, for £(u) containing first derivatives only, MFE is a.e. an approximation to

the method of characteristics described in chapter 2 (see e.g. Baines (1991)).
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In an alternative but equivalent approach to (3.13) the MFE system is red-
erived as in (Mueller & Carey (1985)). We work with the equation (c.f. (1.5)),

ur + H(x,u,u,) =0 (3.101)

where u = wu(x,t). A coordinate transform is defined (assumed non-singular)

between x,t and new independent variables &, 7 by
r=z,71), t=71, wulat)=ua,71) (3.102)

as in section 2.3 in chapter 2. Using the new variables (3.101) may now be written

in the Lagrangian form as
U — uyd + H(x,d,u,) = 0. (3.103)

Now restricting ¢ and 2 to U and X, which belong to sets of admissible trial

functions, (3.103) becomes
U—UxX+H(X,U,Ux)=R (3.104)

where R is the residual. (This can be rewritten in the same notation describe in
section 3.2 (Global MFE), with U = a, X = s and Ux = m to give (3.104) as
a—ms— H(X, U, Ux) = R.) We shall take the trial functions to be piecewise
linears.

Suppose that H(U) is such that the residual R equals zero, which is the case for
the example of the Inviscid Burgers’ Equation (2.21), and is possible with H (U)

in the space of piecewise linear discontinuous functions. Then (3.104) becomes
a—ms+ H(s,a,m) = 0. (3.105)

Now consider the jump in each term of the equation (3.105) across a node j (see
Figs. 3.5 and 3.6), using the notation [.|; for a jump across the node.

Since @, § are continuous at the node, taking jumps in equation (3.105) gives
0 — [m];s; + [H(s,a,m)]; = 0. (3.106)
Providing [m]; # 0, (3.106) gives

(3.107)



Figure 3.5: Jumps across nodes and elements.

Consider (3.105) again, and this time divide through by m # 0, to give
a . H
S ) (3.108)

m m

Now consider the jumps across node j as before, which gives

[m™');d; — 0+ [m~'H]; = 0. (3.109)
This leads to
. [m~tH];
_ _ImTHl 11
“ [m=1]; (3.110)

NB: [m];' # 0 when [m]; # 0. (Equations (3.107) and (3.110) correspond to the
solution of (3.45) in this case).
Somewhat separately, we now again consider jumps, but this time across an

element k, see Figs. 3.5 and 3.6. First note that

Figure 3.6: Jump across nodes and elements.

- ([a]k) _ (i = m3)) .

o7 \[sle (5]
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Then using (3.105),(3.111) becomes

(3.112)

Now take limits of (3.107), (3.110) as [s]x — 0 and the number of nodes — oo,

to give
oH oH
P = 1= —H I A1
by ou U + uxaul, (3.113)
Also taking the limit of (3.111), as [s]; — 0 gives
oH
n=—-—-: 3.114
" Ox ( )

Equations (3.113), (3.114) are the characteristic ODE’s for (3.11) (see chapter
2) which shows that the characteristic equations are obtained from the MFE
approximations in the limit. All this holds provided that R = 0. If R # 0
a projection is required (the L, projection of MFE, specifically that given by
(3.35), (3.36)), which means that a further approximation is required.

3.11 Split Method

The split method was proposed by (Baines (1991)), (see also Edwards (1988)) and
is so-called because the basic procedure is split into two sequential steps, rather
than being carried out simultaneously. These may then be solved separately for
2 and then for %, unlike the single large system obtained from the global MFE in
which x, @ are fully coupled.

Let us again consider the equation
ur + H(z,u,u,) =0 (3.115)
which leads to the basic MFE equations given by (Miller & Miller (1981)) of
<Ui+ HX,UUx),0;, > = 0 (3.116)
<U+ HX,UUx), 5, > = 0 (3.117)

where «;, 3; (¢ = 1,..., N) are the usual basis functions and U, is given by U; =

SN L dja; + 5;B; as in the global method (see section 3.2). The split method

i=1

replaces (3.117), the 3 equation, by the weak form of the first of (3.113), namely

OH
<h— oy >=0 (3.118)



and, having found §, obtains a from (3.116) with U; = @ — mé. Returning to
(3.116) and (3.118), there are now two residuals to be minimised

2

o | (3.119)

S

oUx

over §; giving s and

la — ms — H(X, U, Uyx)| (3.120)

over a; with § already prescribed. Minimising (3.119) with respect to §; leads to
a tridiagonal matrix which can easily be solved using a simple tridiagonal solver
(Golub & Van Loan (1983)) to find §; for all nodes. Then $; is then substituted
into equation (3.116), which is minimised with respect to d;, to give another tridi-
agonal system. This again can be solved using the same simple tridiagonal matrix
solver. Consequently the initial equations (3.116), (3.118) are solved separately,

and hence the name ‘the split method’.

3.11.1 Singularities For The Split Method

In section 3.5.1 we have shown that the local and global MFE methods can pass
through the singularity as the solution initially overturns. In the split method
only one matrix occurs for the two minimisations ((3.119), (3.120)). The matrix
elements are all dependent on two As’s and from this it can be seen that if only
one As — 0, then the matrix is non-singular and hence the split method allows

the solution to pass through the singularity.

3.12 Lagrangian Methods

Lagrangian methods use the idea of particles which move with constant ‘mass’
and implements them numerically. The particle idea is as follows; if a particle P
is within a region R under the influence of some external force, then we follow
the particle throughout the region.

In order to solve an equation of the form

u; + a(u)u, =0 (3.121)
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or

U — uyd + a(u)u, = 0. (3.122)
We set
u=0>0 (3.123)
from which it follows that
& =a(u). (3.124)

For conservation laws @ = 0, and u is constant along certain particle paths. It
should be noted that the Lagrangian method and the method of characteristics
are the same analytically for conservation laws. However this no longer remains
true when numerical methods are considered. The difference occurs in the dis-
cretisation of the equation which in the MFE case involves L, projections and
in the Lagrangian case is pointwise at a node. However, the two methods come
together for the inviscid Burgers’ equation.

The problems normally associated with the Lagrangian method relate to tan-
gling of the mesh because overturning is not allowed. The consequent reduction
of the time-step so that no nodes overtake each other often causes problems but
here we again allow the method to follow the paths past overturning so that we
may replace the overturned curve by a discontinuity. This approach does not

suffer from the problems normally associated with Lagrangian methods.

3.13 Boundary Conditions

The boundary required for this type of problem may be either moving or fixed.
If we first consider fixed conditions, (Dirichlet or Neumann) then as time passes
this may lead to regions near the boundary where there are very few nodes. This
can occur because all the nodes within the region move with speed @ = a(u) for
conservation laws and the boundary nodes are fixed with £ = 0. It is possible to
get round this problem by adding nodes at boundary A and removing nodes at
boundary B, but the approach is rather complicated.

The moving boundaries that we will consider are where the nodes move with

the characteristic speed. This causes a problem in that we are no longer looking
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Figure 3.7: Fixed boundary.

at a fixed region, however the problem of too few nodes near one of the boundaries

now disappears.

3.14 Solution In VM Space

In chapter 2 section 2.8, a Legendre transformation between the variables u, x

and v, m was described. It is defined by

ou ov
for which
u(x) — ma +v(m) = 0. (3.126)

The aim of this transformation is to simplify the equations to be solved, however

it may also be significant numerically. Consider the equation
up — L(u) =0 (3.127)
and rewrite this in Lagrangian form as
U — uyd — L(u) = 0. (3.128)
Equation (3.126) may also be differentiated with respect to time to give
w—mr+mz+ov=>0 (3.129)
which can then be combined with (3.128). This results in
— 04 v,m — L(mv,, —v)=0. (3.130)
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In Burgers’ Equation £(u) = —uu, which, when substituted into (3.130) and the

coefficients of v, compared, gives equations
m=—m* 0= —mu. (3.131)

Numerically, —V4+VarM is piecewise linear discontinuous and the term £L(muv,,—
v) needs to be projected into the space spanned by the basis functions qﬁg), qbgf).
Equivalently the projection can be made into the space spanned by the set {1, X'}
or {1, Vas}, using the usual L, minimisation. This may be carried out on each ele-
ment k so that £(u) may be represented by the straight line AX + B or AVy+ B.

On each element A, B are found from
rﬁngAVM—I—B—,C(MVM— V)| (3.132)
in the finite dimensional space V, M. Equation (3.130) now becomes
~V+VuM+ AV +B=0 (3.133)

where Vyy = X. Comparing coefficients of Vi (the linear terms) gives the equa-

tions

M=-A V=B (3.134)

Here there are no singularities whatsoever. These equations may be solved using
an ODE solver such as Euler or Crank-Nicolson.

Once these ‘simple’ equations have been solved, a numerical Legendre trans-
formation is necessary in order to obtain the solution in the original variables.
Note that it is within the inverse transformation that the parallelism singularity

occurs.

3.15 Summary

In this chapter the basic ideas of the moving finite element and the Lagrangian
method have been introduced together with some extensions. In chapter 2 a
method was proposed which involved the calculation of multivalued curves fol-
lowing which a second method of recovery would be applied in order to obtain
the solution with shocks. Unfortunately the methods described above (except-
ing GWMFE and the Lagrangian method) are not able to be used to calculate
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overturned solutions because of the use of the Ly norm. The next chapter will
extend the ideas of MFE described here in order to allow multivalued solutions

and numerical recovery of shocks.
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Chapter 4

Norms And Overturning Solutions

4.1 Introduction

In chapters 1 and 2 the analytic solution of certain nonlinear PDE’S, particularly
conservation laws, was discussed. One of the main ideas involved was allowing
the characteristics to cross, thus giving a multivalued solution, then recovering
the shock position from this overturned manifold. In chapter 3 several adaptive
finite element methods were introduced and we propose to use these to obtain
overturned solutions numerically. However, for the methods based on the stan-
dard MFE approach, there is a problem with the minimisation of the L, norm
once the solution overturns (Sweby (1990)). The problem occurs because the ex-
pression minimised in MFE does not remain positive definite and hence is not a
norm once the solution has overturned.

There are three sections within this chapter. Sections 4.2-4.3 are concerned
with writing the MFE method in terms of different norms which remain valid even
when the solution curve becomes multivalued. In section 4.4 several moving finite
element based methods are described, and the effects of the use of the different
norms is discussed. Section 4.5 is a description of the methods applied to the
overturned curves. Once an overturned numerical solution has been calculated
then the shock position may also be found numerically. We describe several
methods for this purpose which include some based upon conservation arguments
and another proposed by Brenier (see chapter 2 section 2.10), which gives an

approximate shock position.
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4.2 A Two-Stage Procedure

In order to solve for scalar nonlinear PDE’s by allowing the solution to become
multivalued using the standard moving finite element method, the norm of the
residual to be minimised (see chapter 3) must (by definition) remain positive def-
inite throughout the region of solution. It has already been noted (Sweby (1990))
that once the solution becomes multivalued, this is no longer true since the inte-
gration ‘reverses’. In order to continue using the norm of the residual to define
the MFE method, it must be redefined in such a way that it remains positive
definite.

One method of forcing the norm to remain valid (i.e. positive definite) is
to integrate with respect to arc length or take note of the sign of the solution
curve so that the integral will remain positive. For example, instead of simply
integrating with respect to = it would be possible to integrate with respect to
x with a weight function g—i' where s is the arc length. Using this method it
would be necessary to keep track of whether the integration was over a single or
multivalued curve, which would consequently make the calculations complicated.

In this section we will describe how the minimisation of the L norm used in
the MFE procedure may be rewritten as two separate minimisations involving
norms which always remain positive definite even after overturning (Baines &
Reeves (1990)). Much of what follows holds in any number of dimensions, unlike
other sections of this thesis. Let us first introduce some notation.

Let u be a continuously differentiable function of the space variables x and
time ¢, where v = u(x,t) € Q x (0,¢1), where  is a polygonal region contained

in R, and ¢, is a fixed positive time. We shall consider the differential equation
u; — L(u) =0 (4.1)

introduced in chapter 3, where L(.) is a first order operator in the space variables.

Now define finite dimensional approximations to u and wuy, for all ¢, to be
U €S and Uy € T. Here U and U; are piecewise linear functions on II which is a
partition of € with linear facets, for example line segments, (in higher dimensions
IT will consist of triangles, tetrahedra etc.) and S, T are (generally distinct) linear

spaces of piecewise linear functions.

71



Assuming that £(.) is a first order operator and that v is continuously dif-
ferentiable, then £(U) exists and is continuous in € , except possibly at internal
boundaries of the partition II. If it is also assumed that U is continuously differ-

entiable with respect to #, then
Ui — L(U) (4.2)

exists and is square-integrable over ), Vt € (0,%;). Note that, although u satisfies
(4.1), in general its approximation U will not. The residual R may be defined by

R=U,—LU). (4.3)

From chapter 3, it can be seen that in the MFE procedure (4.3) is minimised
over all U, € T using the Ly, norm. However, as has already been discussed, this
procedure will lead to the minimisation of an invalid norm when the solution
becomes multivalued. In order to redefine the norm in this minimisation in terms
of norms which remain valid, some further notation must be introduced.

Consider the space S* of piecewise linear discontinuous functions on the par-
tition II and let R* be the L, projection of R into S* (Miller (1988)). See Fig
4.1.

Figure 4.1: Ly projection of R into S*.

From the definition of the L, norm ((3.20)), R* € S* minimises
[l (4.4)
which implies that (see e.g. Johnson & Riess (1982))
< R— R R >=0. (4.5)
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Using (4.4),(4.5), the norm squared of the residual R can be written as the sum

of two norms squared, as follows,

|R|* = <R R>
= <R-R+R,R—R +R >
= <R-RR—-R'>+<R,RR>4+2<R—-R',R" >
= |BII* = |IkR— R+ B (4.6)

The minimisation therefore can be regarded as two successive (orthogonal) pro-
jections. Although the square of the Ly norm has now been written as a sum
of squares of two norms, defining two separate stages, the problem of the norm
becoming invalid as the solution becomes multivalued still remains. The first
stage presents no difficulty when the nodes overtake since the matrices in the
elementwise projection are always positive definite, but the second stage remains
a problem since here the integral of || R*||* = [ R**dx changes sign in the event
of overturning.

Let us however consider writing || R*|| as an [; norm using a coordinate system
within S*. The /; norm is a discrete version of the Ly norm. If u, v are in a finite
dimensional vector space where u = (uy,...,u,) and v = (vy,...,v,) then the [,
inner product is defined by

<u,v>=> uo W, (4.7)

K3

where W = (Wy, ..., W) is a weight vector and the I3 norm given by
lall, =< u,u>. (4.8)

In stage 2 the minimisation of ||R*||*> means that we want to find U; € T such
that
R =U,—LU) (4.9)

is minimised in the Ly norm, L(U)* being the Ly projection of L(U) into S*.
However since U, € T', L(U) € S*, and T, S* are both finite dimensional spaces
of the same dimension, this minimisation may be rewritten as the minimisation

of the Iy norm of a vector of coordinates of (4.9). In the overturning case this
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avoids the difficulty of the integral changing sign (see below) because the [y norm
is defined algebraically with no appeal to any sense of direction.

In order to write L(U)* € S* and U; € T explicitly as a sum of vector
coordinates, we need to introduce sets of basis functions for S* and T'. Let {¢;}
and {6;} be sets of basis functions which span the spaces S* and T respectively.
Let also {w;} and {¢;} be the corresponding sets of coeflicients for the functions

LU €S and U, €T, i.e.
LU =3 wigi, Up=3_ qib:. (4.10)
Since T C S*, the basis functions §; of T may be written in terms of {¢;},
0; = Z fhij Os (4.11)
;

say, where ;; are coefficients.

Consequently U; may be rewritten in terms of the basis functions of 5™,
U= qb = Y 4y 19,
i i j
= DD qitio;
v
= qumﬁ@- (4.12)
i

The residual of (4.9) may now be written in terms of the basis functions of 5* so

that

R’ = Z Z%‘Nﬁ@ - Zwi¢i
- Z(Z Gty — W) Pi. (4.13)

7

Hence the norm squared of R* becomes
177 = |l Z(Z qittii — wi)oill*. (4.14)
i

This norm is to be minimised over all Uy, i.e. over the coefficients of U;. The

expression (4.14) may now be rewritten using the definition of the /3 norm as

I1RE = <D0 ajm — widi, Y O qupur — wr)dr >
T g ko
= > > O qini —w)O_ qupr — wi) < i, ¢p > (4.15)
Tk !
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which is a new finite dimensional [3 norm of the coordinates of R* (see (4.13))
unaffected by overturning. Since yj; (Vji) and ¢; (Vi) are known, and we want
to minimise (4.15) over {¢;}, then (4.15) is a discrete quadratic form for the
unknown ¢’s, in terms of the w’s which are obtained from the first stage, that of
minimising ||R — R*|| (see (4.6)).
Returning then to the first stage of (4.6), since
R=U,—L(U) (4.16)
and, because U; is already in 5™,
R =U,—-LU), (4.17)
subtracting (4.17) from (4.16) gives

R— R =—L(U)+ LU (4.18)

The first stage of the minimisation can now be seen to be to find L(U)* € 5*
such that || — L(U) + L(U)*]] is minimised, i.e. to find the projection L(U)* of
L(U) into S*. (See Fig. 4.2).

L(w)

L(u)* Sx

Figure 4.2: Projection of L(u) into the space S™.

Now applying the notation of (4.10), the Ly norm squared of (4.18) becomes
1R = B|)* = || = £(U) + 3 wid]]” (4.19)

which, when minimised, gives a set of linear equations in {w;} (c.f. (3.37)). When
the {w;} from (4.19) have been found, they may be substituted into (4.15), and

the {¢;} can be found. Hence using (4.10), U; can be calculated giving the nodal
speeds.
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4.3 Norms

By redefining the inner product and norm for the second stage, a new set {¢;}
of basis functions may be chosen so that another two-stage method may be
obtained which in the non-overturning case is equivalent to the local method
(Miller (1988)), (Baines & Wathen (1988)). Let {¢;} be any set of linear discon-
tinuous basis functions such that ¢; is zero except on element ¢ of II. This results
in the set of linear equations for the w’s (first stage) decoupling into separate
element by element sets of 2 equations as in the global or local method. However
the second stage is still coupled nodewise in ¢’s, so a new norm is defined which
will allow these equations to separate also.

The new inner-product ((.,.)) is defined by

(60, 65)) = { <00 Z:] (4.20)
0 1 F ]

and the norm is defined by

&I = (85, 60))- (4.21)

If we now replace the [, inner-product in (4.15) by (4.20) to give

|1R||7 = Z;(Z Gittgi — wﬁ(? Qe — wi) (01, O1)) (4.22)

we obtain
1BG = Z;(Z Gittgi — i) < i, b > (4.23)
AP
= Z(ZJ: gjtji — wi)l| ol (4.24)
This suggests the definition of a so-called local norm |||.||| (Miller (1988)) to

be written as

IRI]® =17 — B7|I* + | Bl (4.25)

which corresponds to the two stage method given in (Baines & Wathen (1988)).
See Fig. 4.3.
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L(u)

I I
\ L

T

Figure 4.3: Projections for global ||.|| and local |||.||] MFE.

4.4 Implementation Of The Methods

Although MFE has been described in chapter 3, we consider it again from the
point of view of a 1 step Ly projection and 1 step [ projection. What follows is
valid for both overturned and non-overturned solutions. The first stage remains
the same as in chapter 3. The second stage is algebraic.

The implementation of the one-stage and two-stage methods demonstrates
how various versions of MFE give rise to sets of linear equations. The methods

are applied as before to the equation
u; — L(u) =0 (4.26)

where u = u(x,t) and L(u) contains only x,u and first derivatives of u. (For
convenience the methods are described here for the 1-D case although they are

also valid for the 2-D case, for which see chapter 8)

4.4.1 Global Method

For this case we describe only the implementation of the two-stage method for
multivalued solutions since the 1-stage method is already described in chapter 3
section 3.2 and (Miller & Miller (1981)).

From the ideas of Miller and Carlson, (see e.g. Baines (1986)), the approx-
imation to v may be written as a linear combination of local elementwise basis

functions qﬁg), qbgf) in element k, which is bounded by nodes j — 1, 5. (See chapter
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3, section 3.4). Let u be approximated by Uy in element k where

Ur(&:7) = a3 (D)€ + as() 0} (€), (4.27)
¢ being a reference variable and with 7 = £. Also let the = in element &k be
approximated by

X, 7) = 5,20(1)0 () + 5(n)e () (4.28)

Using the chain rule, we get

0 oo X0
or  Orot It 9x
0 ) ) 0
= 3 + (51—14521) + 51(1522))85( (4.29)

where the dot notation indicates differentiation with respect to 7. Hence U,
becomes
U, . : S :
o ;8% + a6 — Ux (32008 +3;60)

= (ajo1 — midj_n) @) + (a5 — mas;)ol (4.30)

where my, is the gradient U, in the kth element.

Alternatively, writing

wy! =y — Mmysq

w? = G —mps; (4.31)
we have N

ov,

Ttk — w60 4P g?), (4.32)

The two forms (4.30) and (4.32) are those used by Miller and Carlson (see
Baines (1986)) and by (Baines & Wathen (1988)) respectively.
Stage 1

We first minimise

(4.33)
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(1), (2)

over each element k, with respect to wy ', w;” using (4.31), obtaining the system

oU
¢k 7J_£(Uk) =0

qﬁk , % — L) > = 0 (4.34)

which gives two equations in two unknowns for each element k. The system is

non-singular in general and, using (4.32), can be written in the form

where
wt As, [ 2 1
Wi = 9 5 Ck = — 5 (436)
w? 611 2

Asp =s; —sj_y, and

) pop
< L L(UL) >
by = %) (N’“) . (4.37)
< ¢k 7'C(Uk) >

The square of the norm (4.33) can equally be written as

and minimisation also leads to Cywj = by,.

Alternatively, following Miller and Carlson, we may minimise (4.33) over el-
ement k& with respect to dg),dgf),ég),ég) where U, = dg)qﬁg) — mkéﬁj)qﬁﬁj) +
dg)(/ﬁg) — mkégf)qbgf), which leads to the double system

) U,
< </5k TR 'C(U )> =0
oU
< ¢ ,a—tk—/:(Uk) =0
< —myd\M, aa(ik —L(U)> = 0
< —myd'?, aa[f —L(Up) > = 0. (4.39)

This gives four equations in four unknowns for each element k. Since my is

constant, the system is singular. However, considering all elements together we

find that values of a;, 5; are defined on both sides of each node, i.e. from element
-(2)  -(2) - (1) (1)

k—1 we have a;,, $;”; and from element k we have a; ’, s; 7, where for continuity

these need to be equal. To obtain this continuity and also to enforce boundary
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conditions, constraints must be applied. The result is an assembly of the sets
(4.39) to give a non-singular system.

Following (Baines (1986)), the singular system (4.39) can be written as

Eyr = Gy (4.40)
where
aM
-(1) T T
] EN Asp | 2mpm;  mpmy
Ye=| o Ey, = & , , (4.41)
i, mym;  2m;m;
&)
1
my; — (4.42)
and

< ¢§cl)7£(ﬁk) >
@ pof
< , LU
G, = ?is £(U) . (4.43)

< —mmﬁﬁf),ﬁ(Uk) >
< —mk¢g)a£(ﬁk> >

\

Note: Ej is a 4 x 4 matrix given by blocks of 2 x 2 matrices. The square of the

norm (4.33) can then be written as
Vi Eeye — 296G+ |1 £(0,)]? (4.44)

and minimisation gives

Epyy = Gy, (4.45)

which is however a singular system unless the constraints of stage 2 are applied.

Stage 2

In stage 2 we work only with the coordinates wy, satisfying (4.35) or y,, satisfying
(4.40). In the case of the w’s we need to implement the minimisation of (4.12)

with the p’s given by

1 j=1
Pij = —m; j=1i+1 (4.46)
0 otherwise
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(in the 1-D version). This gives the standard form of the MFE equations
MTCMy =M"Cb =g (4.47)

say, where C' = diag{C}}, M = diag{M,},
1 —my_
M, = e (1.48)
1 —my

v=(a;,8;.0)% (4.49)

and

Returning to (4.39), and applying the continuity constraints on @, §, also gives

rise to the standard global MFE equations, as follows. Let

- (2)

ap_q
(2 .
Y., = gu —r_, | Y (4.50)
' oV g
k -1
5

where

) ()
R, = , Iy = ) (4.51)
I, 0 1

Then over the whole system we obtain

Y = Ry (4.52)
where
Ry
R = (4.53)
R,
and
oy
Y = ) (4.54)

The sum of the squares of the norm (4.33) over k may now be written
Y'EY - Y'G = y'RTERy — 2y"RTG (4.55)

81



and, minimising this expression over y yields
R'ERy =g (4.56)

where

E =diag{E;}, g=R'G, G ={G.}. (4.57)

Note that applying constraints to (4.35) is equivalent to

10 al?,
_ 0 1 iy N

_ min — ) W;_4 (4.58)
57151 1 0 551 agg)
01 Y

where W = (W, ..., W,) is a weight function (matrix). By the appropriate choice
of W, we can obtain either the global or local method. Global corresponds to
W = Ez, local to W = Eé, where Fy4 = Diag{FE} (Diag is the diagonal of the
matrix).

It is shown in (Baines (1986)) that (4.56) gives rise to the usual MFE system

since
R'ER = R'MTCMR (4.59)
= MTCM (4.60)
= A (4.61)
where
— T _ _ 1 —myg 0 0
E,=MlC,M,, M, = (4.62)
M = diag{M,}, M =MR, E=M"CM. (4.63)

Note that the difference between the matrix decompositions (4.59) and (4.60) is

essentially in the use of nodal variables (in E) rather than element variables (in

Q).

4.4.2 Local Method

The one-stage method has already been described in chapter 3 section 3.4. The
two-stage local and global methods are identical in 1-D, whereas in higher dimen-

sions only the first stage is the same (see chapter 8). The matrix system obtained
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by applying the 2-stage method to global MFE gives the system (4.56). In 1-D

M = MR is square and if it is also non-singular we may proceed as follows
RTMTCMRy = g
CMRy = (R"TM")™'g
DMRy = DCHR"MT)'g
R'MTDMRy = R'MT*DC™'(R'M™")'g (4.64)
where D = Diag{C'}, so we get
MT'DMy = MT™DC'M™'g

M*DMy = M'Db (4.65)

which is the local method. This is equivalent to letting W = E7 in (4.58).

4.4.3 Split Method

The split method (Baines (1991)) is based upon the standard MFE method, con-
sequently if the solution is allowed to overturn the expression ||$— %Hz is again
no longer positive definite. However the split method may also be written as
a two stage procedure in order to overcome the problem of the norm becoming

invalid. This is done in a way analogous to global MFE.

Stage 1

First minimise (4.4.3) over $ in each element k,

af

2

hin 5= 5 (4.66)
k "k
where
s = 800 + 5Pl (4.67)

3'21), égf) being the value of s at the left hand side and right hand side of the kth
element. See Fig. 4.4. Note: s, here play the role of w’s elsewhere.

From (4.66) we obtain the system

<i— 2 g sy

Aug ?

. (4.68)
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S«

k—1 k £

Figure 4.4: Continuous piecewise linear $;(&).

This may be written as the 2 x 2 matrix system

Asy (2 1) [ &0 < 2LV >
6 (@ | of @) (4.69)
1 2 s <L ¢ >

whence
HY 9 2p) — 32
@ |~ As, 1) | 57(2) (4.70)

where bgj) =< %, 45;;) > ¢ =1,2. The system (4.68) may be rewritten as

By = Gy (4.71)
where
A 2 1
By = ok (4.72)
6 V1 2
s by
2 B2
k k

(2) (1)

However this allows s;”; and s;’ to be unequal whereas a continuous solution 5;_;

is required. This means that constraints must be applied as in (Baines (1986)).

Stage 2

Applying the constraints that s is continuous gives

Yk == .(2) == RSS]‘_l (474)

S
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1
where R, = (

) , so over the whole system we obtain

1
Y = Ry (4.75)
where
10 0
‘ 10 0
. Sj-1 . - .
S']‘
) 00 1
00 1
Now solve the system (4.75)
RIERy =g (4.77)

where g = RI'G. Using earlier notation this gives
RTMTEMRy =g (4.78)
or
MICMy =g (4.79)

where My = M R,.

The application of constraints to (4.71) is equivalent to

(2
. Ly, Sk—1
min -, Sj_q — W,;_4 (4.80)
’ 1 5
k

where W = (Wq,...,Wy) is a weight function (matrix). If W is chosen to be
D%, then a local split method is obtained and it W = C%, the comparable global
method is obtained.

Let W = D2, then (4.80) gives

ro1 1 11 5(2_
(1 1)D,§D,§( )sjlu 1)D,§D,§( ’“(J) (4.81)

where

( Ask—l 0 )
Dy = : (4.82)
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Asj_ 0 1 Asj_ 0 52
(1 1) i S0 = (1 1) i k-l
0 Asy 1 0 Asy 5

= (Ask—l + ASk)é]‘_l == Ask_ls'f_)l + ASk_léS)
. ASk—1S'§3_)1 + ASk—rég)
S (Asg_1 + Asy) (4.83)

Hence $; (j = 1,...,N) can be found. The second equation (3.120) can be

solved in a similar manner, i.e. by writing it as a two stage method.

4.5 Calculation Of Shock Position

The numerical methods described above have all been used to obtain multivalued
solutions, which corresponds analytically to allowing characteristics to cross (See
chapter 2). This however does not give a physical solution, for which a shock is
required. The shock position must be calculated separately in order to give a valid
physical solution. In order to obtain the positions of the shock throughout the
period of solution, the numerical equivalent of the methods described in chapter
2 may be used. Consequently for each instant that the shock position is required,
it may be calculated from the appropriate multivalued solution in the same way

as in chapter 2.

4.5.1 Calculation Of The Shock Location Using Equal
Area Method

One of the ideas described in chapter 2 uses the properties of conservation. If
the areas in Fig. 4.5 are equal then this gives the shock position. This may be
posed in terms of finding the position of the line so that the sum of the two areas
(one taken to be positive, the other negative) becomes zero. In these terms, the
shock position may be found using a nonlinear solver. The method chosen to be
applied here is bisection. This method may be applied after any time when the

solution has become multivalued.
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Figure 4.5: Overturned curve.

4.5.2 Calculation Of The Shock Position From The

Transformed Equation

Methods which are based on the idea of conservation can be found from the
transformations described in chapter 2. Once the transformation to the a, x space
(see chapter 2 section 2.7.4) has been made, the shock position may be found from

the self intersection of the graph (see Fig. 4.6) (Reeves (1989)). This again uses

Figure 4.6: Self Intersecting curve.

the equal area principle described in section 4.5.1. Note: in the method described
below, although the integral curve is made up of piecewise quadratic elements,
for simplicity it is further approximated here by piecewise linears.

Consider two distinct linear segments approximating the curve given by

=Pt + G
TRETE 4y (4.81)
y=piT Tty

where p;, p;, ¢;, ¢; are easily calculated from the surrounding node positions. The
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intersection of the segments occurs when

Yy—4 _Y—4 (4.85)
b P
hence
y = 45Pi — 4Py (4.86)
bi — Pj
(p; # p;) so the shock position is given by
p= B4 (4.87)
bi —Dp;

There are two main problems associated with the numerical implementation of
this method. The first of these refers to the numerical ill-conditioning of the prob-
lem due to segments of similar gradient. Consequently (4.87) is badly conditioned
and x may be very large.

Although this problem seems to be serious, in reality the case in which two
lines have similar gradients means that the intersection of these segments occurs
outside the region of solution so can be ignored.

The second problem involves inappropriate intersections being found. See Fig.

4.7. This may also be avoided by the application of a simple test. If (x —s;_1)(s;—

“~correct intersection

\incorrect intersection

Figure 4.7: Self Intersecting curve.

x) > 0 and (z — s;-1)(s; — &) > 0 the intersection is valid. i.e. although in the
above calculations the piecewise quadratic curve was approximated by piecewise

linears, the method of calculation remains approximately valid.
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4.5.3 Note On Piecewise Linear, Piecewise Constant

Elements In The Legendre Transform

Note: s is always piecewise linear for continuity in space. If the solution u of
the conservation law data u is represented by piecewise constant elements, then «
in the Hamilton-Jacobi equation will be represented by piecewise linear elements
and b in the ODE’s by piecewise constants. This causes no problem since the
Legendre transformation is valid for elements of this type (see Baines (1991)).
However it would in general be better to approximate the solution w of the
conservation laws by higher order elements since this would be more accurate.
Suppose that u in the conservation laws is represented by piecewise linear elements

Uk, and s, (Uy is the approximation to u and si is the approximation to x), where

Uy = ur 6 (€) + unelP(€) (4.88)

and
s = 11800(€) + 2207(6) (4.89)

where qﬁg)(f), qbgf)(f) are the usual elementwise basis functions and u;, x; 7 = 1,2
are constants within k.

The transformation to (a, x) space is given by

a = /ud:z;

= [s©) + wd(€)(01dd () + wds€))de (1.90)

— A1§2 ((m(fzf - 622) + U2(§22 — &&)) (w2 — 51?1)) + A (4.91)

Similarly the transformation to (b, u) space is given by
b= / zdu (4.92)
= [(@o() + 226w ds"(€) + wadoP(€))de (4.93)
1 52 2
N ((51?1(525 - 5) + 51?2(? —&i8))(uz — U1)) + B (4.94)
where A = & — & and A, B are constants. We now need to show that the

Legendre transformation holds for a, b, so calculate

a—ur+b= g (6 —5) +uls —a8)(r2—1)) + 4
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((U1( )—I—u 5 &1 (21 é) —|—:1;2(5;§1)))
o (166 —5) + x2<% - £1£>><u2 —w)) + B
- A+ B+ (u (2 —2) +uy(2 — 2)

up (=215 + 22661 ) + uz(1&165 — Efay)) (4.95)

Since A and B are constants and the above expression consists of only constants

then A and B may always be chosen so that
a—uzr+b=0. (4.96)

Hence the Legendre transformation holds (at least locally) when u is piecewise

linear and a, b piecewise quadratic.

4.5.4 The Transport Collapse Operator Of Brenier

The description in chapter 2 of the method of calculation of the single valued ap-
proximation to the multivalued curve appears complicated (see Brenier (1984)).
In practice, this method is easy to implement. This method is applied immedi-
ately after the calculation of the solution (or either after the final time-step only)
after each time-step.

The algorithm is
1. Calculate initial data.

2. Calculate solution at next time-step by any method which allows multival-

ued solutions.

3. Calculate Brenier single-valued approximation only if the curve has over-

turned.
4. Goto 2.

Note: For this method it is possible to either apply the TC operator after
each time-step which produces an overturned curve or apply the method only
after the final time-step. The difference is that the application after each time-
step produces a single-valued solution to which the MFE method may be applied,

whereas the method can be applied only once after many overturned time-steps
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have been calculated using, say, an MFE method. The two approaches give
quantitatively different results (see chapter 5 section 5.4.3).

In order to explain how the Brenier approximation is calculated, first assume
that the solution is multivalued. Now divide the curve up into five regions as

shown in Fig. 4.8

s

Figure 4.8: Overturned curve and 5 regions.

The Brenier approximation is the same as the solution in regions 1 and 5
where the curve is single-valued.

In region 2 the easiest way to visualise how the approximation is calculated is
to add a scaling factor so that the lowest point of the multivalued curve lies above

the x-axis. (See Fig. 4.9.) Consider a node j in region 2, and draw a vertical line

X

Figure 4.9: Overturned curve scaled.

down through the curve until it intersects the z-axis. The heights of two points
on the curve that the line crosses can be found using linear interpolation.

In region 2 the Brenier approximation at node j is,
UBrenieT (]) = U(]) —a+ ﬂ (497)
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See Fig. 4.10.

u(i

4
e s

X

Figure 4.10: Points used in calculation of TC operator.

Following a similar method the Brenier approximation in regions 3 and 4 are
UBrenieT (]) = o — U(]) + ﬂ (498)

UBrenier(J) =+ U(5) — B (4.99)

where a and 3 are shown in Fig. 4.11.

1 1

U 2 U 2
a o
2Tu0) 21
4 40U
L A
X X
Region 3 Region 4

Figure 4.11: Points used in calculation of TC operator.

The next time-step is then applied to the single-valued Brenier approximation.
The method is then repeated following the algorithm above until the final time-
step is calculated. For more information on implementation see (Brenier (1984))

and (Boing, Werner & Jackisch (1991)).

4.6 Summary

In this chapter the numerical methods of chapter 3 have been extended in order

to allow the methods of solution described in chapter 2 to be implemented. The
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numerical techniques of shock recovery have also been described. The following

chapter will give some numerical examples of the methods discussed here.

93



Chapter 5

Examples And Results In 1-D

5.1 Introduction

The examples considered here are one-dimensional scalar nonlinear partial differ-

ential equations of the form
u+ fr=0 (5.1)

on a region R where f is a function f = f(u) and v = u(x,t). The main features
shown by their solutions as they evolve with time are the formation of shocks and
expansions. The nonlinearity of the equations may lead to multivalued solutions
(unless physical constraints are imposed). Note that it is important to have the
nodes in positions which give a good definition of the initial data curve in order
to improve the accuracy of the calculation of the shock position whether it is
moving or stationary.

Analytic methods for the solution of (5.1) have been discussed in chapter 2,
where the idea of obtaining a multivalued solution by following the characteristics
(even when they have crossed) was introduced. Several methods of recovering the
shock position from this multivalued curve are given in chapter 2, sections 2.9
and 2.10. The multivalued curves required by the ideas given in chapter 2 led
to the use of adaptive finite element methods which are described in chapters 3
and 4. These types of methods are now used to solve a variety of problems of the
form (5.1).

From chapter 3 the only direct global methods that have been applied to
the examples given below are GWMFE and the Lagrangian method. The other
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methods are all two-stage methods which are described in chapter 4. From chapter
4 we have a 2-stage global method, a 2-stage local method and a 2-stage split
method. These methods all give very similar results so only a selection of the
numerical results will be shown below.

Once the overturned solution has been calculated using a finite element pro-
cedure, the shock position may be found by using several alternative techniques.
The methods for finding the shock position include two methods based upon the
idea of conservation of area. The first of these is calculated using the original
variables whereas the other involves a transformation (integration with respect
to one variable). A second type of method of obtaining the shock position is the
method of (Brenier (1984)), which provides a different kind of approximation to
the shock.

The examples chosen are used to demonstrate the difficulties of the problem
and show how the proposed methods cope with various aspects. The equations
chosen as examples are the inviscid Burgers’ equation, the equation u; +(u*/4), =
0 and the Buckley-Leverett Equation in one dimension (see below). These are
simple examples of nonlinear conservation laws which will be applied to a variety
of initial data in an attempt to show the type of problems that can occur. A
Riemann problem using the conservation law u; + (u*/4), = 0 is also given as
an example. The two sets of initial data for the Riemann problem allow the
formation of a shock and the formation of an expansion. The problems are first
described, then the analytic solution is given before the numerical results are

shown in sections 5.3 and 5.4.

5.1.1 Problem 1 : Inviscid Burgers’ Equation

The equation here is

u, +uu, = 0 (5.2)
2
or u;+ (UZ) = 0 (5.3)

on the region 0 < & < 1 with three sets of initial data given by

a) u= tanh(b—10x) 0<a <1 (5.4)
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b) u= tanh(5—102)+ 1 0<a <1 (5.5)
1 0<ax<i

c) u= -2z ;<a<? (5.6)
0 c<a <l

and with Dirichlet boundary conditions appropriate to the initial data.
Burgers’ equation is given as an example since it is the simplest nonlinear
partial differential equation which gives rise to the formation of a shock. Note

2

that (5.3) is a conservation law of the form (5.1) with f(u) = iu®, a convex

1
2

function of w.

e In problem (la) the central point of the initial tanh curve remains at the
same position with a shock forming at + = L. The shock remains stationary

and is formed at t = 11—0. (See example 3 in chapter 2, section 2.3.8, for an

analytic description.)

e Problem (1b) is similar to problem (la) but in this case the central point

of the curve is displaced. This causes a moving shock to form at ¢ = 11—0,

= L, which moves with speed 1.

e Problem (lc) has initial data in the form of a ramp, which steepens to form

ashock at t =L, o = % (similar to example 1 in chapter 2 sections 2.3.2

and 2.3.4).

5.1.2 Problem 2 : u; + (u'/4), =0

This problem is given by the equation

up+ v, = 0 (5.7)

ul
or us+ (4) =0 (5.8)

on the region [0, 1] with initial data given by
u = tanh(5 — 10x) (5.9)

and with Dirichlet conditions given on the boundaries. Equation (5.8) is given

as an example because it is a conservation law which does not admit an exact
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solution with piecewise linear moving finite elements, unlike Burgers’ equation.
The flux function is also convex providing another example to be used with the

Brenier shock recovery method.

e Problem (2) forms shocks initially just to the right and to the left of x = 1;

?

however almost immediately they join to form a shock at z = 1.

5.1.3 Problem 3 : Buckley-Leverett Equation

This equation is given by

2

U
=0 0<z<?2 5.10
ut+(u2+;<1—u>2)x == 510

with initial condition

1
- <z <2 11
YT USTS (5-11)

and Dirichlet conditions are imposed at the boundaries. The equation pro-
vides a model for the flow of oil in porous media and was first described in
(Buckley & Leverett (1942)). This equation is interesting because its solution
is a combination of a shock and an expansion, due to the flux function be-
ing non-convex. This can lead to difficulties in calculating the shock speed
(Concus & Proskurowski (1979)). We will not give any solution for this equa-
tion because of these difficulties, however a brief description of the problems that
occur is given below.

Let us consider the simplest case of using initial Riemann data. See Fig.
5.1. First let us examine the initial data where u; and up are shown. Now
consider the diagram showing the flux function where again uy, and up are marked.
The construction required (see Concus & Proskurowski (1979)) is carried out by
drawing a line from up to a point ug where it is tangent to the flux function. This
point ug denotes the split between the formation of a shock and the formation of
an expansion as the solution evolves. See Fig. 5.2. It should be noted that this

becomes much more complicated for non-Riemann initial data.
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Ua

Ur L Ur

Initial data Flux function

Figure 5.1: Initial data and flux function.

\ Expansion
Ua Ua

Shock

Ur - Ur

Initial data Solution after time t

Figure 5.2: Initial data and solution after time ¢.

5.1.4 Problem 4 : Riemann Problem

The Riemann problem is given by two different levels of constant initial data in

conjunction with a conservation law. Here the conservation law is taken as

us + (“14)90 =0 (5.12)

on the region [0, 1]. The two sets of initial data to be tested are given by

—_
<o
IA
8
IA
NI

a) u= (5.13)

IA
S

IA
—

NI

98



oz 0! . (5.14)
1

IA
8
IA

NI

IA
S

IA
—

(1Y

This will enable us to demonstrate the problem that with a poor initial represen-
tation, i.e. badly placed nodes, the final solution will be poor also. The two sets
of initial data give very different results, (4a) forms a shock and (4b) forms an

expansion.

5.2 Representation Of Initial Data

Three methods of initial data representation are used here. Each involves sam-
pling the function on an initial grid. The first grid is obtained by equi-spacing
the nodes. The second grid involves placing the nodes in way influenced by the
type of solution to be formed. The final grid comes from a form of equidis-
tribution and requires that the function is twice differentiable. The nodes are
equidistributed using a weight function (Uom,)%, where U, is the initial data
(Carey & Dinh (1985)). This means that the nodes are distributed according

to

d:z; (5.15)

SN 2
3
/ UOl’l’ ’5]+1
S0 .
/ Oxac

where the s; (j = 0,..., N) are the node positions. This initially places more

nodes at regions of high curvature and fewer elsewhere.

5.3 Overturning Solutions

There are several methods described in chapters 3 and 4 which can be used
to calculate overturned solutions. These methods are applied to some of the
problems above to in order to demonstrate their ability to solve different types
of equation. In this section the solutions given will be the multivalued solutions
(i.e. the type of solution which would be obtained by following the characteristics
through their intersection). Methods of shock recovery can be applied to to these
overturned solutions in order to obtain the shock position. This is done in section

5.4.
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The first method we will consider is the global or local MFE method modified
so that it is written in a 2-stage form (see chapter 4 section 4.4.1) so as to permit

overturning.

5.3.1 MFE - 2 Stage

This method is described in chapter 4 section 4.4.1 and permits an overturned
solution to form. The method is applied to all the problems given above to show

how multivalued solutions form.

Problem 1a : Inviscid Burgers’ Equation

We will first apply this method to problem 1, with initial data (a) which is a tanh
curve. This will produce a stationary shock (when a jump condition is applied) or
an overturned curve which evolves with time always cutting the z-axis at « = L.
The nodes are initially placed using the equidistribution routine described above.

The results are given in Fig. 5.3. Since the MFE method is equivalent to the

Final time = 0.8
Timestep = 0.1

Number of nodes = 21

Results printed every 2 timesteps 0 \

>

K

Figure 5.3: Problem (la) - MFE 2 stage method.

method of characteristics in this case, the equations of characteristics being linear,

the same final result could have been produced by using a single time-step of size

0.8. This occurs because i—f is constant (= wug) along the characteristics, so that

Euler’s method is exact for arbitrary time-steps. From Fig. 5.3 the nodes can be
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seen to stay with the regions of high curvature as the solution evolves with time.

This enables the curved solution to be well represented.

Problem 1b : Inviscid Burgers’ Equation

This is similar to the above problem but the initial tanh data is shifted vertically,
which gives a moving shock or an overturning curve which changes both shape
and position as it evolves with time. The nodes are placed initially by using the
equidistribution routine described above. The results are given in Fig 5.4 shown

below. Again, these results could have also been obtained by using a single time-

U 15—
Final time = 0.8
Timestep = 0.1 1.0
Number of nodes = 21
0.5

Results printed every 2 timesteps

0.0 \ \

—-0.5-

Figure 5.4: Problem (1b) - MFE 2 stage method.

step, since we are solving Burgers” equation (see problem 1(a)). The nodes can
again be seen to cluster around regions where high resolution is needed, with less

where the curve is straight.

Problem 1c : Inviscid Burgers’ Equation

The initial data here is given by a ramp, i.e. a piecewise linear function. This
function does not have a second derivative, therefore the equidistribution routine
described above cannot be used. Initially the nodes are equi-spaced over the
region. The results for this problem are given in Fig. 5.5, from which it can be seen
that if the initial ramp data is not well represented then this poor representation

is carried throughout the calculations. Note: From other numerical experiments
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Final time = 0.8 i
Timestep = 0.01
Number of nodes = 21

Results printed every 15 timesteps

Figure 5.5: Problem (1c) - MFE 2 stage method.

it has been found that if the initial data given here is represented by only 4 nodes
(chosen to be at 0.0, 0.25, 0.75 and 1.0) then a more accurate solution than that
given above is obtained. This shows that the accuracy of the solution is not
dependent on just the number of nodes, but on their representation of the initial

data.

Problem 2 : u, + (uv*/4), =0

The equation above is applied to the same tanh initial data that was used in
problem (la). The nodes are again initially placed using the equidistribution
routine. This allows us to compare how the two different equations affect the
initial data. The results are shown in Fig. 5.6 below. It can be seen that unlike
Burgers’ equation, this equation requires a small controlled time-step for solution.
The nodes can be seen to move horizontally by the motion of the characteristics
but a slight vertical motion can also be seen. This vertical motion is caused
by the projection step of the MFE method (a step that is not needed when
considering Burgers’ equation). The nodes can also be seen to move to regions of

high curvature leaving fewer to represent the straighter regions.
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1.0
Final time = 0.8

Timestep = 0.001 0.5

Number of nodes = 21

Results printed every 100 timesteps 0.0
0

—0.5

—1.0-

Figure 5.6: Problem (2) - MFE 2 stage method.

Problem 3 : Buckley-Leverett Equation

The initial data is given by 1/(1 + 102) and the nodes are initially place using
the equidistribution routine described in section 5.2. The results are given for

this problem in Fig. 5.7 below. Although this problem gives rise to a combined

Final time = 0.8
Timestep = 0.01
Number of nodes = 21

Results printed every 15 timesteps

Figure 5.7: Problem (3) - MFE 2 stage method.

shock and expansion, it is not possible to distinguish it from the overturned
manifolds formed by shocks in the above problems. Apart from this the results
to this problem are very similar to those of problem 2. Reminder: there is a

special procedure for the calculation of the shock speed for this example (with
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non-convex or non-concave flux function), (see (Concus & Proskurowski (1979))).

Problem 4 : Riemann Problem

For this problem we will show the results for two sets of initial data. Fach
problem has initial data given by piecewise constant regions. In both cases the
‘jump’ between the regions is approximated by a function representing a very
steep slope.

For problem (4a) the initial data is given by

1 0<2<0495
u =4 —100z 4 50.5 0.495 < 2 <0.505 - (5.16)
0 0505 <x <1

We will space the nodes equally throughout the region (Note: no second deriva-
tives available for equidistribution). As a consequence the representation of the
very steep slope is dependent upon the number of nodes used. In problem (4a), a
shock is formed almost immediately which then moves across the region. In this
section an overturned manifold is generated, the shock position being recovered

in a later section. The results are shown in Fig. 5.8. The extra number of nodes

Final time = 0.8
Timestep = 0.001
Number of nodes = 80

Results printed every 100 timesteps

0.0 0.5 1.0 15 X

Figure 5.8: Problem (4a) - MFE 2 stage method.

used in this example are wasted in representing the two constant regions whilst

there are no nodes in the very steep region. Clearly equi-spacing is not always
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the best method of placing nodes, and the initial placement of nodes requires us
to respect both the initial data and the subsequent motion.

This is not an economic method of placing the nodes and negates the adaptive
grid strategy, so in this problem we have to consider the type of solution to be
formed in choosing the initial node positions. For this problem we shall place
several nodes within the very steep region so that as the expansion forms there
will be enough nodes to represent the curve. The results are shown in Fig. 5.9

below.

Final time = 0.6

Timestep = 0.001

Number of nodes = 21

Results printed every 100 timesteps

0.0 0.5 1.0 15 X

Figure 5.9: Problem (4b) - MFE 2 stage method.

From these results it can be seen that if there are not enough nodes in the
vertical part of the initial data then as the expansion forms there will not be
enough nodes to represent the solution: for example if there were none in the
vertical part, the expansion would come out linear, which is not correct in this
case.

It should be noted that representation of a curved expansion by only one
element would be a very poor solution (see Fig. 5.9). If the number of nodes in
the initial vertical region is increased then more nodes move into the region of the
curved expansion. Now, if the solution (i.e. the function representing the curved
region) is given by f, then the error between the function f and the piecewise

linear representation satisfies

| error | < CRA|f" | mas (5.17)
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where [ is the maximum distance between the nodes |.|;q, is the maximum norm
and (' is a constant. If we want the error to be less than some tolerance and
an approximation to max|f"| can be estimated then the maximum required node
spacing can be found. This allows the number of nodes to be placed in the vertical

region to be chosen.

5.3.2 Split MFE, GWMTFE, Split GWMFE, etc

These methods have all been applied to the above problems but give extremely

similar results, therefore no results will be shown for these methods.

5.3.3 VM Method

This method involves calculating the initial data in the original variables then
transforming to v, m coordinates using the Legendre transformation described in

chapter 2 section 2.8. The transformation is given by

u(z)+v(m) —ma =0 (5.18)

m=u, T =U,. (5.19)

The solution is calculated using the transformed coordinates before returning
back to the original variable to display the results. A picture of the solution
evolving with time in the v, m coordinates is not usually informative. The results

in x,u coordinates are again similar to those already given above.

5.3.4 Solution Via Integrated Form

In this section we consider results obtained by using a different transformation.
The initial data is given in the original variables, then transformed to the a, x
space where a¢ = [udz by integrating (see chapter 2 section 2.7.4). The solution is
calculated by the local 2-stage (or any other method which allows an overturned
curve to form) in the a, x space, then the solution is transformed back to , u where
the results are required. Here the solutions are shown in transformed coordinates
only, since the solutions in x,u space are very similar to those already shown

above.
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Problem 1a : Inviscid Burgers’ Equation

This first example shows problem (la) transformed to a, x variables as the shock

forms. See chapter 4 section 4.5.2. See Fig. 5.10. There are less nodes used in this

a
Final time = 0.8 'TS
Timestep = 0.1
Number of nodes = 15
Results printed every 2 timesteps
0
X

Figure 5.10: Problem (la) - Transformed to a, x variables.

calculation so that the results are easier to see. The initial data transformed looks
approximately like a sin® curve and as time increases a characteristic swallow-tail
is formed. The a,z variables can then be transformed back into u, x space to give

the same solution as Fig. 5.3.

Problem 1b : Inviscid Burgers’ Equation

The second example here shows the moving shock formed in example (1b). See
Fig. 5.11. After the calculation the a,x curve is then transformed back to the
original variables to give the same solution to Fig. 5.4. It can be seen that the

shock moves to the right and that the speed must be correct owing to conservation.

5.3.5 Summary Of Overturned Results

The results show that both expansions and overturned manifolds (caused by the
formation of shocks) can be calculated for a variety of problems. It has also been
evident that care is needed in choosing the representation of the initial data so

that a good solution can be found.
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Final time = 0.8
Timestep = 0.1 2.0
Number of nodes = 15
. ) 1.5
Results printed every 2 timesteps
1.0
0.5+
0.0 \ TX

Figure 5.11: Problem (1b) - Transformed to a, x variables.

5.4 Recovery Of Shock Position From An
Overturned Curve

All the methods used above can give a multivalued solution for conservation laws
and consequently may have one of the recovery methods based on conservation
(given in chapter 4 section 4.5) applied to them. Note: the transport collapse
operator of Brenier is different in that the solution obtained by applying it to a
multivalued curve then affects the solution at the next time-step. The other two
methods are only applied when the shock position is required and this has no
effect on solutions at subsequent time-steps.

The methods of recovery given in the examples below are all applied to the 2
stage local method since the results will apply equally to any overturned curve.
There are three methods of shock recovery discussed below;

(i) equal area,

(ii) via an integral and

(iii) the transport collapse operator of Brenier

described in section 2.9. It should be noted that for convex or concave f in (5.1)
all three methods may be used, but for non-convex (or non-concave) f the third

method (Brenier) may not be used.
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5.4.1 Equal Area Method - Bisection
Problem 1a : Inviscid Burgers’ Equation

The corresponding overturned curve for this initial data is shown in Fig 5.3.

The shock position location can be seen in Fig. 5.12. The results shown with

Final time = 0.8

Timestep = 0.4
Number of nodes = 21
Results printed every timestep 0 \
1 X
-1

Figure 5.12: Problem (la) - Equal area method.

node positions displayed show that the curve has not yet overturned and no
recovery technique has been applied. The shock positions calculated from the
overturned curves are shown without any node positions since they are then no
longer applicable. This is because the node positions are then located in the
overturned solution (Fig. 5.3) which is used to give the solution at later time.
The equal area method calculation simply gives a representation of the shock
position and does not affect the overturning solution given earlier.

This example shows that the method may be used to calculate a stationary
shock position. Similarly the next example uses the same method to calculate a

moving shock.

Problem 1b : Inviscid Burgers’ Equation

The overturning curve associated with this problem is shown in Fig. 5.4. Here
the results are given in Fig. 5.13 showing the location of the shock position. It

can be seen that the shock moves to the right.
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15
U
Final time = 0.8
1.0
Timestep = 0.2
Number of nodes = 21
. . : 05—
esults printed every timestep
0.0 \ é \ \
0. \ 10 15 ¥
—0.5—

Figure 5.13: Problem (1b) - Equal area method.

5.4.2 Via The Integral Transformation

This method is also based upon the principle of conservation It gives a repre-
sentation of the shock position at any instant but does not affect the overturned
solution calculated in the above section. These methods have been run for all
the test problems and give similar results. This method is different to the one
described in section 5.3.5 because the solution is calculated in x, u variables and
only integrated to a,z variables when the shock position is required. The trans-

formation is given by

a(x) 4+ blu) —ux =0 (5.20)

u=ua, T=b,. (5.21)

The shock position is calculated from the self-intersection of the curve, then given

in terms of the original variables.

Problem 3 : Buckley-Leverett Equation

The results together with the integrated curve are shown in Fig 5.14. The self-
intersection point on the integrated curve marks the shock position. Owing to
conservation the method of calculating the shock position using equal area is valid
although both a shock and an expansion form in this problem. The only difficulty

with such non-convex flux functions arises in calculating the shock speed which
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0 \ \ 0 \ \
0 1 2X 0 1 2 X
Final time = 0.8 Number of nodes = 21
Timestep = 0.01 Results printed every 15 timesteps

Figure 5.14: Problem (3) - Shock position calculated using Integrated curve.

in this case requires a special construction. See (Concus & Proskurowski (1979)).

Problem 4 : Riemann Problem

The nodes are initially placed at 0.0, 0.25, 0.495, 0.505, 0.75, 1.0 with the remain-
der equally spaced between 0.495 and 0.505 in order to give a good representation
of the shock. The piecewise constant data in the statement of the Riemann prob-

lem is again approximated as in (section 5.3.1) problem 4.

Final time = 0.8
Timestep = 0.001
Number of nodes = 12

Results printed every 100 timesteps

0- vy
0.0 0.5 10

Figure 5.15: Problem (1c¢) - Shock position using integral method.
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5.4.3 Brenier

This method is different to those above in that this method reconnects the nodes.
It can therefore be applied after every time-step or only after the final time-step.

The results are given below for the two cases.

Problem 1a : Inviscid Burgers’ Equation

In this case the TC operator is applied after the final time-step only. The nodes
are initially placed using the equidistribution routine described earlier. The re-

sults are given in Fig. 5.16. The result of solving problem (la) with the TC

U
N 11
Final time = 0.6
Timestep = 0.0006
Number of nodes = 21
Results printed every 250 timesteps 0 X
\
1
Brenier solution
-
—1

Figure 5.16: Problem (la) - Shock position using TC operator.

operator applied after each time-step gives a result similar to that of the equal

area method. i.e. a vertical shock position.

Problem 1b : Inviscid Burgers’ Equation

In this case the TC operator is applied after every time-step for which there is
an overturned curve. The initial data nodes are placed using an equidistribution
routine. The results are shown below in Fig. 5.17. If the TC operator is applied
after every time-step then the results are the same as the other two shock recovery

methods.
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Final time = 10
Timestep = 0.001 10—
Number of nodes = 21
Results printed every 200 timesteps 05—
0.0
X
—-0.5—

Figure 5.17: Problem (2) - Shock position using TC operator.

5.4.4 Summary On Shock Position Calculations

It has been seen that the shock position can be calculated using the three methods
proposed in chapters 2 and 4. The results show that the equal area method,
calculation via an integral and the TC operator applied after every time-step
give good results.

In the case where Brenier (TC operator) is only applied after the final time-
step, the results are very different. This approximation to the shock is signifi-
cantly worse than the other methods (since if the equal area method or integral
methods were applied only after the final time-step, then a vertical non-smeared

shock would result.)

5.5 Summary

In this chapter we have considered various numerical methods and several test
cases to illustrate the work described in chapters 2-5. From the results it can be
seen that overturned solutions may be calculated for a variety of initial data and
for various conservation laws. The results also show that the shock position may
be recovered from the overturned curves.

The results also show that the initial data representation (which includes both

the number and position of the nodes) is very important for this type of method.
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This can be seen most clearly in both the formation of the ramp (see Fig. 5.5)
and the Riemann problems (see Figs. 5.8 and 5.9), however it applies equally to
the calculation of all initial data.

It should also be noted that the method cannot cope with the case when two
shocks merge. Another important point to consider is that some examples require
a very small time-step so that no instabilities occur.

In the following chapters we will extend the work of chapters 2-5 to higher

dimensions.
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Chapter 6

Analytic Methods For Conservation

Laws In Higher Dimensions

6.1 Introduction

In this chapter we will consider possible analytic solutions to first order scalar

nonlinear partial differential equations of the form

F(x,u,m) =0 (6.1)
given on the region € R", where x = (#1,...,2,), m = (mq,...,m,) and
m; = % and n is the number of dimensions. This class of equations is generally

too complicated to fully analyse theoretically. However the types of behaviour
exhibited by such equations are of interest since this knowledge is of consider-
able use when numerical methods are developed. The formation of shocks and
expansions are the main areas of interest here. We shall therefore concentrate on
the conservation laws because they are the simplest class of equations which form
shocks and expansions. In particular we will consider Riemann problems for con-
servation laws since they provide a basis on which to develop solutions for more
general problems. For general initial data, it can be shown that discontinuities
(shocks) occur in finite time. There are also some existence and uniqueness the-
orems known for this class of problems. For a few specific problems an analytic

solution may be found. Such cases are discussed below.
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6.2 Characteristics

For a general first order PDE in higher dimensions, characteristics can be found
in exactly the same way as in 1-D (see chapter 2). The characteristics of (6.1)

are given by

dx;

CZ = F, i=1,..n (6.2)

du "

L= Ymib, (6.3)
=1

dm.:

ZZ = —F,.—mF, =1 ..,n (6.4)

From this we have a system of 2n + 1 ODFE’s and one algebraic equation F' = 0
for the 2n + 1 functions x1 (%), ..., x,(t), u(t), m1(t), m,(t). It can be shown that F
is an integral of the characteristics, hence F' = 0 must be satisfied at some initial
point t = 0 of (6.1) for it to be satisfied for all £. For more information on this
equation see (John (1971)). Although families of characteristics can be found, it
is difficult to use them in a similar way to chapter 2 since the characteristics now
form surfaces. Let us now reduce the class of equations we are considering to the

conservation laws.

6.3 Conservation Laws

As in 1-D conservation laws have solutions which contain both shocks and ex-
pansions. Since the aim of this chapter is to provide an analytic background
for numerical methods to be developed in later chapters to approximately locate
shocks then the conservation laws provide a good class of equations to investi-
gate. These equations have been extensively studied in 1-D but there has been

comparatively little done in two or higher dimensions.

6.3.1 Derivation

Let us first consider a derivation of the conservation law in 2-D. This is carried
out in a similar way to that in 1-D (chapter 2) which may be readily extended to
higher dimensions. Let u(x,t) (e.g. density) be defined on a region €, then the
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Rate of Change of integral of win @ = Total flux of u through 99 (6.5)
(into Q)

- jt/gudﬂ - —/8Q F(u).ds (6.6)

F(f(u)). (6.7)
g(u)

Equation (6.6) can now be written as

where F is the flux function

/ ) = —/ V F(u)d, (6.8)
Q Q
using Gauss’ Theorem. This gives
/Q(ut + fx + gy)dQ = 07 (69)
and since this holds for all €2, however small, then
uy + fo+ 9, =0. (6.10)

The problems we shall consider here are given by the conservation law (6.10), with
various f, ¢ and initial data and boundary conditions applied where appropriate.

The conservation law (6.10) may be written in many forms, some of which are
helpful when considering certain methods of solution. Since f, ¢ are functions of

u then (6.10) can be written as
ug + f (w)ug + g (u)u, = 0. (6.11)
In a similar way to 1-D, let f'(u) = a(u), ¢'(u) = b(u) to give
u; + a(w)u, + b(u)u, =0 (6.12)

which is a 2-D quasi-linear equation where a and b are known as the wave speeds.
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6.3.2 Characteristics

In a similar manner to 1-D, characteristic equations for conservation laws can be
found. Using the general equations for characteristics in section 6.2, and applying

them to (6.12) gives characteristic equations

du dx dy
These equations can be solved, by integration with respect to ¢ to give
u = constant = ug (6.14)
r = a(ug)t+ o (6.15)
y = blug)t + yo (6.16)

where ug, g and yo are constants, which are straight lines.

Let us now consider the theory for conservation laws in 2-D.

6.3.3 Theory

There are several existence and uniqueness theorems for the general conservation
law. Using general initial data on (6.12) the existence of a weak solution has been
given by (Conway & Smoller (1966)). Vol’pert and Kruzkov proved existence and
uniqueness of a weak solution satisfying the entropy condition in the class of
bounded measurable spaces (Kruzkov (1969)), (Vol’pert (1967)). An important
point to note is that Conway shows that for smooth initial data that the solution
will form discontinuities in finite time (Conway (1977)). These existence theorems
do not however provide a method of solution to (6.12).

In order to consider the occurrence of discontinuities in the solution of the

conservation laws, we will first write (6.10) in Lagrangian form.

6.3.4 Lagrangian Form Of Conservation Laws

The Lagrangian form in 2-D may be obtained by considering a coordinate trans-

formation between z,y,? and independent variables £, 7, 7 where
T :‘%(577777—)7 Y :?)(577777—)7 t:T, u:ﬁ(€77777'), (617)
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Using the new variables (6.12) may be written as

ot Oudzr Oudy
il o @6—7_ + a(u)uy, 4+ b(u)u, = 0. (6.18)

Now using similar notation to chapter 2, section 2.3, we let

T B

= = = 7. 1
T TToar VT or (6.19)
Substituting these into (6.18) gives

U — upd — u,y + a(u)u, + b(u)u, = 0. (6.20)

If we now compare coefficients of u, and u, in (6.20), we get
=0 (6.21)
&= a(u) (6.22)
y = b(u) (6.23)

which are the same as the characteristics in section 6.3.2.

6.4 Blow-up

In this section we will describe one method (Conway (1977)), (Majda (1984)) of
showing that the solution of (6.10) forms a discontinuity in finite time. We will

apply this technique to conservation laws in two dimensions of the form
u + a(u)u, + b(u)u, = 0. (6.24)
Differentiate (6.24) with respect to x to give
U + @ (W) u? 4 a(u)py + b upu, + b(u)uy, =0 (6.25)
and with respect to y to give
Uye + @ wyty + a(u)g, + 0 (w)ul + b(u)uy, = 0. (6.26)
If we write (6.24) in Lagrangian form it becomes
U — Upd — uyy + a(u)u, + b(u)u, = 0. (6.27)
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Following the Lagrangian method we choose & = a(u) and § = b(u) = @ = 0.

Similarly (6.25) and (6.26) become
Uy — Upp & — Uye Y + a/(u)ui + a(u)ty, + b/(u)uxuy + b(u)uy, =0

and

Uy — Uypd — UyyY + a/(u)uxuy + a(u) g, + b/(u)ui + b(u)uy, = 0.

With & = a(u) and § = b(u), (6.28) and (6.29) reduce to

!

Uy = —a (u)u’ — b/(u)uxuy

and

! !

ty, = —a (u)uyu, — b (u)u?.

(6.28)

(6.29)

(6.30)

(6.31)

Now let ¢ = a(u), + b(u), = div(a,b) = a'(w)u, + b (v)u,. Differentiate ¢ with

respect to t to give

1

¢ = a (u)iuy + a/(u)uw + b//uuy + b/(u)uy

= a (u)iy 4 b (u)iy.

Substitute (6.30) and (6.31) into (6.33) to give

! !

¢ = a(u)(—a(u)u?— b/(u)uxuy) + b/(u)(—a/(u)uwuy — b/(u)u

= —(a (w)us + b (w)u,)”
= —qz‘

Writing this as

dg 2
dr —q
and integrating gives
d
/—3 = —/dT
q
1
= —— = 7+C
q
L 1
7= T—C

where C'is a constant. Let ¢ = ¢o(§) at 7 = 0 which gives

QO(f)
98 = - o
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(6.32)
(6.33)

) (6.34)
(6.35)
(6.36)

(6.37)

(6.38)
(6.39)

(6.40)

(6.41)



From this it can be seen that

1
QO(f)'

which indicates that the solution blows up at this time for some &. To find

(6.42)

q(§) w0 as 7 — —

the time that the solution first blows-up, we want the smallest positive value of
qo(&)(VE) for which ¢(¢) — 0. This is equivalent to the discontinuity that was
said to occur by Vol'pert.

It can also be seen from (6.30), (6.31) that

U U
e Tw 4
U, Uy (6 3)
from which
0 0
Eln u, = a—Tln Uy (6.44)
Inu, = Inwu, + function of ¢ (6.45)
ul’
— = A(¢). (6.46)
Uy

Using this result and the definition of ¢, allows u,, u, to be found as functions of
¢ and hence the solution of the equation to be found.
From blow-up, and also from (Vol’pert (1967)), we can see that a weak formu-

lation of the equation is required since discontinuities will occur in the solution.

6.5 Weak Solutions

From the above section it can be seen that weak solutions should be considered
when solving conservation laws. The need for weak solutions has been noted by
(Vol'pert (1967)), (Kruzkov (1969)) and (Conway & Smoller (1966)). The ver-
sion proposed by (Conway & Smoller (1966)) is given below for (6.10).

A bounded measurable function u : RT x IR? — IR is said to be a weak

solution to (6.10) with initial data u = wo(x, y) if

0
/]R+ /]Rl =0+ f(u) x¢+g(U)@¢ dedydt = 0 (6.47)

for every test function ¢ € C5°(IR*T x IR?) and if u(t,.,.) — ug in L},. as t — 0.
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6.6 Riemann Problems

A large area of interest concerns Riemann problems (Wagner (1983)), (Klingen-
berg (1986)), (Lindquist (1986)). This type of problem is given by conservation
laws which have initial data given by piecewise constant values in adjacent re-
gions. The solution leads to the formation of shocks and expansions at the initial

time to. This is a separate problem to the case where smooth initial data is given.

6.6.1 The Problem

In 2-D a general type of Riemann problem is given by

ou
at

with initial data

(s t)+ G + gl =0 (69

up, >0 y>0
us <0 y>0

u(0,2,y) = (6.49)
us <0 y<0

ug >0 y<0
where uq,...,uy are constants. A possible set of initial data is shown in Fig. 6.1
below. From this we can see that a shock and/or expansion (or both) will form

at the initial time 7.

y 4

Figure 6.1: Initial data for a Riemann Problem.

6.6.2 Analytic Solution Of The Riemann Problem.

Several methods of solution have been suggested (Wagner (1983)), (Klingenberg
(1986)), (Lindquist (1986)), (Guckenheimer (1975)), for the solution of this Rie-
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mann problem subject to different restrictions on the functions f and g¢.

Case 1: f =g.

This is the main case considered in the literature (Wagner (1983), Lindquist (1986),
Klingenberg (1986)). Analytic solutions have been given when

1. f" > 0; the construction of the solution gives a well defined function which
satisfies the entropy condition (see Wagner (1983)).

2. f has at most one inflection point; the solution can be characterized in terms
of non-linear waves (shocks and rarefactions) analogously to the 1-D Riemann
problem. (See (Lindquist (1986)).

3. no restriction on f. (See Chang & Klingenberg (1986).)

Case 2: f close to g.

This only holds for certain orderings of ul,u2,u3, u4. For every function h such
that 2" > 0, 3¢ > 0 such that ||f — A|lc, < € and ||g — h||¢, < ¢ which implies
that Wagner’s construction produces a well defined function which satisfies the

entropy condition.

Case 3: f,g polynomials and f # g.

Klingenberg also considered the case where f # ¢ and f, ¢ are both polynomials.
See (Hsaio & Klingenberg (1984)) for details. Klingenberg considered the cases

3

where f = u?, g = u® as conjectures that this is the generic case. This would mean

that there would be little more complication in considering other polynomials (see
also Hsaio & Klingenberg (1984)).

Conservation laws with piecewise constant data have also been studied by
(Guckenheimer (1975)), but the initial data is of a different form than (6.49).
For example Guckenheimer has only three regions for his calculations but shows

that the solution to the conservation law remains very complicated.
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6.6.3 Examples

The examples given here all have analytic solutions which can be calculated. We

will only consider the problems where either
Up < Uy < Ug < U3 (650)

or

Up < Ug < Ug < U3 (651)

since these give straight line shocks (Wagner (1983)) without expansions. This

allows the solution to the problem to be calculated relatively simply.

Problem 1

Let us consider the inviscid Burgers’ equation in 2-D
e+ (Ju')e + (3u¥)y =0 (6.52)

with initial data given by

u; = —1 z,y >0
1
Uy = 5 y > 0, r <0
uo(z,y) = : (6.53)
us =1 x,y <0
uy =0 y<0,2>0
on region [—1,1] x [—1, 1]. The characteristics for (6.52) are given by
Ju oz dy
=0 === -2 = 6.54
ot o~ " o (6.54)
whose solution is the straight lines given by
U =ug, & =ugt+mrg, Y= tgl+yo- (6.55)

This problem has an analytic solution, and the solution at time ¢ is given in Fig.

6.2. The points A and B given in the diagram above are given by

—t 3t t —t

A=(rp)h B=(G5) (6.56)

and P is at the origin. These points are calculated from the shock speeds found

at the jumps in the initial data.
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s=025Y N 05

s=0.75

-0.5 0.5 X

| s=0.5

—os 50

Figure 6.2: Solution for a 2-D Riemann Problem.

Problem 2

We will again consider the inviscid Burgers’ equation in 2-D with initial data

given by
Uy = —% x,y >0
1
Uy = 5 y > 0,1’ <0
Uo(xa y) = ? (657)
us =1 x,y <0
uy =0 y<0,2>0
on the region [—1, 1] x [—1, 1]. The characteristics are the straight lines
U =ug, & =ugt+mrg, Y= tgl+yo- (6.58)

The solution can be found by applying the jump condition along the shock inter-
faces to find the speed with which the shocks are moving. The solution is shown

in Fig. 6.3 below, where A and B denote the intersection of the shocks. A and

s=0

0.5
T s=0.75 A -0.5

B s=0.25 l

s=0.5
—

Figure 6.3: Solution for a 2-D Riemann Problem.
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B are found to be
A =1(0,0.75t) and B = (0.5¢t,—0.25¢) (6.59)

at time ¢t. This solution is given in (Wagner (1983)) for various cases of u. For

more detail and explanation of calculations of expansions see (Wagner (1983)).

6.7 Legendre Transformation

Consider now the Legendre Transformation between the variables z,y and m,n

with dual functions u(x,y), v(m,n) which satisfy

u(x,y) —ma —ny 4+ v(im,n) =0 (6.60)
with m = g—;, n = g—;‘, x = %L and y = S—Z. Define the coordinate transformation
x,y,t = &n,7 and m,n,t — p,v, T (6.61)

by
r =a(&n, 1) 6.62

_@3@3

[@> TN e

St
A e

(
Y :g(fvan) t=r, ﬁ(fvan):u(xvyvt) ( :

(

(

n =n(p,v,7) t=71, 0(p,v,7)=0(x,y,1).
Now differentiate (6.60) with respect 7 to give
U—rmd—ny—am—yn+0=0. (6.66)
Let us consider the equation
up + H(z,y, u, ug,uy,) =0 (6.67)
which includes the conservation laws. Write this in the dual variables
—v4am+yn+ H(x,y,m,n) =0 (6.68)

where © = v,, and y = v,.
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We are using this transformation partly to see if a simplified set of equations
can be found and partly to link with the exact solution procedure in section 6.4.
It is also a useful viewpoint when we come to consider the MFE approximation
in chapter 7. Initially let us consider the special case of the inviscid Burgers’
equation

Uy + Uty + uny, =0 (6.69)

which can be written in the dual variables (c.f. (6.68)) as
— v+ xm 4+ yn +um + un = 0. (6.70)
The u can be substituted using the transformation (6.60) to give
— 0+ am+yn+ (mr +ny —v)m + (mx +ny —v)n = 0. (6.71)

We can now compare the coefficients of x, y and the constant term to give

m+m?+mn = 0 (6.72)
n+ni4+mn = 0 (6.73)
v+vm4+on = 0. (6.74)

Equations (6.72) and (6.73) can be written in the same form as the equations
describing blow-up in section 6.4. Add equations (6.72) and (6.73) together to
give
m+n = —m?—2mn—n? (6.75)
d

:>E(m—|—n) = —(m—l—n)2. (6.76)

Now let ¢ = m + n which gives the equation
i=—¢ (6.77)

which is the equation used to describe blow-up in section 6.4. Equation (6.74)

can also be written in terms of ¢ as
U= —vgq. (6.78)

These equations can be solved to give the solution in terms of ¢ and v which may

then be transformed back into w,x variables. Equation (6.77) can be solved to
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give

QO(f)

= O/ 6.79
1 14 qo(é)T ( )
QO(f)
=m-+n —_— 6.80
T (@) (6:50)
where ¢q is the initial value of ¢. Equation (6.78) can now be solved using (6.79)
to give
v 90(5)
- = — 6.81
v L+ qo(é)T ( )
=1Inv = In(l+q7)+InC(¢) (6.82)
=0 = C(E(1+ qo7). (6.83)
v can also be written in terms of m and n as v = Cw(j_)io The solution can now

be found for m and n, by using equations (6.72) and (6.73) to give m as

m m

= =m = A({)n (6.84)
(c.f. (6.46)). Now using this and (6.80), we can solve for m and n.

For general conservation laws the above method may also be carried out nu-
merically either by means of a projection, or pointwise, in order that a piecewise
linear representation can be found. A similar set of equations to the blow-up
equations is found after the projection is applied. This will be considered in

more detail in chapter 7. Note: if u is absent from H(x,u,u,) the characteristic

equations are the Hamiltons equations (Courant & Hilbert (1962)),

. 0H e
T = D Y= —auy (6.85)
, oH : OH

If equation (6.85) and the Legendre transformation given by (6.60) are combined
then (6.86) can be obtained. Similarly (6.86) and (6.60) can be combined to give
(6.85).

6.8 Summary

This chapter has discussed the analytic solution of conservation laws in 2-D. In

summary we have found that, although for a general conservation law a solution
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may exist, there is not necessarily a method of finding it. From the above discus-
sion it can be seen that both shocks and expansions form in 2-D and that it is in
general very complicated to calculate solutions to these problems. This leads us
to consider numerical techniques of solution in the following two chapters.
Blow-up and the existence of discontinuities within finite time are considered.
The Legendre transformation into v, m space is also investigated within the spe-
cial case of the Inviscid Burgers’ equation; links are found to exist between the
equations obtained and those found from the earlier discussion of blow-up. The
v,m Legendre transformation will again be considered in chapter 7 when the

projection of a general equations into a piecewise linear space is introduced.
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Chapter 7

Moving Finite Element Methods

In Higher Dimensions

7.1 Introduction

In two and higher dimensions we concentrate only on moving finite element meth-
ods. These methods are chosen because we wish to develop the ideas described
in 1-D (chapters 2-5). For this it is again necessary to have an adaptive method
which will also allow solutions to overturn. The standard MFE method general-
izes to higher dimensions and mostly follows the 1-D structure and ideas described
in chapter 3. However, in 2-D and higher dimensions the global and local MFE
methods differ due to the structure of the matrices formed during the implemen-
tation of the method. Moreover, the simple problems in 1-D which involved node
overtaking now incur triangle folding in 2-D, and the case of parallelism increases
in complexity.

We will first discuss the basic types of MFE in both two and higher dimensions,
highlighting the differences between these and the 1-D methods. In particular we
will examine the problems of implementation of MFE in higher dimensions.

In 2-D MFE was introduced by Alexander, Manselli & Miller (1979), con-
tinued by Djomeri, Doss, Gelinas, & Miller (1985) and developed by Carlson &
Miller (1986). In 1-D there were several variations on the MFE method described
in chapter 3. These have all been extended to two and higher dimensions and

include Local MFE, Global MFE, GWMFE and Split MFE.

130



7.2 Introduction Of Problem

Analogously to the 1-D case the equation we are solving is of the form
up — L(u) =0 (7.1)

in n space dimensions u = u(x,1) on the region € IR", with boundary conditions
given on J) and initial data given at ¢ = 0, where x = (2, ..., x,,) and the possibly
nonlinear operator £ contains all first derivatives of only first order wu,,, ..., u,,. In
the 2-D case u = u(x,y,t) and L contains derivatives u,, u,. We will not consider
problems containing second order terms in two or higher dimensions here. The
problems in 2-D of representing u,, and w,, in terms of piecewise linear basis func-
tions have been discussed in (Johnson, Wathen & Baines (1988)). Nor will we
consider systems here, for discussion of the issues involved see (Edwards (1988)).

Equation (7.1) is a scalar, nonlinear PDE whose solution evolves with time.
This type of equation may form solutions which contain discontinuities or expan-
sions (see chapter 6). Although we will discuss the MFE method for equations of
the general form of (7.1), we are really interested in overturning solutions which

are provided in the simplest manner by conservation laws. We will therefore

consider equations of the form
u; + div(f(u)) =0 (7.2)

where f is a function of u.
For such conservation laws, many finite element methods imitate the conser-

vation. To show this, let us consider a Galerkin weak form of equation (7.2)
/(ut 4 div(f(u))aidQ =0 i=1,.., N (7.3)
Q

where «; 1s a trial function with vazl a; = 1. Now summing over all elements

gives

Z/Q(ut + div(f(u)))a;dd = 0 (7.4)

= /Q (s + div(E(w)) Y s = 0 (7.5)
:>/Q(ut—|—div(f(u)))dﬂ — 0 (7.6)
= CZ/QudQJrjff(u).ds = 0. (7.7)
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This shows that the initial data is conserved for all the trial functions which
satisfy SN, a; = 1 (apart as usual from the boundary conditions) (c.f. chapter 6

section 6.3.1).

7.3 Global MFE

The 1-D Global MFE method generalizes to higher dimensions straight forwardly
so that the ideas and structures remain similar although the implementation
increases in complexity. We seek a continuous piecewise linear approximation
U to u, on simplex elements (so in 2-D the elements are triangles, in 3-D the

elements are tetrahedra, etc.). Let U be an approximation of the form

N
U=> aj(t)a;(r,s(t)) (7.8)

i=1
where a; (j = 1,..., N) are the nodal amplitudes, and «;(r,s(t)) are basis func-
tions. Here r = (24, ...,2,) is the position vector of a point, N is the number of
nodes, and s contains the nodal position vectors s = (s1, ..., sN), where each ele-
ment of s is given in coordinate form by s; = (Xy;,..., X;;). Alsoin 2-Dr = (x,y)

and each element of s is given by s; = (X;,Y;). In 2-D «; is the pyramidal piece-
wise linear finite element basis function taking the value 1 at node j and 0 at

surrounding nodes (see Fig. 7.1). Differentiating (7.8) with respect to ¢ gives

ou

N
7=1 Cl]‘
which in 2-D becomes
S L oU . OU

This can be shown to reduce to (Miller & Miller (1981), Baines & Wathen (1988))

N
U =Y (a;05 + X;8; + Yi75) (7.11)

i=1
where 3; and 7; are piecewise linear basis functions defined within each element

by
oU oU

Bi=—gx®% V= op% (7.12)
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Note: % and % are the components of the gradient of U on each element in the
X and Y directions respectively. The 3; and v; basis functions have the same
support as «;, but are discontinuous across all the element edges through node

J. See Fig. 7.1.

T~

o — basis function B or vy
basis function

Figure 7.1: Basis functions in 2-D.

Again, following the 1-D approach, we minimise the residual
1T = £(U)]* (7.13)

with respect to aj, $j, (m=1,....n y=1,..., N) in n space dimensions using N

nodes, giving rise to the N(n + 1) equations

<U—LWU),Bjm> = 0 (7.15)
where 3, (j = 1,..., N m = 1,...,n) are the n piecewise linear discontinuous basis
functions (c.f. 3;,7; in 2-D) defined by 3;,, = —%Og. In 2-D, after minimising

(7.13) with respect to a;, X;,Y; (j = 1,..., N), we have 3N equations
<U —LWU),a; >=0
<U —LWU),B;>=0 ¢j=1,...,N. (7.16)
<U —LWU),y;>=0
The sets of equations (7.14), (7.15) or (7.16) can again be written in the form

of a system
Aly)y = gly) (7.17)

_ .o T . _ .o T :
where y = (a1,81;...;an,8y)" in n-D and y = (a1, X1, Y15 ..5an, Xy, Ya)' in

2-D.
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In both cases A is square and symmetric, and consists of inner products of
basis functions in blocks. A is also positive semi-definite because it arises from
the minimisation of the form ||U]|? in (7.13), which is the quadratic term yT Ay.
This is only zero when y # 0 exists such that y” Ay = 0 (i.e. when A is singular).

In n-dimensions, the (¢, j)th block contains (n + 1)* elements and is given by

<o, > < ﬂﬂ,Oé]‘ > < ﬂln,Oé]‘ >
< Oéivﬂjl > < 62176]1 > < 61n7ﬂj1 >

A= : | : . (7.18)
<y, Bin > < Bin, Bin > e < Bins Bin >

The righthand side vector is given by g(y) = (g1, ..., gn)? where

<LU),a; >
g =| " 'C(U?’ﬂjl | (7.19)

<L), Bjn >

Before considering the structure of the matrices given by the MFE method
and subsequently the method of solution (see section 7.5), let us discuss an ele-

mentwise construction.

7.4 Local Basis Functions

In order to introduce an elementwise construction, it is first necessary to define
elementwise basis functions (Baines & Wathen (1988)). Let qbg/) be a linear el-
ementwise basis function, with support only on element &, with the values 1 at
corner v and 0 at the other corners. In 2-D element k with local node numbering
v = 1,2, 3 has the local basis functions shown in Fig. 7.2. Discontinuous approx-
imations to v and u; may now be written in terms of these basis functions and
hence a discontinuous version of the method above can be written in terms of ¢’s.

Later we apply constraints to give continuity of U.
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Figure 7.2: Local element basis functions in 2-D.

The approximation U; is then rewritten in terms of the local basis functions

E n+1

U= 3w (1)sl(x,s(1)) (7.20)

k=1v=1
where £ is the number of elements, n is the dimension, r is the position vector
of a point and s contains the positions of the nodes.
(¥)

If we now minimise (7.13) using the new approximation to Uy, over w;”’ (v =

1,2,3,k=1,..., F) we have

<oV U, —LWU)> =0 (7.21)
<o U, —LWU)> =0 (7.22)
<P U, —LU)> =0. (7.23)

In n-D this generalizes to
<oV U —LWU)>=0 i=1,...n. (7.24)

In both cases (7.21), (7.22), (7.23) or (7.24), the equations can be written as the

system

Crwy = by, (7.25)

where C is an (n+ 1) x (n+ 1) square element mass matrix with inner-products
as entries (except possibly at the boundaries where the size may be reduced). If

the basis functions are ordered in a corresponding way to the w’s then

Wy = (wgl), s wYL—H); sl wg), ey wgb—l_l))T (7.26)
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and b = {by} where
< oW, L(U) >
by — : . (7.27)
<" L) >

Since the qb;:)’s have local support the inner products in €' are zero unless the ¢’s

belong to the same element and C' becomes a block diagonal matrix. This gives

C as C = {C}} where C), = {C};} and

<o oW s <@ oMW < gl M
(1) 4(2) :
< y ¥ > .
Cri = % ‘(é ‘ . (7.28)
< ¢ oY) 5 NP G R A CLEY N

In 2-D the €' matrix is block diagonal with blocks

2 1 1
Ay
_ —k 9
=" 1 21 (7.29)
11 2

where A} is the area of the element k.

Now, as we shall see, enforcing the constraint that (7.20) is the same as (7.9)

gives

M;y; = w; (7.30)
where M; is a rectangular matrix obtained by writing o, 8, where 8. = (81, ..., 3jn)
in terms of qbg/) (v =1,..,n+1). The M matrix is made up from the rectangular

blocks M; as ‘diagonal’ entries, using nodal numbering.

From (7.9)

N
Ut = Z(a]oz]—l—ﬁ'JSJ) (731)

=1

e (7.32)

ECH

I
<

where a = (ozl,ﬁir; ey QN [3%) Using the definition of the B, basis functions

(7.31) becomes
N

Ut == Z(a] — VUS])Oé] (733)

J=1
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Similarly, from (7.20)
U =wle (7.34)

where ¢ = {qb;:)(r,s(t))} Since each «; is the sum of some sets of qbg/) we can
write

a=M"e, (7.35)

where M is a rectangular matrix of 1’s, 0’s and components of VU. M is block
diagonal (using nodal numbering) with blocks M;. Since, further, A =< a , ¢ >
it follows that
A=M"CM (7.36)
also holds in two and higher dimensions.
The local MFE method is obtained by using the local basis functions and will
be described in section 7.9. We will now use the decompostion of the global MFE

matrix A to examine the solution of the equations obtained from that system.

7.5 Solution Of MFE Equations

We now return to the global MFE equations (7.14), (7.15). In 1-D M and C are
block 2 x 2 diagonal matrices. From this form it was noted in chapter 3 that the
equations decouple into trivial 2 X 2 matrix systems in general. The solution is
therefore straightforward, although there do arise some situations in which the
2 x 2 matrices cannot be inverted, namely, when either M or C' are singular due
to the configuration of the solution.

Since it has been shown that the decomposition A = MTCM occurs for
higher dimensions, although the matrix M does not remain square, it is possible

to exploit this form in the solution of the system Ay = g.

7.5.1 Non-singular A
It A is non-singular then the system
Ay =g (7.37)

can be solved for y. However for n > 2 there is no longer the decoupling and

simple inversion technique which exists in 1-D. The size of the matrix A will
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usually be very large (if any physical problem is tackled) and hence an efficient
solver is required. The best solver is found to be the conjugate gradient method
with diagonal preconditioning, using the property of eigenvalue clustering given
by (Wathen (1987)) which is solution and mesh geometry independent.

It we consider the matrix D, which contains all the diagonal blocks of A, then
the eigenvalue clustering results (given in chapter 3 section 3.2.1) (Wathen (1984))
extended to higher dimensions, prove that the eigenvalue spectral radius p of

D1 A always satisfies
n

p(DTMA) €[5, 1+ 5

] (7.38)

where n is the number of space dimensions. This result is independent of the
number of nodes and the mesh configuration and is valid providing there is no
element folding or parallelism. This result indicates that the conjugate gradient
method (Golub & Van Loan (1983)) with D~! preconditioning should converge

very rapidly, which is borne out in practice (Johnson, Wathen & Baines (1988)).

7.5.2 A Is Singular

Now consider the case where A is singular (see Wathen (1984)). Returning to the

decomposition
A=MT"CM, (7.39)
if A is singular, then
dy # 0 such that Ay =0 (7.40)
= vy Ay =0 (7.41)
= y'M'CMy =0 (7.42)
= Jw such that wliCw =0 (7.43)
where
w=My. (7.44)

From (7.43) and (7.44) it can be seen that either C is singular or w is zero (with
y #0), i.e. M is column rank deficient (However the converse is not always true

as we have already seen in 1-D, chapter 3 section 3.5.)
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M is column rank deficient

To examine this problem, it is necessary to first find the form of M. Since M is
given by writing the a;, B, functions in terms of the local basis functions qb;:),

consider the identity
Up =3 (dj05+ 3 $imBim) = D D w6, (7.45)
m=1

7=1 k=1v=1

This gives
m=1

oM = q (7.48)

on element [. Then (7.47) becomes

QU
wt =a;— Y o —Sim. (7.49)
m=1 m

(w)

In the matrix M, therefore, the row corresponding to w;"’ contains

ou ou
(17 _871'17 ceey _al'n) =p

I (7.50)

say. If we assume this row lies in the ith column block, then for each element
k surrounding node 7 a vector similar to p? will also appear in the ith column
block. The matrix M can therefore be reordered into a block diagonal matrix by
reordering the elements of w into a nodewise list. This means that there exists a
permutation matrix ¢) such that N = QM where N has rectangular blocks. The
block ¢k has the same number of rows as elements surrounding node ¢ and n + 1
columns corresponding to p}.

We now consider the case when M or N becomes column rank deficient. This
is equivalent to considering the row rank deficiency of {p!}, since M is column
rank deficient if there exists a non zero linear combination of the components of
p’. This gives rise to two levels of parallelism, which is different to the simple

case which occurred in 1-D. Following Wathen (1984) we will give an example in
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2-D for clarity and in order to emphasize the differences between one and higher
dimensions.

Let us consider the system

w = My (7.51)

where the blocks of M are

Then M is column rank deficient if, for all pairs of elements & and [ adjacent to
node j, (i) my = my and n, = n; or (ii) 3 A\, p € IR such that A, g are not both
zero such that Amy 4+ png = Amy + png. As in 1-D this type of degeneracy may
again be dealt with by considering a block of A

<y, > <Oéi,ﬂ]‘> < o, >
Ay =1 <Bua;> <BiuBi> <Buv> |- (7.53)
<vhoap > < B> <,y >

There are two cases to consider.

Case (i)

When my = m; and n, = n; then f;,~; are parallel to «; in all elements k, [
surrounding node j. In this case there is a unique m and n (Vk, [) and the solution
in the whole patch of elements surrounding node j is coplanar.

Hence the MFE equations

<U —=LU),a; >=0 (7.54)
<Uy—LU),B; >=0 (7.55)
<U —LWU),v >=0 (7.56)

are linearly dependent. The  and ~ equations may be omitted, together with the
corresponding columns of A. This gives a non-singular matrix and the solution
is consistent with any values of X and Y, which may then be chosen arbitarily.

A reduced system
AV )y =g"(y") (7.57)
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is therefore solved (as in 1-D), to give a complete solution
y=y" +clu; (7.58)

where u; = (u}, u?)T is the null vector of the full system, which has components

of the form

= (0,0,0;...;m;,1,0;...;0,0,0)" (7.59)

oL b Sl

= (0,0,0;...;n,,0,1;...;0,0,0)" (7.60)
and ¢ = (¢, ¢;)T can be chosen to satisfy some external criterion, e.g. averaging.
Case (ii)

In this case 4 A, , where A and p are not both zero such that

Amyg 4 png = Amy + un;. (7.61)

It follows that A3; 4+ pv; is parallel to «; in all elements k, [ surrounding node j.
The vectors py = (1, —my, —ny)? Vk surrounding node j span a 2-D space and

the null space is the orthogonal space. The null space may be spanned by
n = [my(ng —ng) + (mg — my)ng, ng — ng, my —my (7.62)
where k, [ are chosen such that py # p;. The set can then be written in the form
y =y +cu,; (7.63)
where y* is the solution of the reduced system and
u; =(0,0,0;...;n;...;0,0,0) (7.64)

and ¢ is a constant chosen to satisfy external criteria.

7.5.3 C Is Singular

We have shown that if A is singular, then MTC M is singular which implies that
either €' or M is singular. If C' is singular then A, = 0 for some k. i.e. one of

the triangles has zero area.
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On the other hand all this depends on M and C being independent. However,

in the overturning case, M, C are obviously dependent so we will reconsider the

singularities of A.

If we consider the global matrix A, then it has been shown that it has the

decomposition A = MTC M where

1 —mjl —nﬂ
A= 1 —my, —ny,
1 —m]‘t —n]‘t

T
1
2 11
ji
12121 1
11 2
1

are the blocks of the M and C matrices and ¢ is the

rounding a node. A can be rewritten as

so that the blocks are

A7 00
Ay=MI| 0 A7 0
0 0 A;

which is

A= MY D'ED)M

1

2 1 1 A?
1

12 0

11 2 0

Ay = MI D] E,Dy M,

where D = diag{ D, } and £ = diag{F},}.
Let N = DM and collect the terms of N from the global A matrix in a

nodewise manner to give

This gives

1 1 1

2 2 2

1 1 1

2 2 . —_A2pn.
Ajl _Ajlmjl Ajlnﬂ

1 1 1

2 2 . 2 .
Ajt —Ajtm]t —Ajtn]t

vIMTCMy =0
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—My TN

number of elements sur-

(7.66)
0 0
AP0 | My (T67)
0 A
(7.68)

(7.69)

(7.70)



= yINTENy =0 (7.71)
z'Fz =0
= (7.72)
where z = Ny
However it can be seen that F is non-singular which implies that z = 0 with
y # 0, which implies that N7 is rank deficient.

Since the singularity occurs when the areas tend to zero then it is useful to
separate these from the other terms so let mj = pji/Aj; and ny = ¢;1/Aj with
p and ¢ non-zero in general. The gradients m;; and n;; can be chosen to give N
with linearly independent columns.

In a similar manner to 1-D we will find the QR decomposition of the N matrix
in order to show that there are conditions under which it is non-singular. Let us

write N as a vector of three column vector ¢y, ¢, and ¢3. The QR decomposition

will be given by

1 Tia T3
N =(ci,¢3,¢3) = QR =(qQ1,92,43) [ 0 795 723 |- (7.73)
0 0 ra
Now using Gram-Schmidt orthogonalization (Golub & Van Loan (1983)) to give
the QR decomposition, we get

c
i = — = riy = ¢ where ¢ = lcq]. (7.74)
6]

The second vector becomes

7"22612 = C2_(él1-c2)éll (7-75)
_ CQ_(Cl‘fQ)cl (7.76)

5]
= C. (7.77)

Then q, = g which implies that ry; = €' where C' = |C|. The third vector is

slightly more complicated and is

7“33613 = €3 — (611-(33)611 - (612-(33)612 (7-78)
(Cl.Cg) (C.Cg)
_= C3 — c% C1 - 02 C (779)

To avoid the singularity (occuring as the solution becomes multivalued) we

require r1; # 0, 795 # 0 and ra3 # 0.
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For r1; # 0 we require that ¢; # 0, which implies that >; |A;| # 0 which
means that at least one of the triangles surrounding the node must have non-zero
area.

The other two cases are much more complicated and involve values of u: hence
they are based upon the ideas of parallelism described in section 7.5.2. For some
values of the gradients with only one non-zero area the solution can overturn
without causing singularities.

The second case where r95 = (' is required to be non-zero has to be expanded.

For C to be non-zero then

€1 (7.80)

il
which can be rewritten in terms of vector products as

1
C = ?Cl X (C2 X Cl)' (781)

1

For ry; # 0 we require
a)c; #0

b) ca x ¢y #0

¢) ¢y not parallel to c,.

Now if r11 # 0 then (a) holds. If we consider (b) then we now require that
c1, ¢ to be non-zero and ¢; not to be parallel to c;. we already require ¢; to be
non-zero, so Now we also require ¢y to be non-zero. Finally for (b) to hold we also
require ¢; # ¢y, which means that not all p;/A; can be equal. This corresponds
to parallelism. (c) holds since by definition of the cross product ¢; cannot be
parallel to ¢y X cy.

The final case to consider is even more complicated and yet more involved with
the cases of parallelism. After some calculation it can be seen that if 3A; # 0 and

provided that no parallelism occurs then we can pass through the singularity.

7.6 Time-stepping

In two and higher dimensions the MFE method gives rise to a system of ODE’s
which must be integrated to give the solution. The method of time-stepping to
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be applied is dependent upon the MFE approach. If penalty functions are used
then an implicit solver must be used (Miller & Miller (1981)) but otherwise then
the time-stepping may be carried out using any convenient method. e.g. Euler
explicit

y =yt + Aly” (7.82)

where y" = (...;a;,8;;...) (c.f. Johnson, Wathen & Baines (1988)).

7.7 Regularization

There have been many regularization techniques, each with different strengths
and weaknesses, depending upon the problem under consideration. The aim of
these methods is similar to that of penalty functions (see chapter 3), i.e. to
constrain the nodes so that no element folding occurs.

The regularization is carried out by adding a variety of terms dependent on the
type of regularization under consideration. These terms can include such terms as
tangential velocity (see Baines (1986), Sweby (1987)) or tangential acceleration.

We will not consider this further since it is not appropriate because we wish
to allow the solution to overturn (following the 1-D approach). This means that
elements must cross thus eliminating the need to apply constraints to prevent
this.

Besides the basic global and local approach, there are other variations of the

MFE method, analogous to those described in 1-D.

7.8 Gradient Weighted MFE

The GWMFE method introduced by Miller can also be extended to higher di-
mensions (Carlson & Miller (1986)). We again consider the PDE, u; — L(u) = 0.

The same approximation to u is made and U; becomes

N
U= dja; +X;8; + Y, (7.83)
j=1
or
NoooUu . oU . 0U
N x v 84
v ;“Jaaf ox; Ty (7.84)
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in 2-D and either
N N
Uy = (ai(t)ej + Y 8i(t)Bjm) (7.85)
m=1

i=1
or

N ou .
Ut = Z Cl]‘(t)i + S]‘(t).vS]U (786)
j:l aa]

generally.

According to Miller the problem with basic MFE is that the Ly, norm is
inappropriate for problems with moving fronts in that all the nodes move to
the steepest part of the curve. In 2-D it is argued that the term (1 + ui +
uf/)_% is a bounded L, function of the surface area, which is independent of
the steepness of the front, and hence should produce a more satisfactory nodal
placement. A similar argument can be applied to higher dimensions in order to
find a satisfactory weight function.

Consider therefore the minimisation of the residual

U, — L(U) (7.87)

using the gradient weighted norm
10— ek = [0 - £)ds (7.58)
- /[U — L(U)Pwdzdy. (7.89)

1

The weighting function w = (1 +u2 + ui)_i in 2-D helps to space the nodes out,
so that they move to regions of high curvature.
This method now gives rise to the MFE equations
(U= LU),ai)y = 0 (7.90)
(U = L(U), Bim)y = 0 (7.91)

where : = 1,...,N and m = 1,...,n. In 2-D we obtain the system

Uy = L(U),ai)y = 0 (7.92)
(U= L(U), Bij)n = 0 (7.93)
(Uy=L(U),yi)y = 0 (7.94)

where (.,.)n is the inner product associated with the gradient weighted norm.

The equations obtained are then solved in a similar manner to those generated

using the global MFE method.
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7.9 Local MFE

The local MFE method in two or more dimensions uses the same ideas as the 1-D
method. U; is approximated discontinuously using the local basis functions qbgf)

so that
E n+1

U= 3wl (1)s)(x,s(1)) (7.95)

k=1v=1

where £ is the number of elements, n is the dimension, r is the position vector
of a point and s denotes the position of the node. In 2-D this simplifies to

E
U= S0+ ufef? + o) 7.9

k=1

where qﬁgj) are the local element basis functions. There now follows the use of the
local basis functions in obtaining a decomposition of the global MFE matrix. We

again minimise

1U: = LU (7.97)
over wgf) to give
<oV U —LU)>=0 i=1,.,n+1 (7.98)
which is
<oV U, —LWU)>=0 i=1,23 (7.99)

in 2-D. For each element this is written as

which is a 3 x 3 system in 2-D, where C} is

2 1 1
Ay,
_ Sk 101
Co="T50 12 1], (7.101)
11 2

Ay is the area of element £ and

<o\, L(U) >
br=| <o, c()> |- (7.102)
<o L) >
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In n-D we obtain the same equations as in the section 7.4 on local basis functions
(see equations (7.26), (7.27), (7.28)).

As in section 7.4 we obtain the system

for each node j. In two and higher dimensions the M matrix is rectangular so

that (7.103) cannot be multiplied by its inverse. Instead we solve the system
M!ID;M;y =M D;w, (7.104)

where D; is the diagonal of C;. The local and global methods in two and higher
dimensions are not equivalent because D is used and not C.
The GWMFE method above (see section 7.8) has an analogous local method

which can be found by using the (.,.)x inner product in the local method.

7.10 Local And Global MFE Methods

In 1-D the Local and Global methods are identical but in two and higher dimen-
sions this does not remain true. Local methods can also be used in 2-D, but here
we are more interested in considering them as two stage procedures (see chapter
4 and chapter 8) in order that overturning solutions may be calculated.

There are several varieties of two stage methods which give rise to both local
and global methods depending upon the type of weighting function used in the
minimisation. In 1-D these methods would only give rise to one method because

of the equivalence of local and global MFE.

7.11 Legendre Transformation In 2-D

Now consider the transformation (described in chapter 6 section 6.7) between the

variables @,y and m,n with dual functions u(x,y) and v(m,n) which satisfy

u(x,y) —ma —ny +v(m,n) =0 (7.105)
with m = g—;, n = g—;‘, x = %L and y = S—Z. Let us consider the equation
up + H(z,y, u, ug,uy,) =0 (7.106)
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and write this in terms of the dual variables as (see chapter 6 section 6.7 )
— o4 am+yn+ H(x,y,u,m,n)=0. (7.107)

Now approximate 4,2,y by U, X, Y in a finite dimensional space where (7, X, Y
are piecewise linear. We now project H into H into the space of piecewise linear

functions on element k to give
R=—Vi+ XM+ YN, + H(X,Y, Vi, My, N},) (7.108)

where [r](X, Y, Vi, Mg, Ny) = [:](X, Y, M X + N Y — Vi, My, Ni) is linear in X, Y.

Since H is linear in X,Y it can be written as
]V{ — ]v{ko(‘/kv Mkak) + Xﬁkl(‘/kva(ka) + Y[v{kZ(‘/kv Mkak) (7109)

Now the residual R will vanish for all X, Y if

M, = —Hy(Vi, My, Ny) (7.110)
Ni = —H(Vi, My, Ny) (7.111)
Vi = Hyo(Vi, My, Ny) (7.112)

(c.f. the equations given analytically for Burgers’ equation in chapter 6 section

6.7), which in this case are given by

Hyo = (M+ NV (7.113)

Hy = (M+N)M (7.114)

Hy = (M+ N)N (7.115)
which implies that

M, = —(M+N)M (7.116)

N, = —(M+N)N (7.117)

Vi = (M+N)V (7.118)

which are numerical versions of (6.72), (6.73) and (6.74). in chapter 6.
It should also be noted that the projection into piecewise linear space can be

used in developing the following method. Since (7.109) is linear in X, Y then Hy
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is the gradient of U in the X direction and H,, is the gradient of U in the YV

direction. As the area of element £ — 0 then

. " H

. g OH

N=H 1y = ——— 7.120
k2 - uy ay ( )

as in the theory of characteristics. Thus in 2-D the MFE method in v, m, n space is
again a discretisation of the method of characteristics. The inverse transformation

in the analytic case leads back to

In the numerical case the transformation back to U, XY is however a further

approximation to maintain the topology of the grid.

7.12 Split Method

This method is based upon MFE but the basic procedure is divided into two
sequential steps. In 2-D this allows #,y to be solved separately from % since the
equations simplify to give a decoupled system.

Consider the equation

wp — L(u) =0 (7.122)

where v = u(x,t), x = (21,...,2,) and L(u) is a function of z,y,u and its first

derivatives. The usual MFE method leads to the global MFE equations

<U—L(U),a;>=0  i=1,.,N (7.123)
< U= LWU),Bim >=0 m=1,..n (7.124)

where «;, 3;,, are the usual basis functions n is the number of space dimen-
sions and N is the number of nodes. Now consider (7.106) for which L(u) =
—H(x,y,u,uz u,). The split method replaces the 8 equations (7.124) by

- oH
=N Gy,

J

ya; >=0 1=1,...,.N, j=1,..n. (7.125)

The idea is justified from the equations above (section 7.11) by extending the

characteristic theory. In the limit as the number of nodes increases we have
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(7.119), (7.120) which leads to

OH oOH

- = 7.126
i 8ux] am]‘ ( )

where m; = u,,. The equations are solved by minimising

. OH
X, — —— 7.127
H TooM; )
over Xj and similarly for Y]

U — U, X —U,Y — L(U)| (7.128)

over U.

7.13 Lagrangian Methods

From chapter 6, the equations of interest here are the conservation laws. Ana-
lytically the method of characteristics and the Lagrangian method are the same
(see chapter 6 section 6.3.4) for conservation laws, although this is not true for
more general equations. The Lagrangian method is identical to the method of

characteristics since if we consider the equation
u; + a(w)u, + b(u)u, =0 (7.129)
then the Lagrangian method becomes
uw=0, @=ualu) y=>b(u). (7.130)

This is same as the characteristic method described in chapter 6 where wu; is
written as @ — fu, — yu, substituted into (7.129) then the coefficients of u,,u,
are compared to give (7.130). The difference between the two methods arises in
the discretisation of the equations. This can be more clearly seen by considering
the equation

u+ H(z,y,u, up,uy,) = 0. (7.131)

The Lagrangian method is given by

0=0 (7.132)



and any values of ¢ and ¥ satisfying
Tu, + yu, = H. (7.133)

The method of characteristics solution is

) OH oH

. oH

= o (7.135)

j = o (7.136)
Jdu,

Note: @ # 0 and only if H = a(u)u, + b(u)u, does it become so. If we now
discretise these equations using finite elements or finite differences, it can be seen
that different sets of equations can be found. In particular @ # 0 although it may
be small. Note: The MFE methods described (above) are all slightly different, but
they are all approximations to the method of characteristics or the Lagrangian
methods, so % will always be small. Note: The Lagrangian method is approximate
when applied numerically. This occurs because the linear elements between the
nodes will not necessarily remain linear when the Lagrangian method is applied

to a general conservation law.

7.14 Boundary Conditions

There are several types of conditions that may be applied to the boundaries but
we do not consider them in detail here. If we consider fixed boundary conditions,
then we can apply either Dirichlet, Neumann or a combination of these conditions
at the boundary. If boundaries are fixed this may cause large elements near the
boundary since the first non-fixed node may want to move into the region while
the boundary nodes remain fixed. An alternative to this is moving boundaries.
This eliminates the large elements around the boundary but the region will now

not remain fixed. e.g. it will change shape and size.

7.15 Summary

In this chapter moving finite element methods have been considered in two and

higher dimensions. The problems of their implementation have been discussed,
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including the singularities of the matrices caused by element folding or parallelism.

There is a problem in the minimisation of the norm when the solution becomes
multivalued because the norm is no longer well defined. This problem also occured
in 1-D and was solved by minimising a different norm which remained valid when
multivalued solutions formed. This idea is extended to two and higher dimensions

in chapter 8.
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Chapter 8

Overturning In Higher

Dimensions

8.1 Introduction

The method of obtaining shocked solutions discussed here involves the calculation
of multivalued solutions, followed by the recovery of the shock position from the
multivalued curve. The calculations are made using both Lagrangian methods
and MFE based methods (see chapter 7). The basic MFE method is invalid when
used for overturned solutions since the Ly norm of the residual does not remain
positive definite, but may be rewritten as a two stage procedure where the norms
in both stages remain positive definite (see chapter 4). These methods are valid
in two and higher dimensions, however we will only describe the implementation
of the various methods in 2-D. This is because as the number of dimensions
increases, then so do the size and complexity of the matrices.

We follow the pattern of chapter 4, with the work split into three separate
sections. In section 8.2 the theory describing the replacement of the L, norm by
a sum of two other norms is given. In section 8.3 the numerical implementations
of the new methods are described followed by section 8.4 which contains the

algorithm for fitting the shock.
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8.2 Summary Of Description Of Overturned
Norms

Here we will give a summary of the work described in chapter 4. Chapter 4 was
restricted to 1-D whereas here the work is described relating to two and higher di-
mensions (see also Baines & Reeves (1990)). The usual Ly norm becomes invalid
as the solution becomes multivalued. As a consequence, the L, minimisation used
in the the MFE methods is no longer appropriate. In the 1-D theory of chapter
4, the Ly norm is replaced by the sum of two different norms. Here we extend the
argument to 2-D but first we summarize the work of chapter 4 sections 4.1-4.3.

Let us consider the equation
ug — L(u) =0 (8.1)
then the piecewise linear approximation is given by
U—LU)=R (8.2)

where R is the residual, U € S and U; € T. S and T are generally distinct
spaces of piecewise linear functions. Let S be a space of piecewise discontinuous
functions and R* is the L, projection of R into S*. The minimisation of R can

be rewritten as

IRI* = |17 — =) + | Bl (8.3)

(since < R — R*, R >= 0, see chapter 4, equation (4.5)). This means that the
minimisation can be split into two sequential projections. It is found that there
still remains a problem when the solution overturns (because ||R*|| is not valid
once the solution becomes multivalued).

Let us now rewrite |[R*|| as an [y norm (a discrete version of the Ly norm as
defined in chapter 4, equation (4.8)) using a coordinate system in S*. To do this
it is necessary to introduce sets of basis functions {¢;} in S*, {6;} in T where

{w;} and {¢;} are the corresponding sets of coefficients. This gives

LU) = Zwi¢i7 Uy = ZQi5i- (8.4)
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After some manipulation we find that
1B = | S qims — wl (33)
i

where

8 = pij i (8.6)

J

Now ||R*||? becomes
IR(1F =" O qimgi — wi) (Y quuuar — wi) < i, dp > (8.7)
7 k 7 {

which is a new finite dimensional /; norm of the coordinates of R* (moreover it
is unaffected by overturning).

We may also replace | R*||* by
1=z = D233 digi — wi) (3 aupar — wi) (4, b)) (8.8)
Pk ]

where ((.,.)) is defined by

< ¢27¢ > 1 :]
(¢4, 6;)) = { T (8.9)
0 LF
to give a new norm (Miller (1988))
IR = 1R — BRI + | B7II5 (8.10)

which corresponds to a 2-stage or a local method. These norms decouples the
equations so that they are separable element by element. This norm remains
valid when the solution overturns and allow us to write the MFE methods in two

stages.

8.3 Implementation Of The Methods In 2-D

We shall now consider the implementation of a variety of MFE methods (in
2-D). The descriptions which follow are applicable to both overturning and non-
overturning solutions but are only necessary if overturned solutions are to be

calculated.
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8.3.1 ¢ Basis Functions (2 Stage Method)

This is a two stage method using ¢ basis functions which can give either a global
or local method. The first stage is common to both methods and the second stage

differs only in the choice of weighting function.

Stage 1
Consider the equation
up — L(u) =0 (8.11)

where u = u(x,y,t) and £ contains derivatives u,, u, only on a region R, with
Dirichlet boundary conditions. Using ¢ basis functions, u is approximated (dis-

continuously) by Uy in element k where

O = allof + a0 + a0 (8.12)
X = x4 X0+ X6 (8.13)
Vo= Y6 4706 +¥ef (8.14)

where ag), X,gi), Yk(i) are the values of ¢, X, Y at a node of element k correspond-

ing to the local node numbering of the basis functions. Now % is given (also

discontinuously) by
oU,

o = @) +alel + e

S0+ K60 4 X

(Vi) + 70 + Vi 6l (8.15)

where my and nj are the U, and U, gradients in element k. This can also be

written as
TR U (.16
o = X g 87
o = D X 819
so that N
oU
O — gD 1 062 4 ufl o) (5.19)

157



We first minimise ,

ou,

H’“ — L(U) (8.20)
over each element k with respect to w,(g) (¢ = 1,2,3) and E is the number of
elements. This gives the system

< U — L(Uy), ¢ >=0 (8.21)
< U —L(U), 8 >=0 (8.22)
< U, — L(U), 6!V >=0 (8.23)
which can be written as
for each element k, where
2 1 1 <M L) >
A
Co="5 12 1| b= <ol L) > (8.25)
11 2 <P L) >
and Ay = area of element £,
ol
e

Taken over all the elements, the C' matrix becomes block diagonal, with block
entries (. The w’s may now be calculated over the whole system.

This can be rewritten as the minimisation of (8.20) with respect agj), X,gi), Yk(i)
(1 =1,2,3). This leads to a square system of 9 equations in 9 unknowns for each
element k, but the system is singular. The situation is more complicated than
in 1-D where a,$ were defined on each side of the node, because here d,X,Y
are defined at each corner of each element which meets the node. For continuity
all values of @, X,Y surrounding the node j need to be equal. This may be
obtained by applying a set of constraints to these values, which returns the system
to the smaller node-based numbering and the familiar non-singular systems are

obtained.
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The singular system can be written as

Eye =G

k

where 5 = (af", X[, V05, X V4l X, 710)

T T
2mpm;  mpmm;  mipm;

— T T
Ey = mgm; 2mpmj; Im;mj

12

<o L
<. L

<o L

Gy,

< —nk¢k

< mk¢k 7'6(
< mk¢k 7'C(U)
£(

< mk¢k )

T
T

T

L)
L)
L)

AVAREAVARYS

U)

U)
U

V. V. v Vv Vv

L
L

mym? mym! 2m;m?l

(8.27)

(8.28)

(8.29)

< _nk¢k 9

(U)
(U)
<—nk¢ka () >

and my = (1 —my —ng)?. It should be noted that Fy is a 9 x 9 matrix.

Stage 2

For both the global and local method, we use the minimisation of (8.20) which
leads to either Cw = b or Fy = G. In the Miller and Carlson approach we can
define F 4 to be

2mm” 0 0
A . N
Ew="5 0 2mm? 0 = MI DM, (8.30)
0 0 2mm?”

where Dy, = Diag{C}} so that E.y; = Gy may be written as
Eunyr = Eg. B Gy (8.31)

We now apply the constraints as before. To apply constraints to the system

Ly, = Gy, let us consider node j, where j is surrounded by p elements. Let Yj
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be given by the values of (4, X(l), Yy(l)) v, being the numbers of the p elements

14

surrounding node j, and where [ is the local element numbering (I = 1,2,3)

referring to node j.

ay a;
g Y
(Vv)
where
I3
1 00
I3
R; = ) , Is=]10 10
' 00 1
I3

Then over the whole system this gives
Y = Ry
where R = diag{ R;} where R is a non-square matrix and

Thus to minimise this over y gives

min||(£y = Y)W

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

where W is a weight function. For the global method W = Ez and for the local

W = E? where E; = Diag{E}. This can be shown to be equivalent to the usual

MFE system.
8.3.2 Introduction To |||.||| And ¢ Basis Functions
Using the [||.||] norm and the usual element basis functions ¢ (see chapter 7)

(Baines & Wathen (1988)), (Miller (1988)) showed that there exists an equiva-

lence between the local MFE method and a new set of basis functions ¢ with the

usual norm.
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Consider the elementwise basis functions ¢ where the new basis functions ¢

are defined by

) = e+ 2+ 000 3
where
<ol o) > = <o) o) > (8.38)
<HPH > = 0 (3.39)
<oP s> = 0 (8.40)

Since ¢ is linear it may be defined as

N . .
o =3 pel, (8.41)
=1
<ol o) >=< o) o) > (8.42)
and
<M 4D >=0 =2 . N (8.43)
This gives
W _ 1, " @_ _ (n_ —2 (nt1) _ —2 2 44
Py tog P ==k = P m— (8.44)

where n is the space dimension, so in 2-D the basis functions for element £ are

. 3 1 1

o) = o) 5o - 5ol (8.45)

. 1 3 1

s = Ly e Lo (8.46)
2 2 2

. 1 1 3

o) = —59521) - §¢§3) + §¢§f) (8.47)

and the & basis functions are defined as
= o) + o) + o) (8.48)

with Bk = —kaNék, "N}/k = —nkONék.
The methods described below are all variations on the standard MFE meth-
ods described in chapter 7, however either the basis functions or the norms are

replaced by by those described in this chapter.
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8.3.3 ¢ Basis Functions (2 Stage Method)

This is the same method as chapter 7 section 7.4 where we have ¢ basis functions.
Again either a local or global method can be found, dependent upon the weighting

function chosen.

8.3.4 & Basis Function (1 Stage Method)

Note: The use of the & basis functions and the global method gives a one stage
method. i.e. we use the global method described in chapter 7 section 7.3 but

replace the « basis functions with & basis functions.

8.3.5 ¢ Or « Basis Functions And |||.||| Norm

There are two methods which arise from the use of ¢’s with |||.||| and two forms
with the a and |[||.||| with a global or local method being determined from the

weighting function.

8.4 Calculation Of Shock Position From Over-
turned Curve

If we recall the methods of shock recovery in 1-D, there were two separate ap-
proaches. One method was based on the TC operator of Brenier and the second
was based on conservation of area. We will now consider how these methods may
be extended to 2-D.

Let us first examine the TC operator of Brenier. If we consider an overturned
region, see Fig. 8.1, where A is higher than B, it can be seen that for a smooth
solution the heights should reduce from A to B. If we applied the TC operator,
the connections of the nodes would prevent this occurring without the application
of either a regridding or reconnection of the nodes. Regridding or reconnection
is expensive to carry out, especially since this method gives its best solution
when applied after every time-step (see chapter 5 section 5.4.3). This means that

regridding would have to be carried out after every time-step. For these reasons
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Figure 8.1: Overturned region in 2-D.

we do not pursue this approach further.

Let us now consider the equal area method and its extensions to 2-D. This
method now relies on equal volumes, conditions for which can be found. Unfor-
tunately, there is now not enough information known to find a unique position of
the shock, since the extra degree of freedom is not controlled. This means that
this method is not satisfactory by itself although the 1-D version of the method
works well.

We nevertheless consider how we can apply the 1-D equal area method to our
2-D problem. One approach to a shock recovery scheme is to take a 1-D ‘slice’
through the region (in the direction of the wave speed) and apply a 1-D recovery
method to this slice. The reason that the shock normal is used is that we are using
a locally 1-D approach normal to the shock. This is consistent with tangential
continuity. The algorithm below describes in more detail how this method may

be used in the calculation.

8.4.1 Algorithm

1) Find the region where the elements are overturned (i.e. the elements have
negative area). Note: the shock position will occur within this region R. See Fig.
8.2.

2) Find the edge of the region R comprised of the sides of some of the triangles
in the region. These edges are now ordered in such a way as to give a continuous
connected line I" which defines the edge of the region R. See Fig. 8.3.

3) Calculate a ‘slice’ through the region from each edge node on I' in the direction
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Region R

Figure 8.2: Overturned region in 2-D.

Figure 8.3: Shock region in 2-D.

(|§—|, é—|). At each entry to an element whilst crossing the region, the height of the
elements is found. Note: There will usually be more that one layer of elements
so several heights need to be found. This information is used to construct a
piecewise linear curve (c.f. 1-D). See Fig. 8.4.

4) To each ‘slice” a 1-D shock recovery method is applied. The shock position is
then calculated from this.

5) Join up the 1-D shock positions in order to obtain a 2-D shock curve S. Note
that it is possible to calculate a new direction for each slice so that it will be
normal to the shock. This can be done by iterating around steps 3, 4 and 5 but
replacing the direction of the slice in step 3 by the new direction calculated in

step 5.
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1-D slice

Figure 8.4: ‘Slice’ through overturned region.
8.5 Summary

In this chapter the modifications needed to the MFE methods in 2-D (see chapter
7) in order that overturned solutions can be calculated are described. The numer-
ical implementation of these methods is discussed with special reference to the
types of norms and basis functions which can be used. Finally, a description of
an algorithm which may be used to recover the shock position in 2-D is given. In
the following chapter, numerical examples are given to demonstrate the methods

described here and in chapter 7.
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Chapter 9

Numerical Results And Examples

In 2-Dimensions

9.1 Introduction

In this chapter we consider equations of the form

u+ fo+9,=0 (9.1)

where f, g are functions of u = u(x,y) and initial data is given on the region ().
This type of equation forms shocks and/or expansions. The nonlinearity of these
equations leads to the formation of multivalued solutions. The type of analytic
solution and the behaviour of these equations was discussed more fully in chapter
6.

The methods of solution applied to this equation are the Lagrangian method
(see chapter T) and the 2-stage local MFE method (see chapters 7 and 8). These
methods both allow the formation of multivalued solutions which arise from fol-
lowing the characteristics (see chapter 7). These multivalued curves can then be
used to obtain the shock position by applying a recovery technique. The shock
position is recovered from the overturned solution using the ‘1-D’ slicing technique

described in chapter 8 section 8.4.
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9.2 Description Of Test Problems

We will consider a variety of problems in order to illustrate how the solution
technique copes with different cases. The problems to be considered include the
formation of both shocks and expansions, thus illustrating the capabilities of the
method. Examples of Riemann problems are given, including problems where
f # g. Figures of the initial data are also given with the test problems in order
that they may be compared with the final multivalued solution obtained. Let us
first describe the test problems.

9.2.1 Problem 1

The equation we are solving here is similar to inviscid Burgers’ equation in two
dimensions, which is the simplest equation that gives rise to the formation of
shocks and expansions. We will change the sign in the inviscid Burgers’ equation
since this will move the data towards the origin and make the results in the figures

below easier to see. The equation we consider can be written in conservation form

e e

Uy — Uy — ULy = 0 (9.3)

as

or as

on the region [0, 1] x [0,1]. The initial data is given by the equation

Y (tanh(9z —I—Sy —9)+1) (9.4)

and is shown in Fig. 9.1. The boundary conditions used are Lagrangian (see
section 9.4), so that the region moves as the solution evolves. The initial data
moves under the influence of the equation to form a straight line shock. This
problem is used to demonstrate that the method can cope with the simple case
where the shock position can be easily verified. The second problem we will

consider involves the formation of a curved shock.
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Figure 9.1: Problem 1 - Initial data given by a tanh curve.
9.2.2 Problem 2

We will again use the ‘negative’ inviscid Burgers’ equation but now the initial
data is given so that as the solution evolves a curved shock will be formed. The

initial data is given in terms of r where
12 12
_ i - 9.5
' ¢((x 2)+<y 2)) (9:5)

0 r>0.5
U = (9.6)

cos?(7r) otherwise

and is given by

on the region [0,1] x [0,1]. The initial data is shown in Fig. 9.2 below. The

\ <\

)
y

Figure 9.2: Problem 2 - Initial data given by a plane and a cosine curve.

boundary conditions applied are Lagrangian (see section 9.4), but in this example

there will initially be little interaction between the cosine curve and the boundary.
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9.2.3 Problem 3

In this example we will examine the formation of an expansion. We use the

Ut+5(%3)x+5(%3)y:0 (9.7)

tanh(92% + 9y? +9) — 0.5

equation

with initial data given by

on the region [0, 1] x [0, 1]. The initial data can be seen in Fig. 9.3 below. In this

Figure 9.3: Problem 3 - Initial data given by a tanh curve.

problem the slope becomes less steep as time evolves and the solution expands.

The boundary conditions given are Lagrangian (see section 9.4).

9.2.4 Problem 4

Let us now consider the ‘negative Buckley-Leverett’ equation in 2-D which is

o (=), (o —u>2)y v )

The initial data is given in terms of r where

given by

r=y((x =17+ -1)) (9.10)

and wu is given by

cos?(7r) otherwise

0 r>0.5
u = (9.11)
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Figure 9.4: Problem 4 - Initial data given by a plane and a cosine curve.

on the region [0,1] x [0, 1]. The initial data is shown in Fig. 9.4 above. This is
very similar to problem 3 in 1-D (see chapter 5 section 5.3.1). A curved shock is
formed as time evolves, however it is a combination of a shock and an expansion

since f and ¢ are not convex (or concave). See Concus & Proskurowski (1979).

9.2.5 Problem 5

In this problem we show the effect of a non-symmetric equation on symmetric
data. The equation to be solved is non-symmetric because f # ¢ and is given by

u? u?

€T Y

and the initial data is given by

2 2 _
v (tanh(92* + 99y +9)—10.5) (9.13)

on the region [0, 1] x [0, 1] (see Fig. 9.3). The initial data is smooth and curved
so that a curved shock will be formed. This problem can be used to demonstrate
that the method can be applied where f # ¢g. The boundary conditions are

Lagrangian; for more information see section 9.4.

9.2.6 Problem 6

We now consider a series of Riemann problems. The equation used in these

examples is again the ‘negative’ inviscid Burgers’ equation. The first set of initial
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data is given by

1 x>05 y>0.5
0.5 <05 y>05
u = (9.14)
-1 <05 y<0.5

0 x>05 y<05

and is given on the region [0, 1] x [0,1]. Note: a similar problem is solved in
chapter 6, section 6.6.3. The solution involves the formation of four shocks and

their interaction. The initial data is shown in Fig. 9.5 below. The boundary

Figure 9.5: Problem 6 - Initial data given for a Riemann problem.

conditions applied are Lagrangian (see section 9.4).

9.2.7 Problem 7

The second example of initial data gives rise to four expansions. See Wagner (1983).

The equation we are considering is the ‘positive’ Burgers’ equation
Uy + Uty + uny, =0 (9.15)

and the initial data is given by

1 x>05 y>0.5
0.5 <05 y>05
U= (9.16)
-1 <05 y<0.5

0 x>05 y<05

on the region [0, 1] x [0, 1]. See Fig. 9.5. The boundary conditions are Lagrangian

and move with the expansion (see section 9.4).
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9.2.8 Problem 8

We will again use the ‘negative’ inviscid Burgers’ equation but now the initial
data is in a form which combines a Riemann Problem with a solution which
evolves in such a way that a curved shock will be formed. The initial data is

given in terms of r where
12 12
— _ - — 1
’ V((x 2) +<y 2)) (8:17)

0 r > 0.25
u = (9.18)

cos? (r) otherwise

and is given by

on the region [0,1] x [0,1]. The initial data is shown in Fig. 9.6 below. The

Figure 9.6: Problem 7 - Initial data given by a plane and a cosine curve.

boundary conditions applied are Lagrangian (see section 9.4), but in this example
there will again initially be little interaction between the cosine curve and the

boundary.

9.3 Initial Data Representation

We use three basic grids upon which to represent the initial data. See Fig. 9.7.
These are very basic and do not really demonstrate MFE to its full potential but
we use them to allow the full movement of the nodes by the method to be clearly

seernl.
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Grid 1 Grid 2 Grid 3

Figure 9.7: Initial grids.

The grids do not necessarily give a good representation of the initial data. A
better (lower L, error) representation of the initial data can be found by using

non-regular grids (see Malcolm (1991) and Baines (1990)).

9.4 Boundary Conditions

Boundary conditions are a separate issue so where possible we try to give examples
where this will not play a major part in affecting the results. The Lagrangian
boundary conditions applied in the above problems are obtained by letting X =
f, Y = g (U) and U/ = 0. This allows the region to move without distortion
from the finite element technique and hence reduces the affect of the boundaries

on the method.

9.5 Numerical Results For MFE 2-stage Method

Here the results are given for the problems described above. The method applied
to the above problems is a 2-stage local MFE method. The shock position is
obtained by allowing the solution to become multivalued by the applying the

recovery technique described in chapter 8 section 8.4.1. The results are given for
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varying numbers of nodes, different time-steps and different initial grids in order

to demonstrate the difficulties of the problems.

9.5.1 Problem 1

This problem forms a straight line shock. The results shown below have been
calculated using 100 nodes, a time-step of 0.1 and are given after 10 time-steps.
The results show that a straight line shock can be formed and remain straight
as it traverses the region (see Fig. 9.8). The shock position is marked in red on
the grid. The picture shows the overturned curve at the same time. This can be
compared with the initial data (see Fig. 9.1).

We can also use this example to show how the three trial grids appear after
several time-steps. The results shown in Fig. 9.9 show that ignoring the bound-
aries the results are very similar for the three grids. The results are given using
100 nodes for the first two grids and 181 nodes for the third. The time-step is 0.01
and the pictures are given after 60 time-steps. As it can be see from these pic-
tures, different triangles will overturn at different times, consequently the shock

position formed will differ. i.e. the method is grid dependent.

174



Figure 9.8: Problem 1 - Solved using MFE method.
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Figure 9.9: Problem 1 - Comparison of three grids for the initial data.
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9.5.2 Problem 2

The initial data is given on grid 1 using 100 nodes and the time-step used is
0.001. The results are given after 40 time-steps. The results are shown in Fig.

9.10. below.

9.5.3 Problem 3

In this example we see the formation of an expansion to show that the MFE
method can solve this type of problem. The results are shown in Fig. 9.11. The
problem was solved using a time-step of 0.001 and the results are given after 460
time-steps and the initial data is given on grid 1. The resulting grid shows how
the triangles are stretched and the how the boundary moves as the expansion

forms.
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Figure 9.10: Problem 2 - Solved using MFE method.
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Figure 9.11: Problem 3 - Solved using MFE method.
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9.5.4 Problem 4

The results are given using 100 nodes, a time-step of 0.001 and are given after
180 time-steps. This equation requires the small time-step to prevent oscillations
forming owing to stability restrictions. The region can be seen to move as the
solution forms. See Fig. 9.12. After a greater number of time-steps, the shock
position becomes more jagged. This possibly occurs because the overturned region

is large and the jump direction is not clear.

9.5.5 Problem 5

In this problem we applied a non-symmetric equation to symmetric data. From
the results shown in Fig. 9.13 it can be seen that the MFE method can move the
nodes successfully when f # ¢. It can also be seen that the shock has been formed
unsymmetrically as expected for this type of equation. It can also be seen that
spurious shocks can be formed when the triangles overturn due to poor movement
of the nodes near the boundary. The results are calculated with 181 nodes on

grid 3 and a time-step of 0.001. The results are given at after 220 time-steps.
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Figure 9.12: Problem 4 - Solved using MFE method.
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Figure 9.13: Problem 5 - Solved using MFE method.
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9.5.6 Problem 6

This initial data is only approximate Riemann data because the planes are joined
together by steep linear slopes and not by vertical planes. This means that
it takes several time-steps before the four initial shocks are formed. The top
diagram is shown after 80 time-steps and the lower diagram is shown after 120
time-steps. In Fig 9.14a, given immediately after all shocks have formed, it can
be seen that the centre node where the four heights meet has moved to produce
a spike. In Fig 9.14b the results show that the shocks move correctly where there
is no interaction between them, however in the centre where they should interact
the method cannot cope with this situation. It can also be seen that the triangles
do not overturn so as to give a single line shock. For a large time-step or few

nodes the MFE method fails at the centre where the 4 different heights meet.

9.5.7 Problem 7

This problem uses initial Riemann data and applies the inviscid Burgers’ equation
to this data. This causes each of the initial discontinuities to form expansions.
The time-step used is 0.001 and the results are given after 220 time-steps using

grid 3 with 181 nodes to represent the initial data. See Fig. 9.15.
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Figure 9.14: Problem 6 - Solved using MFE method.
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Figure 9.15: Problem 7 - Solved using MFE method.
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9.5.8 Problem 8

The results are shown using grid 3 with 181 nodes and are calculated using a
time-step of 0.001, and are given after 100 time-steps. The results are shown in
Fig 9.16. It can be seen from the results how the initial grid moves to the shape
of the data. This problem is difficult because of the steep slope joining the plane
and the cosine curve. The shock position is marked in red and can be seen to
be curved. This problem is very similar to the Riemann problems given earlier.
The multivalued curve can be seen to be very similar to the initial data (see Fig.
9.6), however it is ‘tilted’ so as to form an expansion at about (0.75,0.75) and a

shock at about (0.25,0.25).

9.6 Numerical Results Using Lagrangian

Method

We also consider problems 1, 4 and 6 being solved using a Lagrangian method.
The initial data and functions remain the same as before. The method works in a

similar way to the examples above but the nodes now move differently according

to the equations [/ = 0, X = f(U) and Y = g (U). See chapter 7 section 7.13.

9.6.1 Problem1

The results are given using grid 3 to represent the initial data and the calculations
are carried out with a time-step 0.001 to give the results after 60 time-steps. For
this example the nodes move in a very similar way to the 2-stage MFE method.

The results obtained are very similar and both methods work equally well. See

Fig. 9.17.
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Figure 9.16: Problem 8 - Solved using MFE method.
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Figure 9.17: Problem 1 - Solved using Lagrangian method.
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9.6.2 Problem 4

Problem 4 uses grid 3 for the representation of the initial data. The time-step is
0.001 and the results are given after 8 time-steps. For this example neither grid
1 nor 2 was satisfactory and the MFE method works better that the Lagrangian
method for this example. The overturned curve appears similar to that obtained

using the MFE method, even though the shock position calculations differ.

9.6.3 Problem 6

The solution to problem 3 is calculated using 761 nodes and using grid 3 to
represent the initial data. The time-step is 0.001 and the results are given after 5
time-steps. For this example the Lagrangian method works better that the MFE
method. The nodes move to better positions and consequently the shock position

is better defined than when using the MFE method.
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Figure 9.18: Problem 4 - Solved using Lagrangian method.
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Figure 9.19: Problem 6 - Solved using Lagrangian method.
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9.6.4 Comparison Between MFE And Lagrangian
Methods

The results shown in the diagram overleaf are given at the time of initial formation
of the shock. The results are given using 100 nodes and a time-step of 0.001. For
the first example, problem 4 the MFE method of solution in the topleft is given
after 30 time-steps and the Lagrangian method is given after 32 time-steps. For
problem 2 the results are given for the MFE method after 68 time-steps and for
the Lagrangian method after 64 time-steps.

Comparing the MFE and the Lagrangian method, it can be seen that the
shocks initially form at approximately the same time and position. This allows
us to verify that the program was working since it is known analytically that the

movement of nodes is along the approximate characteristics. See Fig. 9.20.
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Figure 9.20: Comparison between MFE and Lagrangian methods.
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9.7 Summary

It has been seen that for a variety of nonlinear problems an approximate solution
can be found using moving grid methods.

The results are grid dependent since if the triangles are orientated differently
they will then overturn at different times. This means that the initial represen-
tation is important.

There are problems with intersecting shocks as the shock constructions pro-
gram has not been designed to cope with this type of problem. This is particularly
apparent in problem 6, the Riemann problem, where the four shocks try to inter-

act.
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Chapter 10

Conclusions And Further Work

10.1 Conclusion

In this thesis we have examined the numerical solution of nonlinear scalar PDE’s,
particularly conservation laws, in one and higher dimensions by moving element
methods, with emphasis on the formation of shocks and expansions. The methods
considered are finite element in nature, including the classical MFE method, its
derivatives and Lagrangian methods. The MFE methods have been rewritten in
a form which allows the calculation of multivalued solutions. These multivalued
solutions have been calculated using moving finite element techniques which as
has been demonstrated, approximately follow the characteristics of the equation.
Special attention has been paid to the recovery of shock positions from a multi-
valued solution. Numerical examples in both one and two dimensions have been
given to demonstrate these solution techniques.

In chapter 2, we introduced some of the analytical techniques available to
describe the solution and properties of the conservation laws. This included
the ideas of weak solutions in order to allow discontinuities and the need for
entropy conditions to impose uniqueness. The method of characteristics and
consequently the notion of overturning solutions were also introduced. Following
the ideas of multivalued solutions, methods of finding the shock position based
on ‘conservation’ were described.

Chapter 3 introduced the basic ideas of MFE and Lagrangian methods with

particular reference to the solution of the conservation laws. These methods are
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adaptive and were chosen because they permitted the formation of overturned
curves which is required to follow the ideas of chapter 2.

In chapter 4, the consequences of applying MFE methods to the formation of
multivalued curves were discussed. In this situation it was found that the MFE
method became invalid, and as a consequence it was rewritten in terms of a two
stage procedure which remained valid once overturning had occurred.

Numerical examples were given in chapter 5 to demonstrate the methods given
in chapters 2-4. From these results it has been seen that extensions to the method
are required for the interaction of shocks. It has also been seen that the method
is dependent upon the initial data representation.

In chapter 6 the analytical methods in 2-D were considered and we found that
analytical solutions have only been found for a very small class of problems. The
main class of problems, for which analytic solutions have been found are Riemann
problems. The ideas of characteristics and blow-up generalize from 1-D to higher
dimensions and supported the extension of the numerical methods from 1-D to
2-D.

Chapter 7 discussed the background to the basic MFE and Lagrangian meth-
ods considered in this thesis and chapter 8 described the modifications needed in
order to calculate multivalued solutions. In chapter 8, a method of shock recovery
in 2-D was proposed. This led to the numerical experiments being carried out in
chapter 9.

The results of chapter 9 showed that the method was able to calculate the
shock position for a variety of problems. The method was also found to be initial
grid dependent and in its present form is unable to cope with the calculation of
shock interactions.

It is clear that approximate solutions can be calculated using the techniques
described, but we have also seen that there are problems in the recovery of the
shock position in two dimensions. Another problem that may occur in both one

and two dimensions is the inability of the method to cope with the interaction of

shocks.
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10.2 Further Work

Following the work in this thesis we can see that there are several paths available
for future work. Another development would be to generalise the method to
equations other than scalar conservation laws. Although both the MFE methods
and Lagrangian methods can deal with the solution of the conservation laws, for
other non-linear PDE’s only the MFE method is available. The generalisation is
not difficult and much of the work of the thesis goes over immediately to such
equations.

The method has so far only been applied to scalar conservation laws. The
method for finding the position of the shock in 2-D is only an extension of the
1-D method.

The first extension would be to find a proven 2-D method for recovering the
shock position from the overturned manifold. One way for doing this would
be to return to the ideas of conservation of area and tangential continuity, seeing
whether a condition could be proved in order to generate a unique shock position.

It would also be useful to generalize the shock fitting algorithm so that it can
cope with the interaction of shocks.

A final path would be an extension of the use of the Lagrangian method in
conjunction with the shock fitting technique. The idea is that this method could
then be applied to systems of conservation laws. Since systems of conservation
laws such as the Euler equations can by solved using Lagrangian methods, then
it would remain to choose a ‘Monitor’” variable (e.g. density) to which our shock
fitting technique could be applied. This should then give the position of the shock

formed for all variables of the system.
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