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1VARIATIONAL APPROACH IN WEIGHTED SOBOLEV SPACES TO SCATTERING BYUNBOUNDED ROUGH SURFACESSIMON N. CHANDLER-WILDE† AND JOHANNES ELSCHNER‡Abstrat. We onsider the problem of sattering of time harmoni aousti waves by an unbounded sound soft surfaewhih is assumed to lie within a �nite distane of some plane. The paper is onerned with the study of an equivalent variationalformulation of this problem set in a sale of weighted Sobolev spaes. We prove well-posedness of this variational formulation inan energy spae with weights whih extends previous results in the unweighted setting (Chandler-Wilde & Monk, SIAM J MathAnal 37 (2005), 598-618) to more general inhomogeneous terms in the Helmholtz equation. In partiular, in the two-dimensionalase, our approah overs the problem of plane wave inidene, whereas in the 3D ase inident spherial and ylindrial wavesan be treated. As a further appliation of our results we analyse a �nite setion type approximation, whereby the variationalproblem posed on an in�nite layer is approximated by a variational problem on a bounded region.1. Introdution. This paper is onerned with the analysis of problems of sattering by unboundedsurfaes, in partiular with what are termed rough surfae sattering problems in the engineering literature.By the phrase rough surfae, we will denote throughout a surfae whih is a (usually non-loal) perturbationof an in�nite plane surfae suh that the surfae lies within a �nite distane of the original plane. Roughsurfae sattering problems in this sense arise frequently in appliations, for example in modeling aousti andeletromagneti wave propagation over outdoor ground and sea surfaes, and have been studied extensivelyin the physis and engineering literature from the points of view of developing e�etive numerial algorithmsor asymptoti or statistial approximation methods (see e.g. Ogilvy [30℄, Voronovih [39℄, Saillard & Sentena[32℄, Warnik & Chew [40℄, DeSanto [18℄, and Elfouhaily and Guerin [19℄).Despite this extensive pratial interest, relatively little mathematial analysis of these problems hasbeen arried out. In partiular, only in the last four years have the �rst results been obtained establishingwell-posedness for three-dimensional rough surfae sattering problems, using integral equation methods (seeChandler-Wilde, Heinemeyer & Potthast [13, 14℄, Thomas [36℄) or variational formulations (see Chandler-Wilde, Monk & Thomas [11, 15℄, Thomas [36℄). The variational approah proposed in [11℄ for the soundsoft aousti problem leads to expliit bounds on the solution in terms of the data and applies to a rathergeneral lass of non-smooth unbounded surfaes. The approah in [11℄ is extended to more general aoustisattering problems in [36℄, inluding problems of sattering by impedane surfaes and by inhomogeneouslayers (and see [15℄).In ontrast to the general ase of a non-loally perturbed plane surfae, there is already a vast literatureon the variational approah applied to periodi di�rative strutures (di�ration gratings) or to loallyperturbed plane satterers; see, e.g., Kirsh [25℄, Bonnet-Bendhia & Starling [6℄, Elshner & Shmidt [20℄,Bao & Dobson [5℄, Elshner, Hinder, Penzel & Shmidt [21℄, Ammari, Bao & Wood [1℄, and Elshner &Yamamoto [22℄. The assumption made in all of these papers leads to a variational problem over a boundedregion, so that ompat imbedding arguments an be applied and the sesquilinear form that arises satis�es aGårding inequality whih simpli�es the mathematial arguments onsiderably ompared to the ases studiedin [11℄, [15℄ and [36℄.In this paper we will rigorously analyze time harmoni aousti sattering, seeking to solve the Helmholtzequation with wave number k > 0,
∆u+ k2u = g ,in the perturbed half-plane or half-spae D ⊂ Rn, n = 2, 3. The sattering surfae Γ := ∂D is assumed to liewithin a �nite distane of some plane; for example it may be the graph of an arbitrary bounded ontinuous
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funtion. While the methods we use and results we derive an be adapted to other boundary onditions, tokeep things spei� and to make use of earlier results [11, 15℄, we will restrit our attention to the simplestase when a homogeneous Dirihlet boundary ondition u = 0 holds on Γ. The problem formulation isompleted by a suitable radiation ondition, expressing that the wave sattered by the surfae must radiateaway from the surfae.This paper is losest in its results to Chandler-Wilde & Monk [11℄, who studied the same Dirihletsattering problem. Following [11℄, we introdue an equivalent variational formulation of this problem setin an in�nite layer S0 of �nite thikness between the surfae Γ and some plane Γ0 lying above that surfaeon whih the solution is required to satisfy a non-loal boundary ondition involving the exat Dirihletto Neumann map T . This ondition is often used in a formal manner in the rough surfae satteringliterature (e.g. [18℄), that, above the rough surfae Γ and the support of g, the solution an be representedin integral form as a superposition of upward traveling and evanesent plane waves. This radiation onditionis equivalent to the upward propagating radiation ondition proposed for two-dimensional rough surfaesattering problems in [10℄, and has reently been analyzed arefully in the 2D ase by Arens and Hohage[4℄. Arens and Hohage also propose a further equivalent radiation ondition (a `pole ondition').In Setions 2 and 3 we formulate the boundary value problem and its variational formulation preisely,and give the details about our assumptions on D and about the radiation ondition we impose. Setion 3 isalso devoted to new ontinuity properties of the DtN map T in weighted Sobolev spaes on Γ0.In Setion 4 we study the well-posedness of the variational formulation in an energy spae with weightswhih deay or inrease polynomially as a funtion of radial distane within the layer S0. Our main result,Theorem 4.1, is to show, for a range of inreasing and dereasing weights, that the problem is well-posedin the weighted spae setting if and only if it is well-posed in the unweighted spae setting. This resultdepends on tehnial estimates of the ommutator of the DtN map T and the operation of multipliationby the weight funtion; see Theorem 3.1. Combining this result with previous results on well-posedness inthe unweighted setting for sound soft sattering [11℄, we are able to show well-posedness in a weighted spaesetting.In Setion 5, to illustrate the importane of these results, we make two appliations. First, in the two-dimensional ase, we prove existene of solution to the problem of plane wave sattering by an unboundedsound soft surfae, extending previous results derived for the ase when the boundary is the graph of asu�iently smooth funtion [17℄ to muh more general surfae pro�les. We note that, even in the well-studied ase when the boundary is periodi (is a di�ration grating) the uniqueness result we obtain is asigni�ant extension of the results known to date [22℄. We brie�y disuss why our methods do not extend tothe ase of plane wave inidene in the three-dimensional ase (indeed, why this problem may not be well-posed), and apply our results to prove existene of solution to the three-dimensional problems of satteringof inident spherial and ylindrial waves. In the seond appliation of our results we analyse approximationof the variational problem in the in�nite layer S0 by a variational problem in a bounded region (to whih�nite element methods an then be applied), this bounded region oiniding with the original layer S0 insidea ball of radius R. We prove stability and onvergene of this approximation proedure and use our weightedspae results to prove error estimates as a funtion of R.The �nal Setion 6 is onerned with the proof of our ruial ommutator estimates stated in Theorem3.1. Note that the DtN map T is a pseudodi�erental operator on Rn−1 with a non-smooth symbol, so thatthe standard alulus of pseudi�erential operators ating in weighted Sobolev spaes (see, e.g., [31℄) is notsu�ient to obtain the result.2. The Boundary Value Problem And Radiation Conditions. Let x = (x, xn) ∈ Rn (n = 2, 3)with x ∈ Rn−1, and let D ⊂ Rn be an unbounded domain suh that, for some b < 0,
U0 ⊂ D ⊂ Ub , Ub := {x : xn > b} . (2.1)For h ∈ R, let Γh := {x : xn = h} and Sh := D\Uh. The variational problem will be posed on the openset S0 whih lies between the rough surfae Γ = ∂D and the plane (or line) Γ0. In addition to (2.1) we willassume that D satis�es the ondition that

x ∈ D ⇒ x + sen ∈ D , for all s > 0 , (2.2)2



where en denotes the unit vetor in diretion xn. Condition (2.2) is satis�ed if Γ is the graph of a ontinuousfuntion, but also allows more general domains.We now introdue weighted L2 and Sobolev spaes. For ̺ ∈ R, l ∈ N and a domain G ⊂ Rn, de�ne theHilbert spaes
L2

̺(G) := (1 + x2)−̺/2L2(G) , H l
̺(G) := (1 + x2)−̺/2H l(G) ,equipped with the orresponding anonial norm and salar produt. The spae Vh,̺ is then de�ned, for

h ≥ 0, as the losure of {u|Sh
: u ∈ C∞

0 (D)} in the norm
‖u‖Vh,̺

= ‖u‖H1
̺(Sh) =

(
∫

Sh

(

∣

∣(1 + x2)̺/2u
∣

∣

2
+
∣

∣∇((1 + x2)̺/2u)|2
)

dx

)1/2

. (2.3)We set V0,̺ = V̺ in the following, whih is the energy spae for our variational problem. Moreover, weintrodue
Hs

̺(Γh) := (1 + x2)−̺/2Hs(Γh) , s, ̺ ∈ R ,where Hs(Γh) is identi�ed with the Sobolev spae Hs(Rn−1) with norm
‖v‖Hs(Rn−1) =

(
∫

Rn−1

(1 + ξ2)s|Fv|2dξ
)1/2

.Here Fv denotes the Fourier transform of v de�ned by
Fv(ξ) = (2π)−(n−1)/2

∫

Rn−1

exp(−ix · ξ)v(x) dx , ξ ∈ R
n−1 ,with the inverse transform given by

F−1w(x) = (2π)−(n−1)/2

∫

Rn−1

exp(ix · ξ)w(ξ) dξ , x ∈ R
n−1 .Note that F is an isometry of L2(Rn−1) onto itself and also an isometry of L2

̺(R
n−1) onto H̺(Rn−1) sine

‖Fu‖2
H̺ =

∫

Rn−1

(1 + x2)̺|F 2u|2dx =

∫

Rn−1

(1 + x2)̺|u|2dx , u ∈ C∞
0 (Rn−1) .More generally, F is an isomorphism of Hs

̺(Rn−1) onto H̺
s (Rn−1) for all s, ̺ ∈ R; see [31℄ and [38℄. Fromtime to time we will make use of the following lemma.Lemma 2.1. Suppose h ≥ 0 and ̺ ∈ R. For u ∈ Vh,̺ let

‖u‖′ :=

(
∫

Sh

(1 + x2)̺

(

∣

∣u
∣

∣

2
+
∣

∣∇u|2
)

dx

)1/2

.Then ‖ · ‖′ is a norm on Vh,̺ that is equivalent to the norm ‖ · ‖Vh,̺
; preisely, for some onstants C1 and

C2 depending only on ̺, ‖u‖Vh,̺
≤ C1‖u‖′ ≤ C2‖u‖Vh,̺

, for all u ∈ Vh,̺, and all h ≥ 0.We now state our boundary value problem, formulated in a weighted spae setting. As indiated in theintrodution, it is the study of this problem in weighted spaes, and appliation of the new results this givesrise to, whih is the objet of this paper. Indeed a main result of this paper will be to show that solvabilityof this boundary value problem in weighted spaes, for the range of ̺ indiated, is a onsequene of itssolvability without weights, i.e. for the ase ̺ = 0. (And this is useful sine solvability for the simpler asewithout weights is already established in [11℄.) After stating the boundary value problem we will ommentin the remainder of this setion on how the radiation ondition is to be understood, in partiular when ̺ < 0.We will also omment on the restrition on the range of ̺ (|̺| < 1) in the statement of the boundary valueproblem, explaining why this range is natural and sharp. Preisely, we will point out that the radiation3



ondition (2.4) does not make sense for all u ∈ H
1/2
̺ when ̺ ≤ −1, and will show that the boundary valueproblem is not, in general, solvable for ̺ ≥ 1.The boundary value problem (BVP). Given g ∈ L2

̺(D), with |̺| < 1 and supp g ⊂ S̄0, �nd u ∈ H1
loc(D)suh that u|Sh

∈ Vh,̺ for every h > 0,
(∆ + k2)u = g in D ,in a distributional sense, and the following radiation ondition is satis�ed:

u(x) = F−1 exp
(

−xn

√

ξ2 − k2
)

Fu0(ξ)

= (2π)−(n−1)/2

∫

Rn−1

exp
(

−xn

√

ξ2 − k2 + ix · ξ
)

Fu0(ξ) dξ , x ∈ U0 , (2.4)where u0 = u|Γ0 ∈ H
1/2
̺ (Γ0) (from the trae theorem) and √ξ2 − k2 = −i

√

k2 − ξ2 when |ξ| < k.We explain in this paragraph and the next in what sense (2.4) is to be understood and why in theabove formulation we restrit ̺ to the range ̺ > −1 (the restrition to ̺ < 1 is explained at the end of thissetion). For ̺ ≥ 0 the integral (2.4) exists in the ordinary Lebesgue sense sine Fu0 ∈ L2(Rn−1). Further,for u0 ∈ L2(Γ0), the radiation ondition (2.4) an be written in the alternative form
u(x) = 2

∫

Γ0

∂Φ(x, y)

∂yn
u(y) ds(y) = 2

∫

Rn−1

∂Φ(x, y)

∂yn
u0(y) dy , x ∈ U0 , (2.5)where the fundamental solution Φ of the Helmholtz equation is given by

Φ(x, y) :=















1

4π

exp(ik|x − y|)
|x − y| if n = 3

i

4
H

(1)
0 (k|x − y|) if n = 2 ,for x = (x, xn), y = (y, yn) ∈ Rn, x 6= y. Here H(1)

0 is the Hankel funtion of the �rst kind of order zero. Inthe ase n = 2, (2.5) is just the upward propagating radiation ondition (UPRC) proposed in [10℄, and werefer to [7, Chap. 5.1.1℄ for n = 3. For further disussion of the rationale for the radiation ondition (2.4)and its relationship to other proposed radiation onditions for rough surfae sattering we refer the readerto [11℄.For ̺ < 0 we understand (2.4) by extending the mapping u0 7→ u(x), given by (2.4), to a bounded linearfuntional on H1/2
̺ (Γ0). The restrition ̺ > −1 arises preisely beause this extension is possible only forthe range ̺ > −1. To see this we observe that, sine F is an isomorphism from H

1/2
̺ (Rn−1) to H̺

1/2(R
n−1),the mapping u0 7→ u(x) given by (2.4) extends to a bounded linear funtional on H1/2

̺ (Γ0) for ̺ < 0 if andonly if fx ∈ H−̺
−1/2(R

n−1), where fx(ξ) := exp
(

−xn

√

ξ2 − k2 + ix · ξ
). But this holds preisely for ̺ > −1;in fat (this an be dedued from (2.5) and Parseval's theorem) the Fourier transform of fx is given by

Ffx(y) = 2(2π)(n−1)/2 ∂Φ(x, y)

∂yn

∣

∣

yn=0
,and straightforward expliit alulations (see [10℄ for the ase n = 2) yield that

|Ffx(y)| ∼ cnxn|y|−(1+n)/2 (2.6)as |y| → ∞, where the onstant cn depends only on k and on the dimension n. From this one dedues that
Ffx ∈ H

−1/2
−̺ (Rn−1), so that fx ∈ H−̺

−1/2(R
n−1), if and only if ̺ > −1. For ̺ > −1 the extension of themapping u0 7→ u(x), given by (2.4), to a bounded linear funtional on H1/2

̺ (Γ0) is given expliitly by (2.5),the asymptotis (2.6) guaranteeing the existene of the integral (2.5). Thus (2.5) makes expliit the meaningof (2.4) in the ase −1 < ̺ < 0. 4



Remark 2.2. We note (and this is important in our later appliations) that there is a degree of arbi-trariness in our radiation onditions (2.4) and (2.5). By this we mean that one ould replae xn in (2.4) by
xn − c, for any c > 0 (in fat for any c ∈ R suh that supp g ⊂ S̄c and Uc ⊂ D); the orresponding hangeto (2.5) would be to replae Γ0 by Γc. We will show in Theorem 4.1 below that the boundary value problemis uniquely solvable. Clearly (by a simple shift in the vertial diretion of the axes), one an dedue fromthis that the above boundary value problem with xn replaed by xn − c in (2.4) is also uniquely solvable. Wereassure the reader that these unique solutions are the same! This is demonstrated for the ase ̺ = 0 in [11℄and this result, together with the density of L2(S0) in L2

̺(S0) for ̺ < 0 and the stability results proved inTheorem 4.1, implies that the solutions are the same also for |̺| < 1.We have explained above the restrition to ̺ > −1 in the boundary value problem formulation. We makethe restrition ̺ < 1 beause we annot, in general, expet the boundary value problem to be solvable for
̺ ≥ 1 (with the solution satisfying that u|Sh

∈ Vh,̺ for every h > 0). To see this we onsider the instrutivease where D is a half-plane or half-spae, i.e. D = Uc, for some c ∈ (b, 0). Moreover, let us onsider thease when g is ompatly supported in a ball entred on some point z ∈ S0 of radius ǫ > 0 su�iently smallso that the ball lies in S̄0, and further let us assume that g(x) ≡ 1 inside the ball.We have remarked already that it is shown in [11℄ that the boundary value problem is uniquely solvablewhen ̺ = 0. For the spei� ase we are onsidering the unique solution to this boundary value problem anbe written down very expliitly. Let Gc(x, y) denote the Dirihlet Green's funtion for Uc, given by
Gc(x, y) := Φ(x, y) − Φ(x, y′

c),where y′
c denotes the image of the point y in the plane yn = c. Then the solution to the boundary valueproblem is

u(x) =

{

k−2(1 +Af(k|x − z|)), |x − z| ≤ ǫ,
Ck−2Gc(x, z), |x − z| > ǫ,

(2.7)where the funtion f is de�ned by
f(r) :=

{

J0(r), n = 2,
sin r

r
, n = 3,

J0 is the Bessel funtion of the �rst kind of order zero, and the onstants A and C are hosen to ensure C1ontinuity of u aross the boundary of the ball; for example, in 3D,
A = Q−1(iκ− 1) and C = 4πQ−1 exp(−iκ)(κ cos(κ) − 1),where Q = κ cos(κ) − 1 + sin(κ)(1 − iκ) and κ = kǫ. It is easy to hek that this expression does satisfy

∆u+ k2u = g in D = Uc, and that u|Sh
∈ Vh,̺, for all h > 0, if ρ = 0 (indeed for all ̺ < 1) follows from theasymptotis (2.8) below. To see that u, given by (2.7), does satisfy the boundary value problem it remainsto hek that u satis�es the radiation ondition; to do this one an show that u satis�es the form (2.5) ofthe radiation ondition by appliations of Green's theorem to G0(x, ·) and u in U0.A �rst observation is that this example demonstrates that, if g is hosen arefully enough, then theabove boundary value problem is solvable for all ̺ ∈ R. For ertainly it is true in this example that g, beingompatly supported, satis�es g ∈ L2

̺(D) for all ̺ ∈ R and, if ǫ is hosen so that C = 0, then u is alsoompatly supported and so u|Sh
∈ Vh,̺, for all h > 0 and ̺ ∈ R. But the example, slightly more subtly,also illustrates that, in general, even if g is ompatly supported and so satis�es g ∈ L2

̺(D) for all ̺ > 0, oneannot expet that u|Sh
∈ Vh,̺ for any h > 0 and ̺ ≥ 1, sine u|S0 6∈ V0,̺ for ̺ = 1 if C 6= 0. To see thatthis is true it is enough to examine the asymptotis of G(x, z) as x → ∞ in S0. From [12, equation (4.2)℄ inthe 2D ase, and by simple diret alulations in the 3D ase, we see that (f. (2.6))

|G(x, z)| ∼ c′nk
4−n(xn − c)(zn − c)(k|x|)−(1+n)/2, as |x| → ∞, (2.8)uniformly in x ∈ S0, for some onstant c′n > 0 depending only on n. From these asymptotis it is an easyalulation to see that u|S0 ∈ L2

̺(S0) for ̺ < 1 but not for ̺ = 1, so that u|S0 6∈ V0,1. This example explainswhy the boundary value problem is not, in general, solvable in the ase ̺ ≥ 1.5



3. The Dirihlet to Neumann Map and Variational Formulation. We now onsider a variationalformulation in weighted Sobolev spaes of the above boundary value problem, whih involves the Dirihlet-to-Neumann operator on the arti�al boundary Γ0. As in [11℄ for ̺ = 0, there exist ontinuous traeoperators
γ− : V̺ → H1/2

̺ (Γ0) , γ+ : H1
̺(U0\Ūh) → H1/2

̺ (Γ0) , h > 0 .Moreover, if u0 ∈ C∞
0 (Γ0) and u is given by (2.4), then

∂u

∂xn

∣

∣

∣

Γ0

= −Tγ+u ,where the Dirihlet-to-Neumann map T is given by the pseudodi�erential operator
Tv(x) := F−1t(ξ)Fv(ξ) , t(ξ) :=

√

ξ2 − k2 . (3.1)Note that the symbol t of T is not smooth whih makes the study of (3.1) in weighted Sobolev spaes moreompliated than in the ase ̺ = 0 (whih was treated in [11℄). The following ommutator estimate is ruialfor our analysis and its proof is arried out in Setion 6.Theorem 3.1. Consider the ommutator
C := T − (a2 + x2)̺/2T (a2 + x2)−̺/2· (3.2)with parameter a > 0. Then, for ka ≥ 1 and |̺| < 1, the norm of C on L2(Rn−1) is bounded by c(̺)√k/a.Here and in the following c(̺) denotes a positive onstant whih only depends on ̺. We remark (f. theomments at the end of setion 2) that the range |̺| < 1 in this theorem is optimal, i.e. this result does nothold for ̺ = ±1. This follows in part from the duality exhibited between positive and negative values of ̺in the proof of Theorem 4.1 in setion 6 below, whih shows that the statement in this theorem holds for

̺ = −1 i� it holds for ̺ = 1. Further, if the above theorem were to hold for ρ = 1 then the proof of Theorem4.1 below would extend to the ase ρ = 1, whih would ontradit the example of a solution of the boundaryvalue problem with g ∈ L2
1(D) but u0 6∈ V0,1 at the end of setion 2.Sometimes the following weaker version of Theorem 3.1 is su�ient, the proof of whih is analogous butsimpler.Lemma 3.2. For �xed k > 0 and a = 1, the norm of (3.2) on L2(Rn−1) is bounded by some onstant

c(̺) for |̺| < 1.The following lemma desribes the ontinuity properties of T .Lemma 3.3. (i) For any s ∈ R, T : Hs(Rn−1) → Hs−1(Rn−1) is bounded.(ii) For |̺| < 1, 0 ≤ s ≤ 1, T : Hs
̺(Rn−1) → Hs−1

̺ (Rn−1) is bounded.Proof. (i) follows by taking Fourier transform and using the estimate |t(ξ)| ≤ c(1 + ξ2)1/2 on Rn−1; see also[11℄. To prove (ii) for ̺ 6= 0, we apply the ommutator estimate of Lemma 3.2 to get the ontinuity
C̃ := (1 + x2)−̺/2T − T (1 + x2)−̺/2· : L2(Rn−1) → L2

̺(R
n−1) ,and by the ontinuous imbeddings Hs

̺ ⊂ L2
̺ ⊂ Hs−1

̺ , the operator C̃ : Hs(Rn−1) → Hs−1
̺ (Rn−1) is bounded.Moreover, by (i), (1 + x2)−̺/2T : Hs(Rn−1) → Hs−1

̺ (Rn−1) is bounded, so that T (1 + x2)−̺/2· is boundedthere, too. This implies the result. �To state the variational formulation of (BVP), we use the notation
(u, v) :=

∫

S0

uv̄ dx,and de�ne the ontinuous sesquilinear form B : V̺ × V−̺ → C by
B(u, v) := (∇u,∇v) − k2(u, v) +

∫

Γ0

γ−v̄ T γ−u ds(x) . (3.3)6



Note that this sesquilinear form is well-de�ned and ontinuous on V̺ × V−̺ for |̺| < 1 as a onsequene ofLemma 3.3 with s = 1/2.The variational formulation (V). Given g ∈ L2
̺(S0), |̺| < 1, �nd u ∈ V̺ suh that

B(u, v) = −(g, v) , ∀v ∈ V−̺ . (3.4)As in [11℄, the equivalene of (BVP) and (V) follows from the following weighted version of Lemma 3.2in that paper.Lemma 3.4. Let |̺| < 1.(i) If (2.4) holds with u0 ∈ H
1/2
̺ (Γ0), then u ∈ H1

̺(U0\Ūh) for every h > 0.(ii) Furthermore, we have (∆ + k2)u = 0 in U0, γ+u = u0, and
∫

Γ0

v̄ T γ+u dx+ k2

∫

U0

uv̄ dx −
∫

U0

∇u · ∇v̄ dx = 0 ∀v ∈ C∞
0 (D) .As in [11℄ (for ̺ = 0), assertion (ii) is a onsequene of (i). We will prove Lemma 3.4 (i) in Setion 6applying our ommutator estimates. Following [11℄, Lemma 3.4 then impliesLemma 3.5. If u is a solution of (BVP), then u|S0 satis�es the variational problem (V). Conversely,let w be a solution of (V). If we set u = w in S0 and de�ne u in U0 to be the right-hand side of (2.4) with

u0 = γ−w, and extend the de�nition of g to D by setting g = 0 in U0, then u is a solution of (BVP).Remark 3.6. We note that the equivalene of (BVP) and (V) stated in Lemma 3.5 holds whenever(2.1) holds. In partiular, the proof is not dependent on (2.2). Further, we note that there is no requirementthat Γ0 ⊂ S0; it may be the ase, for example, that S0 is a bounded open set, whih need not neessarily beonneted. In the ase that Γ0 6⊂ S0, the ation of the trae operator γ− on V̺ in (3.3) should be understoodby extending the de�nition of the funtions in V̺ by zero to the whole of the strip Ub \ Ū0, from S0 whih istheir initial domain of de�nition. This implies that, for u ∈ V̺, γ−u = 0 on Γ0 \ S0.4. Existene and uniqueness results in weighted spaes. We shall establish that the boundaryvalue problem (BVP) and the equivalent variational problem (V) are uniquely solvable by using the result of[11, Thm. 4.1℄ in the non-weighted ase and a perturbation argument based on the ommutator estimates.By Lemma 3.3 (ii) the form (3.3) generates a ontinuous linear operator B̺ : V̺ → V ∗
−̺, where V ∗

−̺ is thedual of V−̺ (the spae of ontinous anti-linear funtionals on V−̺) with respet to the salar produt (·, ·)in L2(S0).Theorem 4.1. Under the assumptions (2.1), (2.2) and |̺| < 1, the operator B̺ is invertible. Inpartiular, (V) and hene (BVP) have a unique solution for all g ∈ L2
̺(S0).For ̺ = 0, this was proved in [11, Thm. 4.1℄, using a Rellih identity and the generalized Lax-Milgramtheorem. Moreover, an expliit bound for the norm of B−1

0 in terms of k and |b| was given there (using wavenumber dependent Sobolev norms on S0 and Γ0; see Remark 4.2 below). A signi�ant idea in the proof ofthis theorem for the ase ̺ 6= 0 is the use of a perturbation argument, reduing the proof of invertibilityfor ̺ 6= 0 to that for ̺ = 0. This idea has been used previously to study rough surfae sattering in 2D(n = 2) in weighted spaes of ontinuous funtions via integral equation methods in [2, 3℄. A ommutatorresult for boundary integral operators (f. Theorem 4.1) plays in [2℄ an important role, but the idea thereis to prove that the ommutator is ompat, or at least preserves Fredholmness, rather than to show thestronger and more onstrutive result that the ommutator is su�iently small in norm. (And it shouldbe noted that the proof of properties of the ommutator in [2℄ is very muh more straightforward than theproof of Theorem 3.1, not least beause the kernels of the boundary integral operators in [2℄ are absolutelyintegrable.) A key ingredient in our ommutator estimate, Theorem 3.1, is the parameter a in the weightfator. We note that the idea of introduing suh a parameter into ommutator estimates goes bak at leastto Shubin [33, Theorem 5.3℄, though we seem to be the �rst to use this idea in an estimate of the ommutatorof a onvolution operator with multipliation by a weight funtion in the ase when the onvolution operatorhas a non-smooth symbol. 7



Proof for ̺ 6= 0. Introdue equivalent norms ‖u‖L2
̺

= ‖(a2 + x2)̺/2u‖L2 with parameter a > 0 and modifythe norm (2.3) in V̺ orrespondingly. We will hoose a > 0 su�iently large, and set, for u ∈ V̺, ϕ ∈ V−̺,
v = (a2 + x2)̺/2u ∈ V0 , ψ = (a2 + x2)−̺/2ϕ ∈ V0 .Then we obtain from (3.3)

B(u, ϕ) = B(v, ψ) +K(v, ψ) , (4.1)where K = K1 +K2 with
K1(v, ψ) = (∇(a2 + x2)−̺/2v,∇(a2 + x2)̺/2ψ) − (∇v,∇ψ)

= (v∇(a2 + x2)−̺/2, ψ∇(a2 + x2)̺/2 + (∇v, ψ(a2 + x2)−̺/2∇(a2 + x2)̺/2)

+ (v(a2 + x2)̺/2∇(a2 + x2)−̺/2,∇ψ)

(4.2)and
K2(v, ψ) =

∫

Γ0

{

(a2 + x2)̺/2ψ̄ T (a2 + x2)−̺/2v − ψ̄ T v
}

dx = −
∫

Γ0

ψ̄ Cv dx (4.3)with C de�ned in (3.2). For (4.2) we obtain the estimate
|K1(v, ψ)| ≤

( |̺|
2a

)2

‖v‖L2(S0)‖ψ‖L2(S0) +

( |̺|
2a

)

(

‖∇v‖L2(S0)‖ψ‖L2(S0)

+ ‖v‖L2(S0)‖∇ψ‖L2(S0)

)

≤ |̺|
2a

max

(

1,
|̺|
2a

)

‖v‖V0‖ψ‖V0 .

(4.4)Note that
sup
S0

∣

∣∇(a2 + x2)|̺|/2
∣

∣(a2 + x2)−|̺|/2 ≤ |̺|/2aand ompare [15, Se. 4℄.Applying Theorem 3.1 to (4.3), we get
|K2(v, ψ)| ≤ c(̺)

√

k/a ‖γ−v‖L2(Γ0) ‖γ−ψ‖L2(Γ0) , (4.5)and sine ‖γ−v‖L2(Γ0) ≤ ‖γ−v‖H1/2(Γ0) ≤ c‖v‖V0 , (4.4) and (4.5) then imply that the norm of the operator
K0 : V0 → V ∗

0 generated by the form K tends to zero as a→ ∞. Finally, from (4.1) we have
B̺ = (a2 + x2)−̺/2(B0 + K0)(a

2 + x2)̺/2 · . (4.6)Sine B0 is invertible, this operator is invertible provided that a is su�iently large. �Remark 4.2. Introduing norms dependent on the wave number k and/or the parameter a > 0, de�nedby
|||v|||H1/2(Γ0) =

(
∫

Rn−1

(k2 + ξ2)|Fv|2 dξ
)1/2

,

|||u|||V̺ =

(
∫

S0

(

k2|(a2 + x2)̺/2u|2 + |∇
(

(a2 + x2)̺/2u
)

|2) dx
)1/2

,

|||g|||L2
̺(Sh) =

(
∫

Sh

(

|(a2 + x2)̺/2g|2 dx
)1/2on H1/2(Γ0), V̺, and L2

̺(Sh), respetively, we an obtain a bound of the norm ‖B−1
̺ ‖ of B−1

̺ : V ∗
−̺ → V̺ interms of κ = k|b|, provided that the parameter a > 0 is hosen su�iently large. From (4.4) we see that

|K1(v, ψ)| ≤ |̺|
2ka

(

1 +
|̺|
2ka

)

|||v|||V0|||ψ|||V0 ,8



and sine (f. [11℄)
‖γ−v‖L2(Γ0) ≤ k−1/2|||γ−v|||H1/2(Γ0) ≤ k−1/2|||v|||V0 ,(4.5) implies that

|K2(v, ψ)| ≤ c(̺)√
ka

|||v|||V0|||ψ|||V0 .Thus we have, for ka ≥ 1 and |̺| < 1,
|K0(v, ψ)| ≤

( |̺|
2ka

(

1 +
|̺|
2ka

)

+
c(̺)√
ka

)

|||v|||V0|||ψ|||V0 ≤ |̺| + c(̺)√
ka

|||v|||V0|||ψ|||V0 ,so that ‖K0‖ ≤ (|̺| + c(̺))/
√
ka. Taking the bound

‖B−1
0 ‖ ≤ γ := 1 +

√
2κ(κ+ 1)2from [11, Thm. 4.1℄ and using (4.6), we obtain the norm estimate

‖B−1
̺ ‖ ≤ 2γ, (4.7)provided that

‖K0‖ ≤ (|̺| + c(̺))/
√
ka ≤ 1

2γ
≤ 1

2
‖B−1

0 ‖,whih holds for a ≥ 4γ2(|̺| + c(̺))2/k. Sine (V) written in operator form is the equation B̺u = g̃, where
g̃ ∈ V ∗

−̺ is de�ned by g̃(v) = (g, v), v ∈ V−̺, this implies that the solution u of (V) satis�es
|||u|||V̺ ≤ 2γ|||g̃|||V ∗

−̺
≤ 2γk−1|||g|||L2

̺(S0), (4.8)provided ka ≥ max(1, 4γ2(|̺| + c(̺))2).5. Appliations.5.1. Plane Wave Inidene, Di�ration Gratings, and Other Sattering Problems. As anappliation of Theorem 4.1, the problem of plane wave inidene in the 2D ase (n = 2) an be treated.That is, it an be shown, in appropriate funtion spaes, that the sattering problem for plane wave inidenehas exatly one solution in 2D (for a brief disussion of what goes wrong in the 3D ase, see Remark 5.5below, and see Remark 5.6 for details of 3D sattering problems whih an be takled by Theorem 4.1). Theinident plane wave has the form
vin(x) = exp(ik[sin θ x1 − cos θ x2]) ,where θ is the angle of inidene, with |θ| < π/2. In this problem we look for the total �eld v = vsc + vin,

vsc being the unknown sattered �eld, suh that
(∆ + k2)v = 0 in D , v = 0 on Γ , (5.1)and vsc satis�es an appropriate radiation ondition.This 2D rough surfae sattering problem with plane wave inidene has been treated before, by integralequation methods, in [17℄ where it is shown that there exists exatly one solution v ∈ C2(D) ∩ C(D̄) suhthat v is bounded in Sh, for every h > 0, and vsc satis�es the radiation ondition in the form (2.5) (termedthe upwards propagating radiation ondition (UPRC) in [17℄). However, the proof in [17℄ is only for the asewhere ∂D is the graph of a su�iently smooth (C1,1) funtion (this, or at least a restrition to Lyapunovsurfaes, is an essential restrition due to the ompatness arguments in the existene proofs in [17℄). In9



this setion we will establish unique existene of solution for muh more general surfaes, with only theonstraints (2.1) and (2.2) on ∂D that we impose throughout the paper.To use the results of the previous setion whih are formulated in a Sobolev spae setting, inluding theresults of Remark 4.2 whih are formulated in terms of wave number dependent norms, we will replae theassumption that v is bounded in Sh by an assumption that v|Sh
∈ V∞

h , for all h > 0, where
V∞

h := {w ∈ Vh,−1 : |||w|||V ∞

h
<∞}.In this de�nition the (wave number dependent) norm |||w|||V ∞

h
on V∞

h is de�ned by
|||w|||V ∞

h
:= sup

m∈Z

|||w|Sm
h
|||H1(Sm

h ) , Sm
h := {x = (x1, x2) ∈ Sh : Am < x1 < A(m+ 1)} ,

A > 0 is a parameter at our disposal, and ||| · |||H1(Sm
h ) (f. Remark 4.2) is a wave number dependent norm on

H1(Sm
h ), equivalent to the usual norm, de�ned by

|||w|||H1(Sm
h ) :=

(

∫

Sm
h

(

k2|w|2 + |∇w|2) dx
)1/2

.It is easy to see that V∞
h is a Banah spae and that the di�erent hoies of A > 0 in the de�nition of ||| · |||V ∞

hprovide a family of equivalent norms on V∞
h .In terms of V∞

h our formulation of the plane wave sattering problem is as follows:Plane Wave Sattering Problem (PW). Given k > 0 and θ ∈ (−π/2, π/2), �nd v ∈ H1
loc(D)∩C2(D) suhthat v|Sh

∈ V∞
h , for every h > 0,

∆v + k2v = 0 in D,and suh that vsc := v − vin satis�es the UPRC (2.5).Our main result in this subsetion is the following, whih is an immediate onsequene of Theorem 5.3below.Theorem 5.1. The plane wave sattering problem has exatly one solution. Moreover, for every h > 0there exists a onstant Cp > 0, depending only on κ = k|b|, kh, and kA, suh that |||v|Sh
|||V ∞

h
≤ Cp.An interesting appliation of this result is to the muh-studied di�ration grating ase whereD is periodiin the horizontal diretion with some period A > 0, i.e.

x = (x1, x2) ∈ D ⇔ (x1 +A, x2) ∈ D. (5.2)The standard formulation of the problem of plane wave sattering in the di�ration grating ase is thefollowing (e.g. [20, 22℄). In this formulation the funtion spae V qp,θ
h denotes the set of funtions in H1

loc(Sh)that vanish on ∂D and are quasi-periodi in the x1-diretion with the same period and phase shift as theinident wave; more preisely
V qp,θ

h := {w ∈ V∞
h : w((x1 +A, x2)) = w(x) exp(ikA sin θ), x ∈ Sh}.Note that, for w ∈ V qp,θ

h , the norm |||w|||V ∞

h
simpli�es to
|||w|||V ∞

h
= |||w|S0

h
|||H1(S0

h
) .Di�ration Grating Plane Wave Sattering Problem (DGPW) (e.g. [22℄). Given k > 0 and θ ∈ (−π/2, π/2),�nd v ∈ H1

loc(D) ∩ C2(D) suh that v|Sh
∈ V qp,θ

h , for every h > 0,
∆v + k2v = 0 in D,10



and suh that vsc := v − vin satis�es the Rayleigh expansion radiation ondition, that
vsc(x) =

∑

m∈Z

um exp(ik[αmx1 + βmx2]), x ∈ U0, (5.3)where the um are omplex onstants, αm := sin θ + 2πm/(kA), and
βm :=

{ √

1 − α2
m, |αm| ≤ 1,

i
√

α2
m − 1, |αm| > 1.It is shown in [22℄ that (DGPW) has exatly one solution in the ase that ∂D is the graph of an (A-periodi) Lipshitz funtion, by extending well-known arguments (see e.g. [25℄), whih apply in the asewhen ∂D is the graph of a smooth funtion, to the non-smooth Lipshitz ase. The following orollary ofTheorem 5.1 extends that result further to the muh more general ase where ∂D is only required to satisfy(2.1), (2.2), and (5.2).Corollary 5.2. Suppose that (5.2) holds. Then (DGPW) has exatly one solution, and this is theunique solution of (PW).Proof. Suppose that v satis�es (DGPW). Then it is lear that v satis�es (PW), provided we an showthat v satisfying the Rayleigh expansion radiation ondition implies that v satis�es the UPRC (2.5). Butthis is shown in [8℄. Conversely, suppose that v satis�es (PW). Then

v((x1 +A, x2)) = v(x) exp(ikA sin θ), x ∈ D, (5.4)for otherwise w, de�ned by w(x) = v((x1 +A, x2)), is another, distint solution of (PW), whih ontraditsTheorem 5.1. Thus v satis�es (DGPW) provided that (5.3) holds. But, in the ase that (5.4) is satis�ed, itis shown in [8℄ that (2.5) an be written in the form (5.3).Thus v satis�es (PW) i� v satis�es (DGPW), and the orollary follows from Theorem 5.1.We will prove Theorem 5.1 by appliations of Theorem 4.1 and the observations in Remark 4.2. Toapply these results we introdue the funtion u ∈ H1
loc(D)∩C1(D), related to the solution v of (PW) by theformula

u(x) := vin(x)χ(x2) + vsc(x) = v(x) + (χ(x2) − 1)vin(x), x ∈ D , (5.5)where χ ∈ C1(R) is de�ned by
χ(t) :=















1, t < |b|,
cos2

(

π(t− |b|)
2|b|

)

, |b| ≤ t ≤ 2|b|,
0, t > |b|.Moreover, de�ne gP ∈ L∞(D) by

gP (x) = (χ′′(x2) − 2ik cos θ χ′(x2)) v
in(x), x ∈ D, (5.6)so that (∆ + k2)u = gP in a distributional sense in D, supp gP ⊂ S−b, and gP ∈ L2

̺(D) for ̺ < −1/2.Then Theorem 5.1 is an immediate onsequene of the following result whose proof is largely appliations ofTheorem 4.1.Theorem 5.3. De�ne gP ∈ L∞(D) by (5.6). Then v satis�es (PW) if and only if v and u are relatedby (5.5) and u satis�es the following boundary value problem: given ̺ ∈ (−1,−1/2), �nd u ∈ H1
loc(D) suhthat u|Sh

∈ Vh,̺, for every h > 0,
(∆ + k2)u = gP in D ,in a distributional sense, and u satis�es the radiation ondition (2.4) with xn(= x2) replaed by x2 − b.Moreover, for every h > 0 there exists a onstant C′

p > 0, depending only on κ = k|b|, kh, and kA, suh that
|||u|Sh

|||V ∞

h
≤ C′

p. 11



Proof. It is almost immediate from the observations immediately above the theorem that if v satis�es(PWSC) then u, de�ned by (5.5), satis�es the above boundary value problem. The only di�ulty is to showthe radiation ondition. To see this we note that vsc satis�es the radiation ondition (2.5), from whih itfollows (see [9℄ and f. Remark 2.2) that vsc satis�es (2.5) with Γ0 replaed with Γc, for all c > 0, in partiularwith c = −b. Sine u = vsc in Uc it is immediate that v satis�es (2.5) with Γ0 replaed by Γ−b, whih isequivalent (see Remark 2.2) to (2.4) with x2 replaed by x2 + b.We next observe that it follows from Theorem 4.1 that the boundary value problem for u has exatlyone solution (u satis�es exatly a boundary value problem of the form of Setion 2 after vertial translationof the axes by a distane |b|). The theorem is thus proved if we an show that this solution satis�es that
u|Sh

∈ V∞
h , for every h > 0, and the bound |||u|Sh

|||V ∞

h
≤ C′

p.To see this we make the following onstrution. Given h > 0 set h̃ := max(|b|, h) and, for j ∈ Z, de�ne
Dj , gj ∈ L∞(Dn), and uj ∈ H1

loc(Dj), by
Dj := {(x1 + jA, x2 − h̃) : x = (x1, x2) ∈ D},

gj(x) := gP ((x1 − jA, x2 + h̃)) , uj(x) := u((x1 − jA, x2 + h̃)) , x ∈ Dj .Then uj satis�es (BVP), with D replaed by Dj and g replaed by gj in (BVP). (Sine u satis�es (2.4) with
x2 replaed by x2 − b, it follows in the �rst instane that uj satis�es (2.4) with x2 replaed with x2 − b− h̃,but this implies that (2.4) holds as written, by Remark 2.2.) Thus Theorem 4.1 and Remark 4.2 applyfor ̺ ∈ (−1,−1/2). In partiular, hoosing ka su�iently large (by Remark 4.2, how large is su�ientdepends only the values of κ and ̺), it follows from (4.8) that, for some onstant cκ > 0 depending only on
κ̃ := k(|b|+ h̃) and ̺, |||uj|||V j

̺
≤ cκk

−1|||gj|||L2
̺(S0,j), for j ∈ Z, where S0,j and V j

̺ denote S0 and V̺, respetively,in the ase D = Dj . Sine, for some onstant c > 0 depending only on ̺,
|||gj|||L2

̺(S0,j) ≤
(

∫

S0,j

(a2 + x2
1)

̺ dx

)1/2

‖gj‖L∞(S0,j) ≤ c|b|1/2a̺+1/2‖gP‖L∞(S−b) ,we see that
|||uj|||V j

̺
≤ c′κ|b|−1/2a̺+1/2, j ∈ Z,for some onstant c′κ depending only on κ̃ and ̺. Careful alulations yield that, again for some onstant

c > 0 depending only on ̺, and where S0
0,j denotes S0

0 in the ase D = Dj ,
|||uj|S0

0,j
|||H1(S0

0,j)
≤ c(a2 +A2)−̺/2|||uj|||V j

̺
, j ∈ Z,Thus

|||u|Sh
|||V ∞

h
≤ |||u|Sh̃

|||V ∞

h̃
= sup

j∈Z

|||uj |S0
0,j
|||H1(S0

0,j)
≤ c′′κ

(

1 +A2/a2
)|̺|/2

(ka)1/2,where c′′κ > 0 depends only on κ̃ and ̺. Now this bound holds for all ka su�iently large, but how large issu�ient depends only on κ̃ and ̺. Thus, hoosing suh a su�iently large ka and hoosing (say) ̺ = −3/4,we see that the theorem is proved.Remark 5.4. Theorem 5.3 explains how, in the 2D ase, the plane wave sattering problem (PW) isequivalent to an instane of (BVP). This enables us to prove solvability of (PW) via the reformulation of(BVP) in variational form as (V). This is onvenient for the purpose of proving Theorem 5.1 above, but, asa starting point for numerial omputation (f. Setion 5.2 below), one would hoose rather to reformulate(PW) diretly in variational form. Arguing analogously to the proof of Lemma 3.5, in partiular using Lemma3.4 whih applies to vsc, one an show that v satis�es (PW) if and only if, for some ̺ ∈ (−1,−1/2), v|S0satis�es the variational problem: �nd v ∈ V̺ suh that
B(u,w) = G(w) , ∀w ∈ V−̺ . (5.7)12



where G ∈ V ∗
−̺ is de�ned by

G(w) =

∫

Γ0

γ−w̄

(

∂vin

∂x2
+ Tγ−v

in

)

ds(x) , w ∈ V−̺ . (5.8)The restrition to the range ̺ < −1/2 arises sine vin ∈ V̺ for ̺ < −1/2 but not for ̺ = 1/2. Having solvedthis variational problem to determine v|S0 , v is determined throughout D through (2.5) satis�ed by vsc. Ofourse this variational formulation is well-posed, by Theorem 4.1.Remark 5.5. The above results show that the problem of plane wave inidene is well posed in the 2Dase. In the 3D ase it seems to us likely that a solution to the problem of plane wave inidene does notexist for every hoie of domain D satisfying (2.1) and (2.2). Certainly, the methods of argument above donot extend to the 3D ase, for, in the 3D ase, gP in Theorem 5.3 is in L2
̺(D) only for ̺ < −1, and Ggiven by (5.8) is in V ∗

−̺ only for ̺ < −1, so that Theorem 4.1 does not apply. Further, even the formulationof the 3D plane wave problem appears problemati in 3D. Preisely, just as the radiation ondition (2.4)does not extend to a bounded linear funtional on H
1/2
̺ (Γ0) for ̺ < −1, it does not extend to a boundedlinear funtional on L∞(Γ0) (whih would require that the integral in (2.5) be absolutely onvergent for every

u0 ∈ L∞(Γ0), whih is true in 2D but not in 3D, as a onsequene of the asymptotis (2.8)). Thus it isdi�ult to envisage that the radiation ondition (2.4) or (2.5) an hold in general in the ase of 3D planewave inidene.Remark 5.6. In the 3D ase, the above approah does apply to prove unique existene of solution inweighted spaes in the ases of inoming spherial or ylindrial waves. That is, it applies to the ases,respetively, where
vin(x) := Φ(x, z) =

1

4π

exp(ik|x − z|)
|x − z| , x ∈ R

3 \ {z}, (5.9)for some z ∈ D, and
vin(x) = H

(1)
0

(

k
√

x2
1 +H2

)

, x ∈ R
3 \ ΣL, (5.10)for some H ∈ R suh that ΣL := {(0, x2, H) : x2 ∈ R} ⊂ D. This seond ase is the ase of an inidentylindrial wave generated by a line soure oupying the line ΣL whih, without loss of generality we hooseto lie in the plane x1 = 0. The problem in eah ase is to �nd the unknown sattered �eld vsc and the total�eld v = vsc + vin, suh that

(∆ + k2)vsc = 0 in D , v = 0 on Γ ,and vsc satis�es an appropriate radiation ondition.One way to make use of Theorem 4.1 to study these sattering problems is to formulate eah satteringproblem as an instane of (BVP) in setion 2. To do this one an adapt the onstrution already used aroundequation (2.7). Preisely, in the spherial wave ase one hooses ǫ > 0 suh that dist(z, ∂D) > ǫ and replaes
vin by ṽin whih oinides with vin exept within distane ǫ of the soure z, given by

ṽin(x) :=

{

vin(x), |x − z| > ǫ,

A+B
sin kr

r
, |x − z| ≤ ǫ,where the onstants A and B are hosen to ensure that ṽin ∈ C1(R3) (whih is possible provided that ǫ ishosen su�iently small, e.g. if kǫ < 1). Then ṽin ∈ H2

loc(R
3) with (∆ + k2)vin = gS, where gS(x) := Ak2,

|x − z| < ǫ, gS(x) := 0, otherwise. Similarly, in the ylindrial wave ase one hooses ǫ > 0 suh that
dist(ΣL, ∂D) > ǫ and replaes vin by ṽin whih oinides with vin exept within distane ǫ of the soure ΣL,given by

ṽin(x) :=

{

vin(x),
√

x2
1 + (x3 −H)2 > ǫ,

A+BJ0

(

k
√

x2
1 + (x3 −H)2

)

,
√

x2
1 + (x3 −H)2 ≤ ǫ,13



where the onstants A and B are hosen to ensure that ṽin ∈ C1(R3) (again this is possible provided
ǫ is hosen su�iently small). Then ṽin ∈ H2

loc(R
3) with (∆ + k2)vin = gC, where gC(x) := Ak2,

√

x2
1 + (x3 −H)2 < ǫ, gC(x) := 0, otherwise. We observe that gS is ompatly supported so that gS ∈ L2

̺(D)for every ̺ ∈ R. Further, it is an easy alulation to see that gC ∈ L2
̺(D) for ̺ < −1/2, but not for

̺ = −1/2.Sine vin = ṽin, exept in neighbourhoods of z or ΣL whih do not interset ∂D, so that, in partiular,
vin = ṽin in a neighbourhood of ∂D, the substitution of vin by ṽin does not hange the sattered �eld vsc.Further, sine ṽin ∈ H2

loc(R
3), the sattering problem with this modi�ed inident �eld an be formulated asan instane of (BVP). Preisely, in the spherial wave ase, we an formulate the sattering problem asseeking the total �eld ṽ = ṽin + vsc whih satis�es (BVP) for some ̺ ∈ (−1, 1), with g := gS ∈ L2

̺(D) (andif supp g 6⊂ S0 one needs to replae xn by xn − a in (2.4), for some a > 0 suh that supp g ⊂ Sa). Theorem4.1 tells us that there is exatly one solution to this boundary value problem, and that this solution ṽ satis�es
ṽ|Sh

∈ V h
̺ , for every h ≥ 0 and ̺ ∈ (−1, 1). In the ylindrial wave ase, we seek the total �eld ṽ = ṽin + vscwhih satis�es (BVP) for some ̺ ∈ (−1,−1/2), with g := gC ∈ L2

̺(D) (again, if supp g 6⊂ S0 one needs toreplae xn by xn − a in (2.4), for some a > 0 suh that supp g ⊂ Sa). Theorem 4.1 again tells us that thereis exatly one solution, and that this solution ṽ satis�es ṽ|Sh
∈ V h

̺ , for every h ≥ 0 and ̺ ∈ (−1,−1/2).5.2. Analysis of a �nite setion method for the variational formulation. An obvious approahto omputing the solution to (BVP) numerially is to solve the variational formulation (V) by a �nite elementmethod. This is a standard approah for the numerial treatment of the di�ration grating problem (DGPW)[20, 22℄, but in that ase the orresponding variational formulation, thanks to the periodiity, redues to oneon S0
0 , a single period of S0. In the ase of (V) the region of integration is the whole in�nite region S0. Thusa neessary �rst step towards solving (V) numerially is to approximate (V) by a variational formulation ona domain of �nite size, to whih standard FEMs an then be applied.We are not aware of any analysis of suh an approximation for the variational formulation (V), orfor any similar variational formulations for rough surfae sattering problems. However, the analogousapproximation when boundary integral equation methods are applied to (BVP), namely trunation of theregion of integration, whih is the in�nite boundary ∂D, to a �nite part of that boundary (a so-alled �nitesetion approximation) has been analysed in both the 2D ase [27℄ (and see [28, 23℄) and, very reently,in the muh more di�ult 3D ase [24℄. In [27, 24℄ onvergene and stability of modi�ations of the �nitesetion method are proved. In the theses [28, 23℄ (f. [16℄), for the easier 2D ase, onvergene rates arealso established, via results on stability and onvergene of the �nite setion method in weighted spaes ofontinuous funtions.In this setion we prove stability and onvergene of an approximation method in the same spirit for (V).This approximation method onsists simply in replaing S0 by a �nite region S(R) ⊂ S0 whih oinides with

S0 in the region |x| < R+1, and making the same approximation for D, so that D is replaed by D(R) ⊂ D,with S(R) = D(R) \ Ū0. The only onstraint on the hoie of S(R) is that (2.1) and (2.2) should apply to
D(R); this is the ase, for example, for the simple expliit hoie S(R) := {x = (x, xn) ∈ S0 : |x| < R+1}. Inaddition to proving stability and onvergene, we also establish rates of onvergene for the error measuredin weighted spaes. In the ase when g, the soure of the aousti waves, is ompatly supported, theseresults imply that, loally in the energy norm, the error onverges at a rate O(Rǫ−2), for every ǫ > 0.This onvergene rate is onsiste nt with those obtained previously by methods spei� to the 2D ase forboundary integral equation formulations [28, 16, 23℄. For example, the results in [28℄, in the ase when theboundary Γ is the graph of a funtion whih is su�iently smooth, imply a onvergene rate R−2 loally inthe uniform norm for the solution of a boundary integral formulation when the soure of the aousti wavesis ompatly supported and the �nite setion that is taken oinides with Γ inside a ball of radius R.Given g ∈ L2

̺(S0), with |̺| < 1, let u ∈ V̺ be the unique solution of the variational problem (V), so that
B(u, v) = −(g, v) , ∀v ∈ V−̺ . (5.11)For R > 0, we approximate problem (5.11) by a orresponding variational equation on the bounded domain

S(R). For ̺ ∈ R and R > 0 let V (R)
̺ denote the Hilbert spae V̺ in the ase that we replae D by D(R);14



expliitly V (R)
̺ denotes the ompletion of {u|

S
(R)
0

: u ∈ C∞
0 (D(R))} in the norm

‖u‖
V

(R)
̺

=

(

∫

S
(R)
0

(

∣

∣(1 + x2)̺/2u
∣

∣

2
+
∣

∣∇((1 + x2)̺/2u)|2
)

dx

)1/2

. (5.12)We remark, as is easily seen from Lemma 2.1, that the norms ‖ · ‖
V

(R)
̺

, ̺ ∈ R, are equivalent sine S(R)
0 isbounded, so that, as linear spaes, for ̺ ∈ R, V (R)

̺ = V (R) := V
(R)
0 . The approximating variational problemis the following: �nd u(R) ∈ V (R) suh that

B(R)(u(R), v) = −(g, v) , ∀v ∈ V (R) . (5.13)Here B(R) is the ontinuous sesquilinear form on V (R) ×V (R) de�ned by (3.3) with D replaed by D(R), i.e.de�ned by
B(R)(u, v) :=

∫

S
(R)
0

(∇u · ∇v̄ − k2uv̄) dx +

∫

Γ
(R)
0

γ−v̄ T γ−u ds(x) , (5.14)where Γ
(R)
0 := S

(R)
0 ∩ Γ0 (see Remark 3.6 for the interpretation of γ− in this ase).Making the observation that we an view V

(R)
̺ as a losed subspae of V̺ (the elements of V (R)

̺ beomeelements of V̺ if we extend them by zero from S
(R)
0 to S0), the analysis of the error in approximating u by

u(R) follows the usual pattern for analysing the Galerkin method for variational problems via a generalizedCéa's lemma. Preisely, if ũ ∈ V (R) ⊂ V̺, then, for v ∈ V (R), applying (5.11),
B(R)(ũ, v) = B(ũ, v) = B(ũ− u, v) − (g, v) .Subtrating this equation from (5.13) we see that
B(R)(ũ− u(R), v) = B(ũ− u, v) , ∀v ∈ V (R) . (5.15)Now reall from Setion 4 that B̺ : V̺ → V ∗

−̺ is our notation for the bounded linear operator indued bythe ontinuous sesquilinear form B. Similarly, let B(R)
̺ : V

(R)
̺ → V

(R)
−̺

∗ denote the operator indued by thesesquilinear form B(R); in other words B(R)
̺ is just B̺ in the ase that D is replaed by D(R). From Theorem4.1 it is lear that B(R)

̺ is invertible for every R > 0 and ̺ ∈ (−1, 1). From Remark 4.2 it is lear, moreover,that ‖(B(R)
̺ )−1‖ is bounded uniformly for R > 0, with a bound whih depends only on |b|, k, and ̺. Thusfrom (5.15) it follows that, for ̺1 ∈ (−1, 1),

‖ũ− u(R)‖
V

(R)
̺1

≤ c‖ũ− u‖V̺1
,where the onstant c > 0, whih depends only on |b|, k, and ̺1, is an upper bound for ‖B̺1‖ supR>0 ‖(B(R)

̺1 )−1‖.Thus
‖u− u(R)‖V̺1

≤ (1 + c) inf
ũ∈V

(R)
̺1

‖ũ− u‖V̺1
. (5.16)To obtain a more onrete error estimate, hoose a ut-o� funtion χR ∈ C∞

0 (Rn−1) suh that, for all
R > 0,

χR(x) := 1 for |x| < R ,χR(x) := 0 for |x| > R+ 1 , sup
Rn−1

{|χR| + |∇χR|} ≤ c1 ,for some onstant c1 > 0 independent of R. De�ning ũ ∈ V
(R)
̺1 by ũ(x) := u(x)χR(x), x ∈ S0, we see usingLemma 2.1 that, for −1 < ̺1 ≤ ̺, where S̃R

0 := {x ∈ S0 : |x| > R} and c2, c3, and c4 denote further15



onstants dependent only on ̺ and |b|,
‖ũ− u‖V̺1

= ‖(1 − χR)u‖V̺1

≤ c2

(

∫

S̃R
0

(1 + x2)̺1
(

|u|2 + |∇u|2
)

dx

)1/2

≤ c3R
̺1−̺

(

∫

S̃R
0

(1 + x2)̺
(

|u|2 + |∇u|2
)

dx

)1/2

≤ c4R
̺1−̺ ‖u‖V̺ .We see that we have proved the following result:Theorem 5.7. Suppose g ∈ L2

̺(S0), with |̺| < 1, and let u ∈ V̺ be the unique solution of the variationalproblem (V). Choose, for R > 0, approximating domains D(R) ⊂ D whih satisfy (2.1) and (2.2), and aresuh that S(R) ⊂ S0 is bounded and S(R) ⊃ ΩR := {x ∈ S0 : |x| < R+1}. Then the approximating variationalproblem (5.11) on the �nite region S(R) has exatly one solution u(R) for every R > 0. Further, for someonstant c > 0 dependent only on k, ̺, ̺1, and |b|, it holds for −1 < ̺1 < ̺ that
‖u− u(R)‖

V
(R)

̺1

≤ cR̺1−̺ ‖u‖V̺ .As a onsequene, for every R1 > 0, it holds that ‖u− u(R)‖H1(ΩR1 ) = O(R̺1−̺) as R → ∞. In partiular,if g ∈ L2
̺(S0) for every ̺ < 1, whih holds for example if g is ompatly supported, then, for every ǫ > 0 and

R1 > 0,
‖u− u(R)‖H1(ΩR1) = O(Rǫ−2) as R → ∞ .6. Commutator estimates. This setion is devoted to the proofs of Theorem 3.1 and Lemma 3.4 (i).Let k > 0, a > 0, and onsider the pseudodi�erential operator Ta on Rm, m = n − 1 = 1, 2, with symbol

ta(ξ):
Tau(x) = F−1ta(ξ)Fu(ξ) , ta(ξ) := a−1

√

ξ2 − k2a2 . (6.1)Here and in the following the square root is hosen so that its argument lies in [−π/2, 0]:
ta(ξ) = (−i/a)

√

k2a2 − ξ2, |ξ| ≤ ka; ta(ξ) = (1/a)
√

ξ2 − k2a2, |ξ| > ka . (6.2)We have T1 = T , t1 = t, where T and t are de�ned in (3.1).Using a saling argument, we redue the assertion of Theorem 3.1 to a orresponding estimate for theommutator de�ned by
Ca := Ta − (1 + x2)̺/2Ta(1 + x2)−̺/2 · . (6.3)With Sau(x) := u(ax) we obtain FSau = a−mS1/aFu, and the same relation holds with F replaed by F−1.Hene

amSaF
−1tFu = F−1(S1/at)S1/aFu = amF−1(S1/at)FSau ,giving SaTu = TaSau, where Ta is the operator (6.1) with the symbol t(ξ/a) = ta(ξ). From (3.2) and (6.3)we then have

SaC = TaSa − (1 + x2)̺/2Ta(1 + x2)−̺/2Sa = CaSa . (6.4)Using the relation ‖Sau‖L2(Rm) = a−m/2‖u‖L2(Rm) and (6.4), we now observe that Theorem 3.1 is equivalentto the following 16



Theorem 6.1. For ka ≥ 1 and |̺| < 1, the ommutator Ca de�ned in (6.3) has norm ≤ c(̺)
√

k/a on
L2(Rm).It is enough to onsider ̺ ∈ (0, 1) sine the ase of negative ̺ then follows by duality (with respet tothe salar produt on L2(Rm)). We split the symbol ta as

ta = t(0) + t(1) =: χ(|ξ|) ta(ξ) + (1 − χ(|ξ|)) ta(ξ) , (6.5)where χ is a suitable ut-o� funtion (see below), and onsider the orresponding deomposition of Ta,
Ta = T (0) + T (1) , (6.6)where T (j) is de�ned by (6.1) with t(j) in plae of ta. Then the ommutator Ca takes the form

Ca = C(0) + C(1) =:
(

T (0) − (1 + x2)̺/2T (0)(1 + x2)−̺/2 ·
)

+
(

T (1) − (1 + x2)̺/2T (1)(1 + x2)−̺/2 ·
)

.
(6.7)We will estimate the norm of the operators

N := (1 + x2)−̺/2C(0) : L2(Rm) → L2
̺(R

m) , (6.8)
N̂u := FNF−1u, N̂ : L2(Rm) → H̺(Rm) , (6.9)

T̂ := t(1)(ξ)· : H̺(Rm) → H̺(Rm) . (6.10)In view of (6.7)�(6.10), and realling that F is an isometry of L2
̺(R

m) ontoH̺(Rm) for every ̺ ∈ R, Theorem6.1 then follows fromTheorem 6.2. (i) For ̺ ∈ (0, 1], the norm of N̂ is bounded by c(̺)√k/a.(ii) For ̺ ∈ [0, 1), the norm of T̂ is bounded by c(̺)√k/a, too.We now hoose the ut-o� funtion χ ∈ C∞[0,∞) with 0 ≤ χ ≤ 1 and
χ(r) = 0 on |r − ka| ≤ 1/3 , χ(r) = 1 on |r − ka| ≥ 2/3 , (6.11)and suh that, for some c > 0 independent of ka ≥ 1.

|∂rχ(r)| ≤ c on R
+ . (6.12)Note that (6.11) implies

∂rχ(r) = 0 on {|r − ka| ≤ 1/3} ∪ {|r − ka| ≥ 2/3} . (6.13)To prove Theorem 6.2, we need some auxiliary results.Lemma 6.3. For ka ≥ 1, where r = |ξ|, we have |∂rt
(0)(ξ)| ≤ c

√

k/a on R
+.Proof. Setting h(r) := ata(ξ) = (r−ka)1/2(r+ka)1/2 for r > ka and h(r) := iata(ξ) = (ka−r)1/2(r+ka)1/2for r < ka, we obtain

∂rh =

{

r/h, r > ka,
−r/h, 0 ≤ r < ka,

∂2
rh = −k2a2/h3 , r 6= ka ,whih implies that ∂j

rh (j = 1, 2) do not hange sign on (0, ka) and (ka,∞). Therefore, the maximum of
h on 1/3 ≤ |r − ka| ≤ 2/3 is attained at r = ka − 2/3 or r = ka + 2/3, while the maximum of |∂rh| on
|r − ka| ≥ 1/3 is attained at r = ka− 1/3 or r = ka+ 1/3, and both maxima are bounded above by c√ka.Together with (6.11)�(6.13), this easily implies the result. �To prove Theorem 6.2 (i), we write (f. (6.7)�(6.9))

N̂Fu(ξ) =

∫

Rm

b̺(ξ − η) (t(0)(η) − t(0)(ξ))Fu(η)dη , u ∈ C∞
0 (Rm) , (6.14)17



with b̺ := F (1 + x2)−̺/2. Here the integral in (6.14) is well de�ned sine Fu is rapidly dereasing and
b̺ ∈ L1(Rm) for ̺ > 0 (see the next lemma), and we have used the relation F (1 + x2)−̺/2v = b̺ ∗ Fv for afuntion v of rapid deay, with ∗ denoting onvolution.Lemma 6.4. For any ̺ > 0, the funtions b̺ and |ξ| ∇ξb̺ are rapidly dereasing as |ξ| → ∞ and belongto L1(Rm). For the proof of this, we refer to [29, Chap. 8.1℄; see also [34, Chap. 5.3℄.Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

‖N̂Fu‖L2(Rm) ≤
∥

∥

∥

∥

∫

Rm

|b̺(ξ − η)| |ξ − η| sup
R+

|∂rt
(0)| |Fu(η)| dη

∥

∥

∥

∥

L2(Rm)

≤ c
√

k/a ‖ |ξ|b̺‖L1(Rm) ‖Fu‖L2(Rm)

(6.15)using the mean value theorem and Young's inequality. Moreover, sine
∇ξN̂Fu(ξ) =

∫

Rm

(

t(0)(η) − t(0)(ξ)
)

∇ξb̺(ξ − η) Fu(η) dη

+

∫

Rm

b̺(ξ − η) (−∇ξt
(0)(ξ)) Fu(η) dη ,we obtain analogously

‖∇N̂Fu‖L2(Rm) ≤ c
√

k/a
(

‖ |ξ|∇b̺‖L1(Rm) + ‖b̺‖L1(Rm)

)

‖Fu‖L2(Rm) . (6.16)Together with Lemma 6.4, (6.15) and (6.16) imply that for any ̺ ∈ (0, 1] the operators N̂ : L2(Rm) → L2(Rm)and N̂ : L2(Rm) → H1(Rm) have norm ≤ c(̺)
√

k/a. By interpolation, we then get the result. �Proof of Theorem 6.2 (ii). We have to show that the multipliation operator
T̂ v = (1 − χ(|ξ|)) a−1

√

ξ2 − k2a2 v : H̺(Rm) → H̺(Rm) , 0 ≤ ̺ < 1 , (6.17)has norm ≤ c(̺)
√

k/a. Note that the support of 1−χ is ontained in the set R := {|r− ka| ≤ 2/3}, r = |ξ|;see (6.11). By loalization, (6.17) an be redued to an estimate of the form
‖qv‖H̺(Rm) ≤ c(̺)

√

k/a ‖v‖H̺(Rm) , 0 ≤ ̺ < 1 , (6.18)where
q(ξ) := a−1

√

ξm (ξm + 2ka)1/2 ψ(ξm) (6.19)with ψ ∈ C∞
0 (−2/3, 2/3) �xed and √

ξm = −i|ξm|1/2 for ξm < 0. This redution is lear for m = 1, whereone has to loalize near ξ1 = ka and ξ1 = −ka. For m = 2, we parametrize the annulus R by ξ2 := r − kaand arlength ξ1 on |ξ| = r = ka and need two loal harts again to over R. Note that the Jaobiansof the orresponding oordinate transformations (with respet to the original ξ-oordinates) are uniformlybounded from above and below for ka ≥ 1. We omit the details sine we present an alternative approah inthe 3D ase below.To prove (6.18), we �rst observe that the operator of multipliation by q1 := a−1(ξm + 2ka)1/2 ψ hasnorm
sup

R

|q1| ≤ c
√

k/a and ≤ sup
R

|q1| + sup
R

|∂mq1| ≤ c
√

k/ain L2(Rm) and H1(Rm), respetively. Note that ka ≥ 1 implies 1/a ≤ k and
a−1(ξm + 2ka)−1/2 |ψ| ≤ ca−1/

√
ka ≤ c

√

k/a .By interpolation, the norm of this multipliation operator in H̺(Rm) is then bounded by c(̺)
√

k/a. Itremains to show that
‖
√

ξm ϕ(ξm) v‖H̺(Rm) ≤ c(̺) ‖v‖H̺(Rm) , 0 ≤ ̺ < 1 , (6.20)18



where ϕ is a smooth funtion with somewhat larger support and ϕψ = ψ.Let �rst m = 1. Then (6.20) follows for ̺ ∈ (1/2, 1) sine √
ξ1 ϕ ∈ H̺(R) for ̺ < 1 (but not for ̺ = 1)and H̺(R) is a Banah algebra. Sine (6.20) is obvious for ̺ = 0, we obtain the result by interpolation.Note that the onstant c(̺) blows up as ̺→ 1.For m = 2, the proof of (6.20) an easily be redued to the ase m = 1 by using the relation (f. [26,Chap. 1℄)

H̺(R2) = L2(R;H̺(R)) ∩H̺(R;L2(R))and the fat that the funtion (6.19) is independent of ξ1. �Remark 6.5. An alternative proof of Theorem 6.2 (ii) for m = 2 an be given by the following morediret redution to the ase m = 1. Let (r, θ) be polar oordinates in R2, and onsider a multipliationoperator M := q· on H̺(R2), ̺ ∈ (0, 1], with a ontinuous funtion q = q(r) only depending on the radialvariable, supp q ⊂ [1/3, 2/3], and suh that q· onsidered as a multipliation operator on H̺(R) is boundedwith norm ‖q · ‖̺. Then the norm of M on H̺(R2) is bounded by a positive onstant c(̺). Applying this tothe operator T̂ de�ned in (6.17) and using Theorem 6.2 (ii) for m = 1, we get the result for m = 2.To prove the above norm estimate for M, we �rst note that L2(R2) is the orthogonal sum of the subspaes
Hj := {v ∈ L2(R2) : v = f(r) exp(ijθ) ,

∫ ∞

0

|f(r)|2 r dr <∞} , j ∈ Z ,and the Fourier transform leaves eah spae Hj invariant; see [35, Chap. 4.1℄. Therefore, it is su�ient toverify that
‖qf exp(ijθ)‖H̺(R2) ≤ c(̺) ‖f exp(ijθ)‖H̺(R2) (6.21)for eah j ∈ Z and f ∈ C∞

0 (0,∞). Furthermore we have, uniformly in j,
‖qf exp(ijθ)‖L2(R2) ∼ ‖r1/2qf‖L2(R) ,

‖qf exp(ijθ)‖H1(R2) ∼ ‖qf exp(ijθ)‖L2(R2) + ‖∂rqf exp(ijθ)‖L2(R2) + ‖qfr−1∂θ exp(ijθ)‖L2(R2)

∼ ‖r1/2qf‖H1(R) + (1 + |j|) ‖r−1/2qf‖L2(R)and thus by interpolation,
‖qf exp(ijθ)‖H̺(R2) ∼ ‖r1/2qf‖H̺(R) + (1 + |j|)̺ ‖r1/2−̺qf‖L2(R) , (6.22)where ∼ means equivalene of norms. Here we used standard interpolation of Sobolev norms and the inter-polation theorem for weighted L2 spaes (see [37, Chap. 1.18.5℄). Now (6.22) and the boundedness of q· on

H̺(R) imply the estimates
‖qf exp(ijθ)‖H̺(R2) ≤ c(̺)

{

‖qr1/2f‖H̺(R) + (1 + |j|)̺ ‖qr1/2−̺f‖L2(R)

}

≤ c(̺) max(‖q · ‖̺ , sup |q|)
{

‖r1/2f‖H̺(R) + (1 + |j|)̺ ‖r1/2−̺f‖L2(R)

}

≤ c(̺) max(‖q · ‖̺ , sup |q|) ‖f exp(ijθ)‖H̺(R2)giving (6.21).Remark 6.6. (i) Repeating the above proofs with a �xed ut-o� funtion χ vanishing in a neighbourhoodof |ξ| = k, we obtain the norm estimate of Lemma 3.2 for the ommutator T − (1 + x2)̺/2T (1 + x2)−̺/2·.Here we need not take are of the dependene of the onstants on a and k.(ii) Note that the symbol t(0) = χt of the pseudodi�erential operator T (0) = F−1t(0)F is a smoothfuntion satisfying |t0| ≤ c(1 + ξ2)1/2 and |∇t0| ≤ c on R
m, and this is enough to obtain the boundednessof the ommutators T (0) − (1 + x2)̺/2T (0)(1 + x2)−̺/2·, |̺| ≤ 1, on L2(Rm); see the estimates (6.15) and(6.16). 19



Applying this to the operator Λ := F−1(1 + ξ2)1/2F whih is an isomorphism of H1(Rm) onto L2(Rm),we observe that Λ is also an isomorphism of H1
̺(Rm) onto L2

̺(R
m), and F is an isomorphism of H1

̺(Rm)onto H̺
1 (Rm), at least for |̺| ≤ 1. This is also true for arbitrary ̺ ∈ R; see [31℄ and [38℄.(iii) Let σ(ξ) be a smooth symbol satisfying the estimates |σ| ≤ c, |∇ξσ| ≤ c(1 + ξ2)−1/2 on Rm. Then,for A := F−1σF and |̺| ≤ 1, the ommutator

A− (1 + x2)̺/2A(1 + x2)−̺/2· : L2(Rm) → H1(Rm)is bounded. This follows from (ii) applied to the operator B = ΛA with the symbol (1 + ξ2)1/2σ(ξ) and therelation
Λ−1B − (1 − x2)̺/2Λ−1B(1 + x2)−̺/2· = Λ−1

(

B − (1 + x2)̺/2B(1 + x2)−̺/2 ·
)

+
(

Λ−1 − (1 + x2)̺/2Λ−1(1 + x2)−̺/2 ·
)

(1 + x2)̺/2B(1 + x2)−̺/2 · .
(6.23)Note that B is bounded on L2

̺(R
m).More general results on pseudodi�erential operators with smooth symbols in weighted Sobolev spaes anbe found in [31℄ and [38℄.Finally, we proeed toProof of Lemma 3.4 (i). From (2.4) we have, for u0 ∈ C∞

0 (Γ0),
u(x, xn) = F−1 exp(−xnt(ξ))Fu0 =: M0u0 , t(ξ) :=

√

ξ2 − k2 ,

∇xu(x, xn) = F−1iξ exp(−xnt(ξ))Fu0 =: M1u0 = ∇xM0u0 , (6.24)
∂nu(x, xn) = F−1(−t(ξ)) exp(−xnt(ξ))Fu0 =: M2u0 = −TM0u0 .We have to prove the estimates, for |̺| < 1 and h > 0,

‖u‖H1
̺(U0\Ūh) ≤ c(h, ̺)‖u0‖H

1/2
̺ (Γ0)

, u0 ∈ C∞
0 (Γ0) ,or equivalently, with m = n− 1,

∫ h

0

∫

Rm

(1 + x2)̺
2
∑

j=0

|Mju0|2 dx dxn ≤ c(h, ̺) ‖(1 + x2)̺/2u0‖2
H1/2(Rm) . (6.25)This was proved in [11℄ for ̺ = 0 by taking Fourier transform. To verify (6.25) for ̺ 6= 0, it is then su�ientto show that the ommutators

Mj − (1 + x2)̺/2Mj(1 + x2)−̺/2· , j = 0, 1, 2 ,are uniformly bounded on L2(Rm) with respet to xn ∈ (0, h); ompare the proof of Lemma 3.3 (ii). We anwrite (f. relation (6.23))
AM0 − (1 + x2)̺/2AM0(1 + x2)−̺/2· = A

(

M0 − (1 + x2)̺/2M0(1 + x2)−̺/2 ·
)

+
(

A− (1 + x2)̺/2A(1 + x2)−̺/2 ·
)

(1 + x2)̺/2M0(1 + x2)−̺/2· ,
(6.26)where A is one of the operators ∂j = ∂/∂xj, 1 ≤ j ≤ m, and T . Therefore it is enough to prove the uniformboundedness of

M0 : L2
̺(R

m) → L2
̺(R

m) , |̺| < 1 , (6.27)
M0 − (1 + x2)̺/2M0(1 + x2)−̺/2· : L2(Rm) → H1(Rm) , (6.28)sine ∂j , T : H1(Rm) → L2(Rm) are bounded, the ommutators ∂j − (1+x2)̺/2∂j(1+x2)−̺/2· are obviouslybounded on L2(Rm), while the ommutator T − (1 + x2)̺/2T (1 + x2)−̺/2· is bounded there by Lemma 3.2.20



By taking Fourier transform, the uniform boundedness of (6.27) is equivalent to the estimates
‖m(xn, ξ) v‖H̺(Rm) ≤ c(h, ̺)‖v‖H̺(Rm) , v ∈ C∞

0 (Rm) , xn ∈ (0, h) , (6.29)where m(xn, ξ) = exp(−xnt(ξ)). Consider a deomposition t = t(0) + t(1) as in (6.5), with a = 1, t(0) = χt,
t(1) = (1−χ)t and a ut-o� funtion χ vanishing near |ξ| = k, so that t(0) is a smooth symbol. We introduethe multipliation operators M = m(xn, ξ)· = M(1)M(0), M(j) = exp(−xnt

(j)(ξ))·, xn ∈ (0, h), and hekthe uniform boundedness of
M(0) : H̺(Rm) → H̺(Rm) , |̺| ≤ 1 , (6.30)
M(1) : H̺(Rm) → H̺(Rm) , |̺| < 1 . (6.31)Sine we have, for xn ∈ (0, h) and m0(xn, ξ) = exp(−xnt

(0)(ξ)),
|m0(xn, ξ)| ≤ c(h) , |∇ξm0(xn, ξ)| ≤ c(h)(1 + ξ2)−1/2 on R

m , (6.32)the norm of (6.30) is bounded by some onstant c(h). To get a bound for (6.31), we write
exp(−xnt

(1)) =
∑

j≥0

xj
n(−t(1))j/j! (6.33)and apply the proof of Theorem 6.2 (ii) to estimate the norm of (6.31) by

∑

j≥0

hjc(̺)j/j! = exp(hc(̺)) .This �nishes the proof of (6.27).To prove the uniform boundedness of (6.28), we write
M0 − (1 + x2)̺/2M0(1 + x2)−̺/2· = M (1)

(

M (0) − (1 + x2)̺/2M (0)(1 + x2)−̺/2 ·
)

+
(

M (1) − (1 + x2)̺/2M (1)(1 + x2)−̺/2 ·
)

(1 + x2)̺/2M (0)(1 + x2)−̺/2· ,
(6.34)where M (j) = F−1 exp(−xnt

(j)(ξ))F , j = 0, 1. By (6.32) and Remark 6.6 (iii), we obtain the uniformboundedness of
M (0) − (1 + x2)̺/2M (0)(1 + x2)−̺/2· : L2(Rm) → H1(Rm) .Moreover, M (1) is obviously bounded on H1(Rm) sine its symbol is uniformly bounded. In view of (6.30)and the isometry F : L2

̺(R
m) → H̺(Rm), it is then su�ient to verify that the last ommutator in (6.34) isuniformly bounded from L2(Rm) into H1(Rm), and for this it is enough to show the uniform boundednessof

N (1) = M (1) − I : L2
̺(R

m) → H1
̺(Rm) , |̺| < 1 , xn ∈ (0, h) , (6.35)where I is the identity operator, and the symbol of N (1) is n1(xn, ξ) = exp(−xnt

(1)(ξ)) − 1. Taking Fouriertransform and using Remark 6.6 (ii), (6.35) is then equivalent to the uniform boundedness of
n1(xn, ξ)· : H̺(Rm) → H̺

1 (Rm) , |̺| < 1 . (6.36)Consider the multipliation operator N (1) = (1 + ξ2)1/2n1(xn, ξ)·. Then, using relation (6.33), estimate(6.31) an be proved (in the same way) for N (1) in plae of M(1); reall that t(1) has ompat support. Thiseasily implies (6.36), whih �nishes the proof of (6.28). Thus Lemma 3.4 (i) is proven. �
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