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Abstract

Elliptic equations arising in free-surface ocean models are typically solved us-

ing iterative methods. Mesh anisotropy associated with standard co-ordinate

systems causes the convergence of the iterative methods to be slow, partic-

ularly in polar regions. This is demonstrated here using a preconditioned

conjugate gradient (PCG) iterative method with diagonal preconditioning.

Numerical evidence is presented, using a 2D spherical domain model and

a standard five-point discretisation scheme, to show that the polar conver-

gence problem is caused by the increased importance, with increased mesh

anisotropy, of eigenmodes with strong polar signals. Block diagonal, alternat-

ing direction implicit (ADI) and Binormalization preconditioners are consid-

ered here as alternative preconditioners for the PCG method. Their impact

on reducing the computing time and improving the polar convergence issue

is investigated. Theoretical estimates for the rates of convergence for the

different preconditioners are derived and tested using numerical experiments

with varying mesh anisotropy. The ADI preconditioner is found to provide

the fastest convergence with the most improvement to the polar convergence

problem. Block diagonal and Binormalization preconditioning also offer some

improvements.

The work is extended to include a varying topography operator within

the elliptic equations and the use of a particular nine-point discretisation

scheme. The applicability of the proposed preconditioners to the problems

in these extended cases is confirmed. ADI is again found to provide the

fastest convergence. The results highlight the importance of using the correct

stopping criteria to obtain the most accurate results.
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Chapter 1

Introduction

The world ocean is a key component in the climate system of the Earth.

This is due to its size (covering 70% of the Earth’s surface) and its high

heat capacity. It is also the largest store of carbon dioxide in the Earth’s

carbon cycle. The study of physical oceanography, however, is a compar-

atively recent research area, starting with the theoretical understanding of

western boundary currents, such as the Gulf Stream, in the 1940’s. Numeri-

cal modelling of the ocean began even more recently, in the late 1960’s, and

has expanded greatly in the last 15-20 years with the introduction of high

performance, massively parallel, supercomputers.

Most ocean models in use today are based on integrating the incompress-

ible primitive equations on a sphere [36]. Complex topography is used at the

ocean bottom, and the ocean surface is either fixed or free to move with time.

The ocean basins themselves typically contain irregularly shaped coastlines

and islands which require the inclusion of specific boundary conditions into

any solution algorithm.

The solution of elliptic problems are commonly required in many ocean

models. Various excellent references exist which discuss the known properties
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of general elliptic operators and the resulting matrix forms of the discretised

equations ([3], [6], [33], [38], [40] [62], [75]). The problem we consider is

that of a modified Helmholtz equation on a sphere with appropriate bound-

ary conditions using a latitude-longitude co-ordinate framework. This is an

isotropic problem which is rendered mesh anisotropic by the choice of coordi-

nates. The coordinate framework also introduces singularities at the poles of

the domain. The singularity at the South Pole is not a problem as it falls on

land (Antarctica). However, the North Pole singularity does not fall on land

and must be addressed. Methods for doing this are described in Chapter 2.

An operator is anisotropic if its local properties vary with direction (i.e. the

operator is not invariant with respect to direction). As an example consider

the constant coefficient partial differential equation

− ∂

∂x

(
Lx

∂U

∂x

)
− ∂

∂y

(
Ly

∂U

∂y

)
= γ(x, y), (1.1)

where Lx and Ly are taken here to be constant. Note that the case Lx =

Ly = 1 is just the Laplacian operator which, when discretised on a regular

Cartesian grid, is known to be relatively easy to model. If we alter the

coefficients though, making Lx much larger than Ly, the operator becomes

poorly conditioned. This is an example of strong anisotropy, where the ratio

between the maximum and minimum ranges (the anisotropy ratio) is large.

In the ocean models we consider, the effects of mesh anisotropy are seen

in the latitudinally varying rates of convergence of the iterative methods used

to solve the elliptic problems. Poor rates of convergence are observed in polar

regions compared to equatorial and mid-latitude regions. In these cases Lx

and Ly are non constant, with Lx ≈ Ly in equatorial regions, but Lx >> Ly

in polar regions. This is an example of inhomogeneous anisotropy. In these

cases an operator is inhomogeneous if its properties, when measured in a

particular direction, change with location. An inhomogeneous anisotropic
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operator is therefore an operator whose ratio of anisotropy varies spatially.

The ratio is large in polar regions, whereas in equatorial regions it is close

to 1 (isotropy). A typical convergence result encountered with this type of

operator is shown in Figure 1.1. This shows the variation in the residual

errors with latitude for a ”Northern Hemisphere only” numerical experiment

with the free surface formulation of the Met.Office ocean model. This is

shown ’at convergence’ i.e. when the convergence criteria for the numerical

iterative method has been reached. Significantly higher residual error values

are observed in the polar region compared to the equatorial and mid-latitude

regions.

One of the main aims of this thesis is discover how the mesh anisotropy

causes the polar convergence issue shown in Figure 1.1. Also we aim to

investigate the effect that the mesh anisotropy has on the numerics and

conditioning of the discrete elliptic problem. It is often very time-consuming

for an ocean group to investigate and implement a new co-ordinate system.

We will therefore investigate ways to improve the existing iterative methods

that are used to solve the discrete problems, obviating the need for a change

in co-ordinate system. In particular we will devise preconditioners to improve

the existing iterative methods, with particular focus on addressing the polar

convergence issue.

In Chapter 2 we discuss the history behind the various models that are

used in ocean modelling today and highlight differences in their formula-

tions. We discuss the Bryan-Cox-Semtner model ([13], [18], [66], [67]), on

which most current operational models are based. We summarise the two

main formulations of the Bryan-Cox-Semtner model used to calculate the

barotropic (depth-averaged) flow: rigid-lid and implicit free surface. The

numerical solution for the free-surface height field, calculated in the latter,

3
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Figure 1.1: Latitudinal variance in residual errors at convergence, for ex-
periment with free surface formulation of Met.Office ocean model (Northern
Hemisphere only)

suffers from a growing chequerboard (+−) mode ([24],[46]). The reasons for

the appearance of this mode as well as the filter most commonly used to re-

move it are described ([46]). We also discuss the grids used most commonly

to position the model variables in the computational mesh ([4]). In addition

we discuss the spatial discretisation schemes used in the model formulations.

In particular we describe how islands are treated with regards to the applica-

tions of boundary conditions with the nine-point discretisation operator used

in the free surface formulation. In addition we summarise the various ways

in which the singularity at the North Pole is resolved ([65],[54]). Finally we

briefly summarise the state of global ocean modelling today. We highlight

ocean groups worldwide and describe the model formulations and discrete

grids they are using in their models.

Chapter 3 highlights the mathematical theory which is crucial to the study

of this problem. The key theorems and definitions that are used to confirm

the validity of the methods and preconditioners that are most commonly used
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in the rigid-lid and free surface formulations are given, as well as proposed

extensions. The rigid-lid formulation is typically solved using a Chebyshev

Semi-Iterative method, whilst the free-surface formulation is normally solved

using a Preconditioned Conjugate Gradient (PCG) Method with a diagonal

preconditioner. These methods are introduced along with alternative precon-

ditioners that we will consider. These include a new Alternating-Direction-

Implicit (ADI) preconditioner with spatially varying free parameter.

In Chapter 4 we illustrate the inherent problems by examining an idealised

spherical domain model of the ocean, with a five-point discretisation scheme,

and obtain theoretical results demonstrating the convergence of the various

methods and preconditioners considered. The Gerschgorin circle theorem [75]

is applied to our matrix problems in order to obtain qualitative information

on the relative speeds of convergence of the preconditioned methods. We

also use truncation error analysis to confirm the consistency of the discreti-

sation scheme used to the continuous problems. Our theoretical findings are

then tested in a set of numerical experiments, with varying mesh anisotropy,

in Chapter 5. These demonstrate how the eigenstructure of the precondi-

tioned methods relates to the polar convergence issue. Also we assess the

computational efficiency of our preconditioned methods.

Our idealised spherical domain model is extended in Chapter 6 to include

a varying ocean depth operator, H. We firstly consider cases where the

elliptic operator is of the form −∇·(H∇), which is analogous to the operator

used in the free-surface formulation. We then consider an elliptic operator of

the form −∇ · ( 1
H
∇), which is the generic operator encountered in the rigid-

lid formulation. The numerical implications of the form of the operator,

and hence the efficiency of the formulation used, are investigated. We also

re-examine, both theoretically and experimentally, the convergence of our

5



preconditioners in this varying topography problem.

In Chapter 7 we further extend our idealised spherical domain model to

include a nine-point discretisation operator analogous to that used in the free

surface ocean model. The applicability of the preconditioned methods to the

discrete problems using the nine-point scheme is demonstrated using conver-

gence analysis. Numerical experiments are performed to test the efficiency

of our preconditioned methods in this extended case. The importance of the

eigenstructure of the preconditioned methods with regards to the polar con-

vergence issue is again confirmed. Also the importance of using the correct

stopping criteria in the iteration process is particularly highlighted by the

numerical results.

Finally in Chapter 8 we present conclusions to this work and consider

some possible future expansions to this research area.
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Chapter 2

Overview of ocean modelling

2.1 Introduction

Since the main ideas of this thesis are motivated by the properties of in-

homogeneous anisotropic elliptic problems in the context of Ocean General

Circulation models (OGCM) we include a chapter discussing the current sit-

uation with regard to ocean modelling worldwide, and describe the origin and

theory behind the models in which our anisotropic elliptic operators appear.

Most of the OGCMs in use today are based on the work, in the late

1960’s, of Bryan [13]. He produced a finite-difference formulation of the

Navier-Stokes equations and the nonlinear equation of state. After being

programmed in FORTRAN by Cox [18] the model came to be known as the

Bryan-Cox model. In the mid-1970’s the model was renamed the Bryan -

Cox - Semtner model (Henceforth BCS model) when the code was updated,

for use with vector processors, by Semtner [66]. This was used until the mid-

1980’s when the code was further updated by Cox and Semtner [67] using

both Cray and Cyber coding.

The BCS model solves the primitive equations, derived from the Navier-
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Stokes equations, in a spherical coordinate system, using hydrostatic and

Boussinesq approximations. The hydrostatic approximation assumes that

the Lagrangian derivative of the vertical velocities is small compared to pres-

sure variations with height and gravitational terms i.e. that the vertical

pressure gradient is only due to density variations ([13]). This uses the fact

that the ratio of vertical to horizontal scales of motion (aspect ratio) is usu-

ally small in the large scale ocean. The Boussinesq approximation assumes

that density terms in the primitive equations are replaced by a constant

mean value for density, ρ0, everywhere except in the buoyancy term in the

vertical momentum equation. This has the advantage of eliminating shock

and sound waves. For a detailed overview of the Primitive equations and the

approximations typically used with them see Gill [36].

The oceanic response to surface forcing may be split into two parts : a

barotropic response in the form of external Kelvin and gravity waves (on the

surface) and a baroclinic response in the form of internal gravity, planetary

Rossby, Kelvin and other similar types of wave (see Gill [36] for more de-

tails). From the point of view of modelling long (climate level) timescales

it is the internal waves that are the more important whilst the external

waves are damped if possible. This is because the speeds of surface gravity

waves are typically around 200ms−1 which severely limits the permissible

time step of the numerical scheme. The timesteps of the model are limited

by a Courant-Friedrichs-Levy criterion which states that diffusive, advective

and wave processes may not move more than one discrete grid spacing per

time step ([8]).

Bryan [13] eliminated surface gravity waves by introducing a rigid-lid

approximation. This means that the surface of the ocean is assumed to be

fixed (i.e. does not go up and down) an assumption which effectively makes
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the phase speeds of all surface gravity waves infinite. This removes the strict

constraint on the time step. Rigid lid models are still used extensively today;

there is, however, a recent tendency towards reverting to a free surface model

(The Met.Office (MO) ocean group is one group considering this). There are

a number of advantages of such a formulation over a rigid-lid assumption

which we discuss in Section 2.2. Dukowicz and Smith [23], [24] explain fully

the theory behind both formulations.

The rigid-lid formulation incorporates a rigid-lid approximation of the

ocean model. The problem is decoupled into barotropic and baroclinic ve-

locity components. The barotropic components are vertical averages of the

velocities whereas the baroclinic components represent deviations from those

vertical averages. In order to obtain the 2D barotropic velocity field it is

necessary to solve an elliptic boundary value problem of Poisson type i.e.

−∇2ψ = g(x, y), where g(x, y) is a source term. Dirichlet boundary condi-

tions are taken on the boundary of the domain. This problem is solved in

terms of the volume transport streamfunction, ψ.

For the free-surface formulation the barotropic equations are rewritten in

terms of the free surface height, η, instead of the volume transport stream-

function, i.e. the rigid-lid assumption has been replaced by an implicit free

surface condition. The implicit free surface formulation leads to greater

computational efficiency due to the adding of a diagonal term to the ma-

trix representation of the discrete elliptic operator. The resulting equa-

tion is known as a Modified Helmholtz equation and is of the general form

−∇2η + kη = g(x, y), where k > 0. The additional diagonal term increases

the diagonal dominance of the associated matrix system of equations hence

yielding a more efficient algorithm. The importance of the diagonal domi-

nance of a matrix to the speed of numerical algorithms is discussed in greater
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detail in later chapters.

In the rigid-lid formulation the barotropic problem uses about 33 per-

cent of the computational time on the Cray machine ([23]). This is mainly

due to the inefficiencies introduced by the use of islands in this formulation

(discussed in greater detail in Section 2.2.1). With the free-surface formula-

tion this is reduced to less than 25 percent ([24]). However, it is only this

large due to the polar convergence issue we have highlighted. If this could

be remedied, via the use of a more efficient preconditioner in the iterative

method for example, this factor could be reduced still further.

In Section 2.2 we summarise the BCS Model formulation, in particular the

barotropic solution in the rigid-lid and free surface cases. We also describe the

various possible grid formulations for the arrangement of the model variables.

In Section 2.3 we introduce the spatial discretisation schemes commonly used

in the BCS model formulations. A standard five-point discretisation scheme

is used in the rigid-lid formulation whereas a particular nine-point discreti-

sation scheme is used in the free-surface formulation. We examine the use,

with the nine-point scheme, of implicit boundary conditions at the island

boundaries as referred to by Dukowicz and Smith [24]. We also highlight

issues of a particular type of computational noise which commonly arises

when using the nine-point scheme in the free-surface formulation. The filter

typically used to deal with this noise is also described. In Section 2.4 we dis-

cuss the key role that polar regions play in ocean modelling and describe the

methods used today to discretise those regions and resolve the issue of the

co-ordinate singularity at the North Pole. Finally in Section 2.5 we provide

an overview of the current state of ocean modelling by considering the models

used by ocean groups worldwide and describe particularly the numerics and

formulations they use.
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2.2 BCS model formulation

A full description of the Bryan - Cox - Semtner model may be found in

Bryan [13] and Semtner [67]. Here we summarise how the barotropic prob-

lem may be formulated in both rigid-lid and free surface forms. We adopt the

notation of Semtner [67], with λ, φ, and z representing longitude, latitude

and depth respectively. The Earth is assumed to be spherical with radius a

and to be rotating with angular velocity Ω. The horizontal velocity compo-

nents are u in the longitudinal direction and v in the latitudinal direction.

The vertical velocity component is denoted by w. The state of the ocean

is also described by the pressure, p, the density, ρ, the potential tempera-

ture, T , and the salinity, S. The model is simplified by various assumptions,

namely the Hydrostatic and Boussinesq approximations described in Sec-

tion 2.1. The following are the primitive equations for a stratified fluid using

the Hydrostatic and Boussinesq approximations :

∂u

∂t
+ L(u)− fv = − 1

ρ0acosφ

∂p

∂λ
+ F λ, (2.1)

∂v

∂t
+ L(v) + fu = − 1

ρ0a

∂p

∂φ
+ F φ, (2.2)

∂p

∂z
= −ρg, (2.3)

1

acosφ

[
∂u

∂λ
+

∂(vcosφ)

∂φ

]
+

∂w

∂z
= 0, (2.4)

where g is the gravitational acceleration, ρ0 is the mean density of the ocean,

f = 2Ωsinφ is the Coriolis parameter and

L(q) =
1

acosφ

[
∂u(q)

∂λ
+

∂vcosφ(q)

∂φ

]
+

∂w

∂z

is an advection operator. The terms F λ and F φ include metric and vis-

cous terms that are treated explicitly in the discretisation of the horizontal
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momentum equations. The system of primitive equations is completed by

the inclusion of equations for temperature and salinity transport, and the

equation of state :
∂T

∂t
+ L(T ) = D(T ), (2.5)

∂S

∂t
+ L(S) = D(S), (2.6)

ρ = ρ(T, S, z), (2.7)

where D() is a diffusion operator. This system of equations is to be solved

with appropriate boundary and initial conditions. The main difference be-

tween the two formulations, rigid-lid and free surface, are the boundary condi-

tions for the vertical velocity at the surface. We summarise the formulations

as described by Dukowicz and Smith ([23], [24]) in the next two sections.

2.2.1 Rigid-lid formulation

In the rigid-lid formulation the boundary conditions for the vertical velocity

are derived from the rigid-lid approximation at the surface, and the require-

ment that the flow follows the topography at the ocean floor :

w = 0 |z=0, (2.8)

w = − 1

acosφ

(
u
∂H

∂λ
+ vcosφ

∂H

∂φ

)
|z=−H(λ,φ), (2.9)

where H(λ, φ) is the (positive) ocean depth.

Decomposing the horizontal velocity field into a baroclinic (internal) and

barotropic (external) mode we obtain:

(u, v) = (u′, v′) + (ū, v̄), (2.10)

where

ū = 1
H

∫ 0

−H
udz,

v̄ = 1
H

∫ 0

−H
vdz,

(2.11)
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are the barotropic (vertically averaged) velocities, and (u′, v′) are the baro-

clinic (deviations from vertically averaged) velocities. By integrating (2.3)

the pressure may also be decomposed into the surface pressure, ps (corre-

sponding to the pressure at the rigid lid boundary) and a hydrostatic pres-

sure, ph where

ph =

∫ 0

zh

ρ(z′)gdz′. (2.12)

We now take vertical averages of (2.1), (2.2) and (2.4) and combine them

with (2.8) and (2.9) to obtain

∂ū

∂t
− fv̄ = − 1

ρ0acosφ

∂(ps + ph)

∂λ
+ F̃ λ, (2.13)

∂v̄

∂t
− fū = − 1

ρ0a

∂(ps + ph)

∂λ
+ F̃ φ, (2.14)

1

acosφ

[
∂Hū

∂λ
+

∂(Hv̄cosφ)

∂φ

]
= 0. (2.15)

where

F̃ λ = − 1

ρ0acosφ

∂p̄h

∂λ
+ F̄ λ, (2.16)

F̃ φ = − 1

ρ0a

∂p̄h

∂φ
+ F̄ φ. (2.17)

We now summarise the elimination of the surface pressure ps by the intro-

duction of a volume transport streamfunction, ψ. We discretise the partial

derivatives which involve time in (2.13) - (2.15), using a Leapfrog scheme,

and use vector notation to rewrite them in the following form:

(1− ταfk×)ūn+1 +
τ

ρ0

∇ps = s, (2.18)

∇ ·Hūn+1 = 0, (2.19)
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where

ūn+1 =


 ūn+1

v̄n+1


 ,

∇ = 1
acosφ




∂
∂λ

cosφ ∂
∂φ


 ,

∇· = 1
acosφ

(
∂
∂λ

, ∂cosφ
∂φ

)
,

s = [1 + τ(1− α)fk×] ūn−1 + τ


 − 1

ρ0acosφ
∂p̄h

∂λ
+ F̃ λ

− 1
ρ0a

∂p̄h

∂λ
+ F̃ φ


 .

(2.20)

Here k is a unit vector in the z direction, τ = 2δt (where δt is the size of

a timestep), α is a parameter which is used to vary the time-centering of

the Coriolis term, and s is a source function containing information from a

previous timestep.

The velocity may be written in terms of the volume transport stream-

function as

ūn+1 =
1

H
∇ψ × k =

1

Hacosφ


 −cosφ∂ψ

∂φ

∂ψ
∂λ


 . (2.21)

Using the definition of the curl operator ∇× we may eliminate the surface

pressure, ps from (2.18). This gives the following equation for the stream-

function, ψ :

∇×
[
(1− ταfk×)

(
1

H
∇ψ × k

)]
= ∇× s. (2.22)

From (2.21) we observe that the barotropic velocity component normal to the

boundaries is proportional to the tangential derivative of the streamfunction

at the boundaries. The normal component of velocity is required by the

boundary condition to be zero. Therefore the streamfunction is required to

be spatially constant along all coastlines.
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The elliptic equations for the rigid-lid formulation are solved iteratively

at every time step in terms of the difference in streamfunction, ψ, between

two consecutive timesteps, n + 1 and n, of the overall rigid-lid ocean model.

We denote ψ′ to be the change in ψ between timesteps. The equation to be

solved is then given by

1

acosφ

[
∂

∂λ

(
1

Hacosφ

∂ψ′

∂λ

)
+

∂

∂φ

(
cosφ

Ha

∂ψ′

∂φ

)]
= S(λ, φ). (2.23)

where S may be regarded as a source term, containing information from

previous timesteps and forcing terms.

2.2.2 Free surface formulation

In the free surface formulation Dukowicz [24] again decomposes the pressure

into the surface pressure and a hydrostatic pressure (after integrating the

hydrostatic equation (2.3)). As before we have

ph =

∫ 0

z

ρ(ζ)gdζ, (2.24)

giving the hydrostatic pressure. This time, however, we have the surface

pressure, ps given by

ps =
∫ η

o
ρ(ζ)gdζ

≈ ρ0gη,
(2.25)

where η is the height of the free surface above mean sea level. The equations

for a set of variable depth horizontal layers are then derived and applied

to a model with a variable top layer only. In this analysis the constant ρ0

is incorporated into the terms for pressure or density. The resulting layer

equations are given by

∂uk

∂t
+ L∗(uk)− fvk = − 1

acosφ

∂(ps + ph,k)

∂λ
+ F λ

k , (2.26)
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∂vk

∂t
+ L∗(vk) + fuk = −1

a

∂(ps + ph,k)

∂φ
+ F φ

k , (2.27)

where k is the index label for the vertical layers (top layer at k = 1) and L∗

is the free-surface advection operator. In the top level L∗ is given by

L∗(q1) =
q1

h1

∂η

∂t
+

1

acosφ

[
∂(u1q1)

∂λ
+

∂(v1q1cosφ)

∂φ

]
−

w 3
2
q 3

2

h1

, (2.28)

and at all other levels it is given by

L∗(qk) =
qk

hk

∂η

∂t
+

1

acosφ

[
∂(ukqk)

∂λ
+

∂(vkqkcosφ)

∂φ

]
+

wk− 1
2
qk− 1

2
− wk+ 1

2
qk+ 1

2

hk

,

(2.29)

where hk and qk are the constant thickness and an advected quantity (u, v,

T or S) respectively at layer k. Note the difference between L∗() and L() is

due to the extra free surface term on the right hand side of (2.28).

The resulting barotropic, or vertically averaged equations are given by

∂ū
∂t
− fv̄ = −g 1

acosφ
∂η
∂λ

+ Gλ,

∂v̄
∂t

+ fū = −g 1
a

∂η
∂φ

+ Gφ,

∂η
∂t

+ 1
acosφ

[
∂Hū
∂λ

+ ∂Hv̄cosφ
∂φ

]
= 0,

(2.30)

where H = H(λ, φ) is the total depth of the ocean, and (u, v) are the

barotropic velocity components. The terms Gλ and Gφ represent baroclinic

forcing. The barotropic equations differ from their rigid-lid counterparts by

the inclusion of a term involving the time derivative of the surface elevation,

η, in the continuity equation. This equation accounts for the change in vol-

ume due to a change in the surface elevation, and for the associated change

in the surface pressure. We consider only the barotropic velocities from now

on and drop the bar superscript over the (u, v).

Dukowicz [24] considered the following general time discretisation of equa-
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tion (2.30) :
un+1−un−1

2δt
− fvα′ = −g 1

acosφ
∂ηα

∂λ
+ Gλ,n,

vn+1−vn−1

2δt
+ fuα′ = −g 1

a
∂ηα

∂φ
+ Gφ,n,

ηn+1−ηn

δt
+ 1

acosφ

[
∂Huθ

∂λ
+ ∂Hvθcosφ

∂φ

]
= 0,

(2.31)

where

uα′ = α′un+1 + (1− α′ − γ′)un + γ′un−1,

vα′ = α′vn+1 + (1− α′ − γ′)vn + γ′vn−1,

ηα = αηn+1 + (1− α− γ)ηn + γηn−1,

uθ = θun+1 + (1− θ)un

vθ = θvn+1 + (1− θ)vn.

(2.32)

δt is the time step, n is the current time level, and α, α′, γ, γ′ and θ are

coefficients used to parameterise the time centering of the pressure gradient,

Coriolis, and divergence terms. In general the parameters

γ = γ′ = α = α′ =
1

2
, (2.33)

are taken in the momentum equations to centre the equations in time, and

eliminate temporal truncation errors in the leading-order geostrophic bal-

ance. This increases accuracy and reduces damping of the physical modes.

Trapezoidal discretisation is taken for the continuity equation to reduce the

number of computational modes. If leapfrog differencing had been chosen

for this equation as well, then the solutions on alternate time steps would

completely decouple, and for each of the three physical modes (one Rossby

wave and two gravity waves) there would be a computational mode, resulting

in three physical and three computational modes. By using a two time-level

discretisation one of these computational modes is eliminated. The remain-

ing two computational modes are a divergence oscillation associated with the

gravity waves, and a vorticity oscillation associated with the Rossby wave.
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The gravity wave mode is a more serious problem since high-frequency in-

stabilities tend to grow more quickly. This mode is damped most effectively

by choosing θ = 1.

Eliminating un+1 and vn+1 in (2.31) we obtain an implicit equation for

ηn+1. The details for this calculation may be found in Appendix A. In the

free surface solver this implicit equation is solved by calculating η′ which

represents the change in the free surface height η between two consecutive

timesteps of the overall ocean model(namely η′ = η(tn+1)−η(tn) where η(tn)

is known). This is done using the following equation:

1

acosφ

[
∂

∂λ

(
H

acosφ

∂η′

∂λ

)
+

∂

∂φ

(
Hcosφ

a

∂η′

∂φ

)]
− βη′ = S(λ, φ). (2.34)

The term S is again a source term containing information from previous

timesteps and forcing terms. The Helmholtz parameter β is given by

β =
1

2αθgτ 2
, (2.35)

where τ is the fixed timestep.

One advantage of this free surface formulation is that the elliptic equation

for the surface pressure (and hence the surface height) involves local bound-

ary conditions (discussed in the next section) and allows the use of as many

islands as are consistent with the horizontal resolution without computational

penalty. Another distinct advantage of this free surface formulation over the

rigid lid formulation is that the elliptic operator involves ∇(H) rather than

∇( 1
H

). This means that the operator is much less sensitive to sharp changes

in the ocean depth (particularly in shallow ocean areas where H is small)

and hence avoids the need for any topographic smoothing. Finally large scale

Rossby waves are not distorted in this formulation.
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2.2.3 Grid staggering of variables

Arakawa and Lamb [4] investigated the dispersion errors arising from the

finite difference approximation of the shallow-water equations with regards

to simulating geostrophic adjustment (where geostrophic balance is found by

the dispersion of inertia-gravity waves). This was done on five different grids

which have come to be known as the Arakawa A−E grids. These grids arise

from the possible arrangement of the dependent variables of the primitive

equations (u, v and η (or ψ)). In this section we examine the dynamical

advantages and disadvantages of these grids and highlight the reasons for

the extensive use of two of them (B and C) in modern ocean modelling. We

summarise the excellent description of this area given by Randall [64] and

referred to by Bell [8] and Kantha et al [44] among others. Figures 2.2 - 2.7

show the distribution of the variables in the different grids. Note that the E

grid is a 45o rotation of the B grid. The stepsize is assumed to be the same

in both directions with δλ = δφ = h.

An important length scale, when discussing these grids, is the Rossby

Radius of Deformation. This is given by

rD =
c

f
,

where c2 = gH for external waves. The ratio of this length scale to the grid

size is also a vital issue.

One of the difficulties of choosing a numerical scheme in these cases is

ensuring that spatial gradients involved in the primitive equations can be

calculated at a given grid resolution. When choosing grids it is important,

where possible, to avoid having to calculate tendency terms by averaging

values from the surrounding grid points.

From appearance the A-grid seems the simplest. It is unstaggered and
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allows the Coriolis terms of the momentum equations to be easily calculated

(as u and v are defined at the same points). However the pressure gradient

terms in the momentum equations and the divergence terms in the continuity

equation require averaging. The averaging process actually alters the pres-

sure gradient (since the λ derivative is averaged in the λ direction and the

same with the φ derivative) which is vital when calculating the geostrophic

adjustment. Because of this the solutions are very noisy and require smooth-

ing. As a result the A-grid is hardly ever used in modern ocean models.

As with the A-grid, the Coriolis terms arising from the momentum equa-

tions are readily calculated on the B-grid. On the other hand the pressure

gradient and divergence terms must still be averaged. However on the B-grid

the calculation of the pressure gradient in one direction involves averaging

in the other direction and therefore the averaging does not alter solutions in

that direction. Hence Arakawa and Lamb [4] concluded that the B-grid is

useful for simulating geostrophic adjustment.

On the C-grid the pressure gradient and convergence terms are easily

calculated since the η (or ψ) values are defined east/west of u points and

north/south of v points as required. However, since the u and v values are

defined at different points in this grid averaging is required to calculate the

Coriolis values in the momentum equations. It follows that waves for which

the Coriolis force is negligible (such as small-scale inertia-gravity waves) are

well resolved by the grid. Further this means that if the grid resolution is

small enough that the smallest waves resolved on the grid are insensitive to

the Coriolis force, then the grid will perform well.

The D-grid permits a ready evaluation of the geostrophic wind which is a

clear benefit to geostrophic adjustment models such as that considered by [4].

However it requires averaging to calculate the Coriolis, pressure gradient and
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divergence terms and as a result is not often used in modern ocean models.

The E-grid appears to be a useful compromise of all the grids as it al-

lows the calculation of the Coriolis, pressure gradient and divergence terms

without averaging. However there is a problem when considering solutions

that are uniform in one direction. In these (not unlikely) 1D cases the grid

is effectively an A-grid with all its inherent problems.

Most modern ocean models use either the Arakawa B or Arakawa C grid

to stagger the variables. We have noted that the C grid performs well if the

resolution of the model is smaller than the Rossby radius of deformation, a.

In the early days of numerical ocean models the resolutions available were too

coarse to resolve all but the first internal Rossby radius. Hence Bryan’s initial

model was formulated on a B grid. As we shall see in Section 2.4 many models

in use today still use a B grid. However, C grids are increasingly being used

now that finer grid resolutions are attainable. Both of the MO ocean model

formulations use a B grid. In the case of the free surface formulation implicit

boundary conditions are used at island boundaries which are described in

the Section 2.2. Also the combination of the B-grid and nine-point operator

used in the free-surface formulation cause a particular form of computational

noise which is described in Section 2.3.3.

For completeness we have included the Z grid advocated by Randall [64].

This uses divergence and vorticity as the solution variables and as we can

deduce from Figure 2.6 requires no averaging to obtain those variables. Av-

eraging would, however, be needed to calculate the barotropic velocities we

require.
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2.3 Spatial discretisations

Throughout this work we will use finite-differences to discretise our model do-

main. Finite-differences are almost exclusively used in barotropic ocean mod-

elling to generate the discrete approximations to the elliptic model equations

(as we shall discuss in Section 2.5). The MO rigid-lid formulation uses a stan-

dard five-point discretisation scheme ([6],[38],[40],[75]). The MO free-surface

formulation uses a nine-point discretisation scheme. A five-point scheme can-

not be used with this formulation for reasons of energy consistency (discussed

in detail in Dukowicz and Smith [23]). The nine-point scheme does suffer,

though, from a particular type of computational noise which we discuss in

Section 2.3.3. Both types of scheme lead to matrix equations with particu-

lar properties that may be exploited in order to solve them. The particular

properties will also depend on the exact form of the equation being solved,

the choice of boundary conditions for the domain, and the ordering of the

grid-points in the mesh. In this study we consider two of the most commonly

used orderings : the natural and red-black orderings. A detailed study of the

use of these, and many other grid point orderings, may be found in Duff and

Meurant [22]. We mostly use the natural ordering which is normally used

in the free-surface formulation. The rigid-lid formulation typically employs

the red-black ordering. To illustrate the orderings consider the Figures 2.7

and 2.8 which show the numbering of the grid points for a simple 5×5 grid.

The forms and properties of the matrices generated by these orderings are

discussed generally in Chapter 3 and for the particular cases considered in

Chapters 4 to 7. These will impact on the choice of numerical methods used

to solve the matrix equations.

In the rest of this section we briefly describe some common issues aris-

ing from the use of the nine-point discretisation scheme in the free-surface
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models. We will examine the use, with the nine-point scheme, of implicit

boundary conditions at the island boundaries as referred to by Dukowicz et

al [24]. We also highlight issues of a particular type of computational noise

which commonly arises when using the nine-point scheme in the free-surface

formulation. The filter typically used to deal with this noise is also described.

2.3.1 Nine-point operator

In this section we briefly illustrate how the nine-point discrete operator used

in the free-surface formulation is constructed. This will allow us to discuss

the implicit boundary conditions in the next section. To illustrate the 9-pt

stencil we consider the discretisation scheme about a general solution point

ηi,j (where ηi,j = η(λi, φj)). The general form of the elliptic equation that is

solved in the free-surface formulation is of the form∇·(∇η)−βη (c.f equation

(2.34)). The divergence ∇· is differenced using the four surrounding velocity

points (η(i+ 1
2
, j+ 1

2
), ηi− 1

2
,j+ 1

2
, ηi+ 1

2
,j− 1

2
, ηi− 1

2
,j− 1

2
), which leaves (∇U) to be re-

solved at these velocity points. The ∇η is resolved by using the four solution

points surrounding each velocity point (i.e ηi+1,j+1, ηi−1,j+1, ηi+1,j−1, ηi−1,j−1)

: components of ∇η are differenced and then averaged. For example ∂η
∂λ

on

velocity row ηi, 3
2

is found from,

1

2

(
(ηi+1,1 − ηi,1)

δλ
+

(ηi+1,2 − ηi,2)

δλ
.

)

Repeating this at each velocity point results in the nine-point stencil.

2.3.2 Boundary conditions for islands

Dukowicz [24], when describing the free surface formulation, refers to ’implicit

boundary conditions’ when discussing island boundary conditions. Note that
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the free surface height formulation is analogous with an elliptic problem that

requires Neumann conditions of

∂η

∂n̂
= 0,

at island boundaries (where n̂ is the direction normal to the boundary). In

this section we show that this boundary condition is ’implied’ by the setting

of the ocean depth, H, to be zero at land points. This means that the

condition does not have to be specifically included in the matrix equations.

Consequently there is little extra computational expense in using islands with

the free-surface formulation, allowing the use of as many as desired.

η

η

η

ηηη

η

η η
h

D

D

D D

D

D

E

E E E

EEC C

C C

Figure 2.9: Illustration of boundary condition in free surface model

Figure 2.9 shows the arrangement of variables in the computational B-

grid. The free surface height, η, is at the η-points shown on the grid ,with

the velocity and depth information at the C-points in the middle of each box

(grid staggered one half grid spacing in each direction). The generic operator

of interest is
∂

∂λ
(H

∂

∂λ
(η)) +

∂

∂φ
(H

∂

∂φ
(η)).
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This is constructed at grid point (i, j) from

(H
∂

∂λ
)(ηi+ 1

2
,j)− (H

∂

∂λ
)(ηi− 1

2
,j),

at the D-points and

(H
∂

∂φ
)(ηi,j+ 1

2
)− (H

∂

∂φ
)(ηi,j− 1

2
),

at the E-points.

It suffices to simply consider one of these, so take H ∂η
∂λ

(i+ 1
2
, j) to get the

nine-point operator. This is taken to be the average of the operator at the

two C-points, C(i + 1
2
, j + 1

2
) and C(i + 1

2
, j − 1

2
) i.e.

(H
∂

∂λ
)(ηi+ 1

2
,j+ 1

2
) =

1

2
((H

∂

∂λ
)(ηi+ 1

2
,j+ 1

2
) + (H

∂

∂λ
)(ηi+ 1

2
,j− 1

2
)).

On the right hand side of this equation, the H value is defined at that point,

whereas the gradient of η is now taken to be the average of the values above

and below, so e.g.

(H ∂
∂λ

)(ηi+ 1
2
,j) =

H(i + 1
2
, j + 1

2
)1

2
(ηi+1,j+1 − η(i, j + 1) + η(i + 1, j)− ηi,j),

so we can now see that the matrix coefficients are simply geometric products

always multiplied by the H value on the velocity grid points. Note that

H(C − point) = min(4 surrounding H(η − points)).

So if any C-point is on the boundary of a η point which is land, then H(C −
point) will be zero.

For example suppose (i+1, j+1) is a land point. Then H(i+ 1
2
, j+ 1

2
) = 0.

This implies that the local normal components at (i + 1
2
, j + 1

2
) will always

contribute 0 to the matrix, thereby implying local normal gradients of zero

at that point. NB This does not imply that the finite normal gradient at
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D(i + 1
2
, j) contributes zero; this will of course contribute a finite amount

via the averaging to obtain the contribution at C(i + 1
2
, j − 1

2
). In this way

the imposition of normal components of η across land interfaces equates to

zero, and the boundary condition has been implicitly applied. Note that it

is possible to substitute the ’correct’ boundary conditions into the equations

: upon eliminating the land values for the free surface, the land values of the

source terms, S(λ, φ), are also eliminated.

2.3.3 Chequerboard null Space

Using a nine-point operator with the B-grid in the Poisson equation (rigid-lid)

case generates a non-empty null space (as described by Dukowicz et al [23],

[24]). This corresponds to two null eigenvectors which are not removed by

the discrete operator : a global chequerboard (+/-) field and a constant

field. In one sense the free surface nine-point operator on a B-grid does not

have this null space, because the extra diagonal term moves the eigenvalues

of the null space fields away from zero, hence damping the constant and

chequerboard fields. However, if the solution to the Helmholtz equation is

in near steady state, this extra term cancels with the corresponding term on

the right hand side yielding a Poisson type problem with null space issues

we have highlighted. This commonly occurs in isolated coastal regions where

the solution is only weakly coupled to the interior. The chequerboard noise

only appears in the surface height fields. It does not appear in the velocity

fields as the chequerboard mode does not appear in the gradient operators

which are used in the barotropic momentum equation.

On a C-grid the global chequerboard is not a null eigenvector and hence

grid-scale chequerboard noise is damped. The C-grid is therefore the better

option in order to avoid chequerboarding. It does, however, have other dis-
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advantages, as noted in Section 2.2.3, which lead to preference for keeping

the B grid in the MO ocean models.

2.3.4 Killworth Delplus-Delcross filter

In this section we summarise the Killworth Delplus-Delcross filter, used to

address the chequerboard null mode described in Section 2.3.3, as discussed

in Killworth et al [46]. We briefly describe the form of the filter and how

it deals with boundary effects. As noted by Killworth [46] solutions to the

chequerboarding problem are standard in the Atmospheric literature (e.g.

Jancic [43]). Solution methods typically evaluate the divergence terms with

components from both chequerboard grids, thus re-coupling the grids and

smoothing out the (+/−) mode [46]. The Killworth delplus-delcross (∇+-

∇×) filter, which we summarise here, uses the difference between the standard

five-point ∇2 operator, delplus :

∇2
+(i, j) =

−ηi+1j + 2ηij − ηi−1j

δλ2
+
−ηij+1 + 2ηij − ηij−1

δφ2
, (2.36)

and the five-point operator acting along the NW-SE and NE-SW axes, del-

cross :

∇2
×(i, j) =

−ηi+1j+1 + 2ηij − ηi−1j−1

δλ2 + δφ2
+
−ηi−1j+1 + 2ηij − ηi+1j−1

δλ2 + δφ2
. (2.37)

Due to the spherical grid the difference between the delplus and delcross

operators is multiplied by a term of the form

gHmaxδt

a2cosφδλδφ
, (2.38)

where Hmax is the largest depth in the model basin. The form of the multipli-

cation was carefully chosen (using experimentation), by Killworth et al [46],

to maintain mass conservation, in order that the integrated effects of the
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filter are zero. The filter in (2.38) does this as mass conservation involves a

local metric of precisely the denominator of (2.38) ([46]).

There are also boundary effects to consider. The main problem is that,

with a standard Laplacian diffusion operator, η values outside a boundary

(i.e. on land) would be set such that ∂η
∂n̂

vanished (where n̂ is a co-ordinate

normal to the land boundary). However, land solution points could be in-

volved in evaluations of (2.36) and (2.37) depending on the shape of the land

boundary. It is required for mass conservation that all land solution point

contributions to (2.36) and (2.37) must sum to zero. Also (2.38) must still

be a smoothing operator everywhere, with all Fourier components of pertur-

bations being damped near land boundaries as well as in the interior of the

ocean domain. The solution Killworth et al [46] implemented was to define

the value of a land η point as the average of any surrounding ocean solution

points which access that point, in order to calculate (2.36). If (2.37) needs

to use a land point, the contribution of that pair is neglected.

2.4 Discretising polar regions

Polar regions, in particular the Arctic Ocean, play a key role in the ocean

circulation system via sea ice and deep water formation. Unfortunately, the

traditional latitude-longitude coordinate system used to solve the Primitive

equations in OGCMs possesses singularities at the North and South Poles.

The problem of the South Pole singularity is resolved by the fact that it

is on Antarctica and hence not part of the ocean domain. The North Pole

singularity does not fall on land, however. This impacts on the computational

stability of finite difference schemes by drastically reducing permitted time

step lengths. Various solutions exist for countering this problem. One such
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method is the use of a North Polar island [65]. This is currently used in the

rigid-lid ocean model at the MO. The topmost ψ row is taken to be land.

At the topmost velocity row (half a grid spacing away latitudinally to the

south) the prescribed Dirichlet boundary conditions of zero flow are assumed

to hold.

One alternative to the Polar island is the use of a North Polar point, as

discussed by Rickard and Cresswell [65]. This method locates a solution (ψ or

η) point at the Pole itself. The solution values at the polar point are updated

by calculating the fluxes on the velocity points to the south. The updates

to the value of the solution at the pole from these fluxes are then averaged

to obtain the unique new value of the solution point at the pole. Obtaining

the fluxes, in a consistent manner, is therefore vital to this method. This

scheme is currently used in the free surface ocean model of the MO (amongst

others).

Another approach is that suggested by Madec and Imbard [54]. The coor-

dinates of the North Pole are shifted onto land (Siberia is often used) and an

orthogonal curvilinear ocean mesh is used to discretise the North Hemisphere

region. This has the obvious benefit of removing the North Polar singularity

entirely. However this does have the drawback of grid non-uniformity as well

as the extra expense of altering Topography and Bathymetry settings in the

code.

2.5 Ocean modelling today

In this section we will briefly summarise the models currently being used

by ocean modelling groups worldwide. In particular we will highlight what

formulations the ocean groups are using and which co-ordinate systems and
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Group Full name/location

CERFACS European Centre for Research and Advanced

Training in Scientific Computation, France

GFDL Geophysical Fluid Laboratory, USA

IPSL Institut Pierre Simon Laplace, France

LANL Los Alamos National Laboratory, USA

MIT Massachusetts Institute of Technology, USA

MPI Max Planck Institute, Germany

NCAR National Center for Atmospheric Research, USA

NASA National Aeronautics and Space Administration

NRL US Naval Research Laboratory

SOES School of Ocean and Earth Science, UK

UM University of Miami, USA

UP University of Princeton, USA

Table 2.1: Ocean groups worldwide

grids they are using them with. There are ocean models that use alternative

methods for discretising the Primitive equations such as finite element or

spectral methods, although these are seldom used operationally. Table 2.1 is

a list of major modelling institutions worldwide.

Table 2.2 gives details on the models and numerics used by the groups

listed in Table 2.1. FS and RL refer to free-surface and rigid-lid formula-

tions respectively. All of the groups/models listed use a Primitive equation

model with second order finite differences and leap-frog time-stepping in the

numerics with the exception of MITgcm. This uses a finite-volume, non-

hydrostatic formulation with horizontal orthogonal curvilinear co-ordinates.

The OPA, MPI-OM, POM and ROMS models also use this co-ordinate sys-
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Group Model RL/FS Grid Vert.Co-ord.

CERFACS OPA [53] FS C z

GFDL MOM [63] Exp FS B z

IPSL OPA [53] FS C z

MIT MITgcm [2] - - z

MO MOM [63] RL(FS) B z

MPI MPI-OM [57] FS C z

NASA ROMS [71] FS C σ

NCAR CSM [35] RL B z

SOES OCCAM [78] Exp FS B z

UM,LANL,NRL HYCOM [42] FS C hybrid

UP POM [30] FS C σ

Table 2.2: Details of ocean groups worldwide and details of the models they
use for solving the barotropic problem

tem which overcomes the North Pole singularity by using two poles in the

Northern Hemisphere which are placed over land (One over North America

and the other over Siberia). A slightly different approach is used by OC-

CAM. It uses a regular latitude-longitude grid for the Pacific, Indian and

South Atlantic oceans whilst incorporating a rotated latitude-longitude grid

in the Arctic and North Atlantic oceans with two poles placed on the equator

in the Indian and Pacific. The GFDL explicit free-surface method is based

on the work of Killworth et al [46]. It differs from the free-surface method of

Dukowicz and Smith [24] by the allowance of external gravity waves. These

require the use of a smaller timestep when resolving the linear terms of the

barotropic equations.
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2.6 Summary

This chapter has provided the motivation for our study of anisotropic elliptic

problems by discussing their use in the context of Ocean General Circulation

models, and in particular the barotropic problem. We have described some of

of the history of OGCMs up to the development of the Bryan-Cox-Semtner

model which is used extensively today in various guises. We have focussed on

the two formulations of the BCS model most commonly used today : rigid-lid

and implicit free surface. We have also summarised the form of the various

’Arakawa’ grids used to position the model variables in those formulations

and highlighted the reasons for the extensive use of the ’B’ and ’C’ Arakawa

grids. In addition we introduced the spatial discretisation schemes used with

the BCS model formulations. The appearance of a chequerboard null mode

in the solution with the free-surface nine point operator is highlighted and

the use of the Killworth delplus-delcross filter to resolve the problem is dis-

cussed. The work is placed in a more global context by the discussion of the

characteristics of ocean models used by research and industrial organisations

worldwide.

34



Chapter 3

Numerical methods and

preconditioners

3.1 Introduction

In this chapter we provide the theoretical background to the numerical meth-

ods that are commonly used in the ocean models for solving the discrete

approximations to the elliptic model equations we introduced in Chapter 2.

We also provide the theoretical background to extensions we will consider.

The discrete approximation of any of the elliptic problems we consider in this

study gives rise to a matrix equation of the general form :

AU = b, (3.1)

where the variable U is a (unknown) column vector of the grid points of the

model variable U , and b is a (known) column vector representing boundary

values and source terms. The system matrix A is a real N × N matrix

representing the discretised model equations, where N is the number of grid

points in the discrete grid. The size of N is determined by N = nλ×nφ where
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nλ, nφ are the number of grid points in the longitudinal and latitudinal

directions respectively. The system matrix A is also square and sparse in

general. The exact form of A will depend on the type of elliptic equation

being discretised, the boundary conditions that are required, and the ordering

of the grid points across the domain of the problem.

There are two main types of methods used to solve a matrix equation of

the form (3.1) : direct and iterative. Direct methods are those that would

compute the exact answer in a finite number of steps if there was no round

off error. Examples include Cholesky Decomposition and Gaussian Elimina-

tion (discussion of which may be found in Axelsson [6] and Golub and Van

Loan [38]). Iterative methods on the other hand use a repeated application

of a simple algorithm, but yield the exact solution only in the limit of a

sequence. The latter are more commonly used in recent times as they have

advantages in storage and operation, particularly with large sparse matrices.

The system matrices we consider in this study are indeed large and sparse,

making iterative methods practical to use. Also, as noted by Forsythe and

Wasow [33], iterative methods are self-correcting and useful in minimizing

problems with round-off errors. We will use only iterative methods in this

study. A basic iterative method has the form

PUm+1 = (P − A)Um + b m = 0, 1, 2, · · · , (3.2)

where m is the iteration number. An alternative form to (3.2) is

dm+1 = −P−1rm,

Um+1 = Um + dm+1,
(3.3)

where rm is the residual given by rm = AUm − b and dm+1 is a correction

at iteration m. Axelsson [6] shows that the basic iterative method (3.3)

may be improved by introducing parameters into the iteration scheme which
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vary through the iteration process. An iterative method is referred to as

stationary if the parameters used remain constant throughout the iterative

process and nonstationary if the parameters vary.

The form in (3.3) is the basis for the Preconditioned Conjugate Gradient

(PCG) method. The matrix P is often referred to as the preconditioning

matrix or preconditioner. Various options exist for preconditioners which

will be considered in Section 3.4. The other iterative method we consider in

this study is the Chebyshev Semi-Iterative Method. Both this and the PCG

method may be thought of as acceleration procedures for preconditioned

stationary methods.

In Section 3.2 we give key definitions and theorems which are used to

confirm the validity of the numerical methods used in the models. We then

discuss the relevant theory for the Chebyshev Semi-Iterative method in Sec-

tion 3.3. Also in Section 3.3 we describe the theory for the PCG method.

Finally in Section 3.4 we discuss the type of preconditioner currently used

in the free-surface formulation, and describe alternatives which we intend to

test.

3.2 Theorems and definitions

This section highlights the key definitions and theorems required to prove

the validity, and assess the convergence speeds, of the iterative methods and

preconditioners that we introduce in Sections 3.3 and 3.4. With iterative

methods the eigenstructure of the matrices we consider is of vital importance.

Therefore we begin with some basic definitions ([75]) which will be used

throughout.
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3.2.1 General definitions

Definition 3.1 (Spectral radius) : Let A ∈ IRN×N have eigenvalues µi, 1 ≤
i ≤ N . Then

ρ(A) = max | µi |, 1 ≤ i ≤ N,

is the spectral radius of the matrix A.

Definition 3.2 (Reducible) : A ∈ IRN×N is reducible if there exists a N×N

permutation matrix P such that

PAP T =


 A1,1 A1,2

0 A2,2


 ,

where A1,1 ∈ IRr×r and A2,2 ∈ IRN−r×N−r with A1,1 and A2,2 being submatri-

ces of A. If no such permutation exists then the matrix A is irreducible.

Definition 3.3 (Positive) : A ∈ IRN×N non-negative, denoted by A ≥ 0, if

aij ≥ 0 ∀ i, j ∈ [1, N ]. A is positive if the inequality is strict ∀ i, j.

Definition 3.4 (Positive-Definite) : A ∈ IRN×N is positive definite if xT Ax >

0, x 6= 0, x ∈ IRN .

Definition 3.5 (Cyclic) : Let A ∈ IRN×N be irreducible and let k be the

number of eigenvalues of A of magnitude ρ(A). If k = 1, then the matrix is

primitive. If k > 1, then A is cyclic of index k.

The concept of the irreducibility of a matrix is equivalent to the consideration

of the strongly connected directed graph of a matrix :

Definition 3.6 (Directed graph) : Let A ∈ IRN×N and consider N distinct

points P1, P2, · · ·, Pn in the plane. For every non-zero entry aij of the matrix

A we connect the point Pi to the point Pj by means of a path ~PiPj directed

from Pi to Pj. In this way every N × N matrix A can be associated with a

finite directed graph G(A).
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Definition 3.7 (Strongly connected) : A directed path is strongly connected

if, for any pair of points Pi and Pj there exists a directed path

~PiPl1
~Pl1Pl2 · · · ~Plr−1Pj,

connecting Pi to Pj.

Varga [75] links the two concepts via the following theorem :

Theorem 3.1 ([75], p20) An N × N matrix A is irreducible if and only if

its directed graph is strongly connected.

The concept of diagonally dominant matrices also plays a key role in

iterative method theory. These may be defined by ([75]) :

Definition 3.8 (Diagonally Dominant) : A ∈ IRN×N is diagonally domi-

nant if | aii |≥
∑n

j=1,j 6=i | aij |, 1 ≤ i ≤ N . The matrix A is strictly

diagonally dominant if strict inequality holds for all 1 ≤ i ≤ N .

Combining Definition 3.8 with the concept of irreducibility we have :

Definition 3.9 (Irreducibly Diagonally Dominant) : A ∈ IRN×N is irre-

ducibly diagonally dominant if it is irreducible and | aii |≥
∑N

j=1,j 6=i | aij |
1 ≤ i ≤ N , with strict inequality for at least one value of i ∈ [1, n].

From the Definitions 3.8 and 3.9 it is possible to show the non-singularity of

the matrix A via the following theorem :

Theorem 3.2 ([75], p23) Let A ∈ IRN×N be strictly or irreducibly diagonally

dominant. Then the matrix A is nonsingular. If all the diagonal entries of

A are, in addition, positive real numbers, then the eigenvalues µi of A satisfy

Re(µi) > 0, 1 ≤ i ≤ N,

and the matrix A is positive-definite.
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Theorem 3.3 ([75], p85) If A ∈ IRN×N is irreducibly diagonally dominant

with aij ≤ 0 ∀i 6= j and aii > 0 ∀1 ≤ i ≤ N then A−1 > 0.

As Axelsson [6] notes, the following two definitions are important as they

(particularly the latter) appear frequently in practice. Stieltjes matrices are

also important when considering Alternating Direction Implicit (ADI) pre-

conditioned methods (see Section 3.4 for an introduction to these).

Definition 3.10 (Stieltjes matrix) : A ∈ IRN×N with aij ≤ 0 i 6= j, is a

Stieltjes matrix if A is symmetric and positive definite.

Definition 3.11 (M-matrix) : A ∈ IRN×N with aij ≤ 0 i 6= j, is an M-

matrix if A is nonsingular and A−1 ≥ 0.

Axelsson [6] further states that it can be shown that even if a matrix is not an

M-matrix it can, if it is symmetric positive-definite, be reduced to a Stieltjes

matrix by using a method of diagonal compression of reduced positive entries.

Further, using these definitions we may obtain the following theorem

Theorem 3.4 ([75], p85) If A is a Stieltjes matrix then it is also an M-

matrix. If A is, in addition, irreducible then A−1 > 0.

3.2.2 Convergence of basic iterative methods

We now consider the convergence of our basic iterative methods (3.2), and

introduce the concept of error modes in relation to eigenvectors, which will

be vital in our discussion of how the mesh anisotropy affects the convergence

of our methods. The following theorem is vital to the former :

Theorem 3.5 ([6], p163) The sequence of vectors Um in (3.2) converges to

the solution of AU = b for any ’initial guess’ vector, U0 ⇐⇒ ρ(P−1(P −
A)) = ρ(I − P−1A) < 1.
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We will refer to the matrix GP = I − P−1A as the iteration matrix of the

preconditioned method. One of the oldest classical stationary preconditioned

iterative methods is the Jacobi method ([75]). This is uses the diagonal

elements of A as the preconditioner i.e. P = D = diag(A), where GD =

I −D−1A.

Let the error at iteration m be denoted by em = U − Um. It is well

known ([6], [38]) that classical stationary iterative methods yield the following

expression for the error at iteration m

em = Gm
P e0. (3.4)

Now assume that the matrix GP is symmetrizable. This follows if P−1A is

symmetrizable which, in turn, may be deduced by showing that P is sym-

metric positive-definite and that A is symmetric ([6],[38]). The condition

that GP is symmetrizable implies that the eigenvalues of GP are real and

that the matrix possesses a full set of independent eigenvectors. In addition

assume that ρ(GP ) < 1. Let wi for i = 1, · · · , N be the set of eigenvectors of

GP with corresponding eigenvalues µi, and let us expand the initial error e0

in terms of this basis

e0 =
N∑

i=1

γiwi, (3.5)

where γi are constants. At the mth iteration we obtain

em =
N∑

i=1

γiG
mwi =

N∑
i=1

γiµ
m
i wi. (3.6)

After m iteration steps the magnitude of the ith mode of initial error has been

reduced by a factor of µm
i . It is possible to expand the initial error in terms

of any orthogonal basis e.g. Fourier modes if applicable. These concepts will

be used extensively in Chapters 5 to 7.
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3.2.3 Gerschgorin circle theorem

The theorems we have given so far allow us to prove the convergence of

the iterative methods we use in this study. We now consider the following

theorem which we shall use to obtain information on the rates of convergence

of some of our iterative methods.

Theorem 3.6 (Gerschgorin Circle Theorem) ([75], p17) Let A ∈ IRN×N

and let

Ri =
N∑

j=1,j 6=i

| aij |, 1 ≤ i ≤ N.

Then, all the eigenvalues µ of A lie in the union of the disks

| z − aii |≤ Ri 1 ≤ i ≤ N.

From this we have the following theorem

Theorem 3.7 ([75], p17) Let A ∈ IRN×N and let

ν = max

N∑
j=1

| aij |, 1 ≤ i ≤ N,

then ρ(A) ≤ ν.

Thus, the maximum of the row sums of the moduli of the entries of the

matrix A gives an upper bound for the spectral radius ρ(A) of the matrix A.

Both theorems of this section will be used to derive bounds on the spectral

radii and conditioning of our preconditioned matrices.

3.2.4 Block partitioning of A

Typically the system matrices we consider in this study have a particular

’block’ structure which it often useful to take advantage of. One of the most
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classical stationary iterative methods which makes use of this structure is the

block Jacobi method ([75]). This uses the diagonal ’blocks’ of the system ma-

trix A to form the preconditioned method i.e. P = D = blockdiag(A), with

GBlock = I − D−1A. This will be explained in more detail in Section 3.4.2.

What we mean by ’block structure’ is highlighted in the following definitions,

from Feingold and Varga [32], where we assume that we can write our system

matrix A in the following block partitioned form:

A =




A1,1 A1,2 · · · A1,nφ

A2,1 A2,2 · · · A2,nφ

...
...

Anφ,1 Anφ,2 · · · Anφ,nφ




, (3.7)

where the diagonal submatrices, Ai,i, for 1 ≤ i ≤ nφ, are square of size

nλ×nλ.

Definition 3.12 (Block diagonally dominant) : Let A ∈ IRN×N be parti-

tioned as in (3.7). If the diagonal submatrices Aj,j are nonsingular, and

if
(|| A−1

j,j ||
)−1 ≥

nφ∑

l=1,l 6=j

|| Aj,l ||, ∀ 1 ≤ j ≤ nφ, (3.8)

then A is block diagonally dominant, relative to the partitioned matrix A.

If strict inequality in (3.8) is valid ∀i, then A is block strictly diagonally

dominant, relative to the partitioned matrix A.

Definition 3.13 (Block irreducible) : Let A ∈ IRN×N be partitioned as in

(3.7). A is block irreducible if the nφ × nφ matrix Â = {âi,j ≡|| Ai,j ||},
1 ≤ i, j ≤ nφ, is irreducible (i.e. the directed graph of Â is strongly connected.

Unless otherwise specified, the norms in this section are all assumed to be the

2-norm. Feingold and Varga [32] also derive the equivalent block theorems

for positive-definiteness, non-singularity and bounding of eigenvalues :
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Theorem 3.8 ([32]) If the matrix A ∈ IRN×N , partitioned as in (3.7) is

block strictly diagonally dominant, or if A is block irreducible and block di-

agonally dominant with inequality holding in (3.8) for at least one i, then A

is nonsingular.

Theorem 3.9 (Block Gerschgorin Circle Theorem) ([32]) For the partitioned

matrix A of (3.7), each eigenvalue, µ, of A satisfies

(|| (Aj,j − µIj)
−1 ||)−1 ≤

nφ∑

i=1,i6=j

|| Aj,i ||,

for at least one j, 1 ≤ j ≤ nφ.

Theorem 3.10 ([32]) Let A ∈ IRN×N be partitioned as in (3.7) and let A be

block strictly diagonally dominant (or block irreducible and block diagonally

dominant with strict inequality in (3.8) for at least one i). Further assume

that each submatrix Ai,i is an M-matrix. If µ is any eigenvalue of A, then

Re(µ) > 0.

3.3 Nonstationary iterative methods

We now introduce, in the next two sections, two iterative methods used in

ocean models : Preconditioned Conjugate Gradient and firstly the Cheby-

shev Semi-Iterative method. These are nonstationary methods which act as

acceleration procedures for stationary iterative methods.

3.3.1 Chebyshev semi-iterative method

The Chebyshev Semi-Iterative method is used in the rigid-lid formulation to

solve a Poisson equation (2.23), for the change in streamfunction, ψ′. The
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theory for this method is discussed by Axelsson [6] and Varga [75], and is

summarised here. The classical Chebyshev Semi-Iterative method is given

by

Um+1 = ωm+1

{
GPUm + b−Um−1

}
+ ym−1, m ≥ 0, (3.9)

where GP is the preconditioned iteration matrix for the method being accel-

erated. ρ(GP ) < 1 is required for the method to converge. For m = 0 (3.9)

reduces to U1 = U0 +b. The parameter ωm+1 is determined by the following

algorithm :

ω1 = 1,

ω2 = 1
1− 1

2
ρ(GP )2

,

ωm+1 = 1
1− 1

4
ρ(GP )2ωm

m ≥ 2,

where ρ(GP ) is the spectral radius of the iterative method.

As Axelsson [6] notes, the Chebyshev method may be applied to a precon-

ditioned iteration method if the preconditioned system matrix, P−1A, has

positive eigenvalues. It is further noted by Axelsson [6] that the method,

therefore, is applicable if both P and A are symmetric positive definite. Fi-

nally it is remarked by Axelsson [6] that the number of iterations of the

Chebyshev method varies at most as the square root of the condition num-

ber, κ, of the preconditioned system, P−1A where

κp(P
−1A) =|| P−1A ||p · || (P−1A)−1 ||p, (3.10)

with p representing the norm used. In practice the 2 norm is typically used

for theoretical work whilst the ∞ norm is normally used for numerical ex-

perimentation. With the 2 norm we have the useful results

ρ(P−1A) = || P−1A ||2,
1

µmin

(P−1A) = || (P−1A)−1 ||2,
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=⇒ κ2(P
−1A) = || P−1A ||2 · || (P−1A)−1 ||2= ρ(P−1A)

µmin(P−1A)
.

(3.11)

where µmin is the smallest eigenvalue in magnitude.

3.3.2 Preconditioned conjugate gradient method

Gradient methods are a group of iterative methods that are commonly consid-

ered as acceleration schemes for linear, stationary, iterative methods. Hage-

man and Young [41] indicate that conjugate gradient possesses a number of

desirable features such as not requiring any parameter estimates and con-

verging, in finite iterations, to the true solution of the linear system in the

absence of rounding errors. The number of iterations required to converge

(to machine accuracy) is at most equal to the number of distinct eigenvalues

of the system matrix, A ([6],[38],[41]). Conjugate gradient is often used in

minimization problems in meteorological studies ([60]). A good summary of

the theory of CG is given by Axelsson [6], Concus et al [17], Golub and Van

Loan [38], Hackbusch [40] and Hageman and Young [41], and is repeated

here.

Typically the conjugate gradient method is applied to a preconditioned

system of the form

P−1AU = P−1b, (3.12)

where P is a non-singular matrix. Ideally P should be easy to invert and

should also approximate A in some sense. The aim of the preconditioner with

CG is to reduce the interval in which the eigenvalues of the system are found

and cluster those eigenvalues where possible; CG converges faster under these

conditions. The effectiveness of a preconditioner is therefore determined by

the amount of clustering of the eigenvalues and by the condition number, κ.
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In general the PCG method performs worst when the eigenvalues of P−1A

are evenly spread out ([6],[38],[41]). As Hackbusch [40] succinctly notes,

although the asymptotical convergence rate of the PCG method depends on

the condition number, and therefore on the size of the extreme eigenvalues,

the convergence of the PCG method is influenced by the whole spectrum.

The PCG method calculates solutions to the discrete problem at each

iteration using the iteration of the form

Um+1 = Um + αmdm, (3.13)

where vector dm is a search direction and αm a step length. The PCG scheme

chooses the search directions dm such that they are orthogonal in the A-inner

product
(
dl, Adk

)
= 0, l 6= k. (3.14)

The norm induced by this inner product is known as the energy norm, or

A-norm (|| U ||A= (UT AU)
1
2 ). The PCG method then updates the residuals

(rm = b− AUm) by

rm = rm−1 − αmqm, (3.15)

where

qm = Adm, (3.16)

and

αm =
(rm−1)Tzm−1

(dm)Tqm
, (3.17)

where the vector zm is the preconditioned residual computed by solving

Pzm = rm. (3.18)

The search directions are updated at each iteration using the residuals

dm = zm−1 + βi−1dm−1 (3.19)
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where the parameter βm is given by

βm =
(rm)Tzm

(rm−1)Tzm−1
, (3.20)

which ensures that dm and qm−1 = Adm−1 are A-orthogonal.

The A-norm may used with the condition number, κ2 to put a theoretical

bound on the speed of convergence relative to the initial error. Golub and

Van Loan [38] showed that the difference between the solution at iteration

m, Um, and the real solution, U, may be bounded by

|| Um −U ||A
|| U0 −U ||A ≤ 2

(
κ2(P

−1A)− 1

κ2(P−1A) + 1

)m

m = 0, 1, · · · . (3.21)

Note the presence of a term involving the initial iterate. Although the choice

of initial ’guess’ vector has no effect on whether the method will converge, it

will affect the number of iterations required to reach a given accuracy. The

spectrum of eigenvalues of the iteration matrix (and hence the spectrum of

eigenvalues of the preconditioned system) is the vital issue. If the initial error

e0 = U0 − U, when expressed as a linear combination of the eigenvectors,

contains a component in the direction of an eigenvector associated with an

eigenvalue close to the spectral radius, that component will converge more

slowly and affect the speed of convergence of the overall method. On the

other hand even if the spectral radius of G is close to 1, if the initial error

does not contain any components from eigenvectors associated with large

eigenvalues, the method will converge more quickly.

As Axelsson [6] and Golub and Van Loan [38] note, having a symmetric

positive-definite system matrix, A, and a symmetric positive-definite precon-

ditioner, P is a sufficient condition for the PCG method to converge. This is

noted to be equivalent to P−1A being similar to a symmetric positive-definite

matrix. Also it is noted that ρ(GP ) = ρ(I − P−1A) < 1 is a necessary con-

dition for convergence.
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A wide range of preconditioners exist for attaining the required condi-

tions, some of which we summarise in Section 3.4.

3.4 Preconditioners

We now introduce the preconditioners which we intend to use in our investiga-

tions. These could be used in conjunction with the PCG or Chebyshev meth-

ods. The preconditioners we consider are suitable for latitude-longitude grid

co-ordinate systems, as used in ocean models. Both methods assume that A is

positive-definite ([6]). We will assume that this is the case in this section and

prove it for our particular problems in Chapters 4 to 7. At that time we con-

sider the other conditions for the convergence of those methods; the sufficient

condition that the preconditioners used with them are symmetric positive-

definite as well and the necessary condition that ρ(GP ) = ρ(I −P−1A) < 1).

As an alternative to the former we could show that P−1A is similar to a sym-

metric positive-definite matrix. We will discuss the preconditioners generally

with reference to the stationary iterative method they are related to and give

some indication how the splittings used could yield the required properties

of symmetric positive-definiteness.

3.4.1 Diagonal preconditioner

One of the main strategies for preconditioning a matrix involves considering

approximate inverses. Arguably the simplest of these is a preconditioner, D,

containing only the diagonal elements, aii, of A. In this case the positive-

definiteness of the preconditioner follows by simply showing that all of the

entries of the diagonal preconditioner are positive.

This is the preconditioner used in the MO free surface formulation. It is
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also used as a preconditioning step in the preparation of the preconditioned

system matrix in the MO rigid-lid formulation. PCG with diagonal precondi-

tioning may be regarded as an acceleration method for the pointwise Jacobi

iteration matrix, GD = I − D−1A, where D = diag[A]. In order for the

diagonally preconditioned conjugate gradient method to be convergent we

require that P and A are symmetric positive-definite and that ρ(GD) < 1.

The latter may be proved using the following theorem

Theorem 3.11 ([75], p73) Let A ∈ IRN×N be a strictly or irreducibly diag-

onally dominant matrix. Then, the associated point Jacobi matrix is conver-

gent and the iterative method (3.2), with P = D = diag(A) for the matrix

problem (3.1) is convergent for any initial vector approximation, U0.

3.4.2 Block diagonal preconditioner

The theory for a pointwise Jacobi iteration matrix may be extended to allow

the consideration of a block Jacobi iteration matrix. If A is of the partitioned

form (3.7) then we may consider a Block Diagonal preconditioner of the form

P =




A1,1

A2,2

A3,3

. . .

Anφ−1,nφ−1

Anφ,nφ




.

From Hackbusch [40] we know that for

GBlock = I − P−1A,
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if µD
i is an eigenvalue of P and µi is an eigenvalue of A, then the spectrum

σ of the eigenvalues of GBlock is given by the set

{
µD

i −µi

µD
i

1 ≤ i ≤ n,

and therefore the spectral radius is given by

ρ(GBlock) = max

{
| µD

i − µi

µD
i

|
}

1 ≤ i ≤ n.

Also from Hackbusch [40] we have the following theorem

Theorem 3.12 ([40], p162) Let A be an M-matrix. Then the pointwise as

well as the block Jacobi methods converge, where the latter, however, is faster

:

ρ(GBlock) ≤ ρ(GD) < 1, (3.22)

In (3.22) the strict inequality 0 < ρ(GBlock) < ρ(GD) < 1 holds if A−1 > 0

and Dptw 6= DBlock 6= A with strict inequality if A−1 > 0.

There is another way to prove that the block diagonal (and indeed diago-

nal) preconditioned methods converge. It makes use of the following property

(given in Young [81])

Definition 3.14 (Property A) : A matrix A ∈ IRN×N has ”Property A” if

there exist two disjoint subsets S1 and S2 of W , the set of the first N positive

integers, such that S1 + S2 = W and such that if i 6= j and if aij 6= 0 or

aji 6= 0, then i ∈ S1 and j ∈ S2 or else i ∈ S2 and j ∈ S1.

This property is linked to the property of consistent ordering (also given in

Young [81])

Definition 3.15 (Consistent ordering) : A matrix A ∈ IRN×N is consis-

tently ordered if for some t there exist disjoint subsets S1, S2, · · · , St of W =

{1, 2, · · · , N} such that
∑t

k=1 Sk = W and such that if aij 6= 0 or aji 6= 0 then

j ∈ Sk+1 if j > i and j ∈ Sk−1 if j < i, where Sk is the subset containing i.

51



via the theorem

Theorem 3.13 ([81], p145) If A ∈ IRN×N is consistently ordered then A

has ”property A”.

Hageman and Young [41] note the following connection of Property A with

the convergence of diagonal and block diagonal preconditioned methods

Theorem 3.14 ([41],p25) If A ∈ IRN×N is symmetric positive-definite and

has ”Property A” then the diagonal and block diagonal preconditioned meth-

ods converge with GBlock < 1 and GD < 1. Further if µmin is the algebraically

smallest eigenvalue, and ρ is the spectral radius, of the iteration matrices then

if A has property A we have µmin(G) = −ρ(G).

Young [81] shows that this means that the eigenvalues of GBlock and GD

occur in ± pairs if the matrix A has property A.

We can prove that if A has a particular structure then it will be con-

sistently ordered and have property A. A matrix, A, is said to be block

tri-diagonal if it can be partitioned into the form

A =




A1,1 A1,2 0 · · · 0

A2,1 A2,2 A2,3 0 · · ·
0

. . . . . . . . . 0

0 · · · 0 Anφ,nφ−1 Anφ,nφ




, (3.23)

The relevance to property A is highlighted by Young [81] in the theorem

Theorem 3.15 ([81],p145) If A ∈ IRN×N is a block-tridiagonal matrix of

the form (3.23) with non-vanishing diagonal blocks, Aj,j, 1 ≤ j ≤ nφ, then

A is consistently ordered.
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3.4.3 ADI preconditioner

Linewise iterative methods such as Jacobi and block Jacobi iterate along

all the lines of a mesh in the same direction. Rates of convergence can be

improved by doing a double sweep firstly in the horizontal (row by row)

direction, and then in the vertical (column by column) direction. Methods

which use this technique are referred to as Alternating Direction Implicit

(ADI) methods. The theory of ADI is discussed in numerous references

([3], [5], [9], [40],[55], [73], [75] among others). We summarise the method

here.

We split the system matrix A into

A = HΥ + VΥ.

The matrices defined in (3.4.3) are required to have the following properties :

HΥ and VΥ are symmetric positive-definite and have strictly positive diagonal

entries and non-positive off-diagonal entries. They are therefore Stieltjes

matrices. For the purposes of preconditioning we assume that HΥ and VΥ

are relatively easy to invert.

The ADI method is formed by writing the matrix equation (4.6) as a pair

of matrix equations

(HΥ + ΥI)U = (ΥI − VΥ)U + b,

(VΥ + ΥI)U = (ΥI −HΥ)U + b,
(3.24)

for any positive scalar, Υ. The iterative matrix of the ADI method, GADI is

similar to

(ΥI −HΥ)(ΥI + HΥ)−1(ΥI − VΥ)(ΥI + VΥ)−1, (3.25)

if HΥ and VΥ are Stieltjes matrices. An ADI method is stationary if Υ is con-

stant throughout the iteration process and nonstationary if it varies during
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the iteration process. Skamarock et al [68] discuss a ’1D’ ADI preconditioner

for use with a Helmholtz problem in a non-hydrostatic model. Such a pre-

conditioner would be analogous with only using one of the equations in (3.24)

in the preconditioning.

Axelsson [6] summarises how the free parameter, Υ, is calculated for the

ADI scheme. Parameters are chosen which are upper and lower bounds of

the eigenvalues of HΥ and VΥ such that

0 < α ≤ µH
i , µV

i ≤ β

1 ≤ i ≤ N.

The free parameter, Υ, is then chosen in such a way that the spectral radii

of the iteration matrix (3.25) is minimized. This is accomplished by taking

Υ =
√

αβ. In addition Varga [75] states that

Theorem 3.16 Let HΥ and VΥ be non-negative definite matrices, where at

least one of the matrices HΥ and VΥ is positive-definite. Then, for any Υ > 0

the ADI iteration matrix (3.25) is convergent i.e. ρ(GADI) < 1. ρ(GADI) < 1

for Υ > 0.

i.e. we can guarantee the convergence of the ADI preconditioned method by

the use of strictly positive parameter values, Υ.

Axelsson [6] notes that commutativity of HΥ and VΥ (i.e. HΥVΥ = VΥHΥ)

is not a condition for the convergence of the stationary ADI method. How-

ever, it is noted to be a necessary condition when considering nonstationary

ADI methods; Axelsson [6] shows that commutativity is required in order

to use a sequence of parameters through the iteration process. A new al-

ternative to this, which does not require commutativity, is discussed in the

next section. For more details on ADI theory see Axelsson [6], Ames [3] and

Varga [75].

54



3.4.4 ADI preconditioner with spatially varying pa-

rameter

In this section we propose a new variant on the basic ADI method for solving

AU = b. Typically the ADI method is extended by using a set of parameters

sequentially, varying iteration by iteration ([19],[31],[76],[77]). As an alter-

native we investigate the possibility of using a set of parameters spatially.

We assume that our system matrix, A, may be written in block partitioned

form (3.7), and that Υ is now a vector of parameter values. We further as-

sume that there are as many entries in Υ as there are rows of submatrices,

nφ, in the matrix A. The motivation for doing this is to address the mesh

anisotropy in the elliptic operators we consider. It is hoped that by selecting

different parameters, Υj, 1 ≤ j ≤ nφ, we may be able to differentially treat

the anisotropy. Note that this still may be regarded as a stationary method

as the parameters do not change through the iteration process.

We want to compute the optimal values of Υj such that ρ(GADI) is min-

imized. In the constant Υ case parameters, α and β were used to bound the

eigenvalues of HΥ and VΥ. We assume that we now have nφ such bounds, αj

and βj, 1 ≤ j ≤ nφ. We also assume a more specific structure to one of the

matrices used (HΥ say, without loss of generality). We assume that HΥ is a

block-diagonal matrix of the form

HΥ =




DH
1

DH
2

. . .

DH
nφ




. (3.26)

We replace ΥI in the ADI preconditioner by DΥ where DΥ is a block diagonal

55



matrix with diagonal blocks given by DΥ
j = ΥjInλ

where Inλ
is the nλ×nλ

identity matrix. Each lower bound, αj, is a lower bound on the eigenvalues

of each block DH
j of HΥ as well as those of VΥ, whilst each upper bound, βj

is an upper bound on the eigenvalues of each block DH
j of HΥ and as well as

those of VΥ. A similar method is used to determine the ’optimal’ values of

αj and βj to that used by Axelsson [6] for the constant parameter case. This

is summarised by the following theorem

Theorem 3.17 Let A ∈ IRN×N be symmetric positive definite and of block

partitioned form (3.7) and assume that A may be split into A = HΥ + VΥ

where HΥ and VΥ are N×N Stieltjes matrices. Assume that HΥ may be

written in block tridiagonal form (3.26). Also assume that the ADI parameter

from the stationary method has been replaced by a vector of nφ parameters,

Υj, 1 ≤ j ≤ nφ. Let DΥ be a block diagonal matrix with diagonal blocks

given by DΥ
j = ΥjInλ

. Further assume that the eigenvalues of each block DH
j

of HΥ and those of VΥ may be bounded below by j bounds, βj, and above by

j bounds, αj. Then the ’optimal’ parameters to use in the spatially varying

ADI scheme are given by

Υj =
√

αjβj. (3.27)

Proof

Since HΥ and VΥ are symmetric positive-definite, with strictly positive diag-

onal entries, their eigenvalues are positive (by Theorem 3.2) and

|| (ΥjInλ
−DH

j )(ΥjInλ
+ DH

j )−1) ||2= ρ((ΥjInλ
−DH

j )(ΥjInλ
+ DH

j )−1)

= max
∣∣∣Υj−µH

ij

Υj+µH
ij

∣∣∣ 1 ≤ j ≤ nφ, 1 ≤ i ≤ nλ,
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where µH
ij are the eigenvalues of DH

j and

|| (DΥ − VΥ)(DΥ + VΥ)−1) ||2= ρ((DΥ − VΥ)(DΥ + VΥ)−1)

= max
∣∣∣Υj−µV

i

Υj+µV
i

∣∣∣ 1 ≤ j ≤ nφ, 1 ≤ i ≤ N.

where µV
i are the eigenvalues of DV . Therefore

ρ(GADIV ) = ρ((ΥjInλ
−DH

j )(ΥjInλ
+ DH

j )−1(DΥ − VΥ)(DΥ + VΥ)−1))

≤|| (ΥjInλ
−DH

j )(ΥjInλ
+ DH

j )−1(DΥ − VΥ)(DΥ + VΥ)−1) ||2
≤|| (ΥjInλ

−DH
j )(ΥjInλ

+ DH
j )−1 ||2|| (DΥ − VΥ)(DΥ + VΥ)−1) ||2

i.e.

ρ(GADIV ) ≤ max

∣∣∣∣∣
Υj − µH

ij

Υj + µH
ij

∣∣∣∣∣ .max

∣∣∣∣
Υj − µV

i

Υj + µV
l

∣∣∣∣ , 1 ≤ i ≤ nλ, 1 ≤ j ≤ nφ, 1 ≤ l ≤ N.

Applying our bounds gives

ρ(GADIV ) ≤ max

{∣∣∣∣
Υj − αj

Υj + αj

∣∣∣∣ ,

∣∣∣∣
Υj − βj

Υj + βj

∣∣∣∣
}

.max

{∣∣∣∣
Υj − αj

Υj + αj

∣∣∣∣ ,

∣∣∣∣
Υj − βj

Υj + βj

∣∣∣∣
}

, 1 ≤ j ≤ nφ.

(3.28)

We want to chose the Υj such that the bound in (3.28) is as small as possible.

Firstly note that ρ(GADIV ) < 1 for Υj > 0. For Υj > 0 we must have

Υj − αj > 0,

Υj − βj < 0.

Also note that each factor in the bound (3.28) is minimized when

Υj − αj

Υj + αj

=
Υj − βj

Υj + βj

,

i.e. when
1

Υ2
j

+
αj + βj

2αjβj

(
1

Υj

− 1

Υj

)
− 1

αjβj

= 0

=⇒ Υj =
√

αjβj.

During the proof it was demonstrated that in order to obtain the necessary

condition ρ(GADIV ) < 1 for the convergence of the spatially varying ADI

preconditioned method, we are required to use parameter values Υj > 0.
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3.4.5 Scaling by Binormalization

In this section we summarise the binormalization scaling, used most recently

by Livne and Golub [52], for scaling all of the rows and columns of a real sym-

metric matrix to unit 2-norm. The system matrix A is diagonally scaled by

F = diag(f1, · · · , fn) such that the matrix obtained, Â = FAF , is symmetric

and satisfies
∑

j

Âij
2

= 1 i = 1, · · · , n. (3.29)

As Livne and Golub [52] comment, this binormalization scaling may be re-

garded as a form of preconditioning i.e. κ(Â) < κ(A). A key issue is how

this compares with straightforward diagonal (Jacobi) preconditioning. It is

noted by Livne and Golub [52] that the diagonal preconditioner is ”optimal”

(i.e. the condition number of the preconditioned system is smaller than that

with Binormalization scaling) when the system matrix, A, has ”Property A”.

In the numerical experiments of Chapter 5 we will investigate if the eigen-

value distribution of a Binormalization scaled preconditioned system matrix

has a distribution which a PCG method could take advantage of (clustered

eigenvalues, for example). The following theorem is highlighted by Livne

and Golub to [52] illustrate the relation between diagonal and binormaliza-

tion preconditioning.

Theorem 3.18 For any symmetric positive-definite matrix A

κ(P−1
D A) ≤ nκ(Â).

The factor n can be replaced by p when there are at most p non-zero elements

per row of A.

We will check the validity of this bound experimentally in our numerical

experiments of Chapter 5.
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3.5 Implementation details

In this section we highlight some ways in which the algorithms for our pre-

conditioned conjugate gradient routines may be implemented more efficiently.

In particular we consider the form of the preconditioners and demonstrate

that certain parts of the preconditioning step in the PCG algorithm may be

performed ’once and once only’ or ’off-line’. This refers to parameters and

vectors which are only calculated once and therefore ought to be calculated

outside of the main iteration sweeps. Doing the calculations outside the main

iteration sweeps will lead to large savings in computation time. This is es-

pecially true for the time-varying barotropic models. In those models the

system matrix does not change with time and therefore any ’off-line’ calcu-

lations should be performed outside the main time-varying calculations (as

well outside the main iterations sweeps). If the parameters and vectors could

be stored then a model run could be repeated many times using the saved

vectors with even more computational savings.

Various parts of algorithms used to implement the preconditioners we

have introduced in this chapter could be classed as ’off-line’ calculations. For

the block preconditioner the diagonal blocks are factored in order to make

the algorithm more efficient. This could be done ’off-line’. Depending on

the structure of the matrices chosen, a similar thing could be done for the

ADI preconditioners. The parameters for the ADI preconditioner we use in

our numerical experiments of Chapters 5, 6, and 7, were calculated using the

EIGS subroutine in MATLAB which estimates bounds on the eigenvalues

of the matrices HΥ and VΥ. This can also be done ’off-line’. Finally the

binormalization scaling which calculates the scaled matrix need only be done

once as the matrix A is constant co-efficient. In the numerical experiments

of Chapters 5, 6, and 7, any CPU times we give are for the main iteration
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process only. Any ’off-line’ calculations are not included in the timings for

the reasons we have given.

3.6 Summary

This chapter has summarised the important definitions and theorems that un-

derpin the numerical methods and preconditioners used in this study. These

will be applied in later chapters to confirm the convergence properties of the

numerical methods and preconditioners with the specific problems that we

investigate. We have introduced Diagonal, Block Diagonal and Alternating-

Direction-Implicit preconditioners, as well as Binormalization scaling. We

have briefly described techniques for efficiently implementing these precon-

ditioners in a solution algorithm. We have also summarised the theory of

the preconditioned conjugate gradient and Chebyshev semi-iterative meth-

ods and their use an nonstationary methods for accelerating preconditioned

stationary methods.
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Chapter 4

Spherical coordinate model :

constant depth problem

4.1 Introduction

We now introduce the basic spherical coordinate model we shall use to inves-

tigate how mesh anisotropy affects the convergence of iterative solutions to

elliptic problems. In this chapter we introduce the constant depth problem

(i.e the basic Helmholtz problem) using a standard five-point discretisation

operator. We prove the convergence of the numerical methods, we use in the

numerical experiments of Chapter 5, using the general theory discussed in

Chapter 3. Section 4.2 describes the formulation for the problem, in both

limited area and periodic domain cases, and the discretisation scheme used.

The consistency of the discretisation scheme is checked using Truncation Er-

ror analysis in Section 4.3. Theoretical analysis is performed in Sections 4.4

confirming the convergence of the methods and preconditioners considered.

Finally in Section 4.5 the Gerschgorin Circle Theorem 3.6 is used to derive ap-

proximate bounds on the eigenvalues and conditioning of the preconditioned
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matrices. Qualitative assessments will then be made of the likely speeds of

convergence of the preconditioned methods.

4.2 Problem formulation and discretisation

Recall that the Laplacian operator in 2D-spherical coordinates is

∇2
λ,φU =

1

cosφ

[
∂

∂λ

(
1

cosφ

∂U

∂λ

)
+

∂

∂φ

(
cosφ

∂U

∂φ

)]
. (4.1)

We consider a modified Helmholtz equation of the form −∇2
λ,φU + kU =

γ(λ, φ) (where k ≥ 0 and γ(λ, φ) is a source function). For our numerical

experiments we use a fixed mesh of nλ×nφ grid points. We concentrate on

a theoretical segment of Northern Hemisphere ocean from 10oN to between

40o and 89.5oN in the latitudinal (φ) direction with Dirichlet boundary con-

ditions of U = 0 in that direction. The position of the northern boundary is

given by the parameter φNB (where φNB ∈ [40o, 89.5o]).In the longitudinal

(λ) direction we consider either a limited area model from 0oE to 30oE with

Dirichlet boundary conditions of U = 0, yielding the problem





− 1
cosφ

[
∂
∂λ

(
1

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (0oE, 30oE) φ ∈ (10oN, φNB)

U(0oE, φ) = 0, U(30oE, φ) = 0

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN),

(4.2)

or we allow λ to vary through an entire hemispheric revolution and take
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periodic boundary conditions, thus yielding the problem





− 1
cosφ

[
∂
∂λ

(
1

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (0oW, 0oE) φ ∈ (10oN,φNB)

U(0oW,φ) = U(0oE, φ)

∂U(0oW,φ)
∂λ

= ∂U(0oE,φ)
∂λ

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN).

(4.3)

These problems are intended to be analogous to the ocean models discussed

in Chapter 2 that solve for the increments of the quantities of interest. The

solutions at each time step in those time-varying problems should satisfy

the same boundary conditions at each time step. Therefore our choice of

taking Dirichlet conditions of U = 0 everywhere (except in the longitudinal,

λ, direction in the periodic problem) is reasonable.

In the following discretisation and convergence theory we assume that we

are considering the limited area case. The few changes that are required to

the numerical scheme, in the periodic case, are discussed in the next section.

We use the following five-point discretisation scheme for our problems:

−∇2Uij + kUij ≈ − 1
δλδφ

[
1

cos2φj

(
(Ui+1j−Uij)δφ

δλ
− (Uij−Ui−1j)δφ

δλ

)

+ 1
cosφj

(
cosφ

j+1
2
(Uij+1−Uij)δλ

δφ
− cosφ

j− 1
2
(Uij−Uij−1)δλ

δφ

)]
+ kUij = γ(λi, φj)

(4.4)

which is equivalent to

−
[

1
cos2φj

(
Ui+1j−2Uij+Ui−1j

δλ2

)

+ 1
cosφj

(
cosφ

j+1
2
(Uij+1−Uij)−cosφ

j− 1
2
(Uij−Uij−1)

δφ2

)]
+ kUij = γ(λi, φj).

(4.5)

The system of equations may then be written in the classical matrix form

AU = b, (4.6)
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where the variable U is a (unknown) column vector of the grid points of the

model variable U , and b is a (known) column vector representing boundary

values and source terms. The system matrix A is a real N × N matrix

representing the discretised model equations, where N is the number of grid

points in the discrete grid. The size of N is determined by N = nλ × nφ

where nλ, nφ are the number of grid points in the longitudinal and latitudinal

directions respectively. The system matrix A is also square and sparse. The

exact form of A will depend on the type of elliptic equation being discretised,

the boundary conditions that are required, and the ordering of the grid points

across the domain of the problem. The system matrix A is non-symmetric

but it can be symmetrised. To do this we multiply each equation through by

cosφj and combine this into the source term γ(λi, φj). This gives

cosφj (−∇2Uij + kUij) ≈ −
[

1
cosφj

(
Ui+1j−2Uij+Ui−1j

δλ2

)

+

(
cosφ

j+1
2
(Uij+1−Uij)−cosφ

j− 1
2
(Uij−Uij−1)

δφ2

)]
+ kcosφjUij = γ(λi, φj)cos(φj).

(4.7)

We order the equations for our grid points using the natural ordering. In

this case, therefore, our system matrix A has the block-tridiagonal structure

A =




D1 C1

B2 D2 C2

B3 D3 C3

. . . . . . . . .

Dnφ−1 Cnφ−1

Bnφ
Dnφ




, (4.8)

where

Dj = tridiag
[
− 1

cosφjδλ2 ,
2

cosφjδλ2 +
cosφ

j+1
2
+cosφ

j− 1
2

δφ2 + kcosφj, − 1
cosφjδλ2

]
,

(4.9)

64



Bj = diag

[
−

cosφj− 1
2

δφ2

]
2 ≤ j ≤ nφ, (4.10)

Cj = diag

[
−

cosφj+ 1
2

δφ2

]
1 ≤ j ≤ nφ − 1. (4.11)

From the definitions (4.9) to (4.11) it is straightforward to observe that each

block Dj is symmetric and this, combined with the fact that

Bj = diag

[
−

cosφj− 1
2

δφ2

]
= Cj−1, 2 ≤ j ≤ nφ, (4.12)

is enough for us to conclude that the matrix A is symmetric. Further prop-

erties of A are discussed in Section 4.4.1.

4.2.1 Periodic boundary conditions

If we extend our spherical region in the longitudinal direction (λ) to include a

whole hemisphere it becomes necessary for us to consider periodic boundary

conditions for our domain (We retain our Dirichlet boundary conditions in

the latitudinal (φ) direction). We obtain our periodic boundary conditions

by setting

U(1, j) = U(nλ, j), (4.13)

U(nλ, j) = U(1, j). (4.14)

This changes the structure of the first and last rows of each block Dj. The

first row of each block Dj is of the form

(
2

cosφjδλ2 +
cosφ

j+1
2
+cosφ

j− 1
2

δφ2 + kcosφj, − 1
cosφjδλ2 · · · − 1

cosφjδλ2

)
, (4.15)

whilst the last (nth
λ ) row of each block Dj

(
− 1

cosφjδλ2 · · · − 1
cosφjδλ2 ,

2
cosφjδλ2 +

cosφ
j+1

2
+cosφ

j− 1
2

δφ2 + kcosφj

)
. (4.16)
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Note that A is still symmetric with this formulation. The Bj and Cj sub-

matrices are unchanged and retain the property (4.12). The extra terms in

the Dj’s are added to the top right and bottom left hand corners of each

matrix Dj. They are also identical to each other within each Dj. Thus each

sub-matrix Dj is still symmetric and therefore the system matrix A is as

well.

4.3 Truncation error analysis

In this section we shall check the properties of the discrete, five-point, dif-

ferential operator we have used to discretise our spherical elliptic problem,

by using Truncation error analysis. The discretisation scheme we have used

to approximate our modified Helmholtz problems, in unsymmetric form, is

given by :

−∇2
λ,φUij + kcosφjUij ≈ −

[
1

cos(φj)2

(
Ui+1j−2Uij+Ui−1j

δλ2

)

+ 1
cos(φj)

(
cos(φ

j+1
2
)(Uij+1−Uij)−cos(φ

j− 1
2
)(Uij−Uij−1)

δφ2

)]
+ kUij.

(4.17)

evaluated at (λi, φj). This is equivalent to

−∇2
λ,φUij + kcosφjUij ≈ −

[
1

cos(φ2)

(
U(λ+δλ,φ)−2U(λ,φ)+U(λ−δλ,φ)

δλ2

)

+ 1
cos(φ)

(
cos(φ+ δφ

2
)(U(λ,φ+δφ)−U(φ,r))−cos(φ− δφ

2
)(U(λ,φ)−U(λ,φ−δφ))

δφ2

)]
+ kU(λ, φ).

(4.18)

Using Taylor series expansions about (λ, φ) this is approximately given by

−
[

1
cosφ2

(
−2U+U+δλUλ+ δλ2

2!
Uλλ+ δλ3

3!
Uλλλ+U−δλUλ+ δλ2

2!
Uλλ− δλ3

3!
Uλλλ+O(δλ4)

δλ2

)

+ 1
cosφ

(
cos(φ+ δφ

2
)(−U+U+δφUφ+ δφ2

2!
Uφφ+ δφ3

3!
Uφφφ+O(δφ4)

δφ2

)

− 1
cosφ

(
cos(φ− δφ

2
)(−U+U+δφUφ− δφ2

2!
Uφφ+ δφ3

3!
Uφφφ+O(δφ4)

δφ2

)]
+ kU
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= −
[

1
cosφ2 Uλλ + O(δλ2)

+ 1
cosφ

(
(cosφ− δφ

2
sinφ− δφ2

4
cosφ+O(δφ3))(δφUφ+ δφ2

2!
Uφφ+ δφ3

3!
Uφφφ+O(δφ4)

δφ2

)

− 1
cosφ

(
(−cosφ− δφ

2
sinφ+ δφ2

4
cosφ+O(δφ3))(δφUφ− δφ2

2!
Uφφ+ δφ3

3!
Uφφφ+O(δφ4)

δφ2

)]
+ kU

= −
[

1
cosφ2 Uλλ + 1

δφ
Uφ − sinφ

2cosφ
Uφ − δφ

4
Uφ + 1

2!
Uφφ − δφsinφ

4cosφ
Uφφ + δφ

3!
Uφφφ

− 1
δφ

Uφ − sinφ

2cosφ
+ δφ

4
Uφ + 1

2!
Uφφ + δφsinφ

4cosφ
Uφφ − δφ

3!
Uφφφ

]
+ kU + O(δλ2)

+O(δφ2)

= −
[

1

cosφ2
Uλλ + Uφφ − sinφ

cosφ
Uφ

]
+ kU + O(δλ2) + O(δφ2). (4.19)

We note here that

1

cosφ

∂

∂φ

(
cosφ

∂U

∂φ

)
= −sinφ

cosφ

∂U

∂φ
+

∂2U

∂φ2
.

Hence the last line of equation (4.19) is equal to the differential equation

apart from the higher order terms. Therefore the truncation error of our

scheme is order (δλ2 + δφ2), and our scheme is therefore consistent with the

differential equation. This property is needed to ensure the convergence of

the discrete solution to that of the continuous problem as the step sizes (δλ

and δφ) go to zero.

4.4 Convergence analysis

In this section we use the theorems and definitions we introduced in Chapter 3

to establish the convergence properties of the preconditioned methods we use

in the numerical experiments of Chapter 5. Although we will be referring to

the PCG method throughout this section, as that is what we shall exclusively

in Chapter 5, the analysis follows in a similar manner for the Chebyshev

semi-iterative method. We begin by confirming properties for the system

matrix A for the four sub-cases we could have (k > 0 or k = 0 with Dirichlet
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or Periodic boundary conditions). We then consider the properties of our

preconditioned methods.

4.4.1 Properties of A

We will firstly confirm some of the general properties of A which hold irre-

spective of the value of k (within the limit k ≥ 0 considered in this study) or

the choice of boundary conditions in the longitudinal direction. We have al-

ready demonstrated the symmetry of the matrix A generally in Sections 4.2

and 4.2.1. Note that, by definition, we cannot have non-positive discrete

horizontal stepsizes. Therefore δλ > 0 and δφ > 0. Also we are only con-

sidering k ≥ 0. In addition on the domain we are considering cosφ ∈ (0, 1).

Therefore by considering (4.9), (4.10), (4.11), (4.15) and(4.16) we find that

we have all > 0, and alm ≤ 0 for l 6= m, 1 ≤ l, m ≤ N . We now consider the

four specific cases :

• (1) k > 0, Dirichlet bcs. : We have already demonstrated that the

diagonal entries of the system matrix A are strictly positive, irrespective

of k or the boundary conditions in the λ direction. In addition we note

that, due to the conditions stated for δλ, δφ, k and cosφ, the quantities

stated in (4.9), (4.10), and (4.11) are strictly non-zero across the whole

domain (for all j). Therefore we may deduce that the connected graph

of our matrix A is strongly connected. Hence, via Theorem 3.1, our

matrix A is irreducible.

We now consider the conditions under which the system matrix A is

strictly/irreducibly diagonally dominant. For a general line of the ma-

trix A we have that

all =
2

cosφjδλ2
+

cosφj+ 1
2

+ cosφj− 1
2

δφ2
+ kcosφj, (4.20)
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whilst where l = (j − 1)nλ + i

N∑

m=1m6=l

| alm |≤ 2

cosφjδλ2
+

cosφj+ 1
2

+ cosφj− 1
2

δφ2
. (4.21)

Since k > 0 we observe that we have

all >

N∑

m=1,m6=l

| alm |, (4.22)

for every row. We therefore have a matrix that is strictly diagonally

dominant. Since it is irreducible it is also irreducibly diagonally dom-

inant. In addition we have already shown that all > 0, and alm ≤ 0

for i 6= j, 1 ≤ l, m ≤ N . Therefore we may deduce via Theorem 3.2

that A is nonsingular with strictly positive eigenvalues and is positive

definite. We may also deduce by definition that A is a Stieltjes matrix

and therefore, via Theorems 3.3 and 3.4, that A is an M-matrix with

A−1 > 0.

• (2) k = 0, Dirichlet bcs. : With k = 0 we still have all > 0 for 1 ≤ l ≤
N . We therefore do not lose any of the connectedness of A by taking

k = 0. As all other factors remain the same as case(1) we can deduce

that the connected graph of our matrix A is still strongly connected

and hence, via Theorem 3.1, that our matrix A is irreducible. We no

longer have a matrix which is strictly diagonally dominant though. It is

strictly diagonally dominant in certain rows (the first and last nλ rows,

and the first and last rows of each block row) and diagonally dominant

in all of the others. Since the matrix is irreducible it is therefore still

irreducibly diagonally dominant. In addition aii > 0, and aij ≤ 0 for

i 6= j. Therefore we may again deduce via Theorem 3.2 that A is

nonsingular with strictly positive eigenvalues and is positive definite.
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Again we may also deduce by definition that A is a Stieltjes matrix

and therefore, via Theorems 3.3 and 3.4, that A is an M-matrix with

A−1 > 0.

• (3) k > 0, Periodic bcs. : The addition of extra terms to the matrix,

via the use of periodic boundary conditions, adds to the connectedness

of A. Since the matrix A in case(1) was shown to possess a strongly

connected graph, it follows that the connected graph of the matrix

A is also strongly connected. Hence, via Theorem 3.1, our matrix A

is irreducible. Also, despite the extra terms, the matrix A is strictly

diagonally dominant when k > 0 (as in case(1)). Since it is irreducible

it is also still irreducibly diagonally dominant. In addition aii > 0, and

aij ≤ 0 for i 6= j. Therefore we may again deduce via Theorem 3.2

that A is nonsingular with strictly positive eigenvalues and is positive

definite. Again we may also deduce by definition that A is a Stieltjes

matrix and therefore, via Theorems 3.3 and 3.4, that A is an M-matrix

with A−1 > 0.

• (4) k = 0, Periodic bcs. : With k = 0 we still have all > 0 for

1 ≤ l ≤ N . We therefore do not lose any of the connectedness of

A we had in case(3) by taking k = 0. As all other factors remain

the same as case(3) we can deduce that the connected graph of our

matrix A is still strongly connected and hence, via Theorem 3.1, that

our matrix A is irreducible. We no longer have a matrix which is

strictly diagonally dominant though. It is strictly diagonally dominant

in certain rows (the first and last nλ rows) and diagonally dominant

in all of the others. Since the matrix is irreducible it is therefore still

irreducibly diagonally dominant. In addition aii > 0, and aij ≤ 0 for
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i 6= j. Therefore we may again deduce via Theorem 3.2 that A is

nonsingular with strictly positive eigenvalues and is positive definite.

Again we may also deduce by definition that A is a Stieltjes matrix

and therefore, via Theorems 3.3 and 3.4, that A is an M-matrix with

A−1 > 0.

In all of the above cases we are considering a system matrix A that is of block-

tridiagonal form. Therefore by Theorem 3.15 the matrix A is consistently

ordered and hence by Theorem 3.13 has property A.

4.4.2 Diagonal preconditioner

This preconditioner was introduced in Section 3.4.1. The preconditioner

P = D contains only the diagonal elements of A, all where 1 ≤ l ≤ N .

It corresponds to the Jacobi stationary iterative method, GD = I − D−1A,

introduced in Section 3.2.2. As stated in Section 3.4.1, in order to show

the positive-definiteness of P we are simply required to show that all of the

entries of the diagonal preconditioner are strictly positive. This is indeed

the case as shown in Section 4.2. Also in order for the PCG and Chebyshev

semi-iterative methods with diagonal preconditioning to be convergent we

also require that ρ(GD) < 1. Since A is irreducibly or strictly diagonally

dominant this follows from Theorem 3.11. Therefore we can guarantee the

convergence of the PCG and Chebyshev semi-iterative methods with diagonal

preconditioning. This could also have been deduced from the fact that the

system matrix A has property A. From this we know that the eigenvalues of

GD will occur in ± pairs via the remarks of Section 3.4.1.
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4.4.3 Block diagonal preconditioner

This preconditioner was introduced in Section 3.4.2. We may consider a

Block Diagonal preconditioner of the form P = D = blockdiag(A) where

P =




D1

D2

D3

. . .

Dnφ−1

Dnφ




. (4.23)

with the D′
js of the form given in (4.9). The block Jacobi iteration matrix is

given by GBlock = I − P−1A. From our work in Section 4.4.1 we know that

the system matrix, A, is an M-matrix for all the cases we consider. Therefore,

by Theorem 3.12, the Block Jacobi method converges with ρ(GBlock) < 1.

Since, by the definition (4.9) each Dj is symmetric it follows that P is sym-

metric. Also P is strictly diagonally dominant. Hence, by Theorem 3.2 it

is positive-definite. Therefore P and A are symmetric positive-definite and,

with GBlock < 1 as well, we can guarantee the convergence of the block

preconditioned conjugate gradient method.

In order to demonstrate the (strict) block diagonal dominance of A we

need to show that

(|| D−1
j ||)−1

>|| Bj || + || Cj ||
=⇒ 1 >|| D−1

j || (|| Bj || + || Cj ||) ,
(4.24)

in some norm. The B′
js and C ′

js are of the forms given in (4.10) and (4.11)

respectively. We use the L2-norm with

|| A ||2= max | µi

(
AT A

) | 12 , (4.25)
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where the µi are eigenvalues of A. We observe that the Dj are symmetric

and strictly diagonally dominant with dj
ii > 0, dj

ik ≤ 0 (i, k ∈ [1, nλ] , i 6= k)

where Dj =
{
dj

ik

}
. Hence D is positive definite and its eigenvalues are

strictly positive by Theorem 3.2. In addition since the system matrix A has

property A we expect the eigenvalues of GBlock to occur in ± pairs.

In order to get bounds on the norms we use the Gerschgorin Circle The-

orem 3.6 and the Block Gerschgorin circle theorem 3.9. The eigenvalues, µD

of Dj satisfy

| µD − dj
ii |≤

2

cosφjδλ2
, (4.26)

where

dj
ii =

2

cosφjδλ2
+

cosφj+ 1
2

+ cosφj− 1
2

δφ2
+ kcosφj. (4.27)

Therefore

− 2
cosφjδλ2 + dj

ii ≤ µD ≤ dj
ii + 2

cosφjδλ2 . (4.28)

Hence the smallest eigenvalue of Dj satisfies

µD
min ≥

cosφj+ 1
2

+ cosφj− 1
2

δφ2
+ kcosφj = δj. (4.29)

Since Dj is symmetric positive-definite the eigenvalues of Dj are real and

positive allowing us to obtain these bounds. Also

|| Dj ||2= µD
max, (4.30)

and

|| D−1
j ||2= 1

µD
min

=⇒|| D−1
j ||−1

2 = µD
min

=⇒|| D−1
j ||−1

2 ≥ cosφ
j+1

2
+cosφ

j− 1
2

δφ2 + kcosφj.

(4.31)

We also have

|| Bj ||2 + || Cj ||2=
cosφj+ 1

2
+ cosφj− 1

2

δφ2
. (4.32)
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Hence

|| D−1
j ||−1

2 >|| Bj ||2 + || Cj ||2 . (4.33)

We also need show that the preconditioned iteration matrix, GBlock = I −
P−1A, is convergent (i.e. ρ(I − P−1A) < 1). This will establish the conver-

gence of the stationary block preconditioned method. Also we can show that

the eigenvalues, µ̂, of P−1A are all clustered in the region 0 < µ̂ < 2. Let

ν = maxj(|| D−1
j Bj ||2 + || D−1

j Cj ||2)
≤ maxj

(|| D−1
j ||2 (|| Bj ||2 + || Cj ||2)

)
,

(4.34)

From (4.33) we note that ν < 1. Then by Theorem 3.9 the eigenvalues µ̂ of

GBlock satisfy

|| (Gjj
Block − µ̂I)−1 ||−1

2 =|| −µ̂−1 ||−1
2 =| µ̂ |≤ ν, (4.35)

for some j. Therefore

ρ(I − P−1A) = max | µ̂ |≤ ν < 1. (4.36)

It follows that the preconditioned iterative method converges and hence so

will the associated preconditioned conjugate gradient method. Also since the

eigenvalues µ̃ of (I−P−1
blockA) equal 1− µ̂ (and since P−1

BlockA has real positive

eigenvalues) we find that 0 < µ̂(P−1
BlockA) < 2.

4.4.4 ADI preconditioner

This preconditioner was introduced in Section 3.4.3. For the particular prob-

lems we are considering ((4.2) and (4.3)) we use

A = HΥ + VΥ, (4.37)

74



with

HΥ =




DH
1

DH
2

. . .

DH
nφ




, (4.38)

where

DH
j = tridiag

(
− 1

cosφjδλ2
2

cosφjδλ2 +
h2kcosφj

2
− 1

cosφjδλ2

)
1 ≤ j ≤ nφ.

With periodic boundary conditions the first line of each DH
j is of the form

(
2

cosφjδλ2 +
h2kcosφj

2
− 1

cosφjδλ2 0 · · · 0 − 1
cosφjδλ2

)
,

whilst the last row is of the form
(
− 1

cosφjδλ2 0 · · · 0 − 1
cosφjδλ2

2
cosφjδλ2 +

h2kcosφj

2

)
.

Also

VΥ =




DV
1 C1

B2 DV
2 C2

B3 DV
3 C3

. . . . . . . . .

DV
nφ−1 Cnφ−1

Bnφ
DV

nφ




, (4.39)

where the B′
js and C ′

js are as defined in (4.10) and (4.11), and

DV
j = diag

[
cosφj+ 1

2
+ cosφj− 1

2

δφ2
+

kcosφj

2

]
1 ≤ j ≤ nφ. (4.40)

From (4.38) and (4.39) we observe that the submatrices DH
j and DV

j are

symmetric. Since we also have from (4.12) that

Bj = diag

[
−

cosφj− 1
2

δφ2

]
= Cj−1, 2 ≤ j ≤ nφ,
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then we may deduce that HΥ and VΥ are symmetric. Also we observe that

the connected graphs of HΥ and VΥ are strongly connected and therefore by

Theorem 3.1 are irreducible. Also HΥ and VΥ are diagonally dominant. It

is possible to find strict diagonal dominance in at least one row of HΥ and

VΥ in cases (1) to (3) considered in Section 4.4.1. For these cases we may

deduce that HΥ and VΥ are irreducibly diagonally dominant. Since we also

observe that the diagonal entries of HΥ and VΥ are strictly positive it follows,

by Theorem 3.2, that HΥ and VΥ are positive-definite with strictly positive

eigenvalues. Therefore they are Stieltjes matrices. In addition, since we are

assuming that Υ > 0, it follows that (HΥ + ΥI) and (VΥ + ΥI) are Stieltjes

matrices as well. Therefore, using Theorem 3.16, we may deduce that the

ADI preconditioned method converges if and only if values of Υ > 0 are used

in the method.

For case (4) in Section 4.4.1, where k = 0 and we have periodic boundary

conditions in the λ-direction, whilst we have diagonal dominance in every

row of HΥ and VΥ we cannot show strict diagonal dominance in even one

row of HΥ (we can for VΥ). Therefore we cannot guarantee the convergence

of the ADI method in this case.

4.4.5 ADI preconditioner with spatially varying pa-

rameter

This new varying parameter preconditioner was introduced in Section 3.4.4.

As stated in that section, this new ADI method differs from the constant

parameter ADI method by its use of varying parameters. The matrices HΥ

and VΥ are unchanged from Section 4.4.4. The matrix analysis performed

in the previous Section 4.4.4 follows through in the same way. The spatially

varying ADI stationary method converges, with ρ(GADIV ) < 1, if and only
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if values of Υj > 0 are used in the method.

4.5 Gerschgorin convergence analysis

In this section we use the Gerschgorin Circle Theorem 3.6 to estimate bounds

on the eigenvalues and conditioning of the system matrix A and the precon-

ditioned matrices. This analysis will provide us with some qualitative infor-

mation on the relative convergence properties of our preconditioned methods.

The Gerschgorin Circle Theorem 3.6 states that all eigenvalues µ of A are

contained in the union of the discs

Di =| µ− aii |≤
n∑

j=1,j 6=i

| aij | 1 ≤ i ≤ N. (4.41)

Our system matrix A is real, symmetric positive definite, and strictly diago-

nally dominant with aii > 0, and aij ≤ 0 for i 6= j. Therefore the eigenvalues

of A are real and hence we may write (4.41) in the form

−
n∑

j=1,j 6=i

| aij |≤ µ− aii ≤
n∑

j=1,j 6=i

| aij | 1 ≤ i ≤ N.

Adding aii to both sides gives

0 ≤ aii −
n∑

j=1,j 6=i

| aij |≤ µ ≤
N∑

j=1

| aij | 1 ≤ i ≤ N.

The right hand bound is the upper bound we use to obtain an estimate of

the spectral radius ρ of A. We use the left hand bound to obtain an estimate

of the minimum eigenvalue. i.e. we assume that if µ is an eigenvalue of A

then

µmin ≥ min

{
aii −

n∑

j=1,j 6=i

| aij |
}

1 ≤ i ≤ N. (4.42)
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We use the upper bound estimate of the spectral radius of A and the lower

bound estimate of the minimum eigenvalue of A to derive an upper bound

for the 2-norm condition number, κ2(A).

In the analysis of this section we assume that k > 0 and that the hori-

zontal stepsizes are equal, with δλ = δφ = h. The analysis is the same for

Dirichlet or periodic boundary conditions in the λ-direction. Also we make

use of the trigonometric identity

cosφj+ 1
2

+ cosφj− 1
2
≡ cosφjcosφ 1

2
− sinφjsinφ 1

2

+cosφjcosφ 1
2

+ sinφjsinφ 1
2

≡ 2cosφjcosφ 1
2

(4.43)

to simplify our equations. In addition we will assume that we can bound

the cosφ values by cosφ ≤ cosφHigh where cosφHigh << 1. Also we will

assume that we can take low latitude cosφ values to be approximately 1 in

the calculated bounds i.e cosφ 1
2
, cosφ1, cosφ2 ≈ 1.

4.5.1 Bound on ρ(A) and estimate of κ2(A)

We firstly use the Gerschgorin Theorem 3.6 3.6 to estimate a bound for the

spectral radius ρ of the system matrix A. In the problem we are considering

the maximum row sum in moduli is given by

max





4
cosφ1

+ 2cosφ1cosφ 1
2

+ cosφ1+ 1
2

+ h2kcosφ1 j = 1

4
cosφj

+ 4cosφjcosφ 1
2

+ h2kcosφj 2 ≤ j ≤ nφ − 1

4
cosφnφ

+ 2cosφnφ
cosφ 1

2
+ cosφnφ− 1

2
+ h2kcosφnφ

j = nφ





.

We observe that the terms involving 4
cosφ

dominate. Therefore the row sums

become larger as cosφ tends to zero i.e. at higher row numbers. Therefore
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we take the bound

ρ(A) ≤ 4

cosφHigh

+ 3cosφHigh + h2kcosφHigh.

on the spectral radius of A. We also use equation (4.42) to estimate a bound

on the minimum eigenvalue of A. This is given by

µmin(A) ≥ min





cosφ1− 1
2

+ h2kcosφ1 j = 1

h2kcosφj 2 ≤ j ≤ nφ − 1

cosφnφ+ 1
2

+ h2kcosφnφ
j = nφ





. (4.44)

The smallest values occur as cosφ tends to zero. We therefore have

µmin ≥ h2kcosφHigh. (4.45)

From this we can deduce that

κ2(A) =
ρ(A)

µmin(A)

=

4
cosφHigh

+ 3cosφHigh + h2kcosφHigh

h2kcosφHigh

=
4

h2kcos2φHigh

+
3

h2k
+ 1 (4.46)

4.5.2 Diagonal preconditioner

In this section we will estimate a bound on the spectral radius of the Jacobi

iteration matrix

GD = I − P−1A,

a bound on the spectral radius of the preconditioned system matrix P−1A,

and an estimate of the condition number κ(P−1A) of the preconditioned

system.
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We consider a diagonal preconditioner where

P = diag
[

2
cosφj

+ cosφj+ 1
2

+ cosφj− 1
2

+ h2kcosφj

]
1 ≤ j ≤ nφ

=⇒ P−1 = diag

[
cosφj

2+2cos2φjcosφ 1
2
+h2kcos2φj

]
1 ≤ j ≤ nφ.

It follows that P−1A is of the form

P−1A =




D̂1 Ĉ1

B̂2 D̂2 Ĉ2

B̂3 D̂3 Ĉ3

. . . . . . . . .

D̂nφ−1 Ĉnφ−1

B̂nφ
D̂nφ




,

where

D̂j = tridiag

(
− 1

2+2cos2φjcosφ 1
2
+h2kcos2φj

1 − 1
2+2cos2φjcosφ 1

2
+h2kcos2φj

)
.

With periodic boundary conditions in the λ direction the first row is of the

form

(
1 − 1

2+2cos2φjcosφ 1
2
+h2kcos2φj

0 · · · 0 − 1
2+2cos2φjcosφ 1

2
+h2kcos2φj

)
,

whilst the last row is of the form

(
− 1

2+2cos2φjcosφ 1
2
+h2kcos2φj

0 · · · 0 − 1
2+2cos2φjcosφ 1

2
+h2kcos2φj

1

)
.

Also

B̂j = diag

[
−cosφ

j+1
2

cosφj

2+2cos2φjcosφ 1
2
+h2kcos2φj

]
2 ≤ j ≤ nφ,

Ĉj = diag

[
−cosφ

j− 1
2

cosφj

2+2cos2φjcosφ 1
2
+h2kcos2φj

]
1 ≤ j ≤ nφ − 1.
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From this we can form the Jacobi matrix G = I − P−1A. We may again

use the maximum of the row sums of the moduli of the entries of G to find

an upper bound for ρ(G). This is given by

max





2+cosφ
1+1

2
cosφ1

2+2cos2φ1cosφ 1
2
+h2kcos2φ1

j = 1

2+2cos2φjcosφ 1
2

2+2cos2φjcosφ 1
2
+h2kcos2φj

2 ≤ j ≤ nφ − 1

2+cosφ
nφ− 1

2
cosφnφ

2+2cos2φnφ
cosφ 1

2
+h2kcos2φnφ

j = nφ





.

The maximum value occurs when the difference between the numerator and

denominator is smallest. This occurs when cosφ is as small as possible. We

therefore have the bound

ρ(G) ≤ 2 + 2cos2φHigh

2 + 2cos2φHigh + h2kcos2φHigh

(4.47)

and hence ρ(G) < 1.

Next we use the Gerschgorin Theorem 3.6 to find a bound on the maxi-

mum eigenvalue of P−1A. This is given by

ρ(P−1A) ≤ max





4+(2cosφ
1+1

2
+cosφ

1− 1
2
)cosφ1

2+2cos2φ1cosφ 1
2
+h2kcos2φ1

j = 1

4+4cos2φjcosφ 1
2

2+2cos2φjcosφ 1
2
+h2kcos2φj

2 ≤ j ≤ nφ − 1

4+(cosφ
nφ+1

2
+2cosφ

nφ− 1
2
)cosφnφ

2+cos2φnφ
cosφ 1

2
+h2kcos2φnφ

j = nφ





.

The largest value occurs when the difference between the numerator and

denominator is smallest. This occurs when cosφ is as small as possible. We

therefore have the bound

ρ(P−1A) ≤ 4 + 4cos2φHigh

2 + 2cos2φHigh + h2kcos2φHigh

. (4.48)
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We also use the Gerschgorin Theorem 3.6 to find a bound on the minimum

eigenvalue of P−1A. In this case we require that

µmin(P−1A) ≥ min





(cosφ
1− 1

2
+h2kcosφ1)cosφ1

2+2cos2φ1 cos φ1+h2kcos2φ1
j = 1

h2kcos2φj

2+2cos2φjcosφ 1
2
+h2kcos2φj

2 ≤ j ≤ nφ − 1

(cosφ
nφ+1

2
+h2kcosφnφ

)cosφnφ

2+2cosφnφ
cosφ 1

2
+h2kcos2φnφ

j = nφ





.

The minimum occurs when cosφ is as small as possible. Therefore we have

the bound

µmin(P−1A) ≥ h2kcos2φHigh

2 + 2cos2φHighcosφ 1
2

+ h2kcos2φHigh

. (4.49)

Hence

κ2(P
−1A) =

(
4+4cos2φHigh

2+2cos2φHigh+h2kcos2φHigh

)
(

h2kcos2φHigh

2+2cos2φHigh+h2kcos2φHigh

)

=
4

h2kcos2φHigh

+
4cosφHigh

h2k
(4.50)

Comparing (4.50) with (4.46) we observe that for the diagonal preconditioner

κ2(P
−1A) < κ2(A).

4.5.3 Block diagonal preconditioner

In this section we will estimate a bound on the spectral radius of the block

Jacobi iteration matrix

GBlock = I − P−1A,

a bound on the spectral radius of the preconditioned system matrix P−1A

and an estimate of the condition number κ(P−1A) of the preconditioned

system.
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We consider a block preconditioner where

P−1A =




I D−1
1 C1

D−1
2 B2 I D−1

2 C2

D−1
3 B3 I D−1

3 C3

. . . . . . . . .

I D−1
nφ−1Cnφ−1

D−1
nφ

Bnφ
I




.

From section 3.4.2 we know that for

GBlock = I − P−1A,

if µD
i is an eigenvalue of P and µi is an eigenvalue of A, then the spectrum

σ of the eigenvalues of GBlock is given by

σ(GBlock) =
{

µD
i −µi

µD
i

1 ≤ i ≤ n,

and therefore the spectral radius is given by

ρ(GBlock) = max

{
| µD

i − µi

µD
i

|
}

1 ≤ i ≤ n.

We know from Section 4.5.1 that

µ ≤ ρ(A) =
4

cosφnφ

+ 2cosφnφ
cosφ 1

2
+ cosφnφ− 1

2
+ h2kcosφnφ

,

and that

µ ≥ µmin(A) = h2kcosφnφ−1.

From the definition of Dj and using the Gerschgorin Theorem 3.6 we deduce

that

ρ(µD
ij ) ≤ max

{
4

cosφj

+ cosφj+ 1
2

+ cosφj− 1
2

+ h2kcosφj 1 ≤ i ≤ nλ, 1 ≤ j ≤ nφ

}
,
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and that

µD
ij ≥ min

{
cosφj+ 1

2
+ cosφj− 1

2
+ h2kcosφj 1 ≤ i ≤ nλ, 1 ≤ j ≤ nφ

}
.

Therefore

ρ(GBlock) = max

{
| µD

ij − µij

µD
ij

|
}

1 ≤ i ≤ nλ, 1 ≤ j ≤ nφ

= max





cosφ
1+1

2
+cosφ

1− 1
2
+h2kcosφ1−cosφ

1− 1
2
−h2kcosφ1

cosφ
1+1

2
+cosφ

1− 1
2
+h2kcosφ1

j = 1

cosφ
j+1

2
+cosφ

j− 1
2
+h2kcosφj−h2kcosφj

cosφ
j+1

2
+cosφ

j− 1
2
+h2kcosφj

2 ≤ j ≤ nφ − 1

cosφ
nφ+1

2
+cosφ

nφ− 1
2
+h2kcosφnφ

−cosφ
nφ+1

2
−h2kcosφnφ

cosφ
nφ+1

2
+cosφ

nφ− 1
2
+h2kcosφnφ

j = nφ





= max





cosφ
1+1

2

2cosφ1cosφ 1
2
+h2kcosφ1

j = 1

2cosφjcosφ 1
2

2cosφjcosφ 1
2
+h2kcosφj

2 ≤ j ≤ nφ − 1

cosφ
nφ− 1

2

2cosφnφ
cosφ 1

2
+h2kcosφnφ

j = nφ





.

The maximum value occurs jointly in block rows where 2 ≤ j ≤ nφ − 1. We

therefore have

ρ(GBlock) ≤
2cosφ 1

2

2cosφ 1
2

+ h2k
≈ 2

2 + h2k
. (4.51)

and therefore ρ(GBlock) < 1.

We know from the work of Section 4.2 that A is symmetric and posi-

tive definite. It is therefore a Stieltjes matrix. Since the diagonal entries

are strictly positive whilst the off-diagonal entries are non-positive we may

deduce, by Theorem 3.3, that A−1 > 0. We apply this information to Theo-

rem 3.12. We have that A−1 > 0 and therefore in this case we may guarantee

that we have

ρ(GBlock) < ρ(GD) < 1.
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We now attempt to find bounds on the maximum and minimum eigen-

values of (P−1A). The maximum is bounded by

ρ(P−1A) ≤ max





4
cosφ1

+2cosφ1cosφ 1
2
+cosφ

1+1
2
+h2kcosφ1

4
cosφ1

+2cosφ1cosφ 1
2
+h2kcosφ1

j = 1

4
cosφj

+4cosφjcosφ 1
2
+h2kcosφj

4
cosφj

+2cosφjcosφ 1
2
+h2kcosφj

2 ≤ j ≤ nφ − 1

4
cosφnφ

+2cosφnφ
cosφ 1

2
+cosφ

nφ− 1
2
+h2kcosφnφ

4
cosφnφ

+2cosφnφ
cosφ 1

2
+h2kcosφnφ

j = nφ





.

The maximum value occurs in block rows where j = 2 giving

ρ(P−1A) ≤
4

cosφ2
+ 4cosφ2cosφ 1

2
+ h2kcosφ2

4
cosφ2

+ 2cosφ2cosφ 1
2

+ h2kcosφ2

≈ 8 + h2k

6 + h2k
.

The minimum eigenvalue is bounded by

µmin(P−1A) ≥ min





cosφ
1− 1

2
+h2kcosφ1

2cosφ1cosφ 1
2
+h2kcosφ1

j = 1

h2kcosφj

2cosφjcosφ 1
2
+h2kcosφj

2 ≤ j ≤ nφ − 1

cosφ
nφ+1

2
+h2kcosφnφ

2cosφnφ
cosφ 1

2
+h2kcosφnφ

j = nφ





The minimum value occurs in block rows 2 ≤ j ≤ nφ − 1 giving

µmin(P−1A) ≥ h2k

2cosφ 1
2

+ h2k
≈ h2k

2 + h2k
.

Hence

κ(P−1A) ≤

(
8+h2k
6+h2k

)

(
h2k

2+h2k

) .

(4.52)

85



4.5.4 ADI preconditioner

We now derive the conditioning and spectral radii estimates for the ADI

preconditioned case. Recall that the splitting for the ADI preconditioner is

of the form

A = HΥ + VΥ,

with

HΥ =




DH
1

DH
2

. . .

DH
nφ




, (4.53)

where

DH
j = tridiag

(
− 1

cosφj

2
cosφj

+
h2kcosφj

2
− 1

cosφj

)
1 ≤ j ≤ nφ.

With periodic boundary conditions the first line of each DH
j is of the form

(
2

cosφj
+

h2kcosφj

2
− 1

cosφj
0 · · · 0 − 1

cosφj

)
,

whilst the last row is of the form

(
− 1

cosφj
0 · · · 0 − 1

cosφj

2
cosφj

+
h2kcosφj

2

)
.

Also

VΥ =




DV
1 C1

B2 DV
2 C2

B3 DV
3 C3

. . . . . . . . .

DV
nφ−1 Cnφ−1

Bnφ
DV

nφ




, (4.54)
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where the B′
js and C ′

js are as defined in (4.10) and (4.11), and

DV
j = diag

[
cosφj+ 1

2
+ cosφj− 1

2
+

h2kcosφj

2

]
1 ≤ j ≤ nφ. (4.55)

The optimum value of Υ that should be used in the preconditioner is

given by

Υ =
√

αβ. (4.56)

Let µH
i and µV

i , 1 ≤ i ≤ N , be the eigenvalues of the matrices HΥ and VΥ

respectively. Using the Gerschgorin Theorem 3.6 we observe that

min(µH
i ) = min(µV

i ) ≥ h2kcosφnφ

2
. (4.57)

Therefore we take α =
h2kcosφnφ

2
. For the upper bound, β, we again use the

Gerschgorin theorem. We observe that

ρ(VΥ) ≤ ρ(HΥ) ≤ max
{

4
cosφj

+
h2kcosφj

2

}
1 ≤ j ≤ nφ

= 4
cosφnφ

+
h2kcosφnφ

2
.

(4.58)

Therefore we have

Υ =

√
h2kcosφnφ

2
(

4

cosφnφ

+
h2kcosφnφ

2
)

=

√
2h2k +

h4k2cos2φnφ

4
. (4.59)

Recall that the spectrum of the eigenvalues of the ADI iteration matrix,

GADI , is given by ∣∣∣∣
Υ− µH

i

Υ + µH
i

∣∣∣∣ .

∣∣∣∣
Υ− µV

i

Υ + µV
i

∣∣∣∣ . (4.60)

Using the Gerschgorin bounds on the eigenvalues µH
i and µV

i in (4.57) and

(4.58), we find that the spectral radius of GADI is given by

ρ(GADI) ≤
Υ− h2kcosφHigh

2

Υ +
h2kcosφHigh

2

< 1, (4.61)
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which guarantees the convergence of the PCG method with ADI precondi-

tioner. Also, given that

GADI = I − P−1A =⇒ P−1A = I −GADI , (4.62)

we can write the spectrum of the ADI preconditioned matrix P−1
ADIA in the

form

1−
∣∣∣∣
Υ− µH

i

Υ + µH
i

∣∣∣∣ .

∣∣∣∣
Υ− µV

i

Υ + µV
i

∣∣∣∣ .

Again using the Gerschgorin bounds on the eigenvalues µH
i and µV

i calculated

in (4.57) and (4.58), we find that the spectral radius of P−1
ADIA is given by

ρ(P−1A) ≤ 1−
Υ− 4

cosφHigh
− h2kcosφHigh

2

Υ + 4
cosφHigh

+
h2kcosφHigh

2

.
Υ− 4cosφHigh − h2kcosφHigh

2

Υ + 4cosφHigh +
h2kcosφHigh

2

,

(4.63)

whilst the minimum eigenvalue of P−1
ADIA is given by

µmin(P−1A) ≥ 1− Υ− h2kcosφHigh

2

Υ +
h2kcosφHigh

2

.
Υ− h2kcosφHigh

2

Υ +
h2kcosφHigh

2

. (4.64)

The condition number of P−1
ADIA is therefore given by

=

1− Υ− 4
cosφHigh

−h2kcosφHigh
2

Υ+ 4
cosφHigh

+
h2kcosφHigh

2

.
Υ−4cosφHigh−

h2kcosφHigh
2

Υ+4cosφHigh+
h2kcosφHigh

2

1− Υ−h2kcosφHigh
2

Υ+
h2kcosφHigh

2

.
Υ−h2kcosφHigh

2

Υ+
h2kcosφHigh

2

. (4.65)

4.5.5 ADI preconditioner with spatially varying pa-

rameter

In this section we derive the parameters for the ADI spatially varying param-

eter preconditioner that we will use in the numerical experiments in Chapter

5. The optimum value of Υj that should be used in the preconditioner is

given by

Υj =
√

αjβj (4.66)
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Applying this to our spherical domain problems, and using the Gerschgorin

Theorem 3.6 we observe that

rowsum(HΥ) ≥ µmin(VΥ) ≥ h2kcosφnφ

2
. (4.67)

Therefore we take αj =
h2kcosφnφ

2
. For the upper bound, β we observe that

| rowsum(VΥ) |≤| rowsum(HΥ) |≤ 4

cosφj

+
h2kcosφj

2
1 ≤ j ≤ nφ. (4.68)

Therefore we have

Υj =

√
h2kcosφnφ

2
(

4

cosφj

+
h2kcosφj

2
). (4.69)

4.5.6 Comparison of preconditioners

Tables 4.1 and 4.2 summarise the Gerschgorin analysis of this section. We

observe that the dominant term in the condition number estimates of A and

P−1A, where P is the diagonal preconditioner, is of the order 1
cos2φHigh

. The

block diagonal preconditioner does not vary with cosφHigh which illustrates

its improvement on the diagonal preconditioner. It is very difficult to see

the merits of the ADI preconditioner by looking at the general forms given

in Tables 4.1 and 4.2. This is much clearer for the typical values given in

those tables. These values are for the case with h = 1.0o, φNB = 88o. We can

see that the condition number of the ADI preconditioned system is well over

an order of magnitude smaller than that of the Block preconditioned system

which in turn is well over an order of magnitude smaller than the diagonal

preconditioned system. From Table 4.2 we observe that ρ(G) is smallest

for the ADI preconditioner followed by the Block preconditioner and then

the diagonal preconditioner. Both trends lead us to conclude that we would

expect the ADI preconditioner to yield the fastest rates of convergence in
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Prec. κ(P−1A) Typ.Val.

None 4
h2kcos2φHigh

+ 3
h2k

+ 1 6.91×108

D 4
h2kcos2φHigh

+
4cosφHigh

h2k
6.91×108

Block D

�
8+h2k
6+h2k

�
�

h2k
2+h2k

� 8.75×105

ADI

1−
Υ− 4

cosφHigh
−

h2kcosφHigh
2

Υ+ 4
cosφHigh

+
h2kcosφHigh

2

.
Υ−4cosφHigh−

h2kcosφHigh
2

Υ+4cosφHigh+
h2kcosφHigh

2

1−Υ−
h2kcosφHigh

2

Υ+
h2kcosφHigh

2

.
Υ−

h2kcosφHigh
2

Υ+
h2kcosφHigh

2

1.53×104

Table 4.1: 2-norm condition numbers of κ(P−1A) calculated theoretically
using Gerschgorin

Prec. ρ(GP ) Typ.Val.

D
2+2cos2φHigh

2+2cos2φHigh+h2kcos2φHigh
1.0 - 7×10−8

Block 2
2+h2k

1.0 - 2×10−5

ADI
Υ−

h2kcosφnφ
2

Υ+
h2kcosφnφ

2

1.0 - 6×10−4

Table 4.2: Spectral radii of the iteration matrix G calculated theoretically
using Gerschgorin

our numerical experiments followed by the Block preconditioner with the

diagonal preconditioner yielding the slowest rates of convergence. We will

test this hypothesis in the numerical experiments of Chapter 5.

4.6 Summary

This chapter introduced the spherical model we use to approximate the

anisotropic elliptic problems encountered in the barotropic solvers. We ini-

tially consider the constant depth problem in both limited area and periodic

domain cases. We confirmed the validity of our discretisation scheme using
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truncation error analysis and derived the continuous and discrete eigenvalues

and eigenvectors of the spherical Laplacian and hence those of the Helmholtz

problem. The convergence of our preconditioned Conjugate Gradient method

for this problem, using the proposed preconditioners, was checked. The pre-

conditioners were assessed, with respect to their likely effect on speeds of

convergence and the anisotropy, using Gerschgorin analysis. It was found

that an ADI preconditioner was likely to be slightly better than using a

Block diagonal preconditioner. Both were predicted to be much better than

the diagonal preconditioner.
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Chapter 5

Spherical domain model :

numerical experiments

5.1 Introduction

We now present numerical results for our constant depth spherical model

obtained using MATLAB V.6. A Limited Area problem over a segment of

idealised Northern Hemisphere ocean is initially studied in Section 5.2. We

then move on, in Section 5.3, to consider a periodic model with a hemisphere

wide domain in the longitudinal (λ) direction. In both experiments the ef-

fect of varying the northern boundary is considered with, in some cases, the

domain extending very close to the north pole. Finally in Section 5.4, the

limited area problem is revised with the domain extended up to include the

north pole (as a polar island) and the effects of using different Fourier modes

as initial estimates are studied. The Preconditioned Conjugate Gradient

method is used throughout, to iteratively solve the problems with diagonal,

block diagonal and ADI preconditioners. In all three sections we first state

the problem being considered and demonstrate some numerical properties
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of the system matrices, A. We then present some results on the numeri-

cal properties of the preconditioned methods. We will show how the mesh

anisotropy of the elliptic operators considered affects the convergence (par-

ticularly in polar regions) of the diagonal preconditioned CG method, and

show whether the other preconditioners improve this issue. This will be done

using analysis of the eigenstructure of the preconditioned methods. We will

finally, for each problem, compare the overall convergence speeds of the var-

ious preconditioned methods using practical convergence experiments with

specific choices for the source functions (which contribute to the b terms in

(4.6)).

5.2 Limited area experiments

5.2.1 Problem formulation

Recall that the formulation for the constant depth, limited area, spherical

Helmholtz problem is given by





− 1
cosφ

[
∂
∂λ

(
1

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (0oE, 30oE) φ ∈ (10oN, φNB)

U(0oE, φ) = 0, U(30oE, φ) = 0

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN).

(5.1)

The main aims of the experiments of this section are to assess the numerical

effects of extending the northern boundary of the domain towards the north

pole, and to investigate the efficiency of various preconditioners in resolving

the resulting increased anisotropy. Discrete stepsizes of 20, 10 and 1
2

o
are

used in the experiments (i.e. the stepsizes are equal in both directions with
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φNB = 40oN φNB = 88oN

a1,1 1.313×104 1.313×104

aN,N 1.355×104 1.256×105

κ∞(D1) 3.076 3.076

κ∞(Dnφ
) 4.312 296.450

Table 5.1: Variation of matrix properties with anisotropy, h = 1o, k = 0.01.

δλ = δφ = h = 2o, 1o, 1
2

o
). The discrete mesh is of size nλ by nφ with the

total number of grid points (and hence the size of A) given by nλ × nφ.

The mesh anisotropy of the operator is demonstrated in Table 5.1. We

observe how the size of the diagonal elements of A changes very little with

a ’low’ anisotropy case such as φNB = 40o whereas it can vary by an order

of magnitude in a more mesh anisotropic case such as φNB = 88o. Also

the conditioning of the diagonal blocks, Dj, of A is affected much more by

considering a more anisotropic problem.

Our assertion that the anisotropy affects the spectral radii and condition-

ing of the unpreconditioned problem is confirmed in Tables 5.2 to 5.3. Both

become larger, to just over an order of magnitude, by the movement of the

northern boundary towards the pole. Both also become larger with smaller

stepsizes as expected. The conditioning results using the 2-norm may be

found in Appendix B.

The effect on the leading eigenvectors of A is illustrated by figures 5.1

and 5.2. For φNB = 88oN the largest components of the eigenmode are

found in the polar regions, at the very edge of the northern boundary. With

φNB = 40oN the components are more evenly spread about the domain and

are smaller. The movement of the boundary towards the pole has the effect

of increasing the largest components of the leading eigenmode and clustering
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Stepsize

φNB
1
2

o
1o 2o

40o N 1.072×105 2.657×104 6.552×103

70o N 1.635×105 3.970×104 9.433×103

88o N 1.205×106 2.506×105 4.666×104

89o N 2.006×106 3.755×105 NA

89.5o N 3.008×106 NA NA

Table 5.2: Spectral Radii of system matrix A, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 2.186×103 544.176 134.167

70o N 4.280×103 1.040×103 249.567

88o N 3.123×104 6.509×103 1.217×103

89o N 5.198×104 9.750×103 NA

89.5o N 7.795×104 NA NA

Table 5.3: ∞ norm condition numbers of system matrix A, k = 0.01
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them closer to the boundary.
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Figure 5.1: Eigenvector associ-
ated with largest eigenvalue of A
for Limited Area Helmholtz prob-
lem. φNB = 40o, h = 1o, k =
0.01.
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ated with largest eigenvalue of A
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lem. φNB = 88o, h = 1o, k =
0.01.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

k

Co
nd

itio
n 

Nu
m

be
r o

f (
A)

Figure 5.3: Variation of κ∞(A) with k, Limited Area Helmholtz problem,
φNB = 88o, h = 1o.

Figure 5.3 demonstrates the effect the Helmholtz term, k, has on the con-

ditioning of the problem. Figure 5.3 shows that increasing the magnitude of

the Helmholtz term causes the conditioning to become better. As increasing

the magnitude of the k term would increase the diagonal dominance of the
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system matrix A, this is what we would expect. Figure 5.3 shows that the

change in conditioning is negligible until k = 10.0 when the conditioning im-

proves dramatically until approximately k = 2.5×105 when it levels off again.

The full results may be found in Table B.2 in Appendix B. We use a value of

k = 0.01 throughout our numerical experiments of this study. This retains

the features of the free-surface problem (k > 0) but is also small enough to

provide a more robust test of the preconditioners

5.2.2 Properties of preconditioned methods

Table 5.4 gives the ∞ norm condition numbers of the preconditioned system

matrices, with the diagonal, block diagonal, ADI and Binormalization pre-

conditioners, for the case where h = 1o, φNB = 88o and k = 0.01. We observe

that, as predicted, the diagonal preconditioner significantly improves the con-

ditioning of the system, with the block diagonal preconditioner bringing fur-

ther improvement and the ADI preconditioner even more improvement. We

note that the Gerschgorin bounds calculated in Section 4.5.6 and displayed

in Table 4.1 are crude over-estimates of the values we have calculated here.

However the qualitative behaviour of the relative convergence properties of

our preconditioned methods predicted by the Gerschgorin analysis has been

confirmed by the numerical calculations. The full conditioning results are

shown in Appendix B in Tables B.8 - B.15, which show the ∞ and 2 norm

condition numbers of the preconditioned system matrices for the diagonal,

Block diagonal, ADI and Binormalization preconditioners. These results con-

firm that the conditioning values get larger with smaller stepsize, and as φNB

is moved closer to the pole, as expected. Also the same pattern is observed,

overall, in the size of the conditioning values between preconditioners as that

shown in Table 5.4 (i.e. Largest to smallest : Binormalization, Diagonal,
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Preconditioner κ∞(P−1A)

None 6.509×103

Diagonal 691.915

Block 293.920

ADI 139.311

Binormalization 694.737

Table 5.4: ∞ norm condition numbers for case where h = 1o, φNB = 88o,
k = 0.01.

Block Diagonal, ADI).

We observe from Tables 5.4 and 5.5 that the conditioning and spectral

radii values for the diagonal preconditioner are slightly smaller than those

of the binormalization preconditioner. Comparing the conditioning values in

Table 5.4 of the two preconditioners we note that the condition κ(P−1
D A) ≤

pκ(Â) stated in Theorem 3.18 is satisfied (Here p = 5 due to there being at

most five non-zero elements in each row of A). Also the assertion of Livne

and Golub [52] that the diagonal preconditioner is the ’optimal’ diagonal

scaling, with regards to improving the conditioning of A when the system

matrix, A, is 2-cyclic, is confirmed. Full results can be found in Appendix B

in Tables B.8 - B.15 which further confirm these points.

Table 5.5 show the values for the spectral radii, ρ(G), of the iteration

matrices of the preconditioned methods for the case with k = 0.01 and h = 1o.

Note that they are all strictly less than one which confirms the convergence

of the methods. The pattern of values with regards to the efficiency of the

preconditioned methods is similar to that for the conditioning values shown

in Table 5.4. The values for the ADI preconditioned iteration matrix, are the

smallest, followed by the Block preconditioned matrix and then the diagonal

and Binormalization preconditioned matrices. This suggest that the ADI
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φNB

Preconditioner 40o N 70o N 88o N

Diagonal 0.9946 0.9960 0.9960

Block diagonal 0.9879 0.9901 0.9901

ADI 0.8289 0.9273 0.9601

Binormalization 0.9973 0.9980 0.9980

Table 5.5: Spectral Radii of iteration matrix G for various preconditioners,
k = 0.01, h = 1o.

preconditioner (and to a lesser extent the Block preconditioner) ought to

yield faster convergence.

An interesting feature of the results is that there is a negligible increase in

the condition numbers, κ, and the spectral radii, ρ(G), of the diagonal, block

and Binormalization preconditioners, beyond a northern boundary of 70o in

all cases (see Appendix B). Therefore, not only do the largest eigenvalues

of the preconditioned methods not vary beyond φNB = 70o, neither do the

smallest since the conditioning is also unaffected. From this we deduce that

the polar convergence issue arises from how the distribution of the spectrum

of eigenvalues changes as φNB is increased. We have investigated this in our

paper [12] which was presented at the 2004 ICFD Conference on Numerical

Methods for Fluids. The results can be explained as followed. Figures 5.16

and 5.28, show that the eigenvectors associated with these leading eigenval-

ues do not have a strong signal in the polar region. The values are highest in

the mid-latitudes which would be consistent with an isotropic domain. We

would expect this, for example, to occur with the case where φNB = 40oN as

that is closer to an isotropic case. However, with the more mesh anisotropic

higher latitude boundary cases we would expect to see a strong signal in
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the polar region in the leading eigenmode. Figures 5.4 to 5.7, 5.8 to 5.15

and 5.16 to 5.23 provide an explanation. The eigenvalue plots of figures 5.4

to 5.7 show that, whilst the leading eigenvalue remains approximately con-

stant, the ’next’ leading eigenvalues (i.e. those associated with the second,

third and fourth largest eigenvalues) cluster towards it, i.e. become larger,

as the northern boundary is moved towards the pole. We would therefore

expect their associated eigenvectors to become much more significant as the

boundary is moved closer to the pole. Figures 5.17 to 5.19 and 5.21 to 5.23

show that the eigenvectors associated with these ’next’ leading eigenvalues

all possess a strong signal in the polar region close to the northern bound-

ary. Overall we observe that as the boundary is moved closer to the pole, the

’nearly’ leading eigenvalues become larger and cluster closer to the lead eigen-

value. This means that their associated eigenvectors become more significant,

in terms of affecting the convergence behaviour as φNB increases. Also the

eigenvectors themselves display much stronger signals in the polar regions

as φNB is moved closer to the pole. More large eigenvalues with associated

eigenvectors that have signals near the pole means that the convergence of

the methods near the pole will be slower due to these eigenmodes.

The structure of the leading four eigenvectors of GBlock, with φNB = 88o,

is shown in Figures 5.28 to 5.31. We note that the eigenvectors show much

weaker signals in the polar area in addition to being associated with smaller

eigenvalues. This leads us to conclude further that the block preconditioner

will yield faster convergence and may also address the pole problem better

than diagonal preconditioning. The leading four eigenvectors of GADI , for

φNB = 88o, as shown in Figures 5.40 to 5.43 do have strong signals in the

polar regions. However they are associated with considerably smaller eigen-

values than diagonal or block preconditioning. Whilst, from this, we might
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not expect the pole problem to be addressed very well, the convergence over-

all ought to be much faster with ADI than the other preconditioners. Also the

largest magnitude eigenvalues of GADI are negative. Their associated eigen-

vectors have very high horizontal frequency scales, i.e. they are associated

with very noisy information. Finally considering the leading eigenvectors for

the binormalization scaling we note that the pattern is almost identical to

that of the diagonal preconditioner. As this is essentially what binormaliza-

tion scaling is this is perhaps to be expected.

For the diagonal preconditioner note that for every positive leading eigen-

value with an associated large-scale eigenvector (shown in Figures 5.8 to 5.11)

there is a corresponding negative eigenvalue of identical magnitude with an

associated small-scale eigenmode (shown in Figures 5.12 to 5.15). This is

also the case with the block preconditioner. The eigenmodes shown in Fig-

ures 5.12 to 5.15 have strong signals in the same locations as the large pos-

itive eigenvalues, but have a very high frequency structure. If these high

frequency modes exist in the approximation errors (this is likely, due to nu-

merical round-off) then these will be slow to decay away.

The full distribution of eigenvalues of the four preconditioned matrices

between −1 and 1, for 40o and 88o cases, is shown in Figures 5.52 to 5.59.

Observe that for the Block and Diagonal preconditioners for each positive

eigenvalue there is an equivalent negative eigenvalue of equal magnitude.

This was predicted in Sections 4.4.2 and 4.4.3. This is not the case for the

ADI preconditioner which has an unsymmetric structure or for the Binormal-

ization iteration matrix which possesses only positive eigenvalues. The fact

that the Binormalization preconditioned method does not have any negative

eigenvalues is a very significant difference from the diagonal preconditioned

method. This means that there are no large negative eigenvalues with as-
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sociated eigenvectors with very small scale frequencies (and similar sizes of

signals in the polar regions). This clustering of the eigenvalues could be of

benefit in a PCG method.
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Figure 5.4: Eigenvalues of GD be-
tween 0.99 and 1.0 for Limited
Area Helmholtz problem. φNB =
40o
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Figure 5.5: Eigenvalues of GD be-
tween 0.99 and 1.0 for Limited
Area Helmholtz problem. φNB =
70o
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Figure 5.6: Eigenvalues of GD be-
tween 0.99 and 1.0 for Limited
Area Helmholtz problem. φNB =
88o
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Area Helmholtz problem. φNB =
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GD for Limited Area Helmholtz
problem. φNB = 40o.
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Figure 5.9: Eigenvector associ-
ated with second largest eigenvalue
(0.9873) of GD for Limited Area
Helmholtz problem. φNB = 40o.
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Figure 5.10: Eigenvector associ-
ated with third largest eigenvalue
(0.9855) of GD for Limited Area
Helmholtz problem. φNB = 40o.
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Figure 5.11: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9782) of GD for Limited Area
Helmholtz problem. φNB = 40o.
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Figure 5.12: Eigenvector associ-
ated with largest negative eigen-
value (-0.9946) of GD for Limited
Area Helmholtz problem. φNB =
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Figure 5.13: Eigenvector associ-
ated with second largest nega-
tive eigenvalue (-0.9873) of GD for
Limited Area Helmholtz problem.
φNB = 40o.
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Figure 5.14: Eigenvector associ-
ated with third largest negative
eigenvalue (-0.9855) of GD for
Limited Area Helmholtz problem.
φNB = 40o.
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Figure 5.15: Eigenvector asso-
ciated with fourth largest nega-
tive eigenvalue (-0.9782) of GD for
Limited Area Helmholtz problem.
φNB = 40o.
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Figure 5.16: Eigenvector as-
sociated with largest eigenvalue
(0.9960) of GD for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.17: Eigenvector associ-
ated with second largest eigenvalue
(0.9949) of GD for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.18: Eigenvector associ-
ated with third largest eigenvalue
(0.9944) of GD for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.19: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9939) of GD for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.20: Eigenvector associ-
ated with largest negative eigen-
value (-0.9960) of GD for Limited
Area Helmholtz problem. φNB =
88o.
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Figure 5.21: Eigenvector associ-
ated with second largest nega-
tive eigenvalue (-0.9949) of GD for
Limited Area Helmholtz problem.
φNB = 88o.
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Figure 5.22: Eigenvector associ-
ated with third largest negative
eigenvalue (-0.9944) of GD for
Limited Area Helmholtz problem.
φNB = 88o.
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Figure 5.23: Eigenvector asso-
ciated with fourth largest nega-
tive eigenvalue (-0.9939) of GD for
Limited Area Helmholtz problem.
φNB = 88o.
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Figure 5.24: Eigenvalues of GBlock

between 0.941 and 0.991 for Lim-
ited Area Helmholtz problem.
φNB = 40o
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Figure 5.25: Eigenvalues of GBlock

between 0.941 and 0.991 for Lim-
ited Area Helmholtz problem.
φNB = 70o
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Figure 5.26: Eigenvalues of GBlock

between 0.941 and 0.991 for Lim-
ited Area Helmholtz problem.
φNB = 88o
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Figure 5.27: Eigenvalues of GBlock

between 0.941 and 0.991 for Lim-
ited Area Helmholtz problem.
φNB = 89o
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Figure 5.28: Eigenvector as-
sociated with largest eigenvalue
(0.9901) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.29: Eigenvector associ-
ated with second largest eigenvalue
(0.9836) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.30: Eigenvector associ-
ated with third largest eigenvalue
(0.9756) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.31: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9695) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.32: Eigenvector associ-
ated with largest negative eigen-
value (-0.9901) of GBlock for Lim-
ited Area Helmholtz problem.
φNB = 88o.
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Figure 5.33: Eigenvector associ-
ated with second largest negative
eigenvalue (-0.9836) of GBlock for
Limited Area Helmholtz problem.
φNB = 88o.
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Figure 5.34: Eigenvector associ-
ated with third largest negative
eigenvalue (-0.9756) of GBlock for
Limited Area Helmholtz problem.
φNB = 88o.
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Figure 5.35: Eigenvector associ-
ated with fourth largest negative
eigenvalue (-0.9695) of GBlock for
Limited Area Helmholtz problem.
φNB = 88o.
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Figure 5.36: Eigenvalues of GADI

between −0.8027 and −0.83 for
Limited Area Helmholtz problem.
φNB = 40o
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Figure 5.37: Eigenvalues of GADI

between −0.9126 and −0.928 for
Limited Area Helmholtz problem.
φNB = 70o
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Figure 5.38: Eigenvalues of GADI

between −0.9525 and −0.961 for
Limited Area Helmholtz problem.
φNB = 88o
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Figure 5.39: Eigenvalues of GADI

between −0.9575 and −0.965 for
Limited Area Helmholtz problem.
φNB = 89o
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Figure 5.40: Eigenvector associ-
ated with largest eigenvalue (-
0.9601) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.41: Eigenvector associ-
ated with second largest eigenvalue
(-0.9599) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.42: Eigenvector associ-
ated with third largest eigenvalue
(-0.9596) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.43: Eigenvector associ-
ated with fourth largest eigenvalue
(-0.9591) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.44: Eigenvalues of GBIN

between 0.995 and 0.999 for Lim-
ited Area Helmholtz problem.
φNB = 40o
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Figure 5.45: Eigenvalues of GBIN

between 0.995 and 0.999 for Lim-
ited Area Helmholtz problem.
φNB = 70o
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Figure 5.46: Eigenvalues of GBIN

between 0.995 and 0.999 for Lim-
ited Area Helmholtz problem.
φNB = 88o
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Figure 5.47: Eigenvalues of GBIN

between 0.995 and 0.999 for Lim-
ited Area Helmholtz problem.
φNB = 89o

113



0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

5 10 15 20 25

20

30

40

50

60

70

80

Longitude (degs E)

L
a
ti
tu

d
e
 (

d
e
g
s
 N

)

Figure 5.48: Eigenvector as-
sociated with largest eigenvalue
(0.9980) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.49: Eigenvector associ-
ated with second largest eigenvalue
(0.9975) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.50: Eigenvector associ-
ated with third largest eigenvalue
(0.9972) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.51: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9970) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure 5.52: Histogram showing
distribution of eigenvalues of GD

for Limited Area Helmholtz prob-
lem. φNB = 40o.
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Figure 5.53: Histogram show-
ing distribution of eigenvalues of
GBlock for Limited Area Helmholtz
problem. φNB = 40o.
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Figure 5.54: Histogram showing
distribution of eigenvalues of GBIN

for Limited Area Helmholtz prob-
lem. φNB = 40o.
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Figure 5.55: Histogram showing
distribution of eigenvalues of GADI

for Limited Area Helmholtz prob-
lem. φNB = 40o.
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Figure 5.56: Histogram showing
distribution of eigenvalues of GD

for Limited Area Helmholtz prob-
lem. φNB = 88o.
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Figure 5.57: Histogram show-
ing distribution of eigenvalues of
GBlock for Limited Area Helmholtz
problem. φNB = 88o.
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Figure 5.58: Histogram showing
distribution of eigenvalues of GBIN

for Limited Area Helmholtz prob-
lem. φNB = 88o.
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Figure 5.59: Histogram showing
distribution of eigenvalues of GADI

for Limited Area Helmholtz prob-
lem. φNB = 88o.

5.2.3 Practical convergence experiments

We ran numerical experiments to check the previous findings and assess our

chosen preconditioners. The right hand source function γ(λ, φ) was fixed to
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yield a sine function general solution for the Helmholtz problem of

U(λ, φ) = sin(3λ)sin(d[φ− 10])

d = 90
φNB−10

(5.2)

which is consistent with the chosen boundary conditions given in (5.1). A

constant ’initial guess’ of U(i, j) = 1.5 was taken to start the iterative process.

The relative residual ∞ norm error normalised by the source vector, (b), is

used in the stopping criterion which is given by

|| rm ||∞
|| b ||∞ =

|| b− AUm ||∞
|| b ||∞ < 10−5. (5.3)

This criterion is used in all experiments in this study unless otherwise stated.

The results of the full numerical experiments can be seen in Tables 5.6

and 5.7 and in Figure 5.60. As expected the number of iterations required to

achieve the convergence tolerance varied with the conditioning of the system.

More iterations were required as the northern boundary was moved towards

the pole and as smaller stepsizes were taken. The ADI preconditioner took

the fewest iterations in all cases followed by the block diagonal, Binormaliza-

tion and diagonal preconditioners respectively (The parameter values used

for the ADI preconditioner in our experiments may be found in Appendix B,

in Table B.1). This pattern is continued to a lesser degree in the CPU time

results shown in Table 5.7. The CPU times only include the computational

time used to perform the iteration sweeps. Any ’off-line’ calculations are not

included in the timings. Figure 5.60 starkly illustrates the benefits of ADI;

comparing the convergence, latitudinally, of the diagonal and block diago-

nal preconditioned methods at the time ADI has converged shows all three

preconditioners to be approximately equal in equatorial and mid-latitude re-

gions. However, ADI is better than block in polar regions which in turn has

converged more than the Binormalization scaled and diagonal preconditioned

CG methods.
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The ADI preconditioner with spatially varying parameter did not per-

form very well in the experiments. An example of the performance of the

preconditioner is shown in Table 5.8 for the 1o stepsize, φNB = 88o case.

The parameters for the preconditioner were calculated using the Gerschgorin

estimates from (4.69) in Section 4.5.5. It can be observed that the results for

the spatially varying parameter ADI preconditioner compare unfavourably

with the corresponding results for the other preconditioners. It is likely that

the poor performance was caused by the sensitivity of the preconditioner to

the parameter values combined with the fact that the values were calculated

using the crude Gerschgorin estimates. In addition it was confirmed numer-

ically that the matrices HΥ and VΥ for the stationary ADI preconditioned

method do not commute, in any of the cases considered here.

Whilst in CPU terms the Binormalization scaling performed slightly worse

than the diagonal preconditioner, in some cases it took fewer iterations to

converge. This is curious as the condition numbers and spectral radii ap-

pear to favour the diagonal preconditioner. However the distribution of the

eigenvalues is more favourable with the Binormalization scaling as its precon-

ditioned iteration matrix has strictly positive eigenvalues (recall that the iter-

ation matrix of the diagonal preconditioned matrix has a ± eigenstructure).

This form of ’clustering’ is the likely explanation for its good performance

relative to the diagonal preconditioner.

As a sub-experiment we investigated the propagation of errors about the

domain with respect to the various preconditioners employed. Using the same

general solution (5.2) and stopping criteria as the previous experiments we

set the initial guess vector to be equal to that solution in all rows of the mesh

except one. The results of taking the first (near equatorial) and last (near

polar) rows of the grid to be the ’error’ row for the 88o case are shown in

Figures 5.61 to 5.68. These figures show the variation of the relative residual

118



40o 700 88o 89o 89.5o

Prec. 1
2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 1

2

o

Diag 169 80 37 262 129 62 353 167 77 358 171 371

Blo 115 55 27 146 73 36 152 75 37 154 76 154

ADI 36 23 15 45 29 19 47 30 20 49 33 55

Bin 171 81 38 262 130 63 330 158 77 332 160 332

Table 5.6: Number of iterations to convergence tolerance ||rm||∞
||b||∞ < 10−5, sine

function general solution, k = 0.01

40o 700 88o 89o 89.5o

Prec. 1
2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 1

2

o

Diag 5.2 0.8 0.3 24.6 2.3 0.4 48.7 4.0 1.2 51.1 4.8 51.8

Blo 7.0 1.0 0.4 27.4 2.5 0.5 41.9 3.8 1.1 44.1 4.3 44.6

ADI 4.9 1.0 0.4 17.7 2.2 0.5 27.3 3.6 0.9 32.5 3.8 34.7

Bin 5.9 0.8 0.3 24.7 2.3 0.4 45.7 3.9 1.2 48.3 4.5 48.6

Table 5.7: CPU times for methods to reach convergence tolerance ||rm||∞
||b||∞ <

10−5, sine function general solution, k = 0.01

error latitudinally at convergence (i.e. when the convergence criteria has just

been met), for the diagonal, block, ADI and Binormalization preconditioned

methods. With the Block and ADI preconditioners the errors are marginally

more evenly spread but with all four preconditioners there is a tendency for

the errors to propagate to, or remain in, the polar region.

119



10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

Latitude (degs N)

R
es

id
ua

l E
rr

or

Diagonal
Binormalization
Block diagonal
ADI

Figure 5.60: Latitudinal variance in relative residual errors, after fixed CPU
time (ADI converged), for Limited Area Helmholtz problem with Diagonal,
Block and ADI preconditioners. φNB = 88o, h = 1o, k = 0.01.

Stepsize

1
2

o
1o 2o

Its 351 127 54

CPU 228.2 16.4 2.9

Table 5.8: Iterations to convergence tolerance and associated CPU times,
ADI preconditioner with varying parameter, φNB = 88o, h = 1o, k = 0.01.
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Figure 5.61: Latitudinal variation
in residual errors at convergence.
Error mode in first row of grid. Di-
agonal Preconditioner
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Figure 5.62: Latitudinal variation
in residual errors at convergence.
Error mode in last row of grid. Di-
agonal Preconditioner
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Figure 5.63: Latitudinal variation
in residual errors at convergence.
Error mode in first row of grid.
Block Preconditioner
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Figure 5.64: Latitudinal variation
in residual errors at convergence.
Error mode in last row of grid.
Block Preconditioner
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Figure 5.65: Latitudinal variation
in residual errors at convergence.
Error mode in first row of grid.
ADI Preconditioner
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Figure 5.66: Latitudinal variation
in residual errors at convergence.
Error mode in last row of grid.
ADI Preconditioner
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Figure 5.67: Latitudinal variation
in residual errors at convergence.
Error mode in first row of grid. Bi-
normalization Preconditioner

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7
x 10

−6

Latitude

R
e
s
id

u
a
l 
E

rr
o
r

Figure 5.68: Latitudinal variation
in residual errors at convergence.
Error mode in last row of grid. Bi-
normalization Preconditioner
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5.3 Periodic domain experiments

5.3.1 Problem formulation

We now move on to consider the periodic domain case for the constant depth

spherical Helmholtz problem. Recall that this is given by





− 1
cosφ

[
∂
∂λ

(
1

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (0oW, 0oE) φ ∈ (10oN,φNB)

U(0oW,φ) = U(0oE, φ)

∂U(0oW,φ)
∂λ

= ∂U(0oE,φ)
∂λ

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN).

(5.4)

As before the main aims of the experiments of this section are to assess the

effects on the properties of the iterative methods of extending the northern

boundary, and to investigate the efficiency of the proposed preconditioners.

In addition we consider the numerical effects of using periodic boundary

conditions in the longitudinal (λ) direction. We retain Dirichlet boundary

conditions in the φ direction. Discrete stepsizes of 20 and 10 are used.

5.3.2 Properties of preconditioned methods

Table 5.9 shows the∞ norm condition numbers for the preconditioned system

matrices for the h = 1o, φ = 88o, k = 0.01 case. The ADI preconditioner

again improves the conditioning of the system the most, followed by the

Block diagonal preconditioner, and then the diagonal preconditioner. This

trend is confirmed by the full results shown in Appendix B in Tables B.17

to B.20. The condition numbers again increase with smaller stepsizes and as

φNB is moved closer to the pole.
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Preconditioner κ∞(P−1A)

None 1.21×105

Diagonal 2.23×104

Block 3.25×103

ADI 972.656

Table 5.9: ∞ norm condition
numbers for case where h = 1o,
φNB = 88o, k = 0.01

Stepsize

φNB 1o 2o

40o N 2.66×104 6.59×103

70o N 3.98×104 9.53×103

88o N 2.51×105 4.72×104

89o N 3.76×105 NA

Table 5.10: Spectral Radii of sys-
tem matrix A, k = 0.01

φNB

Preconditioner 40oN 70oN 88oN

Diagonal 0.9976 0.9996 0.9999

Block diagonal 0.9946 0.9987 0.9994

ADI 0.9052 0.9595 0.9739

Table 5.11: Spectral Radius of iteration matrix G for various preconditioners,
k = 0.01, h = 1o

The spectral radii of the iteration matrices are shown in Table 5.11. The

spectral radii of the G matrices are all less than 1 guaranteeing the conver-

gence of the numerical method, with the values for GD the largest followed

by GBlock and then GADI , further suggesting that the ADI preconditioner

should yield the fastest convergence rates. The full results may be found in

Appendix B in Tables B.21 to B.23. Again we note the increasing values of

these with decreasing stepsizes, and as φNB is moved closer to the pole.

A similar pattern to the Limited Area case is also noted in the form of

the leading eigenvectors of the iteration matrices, G. Strong polar signals

are observed in the leading eigenvectors of the diagonal preconditioner in

Figures 5.69 to 5.72. Significantly smaller polar signals are observed in the
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leading eigenvectors of the Block preconditioner as shown in Figures 5.73

to 5.76, and in the ADI preconditioner as shown in Figures 5.77 to 5.80. In

conjunction with the associated eigenvalues, this leads us to again expect

the block preconditioner, and particularly the ADI preconditioner to provide

faster convergence and to address the pole problem more effectively than the

diagonal preconditioner.
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Figure 5.69: Eigenvector as-
sociated with largest eigenvalue
(0.9999) of GD for Periodic domain
Helmholtz problem. φNB = 88o.
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Figure 5.70: One Eigenvector as-
sociated with joint second largest
eigenvalue (0.9998) of GD for Pe-
riodic domain Helmholtz problem.
φNB = 88o.
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Figure 5.71: Other Eigenvector as-
sociated with joint second largest
eigenvalue (0.9998) of GD for Pe-
riodic domain Helmholtz problem.
φNB = 88o.
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Figure 5.72: Eigenvector associ-
ated with third largest eigenvalue
(0.9997) of GD for Periodic domain
Helmholtz problem. φNB = 88o.
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Figure 5.73: Eigenvector as-
sociated with largest eigenvalue
(0.9994) of GBlock for Periodic do-
main Helmholtz problem. φNB =
88o.
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Figure 5.74: One Eigenvector as-
sociated with joint second largest
eigenvalue (0.9988) of GBlock for
Periodic domain Helmholtz prob-
lem. φNB = 88o.
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Figure 5.75: Other Eigenvector as-
sociated with joint second largest
eigenvalue (0.9988) of GBlock for
Periodic domain Helmholtz prob-
lem. φNB = 88o.
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Figure 5.76: Eigenvector associ-
ated with third largest eigenvalue
(0.9978) of GBlock for Periodic do-
main Helmholtz problem. φNB =
88o.
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Figure 5.77: Eigenvector as-
sociated with largest eigenvalue
(0.9739) of GADI for Periodic do-
main Helmholtz problem. φNB =
88o.
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Figure 5.78: One Eigenvector as-
sociated with joint second largest
eigenvalue (0.9738) of GADI for Pe-
riodic domain Helmholtz problem.
φNB = 88o.

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

40 E 80 E 120 E 160 E 160 W 120 W 80 W 40 W 0 W

20

30

40

50

60

70

80

Longitude

L
a

ti
tu

d
e

 (
d

e
g

s
 N

)

Figure 5.79: Other Eigenvector as-
sociated with joint second largest
eigenvalue (0.9738) of GADI for Pe-
riodic domain Helmholtz problem.
φNB = 88o.
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Figure 5.80: Eigenvector associ-
ated with third largest eigenvalue
(0.9737) of GADI for Periodic do-
main Helmholtz problem. φNB =
88o.
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40o 700 88o 89o

Prec. 1o 2o 1o 2o 1o 2o 1o

Diag 156 75 323 159 564 275 632

Blo 94 47 177 88 220 107 222

ADI 39 26 70 45 87 55 88

Table 5.12: Number of iterations to convergence tolerance ||rm||∞
||b||∞ < 10−5,

sine function general solution, k = 0.01

40o 700 88o 89o

Prec. 1o 2o 1o 2o 1o 2o 1o

Diag 18.1 1.3 109.7 7.7 510.4 20.8 524.3

Blo 21.9 1.5 118.4 8.5 416.5 17.0 431.5

ADI 18.5 1.6 99.3 9.1 346.4 16.4 359.2

Table 5.13: CPU times, sine function general solution, k = 0.01

5.3.3 Practical convergence experiments

The assertion that the ADI preconditioned method (and to a lesser extent the

block preconditioned method) should provide faster convergence is confirmed

by the convergence results shown in Tables 5.12 to 5.13. This time we used

a general solution of the form

U(λ, φ) = sin(λ)sin(d[φ− 10])

d = 90
φNB−10

(5.5)

which is consistent with the boundary conditions given in (5.4). The relative

residual error normalised by b is used as the stopping criterion as in the

Limited Area experiments of Section 5.2.3.
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5.4 Unforced problem : Fourier modes as ini-

tial errors

5.4.1 Problem formulation

This final section of numerical experiments returns to a Limited Area prob-

lem for the constant depth spherical model defined in Section 4.8.1. Here

we allow the domain to extend fully in the latitudinal direction to include

the north pole. We also extend the domain to 90o E in the longitudinal

direction. Dirichlet boundary conditions of U = 0 are taken everywhere on

the boundary of the domain. We also use a Poisson type equation with the

’Helmholtz’ term k = 0 and a zero forcing function on the right hand side.

The problem we consider is as follows :





1
cosφ

[
∂
∂λ

(
1

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ∂U

∂φ

)]
= 0

λ ∈ (0oE, 90oE) φ ∈ (0oN, 90oN)

U(0oE, φ) = 0, U(90oE, φ) = 0

U(λ, 0oN) = 0, U(λ, 90oN) = 0.

(5.6)

The general solution for this problem is U(λ, φ) = 0.

5.4.2 Properties of preconditioned methods

Table 5.14 gives the conditioning and spectral radii information used to as-

sess the convergence of the various preconditioned methods. As before we

note the increasing values (apart from the ADI parameter) with the de-

creased stepsize. Again the spectral radii of the iteration matrices are all less

than 1 guaranteeing convergence of the numerical method,with the values for

GD the largest, followed by GBlock and then GADI suggesting that the ADI
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preconditioner should again yield the fastest convergence rates. The same

pattern and conclusion can be shown by the conditioning results. The effect

of considering the worst anisotropy case (with no ’helpful’ Helmholtz term)

is further shown by Figure 5.81. The eigenvalues of GD in Figure 5.81 are

clustered near 1, the convergence limit, suggesting that a large number of

eigenmodes with large eigenvalue could contribute to the error. The form

of the leading eigenmodes of GD show a similar pattern to that observed in

the Limited area problem, as do the leading eigenvectors for the block pre-

conditioner, and the leading eigenvectors for the ADI preconditioner. These

are displayed in Appendix B. Again the leading eigenvectors of the block

preconditioner have a much weaker polar signal than the eigenvectors of the

diagonal preconditioner. Also, as before, the leading eigenvectors of the ADI

preconditioner do have a significant polar signal. However they are associated

with considerably smaller eigenvalues than diagonal or block precondition-

ing. We would therefore expect the overall convergence to be faster with ADI

even if the pole problem is not directly addressed.
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Figure 5.81: Leading eigenvalues of GD for k = 0, Limited Area problem
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Stepsize

1o 2o

ρ(A) 7.52×105 9.40×104

κ∞(A) 1.21×105 1.52×104

κ(P−1
D A) 5.37×103 1.33×103

κ(P−1
BloA) 1.11×103 427.327

κ(P−1
ADIA) 270.243 104.043

ρ(GD) 0.9994 0.9977

ρ(GBlo) 0.9975 0.9927

ρ(GADI) 0.9853 0.9814

ADI value 956.760 347.958

Table 5.14: ∞-norm condition numbers, spectral radii of A, and spectral
radii of G for all preconditioners for unforced limited area problem

5.4.3 Practical convergence experiments

The aim of the numerical experiments is to investigate how quickly the initial

conditions we use are damped down to the zero solution (depending on their

form and the preconditioned method used). We chose the initial errors (our

initial guesses in this case) to be Fourier Modes of the form

U0 = sin(mλ)sin(nφ),

and investigate the number of iterations required for convergence when vary-

ing the mode numbers m, n.

A different convergence criterion is required for these experiments as

|| b ||∞ is effectively zero. We use the relative residual error normalised

by the initial residual :

|| rm ||∞
|| r0 ||∞ =

|| b− AUm ||∞
|| b− AU0 ||∞ < 10−5. (5.7)
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Table 5.15 shows the number of iterations required for convergence using

this criterion. The low mode number cases follow the general pattern of

previous experiments (and the pattern suggested by the convergence data

in Table 5.14) with ADI performing faster than Block and then diagonal.

However for cases where m and n are large we note that diagonal outperforms

block (and even ADI for very high mode number cases). Overall, however

ADI and to an extent block methods, ’damp’ the Fourier mode errors more

evenly which, from an overall convergence point of view, is more effective.

Figures 5.82 to 5.90 show examples of the convergence history of the resid-

ual errors, at equatorial, mid, and polar latitudes, for the three precondition-

ers considered in this section. Although the ADI and Block preconditioners

yield faster convergence overall than the diagonal preconditioner (i.e. they

damp the error modes more evenly), their convergence histories show that

the residual errors in the polar regions are still slower to converge than those

at lower latitudes.
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Diagonal Block ADI

m n 1o 2o 1o 2o 1o 2o

2 2 191 78 88 44 52 28

4 4 107 50 82 40 36 18

6 6 50 24 72 34 21 15

8 8 24 12 59 27 17 12

10 10 15 5 48 21 16 11

20 20 3 NA 16 NA 9 NA

2 4 203 83 88 43 51 26

2 6 205 83 88 43 45 26

2 8 208 84 82 43 42 18

2 10 208 84 82 40 37 16

2 20 209 NA 46 NA 33 NA

Table 5.15: Number of iterations to convergence tolerance of ||rm||∞
||ro||∞ < 10−5,

for various Fourier modes defined by m,n

134



0 20 40 60 80 100 120 140 160 180 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

Re
sid

ua
l E

rro
r

1 degree N
44 degrees N
89 degrees N

Figure 5.82: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, Diagonal Preconditioner, m = 2, n = 2
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Figure 5.83: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, Diagonal Preconditioner, m = 8, n = 8
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Figure 5.84: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, Diagonal Preconditioner, m = 20, n = 20
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Figure 5.85: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, Block Preconditioner, m = 2, n = 2
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Figure 5.86: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, Block Preconditioner, m = 8, n = 8
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Figure 5.87: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, Block Preconditioner, m = 20, n = 20
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Figure 5.88: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, ADI Preconditioner, m = 2, n = 2

0 2 4 6 8 10 12 14 16 18
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

Re
sid

ua
l E

rro
rs

1 degree N
44 degrees N
89 degrees N

Figure 5.89: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, ADI Preconditioner, m = 8, n = 8
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Figure 5.90: Logarithmic convergence history of residual errors at three lat-
itudes, 1o stepsize, ADI Preconditioner, m = 20, n = 20
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5.5 Summary

This chapter presented numerical results from using the spherical model in-

troduced in Chapter 4. Overall the theoretical findings of Chapter 4 were

largely confirmed with the ADI preconditioned yielding the fastest conver-

gence followed by block, diagonal and Binormalization preconditioners re-

spectively. The ADI preconditioner with spatially varying parameter did not

perform very well in the experiments. This is likely to have been caused

by the sensitivity of the preconditioner to the parameter values that are

used, combined with the fact that the values were calculated using the crude

Gerschgorin estimates. For very large matrices, accurate calculation of the

eigenvalue bounds and hence the parameter values is likely to be very expen-

sive for the form of the preconditioner chosen (with one parameter per row

of the grid) with possibly little gain in convergence speed. A possible com-

promise would be to try with a small number of values (2 to 10) calculated

more accurately.

It was noted that the condition numbers of the preconditioned systems,

and the associated spectral radii of the iteration matrices G, changed very

little as the anisotropy was increased by moving the northern boundary closer

to the pole, when using the diagonal and block diagonal preconditioners in

the Limited Area problem (and to a lesser extent in the Periodic domain

problem). Also it was observed that the leading eigenvectors of G did not

have strong polar signals. However it was also noted that the ’nearly’ leading

eigenvalues of the iteration matrices G became larger as φNB was increased,

clustering around the lead eigenvalue, and that the associated ’nearly’ lead-

ing eigenvectors did have strong polar signals. Therefore it was deduced

that the polar convergence issue is caused by the increased importance, in

more mesh anisotropic problems, of secondary eigenvectors with strong po-
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lar signals. These findings for the Limited Area problem are summarised

in our paper [12]. It was also noted that the non-zero eigenvalues of the

iteration matrices for the block and diagonal preconditioners occurred in ±
pairs as predicted. Finally we showed that the eigenvalues of the iteration

matrix, GBin for the Binormalization preconditioned method were all strictly

positive.

The leading four eigenvectors of the block preconditioned (and ADI for the

periodic case) iteration matrices were seen to display smaller polar signals

than the diagonal preconditioned iteration matrices. Also block and ADI

preconditioning were shown to damp the spectrum of Fourier error modes

more evenly than diagonal preconditioning. Despite this the convergence

histories of all three preconditioners showed that the residual errors in the

polar regions were the last to converge.
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Chapter 6

Spherical domain : varying

depth, H, problems

6.1 Introduction

In this chapter we progress to investigating problems which include a varying

depth function, H, within the elliptic operators, such as that used in both the

rigid-lid and free surface formulations. We firstly examine, in Section 6.2, the

free surface case where the elliptic operator is of the form −∇· (H∇)U +kU .

We then consider, in Section 6.3, the corresponding rigid-lid formulation

where the operator is of Poisson type −∇ · ( 1
H
∇).

6.2 Varying ocean depth H

In this section we shall describe the discretisation formulation used for a H

varying Modified Helmholtz problem. We also derive Gerschgorin estimates

of the conditioning of the preconditioned system matrices, in an analogous

way to the previous chapter, and again perform numerical experiments to test
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our theoretical findings. In particular we examine a model of an idealised

Continental Shelf and investigate the effect a sharp change in topography

has on the numerics of the problem.

6.2.1 Problem formulation and discretisation

We now consider a Modified Helmholtz type problem, with varying topogra-

phy, of the form −∇ · (H∇) + kU = γ with k ≥ 0 and we assume that the

topography is a function of λ and φ with H = H(λ, φ) > 0 across the whole

domain. We retain our fixed mesh of nλ×nφ grid points. We return to our

theoretical domain of a segment of Northern Hemisphere ocean with Dirich-

let boundary conditions at all boundaries. We solve the following Limited

Area problem




− 1
cosφ

[
∂
∂λ

(
H

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
Hcosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (30oW, 0oW ) φ ∈ (10oN, φNB)

U(30oW,φ) = 0, U(0oW,φ) = 0

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN)

H = H(λ, φ) > 0.

(6.1)

The following five-point discretisation scheme is used for this problem

−
[

1
cos2φj

(
(Ui+1j−Uij)Hi+1

2 ,j

δλ2 − (Uij−Ui−1j)Hi− 1
2 ,j

δλ2

)

+ 1
cosφj

(
cosφ

j+1
2

H
i,j+1

2
(Uij+1−Uij)

δφ2 − cosφ
j− 1

2
H

i,j− 1
2
(Uij−Uij−1)

δφ2

)]
+ kUij = γ(µi, φj).

(6.2)

The variables have been positioned in a ’B’ grid format as shown in Fig-

ure 2.2. The H values in the scheme (6.2) are calculated by taking an av-

erage of the two H values at the half step points either side. e.g Hi,j+ 1
2

=

1
2

[
H(λi− 1

2
, φj+ 1

2
) + H(λi+ 1

2
, φj+ 1

2
)
]
. We again use the natural ordering for
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our grid-points. Therefore in this case our system matrix A has the struc-

ture

A =




D1 C1

B2 D2 C2

B3 D3 C3

. . . . . . . . .

Dnφ−1 Cnφ−1

Bnφ
Dnφ




,

where

Dj = tridiag




− H
i− 1

2 ,j

cosφjδλ2 ,
H

i− 1
2 ,j

cosφjδλ2 +
H

i+1
2 ,j

cosφjδλ2 +
cosφ

j+1
2

H
i,j+1

2

δφ2 +
cosφ

j− 1
2

H
i,j− 1

2

δφ2 + kcosφj,

− H
i+1

2 ,j

cosφjδλ2 ,




(6.3)

Bj = diag

[
−

cosφj− 1
2
Hi,j− 1

2

δφ2

]
2 ≤ j ≤ nφ, (6.4)

Cj = diag

[
−

cosφj+ 1
2
Hi,j+ 1

2

δφ2

]
1 ≤ j ≤ nφ − 1. (6.5)

From the definitions (6.3) to (6.5), it is straightforward to observe that each

block Dj is symmetric and this, combined with the fact that

Bj = diag

[
−

cosφj− 1
2
Hi,j− 1

2

δφ2

]
= Cj−1, (6.6)

is enough for us to conclude that the matrix A is symmetric.

6.2.2 Properties of A and the preconditioned methods

In this section we confirm that the matrix properties that we want in order

to guarantee the convergence of our preconditioned methods still hold in

these extended cases. Note firstly that the form of the system matrix A is
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analogous with the system matrix used in Chapter 4. The difference is with

the addition of H terms representing the ocean depth. By definition these

are taken to be strictly greater than zero. Since we are still assuming that

we have δλ, δφ > 0 and cosφ ∈ (0, 1) then we may deduce in an analogous

manner to Section 4.4.1 that the matrix entries we assume to be non-zero

cannot become zero anywhere in the domain. From this we may deduce

that the connected graph of the system matrix A is strongly connected and

therefore, via Theorem 3.1, that our matrix is irreducible.

We now consider the diagonal dominance of A. For the cases with k > 0

(with Dirichlet or periodic boundary conditions in the λ direction) we observe

that we have

aii >

n∑

j=1,j 6=i

| aij |,

for a general row. We therefore have a matrix which is strictly diagonally

dominant. For the cases with k = 0 we do not have strict diagonal dominance

except in certain rows (with either set of boundary conditions in the λ direc-

tion. We have diagonal dominance in all other rows hence our matrix is still

irreducibly diagonally dominant. In addition since aii > 0, and aij ≤ 0 for

i 6= j we again have via Theorem 3.2 that A is nonsingular with strictly pos-

itive eigenvalues and is positive definite. We may also deduce by definition

that A is a Stieltjes matrix and therefore, via Theorems 3.3 and 3.4, that A

is an M-matrix with A−1 > 0. Further since A is a block-tridiagonal matrix

it follows using Theorem 3.15 that A is consistently ordered and hence via

Theorem 3.13 that A has property A.

Since all of the diagonal entries of A are strictly positive and A is strictly

or irreducibly diagonally dominant and positive-definite, we may deduce,

using Theorem 3.11 that the diagonal preconditioned method is convergent.

For the block-preconditioner we use the same setup as given in (4.23). As
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P in this case can be shown to be symmetric positive-definite, and since

A is an M-matrix, it may be deduced using Theorem 3.12 that the block

preconditioned method is convergent. For the ADI preconditioners we again

use matrices HΥ and VΥ of the forms given in (4.53) and (4.54) where

DH
j = tridiag




− H
i− 1

2 ,j

cosφjδλ2 ,
H

i− 1
2 ,j

cosφjδλ2 +
H

i+1
2 ,j

cosφjδλ2 +
kcosφj

2
,

− H
i+1

2 ,j

cosφjδλ2 ,


 , 1 ≤ j ≤ nφ, (6.7)

and

DV
j = diag

[
cosφj+ 1

2
Hi,j+ 1

2

δφ2
+

cosφj− 1
2
Hi,j− 1

2

δφ2
+

kcosφj

2

]
, 1 ≤ j ≤ nφ.

(6.8)

From this it can be shown that if k > 0, using either Dirichlet or periodic

boundary conditions in the λ direction, or if k = 0 for Dirichlet cases, then

the matrices HΥ and VΥ are strictly or irreducibly diagonally dominant, are

positive-definite with strictly positive eigenvalues, and are therefore Stieltjes

matrices. Therefore it may be concluded in those cases that the ADI precon-

ditioned methods converge for Υ > 0. We cannot guarantee the convergence

for cases where periodic boundary conditions are used in the λ direction with

k = 0.

6.2.3 Gerschgorin convergence estimates

In this section, in an analogous way to Section 4.5, we use the Gerschgorin

Theorem 3.6 to put bounds on the spectral radii and condition numbers of

the preconditioned matrices. We now have a domain with a varying topog-

raphy function. We will only consider a general case here where we assume

that we know only the largest depth, Ĥ across the whole domain and we

will derive crude bounds using that to obtain qualitative information on the
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preconditioned methods. We again assume that we have a constant stepsize

in both directions i.e. h = δλ = δφ. We find that we have

ρ(A) ≤ 4Ĥ

cosφHigh

+ 2ĤcosφHigh + ĤcosφHigh + h2kcosφHigh, (6.9)

µmin(A) ≥ h2kcosφHigh. (6.10)

Therefore we have

κ2(A) ≤ 4Ĥ

h2kcos2φHigh

+
3Ĥ

h2k
+ 1. (6.11)

When using a diagonal preconditioner we have

ρ(GD) ≤ 2 + 2cos2φHigh

2 + 2cos2φHigh + h2k

Ĥ
cos2φHigh

(6.12)

=⇒ ρ(GD) < 1.

Also

ρ(P−1A) ≤ 4 + 4cos2φHigh

2 + 2cos2φHigh + h2k

Ĥ
cos2φHigh

, (6.13)

µmin(P−1A) ≥
h2k

Ĥ
cos2φHigh

2 + 2cos2φHigh + h2k

Ĥ
cos2φHigh

, (6.14)

hence

κ(P−1A) ≤ 4
h2k

Ĥ
cos2φHigh

+
4cosφHigh

h2k

Ĥ

. (6.15)

We again observe that for the diagonal preconditioner

κ2(P
−1
D A) < κ2(A).

For the block preconditioner we have

ρ(GBlock) ≤ 2

2 + h2k

Ĥ

(6.16)

=⇒ ρ(GBlock) < 1.
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Again we note that

ρ(GBlock) < ρ(GD) < 1.

Also we have

ρ(P−1A) ≤ 8 + h2k

Ĥ

6 + h2k

Ĥ

, (6.17)

µmin(P−1A) ≥
h2k

Ĥ

2 + h2k

Ĥ

, (6.18)

hence

κ(P−1A) ≤
8+h2k

Ĥ

6+h2k
Ĥ

h2k
Ĥ

2+h2k
Ĥ

. (6.19)

For the ADI preconditioner we have

ρ(GADI) ≤
Υ− h2kcosφnφ

2Ĥ

Υ +
h2kcosφnφ

2Ĥ

< 1, (6.20)

ρ(P−1A) ≤ 1−
Υ− 4

cosφnφ
− h2kcosφnφ

2Ĥ

Υ + 4
cosφnφ

+
h2kcosφnφ

2Ĥ

.
Υ− 4cosφnφ

cosφ 1
2
− h2kcosφnφ

2Ĥ

Υ + 4cosφnφ
cosφ 1

2
+

h2kcosφnφ

2Ĥ

,

(6.21)

µmin(P−1A) ≥ 1− Υ− h2kcosφnφ

2Ĥ

Υ +
h2kcosφnφ

2Ĥ

.
Υ− h2kcosφnφ

2Ĥ

Υ +
h2kcosφnφ

2Ĥ

, (6.22)

hence

κ(P−1A) ≤
1−

Υ− 4
cosφHigh

−
h2kcosφHigh

2Ĥ

Υ+ 4
cosφHigh

+
h2kcosφHigh

2Ĥ

.
Υ−4cosφHigh−

h2kcosφHigh

2Ĥ

Υ+4cosφHigh+
h2kcosφHigh

2Ĥ

1−
Υ−

h2kcosφHigh

2Ĥ

Υ+
h2kcosφHigh

2Ĥ

.
Υ−

h2kcosφHigh

2Ĥ

Υ+
h2kcosφHigh

2Ĥ

, (6.23)We note that

the conditioning and spectral radii estimates for the block preconditioned

method do not depend on cosφ. We would therefore expect the block pre-

conditioner to outperform the diagonal preconditioner in this extended case.

Again the ADI estimates do not tell us very much generally. The pattern of
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Prec. P−1A ρ(GP )

None 1.17×1013 -

D 1.17×1013 1.0− 2×10−13

Block 7.01×109 1.0− 2×10−10

ADI 1.24×109 1.0− 8×10−7

Table 6.1: Spectral radii of the iteration matrix G and 2-norm condition
numbers of P−1A calculated theoretically using Gerschgorin

likely convergence of the preconditioned methods is made clearer by Table 6.1

which shows the typical values of the spectral radii and the conditioning for

the preconditioned methods for the case where Ĥ = 8000, k = 0.01, h = 1o

and cosφHigh = 0.03 (equivalent to taking φNB = 88o). We note that the

pattern of spectral radii and condition numbers again suggests that ADI

should yield the fastest convergence followed by block preconditioning and

then diagonal preconditioning.

6.2.4 Numerical experiments

In our experiments we examine a Continental Shelf case where the ocean

topography is a constant depth of 2000m across the domain apart from a

4o wide trench of depth 8000m in the longitudinal direction which runs the

entire length of the domain. These conditions yield the following Limited
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Area problem





1
cosφ

[
∂
∂λ

(
H

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
Hcosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (30oW, 0oW ) φ ∈ (10oN, φNB)

U(30oW,φ) = 0, U(0oW,φ) = 0

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN)

H(30oW − 18oW,φ) = 2000m

H(17oW − 14oW,φ) = 8000m

H(13oW − 0oW,φ) = 2000m.

(6.24)

Table 6.2 gives the conditioning and spectral radii information computed

in our numerical experiments. Again we note the same pattern to the val-

ues as in previous experiments : The diagonal preconditioner contributes the

highest condition number of the preconditioned system and the highest value

for the spectral radii of the iteration matrix, G. The Block preconditioner

has the next highest values with ADI yielding the lowest. We would there-

fore again expect the ADI preconditioned method to converge in the fewest

iterations followed by Block and then Diagonal.

The leading eigenvectors of G for the diagonal and Block preconditioned

methods showed little sign of being affected by the topography profile of H.

For example the leading eigenvectors for the φNB = 88o, h = 1o, k = 0.01 case

appeared almost exactly identical to Figures 5.16 to 5.19 and 5.28 to 5.31

respectively. The leading eigenvectors of GADI did appear to be sensitive

to the height profile as Figures 6.1 to 6.4 show. The signal is all along the

trench. The dominant eigenmodes still have small horizontal scales and still

have larger components at the pole.

Tables 6.3 and 6.4 show the results of our practical convergence experi-

ments in this extended, H-varying case. We again used a right hand source
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Stepsize

1o 2o

κ∞(A) 2.282×104 4.138×103

κ(P−1
D A) 2.828×103 680.434

κ(P−1
BloA) 1.366×103 311.145

κ(P−1
ADIA) 228.022 96.967

ρ(GD) 0.9978 0.9917

ρ(GBlo) 0.9941 0.9776

ρ(GADI) 0.9655 0.9323

ADI parameter 1.384×103 577.5

Table 6.2: ∞-norm condition numbers, spectral radii of A, and spectral radii
of G for all preconditioners for Limited Area problem, φNB = 88o

function γ(λ, φ) fixed to yield a sine function general solution of

U(λ, φ) = sin(3λ)sin(d[φ− 10])

d = 90
φNB−10

(6.25)

which is consistent with the chosen boundary conditions. A constant ’ini-

tial guess’ of U(i, j) = 1.5 was again taken to start the iterative process.

The relative residual ∞ norm error normalised by the source vector, (b), was

used in the stopping criterion. We again found that the ADI preconditioned

method yielded the fastest convergence followed by the block and then diag-

onally preconditioned methods. This was as we predicted qualitatively using

Gerschgorin techniques in Section 6.2.3.
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Stepsize

Prec. 1
2

o
1o 2o

D 387 179 81

Block 156 77 38

ADI 49 31 20

Table 6.3: Iterations to conver-
gence, H-varying problem, φNB =
88o

Stepsize

Prec. 1
2

o
1o 2o

D 55.0 4.7 1.3

Block 44.3 4.3 1.2

ADI 30.4 3.6 1.0

Table 6.4: CPU times, H-varying
problem, φNB = 88o

6.3 Varying ocean depth ( 1
H) operator

We now move on to describe the discretisation formulation used for a 1
H

varying Poisson problem. We continue using the model of an idealised Con-

tinental Shelf and investigate the effect a sharp change in topography has on

the numerics of the problem with this operator. We also revisit the constant

topography case to consider some properties of the Chebyshev Semi-Iterative

method.

6.3.1 Problem formulation and discretisation

We consider a Poisson type problem of the form −∇·( 1
H
∇)U = γ. We retain

our fixed mesh of nλ×nφ grid points on the domain of a theoretical segment

of Northern Hemisphere ocean. The domain is the same as that used in the

experiments of Section 5.4. We retain Dirichlet boundary conditions at all

boundaries and use ( 1
H

) varying topography. We thus consider the following
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Figure 6.1: Eigenvector associated
with largest eigenvalue (-0.9655)
of GADI for H-varying problem.
φNB = 88o.

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

25 20 15 10 5

20

30

40

50

60

70

80

Longitude (degs W)

L
a

ti
tu

d
e

 (
d

e
g

s
 N

)

Figure 6.2: Eigenvector associ-
ated with second largest eigenvalue
(-0.9622) of GADI for H-varying
problem. φNB = 88o.
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Figure 6.3: Eigenvector associ-
ated with third largest eigenvalue
(-0.9545) of GADI for H-varying
problem. φNB = 88o.
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Figure 6.4: Eigenvector associ-
ated with third largest eigenvalue
(-0.9515) of GADI for H-varying
problem. φNB = 88o.
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problem :




1
cosφ

[
∂
∂λ

(
1

Hcosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ
H

∂U
∂φ

)]
= γ(λ, φ)

λ ∈ (90oW, 0oW ) φ ∈ (0oN, 90oN)

U(90oW,φ) = 0, U(0oW,φ) = 0

U(λ, 0oN) = 0, U(λ, 90oN) = 0

H = H(λ, φ).

(6.26)

The following five-point discretisation scheme is used, with the 1
H

values

calculated by averaging, in an analogous manner to the H varying case :

−
[

1
cos2φj

(
(Ui+1j−Uij)

H
i+1

2 ,j
δλ2 − (Uij−Ui−1j)

H
i− 1

2 ,j
δλ2

)

+ 1
cosφj

(
cosφ

j+1
2
(Uij+1−Uij)

H
i,j+1

2
δφ2 − cosφ

j− 1
2
(Uij−Uij−1)

H
i,j− 1

2
δφ2

)]
+ kUij = γ(µi, φj).

(6.27)

6.3.2 Properties of A and the preconditioned method

In these experiments the Red-Black ordering is used to order the grid-points.

The resulting matrix A is then normalised by multiplying through by the

inverse of the diagonal elements i.e. a diagonal preconditioning. Our precon-

ditioned problem therefore has the structure

P−1A =


 I1 F

F ∗ I2


 , (6.28)

where I1 and I2 are Identity matrices of size nr×nr and nb×nb respectively.

The matrices F and F ∗ are of size nr×nb and nb×nr respectively and P =

D = diag(A).

The H values used are assumed to be strictly greater than zero, by defi-

nition. Since we are still assuming that we have δλ, δφ > 0 and cosφ ∈ (0, 1)

then we may deduce in an analogous manner to Section 4.4.1 that the ma-

trix entries we assume to be non-zero cannot become zero anywhere in the

152



domain. From this we may deduce that the connected graph of the system

matrix A is strongly connected and therefore, via Theorem 3.1, that our

matrix is irreducible. We also have

nr∑
j=1

| fij |≤ 1 1 ≤ i ≤ nb (6.29)

and
nb∑

j=1

| f ∗ij |≤ 1 1 ≤ i ≤ nr (6.30)

where fij ∈ F and f ∗ij ∈ F ∗ with strict inequality in at least one row of

each relation. The matrix A is therefore diagonally dominant with strict

diagonal dominance in at least one row. Since A is irreducible it follows

that it is irreducibly diagonally dominant. We may therefore deduce, via

Theorem 3.11, that the diagonal preconditioned method is convergent. In

addition since aii > 0, and aij ≤ 0 for i 6= j, we again have, via Theorem 3.2

that A is nonsingular with strictly positive eigenvalues and is positive definite.

We may also deduce by definition that A is a Stieltjes matrix and therefore,

via Theorems 3.3 and 3.4, that A is an M-matrix with A−1 > 0. Further

since A is a block-tridiagonal matrix it follows using Theorem 3.15 that A is

consistently ordered and hence via Theorem 3.13 that A has property A.

6.3.3 Numerical experiments

The aims of the experiments of this section are to demonstrate some of the

convergence properties of the Cyclic Chebyshev Semi-Iterative method and

to demonstrate the sensitivity of the elliptic operator to sharp variations in

H. We consider the problem (6.26) and use a Continental shelf topography
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Setup ρ(GD) κ∞(P−1
D )

Constant H 0.9994 5.37×103

Continental Shelf 0.9998 5.94×104

Table 6.5: Spectral radii of G and condition numbers of P−1
D A

profile of the form

H(90oW − 61oW,φ) = 2000m

H(60oW − 31oW,φ) = 8000m

H(30oW − 0oW,φ) = 2000m,

to illustrate the sensitivity of the operator to sharply changing H. A constant

topography (i.e. H(λ, φ) = 2000) case is used as a ’control’ in the comparison.

From Table 6.5 we note that the spectral radii of GD and, to a lesser extent,

the conditioning of the system matrix are indeed sensitive to the topography

profile.

We revisit the experiments of section 5.4.3 investigating the ’damping’ of

Fourier initial errors, this time using the Chebyshev Semi-Iterative Method.

We chose the initial errors (our initial guesses in this case) to be Fourier

Modes of the form

U0 = sin(mλ)sin(nφ),

and investigate the number of iterations required for convergence when vary-

ing the mode numbers m, n. We use the relative residual error normalised

by the initial residual as the stopping criterion. Tables 6.6 and 6.7 show the

results of doing this with constant height and Continental shelf cases. For the

constant height case we note that the Chebyshev method using the spectral

radius shown in Table 6.5 causes the various Fourier modes to be damped

approximately evenly. This is not quite the case with the Continental Shelf
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m=2 m=20

ρ(G) n=2 n=20 n=2 n=20

0.9938 616 508 58 54

0.9967 463 381 71 75

0.9986 303 249 110 107

0.9989 269 221 122 120

0.9991 232 189 138 134

0.9993 190 160 157 156

0.9994 160 162 171 165

0.9995 142 174 185 177

0.9997 167 206 218 214

0.9999 705 1006 1043 1032

Table 6.6: Number of iterations to convergence of various Fourier Modes :
Constant Depth case

model, although the spectral radius is fairly accurate : A ρ(G) value of be-

tween 0.9997 and 0.9998 would appear to be ideal. It is possible that this

discrepancy is due to the fact that in this 1
H

varying case, Fourier modes are

less representative physically of the error modes involved.

6.4 Summary

This chapter extended the basic spherical model introduced in Chapter 4 to

include problems which include a varying depth function, H, within the ellip-

tic operators. We firstly examined a case which was analogous with the free

surface formulation where the elliptic operator is of the form −∇ · (H∇)U +

kU . We again showed that ADI ought to yield the fastest convergence, fol-

lowed by Block and Diagonal, by examination of the spectral radii of G and
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m=2 m=20

ρ(G) n=2 n=20 n=2 n=20

0.9938 1153 1042 319 255

0.9986 603 549 213 177

0.9993 422 386 171 166

0.9995 356 326 191 190

0.9997 282 262 225 226

0.9998 195 252 274 286

0.9999 764 1010 1082 1102

Table 6.7: Number of iterations to convergence of various Fourier Modes :
Continental Shelf case

the conditioning of the preconditioned systems. However it was noted that

whilst the leading eigenvectors of GD and GBlock were not very sensitive to

the height profile the ADI preconditioned iteration matrix, GADI , was. We

then moved on to consider problems where the operator is of Poisson type

−∇· ( 1
H
∇) similar to the rigid-lid formulation. We showed that by consider-

ing the conditioning of the system matrix as well as the size of the spectral

radii of GD that the problem is sensitive to the variations in H. We also

highlighted the importance of using an accurate value for the spectral radii

of GD. Using an accurate value causes the convergence of all error modes to

be approximately equal, when using the Chebyshev semi-iterative method,

in the constant depth case. The convergence of the modes varied a lot more

with the use of less accurate choices of the spectral radii, ρ(GD). The slight

discrepancy in the Continental shelf case was attributed to the fact that

Fourier modes were less physically representative of the errors involved in

this case.
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Chapter 7

The nine point operator

7.1 Introduction

We move on, in this chapter, to investigate the use of a special nine-point

discretisation operator of the general form used for solving the free surface

problem. We discuss the exact form of the discretisation of the full operator

in the next section, putting the operator in the context of the B grid dis-

cussed in Section 2.2.3 and detailing its discretisation stencil. We perform

truncation error analysis on the discretisation operator in order to confirm

its consistency. We also show that the gradient and divergence operators for

the finite-difference form of the BCS model formulation have analogues of

the positive-definite property. In Section 7.3 we consider a constant depth

version of the nine-point operator. We investigate the convergence properties

of the system matrix and consider the modification of our preconditioners for

use with the nine-point operator. We also revisit the Limited Area problem

of Chapters 4 and 5 with some numerical experiments.
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7.2 Free-surface nine-point elliptic operator

In this section we introduce the full nine-point free-surface operator solved

in the free-surface formulation of the BCS ocean model. Recall that the

problem solved in the free-surface formulation is of the form

− 1

acosφ

[
∂

∂λ

(
H

acosφ

∂η′

∂λ

)
+

∂

∂φ

(
Hcosφ

a

∂η′

∂φ

)]
+ βa2η′ = S(λ, φ). (7.1)

with appropriate boundary conditions at the boundaries of the domain (in-

cluding island boundaries : see Dukowicz et al [24] and the discussion in

Section 2.3.2). Also it is assumed that H > 0 in the interior of the ocean.

In the rest of this section we will describe the full nine-point stencil used to

discretise the problem (7.1). We will demonstrate the positive-definiteness

of the general discrete operator using a finite difference analogue. We will

also show the consistency of the discretisation scheme with the continuous

problem using truncation error analysis

7.2.1 Nine-point discrete operator stencil

We consider the full free-surface operator with varying topography and give

the details for the stencil in this case. Using a compass notation where a

general point P (i, j) is surrounded by grid points labelled as in Figure 7.1

The ’contribution’ to the discretisation scheme from each direction of the
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NW N NE

X X X

W P E

X X X

SW S SE

X X X

Figure 7.1: Nine-point operator stencil written in ’directional’ notation

stencil is given as follows :

P = 1
4

(
δφ
δλ

{
[H(i+ 1

2
,j+ 1

2
)+H(i− 1

2
,j+ 1

2
)]

cosφ
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2
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2
,j− 1

2
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2
,j− 1

2
)]

cosφ
j− 1

2

}
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δλ(cosφ

j+1
2
[H(i+ 1

2
,j+ 1

2
)+H(i− 1

2
,j+ 1

2
)]+cosφ

j− 1
2
[H(i+ 1

2
,j− 1

2
)+H(i− 1

2
,j− 1

2
)])

δφ

)
+ βa2cosφjδλδφ

W = 1
4

(
− δφ

δλ

{
H(i− 1

2
,j+ 1

2
)

cosφ
j+1

2

+
H(i− 1

2
,j− 1

2
)

cosφ
j− 1

2

}
+

δλ(cosφ
j+1

2
H(i− 1

2
,j+ 1

2
)+cosφ

j− 1
2

H(i− 1
2
,j− 1

2
))

δφ

)

E = 1
4

(
− δφ

δλ

{
H(i+ 1

2
,j+ 1

2
)

cosφ
j+1

2

+
H(i+ 1

2
,j− 1

2
)

cosφ
j− 1

2

}
+

δλ(cosφ
j+1

2
H(i+ 1

2
,j+ 1

2
)+cosφ

j− 1
2

H(i+ 1
2
,j− 1

2
))

δφ

)

N = 1
4

(
[H(i+ 1

2
,j+ 1

2
)+H(i− 1

2
,j+ 1

2
)]δφ

cosφ
j+1

2
δλ

− cosφ
j+1

2 [H(i+1
2 ,j+1

2 )+H(i− 1
2 ,j+1

2 )]
δλ

δφ

)

S = 1
4

(
[H(i+ 1

2
,j− 1

2
)+H(i− 1

2
,j− 1

2
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cosφ
j− 1

2
δλ

− cosφ
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2
[H(i+ 1

2
,j− 1

2
)+H(i− 1

2
,j− 1

2
)]δλ

δφ

)
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4

(
−H(i− 1

2
,j− 1

2
)δφ

cosφ
j− 1

2
δλ

− cosφ
j− 1

2
H(i− 1

2
,j− 1

2
)δλ

δφ

)

SE = 1
4

(
−H(i+ 1

2
,j− 1

2
)δφ

cosφ
j− 1

2
δλ

− cosφ
j− 1

2
H(i+ 1

2
,j− 1

2
)δλ

δφ

)

NW = 1
4

(
−H(i+ 1

2
,j− 1

2
)δφ

cosφ
j+1

2
δλ

− cosφ
j+1

2
H(i+ 1

2
,j− 1

2
)δλ

δφ

)

NE = 1
4

(
−H(i+ 1

2
,j+ 1

2
)δφ

cosφ
j+1

2
δλ

− cosφ
j+1

2
H(i+ 1

2
,j+ 1

2
)δλ

δφ

)
,

(7.2)
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7.2.2 Positive-definite property of operator

We now show that the free surface operator, formed from∇·(H∇) is negative-

definite (Equivalent to finding positive-definiteness for−∇·(H∇)). Note that

we are not proving here that any particular matrix approximating the elliptic

problem (7.1), with appropriate boundary conditions, is positive-definite. We

are talking about a property of the general discrete operator using a finite

difference analogue. We will show that the gradient and divergence operators

for the finite-difference form of the BCS model formulation have analogues

of the positive-definite property. It will still necessary to prove the positive-

definiteness of any particular system matrix A arising from a given problem

formulation. We will do this for a specific problem in Section 7.3.

We will assume that β = 0 in this analysis for the purposes of simplicity of

writing. The term β is a constant which adds to the positivity of a given op-

erator if it is greater than zero (as found in the free-surface formulation). We

consider the ’worst case’ where β = 0 here and prove the positive-definiteness

for the finite-difference analogue of the general operator. We may then con-

clude positive-definiteness for the analogue of the operator with β > 0.

Recall that the free surface height η is stored at the centre of the main

grid cells at points with integer indices denoted by subscripts i and j. The

depth of the ocean, H, and depth integrated velocities u and v are stored at

the corners of these cells at points with half integer indices. We use (u, v) to

denote the analogue of H∇η.

The lengths of the main grid cell at the (i, j)th point will be denoted δxi,j

and δyi,j. Similarly the lengths of the cells centred at the half integer point

(i + 1
2
, j + 1

2
) will be denoted by δxi+ 1

2
,j+ 1

2
and δyi+ 1

2
,j+ 1

2
. The use of x and

y to denote the length directions illustrates the fact that the results of this

section could be applied to a variety of co-ordinate classes. Here we have a
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latitude-longitude grid with δxi,j = acosφjδλ and δyi,j = aδφ. The analogue

of the scalar product of two functions defined at integer points ai,j and bi,j

will be defined to be
∑
i,j

ai,jbi,jδxi,jδyi,j. (7.3)

The simplest form of the gradient operator will also be used :

(∇η)i+ 1
2
,j+ 1

2
=




1
2δx

i+1
2 ,j+1

2

(ηi+1,j+1 + ηi+1,j − ηi,j+1 − ηi,j)

1
2δy

i+1
2 ,j+1

2

(ηi+1,j+1 + ηi,j+1 − ηi+1,j − ηi,j)


 . (7.4)

The divergence operator at a point with integer indices will be based on the

integral of the flux through the faces of the cell :

2∇ · (u, v)i,jδxi,jδyi,j = δxi+ 1
2
,j+ 1

2
vi+ 1

2
,j+ 1

2
+ δxi− 1

2
,j+ 1

2
vi− 1

2
,j+ 1

2

−δxi+ 1
2
,j− 1

2
vi+ 1

2
,j− 1

2
− δxi− 1

2
,j− 1

2
vi− 1

2
,j− 1

2

+δyi+ 1
2
,j+ 1

2
ui+ 1

2
,j+ 1

2
+ δyi− 1

2
,j+ 1

2
ui− 1

2
,j+ 1

2

−δyi+ 1
2
,j− 1

2
ui+ 1

2
,j− 1

2
− δyi− 1

2
,j− 1

2
ui− 1

2
,j− 1

2
.

(7.5)

We need to calculate (7.3) with ai,j = ηi,j and bi,j = ∇ · (u, v)i,j as given

in (7.5) with (u, v)i+ 1
2
,j+ 1

2
= Hi+ 1

2
,j+ 1

2
(∇η)i+ 1

2
,j+ 1

2
and the gradient operator

given by (7.4). We re-organise the summation in (7.3) gathering together the

terms from bi,j = ∇ · (u, v)i,j evaluated at
(
i + 1

2
, j + 1

2

)
. This corresponds

to an integration by parts.

∑
i,j ηi,j∇ · (u, v)i,jδxi,jδyi,j

=
∑

i,j

δx
i+1

2 ,j+1
2

v
i+1

2 ,j+1
2

2
(ηi,j + ηi+1,j − ηi,j+1 − ηi+1,j+1)

+
∑

i,j

y
i+1

2 ,j+1
2

u
i+1

2 ,j+1
2

2
(ηi,j + ηi,j+1 − ηi+1,j − ηi+1,j+1) .

(7.6)

Since we are taking (u, v)i+ 1
2
,j+ 1

2
= Hi+ 1

2
,j+ 1

2
(∇η)i+ 1

2
,j+ 1

2
in (7.6) and the

depth of the ocean is zero at the boundaries of the domain, the summations

161



on the right hand side of (7.6) will extend precisely over points where the

depth is non-zero. Then using (7.4) one obtains

∑
i,j

ηi,j [∇ · (H∇η)]i,j δxi,jδyi,j = −
∑
i,j

Hi+ 1
2
,j+ 1

2
Mi+ 1

2
,j+ 1

2
δxi+ 1

2
,j+ 1

2
yi+ 1

2
,j+ 1

2
,

(7.7)

where

Mi+ 1
2
,j+ 1

2
=

1

4

[
(ηi,j + ηi+1,j − ηi,j+1 − ηi+1,j+1)

2

δy2
i+ 1

2
,j+ 1

2

+
(ηi,j + ηi,j+1 − ηi+1,j − ηi+1,j+1)

2

δx2
i+ 1

2
,j+ 1

2

]
.

(7.8)

The relation in (7.8) implies that the analogue of ∇ · (H∇η) is negative-

definite for functions other than those with the analogue of ∇η = 0.

7.2.3 Truncation error analysis

We now derive the Truncation error for the nine-point discretisation scheme

and confirm its consistency with the differential equation. This property

is needed to ensure the convergence of the discrete solution to that of the

continuous problem as the step sizes (δλ and δφ) go to zero.

For this analysis we use the following version of the operator :

−
[

∂

∂λ

(
H

∂η

∂λ

)
+

∂

∂φ

(
Hcos2φ

∂η

∂φ

)]
+ βcos2φa2η = γ(λ, φ). (7.9)

Let

HU±± =
H(i± 1

2
,j± 1

2
)

δλ2 ,

HV±± =
H(i± 1

2
,j± 1

2
)cos2φ(j± 1

2
)

δφ2 .
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The truncation error of the scheme is hence given by

T.E. = 1
4
(HU++ + HU+− + HU−+ + HU−− + HV++ + HV+− + HV−+ + HV−−)η

+1
4
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+βcos2φa2η + HOT.

where HOT are higher order terms. Expanding about H(λi, φj) and can-
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celling gives

T.E. = −Hληλ −Hηλλ

+
ηφ

δφ

[
(−H − δφ

2
Hφ − δλ2

4.2!
Hλλ − δφ2

4.2!
Hφφ)(cos

2φ− δφcosφsinφ− δφ2

4
cos2φ + δφ2

4
sin2φ)

+(H − δφ
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2
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2
Hφ)(cos
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]

+βcos2φa2η + O(δλ2) + O(δφ2) + O(δλδφ)

= −Hληλ + Hcosφsinφ −Hφcos
2φηφ −Hηλλ −Hcos2φηφφ + βcos2φa2η

+O(δλ2) + O(δφ2) + O(δλδφ).

(7.10)

The terms in (7.10), other than the O(δλ2), O(δφ2) and O(δλδφ) terms, are

just the differential operator. Therefore we have

T.E. = O(δλ2) + O(δφ2) + O(δλδφ),

which means that the scheme is consistent with the differential equation.

7.3 Nine-point operator : constant depth prob-

lem

In this section we shall consider the numerical convergence properties of the

nine-point operator in a reduced case : a constant depth problem. We assume

that we have H(λ, φ) = 1 across the domain (i.e. analogous to our problems

of Chapter 4 and 5). We revisit the limited area model of chapters 4 and 5,

this time using the nine-point discretisation operator. We again take as our

domain a theoretical segment of Northern Hemisphere ocean with Dirichlet

boundary conditions at all boundaries. The problem we consider is of the

form :
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− 1
cosφ

[
∂
∂λ

(
1

cosφ
∂U
∂λ

)
+ ∂

∂φ

(
cosφ∂U

∂φ

)]
+ kU = γ(λ, φ)

λ ∈ (0oE, 30oE) φ ∈ (10oN,φNB)

U(0oE, φ) = 0, U(30oE, φ) = 0

U(λ, 10oN) = 0, U(λ, φNB) = 0

φNB ∈ (40oN, 89.5oN).

(7.11)

We will investigate the properties of the system matrix A arising from

the discretisation of this problem. In particular we will prove the positive-

definiteness of A using some of the techniques from Section 7.2.2. We then

move on to prove the convergence properties of the preconditioned meth-

ods and discussion on how the preconditioners we have introduced may be

adapted for use in this nine-point case. We then consider some numerical

experiments demonstrating the performances of the preconditioned methods

in this nine-point case.

7.3.1 Properties of A

The discretisation stencil (7.2) in the constant depth case is given by
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(7.12)

This discretisation stencil still generates a matrix equation of the form

AU = b.

In this nine-point case we have

A =




D1 C1

B2 D2 C2

B3 D3 C3

. . . . . . . . .

Dnφ−1 Cnφ−1

Bnφ
Dnφ




,
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where

Dj = tridiag




1
4

(
− δφ

δλ

{
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

}
+

δλ(cosφ
j+1

2
+cosφ

j− 1
2
)

δφ

)
,

1
2

(
δφ
δλ

{
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

}
+

δλ(cosφ
j+1

2
+cosφ

j− 1
2
)

δφ

)
+ kcosφjδλδφ,

1
4

(
− δφ

δλ

{
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

}
+

δλ(cosφ
j+1

2
+cosφ

j− 1
2
)

δφ

)
,




(7.13)

Bj = tridiag




1
4

(
− δφ

cosφ
j− 1

2
δλ
− cosφ

j− 1
2

δλ

δφ

)
,

1
2

(
δφ

cosφ
j− 1

2
δλ
− cosφ

j− 1
2

δλ

δφ

)
,

1
4

(
− δφ

cosφ
j− 1

2
δλ
− cosφ

j− 1
2

δλ

δφ

)




, (7.14)

Cj = tridiag




1
4

(
− δφ

cosφ
j+1

2
δλ
− cosφ

j+1
2

δλ

δφ

)
,

1
2

(
δφ

cosφ
j+1

2
δλ
− cosφ

j+1
2

δλ

δφ

)
,

1
4

(
− δφ

cosφ
j+1

2
δλ
− cosφ

j+1
2

δλ

δφ

)




. (7.15)

From the definitions (7.13) to (7.15), it is straightforward to observe that

each block Dj, Bj and Cj is symmetric and this, combined with the fact that

Bj = Cj−1,

is enough for us to conclude that the matrix A is symmetric. We will consider

other properties of the system matrix A in the next section.

7.3.2 Theoretical convergence analysis

In this section we will investigate the properties of the preconditioned matri-

ces required to demonstrate the convergence of the preconditioned methods.

Firstly we note that we are still assuming that we have δλ, δφ > 0 and

cosφ ∈ (0, 1). Therefore we may deduce in an analogous manner to Sec-

tion 4.4.1 that the matrix entries we assume to be non-zero cannot become
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zero anywhere in the domain. From this we may deduce that the connected

graph of the system matrix A is strongly connected and therefore, via The-

orem 3.1, that our matrix is irreducible.

We now wish to show that A is nonsingular and has only strictly positive

eigenvalues. We may then deduce that is is positive definite and that the

unpreconditioned conjugate gradient method will converge. Observe that

our system matrix A may be written in partitioned form (3.7). In order to

conclude that A is nonsingular and possesses positive, real eigenvalues we

require, via Theorems 3.8, 3.9 and 3.10, to show that A is block strictly(or

irreducibly) diagonally dominant i.e. we require

(|| A−1
j,j ||

)−1 ≥
nφ∑

l=1,l 6=j

|| Aj,l || ∀1 ≤ j ≤ nφ,

with strict inequality for at least one i. Therefore in order to demonstrate

the strict block diagonal dominance of A we need to show that

(|| D−1
j ||)−1 ≥|| Bj || + || Cj ||

=⇒ 1 ≥|| D−1
j || (|| Bj || + || Cj ||) ,

(7.16)

in some norm with strict inequality for at least one j. We use the L2-norm

with

|| A ||2= max | µi

(
AT A

) | 12 , (7.17)

where the µi are eigenvalues. We assume that we have δλ = δφ = h and k >

0. From this it follows that the Dj’s are symmetric and strictly diagonally

dominant with dj
ii > 0, dj

ik ≤ 0 where Dj =
{
dj

ik

}
. Hence the Dj’s are

positive definite.

In order to get bounds on the norms we use the Gerschgorin Circle The-

orems. The eigenvalues, µ of Dj satisfy

| µ−Rj |≤ 1

2

(
1

cosφj+ 1
2

+
1

cosφj− 1
2

− cosφj+ 1
2
− cosφj− 1

2

)
, (7.18)
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where

Rj =
1

2

(
1

cosφj+ 1
2

+
1

cosφj− 1
2

+ cosφj+ 1
2

+ cosφj− 1
2

+ kcosφjh
2

)
. (7.19)

Therefore

−1
2

(
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

− cosφj+ 1
2
− cosφj− 1

2

)
+ Rj ≤ µ

≤ Rj + 1
2

(
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

− cosφj+ 1
2
− cosφj− 1

2

)
.

(7.20)

Hence the smallest eigenvalue of Dj satisfies

µmin ≥ cosφj+ 1
2

+ cosφj− 1
2

+ kcosφjh
2 = δj. (7.21)

Since Dj is symmetric the eigenvalues of Dj are real allowing us to obtain

these bounds. Also

|| Dj ||2= µmax, (7.22)

and

|| D−1
j ||2= 1

µmin

=⇒|| D−1
j ||−1

2 = µmin

=⇒|| D−1
j ||−1

2 ≥ δj.

(7.23)

We also have

|| Bj ||2 + || Cj ||2= δφ

cosφj+ 1
2
δλ

+
δφ

cosφj− 1
2
δλ

. (7.24)

This is generally larger than || D−1
j ||2. Hence it is not possible to show block

diagonal dominance for this problem using the Block Gerschgorin technique.

In order to prove the positive-definiteness of our nine-point operator we

need to show that UT AU > 0 for any U 6= 0. We firstly take our nine-point

finite-difference operator and simplify by multiplying through by 4
δλδφ

. We

then consider the product AU. A general line, associated with the point ij,
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of this product is given by

1
cosφ

j+1
2

δλ2 [2Uij − Ui+1j − Ui−1j + 2Uij+1 − Ui−1j+1 − Ui+1j+1]

+ 1
cosφ

j− 1
2

δλ2 [2Uij − Ui+1j − Ui−1j + 2Uij−1 − Ui−1j−1 − Ui+1j−1]

+
cosφ

j+1
2

δφ2 [2Uij + Ui+1j + Ui−1j − 2Uij+1 − Ui+1j+1 − Ui−1j+1]

+
cosφ

j− 1
2

δφ2 [2Uij + Ui+1j + Ui−1j − 2Uij−1 − Ui+1j−1 − Ui−1j−1]

+4kcosφjUij.

(7.25)

We then form the product UT AU and sum over the interior points of the

domain to give

∑nφ−1
j=1

∑nλ−1
i=1

(
1

cosφ
j+1

2
δλ2 [Uij(Uij − Ui+1j + Uij+1 − Ui+1j+1)]

)

+
∑nφ−1

j=1

∑nλ

i=2

(
1

cosφ
j+1

2
δλ2 [Uij(Uij − Ui−1j + Uij+1 − Ui−1j+1)]

)

+
∑nφ

j=2

∑nλ−1
i=1

(
1

cosφ
j− 1

2
δλ2 [Uij(Uij − Ui+1j + Uij−1 − Ui+1j−1)]

)

+
∑nφ

j=2

∑nλ

i=2

(
1

cosφ
j− 1

2
δλ2 [Uij(Uij − Ui−1j + Uij−1 − Ui−1j−1)]

)

+
∑nφ−1

j=1

∑nλ−1
i=1

(
cosφ

j+1
2

δφ2 [Uij(Uij + Ui+1j − Uij+1 − Ui+1j+1)]

)

+
∑nφ−1

j=1

∑nλ

i=2

(
cosφ

j+1
2

δφ2 [Uij(Uij + Ui−1j − Uij+1 − Ui−1j+1)]

)

+
∑nφ

j=2

∑nλ−1
i=1

(
cosφ

j− 1
2

δφ2 [Uij(Uij + Ui+1j − Uij−1 − Ui+1j−1)]

)

+
∑nφ

j=2

∑nλ

i=2

(
cosφ

j− 1
2

δφ2 [Uij(Uij + Ui−1j − Uij−1 − Ui−1j−1)]

)

+
∑nφ

j=1

∑nλ

i=1

(
4kcosφjU

2
ij

)
,
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=
∑nφ−1

j=1

∑nλ−1
i=1

(
1

cosφ
j+1

2
δλ2 [Uij(Uij − Ui+1j + Uij+1 − Ui+1j+1)

+Ui+1j(Ui+1j − Uij + Ui+1j+1 − Uij+1)]

+ 1
cosφ

j+1
2

δλ2 [Uij+1(Uij+1 − Ui+1j+1 + Uij − Ui+1j)

+Ui+1j+1(Ui+1j+1 − Uij+1 + Ui+1j − Uij)]

+
cosφ

j+1
2

δφ2 [Uij(Uij + Ui+1j − Uij+1 − Ui+1j+1)

+Ui+1j(Ui+1j + Uij − Ui+1j+1 − Uij+1)]

+
cosφ

j+1
2

δφ2 [Uij+1(Uij+1 + Ui+1j+1 − Uij − Ui+1j)

+Ui+1j+1(Ui+1j+1 + Uij+1 − Ui+1j − Uij)]

+4kcosφjU
2
ij

)
,

=
∑nφ−1

j=1

∑nλ−1
i=1

1
cosφ

j+1
2

δλ2 [Uij − Ui+1j + Uij+1 − Ui+1j+1]
2

+
∑nφ−1

j=1

∑nλ−1
i=1

cosφ
j+1

2

δφ2 [Uij + Ui+1j − Uij+1 − Ui+1j+1]
2

+
∑nφ

j=1

∑nλ

i=1 4kcosφjU
2
ij.

(7.26)

The expression clearly consists of strictly positive terms and hence the ex-

pression (7.26) is strictly positive for all U , i and j. Therefore the matrix A

is positive-definite. As it is also symmetric it is a Stieltjes matrix and hence

by Theorem 3.4 is an M-matrix.

The matrix A is a block-tridiagonal matrix. Therefore by Theorems 3.15

and 3.13 it is consistently ordered and hence has Property A. Therefore

the diagonal and block diagonal preconditioned methods converge and the

eigenvalues of the preconditioned matrices occur in ± pairs. Finally we note

that the diagonal preconditioner will provide the ’optimum’ diagonal scaling,

with regards to conditioning, when applying the Binormalization scaling.

Another important point to consider is the form of the ADI precondi-

tioner with this nine-point discretisation. ADI methods have been used
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in conjunction with nine-point operators before [20], but that was for the

standard nine-point discretisation operator described in Forsythe and Wa-

sow [33]. The matrix properties (Stieltjes matrices) required for the matrices

in the ADI splitting would not be satisfied in this case if we were to attempt

the same ’directional’ scheme. However, as we are considering ADI as a pre-

conditioner, it is possible for us to use only those parts of the nine-point

operator which have the required properties. In the nine-point case we are

considering we use

HΥ =




DH
1

DH
2

. . .

DH
nφ




,

where

DH
j = tridiag




1
4

(
− δφ

δλ

{
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

})
,

1
2

(
δφ
δλ

{
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

})
+ k

2
cosφjδλδφ,

1
4

(
− δφ

δλ

{
1

cosφ
j+1

2

+ 1
cosφ

j− 1
2

})




, (7.27)

and

VΥ =




DV
1 DC1

DB2 DV
2 DC2

DB3 DV
3 DC3

. . . . . . . . .

DV
nφ−1 DCnφ−1

DBnφ
DV

nφ




,
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where

DV
j =

1

2

(
δλ(cosφj+ 1

2
+ cosφj− 1

2
)

δφ

)
+

k

2
cosφjδλδφ, (7.28)

DBj = −1

4

(
δλcosφj− 1

2

δφ

)
, (7.29)

DCj = −1

4

(
δλcosφj+ 1

2

δφ

)
, (7.30)

With these choices HΥ and VΥ can be shown to be Stieltjes matrices for

k > 0 with Dirichlet or periodic boundary conditions in the λ direction and

for k > 0 with Dirichlet conditions. For those cases we may deduce that the

ADI preconditioned method is convergent for Υ > 0.

7.3.3 Numerical experiments

In this section we present results from some numerical experiments of the

problem 7.11. Again we investigate the effects of extending the northern

boundary of the domain towards the pole and investigate how well the pro-

posed preconditioners address the polar convergence issue in this nine-point

case. Discrete stepsizes of 2o, 1o and 1
2

o
are again used in both horizontal

directions.

Tables 7.1, and 7.2 give the spectral radii of A and the spectral radii

iteration matrices, G, with the various preconditioners, for the case where

k = 0.01, h = 1o, φNB = 88o. The full results for the spectral radii of the

preconditioned iteration matrices are shown in Appendix B in Tables B.24

to B.27. Again we note the increasing of ρ(G) with decreasing stepsizes

and as φNB is moved closer to the pole. The spectral radii of the diagonal,

Binormalization and block diagonal preconditioned methods appear to have

a limit on their size as the boundary is moved closer to the pole, as in the

Limited Area case from Chapter 5. The spectral radii of the G matrices are
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Stepsize

φNB
1
2

o
1o 2o

40o N 4.946 4.791 4.548

70o N 10.381 9.698 8.708

88o N 68.592 53.573 38.335

89o N 107.313 77.234 NA

89.5o N 154.752 NA NA

Table 7.1: Spectral Radii of system matrix A, k = 0.01, nine-point

φNB

Preconditioner 40oN 70oN 88oN

Diagonal 0.9936 0.9971 0.9979

Block diagonal 0.9900 0.9955 0.9966

ADI 0.8788 0.9065 0.9515

Binormalization 0.9951 0.9977 0.983

Table 7.2: Spectral Radii of GD, k = 0.01, nine-point

all less than 1 guaranteeing convergence of the numerical method. The value

for GADI (the ADI preconditioner) is the smallest followed by the Block,

diagonal and Binormalization preconditioners respectively, as in Chapter 5.

Table 7.3 gives values for the conditioning of the problem with the pre-

conditioners considered in this section, for the case where k = 0.01, h = 1o,

φNB = 88o. We observe that the smallest values are given by the ADI

preconditioned system followed by Block, Diagonal and Binormalization pre-

conditioners respectively. This pattern is confirmed in the full results that

are shown in Appendix B in Tables B.28 to B.37. We further note that The-

orem 3.18 is still satisfied for all cases considered (p = 9 for this problem).
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Preconditioner K∞(P−1A)

None 1.093×104

Diagonal 1.220×103

Block 894.938

ADI 89.909

BIN 1.483×103

Table 7.3: ∞ norm condition numbers for h = 1o, 88o, k = 0.01 case, nine-
point

Overall therefore we would expect ADI preconditioning to yield the fastest

convergence followed by Block, Diagonal and Binormalization precondition-

ing respectively.

The minimum eigenvalues of the system matrices, A were also checked.

For all of the stepsizes and φNB values considered the eigenvalues of A were

all strictly positive. As an additional check we tested each of the system ma-

trices, A, by calculating their Cholesky factorizations ([38]) using the inbuilt

MATLAB function, CHOL. This function only works if the matrix being fac-

torized is symmetric positive-definite. In all cases considered the Cholesky

Factorization existed proving, experimentally, that our system matrices are

indeed symmetric positive-definite.

A similar pattern to previous cases is also noted in the form of the leading

eigenvectors of the iteration matrices, G. Strong polar signals are observed in

the leading eigenvectors of the Diagonal and Binormalization preconditioners

(Figures B.47 to B.50). Significantly lesser polar signals are observed in the

leading eigenvectors of the Block preconditioner as shown in Figures B.35

to B.38. In conjunction with the lower associated eigenvalues, this leads

us to again expect the Block preconditioner to provide faster convergence,

175



and address the pole problem more effectively than the Binormalization and

Diagonal preconditioners. The leading four eigenvectors of GADI , for φNB =

88o, as shown in figures B.43 to B.46 do have strong signals in the polar

regions. However they are associated with considerably smaller eigenvalues

than diagonal or block preconditioning. Whilst, from this, we might not

expect the pole problem to be addressed very well, the convergence overall

ought to be much faster with ADI than the other preconditioners.

Tables 7.4 and 7.5 show the number of iterations to convergence, and

the associated CPU times, for our preconditioned methods using the relative

residual error normalised by b as a stopping criterion. We again used a right

hand source function γ(λ, φ) fixed to yield a sine function general solution of

U(λ, φ) = sin(3λ)sin(d[φ− 10])

d = 90
φNB−10

(7.31)

which is consistent with the chosen boundary conditions. A constant ’initial

guess’ of U(i, j) = 1.5 was again taken to start the iterative process. The

results are as expected apart from ADI, which appears to perform very badly,

despite the theoretical calculations that showed it ought to be clearly the

most efficient preconditioner. The results in Tables appear to show that it

is the choice of stopping criterion that is vital here. The ADI preconditioner

performs considerably better when the relative residual error normalised by

the initial residual is used as a stopping criterion as in Table. ADI performs

better still when the absolute error is used as the stopping criterion. Of course

the absolute error typically cannot be used in practice as it requires explicit

knowledge of the solution we are attempting to find. However it, and the

results for the relative errors, indicates that the choice of stopping criterion

can have a serious impact on the efficiency of certain preconditioners, and

hence on the amount of computing time required.
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40o 700 88o 89.0o 89.5o

Prec. 1
2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 1

2

o

Diag 124 60 27 239 113 50 330 160 72 342 170 365

Blo 114 54 27 145 71 35 154 76 43 154 76 154

ADI 176 109 34 183 119 51 230 134 62 237 139 241

Bin 126 61 30 212 103 51 288 140 71 295 148 303

Table 7.4: Number of iterations to convergence, sine function general solu-
tion, nine point

40o 700 88o 89.0o 89.5o

Prec. 1
2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 1

2

o

Diag 6.0 0.7 0.3 33.4 2.6 0.4 75.6 5.5 0.6 81.5 6.1 89.2

Blo 10.9 1.3 0.4 41.9 3.4 0.6 66.4 4.8 0.7 72.3 5.6 76.4

ADI 34.9 5.2 1.2 101.0 6.0 1.4 204.8 9.8 1.7 214.5 9.5 218.0

Bin 6.1 0.7 0.4 29.6 2.4 0.4 68.3 4.9 0.7 74.9 5.6 80.3

Table 7.5: CPU times, sine function general solution,nine point

40o 700 88o 89o 89.5o

Prec. 1
2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 1

2

o

Diag 96 50 25 162 81 42 176 94 50 177 94 178

Block 89 46 23 106 55 31 112 62 35 113 62 113

ADI 45 35 25 52 38 27 56 40 29 57 40 57

Table 7.6: Number of iterations to convergence tolerance ||rk||∞
||r0||∞ < 10−5, sine

function general solution
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40o 700 88o 89o 89.5o

Prec. 1
2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 2o 1

2

o
1o 1

2

o

Diag 62 30 22 114 55 30 133 65 33 134 65 134

Block 54 27 14 70 35 18 70 35 18 70 35 70

ADI 14 10 6 17 12 8 23 15 10 25 16 27

Table 7.7: Number of iterations to convergence tolerance || U − Um ||∞<
10−2, sine function general solution

7.4 Summary

In this chapter we further extended our spherical domain model by investi-

gating the use of a special nine-point discretisation operator, analogous to

that used for solving the free surface problem. We discussed the exact form of

the discretisation operator and proved its consistency to the model problem

using truncation error analysis. We also expanded on the use of ’Implicit’

boundary conditions for islands referred to by Dukowicz [24]. We proved the

positive-definiteness of the problem using a finite difference analogue. We

then considered a reduced problem with a constant depth profile across the

domain and again demonstrated the symmetric positive-definiteness of the

problem. This was also shown experimentally using numerical experiments

revisiting the Limited Area problem of previous chapters. It was found that,

in all cases considered, the eigenvalues of A were strictly positive and that

a Cholesky factorization of A existed. Hence the matrices, A, used in the

experiments were positive-definite.

The form of the eigenvectors of the iteration matrices of the various pre-

conditioned methods were shown to be similar to that obtained by using

the standard five point discretisation scheme. The same was generally true

for the spectral radii of the iteration matrices, G, and the condition num-
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bers of the preconditioned system matrices. One small difference was that

the conditioning values for the Binormalization preconditioning were slightly

better than those of the diagonal preconditioner. The eigenvalues of GD and

GBlock, for the diagonal and Block preconditioners respectively, again came

in ± pairs as predicted.

Numerical experiments were run to test practically the relative merits of

the preconditioners. Similar results to previous chapters were found with

Block preconditioning generally outperforming Diagonal and Binormaliza-

tion preconditioning. The main difference was with the ADI preconditioner,

which required careful consideration in its implementation with the nine-

point scheme. An ADI scheme was proposed which was found to perform

comparatively badly in the numerical experiments. This was despite it being

theoretically much the best preconditioner, as demonstrated by the relatively

small values for the spectral radii of the preconditioned iteration matrix,

GADI , and the condition numbers of the preconditioned system. The prob-

lem was shown to be caused by the choice of stopping criterion (residual error

normalised by b). When the residual error normalised by the initial resid-

ual, and particularly the absolute error, were used in the stopping criterion,

the benefits of ADI became much clearer : it was by far the more efficient

preconditioner. Therefore the ADI preconditioned method is providing the

most accurate solution in a given amount of time; the convergence criteria

being used (relative residual error normalised by b) was not recognising this.
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Chapter 8

Conclusions and further work

8.1 Conclusions

The aims of this study were to highlight the problem of slow convergence

in polar regions of the elliptic problems solved in free-surface ocean models

using preconditioned iterative methods, to explain how the mesh anisotropy

of the latitude-longitude co-ordinate causes the polar convergence problem,

and to address the convergence issue by suggesting preconditioners which

could be used to reduce the problem and speed up the overall convergence

of the preconditioned iterative methods. This would improve the efficiency

of the overall ocean models.

The anisotropic elliptic operators which are the focus of the work in this

thesis were reviewed in Chapter 2 in the context of ocean modelling. We

described the Bryan-Cox-Semtner (BCS) model used widely today by ocean

groups worldwide. We focussed on the two formulations of the BCS model

most commonly used : rigid-lid and implicit free surface. The forms of the el-

liptic equations which arise with these formulations were summarised as were

the computational advantages and disadvantages of their implementation.
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The numerical methods used to iteratively solve the corresponding dis-

crete equations were reviewed in Chapter 3. For the rigid-lid formulation

the Chebyshev semi-iterative method is used. With implicit free surface a

conjugate gradient method with diagonal (jacobi) preconditioning is used.

We gave introductory theory for the use of some alternative preconditioners

: block Jacobi, Alternating-Direction-Implicit, and Binormalization scaling.

Chapter 4 introduced the spherical model used to approximate the anisotropic

elliptic problems encountered in the barotropic ocean solvers. We initially

consider the constant depth problem in both limited area and periodic do-

main cases. We confirmed the validity of our discretisation scheme using

truncation error analysis and derived the continuous and discrete eigenvalues

and eigenvectors of the spherical Laplacian and hence those of the Helmholtz

problem. The convergence of our preconditioned Conjugate Gradient method

for this problem, using the proposed preconditioners, was checked. The pre-

conditioners were assessed, with respect to their likely effect on speeds of

convergence and the anisotropy, using Gerschgorin analysis. It was found

that an ADI preconditioner was likely to be slightly better than using a

Block diagonal preconditioner. Both were predicted to be much better than

the diagonal preconditioner. This was largely confirmed by the numerical

experiments of Chapter 5. The ADI preconditioner with spatially varying

parameter did not perform very well in the experiments. This is likely to

have been caused by the sensitivity of the preconditioner to the parameter

values that are used, combined with the fact that the values were calculated

using the crude Gerschgorin estimates.

It was noted that the condition numbers of the preconditioned systems,

and the associated spectral radii of the iteration matrices G, changed very

little as the anisotropy was increased by moving the northern boundary of
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the domain closer to the pole, when using the diagonal and Block diagonal

preconditioners in the Limited Area problem (And to a lesser extent in the

Periodic domain problem). Also it was observed that the leading eigenvectors

of the iteration matrices, G, did not have strong polar signals. However it

was also noted that the ’nearly’ leading eigenvalues of the iteration matrices,

G, became larger as the northern boundary of the domain was moved closer

to the pole, clustering around the lead eigenvalue and that the associated

’nearly’ leading eigenvectors did have strong polar signals. It was deduced

that this in part leads to the slower convergence of the iterations in polar

regions. It was also noted that the non-zero eigenvalues of the iteration

matrices for the Block and Diagonal preconditioners occurred in ±.

The leading four eigenvectors of the Block preconditioned (and ADI for

the periodic case) iteration matrices were shown to display smaller polar

signals than the diagonal preconditioned iteration matrices. Also Block and

ADI preconditioning was shown to damp the spectrum of Fourier error modes

more evenly than diagonal preconditioning. Despite this the convergence

histories of all three preconditioners showed that the residual errors in the

polar regions were the last to converge.

Chapter 6 extended the basic spherical model introduced in the previ-

ous to include problems which include a varying depth function, H, within

the elliptic operators. We firstly examined a case which was analogous

with the free surface formulation where the elliptic operator is of the form

−∇ · (H∇)U + kU . We again showed that ADI ought to yield the fastest

convergence, followed by Block and Diagonal, by examination of the spectral

radii of the preconditioned iteration matrices, G, and the conditioning of the

preconditioned systems. However it was noted that whilst the leading eigen-

vectors of the diagonal and block diagonal preconditioned methods were not
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very sensitive to the height profile, the ADI preconditioned iteration matrix,

GADI , was. We then moved on to consider problems where the operator is of

Poisson type −∇· ( 1
H
∇) similar to the rigid-lid formulation. We showed that

by considering the conditioning of the system matrix as well as the size of

the spectral radii of the diagonal preconditioned iteration matrix, GD ,that

the problem is sensitive to the variations in H. We also highlighted the im-

portance of using an accurate value for the spectral radii of GD. Using an

accurate value causes the convergence of all error modes to be approximately

equal, when using the Chebyshev semi-iterative method, in the constant

depth case. The convergence of the modes varied a lot more with the use

of less accurate choices of the spectral radii, ρ(GD). The slight discrepancy

in the Continental shelf case was attributed to the fact that Fourier modes

were less physically representative of the errors involved in this case.

In Chapter 7 we further extended our spherical domain model by inves-

tigating the use of a special nine-point discretisation operator, analogous to

that used for solving the free surface problem. We discussed the exact form of

the discretisation operator and proved its consistency to the model problem

using truncation error analysis. We also expanded on the use of ’Implicit’

boundary conditions for islands referred to by Dukowicz [24]. We proved the

positive-definiteness of the problem using a finite difference analogue. We

then considered a reduced problem with a constant depth profile across the

domain and again demonstrated the symmetric positive-definiteness of the

problem. This was also shown experimentally using numerical experiments

revisiting the Limited Area problem of previous chapters. It was found that,

in all cases considered, the eigenvalues of A were strictly positive and that a

Cholesky factorization of A existed.

The form of the eigenvectors of the iteration matrices of the various pre-
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conditioned methods were shown to be similar to that obtained by using the

standard five point discretisation scheme. The same was generally true for

the spectral radii of the iteration matrices, G, and the condition numbers of

the preconditioned system matrices. The eigenvalues of GD and GBlock, for

the diagonal and Block preconditioners respectively, again came in ± pairs.

Numerical experiments were run to test practically the relative merits of

the preconditioners. Similar results to previous chapters were found with

Block preconditioning generally outperforming Diagonal and Binormaliza-

tion preconditioning. The main difference was with the ADI preconditioner,

which required careful consideration in its implementation with the nine-

point scheme. An ADI scheme was proposed which was found to perform

comparatively badly in the numerical experiments. This was despite it being

theoretically much the best preconditioner, as demonstrated by the relatively

small values for the spectral radii of the preconditioned iteration matrix,

GADI , and the condition numbers of the preconditioned system. The prob-

lem was shown to be caused by the choice of stopping criterion (residual error

normalised by b). When the residual error normalised by the initial resid-

ual, and particularly the absolute error, were used in the stopping criterion,

the benefits of ADI became much clearer : it was by far the more efficient

preconditioner. Therefore the ADI preconditioned method is providing the

most accurate solution in a given amount of time; the convergence criteria

being used were not recognising this. We conclude therefore that the choice

of stopping criterion is crucial and that great care must be taken to choose a

criteria that reflects the accuracy of the solution. The absolute error ensures

the accuracy of the solution and is the most direct measure of accuracy that

could be used here. However it relies on knowledge of the exact solution and

hence is not practical to use. The relative residual error normalised by the
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initial residual is related to the average rate of convergence and gives an im-

pression of the relative improvement in the solution. It does not really reflect

the real accuracy of the solution. The relative residual error normalised by

the right hand side function does give some measure of the accuracy of the

solution but can be a poor bound (as the ADI results of Section 7.3.3. show)

when the conditioning of a problem is poor.

To summarise, we have identified

• How the mesh anisotropy of the spherical elliptic operators, which are

solved in ocean models, affects the convergence of the iterative methods

used to solve them.

• That ’secondary’ eigenmodes with strong polar signals cause the polar

convergence problem.

• Various alternative preconditioners (Block, Binormalization, ADI) have

been suggested for use with the PCG method with diagonal precondi-

tioning, used in the free-surface formulation, most of which have pro-

vided some improvement of the problem.

• How the preconditioners may be adapted for the nine-point discretisa-

tion scheme used in the free-surface formulation.

• Importance of stopping criteria has been highlighted. Criteria based

on the normalised residual errors are typically used in practice; we

have shown that the performance of our iterative methods with certain

stopping criteria may be very different to the actual accuracy (absolute

errors).

A number of further alternative preconditioners that may be used are

suggested in the next section along with some other possible extensions to
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the research.

8.2 Further work

One of the many open questions of this study is what other preconditioners

could be investigated for use with our mesh anisotropic spherical domain

problems? We have restricted ourselves to studying preconditioners which

may all be classed as approximate sparse inverse preconditioners. The diago-

nal preconditioner used in the free-surface model is the simplest of this class.

The sparse inverse preconditioners have the advantage of making use of the

clear structure of the matrix systems, being reasonably straightforward to

parallelise for use with vector processors, and being able to accommodate

multiply connected domains : i.e. domains with islands in them. One pos-

sible extension of this study would be to test the preconditioners we have

considered in the full MO free-surface model (with the inclusion of islands).

As we have shown that the system matrix for the nine-point operator pos-

sesses a Cholesky decomposition, it would be possible to use the Incomplete

Cholesky Factorization([6], [21], [38]) as a preconditioner. The incomplete

Cholesky factorization keeps the factors used in the preconditioning artifi-

cially sparse to improve storage and CPU time used. This option is discussed

further in Axelsson [6], Duff and Van Der Vorst [21] and Golub and Van

Loan [38].

Another option would be to use the Schur complement as a precondi-

tioner. The use of the Schur Complement as a preconditioner for a Navier-

Stokes type problem is detailed in Elman et al [28], [29].

Various other preconditioners have been used to study anisotropic prob-

lems (although mostly constant parameter cases). One example is circulant
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block-factorization (CBF) preconditioners. The use of CBF preconditioners

with anisotropic problems was discussed in Lirkov et al [51], having been in-

troduced for use as preconditioners with periodic elliptic problems in an ear-

lier study [50], and for general elliptic problems in Chan and Chan [14]. CBF

preconditioners are shown to combine some of the advantages of (Block) In-

complete LU/Cholesky factorization and Block-Circulant methods. More in-

formation on Circulant preconditioners may be found in Chan and Chan [14],

and Lirkov et al [50], [51].

Mawson [58] demonstrated the clear applicability of multigrid methods

to elliptic problems in spherical geometry. A more recent idea has been to

use multigrid as a preconditioner for a Gradient type method such as CG.

Useful introductions to multigrid methods may be found in Brandt [10] and

Briggs [11]. The use of Multigrid as a preconditioner was considered initially

by Kettler [45], and more recently by Tatebe [74]. It was confirmed by

Tatebe [74] that the multigrid method satisfies the conditions required for a

preconditioner with the Conjugate gradient method; that the preconditioned

system matrix of the multigrid preconditioned CG method should be similar

to a symmetric positive-definite matrix. It is concluded that the multigrid

preconditioned CG method has the properties that the number of iterations

to convergence do not increase with finer meshes, and is effective with ill-

conditioned problems. The main problem with such a method would be in the

resolution of islands on each grid scale. Should this be resolved then the fast

convergence of Multigrid preconditioned CG, as demonstrated by Tatebe [74],

would make this a strong candidate for consideration as a preconditioner for

an anisotropic elliptic operator in a spherical domain ocean model.
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Appendix A

Free surface formulation

un+1−un−1

2δt
− fvα′ = −g 1

acosφ
∂ηα

∂λ
+ Gλ,n,

vn+1−vn−1

2δt
+ fuα′ = −g 1

a
∂ηα

∂φ
+ Gφ,n,

ηn+1−ηn

δt
+ 1

acosφ

[
∂Huθ

∂λ
+ ∂Hvθcosφ

∂φ

]
= 0,

(A.1)

where

uα′ = α′un+1 + (1− α′ − γ′)un + γ′un−1,

vα′ = α′vn+1 + (1− α′ − γ′)vn + γ′vn−1,

ηα = αηn+1 + (1− α− γ)ηn + γηn−1,

uθ = θun+1 + (1− θ)un

vθ = θvn+1 + (1− θ)vn.

(A.2)

We require to calculate un+1 and vn+1 and substitute them into the uθ

and vθ terms. We have

un+1− τfα′vn+1 = un−1 + τf
[
(1− α′ − γ′)vn + γ′vn−1

]− τg

acosφ

∂ηα

∂λ
+ τGλ,n

(A.3)

and

τfα′un+1 + vn+1 = vn−1 − τf
[
(1− α′ − γ′)un + γ′un−1

]− τg

a

∂ηα

∂φ
+ τGφ,n

(A.4)
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Taking (A.3) + τfα′ (A.4) and dividing by 1 + τ 2f 2α′2 gives

un+1 = 1
1+τ2f2α′2

{
un−1 + τf [(1− α′ − γ′)vn + γ′vn−1]− τg

acosφ
∂ηα

∂λ

+τGλ,n + τfα′vn−1 − τ 2f 2α′ [(1− α′ − γ′)un + γ′un−1]− τ2fα′g
a

∂ηα

∂φ
+ τ 2fα′Gφ,n

}

(A.5)

Similarly taking −τfα′ (A.3) + (A.4) and dividing by 1 + τ 2f 2α′2 gives

vn+1 = 1
1+τ2f2α′2

{
−τfα′un−1 − τ 2f 2α′ [(1− α′ − γ′)vn + γ′vn−1] + τ2fα′g

acosφ
∂ηα

∂λ

−τ 2fα′Gλ,n + vn−1 − τf [(1− α′ − γ′)un + γ′un−1]− τg
a

∂ηα

∂φ
+ τGφ,n

}

(A.6)

Now substitute un+1 and vn+1 in uθ and vθ terms in equation (A.1). Collect

terms involving ηn+1 on the left hand side of the equation and place all others

terms on the right hand side. This gives

2(1 + τ 2f 2α′2)ηn+1

αθgτ 2
− 1

acosφ

∂

∂λ

(
H

acosφ

∂ηn+1

∂λ

)
−1

a

∂

∂φ

(
Hcosφ

a

∂ηn+1

∂φ

)
= S(λ, φ)

(A.7)

Explicit time differencing is used for the Coriolis terms (α′, γ′ = 0). Dukow-

icz [24] considers options for choosing α, θ, τ subject to stability and mode

damping considerations.
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Appendix B

Additional numerical results

B.1 Limited area

Table B.1 gives the parameter values used in the ADI preconditioner in the

Limited Area case. We note that the parameter increases with smaller step-

sizes and as φNB gets very small or very large. Also displayed in this Ap-

pendix section are the full results for the ∞-norm condition numbers of A

for varying k (for φNB = 88o, h = 1o), the full spectral radii results for the

iteration matrices, G, as well as the leading eigenvectors of GBlock, GADI and

GBin for the φNB = 40o case, and full results for the ∞ and 2 norm condition

numbers of the preconditioned system matrices.
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Stepsize

φNB
1
2

o
1o 2o

40o N 1472.8 732.8 361.9

70o N 945.6 466.9 227.3

88o N 1565.7 714.5 308.9

89o N 1895.6 821.6 NA

89.5o N 2215.7 NA NA

Table B.1: ADI Parameter values, sine function general solution

k κ∞(A) k κ∞(A) k κ∞(A)

0.0 6.511×103 7.5 5.779×103 2500.0 496.850

0.001 6.510×103 10.0 5.569×103 5000.0 350.435

0.01 6.509×103 25.0 4.564×103 7500.0 283.834

0.1 6.500×103 50.0 3.511×103 1.0×104 242.184

0.25 6.483×103 75.0 2.886×103 2.5×104 138.008

0.5 6.456×103 100.0 2.498×103 5.0×104 83.358

0.75 6.429×103 250.0 1.575×103 7.5×105 59.509

1.0 6.403×103 500.0 1.113×103 1.0×105 46.214

2.5 6.247×103 750.0 908.333 2.5×105 20.357

5.0 6.004×103 1000.0 786.107 5.0×105 19.547

Table B.2: ∞ norm condition numbers of system matrix A, varying k, φNB =
88o, h = 1o.
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Stepsize

φNB
1
2

o
1o 2o

40o N 1.489×103 369.417 91.348

70o N 3.017×103 733.169 174.635

88o N 2.225×104 4.631×103 864.540

89o N 3.705×104 6.939×103 NA

89.5o N 5.556×104 NA NA

Table B.3: 2 norm condition numbers of system matrix A, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 0.9986 0.9946 0.9783

70o N 0.9990 0.9960 0.9842

88o N 0.9990 0.9960 0.9842

89o N 0.9990 0.9960 NA

89.5o N 0.9990 NA NA

Table B.4: Spectral Radii of iter-
ation matrix G for diagonal pre-
conditioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 0.9970 0.9879 0.9528

70o N 0.9975 0.9901 0.9614

88o N 0.9975 0.9901 0.9614

89o N 0.9975 0.9901 NA

89.5o N 0.9975 NA NA

Table B.5: Spectral Radii of iter-
ation matrix G for block diagonal
preconditioner, k = 0.01
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Stepsize

φNB
1
2

o
1o 2o

40o N 0.9105 0.8289 0.6859

70o N 0.9629 0.9273 0.8602

88o N 0.9793 0.9601 0.9241

89o N 0.9842 0.9642 NA

89.5o N 0.9871 NA NA

Table B.6: Spectral Radii of iter-
ation matrix G for ADI precondi-
tioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40oN 0.9993 0.9973 0.9891

70oN 0.9995 0.9980 0.9921

88oN 0.9995 0.9980 0.9921

89oN 0.9995 0.9980 NA

89.5oN 0.9995 NA NA

Table B.7: Spectral radii of itera-
tion matrix G for Binormalization
scaling, k = 0.01

B.2 Periodic domain problem

Table B.16 gives the parameter values used in the ADI preconditioner for

the periodic domain case. We note here that again the values increase with

smaller stepsizes and in this case decrease as φNB is moved closer to the

pole. Figure B.13 again shows that the largest values in magnitude in the

leading eigenvector of A are found clustered near the northern boundary.

Also displayed in this Appendix section are the full results for the ∞ norm

condition numbers of the preconditioned system matrices, and the spectral

radii of the preconditioned iteration matrices.

B.3 Unforced problem : Fourier Modes as

initial errors

The eigenvectors associated with the leading eigenvalues of the precondi-

tioned iteration matrices, G, are displayed in this appendix section.
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Figure B.1: Eigenvector associated
with largest eigenvalue (0.9879) of
GBlock for Limited Area Helmholtz
problem. φNB = 40o.
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Figure B.2: Eigenvector associ-
ated with second largest eigenvalue
(0.9715) of GBlock for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.3: Eigenvector associ-
ated with third largest eigenvalue
(0.9668) of GBlock for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.4: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9520) of GBlock for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.5: Eigenvector associated
with largest eigenvalue (-0.8289) of
GADI for Limited Area Helmholtz
problem. φNB = 40o.
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Figure B.6: Eigenvector associated
with second largest eigenvalue (-
0.8282) of GADI for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.7: Eigenvector associ-
ated with third largest eigenvalue
(-0.8270) of GADI for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.8: Eigenvector associated
with fourth largest eigenvalue (-
0.8254) of GADI for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.9: Eigenvector associated
with largest eigenvalue (0.9973) of
GBIN for Limited Area Helmholtz
problem. φNB = 40o.
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Figure B.10: Eigenvector associ-
ated with second largest eigenvalue
(0.9936) of GBIN for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.11: Eigenvector associ-
ated with third largest eigenvalue
(0.9928) of GBIN for Limited Area
Helmholtz problem. φNB = 40o.
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Figure B.12: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9891) of GBIN for Limited Area
Helmholtz problem. φNB = 40o.
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Stepsize

φNB
1
2

o
1o 2o

40o N 2.129×103 531.649 131.954

70o N 2.766×103 691.359 171.910

88o N 2.768×103 691.915 172.076

89o N 2.768×103 691.915 NA

89.5o N 2.768×103 NA NA

Table B.8: ∞ norm condition
numbers of preconditioned sys-
tem matrix P−1A, diagonal pre-
conditioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 1.468×103 366.588 91.141

70o N 2.014×103 503.280 125.379

88o N 2.022×103 505.214 125.869

89o N 2.022×103 505.214 NA

89.5o N 2.022×103 NA NA

Table B.9: 2 norm condition
numbers of preconditioned sys-
tem matrix P−1A, diagonal pre-
conditioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 962.963 241.440 60.815

70o N 1.171×103 293.816 74.204

88o N 1.172×103 293.920 74.229

89o N 1.172×103 293.920 NA

89.5o N 1.172×103 NA NA

Table B.10: ∞ norm condition
numbers of preconditioned sys-
tem matrix P−1A, block diagonal
preconditioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 658.734 164.871 41.405

70o N 801.994 201.275 50.859

88o N 802.679 201.289 50.863

89o N 802.679 201.289 NA

89.5o N 802.679 NA NA

Table B.11: 2 norm condition
numbers of preconditioned sys-
tem matrix P−1A, block diagonal
preconditioner, k = 0.01
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Stepsize

φNB
1
2

o
1o 2o

40o N 152.354 62.681 22.504

70o N 191.989 82.067 30.534

88o N 324.273 139.311 37.593

89o N 333.676 142.386 NA

89.5o N 337.933 NA NA

Table B.12: ∞ norm condition
numbers of preconditioned sys-
tem matrix P−1A, ADI precondi-
tioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40o N 20.516 10.254 5.137

70o N 27.788 14.448 7.574

88o N 29.192 14.693 7.856

89o N 32.464 15.902 NA

89.5o N 33.886 NA NA

Table B.13: 2 norm condition
numbers of preconditioned sys-
tem matrix P−1A, ADI precondi-
tioner, k = 0.01

Stepsize

φNB
1
2

o
1o 2o

40oN 2.131×103 531.945 132.069

70oN 2.778×103 694.101 172.232

88oN 2.781×103 694.737 172.380

89oN 2.781×103 694.737 NA

89.5oN 2.781×103 NA NA

Table B.14: ∞ norm condition
numbers of DAD using binormal-
ization, Limited Area

Stepsize

φNB
1
2

o
1o 2o

40oN 1.469×103 367.479 91.932

70oN 2.015×103 504.059 126.166

88oN 2.023×103 505.947 126.646

89oN 2.023×103 505.947 NA

89.5oN 2.023×103 NA NA

Table B.15: 2 norm condition
numbers of DAD using binormal-
ization, Limited Area
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Stepsize

φNB 1o 2o

40o N 629.746 310.058

70o N 272.457 134.292

88o N 159.343 78.755

89o N 149.298 NA

Table B.16: ADI parameters values, k = 0.01
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Figure B.13: Eigenvector associated with largest eigenvalue of A for Periodic
domain Helmholtz problem. φNB = 88o.

Stepsize

φNB 1o 2o

40o N 1.04×103 259.106

70o N 8.27×103 1.99×103

88o N 1.21×105 2.82×104

89o N 2.09×105 NA

Table B.17: ∞ norm condition
numbers of system matrix A, k =
0.01

Stepsize

φNB 1o 2o

40o N 1.02×103 254.832

70o N 5.79×103 1.45×103

88o N 2.23×104 1.13×104

89o N 2.97×104 NA

Table B.18: ∞ norm condition
numbers of preconditioned sys-
tem matrix P−1A, diagonal pre-
conditioner, k = 0.01
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Stepsize

φNB 1o 2o

40o N 458.936 114.528

70o N 1.54×103 506.151

88o N 3.25×103 1.14×103

89o N 3.48×103 NA

Table B.19: ∞ norm condition
numbers of preconditioned sys-
tem matrix P−1A, block diagonal
preconditioner, k = 0.01

Stepsize

φNB 1o 2o

40o N 142.698 35.577

70o N 398.572 152.981

88o N 972.656 336.559

89o N 1.02×103 NA

Table B.20: ∞ norm condition
numbers of preconditioned sys-
tem matrix P−1A, ADI precondi-
tioner, k = 0.01

Stepsize

φNB 1o 2o

40o N 0.9976 0.9904

70o N 0.9996 0.9983

88o N 0.9999 0.9996

89o N 0.9999 NA

Table B.21: Spectral Radii of iteration matrix G for diagonal preconditioner,
k = 0.01

Stepsize

φNB 1o 2o

40o N 0.9946 0.9788

70o N 0.9987 0.9950

88o N 0.9994 0.9976

89o N 0.9994 NA

Table B.22: Spectral Radii of iter-
ation matrix G for block diagonal
preconditioner, k = 0.01

Stepsize

φNB 1o 2o

40o N 0.9052 0.8140

70o N 0.9595 0.9149

88o N 0.9739 0.9492

89o N 0.9787 NA

Table B.23: Spectral Radii of it-
eration matrix G for ADI precon-
ditioner, k = 0.01
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Figure B.14: Eigenvector as-
sociated with largest eigenvalue
(0.9994) of GD for unforced limited
area problem
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Figure B.15: Eigenvector associ-
ated with second largest eigenvalue
(0.9993) of GD for unforced limited
area problem
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Figure B.16: Eigenvector associ-
ated with third largest eigenvalue
(0.9992) of GD for unforced limited
area problem
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Figure B.17: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9989) of GD for unforced limited
area problem
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Figure B.18: Eigenvector as-
sociated with largest eigenvalue
(0.9975) of GBlock for unforced lim-
ited area problem
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Figure B.19: Eigenvector asso-
ciated with joint second largest
eigenvalue (0.9950) of GBlock for
unforced limited area problem
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Figure B.20: Eigenvector associ-
ated with other joint second largest
eigenvalue (0.9950) of GBlock for
unforced limited area problem
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Figure B.21: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9915) of GBlock for unforced lim-
ited area problem
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Figure B.22: Eigenvector asso-
ciated with largest eigenvalue (-
0.9853) of GADI for unforced lim-
ited area problem
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Figure B.23: Eigenvector associ-
ated with second largest eigenvalue
(-0.9851) of GADI for unforced lim-
ited area problem
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Figure B.24: Eigenvector associ-
ated with third largest eigenvalue
(-0.9847) of GADI for unforced lim-
ited area problem
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Figure B.25: Eigenvector associ-
ated with fourth largest eigenvalue
(-0.9842) of GADI for unforced lim-
ited area problem
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Stepsize

φNB
1
2

o
1o 2o

40o N 0.9984 0.9936 0.9746

70o N 0.9992 0.9971 0.9887

88o N 0.9994 0.9979 0.9939

89o N 0.9994 0.9979 NA

89.5o N 0.9994 NA NA

Table B.24: Spectral Radii of GD,
k = 0.01, nine-point

Stepsize

φNB
1
2

o
1o 2o

40o N 0.9975 0.9900 0.9603

70o N 0.9989 0.9955 0.9819

88o N 0.9992 0.9966 0.9866

89o N 0.9992 0.9967 NA

89.5o N 0.9992 NA NA

Table B.25: Spectral Radii of
GBlock, k = 0.01, nine-point

B.4 Nine-point operator

Figure B.26 again shows that, with the nine-point operator, the largest values

in magnitude in the leading eigenvector of A are found clustered near the

northern boundary. Also displayed in this Appendix section are the full

results for the spectral radii of the preconditioned iteration matrices, G, and

the ∞ and 2 norm condition numbers of the preconditioned system matrices.
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Figure B.26: Eigenvector associated with largest eigenvalue of A for Limited
Area Helmholtz problem. φNB = 88o. Nine Point Operator
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Stepsize

φNB
1
2

o
1o 2o

40oN 0.9523 0.8788 0.8094

70oN 0.9698 0.9065 0.8200

88oN 0.9813 0.9515 0.9092

89oN 0.9847 0.9583 NA

89.5oN 0.9872 NA NA

Table B.26: Spectral radii of
GADI , nine point

Stepsize

φNB
1
2

o
1o 2o

40oN 0.9988 0.9951 0.9806

70oN 0.9994 0.9977 0.9910

88oN 0.9996 0.9983 0.9933

89oN 0.9996 0.9983 NA

89.5oN 0.9996 NA NA

Table B.27: Spectral radii of
GBIN , nine point

Stepsize

φNB
1
2

o
1o 2o

40o N 1.390×103 343.330 83.836

70o N 5.148×103 1.232×103 282.639

88o N 3.996×104 7.568×103 1.365×103

89o N 6.053×104 1.093×104 NA

89.5o N 8.735×104 NA NA

Table B.28: ∞ norm condition
numbers of system matrix A, k =
0.01, nine point

Stepsize

φNB
1
2

o
1o 2o

40o N 903.003 219.307 52.612

70o N 3.301×103 772.211 174.430

88o N 2.442×104 4.775×103 859.166

89o N 3.825×104 6.891×103 NA

89.5o N 5.517×104 NA NA

Table B.29: 2 norm condition
numbers of system matrix A, k =
0.01, nine point
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Stepsize

φNB
1
2

o
1o 2o

40o N 1.356×103 336.026 82.565

70o N 3.387×103 861.252 210.611

88o N 4.887×103 1.220×103 303.578

89o N 4.973×103 1.229×103 NA

89.5o N 8.832×103 NA NA

Table B.30: ∞ norm condition
numbers of system matrix P−1A,
Diagonal preconditioner, k =
0.01, nine point

Stepsize

φNB
1
2

o
1o 2o

40oN 813.721 203.937 51.436

70oN 1.758×103 440.031 110.616

88oN 2.381×103 595.809 149.801

89oN 2.392×103 598.436 NA

89.5oN 2.394×103 NA NA

Table B.31: 2 norm condition
numbers of system matrix P−1A,
Diagonal preconditioner, k =
0.01, nine point

Stepsize

φNB
1
2

o
1o 2o

40oN 1.201×103 300.516 75.037

70oN 2.572×103 640.579 160.721

88oN 3.531×103 894.938 220.306

89oN 3.538×103 897.453 NA

89.5oN 3.578×103 NA NA

Table B.32: ∞ norm condition
numbers of system matrix P−1A,
Block Preconditioner, k = 0.01,
nine-point

Stepsize

φNB
1
2

o
1o 2o

40o N 795.569 198.717 49.414

70o N 1.756×103 438.617 109.229

88o N 2.378×103 594.101 148.092

89o N 2.389×103 596.732 NA

89.5o N 2.391×103 NA NA

Table B.33: 2 norm condition
numbers of system matrix P−1A,
Block Preconditioner, k = 0.01,
nine-point
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Stepsize

φNB
1
2

o
1o 2o

40oN 167.074 63.021 20.503

70oN 189.096 71.836 25.144

88oN 247.249 89.909 32.649

89oN 254.950 94.602 NA

89.5oN 256.331 NA NA

Table B.34: ∞ norm condition
numbers of P−1A ADI precondi-
tioner, nine point

Stepsize

φNB
1
2

o
1o 2o

40oN 39.529 19.064 8.530

70oN 45.278 19.322 8.952

88oN 61.323 26.738 11.886

89oN 67.081 30.714 NA

89.5oN 71.020 NA NA

Table B.35: 2 norm condition
numbers of P−1A ADI precondi-
tioner, nine point

Stepsize

φNB
1
2

o
1o 2o

40o N 1.297×103 322.559 79.780

70o N 3.740×103 923.928 224.071

88o N 6.316×103 1.483×103 332.762

89o N 6.342×103 1.489×103 NA

89.5o N 6.349×103 NA NA

Table B.36: ∞ norm condition
numbers of DAD using binormal-
ization, nine point

Stepsize

φNB
1
2

o
1o 2o

40o N 885.637 216.044 52.131

70o N 2.299×103 559.440 133.479

88o N 3.161×103 783.395 189.448

89o N 3.177×103 788.261 NA

89.5o N 5.517×103 NA NA

Table B.37: 2 norm condition
numbers of DAD using binormal-
ization, nine point
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Figure B.27: Eigenvector as-
sociated with largest eigenvalue
(0.9979) of GD for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.28: Eigenvector associ-
ated with second largest eigenvalue
(0.9968) of GD for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.29: Eigenvector associ-
ated with third largest eigenvalue
(0.9961) of GD for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.30: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9956) of GD for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.31: Eigenvector associ-
ated with largest negative eigen-
value (-0.9979) of GD for Limited
Area Helmholtz problem. φNB =
88o. Nine Point Operator

5 10 15 20 25

20

30

40

50

60

70

80

Longitude (degs E)

L
a

ti
tu

d
e

 (
d

e
g

s
 N

)

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure B.32: Eigenvector asso-
ciated with second largest nega-
tive eigenvalue (-0.9968) of GD for
Limited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.33: Eigenvector asso-
ciated with third largest nega-
tive eigenvalue (-0.9961) of GD for
Limited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.34: Eigenvector asso-
ciated with fourth largest nega-
tive eigenvalue (-0.9956) of GD for
Limited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.35: Eigenvector as-
sociated with largest eigenvalue
(0.9966) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator

5 10 15 20 25

20

30

40

50

60

70

80

Longitude (degs E)

L
a

ti
tu

d
e

 (
d

e
g

s
 N

)

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure B.36: Eigenvector associ-
ated with second largest eigenvalue
(0.9935) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.37: Eigenvector associ-
ated with third largest eigenvalue
(0.9929) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator

5 10 15 20 25

20

30

40

50

60

70

80

Longitude (degs E)

L
a

ti
tu

d
e

 (
d

e
g

s
 N

)

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure B.38: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9900) of GBlock for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.39: Eigenvector associ-
ated with largest negative eigen-
value (-0.9966) of GBlock for Lim-
ited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.40: Eigenvector associ-
ated with second largest negative
eigenvalue (-0.9935) of GBlock for
Limited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.41: Eigenvector associ-
ated with third largest negative
eigenvalue (-0.9929) of GBlock for
Limited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.42: Eigenvector associ-
ated with fourth largest negative
eigenvalue (-0.9900) of GBlock for
Limited Area Helmholtz problem.
φNB = 88o. Nine Point Operator
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Figure B.43: Eigenvector asso-
ciated with largest eigenvalue (-
0.9515) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.44: Eigenvector associ-
ated with second largest eigenvalue
(-0.9512) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.45: Eigenvector associ-
ated with third largest eigenvalue
(-0.9508) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.46: Eigenvector associ-
ated with fourth largest eigenvalue
(-0.9502) of GADI for Limited Area
Helmholtz problem. φNB = 88o.
Nine Point Operator
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Figure B.47: Eigenvector as-
sociated with largest eigenvalue
(0.9983) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure B.48: Eigenvector associ-
ated with second largest eigenvalue
(0.9972) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure B.49: Eigenvector associ-
ated with third largest eigenvalue
(0.9971) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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Figure B.50: Eigenvector associ-
ated with fourth largest eigenvalue
(0.9969) of GBIN for Limited Area
Helmholtz problem. φNB = 88o.
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