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Abstract 

The purpose of this thesis is to investigate the scattering of a train of small amplitude 
harmonic surface waves on water by undulating one-dimensional bed topography. 

The computational efficiency of an integral equation procedure that has been used to 
solve the mild-slope equation, an approximation to wave scattering, is improved by 
using a new choice of trial function. The coefficients of the scattered waves given by 
the mild-slope equation satisfy a set of relations. These coefficients are also shown to 
satisfy the set of relations when they are given by any approximation to the solution 
of the mild-slope equation. 

A new approximation to wave scattering is derived that includes both progressive and 
decaying wave mode terms and its accuracy is tested. In particular, this approximation 
is compared with older approximations that only contain progressive wave mode 
terms such as the mild-slope approximation. The results given by the new 
approximation are shown to agree much more closely with known test results over 
steep topography, where decaying wave modes are significant. During this analysis, a 
new set of boundary conditions is found for the mild-slope equation and the 
subsequent results give much better agreement with established test results. 

Finally, the full wave scattering problem over a hump, that is, a local elevation in an 
otherwise flat uniform bed, is examined. Green's theory is used to convert the problem 
into an integral equation and a variational approach is then used to obtain 
approximations to the coefficients of the scattered waves. The results are used to 
further test the accuracy of previous approximations to wave scattering. 
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Chapter �

Introduction

A long�standing but persistent problem in the area of water wave theory is the

determination of the e�ect of bed topography and obstacles on a given wave

�eld� An example of a practical problem faced by coastal engineers is to predict

the amplitude of waves in harbours� where both man�made breakwaters and the

shape of the sea bed a�ect the wave behaviour� Such problems involve the scat�

tering� di�raction and refraction of waves and are mathematically formidable for

linearised theory� even with relatively simple bed and�or obstacle geometries�

The work presented in this thesis is solely concerned with the e�ect of bed

topography on an incident wave train� We do not address problems where an

obstacle� such as a barrier� a�ects an incident wave train� except for mentioning

them in this introduction and noting the solution methods used� The e�ect of

variations in the still�water depth on an incident wave train is examined using

linearised theory� We prescribe the incident wave train and the deviation in the

still�water depth� and seek the additional waves� the scattered waves� caused by

this deviation� A typical problem requires the determination of a velocity poten�

tial satisfying Laplace�s equation within the 	uid� a mixed boundary condition

on the free surface� and a given normal velocity on rigid boundaries� If the 	uid

domain extends to in�nity� a radiation condition is required to ensure uniqueness�

This boundary�value problem is well known and is formally presented in Chap�

ter 
� We shall refer to the problem of �nding a solution of the boundary�value

problem as the full linear problem� Analytic solutions of the full linear problem

are rare for any deviation from the constant water depth case� that is� for any
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deviation from a 	at sea bed� Problems where analytic solutions exist are usual�

ly for a limited selection of straightforward geometries which include horizontal

and�or vertical boundaries�

In Chapters � and  we are faced with solving second�kind and �rst�kind

integral equations respectively� Many problems in water wave theory� where an

incident wave train is in	uenced by bed topography and�or obstacles� can be

reduced to integral equations� It is useful to review some of these two�dimensional

and quasi�two�dimensional wave scattering problems here�

The two�dimensional scattering of surface waves by �xed vertical barriers has

seen much attention over recent decades� In water of in�nite depth� that is� water

deep enough that the bed has no signi�cant e�ect on surface waves� Dean ����

considered the case of a submerged semi�in�nite barrier� whose upper edge was a

�nite depth below the surface� His solution procedure used the reduction method�

which consists of replacing the velocity potential by another function which is

chosen to simplify the boundary conditions� Dean showed that the re	ected wave

is small� unless the edge of the barrier is very near the edge of the surface� when

the wave motion is no longer oscillatory and there is a rapid 	ow over the barrier

when a crest arrives� Ursell ��� solved this problem� and its complement in which

the barrier extends from above the free surface to a �nite depth� by an integral

equation procedure for which exact solutions were found� In water of �nite depth�

these two problems become more di�cult and have been solved numerically by

Mei and Black ��� using a variational method employed by Miles ���� when he

considered wave scattering due to an in�nite step�

The problem of two submerged� semi�in�nite barriers placed an arbitrary dis�

tance apart was addressed by Jarvis �
��� He found expressions for the coe��

cients of the re	ected and transmitted waves in terms of four de�nite integrals�

Jarvis evaluated these integrals by numerical approximation and showed that to�

tal transmission could be achieved at certain wavelengths� Evans and Morris ����

considered the complementary problem of two surface piercing barriers immersed

to a given depth by a quite di�erent� integral equation� procedure� Approximate

solutions were found by using Ursell�s ��� exact solution for a single barrier as a

trial function in the integral equation� Their analysis revealed that total trans�






mission or total re	ection is possible� This approximation method proved less

accurate when the ratio of barrier separation to barrier length became small�

Newman ���� addressed this case� by a di�erent approach which involved match�

ing solutions both near the two obstacles and in the far �eld� Newman also found

that both total transmission or total re	ection is possible�

Another problem of much interest concerns the 	ow around vertical barriers

containing gaps� Tuck ��� considered the problem of a thin� semi�in�nite imper�

meable barrier extending downwards from the 	uid surface and having at some

depth a small gap� He constructed an approximation to the transmission coef�

�cient under the assumption that the gap was small� Porter ���� considered the

same problem using a reduction method and an integral equation procedure and

his analysis showed that both approaches relied on the same basic step� Porter

calculated several re	ection and transmission coe�cients without needing to make

any restrictions on the gap width� A more general problem of this form� where an

arbitrary number of thin barriers �one above the next� with the uppermost barrier

allowed to intersect the free surface and the lowest allowed to extend in�nitely

far into the 	uid� are allowed to oscillate with the same frequency as the incident

wave� was considered by Porter ����� The resulting boundary�value problem was

converted into an integral equation� from which the amplitudes of the scattered

waves could be readily determined� The case of two parallel semi�in�nite barriers

that pierce the free surface and extend downwards throughout the 	uid having at

some depth a small gap� was addressed by Evans ���� using an integral equation

approach� The numerical results again showed the possibility of total transmis�

sion or total re	ection occurring for an in�nite number of con�gurations of barrier

spacing� gap width and incident wavelength�

The more general problem for surface waves in deep water incident on an

arbitrary number of evenly spaced� identical� thin vertical barriers� each contain�

ing arbitrarily positioned gaps was addressed by Porter ����� Expressions for the

transmission and re	ection coe�cients were derived by approximation methods

for two special cases� The �rst was for each barrier containing a single smal�

l gap and the second was for the separation between adjacent barriers greatly

exceeding the wavelength� In both cases it was found that there existed band�

�



s of wavelengths for which total transmission of the incident wave is possible�

and the insertion of an additional barrier resulted in an in�nity of wavelengths

corresponding to zero re	ection�

These problems with barriers that contain gaps become more di�cult when

the water is not assumed to be deep� as the motion is then also a�ected by the bed�

Macaskill ���� considered the re	ection of water waves by a thin vertical barrier

of arbitrary permeability in water of �nite depth� An integral equation for the

horizontal 	uid velocity was derived by an application of Green�s theorem and

was solved by collocation methods� A serious problem for the solution process to

overcome involved the numerical di�culty of evaluating a Green�s function given

by an in�nite series� We are faced with the same problem in Chapter �

In Porter ���� there is a general discussion about the refraction�di�raction

problem for vertical�sided breakwaters of �nite depth� in relation to Green�s the�

ory and integral equation methods� Examination of several special cases for the

class of problems where the breakwaters are straight� parallel walls containing

gaps showed that the resulting integral equations are conducive to straightforward

numerical solution techniques� Indeed� a very e�cient computational method

which solves the problem of di�raction of a plane wave train through a gap in an

in�nite straight breakwater� and the complementary problem of di�raction by a

�nite strip� was given by Chu and Porter ����� The solution procedure involved

the conversion of known �rst�kind equations for these problems into second�kind

equations which are much more amenable to numerical techniques� This was an

early example of the use of the technique of invariant imbedding in water wave

theory�

For all the problems discussed so far� the geometries have involved vertical

boundaries in water of in�nite or constant depth� Allowing the water depth to

vary increases the di�culty of the problem� and consequently exact solutions are

exceedingly rare for such problems� The exceptions to this are limiting cases such

as shallow water� where the wavelength is assumed to be much larger than the

water depth�

Lamb �
�� derived an exact expression for the re	ection coe�cient for the

problem of waves incident on a vertical step in shallow water� Bartholomeusz ���
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considered the same problem without the shallow water assumption� By matching

eigenfunction expansions� Bartholomeusz derived a �rst�kind integral equation for

the horizontal 	uid velocity� After transforming this equation into a second�kind

integral equation for which extensive theory exists� Bartholomeusz showed that

the solution reduced to that obtained by Lamb �
�� in the shallow water limit� so

giving a veri�cation of this theory�

Newman ��
� considered the propagation of water waves over an in�nite step�

where the vertical part of the step extends down to in�nity� By matching so�

lutions for the two 	uid regions at the cut above the step� Newman derived an

integral equation for the horizontal velocity component on the cut� Newman

recast this integral equation as an in�nite system of equations and solved it by

truncation� Miles ���� considered the more di�cult problem of a �nite step which

Bartholomeusz ��� solved in the shallow water limit� Miles used a variational

technique to obtain approximate solutions of the �rst�kind integral equation for

the horizontal 	uid velocity� By taking the limit of the vertical part of the step

to in�nity� Miles found that his results showed excellent agreement with those

obtained by Newman�

Allowing the depth pro�le to vary smoothly� rather than changing abruptly

as in the case of a step� creates further di�culties in the wave scattering problem�

As far as is known� the only analytic expression for the velocity potential in a

problem of this type has been given by Roseau ���� He obtained an explicit

solution for the re	ection and transmission of waves across a shelf of a special

pro�le which asymptotically joins two regions of constant� but unequal� depth�

According to Wehausen and Laitone ���� a proof of the existence and uniqueness

of a velocity potential in a general problem of this type had yet to be given�

Evans ���� addressed this problem in considering the transmission of water waves

over a shelf of arbitrary pro�le� He used Green�s theorem to derive a second�

kind integral equation for the velocity potential� The associated Green�s function

which Evans derived is very complicated and the kernel of the integral equation

was given in terms of the normal derivative� on the shelf� of this function� By

suitably restricting the shelf pro�le� Evans was able to prove that the velocity

potential exists and is unique� except possibly for certain discrete values of the





parameters of the problem corresponding to trapping modes over the shelf� The

complexity of this integral equation is well illustrated by the fact that no one has

so far found a suitable numerical method to solve it�

Fitz�Gerald �
�� investigated wave scattering by a region of varying depth�

He used a Fourier transform procedure to convert the boundary �value problem

satis�ed by the velocity potential into a pair of integro�di�erential equations�

The required solution was then given by a linear combination of the solutions

of the integro�di�erential equations� Fitz�Gerald was able to prove the existence

and uniqueness of the velocity potential in two limiting cases and presented the

associated asymptotic results�

The propagation of long waves over water of slowly varying depth for the two

and three�dimensional cases was treated by Harband �

�� Asymptotic expressions

were found for the scattered long waves under the assumption that the water is

shallow compared with the wavelength�

Finding an accurate solution of the full linear problem of water wave scatter�

ing due to an arbitrary varying bed has proved so di�cult and computationally

expensive that various types of approximation to this problem have been pro�

posed which can be solved accurately� One of the earliest and most widely used

approximations is that of linearised shallow�water theory� in which the vertical

structure of the 	uid motion is ignored� A derivation of this approximation from

�rst principles can be found in Stoker �� and one example of its application is

given by Lautenbacher ����� who considered the run�up of tsunamis on Hawaiian

islands� Lautenbacher used Green�s theorem to convert the governing di�erential

equation into an integral equation and then found approximate solutions of the

integral equation by using a numerical ��nite di�erence� technique�

In water where the depth is not assumed to be shallow� one of the earliest

approximations to the full linear problem was given by Eckart ���� He derived

his approximation by converting the full linear problem for the velocity poten�

tial into an integro�di�erential equation� Eckart showed that this equation was

approximated by a partial di�erential equation by discarding a presumably s�

mall integral� �without examining the justi�cation of this approximation�� Eckart

showed that his approximate equation reduces to the linearised shallow�water e�
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quation in the shallow water limit� Through this work� Eckart also discovered a

useful approximation to the root of the well known �dispersion relation�� a tran�

scendental equation which connects the deep�water wave number to the wave

number in �nite water depth� Eckart did not pursue his approximation to the

full linear problem further possibly� according to Miles ����� because he had ob�

tained a rather unsatisfactory approximation to the group velocity in his ���

lecture notes�

A more recent and very popular approximation of the full linear problem was

given by Berkho� �
� � ���� whose �combined refraction�di�raction� equation has

now become known as the mild�slope equation� There have been many subse�

quent derivations of the mild�slope equation� which typically approximate the

vertical structure of the motion and restrict the bed slope to be �small� or �mild�

in a sense to be described later� The derivation given by Berkho� ��� is a clari��

cation of the original derivation given in Berkho� �
�� However� the mathematical

approach used in Berkho� ���� which is a perturbation procedure in terms of two

small parameters� is still not rigorous� Smith and Sprinks ��� gave a more math�

ematically sound derivation of the mild�slope equation� by expanding the vertical

dependence of the velocity potential in terms of an orthogonal set of functions

and removing the dependence on the vertical co�ordinate by integration over the

depth� The �nal step of their derivation still requires physical intuition to justify

the neglect of terms on the basis that the bed slope is �small� or �mild enough��

Other derivations of the mild�slope equation have been given by Lozano and Mey�

er ��
� and Massel ���� but perhaps the most elegant was given by Miles �����

He uses a variational approach which� through a suitable choice of trial func�

tion� can be used to generate the linearised shallow�water� the Eckart and the

mild�slope equations� Miles ���� goes on to compare the mild�slope and Eckart

equations through the calculation of re	ection from a gently sloping beech and

of edge�wave eigenvalues for a uniform slope� He �nds that Eckart�s equation is

inferior to the mild�slope equation for the amplitude in the re	ection problem�

but is superior in the edge�wave problem�

Another test of the accuracy of the mild�slope approximation was given by

Booij ��� when he considered the problem of wave scattering due to a talud as its
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steepness was varied� Booij compared the amplitude of the re	ected wave given by

the mild�slope approximation with values he computed using full linearised theory�

From his results� Booij suggested that the mild�slope approximation gave results

in �good agreement� with those he had computed using full linearised theory

for talud gradients up to one third� The results Booij �� computed using full

linearised theory have been well used by authors proposing new approximations

to the velocity potential� because� as far as is known� these are the only published

estimates of the re	ection coe�cient for the full linear wave scattering problem

over a bed of varying depth�

The numericalmethods that have been used to solve the boundary�value prob�

lem resulting from the mild�slope approximation are mainly �nite di�erence �for

example� Ebersole ����� Li and Anastasiou ����� and �nite element �for example�

Berkho� �
�� ��� and Booij ��� methods� An alternative solution method was

given by Chamberlain ���� who converted the mild�slope boundary�value problem

into a second�kind Fredholm integral equation� Through a powerful variational

method which used problem�dependent trial functions� Chamberlain was able to

�nd solutions that were machine accurate� The maximum trial space dimension

required to achieve this accuracy was only six for all the problems he considered�

Wave tank experiments have also been carried out as another means of testing

the accuracy of approximations� such as the mild�slope� to the velocity potential

satisfying the full linear problem� One such set of wave tank experiments was

conducted by Davies and Heathershaw ��
�� who measured the scattering of water

waves by a �nite patch of small amplitude ripples set in an otherwise horizontal

bed� It was found that the mild�slope approximation gave a poor estimate of

the peaks in the re	ected amplitudes that arise in ripple bed problems when

the water wave number is approximately twice the ripple wave number� Such

peaks in the amplitude are known as Bragg resonance peaks� Improvements

have therefore been sought to the mild�slope approximation� by attempting to

improve the mild�slope approximation itself and by �nding new approximations

to the velocity potential�

To overcome this de�ciency in the mild�slope approximation� Kirby �
�� p�

resented a model in which the depth pro�le was expressed in terms of a slowly
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varying �mild�slope� component onto which a rapidly varying component of small

amplitude is superimposed� Kirby then used a vertical integration procedure to

derive what is now called the extended mild�slope equation� He veri�ed that it

gave much better agreement with the experimental data at the Bragg peaks for

ripple bed problems than the mild�slope approximation� However� this improve�

ment to the mild�slope approximation is only valid for ripple bed problems�

A further improvement to the mild�slope equation� which is valid over arbi�

trary depth pro�les� was given by Chamberlain ���� He followed the same proce�

dure which Lozano and Meyer ��
� used to derive the mild�slope equation� In other

words� Chamberlain approximated the vertical structure of the velocity potential

and removed the dependence on the vertical co�ordinate by integration over the

depth� Chamberlain does not make the further assumption that the bed slope

is mild� and consequently �nds a new approximation to the velocity potential�

Chamberlain and Porter ��� formalised the derivation of this new approximation�

giving derivations using a variational approach and a Galerkin approach� They

named the resulting equation the modi�ed mild�slope equation� and showed that

it reduced to the mild�slope equation when the bed slope is assumed to be mild�

Chamberlain and Porter ��� also show that for ripple bed problems the modi�ed

mild�slope equation subsumes the extended mild�slope equation too� They found

that the results given by the modi�ed mild�slope equation are in better agree�

ment with the full linear results for Booij�s �� talud problem than those given

by the mild�slope equation� Chamberlain and Porter also found that in ripple

bed problems� the results from the modi�ed mild�slope equation gave excellent

agreement with the experimental data at the Bragg peaks� Indeed� Chamberlain

and Porter ���� use the well�known symmetry properties between the coe�cients

of the re	ected and transmitted waves to obtain results for the modi�ed mild�

slope equation over any number of ripples from knowing the results for just one

ripple� These symmetry properties were �rst derived for the full linear problem

by Kreisel �
�� and Newman ���� and Chamberlain ��� derived them for the mild�

slope approximation� Chamberlain and Porter ���� show that these symmetry

properties are an intrinsic part of the problem rather than of its exact solution�

in the sense that they are automatically satis�ed regardless of the accuracy of the
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solution�

Massel ���� also uses a Galerkin approach to derive an approximation to the

full linear velocity potential that included decaying wave mode terms too� He

named the resulting system of second�order di�erential equations the extended

refraction�di�raction equation� In this paper� Massel only gives solutions when

the decaying wave mode terms are neglected� leaving the solution of the full

problem incorporating decaying modes to a subsequent paper which has yet to

appear� The system of second�order di�erential equations derived by Massel ����

reduces to a single equation when the decaying wave mode terms are omitted�

which turns out to be the modi�ed mild�slope equation� Massel noticed that this

equation reduced to the mild�slope equation on the assumption that the slope of

the bed is mild and also showed it was superior to the mild�slope equation for

Booij�s �� talud problem and for ripple bed problems�

Other approximations of the full linear problem that include decaying wave

mode terms have been given by O�Hare and Davies ��� and Rey �
�� Both sets

of authors use a similar approach to derive the approximation to the velocity

potential� The common approach involves approximating the bed pro�le as a se�

ries of horizontal shelves separated by abrupt vertical steps� The well�known 	at

bed in�nite series representation of the velocity potential is used to represent the

potential over each horizontal shelf� Continuity of the velocity potential and its

horizontal derivative is imposed throughout the depth at the ends of each shelf�

which gives a matrix system to be solved� This approximation can be compu�

tationally expensive as a large number of steps are required to obtain reliable

results� In O�Hare and Davies ���� the approximation assumes that the steps are

su�ciently far apart that the decaying modes generated at one step are negligible

at neighbouring steps� O�Hare and Davies applied their approximation to ripple

bed problems and noted that the results were in good agreement with known

wave tank data� In a subsequent paper� O�Hare and Davies ���� compared their

approximation against the extended mild�slope equation �Kirby �
��� for ripple

bed problems� They found that their approximation provides a more explicit

formulation of the problem and gave better agreement with the wave tank data

than the extended mild�slope equation� but was much more computationally ex�
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pensive� In Rey �
�� the series of steps which approximates the depth pro�le is

subdivided into smaller subsystems called patches� In each patch� the decaying

modes generated at one step are not assumed negligible at neighbouring steps

in the patch� However� the decaying modes generated in one patch are assumed

negligible at neighbouring patches� This seems to be a superior approximation to

that used by O�Hare and Davies ���� Rey �
� goes on to test his approximation

on Booij�s �� talud problem� �nding good agreement with the full linear results

computed by Booij� He also found that his results were quite di�erent to those

given by the mild�slope approximation� even for taluds with gradient less than

one third� for which Booij �� had claimed were in good agreement with the full

linear model� Rey �
� also tested his approximation on ripple beds� �nding good

agreement with wave tank data�

After re�establishing the well�known full linearised equations for the scattering

of waves by varying topography in Chapter 
� we go on to state the mild�slope

equation and brie	y review the integral equation procedure that Chamberlain ���

used to solve it�

Noting that coastal engineers require only about three decimal place accuracy

in solutions of water wave problems� we go on� in Chapter �� to improve the com�

putational e�ciency of Chamberlain�s integral equation solution method� This

is done by using a new choice of trial function and seeking solution accuracy to

three decimal places rather than the machine accuracy achieved by Chamberlain�

We also reinvestigate Eckart�s ��� approximation and the symmetry properties

of the coe�cients of the re	ected and transmitted waves�

The purpose of Chapter � is to derive a new approximation to the full linear

velocity potential that includes both progressive and decaying wave mode terms

and test its accuracy� We compare this new approximation with older approxima�

tions that only contain progressive wave mode terms� such as the mild�slope and

the modi�ed mild�slope approximations� as the steepness of the depth pro�le is

varied� We investigate if the new approximation is better for steeper bed pro�les

as the steeper the bed pro�le the more signi�cant the decaying wave modes be�

come� In the course of this analysis a new set of boundary conditions is found for

the modi�ed mild�slope and mild�slope equations� The subsequent results give

��



much better agreement with the results that have been obtained using full linear

theory and those found by Rey �
� than the results obtained using the original

boundary conditions�

In Chapter � we consider the full linear wave scattering problem over an

arbitrary hump� The term hump is used to describe a local elevation in an

otherwise 	at uniform bed� Using Green�s theory� the boundary�value problem for

the velocity potential is converted into a second�kind integral equation� Initially�

an approximation in this equation is tried� but it proves to be rather inaccurate�

It is found� however� that the second�kind integral equation for the potential can

be converted into a �rst�kind integral equation for the tangential 	uid velocity�

The kernel of the �rst�kind equation is much easier to evaluate numerically than

that of the second�kind equation� A variational approach is then used to obtain

approximations to the coe�cients of the re	ected and transmitted waves which

are second�order accurate compared to the approximation of the solution of the

integral equation� These results are then used to test the accuracy of the new

�decaying mode� approximation derived in Chapter � and also to test the accuracy

of the modi�ed mild�slope and mild�slope approximations�

A summary of the work presented� together with conclusions and suggestions

for future research concludes this thesis�

�




Chapter �

Background Fluid Dynamics

In this chapter we present the linearised equations satis�ed by the velocity poten�

tial for the irrotational �ow of an incompressible� homogeneous �uid over a bed

of varying depth� It is assumed that the �uid occupies a region which extends to

in�nity in every horizontal direction� The �uid is also bounded below by a bed

of given permanent shape and above by a free surface whose shape is sought� A

harmonic time dependence is removed from the velocity potential �� Separation

solutions of the boundary�value problem satis�ed by the time independent part

of � are examined in the special case where the depth is constant�

However� analytic solutions are rare when there is any departure from the

constant depth case� Therefore� three vertically integrated approximations of

these equations are then considered� the well�known mild�slope and shallow water

approximations� and the less familiar Eckart approximation�

Some of the subsequent work in this thesis revolves around solving integral

equation forms of the one�dimensional mild�slope� Eckart and shallow water e�

quations� This chapter therefore concludes with a review of an integral equation

procedure which requires only 	� or 
� dimensional trial spaces to give excellent

approximations to the solutions of these vertically integrated models�

��� The linearised boundary�value problem

Let x and y be horizontal cartesian co�ordinates and z a vertical co�ordinate

measured positively upwards with the undisturbed free surface at z � �� Let






the �uid velocity at time t and a given point �x� y� z� in the �uid be denoted

by q�x� y� z� t�� Assuming the �uid motion starts from rest� with gravity the

only external force acting� then q is necessarily irrotational� It follows that there

exists a velocity potential ��x� y� z� t� such that q � � �r� where �r � � �

�x
� �

�y
� �

�z
��

The assumption of the �uid being homogeneous and incompressible reduces the

continuity equation to

�r � q � �

and hence � satis�es Laplace�s equation�

�r�� � � � �	��

in the �uid�

The bed is assumed to be �xed and impermeable and is de�ned by

z � �h�x� y�� as depicted in Fig�	�� As the �uid cannot �ow through the bed�

the normal derivative of the velocity potential on the bed must be zero� giving

rise to the boundary condition

��

�n
� � on z � �h�x� y� �	�	�

where �

�n
denotes the outward normal derivative on z � �h�x� y��

z y

x

h(x,y)

n-

η(x,y,t)
Free surface of 

 the fluid

z=0

Figure 	�� Vertical cross section of the �uid domain�

By considering the Stokes derivative D

Dt
� �

�t
� q � �r which denotes di�erenti�

ation following the motion of the �uid� this boundary condition may be rewritten

�



as a so�called �kinematic boundary condition� as follows� On any �uid boundary

given by f�x� y� z� t� � � we have

Df

Dt
� � �	�
�

as otherwise there would be a �nite �ow of �uid across the boundary �Lamb �	����

The bed is de�ned by z � �h�x� y� � so substituting f � z � h�x� y� into �	�
�

delivers
��

�z
�rh � r� � � on z � �h�x� y� � �	���

where r � � �

�x
� �

�y
� is the gradient operator with respect to the horizontal co�

ordinates only� Comparing equations �	�	� and�	��� shows that

�

�n
� �

�

�z
�rh � r

� � �rh���
�

�

� �	���

where the denominator appears on the right hand side so that the outward unit

normal� n� given by

n � � 

� � �rh���
�

�

�hx� hy� �

satis�es the requirement jnj � �

Similarly� equation �	�
� must hold at the free surface given by z � ��x� y� t��

Substituting f � z � � into �	�
� gives

��

�t
� ���

�z
�r� � r� on z � �� �	���

A further condition at the free surface is delivered by considering Bernoulli�s

equation for unsteady� incompressible� homogeneous �ows� namely

p

�
�

��

�t
� 

	
q� � gz � f�t� � �	���

where p is the pressure� � the constant density and g the acceleration due to

gravity� Now� as � is de�ned by q � � �r�� f�t� can be absorbed into
��

�t
and

similarly� assuming that surface pressure is constant� then on z � � the left�hand

side of �	��� can also be absorbed into
��

�t
� reducing �	��� to

��

�t
� g� �



	
q� on z � � � �	���

Equations �	��� and �	��� are linearised by expanding about z � � and ne�

glecting second�order terms� yielding� respectively�

��

�z
� ���

�t
on z � � �	���

�



and
��

�t
� g� on z � � � �	���

On eliminating � from �	��� and �	��� we obtain the �nal boundary condition

of the linear boundary�value problem� which is given by

�r�� � � � h � z � � �

��

�z
�



g

���

�t�
� � on z � � � �	��

��

�z
�rh � r� � � on z � �h�x� y� �

together with a radiation condition imposed as x� � y� � �� If we write

� � �i � �s where �i represents the incident wave �eld� then the radiation

condition causes �s to represent only outgoing waves as x� � y� � �� Evans

��� has shown that when the bed is given by a shelf of arbitrary pro�le� then

the solution � of the above problem is unique except possibly for certain discrete

values of the parameters of the problem which correspond to trapped modes over

the shelf�

��� Time�independent solutions

A harmonic time dependence can be removed from the velocity potential � by

setting

��x� y� z� t� � ���x� y� z� cos�	t� � ���x� y� z� sin�	t�

� Re���x� y� z�e�i�t� � �	�	�

where ��x� y� z� � ���x� y� z� � i ���x� y� z�� i �
p� � and 	 is an assigned

angular frequency�

De�ning 
 � 	��g� it follows that if � satis�es �	�� together with a radiation

condition then � satis�es

�r�� � � � h � z � � �

��

�z
� 
� � � on z � � � �	�
�

��

�z
�rh � r� � � on z � �h�x� y� �

�



together with a radiation condition�

The free surface elevation may be recovered by combining equations �	���

and �	�	� to give

��x� y� t� � Re

�
�i	
g
��x� y� ��e�i�t

�
�	���

��� Separation solutions

We have already noted that analytic solutions of �	�
� are rare� However� assum�

ing that � is independent of y� then in the �at bed case where h �the undisturbed

�uid depth� is the constant h�� separation solutions of �	�
� are easily found�

These can be combined to give the general solution

��x� z� �
�X
n��

�n�x�wn�z� � �	���

where

���x� � C�e
ik�x � D�e

�ik�x � �n�x� � Cne
�B�

n
x � Dne

B�
n
x �n � IN��

w��z� �
cosh �k��z � h���

cosh �k�h��
� wn�z� �

cos �B�
n�z � h���

cos �B�
nh��

�n � IN��

and where k� is the real� positive root of the relation


 � k� tanh �k�h�� �	���

and B�
n �n � IN� are the real� positive roots of the relation

� 
 � B�
n tan

�
B�
nh�
�
� �	���

arranged in ascending order of magnitude�

Once an incident wave has been assigned� the arbitrary constants Cn and

Dn �n �  � IN� are speci�ed� As already mentioned� the radiation condition

enforces that � is bounded as jxj � �� causing the constants to be chosen so

that� �n � IN� j�nj � � as jxj � �� Thus� the terms �nwn �n � IN� are called

the decaying or evanescent modes �see for example� Mei �
���� Therefore ��w� is

the only mode which propagates as a wave throughout the domain and is thus

called the progressive wave mode�

�



Denoting the wavelength by �� then using the fact that � � 	�k� allows

�	��� to be rewritten as

�
	

k�

��
�

g�

	
tanh

�
	

�
h�

�
�

where 	�k� is the wave speed� An interpretation of this equation is that waves

of di�erent lengths travel at di�erent speeds� In other words they are dispersive�

and hence �	��� is known as a dispersion relation�

The following approximations to the full linear problem for � use the assump�

tion that the evanescent modes are negligibly small �x � ��� � �� when h is

suitably restricted�

��� Approximations to time independent ve�

locity potential �

As previously stated� analytic solutions for the time�independent velocity poten�

tial � satisfying �	�
� for any departure from the constant depth are rare� This

naturally leads to the pursuit of an approximation to �� As discussed in Chapter

� the mild�slope approximation to � is very well�known� with many authors using

various procedures to establish the approximation� The mild�slope approxima�

tion to � suitably restricts the depth pro�le h so that the decaying mode parts of �

are assumed to be negligibly small� Thus the mild�slope approximation to � seeks

to approximate the propagating mode of �� This is achieved by approximating its

dependence on the z co�ordinate� and discarding terms of O�r�h� jrhj�� on the

basis of the mild�slope assumption jrhj � kh �Meyer �
���� where h � h�x� y�

is the undisturbed �uid depth and k � k�x� y� is the local wave number satisfying

the local dispersion relation�


 � k tanh �kh� � �	���

Omitting the details of a derivation here� the mild�slope approximation to �

is given by

��x� y� z� � ���x� y�w�z� h� � �	���

�



where

w�z� h� �
cosh �k�z � h��

cosh �kh�
� �	�	��

�� satis�es the di�erential equation

r�ur�� � k�u�� � � � �	�	�

where

u�h� �
Z �

�h
w� dz �



	k
tanh �kh�

�
 �

	kh

sinh �	kh�

�
� �	�		�

and the di�erential equation �	�	� satis�ed by �� is known as the mild�slope

equation �

In Chapter �� a variational approach similar to Miles ���� is employed� in

which a variational principle and an n term trial function are used to obtain an

approximation to � that includes the decaying wave mode terms too� It will be

shown that if a one�term trial function is used in this variational principle� and

terms of O�r�h� jrhj�� are neglected� then the mild�slope equation is derived�

It should be noted that under the further assumption that kh � � so that

tanh�kh� and sinh�	kh� are approximated by their arguments� the mild�slope

equation �	�	� reduces to

r�hr�� � 
�� � � � �	�	
�

This is another well�known equation � the linearised shallow water equation �

which can� of course� be derived from �rst principles using the shallow water ap�

proximation �Stoker ������ However� forming �	�	
� as a limit of �	�	� is justi�ed

as the assumptions of the shallow water approximation imply mildness of slope�

Jonsson et al �	�� give some detail as to what constitutes �small kh�� and show

that �	�	
� is valid if kh � ���

Another vertically integrated approximation to � was proposed some forty

years ago by Carl Eckart ���� in which the linearised boundary�value problem for

� given by �	�
� is transformed into an integro�di�erential equation� Here the

integral term is assumed small �without justi�cation� in some cases� and is thus

discarded� After neglecting third and higher derivatives of the depth function h�

an approximation for linear gravity waves in water of variable depth h � h�x� y�

�



is arrived at in the form

r�ur�� � k�u�� � � � �	�	��

where Re���e�i�t� is an approximation to the free surface shape�

u�h� �
 � e���h

	

� �	�	��

k� � 
� coth �
h� � �	�	��

and 
 � ��

g
is the deep water wave number�

Eckart�s equation �	�	�� also reduces to the linearised shallow water equa�

tion under the same assumption as in the mild�slope case� Eckart notes that

�	�	�� actually approximates the root of the dispersion relation �	��� to within

�� for all values of kh� However� he seemed to be discouraged from further de�

velopment of his approximation due to the unsatisfactory approximation to the

group velocity he obtained� Recently� Miles ���� has shed new light on Eckart�s

approximation� deriving �	�	�� as well as �	�	� and �	�	
�� via an elegant vari�

ational procedure� Miles notes that the direct calculation of the group velocity

from Eckart�s dispersion relation �	�	��� gives an approximation to the ratio of

group velocity to phase velocity within � of the exact value for all values of

kh� Miles also notes that while the mild�slope approximation conserves wave

energy� Eckart�s approximation does not �except in uniform depth�� Also� on

a gently sloping beach� Eckart�s approximation is inferior to the mild�slope ap�

proximation in predicting the amplitude of the re�ected wave� However� in the

calculation of edge wave eigenvalues over a beach of uniform �and not necessarily

small� slope� Eckart�s approximation is superior to the mild�slope approximation�

We will return to Eckart�s approximation in Chapter 
 where it will be compared

to the mild�slope approximation� Some ideas will then be proposed to improve

the Eckart prediction of the amplitude of the re�ected wave�

Most numerical methods used to solve the mild�slope equation �	�	� have

been based on either �nite di�erence �for example� Ebersole ���� Li and Anas�

tasiou �
� � or �nite element methods �for example� Berkho� �	�� Booij ��� ��

E�ciency of methods and accuracy of solution are obviously of considerable

importance� Chamberlain ��� has used a di�erent approach in which the one�

dimensional mild�slope equation is converted into two integral equations� the

	�



solutions of which are approximated by variational techniques� For a speci�ed

incident wave� this procedure can calculate highly accurate approximations of the

coe�cients of the resulting transmitted and re�ected waves� and of the free sur�

face shape� with only 	� or 
� dimensional �problem�dependent� trial spaces� As

work in the following chapters uses this integral approach� it is convenient to give

a brief description of Chamberlain�s solution method for �dimensional scattering

problems�

��� The ��dimensional mild�slope equation

Let x and y be horizontal cartesian co�ordinates as de�ned in section 	�� The

class of depth pro�les now considered is such that h is independent of y and varies

only in some �nite interval of x� so that

h�x� �

	
�

�

h� �x � � �

h� �x � l �

where h� and h� are constants for a given problem� and h�x� is assumed to be

continuous on ������� In the case of a localised hump in the bed� h� and h� are

equal they may� however� be unequal when the bed pro�le is that of a localised

x=0 x=1

h0

h1

Figure 	�	� Vertical cross section of the �uid domain�

talud� as depicted in Fig� 	�	� In the wave motion� it is assumed that the crests

are parallel to the y axis � this implying that �� � ���x��

The mild�slope equation is now scaled using the non�dimensionalisation pro�

	



cess outlined by Chamberlain ���� which may be summarised as follows� Let

!x �
x

l
�

U�!x� �


h�
u�l!x� �

H�!x� �


h�
h�l!x� �

!���!x� �


	l�
���l!x� �

The following account discards the accents from these de�nitions in the pursuit

of a simple notation� In the above circumstances� the mild�slope equation �	�	�

may be written as
d

dx

�
U
d��
dx

�
� ��U�� � � � �	�	��

where

U�x� �
tanh ���H�

	��

�
 �

	��H

sinh �	��H�

�
�

and � � ��x� �� k�x�l� � the dimensionless localised wave number � is the positive

real root of

��
�� � � tanh ���H� � �	�	��

and where �� and � are two dimensionless parameters given by

�� �
	lp
gh�

� � � h��l �

This scaling process will be used throughout this text�

The process of converting the di�erential equation �	�	�� and its boundary

conditions into an integral equation is made much simpler by converting �	�	��

into normal form� This is done by introducing a new variable � de�ned by

��x� � ���x�

vuutU�x�

U���
� �	�	��

Then � satis�es

� �� � ��
�� � �� � �	�
��

where� for the rest of this chapter� the prime denotes di�erentiation with respect

to x�

��x� �
U ���x�

	U�x�
�
�
U ��x�

	U�x�

��

� ��� � ���x��

		



and where the notation �� � ���� �and �� � ���� is used�

The coe�cients appearing in the di�erential equation �	�
�� are uniquely de�

�ned once H� �� and � are assigned� The only remaining information necessary

is the choice of incident waves� On the �at bed for x � �� the non�dimensional

mild�slope equation �	�	�� reduces to ���� � ��
��� � �� Similarly� on the �at bed

for x � � �	�	�� reduces to ���� � ��
��� � �� Therefore� we suppose in general�

that there are two incident waves with known coe�cients A� propagating from

x � 	� respectively� This will result in two outgoing waves� with unknown

coe�cients B�� propagating towards x � 	� respectively� Hence� on the �at

beds� we take

���x� �

	
�

�

A�ei��x � B�e�i��x �x � � �

A�e�i��x � B�ei��x �x �  �

and using �	�	�� we see that the corresponding form for � is

��x� �

	

�


�

A�ei��x � B�e�i��x �x � � �

�A�e�i��x � B�ei��x�

s
U��

U���
�x �  �

�	�
�

We use jump conditions at x � � and x �  �as H � is allowed to be discontinuous

at the ends of the varying bed� to eliminate B� between � and � �� yielding

� ���� � i������ � 	i��!a �

� ���� i����� � �	i��e�i��!b �
�	�
	�

where

!a � c� � c����� � c���� �

!b � c� � c����� � c	��� �

The complex numbers cj �j � � � � � � �� are given by

c� � A� �

c� � � iU �����

���U���
�

c� � � �

c� � A�ei
������
��
��

vuutU��

U���
�

c� � � �

c	 �

�
iU ����

���U��
�
�� � ��

	��

�
ei�� �

�	�

�

	




where the terms involving U � are the consequences of allowing slope discontinuities

in H at x � �� � Greater detail of the derivation of these boundary conditions and

the merit of writing them in the form of �	�
	� can be found in Chamberlain ����

Linearity allows superposition of solutions corresponding to waves incident

from the left with solutions corresponding to waves incident from the right� This

removes the need to solve the problem with two incident waves� By removing one

incident wave� the amplitude of the remaining incident wave may be set equal to

unity� without loss of generality� Accordingly the two re�ection and transmission

coe�cients� denoted by R and T � for this problem are de�ned as follows�

If A� � � then R� �
B�

A�
and T� �

B�

A�
�

If A� � � then R� �
B�

A�
and T� �

B�

A�
�

The subscripts distinguish between waves incident from the left�� or the right�	��

Now we de�ne �� to be the solution of �	�
�� and �	�
	� for an incident wave from

the left �requiring A� � � in �	�
	��� �� is de�ned to be the solution for an

incident wave from the right �requiring A� � � in �	�
	��� Using the equations

�	�
�� the re�ection and transmission coe�cients can now be de�ned in terms of

�j �j � � 	� in the following way�

If A� � ��

R� �
�����

A�
�  �

T� �
����e�i��

A�

vuutU���

U��
�

�	�
��

If A� � ��

R� �
����e�i��

A�

vuutU���

U��
� e��i�� �

T� �
�����

A�
�

�	�
��

The outgoing wave coe�cient B� comprises of two parts � that part of A�

transmitted beyond the talud and that part of A� re�ected back from the talud�

We can make a similar statement about B�� and these resulting relationships can

be summarised as 
B� B�

B�

�
CA �


B� T� R�

R� T�

�
CA

B� A�

A�

�
CA �

	�



The matrix on the right�hand side of this equation is called the scattering matrix�

Clearly� as soon as the re�ection and transmission coe�cients have been found�

then B� can be determined for any A��

��� Integral equations and variational princi�

ples

A variation of parameters procedure shows that the boundary�value problem for

� given by �	�
�� and �	�
	� is equivalent to the integral equation

��x� � !aei��x � !be�i��x � i

	��

Z �

�
ei��jx�tj��t���t� dt � �	�
��

With some simple algebra� this integral equation can be rewritten in terms of the

integral equation with a real�valued kernel�

��x� � Mei��x � Ne�i��x �


	��

Z �

�
sin ���jx� tj� ��t���t� dt � �	�
��

where

M � !a� �b� � b����� � b	���� �

N � !b� �b� � b����� � b����� �

b� � �
��c� � c�� �

b� � �
�
�c� � c� � � �

b� � �
�
�c� � c	��

b� � �
�
�c� � c�e

��i��� �

b� � �
��c� � c�e

��i��� �

b	 � �
��c� � c	e

��i�� � e�i����

and where

b� � b����� � b	��� �
i

���

Z �

�
e�i��t��t���t� dt � �	�
��

b� � b����� � b���� �
i

���

Z �

�
ei��t��t���t� dt � �	�
��

Full details of this derivation can be found in Chamberlain ����

The equation �	�
�� can be written as an operator equation in the Hilbert

space L���� �� with inner product

�f� g� �
Z �

�
f�t�g�t� dt �

	�



on de�ning two self�adjoint operators L and P by

�L���x� �


	��

Z �

�
sin ���jx� tj� ��t� dt

and

�P���x� � ��x���x� �

Then � � L���� � satis�es

� � Mf� � Nf� � LP� �

where

f� � e�i��x

and since � is bounded and L is a compact operator� then LP is also compact�

It follows that if there exists a solution � � L���� � of this operator equation�

it determines the desired function ��x� of �	�
��� This issue and others which arise

from using Hilbert space methods can be found in Porter and Stirling ����

A summary is now presented of the approximation method employed by

Chamberlain ��� for integral equations of the form �	�
�� where the function � is

sought� The apparent di�culty posed by the free term� where end�point values of

the unknown function � are contained in the constants M and N � is circumvented

by exploiting linearity� It can be shown that

��x� � �M � N����x� � i�M �N����x� � �	����

where the functions �j �j � � 	� are the solutions of real�valued integral equa�

tions� that can be expressed in operator form as

A�j � fj �j � � 	� � �	���

where A � I�LP �I being the identity operator� and the free terms fj �j � � 	�

are given by

f��x� � cos ���x�

and

f��x� � sin ���x� �

It follows that once �� and �� are determined� the unknown function � can

also be determined through �	���� once the end�point values ���� and ���� and

	�



thus the coe�cients in �	���� have been found� Also� on �nding ���� and ����

then the re�ection and transmission coe�cients are known through �	�
�� and

�	�
���

On substituting the above equation �	���� for � into the right hand side of

equations �	�
�� and �	�
�� and rearranging them� it can be shown that ���� and

��� are determined by solving the rank 	 system of equations


B�

B� b� b�

b� b	

�
CA� i


B� B� B�

B� B�

�
CA

B� c� � b� c	 � b�

c� � b� c� � b	

�
CA
�
CA

B� ����

���

�
CA

� �

B� b�

b�

�
CA � i


B� B� B�

B� B�

�
CA

B� c� � b�

c� � b�

�
CA

�	��	�

in which

B� � �
��A�� � A��� and B� � �

��A�� � 	iA�� �A���

and

Ajk �


	��

Z �

�
�j�t���t�fk�t� dt �



	��
��j� P fk� �j� k � � 	��

Stationary principles are used to generate approximations to the inner prod�

ucts Ajk �j� k � � 	� with upper and lower bounds by �rstly ensuring that the

function � is entirely one�signed� This allows the non�self�adjoint operator A in

the integral equations �	��� to be replaced by a self�adjoint one� In general� �

does not possess this property� but can be made to do so by adding to it or sub�

tracting from it a known quantity� This process requires a slight change in the

boundary conditions �	�
	� which causes the de�nitions of the cj �j � � � � � �� in

�	�

� to be amended� Full details of this device are in Chamberlain ���� With �

one�signed� a new self�adjoint operator S can be de�ned by

�S���x� � s�x���x� �

where

s�x� �
q
���x�

and

� � sgn��� �that is � � 	� �

	�



Then the integral equations for �j �j � � 	� given by �	��� can be rewritten as

!A!�j � Sfj �j � � 	� � �	��
�

where

!�j � S�j �j � � 	�

and

!A � I � �SLS �

Clearly !A is self�adjoint and as S is bounded� SLS is a compact operator�

It is easy to show that the functionals

Jk � L���� � � IR �k � � 	��

J� � L���� � 
 L���� � � IR

given by

Jk�p� � 	�p� Sfk�� � !Ap� p� �k � � 	� � �	����

J��p�� p�� � �Sf�� p�� � �p�� Sf��� � !Ap�� p�� �	����

have stationary values

�!�k� Sfk� � ���k� P fk� �k � � 	� �

�!��� Sf�� � ����� P f��

respectively� Problem�dependent� N �dimensional trial functions �p� and �p� given

by

�pk �
NX
n��

akn�LP �n��fk �k � � 	� �	����

are used to approximate �� and �� respectively� for some akn � IR �n � � � � � � N��

Substituting �p� and �p� in the above functionals generates approximations to the

inner products Ajk �j� k � � 	� which are second�order accurate compared with

the approximations to the unknown functions �� and ��� The unknown con�

stants� akn�n � � � � � � N�� are chosen so as to make the functionals �	���� and

�	���� stationary within the N �dimensional trial spaces �see Chamberlain ��� for

details�� To clarify the notation� we shall denote the functions �pk �k � � 	� deter�

mined by the �rst functional �	���� as �k �k � � 	� respectively� and the functions

	�



�pk �k � � 	� determined by the second functional �	���� as �k �k � � 	� respec�

tively�

The further assumption that there exists b � � such that �p � L���� ��

b kpk� � � !Ap� p� � a kpk� � �	����

where the existence of an a � � is guaranteed since !A is a bounded operator�

establishes the following upper and lower bounds on the inner products of interest�

Jk��k��


a

��� !A�k�Sfk
���� � �!�k� Sfk� � Jk��k��



b

��� !A�k�Sfk
���� �k � � 	� �	����

and

G���� ����R���� ��� � �!��� Sf�� � G���� ��� � R���� ��� � �	����

where the functionals G and R are given by

G���� ��� � J����� ��� �


	

�


b
�



a

�
� !A�� � Sf�� !A�� � Sf��

and

R���� ��� �


	

�


b
� 

a

���� !A�� � Sf�
��� ��� !A�� � Sf�

��� �

An excellent derivation of these upper and lower bounds may be found in Porter

and Stirling �����pp�	���	���	��	�
�� Approximations to a and b can be found

in Chamberlain ���� Disappointingly� the approximation to b can be negative in

certain cases� resulting in just a stationary approximation to the inner products

with no upper and lower bounds�

The implementation of the solution process follows by �rstly assigning H� ���

� and the direction of the incident wave� Then� after ensuring � is one�signed �by

adjusting it to make it so if necessary� and choosing the dimension of the trial

space� the trial functions given by �	���� are generated and the approximations

J������ J����� and J����� ��� to the inner products ��j� P fk� �j� k � � 	� are

calculated� Upper and lower bounds to the inner products are also calculated if

b � �� Then the rank 	 system �	��	� is solved to give the approximations to

���� and ���� Finally �	�
�� and �	�
�� are used to deliver approximations to the

re�ection and transmission coe�cients� and when b � �� upper and lower bounds

on the re�ected and transmitted amplitudes are also found� The approximation

to �� and thus the free surface shape� can then be found through �	�����

	�



Chamberlain ��� has shown that 	� or 
� dimensional trial spaces can result in

the determination of approximations to the re�ection and transmission coe�cients

to machine accuracy�

This integral approach can also be used with the linearised shallow water e�

quation and Eckart�s equation with certain modi�cations� Chamberlain ��� has

done this for the linearised shallow water equation� and the necessary modi�ca�

tions required to use this integral approach to solve Eckart�s equation are given

in Chapter 
�


�



Chapter �

Further development of

Chamberlain�s theory

In this chapter some extensions to the work appearing in Chamberlain ��� � ���

are presented� A new computationally cheap integral equation solution method

is developed for the three model equations mentioned in Chapter �	 namely the

mild
slope equation	 Eckart�s equation and the linearised shallow water equation	

over a range of parameter values� This method uses the approximation methods

discussed in section ��� but with a new choice of trial functions� Eckart�s equation

is further investigated and improvements to it are suggested� Finally	 the sym


metry properties of the solutions of the three model equations are studied	 and

an unexpected property is discovered that any approximations of the solutions

still possess the symmetry properties�

��� Introduction to approximation methods

This section begins by illustrating the interest in solving the model equations

over a continuous range of their parameters for a specied bed shape� Booij ���

provided some experimental evidence concerning the accuracy of the mild
slope

approximation to the velocity potential � satisfying ������� As a part of that

paper	 a talud problem was considered and a graph �see Fig����� was presented

of re�ected amplitude �jRj� given by the mild
slope equation against Ws	 a pa


rameter which denotes the length of Booij�s talud� In terms of the notation used

��



in Chapter �	 the dimensionless parameters of the mild
slope equation are given

in terms of Ws by �� � Ws�
p

��� and � � ����Ws �See Chamberlain ��� p����

for details�� Booij computed jRj using full linearised theory and superimposed

it onto his graph	 observing that the two sets of results coincide for talud slopes

with gradient � ��� �that is	 for values of Ws � �����

|R
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Mild−slope approximation
Full linear             
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10
0

10
−2

10
−1

Figure ���� Re�ected amplitude over the depth prole H�x�������x��� x� ���

In the absence of any analytical estimates of the accuracy of the mild
slope

approximation	 experimental evidence	 such as this provided by Booij	 has become

invaluable�

Another property coastal engineers are interested in is the wave number at

which	 for a given shape of bed	 a signicant part of the wave is transmitted�

An easy way to nd this information is to solve the model equations over a wide

range of wave numbers and present the results graphically	 as in Fig�����

So	 it is obvious that there exists much interest in nding solutions of our

��



three model equations over a range of their parameters� From Chapter �	 we

know that in a �uid	 of undisturbed depth H � H�x�	 the non
dimensional mild


slope equation is given by

d

dx

�
U
d��
dx

�
� ��U�� � � 	 �����

where

U�x� �
tanh ���H�

���

�
� �

���H

sinh ����H�

�
	 �����

and � � ��x� is the positive real root of the dispersion relation

��
�� � � tanh ���H� � �����

The integral equation method	 given in section ���	 can be used to solve the mild


slope equation for a wave incident from x � �� on a given depth prole for

some �� and � and gives extremely accurate approximations to the coe�cients

of the resulting re�ected and transmitted waves� These coe�cients are dened

in Chapter �	 and are denoted by Rk and Tk �k � �	 ��	 where the subscripts

distinguish between waves incident from x � �� ��� and x � � ���� The integral

equation method involves using variational principles to generate approximations

to the inner products �
j	 P fk� �j	 k � �	 �� and approximations to the solutions


k �k � �	 �� � L���	 �� of the integral equations

�I � LP �
k � fk �k � �	 �� � �����

Here	 the operators L and P are dened by

�L
��x� �
�

���

Z �

�
sin ���jx� tj�
�t� dt and �P
��x� � ��x�
�x� 	 �����

with �� � ����	 the solution of the dispersion relation ����� at x � �	 and � � ��x�

given by

��x� �
U ���x�

�U�x�
�
�
U ��x�

�U�x�

��

� ��� � ���x�	 �����

where	 for the rest of this chapter	 the prime denotes di�erentiation with respect

to x and the functions U and � are dened by ����� and ����� respectively� The

free terms fk �k � �	 �� in ����� are dened by

f��x� � cos ���x� and f��x� � sin ���x� � �����

��



The results presented in Fig���� were obtained by using the integral equation

method to nd extremely accurate approximations to Rk and Tk �k � �	 �� given

by the mild
slope equation at ��� values of �� and � �

In Chapter �	 we used maximum principles to generate approximations to

�
k	 P fk� �k � �	 �� and approximations �k �k � �	 �� to the unknown functions


k �k � �	 �� respectively� A stationary principle is also used to generate an

approximation to �
�	 P f�� and approximations k �k � �	 �� to 
k �k � �	 ��

respectively� We also saw that when the operator �A is bounded above and below

� that is �p � L���	 ��	

b kpk� � � �Ap	 p� � a kpk� 	

where b � �	 then we can nd upper and lower bounds on our approximation


s to �
j	 P fk� �j	 k � �	 ��� The maximum error in the estimates of jRkj and

jTkj �k � �	 �� can then be calculated� We have also shown in Chapter � that

the approximations to the inner products �
j	 P fk� �j	 k � �	 �� and therefore

the approximations to Rk and Tk �k � �	 �� are second
order accurate compared

with the approximations to the unknown functions 
� and 
�� In other words	

requiring the maximum error in jRkj and jTkj �k � �	 �� to be O������ is approx


imately equivalent to requiring the maximum norm of the residual errors �that is

max
k����

fk�I � LP ��k � fkk 	 k�I � LP �k � fkkg� to be O������� Examples illus


trating this can be found in Porter and Stirling ����� Chap� ���

For the results presented in Fig����	 at values of �� and � where our approx


imation to b is greater than zero	 extremely accurate approximations to Rk and

Tk �k � �	 �� are such that the maximum error in jRkj and jTkj �k � �	 �� is

O������ for all values of �� and � � In the case where our approximation to b is

negative	 then we do not have any upper and lower bounds on our approxima


tions to �
j	 P fk� �j	 k � �	 ��� However	 we still know that the approximations

to these inner products �and hence to Rk and Tk �k � �	 ��� are second
order

accurate compared with the approximations of 
� and 
�� Therefore	 at values

of �� and � where no upper and lower bounds exist	 we use the fact that the er


ror in jRkj and jTkj �k � �	 �� is approximately O�max
k����

n
k�I � LP ��k � fkk� 	

k�I � LP �k � fkk�
o

�� Hence for the results presented in Fig����	 where no

��



upper and lower bounds exist	 extremely accurate approximations to Rk and

Tk �k � �	 �� are such that max
k����

fk�I � LP ��k � fkk 	 k�I � LP �k � fkkg is

O������ for all values of �� and � �

In future	 whenever we specify the accuracy in the approximations to the re


�ection and transmission coe�cients of any of the model equations	 we shall just

give the maximum error in jRkj and jTkj �k � �	 ��� In the case where the upper

and lower bounds do not exist	 this will imply that max
k����

n
k�I � LP ��k � fkk� 	

k�I � LP �k � fkk�
o

is the same order of magnitude as the maximum allow


able error in jRkj and jTkj �k � �	 ��� This will not be mentioned again in the

next sections	 but it is the policy employed whenever the approximation to b is

negative�

Many coastal engineers would consider approximations to the re�ection and

transmission coe�cients generated by Chamberlain�s method as too accurate for

applications� Instead	 approximations that are correct to two signicant gures

���s�f�� would be considered quite adequate� So we now arrive at the following

question� can the accuracy of the Chamberlain solutions be relaxed	 enabling less

accurate solutions of the model equations to be generated over a parameter range

at a much reduced computational cost�

Sections ����� and ����� show that this is indeed possible for all three model

equations of interest� We shall concentrate on developing the new approximation

method to solve the mild
slope equation� Once this has been completed	 the

minor changes required for the method to encompass the other model equations	

the Eckart equation and the shallow water equation	 will be given�

��� A one�dimensional trial space approxima�

tion

����� Outline of method

Chamberlain�s method	 summarised in Chapter �	 solves the mild
slope equation

by converting it into an integral equation� The solution of the integral equa


tion was found through a rank two system of equations	 once approximations

��



to the solutions 
� and 
�	 of the real
valued integral equations ����� and to

the inner products �
j	 P fk� �j	 k � �	 �� had been obtained� For convenience	

we shall recap the variational method used to obtain approximations to 
�	 
�

and �
j	 P fk� �j	 k � �	 ��	 as this is where we shall seek to make computational

savings�

Now	 with the � function one
signed	 we dene a new self
adjoint operator S

by

�S
��x� �
q
���x�
�x� 	

where � � sgn��� �that is	 � � ���� The integral equations for 
k �k � �	 ��

given by ����� can be rewritten as

�A�
k � Sfk �k � �	 �� 	

where �
k � S
k and �A � I � �SLS�

The functionals Jk � L���	 �� � IR �k � �	 �� and J� � L���	 ��	L���	 �� � IR

given by

Jk�p� � ��p	 Sfk�� � �Ap	 p� �k � �	 �� 	 �����

J��p�	 p�� � �Sf�	 p�� � �p�	 Sf��� � �Ap�	 p�� �����

have stationary values

��
k	 Sfk� � ��
k	 P fk� �k � �	 �� 	

��
�	 Sf�� � ��
�	 P f��

respectively� Problem
dependent	 N
dimensional trial functions �p� and �p� given

by

�pk �
NX
n��

akn�LP �n��fk �k � �	 �� ������

are used as approximations to 
� and 
� respectively	 for some akn �n � �	 � � � 	 N��

We generate approximations to the inner products �
j	 P fk� �j	 k � �	 �� by sub


stituting �p� and �p� into the functionals given by ����� and ������ The approxi


mations to �
j	 P fk� �j	 k � �	 �� are second
order accurate compared with the

approximations �p� and �p� to the unknown functions 
� and 
�� The unknown

constants	 akn�n � �	 � � � 	 N�	 are chosen so as to make the functionals ����� and

��



����� stationary within the N
dimensional trial spaces� We shall denote the func


tions �pk �k � �	 �� determined by ����� as �k �k � �	 �� respectively	 and the

functions �pk �k � �	 �� determined by ����� as k �k � �	 �� respectively�

As already noted	 the Chamberlain solutions	 �k and k �k � �	 ��	 are very

accurate approximations to the solutions 
� and 
� of the integral equations �����	

but they also require considerable computer time to determine� The integral

equation solution method we have used to solve the mild
slope equation at each

value of �� and � employs this expensive process of generating the Chamberlain

solutions� Instead of this	 we shall use the Chamberlain solutions at a chosen

�� and � to approximate 
� and 
� in the neighbourhood of �� and � � In the

present circumstances	 we only need to consider problems where � is either xed

or is a function of ��	 as in the problem considered by Booij ��� given in section

���	 where � �
p

������� In the following we shall only refer to the value of �� at

which we are solving the problem	 and we shall not mention � as we automatically

know its value once �� is assigned�

A superscript is now introduced into our established notation to denote the

value of �� at which each operator	 function and functional is evaluated�

We introduce the �
dimensional trial functions

pk � rk�
��
k �k � �	 �� ������

as approximations to 
 ���
� and 
 ���

� 	 for some rk � IR �k � �	 �� determined so as

to make the functional ����� stationary� Therefore	 substituting ������ into �����	

we see that

J ���
k �pk� � J ���

k �rk� � �rk
�
���k 	 S ���f ���

k

�
� r�k

�
�A ������k 	 ���k

�
�k � �	 ��

regarded as a function of rk	 is stationary where

dJ ���
k

drk
� � �k � �	 �� �

Hence the constants rk �k � �	 �� are given by

rk �

�
���k 	 S ���f ���

k

�
�

�A ������k 	 ���k
� �k � �	 ��

��



and the approximations to the inner products
�

 ���
k 	 P ���f ���

k

�
�k � �	 �� are

J ���
k �pk� �

�
���k 	 S ���f ���

k

��
�

�A ������k 	 ���k
� �k � �	 ��

respectively�

To nd an approximation to the inner product
�

 ���
� 	 P ���f ���

�

�
	 we use the

�
dimensional trial functions

qk � �k
��
k �k � �	 �� ������

as approximations to 
 ���
� and 
 ���

� 	 for some �k � IR �k � �	 �� determined so as

to make the functional ����� stationary� Therefore	 substituting ������ into �����	

we see that

J ���
� �q�	 q�� � J ���

� ���	 ���

� ��
�
S ���f ���

� 	 ���
�

� ��
�
��� 	 S ���f ���

�

�
� ����

�
�A ������ 	 ���

�

is stationary where
�J ���

�

��k
� � �k � �	 ���

Hence the constants �j �j � �	 �� are given by

�� �

�
S ���f ���

� 	 ���
�

�
�A ������ 	 ���

�

and

�� �

�
��� 	 S ���f ���

�

�
�

�A ������ 	 ���
�

and the approximation to the inner product
�

 ���
� 	 P ���f ���

�

�
is

J ���
� �q�	 q�� �

�
S ���f ���

� 	 ���
� �

��� 	 S ���f ���
�

�
�

�A ������ 	 ���
� �

The approximations to 
 ���
� and 
 ���

� given by ������ and ������ are very much

quicker to compute than the N
dimensional Chamberlain solutions	 given by

������	 when N � �� It is clear that the approximate solutions ������ and ������

will not be accurate enough if j ��� � ��j is too large� So	 where the error exceed


s a given tolerance	 we choose a new ��	 nd the Chamberlain solutions there	

and then the approximate solutions ������ and ������ in its neighbourhood� This

��



process	 of solving the mild
slope equation over a range of values of ��	 can be

continued in such a way as to minimise the number of Chamberlain solutions

required� Remember	 from section ���	 that the tolerance in the error will be

given by the maximum allowable error in the amplitudes of the re�ection and

transmission coe�cients�

We note that after this new choice of trial functions has been used to generate

the approximations to 
 ���
� 	 
 ���

� and
�

 ���
j 	 P ���f ���

k

�
�j	 k � �	 ��	 we revert back

to the same stage in the integral equation procedure given in Chapter � to nd

the resulting re�ection and transmission coe�cients�

Now we are in a position to use this method� It is implemented by rstly

assigning the depth prole H	 the tolerance in the error	 the initial and nal

values of �� and the increment to be added to �� to give the next �� at which

a solution is to be found� Chamberlain�s method	 outlined in Chapter �	 is used

to solve the mild
slope equation at the initial ��	 to give the extremely accurate

solutions	 remarked about in section ���� The increment is then added to �� and

we now use the new �
dimensional method to generate the solutions at this ���

The solutions are then checked to make sure the error is within the user specied

tolerance� We carry on in this manner until the error exceeds the given tolerance	

and at this �� we use Chamberlain�s method again to generate extremely accurate

solutions� Then at the next �� we revert back to the new �
dimensional trial

functions to generate the solutions again	 and we carry on in this manner until

solutions of the mild
slope equation have been found over the desired �� range�

����� Results

Solutions of the mild
slope equation can be obtained using this new �
dimensional

trial space method in a greatly reduced computational run
time compared with

using solely Chamberlain�s procedure at each successive ��� However	 the ��

range over which these  cheap� solutions can be obtained has an upper limit	

�max� This means that whatever the tolerance specied in the error of the  cheap�

solutions	 the new method still has to use Chamberlain�s procedure to generate

the solutions at all the desired solution points ��	 where �� � �max� Therefore no

more computational savings are possible at these ��� The value of �max decreases

��



as we increase the tolerance in the error �and so increase the accuracy� of the

 cheap� solutions� Also	 for a xed tolerance in the error	 we nd that the value

of �max varies from one depth prole to another�

Consider	 for example	 the solution of the mild
slope equation �MSE� for the

test problem of Booij ���	 mentioned in section ���	 for an incident wave of unit

amplitude from the left� Here the depth prole is given by

H�x� � �� �

�
x �� � x � �� �

In section ���	 Chamberlain�s method was used in generating extremely accurate

solutions of the MSE for this problem with �� taking values between ���� and ���

at intervals of ���� �with � given at each value of �� by � �
p

������� to produce

the results seen in Fig����� This required the use of a �
dimensional trial space

for �� � � and a �
dimensional trial space for �� � �� The total CPU run
time

required to generate all these results was ��m ��s� It should be noted that the

same Sun � workstation was used to generate all the CPU run
times for all the

methods used in this chapter�

The new method is now used to solve this problem for the mild
slope equation

over the same �� range� We choose the tolerance in the error to be a minimum

of ��s�f� accuracy in jRkj and jTkj �k � �	 ��� The new method produces  cheap�

solutions at the �� values of �� in the range �����	 ������ For all �� � �max � ����	

our new method has to use Chamberlain�s method to generate the solutions�

Fig���� depicts the amplitude of the re�ected wave	 generated by both methods

over the �� range from ���� to ����	 against Ws �the parameter used by Booij

��� in his corresponding graph�	 where Ws �
p

������ As one would expect with

these prescribed tolerances in the error	 there is practically no di�erence in the

two sets of results� The new method uses Chamberlain solutions at � values of

��	 which are

�� � ����	 ����	 ���	 ��� and ���� 	

to generate results over the �� range from ���� to ����� Thus the number of

Chamberlain solutions required to generate the results is reduced from �� to �	

that is	 by a factor of �� This signicant decrease in the number of Chamberlain

solutions required is re�ected in the decrease of the CPU run
times� The total

��
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Figure ���� Re�ected amplitude for the depth prole H�x���� ���x ���x� ���

CPU run
time to generate these results by Chamberlain�s method is �m ��s�

The total CPU run
time required by the new method is �m ��s and so the total

CPU run
time has been reduced by ��!� This large reduction in CPU run
times

is not as signicant as the reduction in the number of Chamberlain solutions

used	 because at the values of �� where Chamberlain solutions are not used	 the

solutions generated by the new one
dimensional trial functions still have to be

calculated there�

Similar results were found in tests with other bed proles� So the new method

produces solutions accurate to ��s�f� in a greatly reduced CPU run
time over an

�� range where the largest �� value is still small �� ���

However	 if solutions of the MSE	 that are accurate to ��s�f�	 are desired over a

range of �� where the initial �� � �max	 then clearly the new method achieves no

computational savings� In order to resolve this problem	 we need to understand

the reason why the new method cannot generate accurate enough solutions at

�� � �max�

Chamberlain ��� notes that the dimension of trial space required to achieve

a constant level of accuracy rises as �� increases� This happens because kPk

��



and hence kLPk increase with ��	 making more terms in the trial functions

�pk �k � �	 �� given by ������ �and consequently larger trial spaces� necessary

to be assured of the desired accuracy� Correspondingly	 the new approximation

method has to resolve the problem via Chamberlain�s method at more frequent

intervals for larger ��� This occurs because as �� increases	 kPk increases and

hence ��x� and the solutions	 
��� and 
��� 	 of the integral equations ����� change

more rapidly from one value of �� to the next� Fig���� depicts the approximations	

���� and ���� 	 to the solutions 
��� and 
��� of ����� from the previous example at

two di�erent values of ��� At the smaller value of ��	 the ���� approximation has

a zero	 whilst at the larger ��	 both approximations have zeros and the position

of the zero in the ���� approximation is di�erent from that in the smaller �� case�

Thus	 it is easy to understand why there is a maximum value of �� � �max for

which at any ��� � ��� � �max the trial approximations C��
	��
� and C��

	��
� 	 where

Cj �j � �	 �� are some constants	 will be a poor approximation to 
 ���
� and 
 ���

� �

Hence the minimum practical trial space dimension is two�

��� A two�dimensional trial space approxima�

tion

����� Outline of method

The one
dimensional trial space method described in section ��� used Chamber


lain solutions at a chosen �� to approximate the solutions of the integral equations

����� in the neighbourhood of ��� The two
dimensional trial space method uses

Chamberlain solutions at two particular choices of ��	 denoted by ��� and ���� �with

��� � �����	 to approximate 
 ���
� and 
 ���

� at the intermediate values ���	 that is at

��� � � ���	 ����� � So we use the two
dimensional trial functions

pk � rk�
	��
k � sk�

		��
k �k � �	 �� ������

as approximations to 
 ���
� and 
 ���

� 	 for some rk and sk � IR �k � �	 �� determined

so as to make the functionals ����� stationary� Therefore	 substituting ������ into

��
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Figure ���� Comparison of Chamberlain solutions at two values of ��

the functional �����	 we see that

J ���
k �pk� � J ���

k �rk	 sk�

� �
h
rk
�
� 	��
k 	 S ���f ���

k

�
� sk

�
�
		��
k 	 S ���f ���

k

�i
�k � �	 ��

�
h
r�k
�

�A ���� 	��
k 	 � 	��

k

�
� �rksk

�
�A ���� 	��

k 	 �
		��
k

�
� s�k

�
�A ����

		��
k 	 �

		��
k

�i
	

regarded as a function of rk and sk �k � �	 ��	 is stationary where

�J ���
k

�rk
� � and

�J ���
k

�sk
� � �k � �	 �� �

Hence the constants rk and sk �k � �	 �� are given by the rank two system	

�
B�
�

�A ���� 	��
k 	 � 	��

k

� �
�A ���� 	��

k 	 �
		��
k

�
�

�A ���� 	��
k 	 �

		��
k

� �
�A ����

		��
k 	 �

		��
k

�
�
CA
�
B� rk

sk

�
CA �

�
B�
�
� 	��
k 	 S ���f ���

k

�
�
�
		��
k 	 S ���f ���

k

�
�
CA �k � �	 �� �

��



The approximation to the inner products
�

 ���
k 	 P ���f ���

k

�
�k � �	 �� are therefore

given by J ���
k �pk� �k � �	 �� respectively�

To nd an approximation to the inner product
�

 ���
� 	 P ���f ���

�

�
	 we use the

two
dimensional trial functions

qk � �k
	��
k � �k

		��
k �k � �	 �� ������

as approximations to 
 ���
� and 
 ���

� 	 for some �k and �k � IR �k � �	 �� determined

so as to make the functional ����� stationary� Therefore	 substituting ������ into

the functional �����	 we see that

J ���
� �q�	 q�� � J ���

k ���	 ��	 ��	 ���

� ��
�
S ���f ���

� 	  	��
�

�
� ��

�
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�

�

� ��
�
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�

�
� ��
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�
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�
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�
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�
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�
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regarded as a function of �k and �k �k � �	 ��	 is stationary where

�J ���
�

��k
� � and

�J ���
�

��k
� � �k � �	 �� �

Hence the constants �� and �� are given by the rank two system	
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		��
� 	  	��

�

�
�

�A ��� 	��
� 	 

		��
�

� �
�A ���

		��
� 	 

		��
�

�
�
CA
�
B� ��

��

�
CA �

�
B�
�
S ���f ���

� 	  	��
�

�
�
S ���f ���

� 	 
		��
�

�
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and the constants �� and �� are given by the rank two system	

�
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�
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�
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�
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CA �

The approximation to the inner product
�

 ���
� 	 P ���f ���

�

�
is therefore given by

J ���
� �q�	 q��� Once approximations to 
 ���

� 	 
 ���
� and

�

 ���
j 	 P ���f ���

k

�
�j	 k � �	 ��	

have been obtained	 we revert back to the same stage in the integral equation

procedure given in Chapter � to nd the resulting re�ection and transmission

coe�cients�

��



Clearly	 the approximations to 
 ���
� and 
 ���

� given by ������ and ������ are

very much quicker to calculate than the N
dimensional Chamberlain solutions	

given by ������	 when N � �� We shall refer to the solutions generated by the

trial functions ������ and ������ as the  cheap� solutions� It is obvious that the

approximations ������ and ������ to 
 ���
� 	 
 ���

� will not be accurate enough for all

��� � � ���	 ����� if � ���� � ���� becomes too large� We recall from section ���	 that as

�� increases	 kPk increases and so ��x� and the solutions of the integral equations

����� vary more rapidly from one value of �� to the next� Therefore the length

of the interval � ���	 �����	 where the error in the  cheap� solutions found at the

intermediate ��� � � ���	 ����� is within the specied tolerance	 will decrease as ���

increases�

The worst approximations to the functions 
 ���
� 	 
 ���

� and the inner products�

 ���
j 	 P ���f ���

k

�
�j	 k � �	 �� will occur when ��� has a value close to the mid
point

of the interval � ���	 ������ Therefore a check is made to see whether the error in

the  cheap� solution at ��� � �
�� ��� � ����� is within the specied tolerance� If the

error at ��� � �
�
� ��� � ����� is within the given tolerance	 then the trial functions

������ and ������ are used to generate the solutions at all the ��� � � ���	 ������ In

the unlikely case that the error in one of these  cheap� solutions does exceed the

tolerance	 we proceed as if the error in the  cheap� solution at the mid
point of

� ���	 �����	 that is	 at ��� � �
�� ��� � �����	 has exceeded the given tolerance�

If the error in the  cheap� solution at ��� � �
�
� ��� � ����� exceeds the given

tolerance	 the Chamberlain solutions at ���� are saved and a new set of Chamberlain

solutions are found at �� � �
�� ��� � �����	 and we check the error in the  cheap�

solution at the mid
point of the interval � ���	
�
�
� ���� ������� This process is repeated

until an interval � ���	 ��
�� has been found in which the error of the  cheap� solution

at all the intermediate ��� is within the specied tolerance� We now move onto the

next interval ���
�	 �

��
� �	 where the Chamberlain solutions are known at �� � ��

�

and the value of ���
� has to be chosen� If we suppose we know the Chamberlain

solutions at values of �� given by

��
� � ��


�� � ��

�� � � � � � ��


n� � ���� 	

then we choose ���
� � ��


�� and the whole process starts again� If no Chamberlain

solutions are known at values of �� � ��
�	 then ���

� is chosen according to the size

��



of the maximum error in all the  cheap� solutions found in the previous interval

� ���	 ��
��� We use the following  rule of thumb� to choose ���

� � If the maximum

error in the  cheap� solutions found in the interval � ���	 ��
�� is � �or more� orders

of magnitude smaller than the specied tolerance	 then ���
� is chosen so that the

length of the interval ���
�	 �

��
� � is greater than the length of the interval � ���	 ��

���

If the maximum error is the same order of magnitude as the specied tolerance	

then ���
� is chosen so that the length of the interval ���

�	 ���
� � is less than the

length of the interval � ���	 �
�
��� Otherwise ���

� is chosen so that the length of the

interval ���
�	 �

��
� � is equal to the length of the interval � ���	 ��

��� The Chamberlain

solutions are then found at ���
� and the whole process starts again�

We clarify this situation in the following example� Fig���� depicts a typical

situation� In this case	 the errors in all the  cheap� solutions found in Interval

      Interval 1 Interval 2 Interval 3  Interval 4

Interval 2A Interval 2B

Error in ‘cheap’ solution

at mid-point exceeds

the tolerance

Maximum error in the

‘cheap’ solutions is

1 order of magnitude

less than the tolerance

Maximum error in

the ‘cheap’ solutions

is the same order

of magnitude as the

tolerance

Maximum

error in the

‘cheap’

solutions is

3 orders of

magnitude

less than the

tolerance

Maximum

error in the

‘cheap’

solutions is

3 orders of

magnitude

less than the

tolerance

α0
α α α α α α0 0 0 0 0 0

(1) (2) (3) (4) (5) (6)

Figure ���� An example situation depicting the values of �� at which Chamberlain

solutions are found�

� are within the specied tolerance� No Chamberlain solutions are known at

�� � ��

�� and the maximum error of all these  cheap� solutions is � order of

magnitude less than the tolerance� Therefore	 the next value of �� at which

Chamberlain solutions are found is chosen so that the length of Interval � is

equal to the length of Interval �� This value of �� is denoted by ��

�� in Fig�����

The error in the  cheap� solution at the mid
point of Interval � is not within the

tolerance� Consequently	 Chamberlain solutions at �� �mid
point of Interval �

��



are found� This value of �� is denoted by ��

�� in Fig����� The errors in the

 cheap� solutions in Interval �A are within the tolerance	 and as the Chamberlain

solutions are known at �� � ��

�� � ��


��	 the next interval is �B� Here the errors

in the  cheap� solutions are also within the tolerance� No Chamberlain solutions

are known at �� � ��

�� and the maximum error of all the  cheap� solutions found

in Interval �B is � orders of magnitude less than the tolerance� Therefore	 the

next value of �� at which Chamberlain solutions are found	 which is denoted by

��

�� in Fig����	 is chosen so that

length of Interval �B � length of Interval � � length of Interval ��

Here	 the upper bound arises because su�ciently accurate  cheap� solutions could

not be obtained at all values of �� in Interval �	 and therefore could not be

obtained in Interval � if it had the same length as Interval �� The errors in the

 cheap� solutions found in Interval � are within the tolerance	 with the maximum

error being the same order of magnitude as the tolerance� As no Chamberlain

solutions are known at �� � ��

��	 the next Chamberlain solutions are found at

�� � ��

�	 where ��


� is chosen to make the length of Interval � less than the

length of Interval �� The process continues like this until solutions have been

found for the required �� range�

We are now in a position to use this method� It is implemented by rstly

assigning the depth prole H	 the tolerance in the error	 the initial �� range

� ���	 �����	 the nal value of ��	 the relationship between �� and � and the incre


ment to be added to �� to give the next �� at which a solution is to be found�

Chamberlain solutions are then found at �� � ��� and at �� � ���� and the method

outlined in the last few pages is used to generate solutions of the mild
slope

equation over the desired �� range�

����� Results

The two
dimensional trial space method works excellently with the mild
slope

equation	 in the sense that solutions satisfying a minimum accuracy requirement

can be obtained over an �� range	 using a small number of Chamberlain solutions	

in much less CPU time than just using Chamberlain�s procedure at each successive

��



��� The problem of the one
dimensional trial space method concerning the small

range of values of �� over which  cheap� solutions could be obtained does not

arise�

Let us consider the example we tested the one
dimensional trial space method

on� Here we seek the solution of the MSE for an incident wave of unit amplitude

from x � �� over the depth prole given by

H�x� � � � �

�
x �� � x � �� �

We shall use the two
dimensional method to solve this problem for the ��� values

of �� between ���� and ��� at intervals of ���� �with � given at each value of ��

by � �
p

������� We again choose the tolerance in the error to be a minimum of

��s�f� accuracy in jRkj and jTkj �k � �	 ��� The two
dimensional method produces

 cheap� solutions over the �� range �����	 ����	 and uses Chamberlain solutions at

�� values of ��	 given by

�� � ����	 ���	 ���	 ���	 ���	 ����	 ���	 ���	

���	 ���	 ���	 ���	 ����	 ���	 ���	 ���	 ��� and ��� �

Thus	 the number of Chamberlain solutions required to generate the results has

been reduced from ��� to ��	 that is	 by a factor of �� This signicant decrease in

the number of Chamberlain solutions required to generate the results is re�ected

in the large decrease of the CPU run
times� The total CPU run
time to gener


ate these results by Chamberlain�s method is ��m ��s� The total CPU run
time

required by the new method is ��m ��s	 which represents a saving of ��!� This

reduction in CPU run
times is not as signicant as the reduction in the number

of Chamberlain solutions used	 because at the values of �� where Chamberlain

solutions are not used	 the solutions generated by the new two
dimensional trial

functions still have to be calculated� The solid	 higher line in Fig���� depicts the

re�ected amplitude given by the mild
slope equation plotted against the param


eter Ws �as used by Booij ���� generated by both methods� As one would expect

with these prescribed tolerances in the error	 there is practically no di�erence

between the two sets of results�

Now that we have a method that works well with the mild
slope equation	 we

are in a position to make slight amendments so that it encompasses the other two

��
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Figure ���� Re�ected amplitude over the depth prole H�x�������x��� x� ���

model equations� In fact	 all that is required is to replace the mild
slope U and �

functions given by ����� and ����� by the corresponding Eckart and shallow water

ones� Thus in the case of Eckart�s equation we use

U�x� �
� � e��
����

�H

����� ��

and

��x� �
q

����� �� coth ����� ��H� �

In the case of the shallow water equation we use ��x� � �� and U�x� � H�x��

In order to compare the mild
slope and Eckart results	 we shall also solve

Eckart�s equation over the talud with depth prole given by

H�x� � � � �

�
x �� � x � �� 	

for a wave of unit amplitude incident from x � ��� We seek the solution of

Eckart�s equation for values of �� between ���� and ��� at intervals of ���� �with

��



� given at each value of �� by � �
p

������� Using Chamberlain�s method to gen


erate extremely accurate solutions of Eckart�s equation	 with three
dimensional

trial spaces for �� � � and six
dimensional trial spaces for �� � �	 has a total CPU

run
time of ��m ��s� The two
dimensional trial space method with the tolerance

in the error set to be a minimum of ��s�f� accuracy in jRkj and jTkj �k � �	 ��	

uses Chamberlain solutions at �� values of ��	 given by

�� � ����	 ���	 ���	 ���	 ���	 ����	 ���	 ���	 ���	

���	 ���	 ���	 ���	 ����	 ���	 ���	 ���	 ��� and ��� �

Therefore	 the number of Chamberlain solutions required has been again reduced

by a factor of �� The total CPU run
time required is ��m ��s	 which represents a

saving of ��! in CPU time compared with using Chamberlain solutions at each

value of ��� The dashed	 lower line in Fig���� depicts the re�ected amplitude given

by the Eckart�s equation plotted against the parameter Ws �as used by Booij ����

generated by both methods� Again	 with these prescribed tolerances in the error	

there is practically no di�erence in the two sets of results� The di�erence in the

Eckart and mild
slope results are discussed in section ����

As a di�erent example	 we shall solve the shallow water equation �SWE� over

the trench whose depth prole is given by

H�x� � � � x��� x�� �� � x � �� 	

for a wave of unit amplitude incident from x � ��� We seek the solution of

the SWE for the ��� values of �� between ���� and ���� at intervals of �����

Using Chamberlain�s method with three
dimensional trial spaces for �� � � and

six
dimensional trial spaces for �� � �	 has a total CPU run
time of ��m ��s�

The two
dimensional trial space method with the tolerance in the error set to

be a minimum of ��s�f� accuracy in jRkj and jTkj �k � �	 ��	 uses Chamberlain

solutions at �� values of ��	 given by

�� � ����	 ���	 ���	 ���	 ���	 ���	 ���	 ���	 ����	 ���	

���	 ���	 ����	 ���	 ���	 ���	 ���	 ��� and ���� �

Now the number of Chamberlain solutions required has been reduced by a factor

of ��	 and the total CPU run
time is ��m ��s� This represents a saving of ��! in

��



CPU time compared with using Chamberlain solutions at each value of ��	 which

is slightly higher than that achieved in the mild
slope and Eckart examples due to

the larger decrease in the number of Chamberlain solutions used� From Fig����	

we notice that there is no observable di�erence in the results	 as expected with

α 0
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Figure ���� SWE re�ected amplitude for depth prole H�x����x���x�����x� ���

the choice in the tolerance of the errors� Similar percentage savings have been

found for all three model equations on all bed proles tested	 with the tolerance

in the error as specied above�

This section has shown that the two
dimensional trial space method signif


icantly reduces CPU run
times by approximately one third for all three model

equations on all depth proles tested� Although this is an excellent improvement	

we can do even better as shown in the next subsection�

��



����� Extra computational saving

A further source of computational saving can be e�ected without compromising

the approximations already described� As already mentioned in this chapter	 by

substituting trial functions ���k �k � �	 �� into the functionals J��
k �k � �	 ��	 given

by

J��
k ����k � � �����k 	 S��f��k �� � �A�����k 	 ���k � �k � �	 �� 	

we generate approximations to the inner products

�
��k 	 P ��f��k � �k � �	 �� � ������

Similarly	 by substituting trial functions ��k �k � �	 �� into the functional J��
� 	

given by

J��
� ���� 	 ��� � � ���� 	 S��f��� � � �S��f��� 	 ��� �� � �A����� 	 ��� � 	

we generate an approximation to the inner product

�
��� 	 P ��f��� � � ������

The trial functions ���k �k � �	 �� are determined by making the functionals

J��
k �k � �	 �� stationary within their respectful trial spaces� Similarly	 the trial

functions ��k �k � �	 �� are determined by making the functional J��
� stationary

within its trial space� It was noticed that if ���k �k � �	 �� were used in the

functional J��
� to estimate �
��� 	 P ��f��� �	 this estimate was the same	 to ��s�f�	

as that obtained when ��k �k � �	 �� are used in J��
� � The previous tests that

we have used to check the accuracy of the re�ection and transmission coe�cients

revealed that the maximum error in jRkj and jTkj �k � �	 �� using both choices of

trial function in J��
� was the same order of magnitude	 with neither choice always

giving the smallest error� Porter and Stirling ���� �p� ���
���� show how to obtain

approximations to the inner products of the form ������ and ������ and the errors

incurred� However	 they did not investigate whether the trial functions generated

by the functionals J��
k �k � �	 �� gave as good an estimate to �
��� 	 P ��f��� �

when substituted into the functional J��
� 	 as the trial functions generated by the

functional J��
� �

��



It turns out that J��
� ����� 	 ���� � and J��

� ���� 	 ��� � correspond to at least ��s�f�

in all problems undertaken so far for the mild
slope	 Eckart and shallow water

equations� However this result still remains to be proved in full generality� As only

very approximate solutions are being looked for here	 then the approach of only

using the trial functions ���k �k � �	 �� to estimate
�

��j 	 P ��f��k

�
�j	 k � �	 ��

is quite justied� Computationally this device gives a great saving because it

reduces the work load in the  cheap� solution method by nearly one third� We

now test the two
dimensional method with this device incorporated	 which we

shall refer to as the streamlined two
dimensional method�

����� Results

We return to the solution of the MSE for an incident wave of unit amplitude from

x � �� over the depth prole given by

H�x� � � � �

�
x �� � x � �� �

We use the streamlined two
dimensional method to solve this problem with ��

taking values between ���� and ��� at intervals of ���� �with � given at each

value of �� by � �
p

������� We again choose the tolerance in the error to

be a minimum of ��s�f� accuracy in jRkj and jTkj �k � �	 ��� The streamlined

two
dimensional method uses Chamberlain solutions at the same values of �� as

the original two
dimensional method� However	 the total CPU run
time is now

reduced to ��m ��s	 which represents a saving of ��! in CPU time compared

with using Chamberlain solutions at each value of ��� The re�ected amplitude

given by the MSE is depicted in Fig���� and again there is no di�erence in the

results�

Similarly	 if we now solve the above problem for Eckart�s equation instead of

the MSE	 then the streamlined two
dimensional method reduces the total CPU

run
time to ��m ��s	 which represents a saving of ��! in CPU time compared

with using Chamberlain solutions at each value of ��� Finally 	 if we now solve the

previous shallow water problem	 given in subsection �����	 using the streamlined

two
dimensional method	 the total CPU run
time is reduced to ��m �s� This

represents a saving of ��! in CPU time compared to using Chamberlain solutions

��
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Figure ���� MSE re�ected amplitude for depth prole H�x�������x ��� x� ���

at each value of ���

We note that further reduction of the tolerance in the errors of the  cheap�

solutions	 enabling fewer Chamberlain solutions to be found over the �� range	

will only e�ect a small reduction in CPU run
times already obtained with the

��s�f� tolerance in the error� This is because the major saving in CPU run
time

was achieved by reducing the total number of Chamberlain solutions found over

an �� range by a factor of � or ��� In the examples given in this section	 the

two
dimensional methods use �� �or less� Chamberlain solutions to nd solutions

of the model equations at ��� �or more� values of ��� Therefore	 any further

reduction in the number of Chamberlain solutions used in the two
dimensional

methods will only give rise to a small percentage �� �!� decrease in the previously

obtained CPU run
times� Also a reduction in the tolerance will make the error

in the  cheap� solutions noticeable in graphical displays of solutions� We do not

��



therefore	 pursue this issue further�

In conclusion	 we can see that this new approach has been very successful	

with very large savings in CPU run
times being achieved without loosing any

observable accuracy in the solutions�

We now turn our attention to Eckart�s equation�

��� Eckart�s equation

Eckart�s equation	 which gives an alternative approximation to �ow over topog


raphy	 has non
dimensional form	

d

dx

�
U
d��
dx

�
� ��U�� � � 	 ������

where Re����x�e�i�t� is an approximation to the free surface elevation	

U�x� �
� � e����H

���
	 ������

and � � ��x� is given by

��x� � �
q

coth���H� 	 ������

with the dimensionless parameters �	 �� and � given by

� �
��l

g
� ��

�� 	 �� �
�lp
gh�

and � �
h�
l
�

The same scaling process used in section ��� with the mild
slope equation	 has

been employed here to convert Eckart�s equation given in section ��� to the above

non
dimensional form�

We notice that the terms in Eckart�s equation ������ are all given explicitly and

so ������ is much more computationally attractive than the mild
slope equation

�����	 in which the wave number � is given implicitly by the dispersion relation

������ An advantage of the explicit nature of ������ is re�ected in the CPU run


times for solving the mild
slope and Eckart equations� Consider the example

given in section �����	 where the mild
slope and Eckart equations are solved over

the talud with depth prole H�x� � � � �
�x �� � x � ��� Using Chamberlain�s

method to solve both equations at ��� values of �� and � 	 the mild
slope equation

��



had a run
time of ��m��s and Eckart�s equation had one of ��m��s� Miles ���� also

revived Eckart�s equation	 when he derived it from a new variational approach�

Miles� notes that Eckart�s equation conserves wave action but	 unlike the mild


slope equation	 does not conserve wave energy �except for uniform depth�� Miles

compares the two approximations through the calculation of re�ection from a

gently sloping beach of nite o�shore depth and nds that Eckart�s equation

is inferior to the mild
slope equation in its prediction of the amplitude in the

re�ection problem if the o�shore depth is neither shallow or deep� This agrees

with the evidence appearing in Fig���� where the re�ected amplitudes of the mild


slope and Eckart approximations are compared over a talud with depth prole

H�x� � � � �
�
x �� � x � ��� The similarity of the mild
slope and Eckart

solutions	 depicted in Fig���� for the depth prole H�x� � � � �
�
x �� � x � ��

encouraged attempts to improve Eckart�s approximation without compromising

its advantageous explicit form�

The depth proles of concern here are the ones which vary only in the interval

��	 ��	 and have �at bed depths H� � � for x � � and H� � h�
h�

for x 
 �� Thus	 at

each value of �� and � in Eckart�s equation	 the travelling waves on the left�right�

of the undulating region have wave numbers �e���
e
�� dened as

�e� � �
q

coth���H�� � �e� � �
q

coth���H�� � �

Eckart ���� notes that the positive real root x of the dispersion relation

a � x tanh�x� ������

is approximated by

x � a
q

coth�a� ������

with a maximum di�erence of �! for any value of a� Thus at each �� and � 	 the

wave number of a left �right� incident wave	 �e� ��e��	 is not quite the same as the

correct wave number	 �m� ��m� �	 used in the mild
slope equation	 where �m� ��m� �

is the positive real root of the dispersion relation

��
�� � �m� tanh��m� �H�� ���

�� � �m� tanh��m� �H�� � �

So	 in e�ect	 at each value of �� and � 	 the mild
slope and Eckart equation are

solving di�erent problems� The di�erence in the mild
slope and Eckart wave

��



numbers could be resolved by simply using the correct wave number	 given by

the positive real root of the dispersion relation ����� in Eckart�s equation instead

of Eckart�s approximation to it	 which is given by ������� However	 this device

defeats the advantage o�ered by Eckart�s equation � that each term in the equa


tion was explicit� So the issue is whether a new	 explicit approximation to the

positive real root of ������ can be generated which is more accurate than �������

This is indeed possible�

A direct approach is used in which the solution x of ������ is approximated

by adding a small correction term to ������� Thus x is approximated in the form

x � x� � x�

where x� � a
q

coth�a� and x� is a small correction term� Substituting for x in

������ gives

a � �x� � x�� tanh�x� � x�� 	

that is	

a � �x� � x��



tanh�x�� � tanh�x��

� � tanh�x�� tanh�x��

�
� ������

Then	 using the expansion tanh�x�� � x� � O�x���	

a�� � tanh�x�� tanh�x���

� a� a tanh�x�� tanh�x��

� a� �x� � x��



tanh�x�� � tanh�x��

� � tanh�x�� tanh�x��

�
tanh�x�� tanh�x��

� a� �x� � x��



tanh�x�� � x� � O�x���

� � �x� � O�x���� tanh�x��

�
tanh�x���x� � O�x����

� a� �x� tanh��x���x� � O�x��� 	

and

�x� � x���tanh�x�� � tanh�x��� � x� tanh�x�� � x��x� � tanh�x��� � O�x��� �

Thus ������ becomes

a � �x� tanh��x���x� � x� tanh�x�� � x��x� � tanh�x��� � O�x��� 	

and neglecting second and higher order terms in x� �as x� is assumed to be small�

gives

x� �
a� x� tanh�x��

x� � tanh�x��� x� tanh��x��
�

��



Thus	 the new two
term explicit approximation to ������ is given by

x � x� � x�

� x� �
a� x� tanh�x��

x� � tanh�x��� x� tanh��x��
	

which simplies to

x �
x��sech��x�� � a

x�sech��x�� � tanh�x��
� ������

Computations have shown that ������ gives the solution x of ������ to machine

accuracy for a � ���	 and for � � a � ���	 the maximum di�erence is ����!� Thus

������ is a new explicit approximation to ������ which is a signicant improvement

on �������

We shall now replace the function � � ��x� dened by ������ by

��x� �
�

�H

�
�vsech�v��� � ��H

vsech��v� � tanh�v�

�
	 ������

where v � v�x� � ��H
q

coth���H�	 in Eckart�s equation	 and call the resulting

equation the new Eckart equation� We now nd the solution of the new Eckart

equation for an incident wave of unit amplitude from x � �� over the depth

prole given by

H�x� � � � �

�
x �� � x � �� �

We use the streamlined two
dimensional method to solve this problem with ��

taking values between ���� and ��� at intervals of ���� �with � given at each

value of �� by � �
p

������� We choose again the tolerance in the error to be

a minimum of ��s�f� accuracy in jRkj and jTkj �k � �	 ��� The amplitude of

the re�ected wave given by the new Eckart equation is depicted in Fig����	 along

with the corresponding results from the mild
slope and Eckart�s equations� We see

that the peaks and troughs of the re�ected amplitudes predicted by the mild
slope

and new Eckart equations are almost in line� The size of the re�ected amplitude

predicted by the new Eckart equation is also an increase on that given by Eckart�s

equation� However	 the re�ected amplitude given by the new Eckart equation is

still not as large as that given by the mild
slope equation� The di�erence in results

from both is now due to the di�erence of the mild
slope and Eckart U functions�

As yet	 no approximation has been found	 such as the one used in conjunction

with the wave number functions	 that can rectify this di�erence� The new Eckart

��



|R
 1

|

Ws

MSE       

Eckart    

New−Eckart

10
−1

10
0

10
−2

10
−1

Figure ���� Re�ected amplitude over the depth prole H�x�������x ��� x� ���

equation is therefore an amalgamation of two approximations� The approach

most likely to produce the U corresponding to the new � ������ is to use the

variational principle of Miles ���� with the trial function that generates the �

function as given by ������� However	 such a trial function has not as yet been

found�

Other attempts have been undertaken to overcome the inferiority in the re


�ected amplitude of Eckart�s equation for the problem over a depth prole given

by

H�x� � � � �

�
x �� � x � �� �

In Eckart�s original equation ������ � ������	 the manoeuvre of employing ������

instead of ������ to ensure that the Eckart and mild
slope wave numbers are the

same at �� and � 	 was replaced by using a variety of articial bed shapes� An

approach of this type would also a�ect the Eckart U function ������	 as it depends

��



on the bed shape and so it was hoped that this device would bring the re�ected

amplitude into line� The �at bed depths for the Eckart problem in � � x and

x 
 � were chosen so that the Eckart and mild
slope wave numbers were identical

at each �� and � over these �at regions� This guaranteed that at each value of

�� and � 	 the mild
slope and Eckart problems had the same incident wave� A

variety of choices of depth prole for joining the two �at bed regions together

were used� However	 none of the results over any of the articial beds caused the

re�ected amplitude predicted by Eckart�s approximation to be any closer to that

predicted by the mild
slope approximation than the re�ected amplitude obtained

using ������ in Eckart�s approximation instead of �������

Employing ������ in Eckart�s equation ensures that this approximation has

practically the correct wave number at each value of �� and � 	 and thus the

mild
slope and Eckart equations have practically identical solutions over a �at

bed� Currently	 this is the best possible improvement to Eckart�s equation	 but

it still has an inferior re�ected amplitude problem as compared with the MSE�

The discovery of a trial function for the variational principle by Miles ���� which

delivers the � function ������ and a new corresponding U function	 should remove

this problem�

A nal point of interest in Eckart�s approximation is the method by which it

was derived� Eckart obtained his equation ������ by rstly transforming the linear

boundary
value problem ������ for the time
independent velocity potential � into

an integral equation� He then discarded	 without justication	 an assumed small

integral and converted the resulting approximate problem back to a di�erential

equation� It was hoped that an investigation into this method would yield an

error bound between the full linear integral equation and Eckart�s approximate

integral equation� However	 the complexity of the discarded term �an integral

whose integrand contained a di�erential operator amongst its terms� stopped this

line of approach� So an error bound which shows how accurately the mild
slope	

Eckart and shallow water models approximate � still does not exist�

In this section	 we have seen that for wave scattering problems	 Eckart�s ap


proximation gives an inferior re�ected amplitude compared with that given by the

mild
slope approximation� Currently	 the best possible improvement to Eckart�s

��



approximation is e�ected by replacing the � function ������ in Eckart�s equation

by ������� The new equation still gives a slightly inferior re�ected amplitude than

that given by the MSE� The very accurate	 explicit approximation ������ to the

root of the dispersion relation ������ has never been seen before	 and is an excel


lent rst term to use in an iteration method to give machine accurate solutions

of ������� �See Newman ���� for details of such iterative methods��

��� Symmetry Properties

Here	 certain intrinsic properties of a particular type of second
order di�erential

system	 referred to as symmetry properties	 are derived� When the second
order

system is specied to be one of the model equations	 mild
slope	 Eckart or shallow

water	 the well
known symmetry properties of the re�ection and transmission

coe�cients are found� These properties were rst derived by Newman ���� for

the full linear problem� More recently	 Chamberlain ��� used integral equation

methods to derive these properties for the mild
slope approximation�

Consider the general second
order di�erential equation in the form

� �L���x� � r�x���x� � m�x� 	 ������

where the di�erential operator L is dened by

�L���x� � ��p�x����x��� � q�x���x� 	 ������

and where p	 q	 r and m are continuous	 real
valued functions	 p is di�erentiable

and  is a given real parameter" the prime denotes di�erentiation with respect to

x� Suppose that � satises the boundary conditions

a����� � b��
���� � c� 	

a����� � b��
���� � c� 	

������

where the constants ai	 bi and ci �i � �	 �� � C�

Now suppose that � satises ������ together with the boundary conditions

e����� � f��
���� � g� 	

e����� � f��
���� � g� 	

������

��



where the constants ei	 fi and gi �i � �	 �� � C�

Then an application of Green�s theorem on ��	 ��	 that is	

Z �

�
��L�� �L�� dx �

�
p���� � ����

	�
�
	

yields

Z �

�
m��� �� dx �

�
p���� � ����

	�
�
	

� p���

�
��������



a�
b�
� e�
f�

�
�
g�
f�
����� c�

b�
����



�p���

�
��������



a�
b�
� e�
f�

�
�
g�
f�
����� c�

b�
����


� ������

If m�x� is set identically to zero	 then ������ gives relations between the end
point

values of solutions of the di�erential equation ������

We are considering the scattering of plane harmonic waves normally incident

on a given scaled bed prole H � H�x�	 that varies only in some nite interval

of x	 so that

H�x� �

���
��

H� �x � � 	

H� �x 
 � 	

where H� and H� are constants for a given problem	 and H�x� is assumed to

be continuous on ���	��� In these circumstances	 all three model equations	

mild
slope	 Eckart and shallow water	 can be written in the general form

�U����
�
� ��U�� � � 	 ������

where Re����x�e�i�t� is an approximation to the free surface elevation� The

functions U � U�x� and � � ��x� are as previously dened in each of the model

equation cases� The di�erential equation ������ reduces to ���� ���
��� � � �x � �

and to ���� � ��
��� � � �x 
 �	 where �� � ���� and �� � ����� Therefore	 as in

Chapter �	 we take

���x� �

���
��

A�ei��x � B�e�i��x �x � � 	

A�e�i��x � B�ei��x �x 
 � 	
������

where A� denotes the prescribed amplitudes of the incident plane waves propa


gating from x � �� respectively and B� denotes the unknown amplitudes of the

��



scattered waves propagating towards x � �� respectively� As already noted in

Chapter �	 the re�ection and transmission coe�cients for an incident wave from

the left �A� � �� are dened by

R� �
B�

A�
and T� �

B�

A�
������

and those for an incident wave from the right �A� � �� are dened by

R� �
B�

A�
and T� �

B�

A�
������

Using the equations ������ and enforcing the continuity of �� and ��� at x � �

and x � � gives the boundary conditions

������ � i������� � �A�i�� 	

������ � i������� � ��A�i��e
�i�� �

������

Choosing p	 q	 r and m of the di�erential equation ������ to be the corre


sponding terms in di�erential equation ������	 that is	 p � U	 q � ��U	 r � �

and m � �	 reduces ������ to the identity

� � U���

�
��������



a�
b�
� e�
f�

�
�
g�
f�
����� c�

b�
����



� U���

�
��������



a�
b�
� e�
f�

�
�
g�
f�
����� c�

b�
����


�

������

Now the symmetry relations of the re�ection and transmission coe�cients can

be easily found� Firstly	 choose � to be the solution of ������ and ������ for an

incident wave of unit amplitude from the left �so A� � �	 A� � �� and choose �

to be the complex conjugate of �� Hence � satises ������ and the constants in

the boundary conditions ������ and ������ satised by � and � respectively are

given by

a� � i�� � e� 	 b� � � � f� 	 c� � �i�� � g� 	

a� � �i�� � e� 	 b� � � � f� 	 c� � � � g� �
������

and from ������ and ������ we see that the functions � and � have end
point

values

���� � � � R� � ���� and ���� � T�e
i�� � ���� � ������

��



Substituting ������ and ������ into the identity ������ gives

� � U���
�
��i��T�T �

�
� U���

�
�i���R�R� � ��

�
	

which is easily rearranged to give the relation

jR�j� �
��U���

��U���
jT�j� � � � ������

For the same �	 choose � to be the solution of ������ and ������ for an incident

wave of unit amplitude from the right �so A� � �	 A� � ��� This results in the

constants in the boundary condition ������ satised by � to be redened as

e� � i�� 	 f� � � 	 g� � � 	

e� � �i�� 	 f� � � 	 g� � ��i��e�i�� �
������

� now has end
point values given by

���� � T� and ���� � e�i�� � R�e
i�� � ������

Substituting ������ and ������ into the identity ������ gives the relation

��U���T� � ��U���T� � ������

Now choose � to be the complex conjugate of the solution of ������ and ������ for

an incident wave of unit amplitude from the right� This redenes the constants

of ������ to be the complex conjugate of those dened by ������� Similarly	 the

end
point values of � are just the complex conjugate of those dened by �������

Substituting into the identity ������ results in the relation

��U���R�T� � ���U���T �R� � ������

The nal symmetry relation is derived by choosing � to be the solution of

������ and ������ for an incident wave of unit amplitude from the right and

retaining the most recent �� The constants in the boundary conditions ������

satised by � are given by

a� � i�� 	 b� � � 	 c� � � 	

a� � �i�� 	 b� � � 	 c� � ��i��e�i�� �

� now has end
point values given by

���� � T� and ���� � e�i�� � R�e
i�� �

��



Substituting into the identity ������ gives the nal symmetry relation

jR�j� �
��U���

��U���
jT�j� � � � ������

Therefore	 the re�ection and transmission given by the three approximations

satisfy these symmetry relations	 with the � and U functions dened according

to the approximation used�

These symmetry relations can also be derived within the framework of integral

equations using an integral equation form of the identity ������ with the same

choices of input functions� Chamberlain ��� has used this approach and it is brie�y

reiterated here�

From Chapter � we recall the integral equation ������	 namely	

�j�x� � �aje
i��x � �bje

�i��x � i

���

Z �

�
ei��jx�tj��t��j�t� dt �j � �	 ��	 ������

where the �	� subscripts have been introduced to denote incident wave direction

from the left or right respectively� Therefore from Chapter � we see that the

constants �aj and �bj �j � �	 �� are dened by

�a� � ��
�
iU �����

���U���

�
����� 	

�b� �

�
iU �����

���U���
�
�� � ��

���

�
ei������� 	

������

�a� � �
�
iU �����

���U���

�
����� 	

�b� � ei
������
��
��

vuutU���

U���
�

�
iU �����

���U���
�
�� � ��

���

�
ei������� �

������

It follows that �j � L���	 �� satises

�j � �ajf
� � �bjf

� � KP�j �j � �	 �� 	 ������

where the operators K and P are dened by

�K���x� �
�i
���

Z �

�
ei��jx�tj��t� dt and �P���x� � ��x���x� 	

��



and all the other constants	 functions and operators are as dened in Chapter � �

Noting that if � satises the di�erential equation and boundary conditions that

give rise to the � integral equation ������	 namely	

� �� � ��
�� � �� 	

and

� ���� � i������ � �i���a 	

� ����� i������ � ��i��e�i���b 	

then � also satises the same di�erential equation and the complex conjugate of

the boundary conditions� Therefore	 � satises the integral equation ������ with

�aj and �bj replaced by �aj and �bj	 where

�a� � �� �

�
� � iU �����

���U���

�
����� 	

�b� �

�
� �

iU �����

���U���
� �� � ��

���

�
ei������� 	

������

�a� �

�
�� iU �����

���U���

�
����� 	

�b� � �ei
��������
��

vuutU���

U���
�

�
� �

iU �����

���U���
� �� � ��

���

�
ei������� �

������

Now suppose that �j � L���	 �� �j � �	 �� satises

�j � gj � KP�j �j � �	 �� 	

where gj � �jf
� ��jf

� for some �j and �j �j � �	 �� and consider the functional

S given by

��i��S���	 ��� � ���	 P g��� ���	 P g�� �

We denote the adjoint of an operator T by T �� Then	 as P � P �	 we see that

��i��S���	 ��� � ���	 P �I �K�P ����� ���	 P �I �K�P ����

� �P �I �KP ���	 ���� �P �I �KP ���	 ���

� � �

��



Substituting x � � and x � � into the integral equation satised by �j �j � �	 ��

yields

i

���

Z �

�
f��t���t��j�t� dt � �j � �j � �j��� 	

i

���

Z �

�
f��t���t��j�t� dt � �j � �je

��i�� � e�i���j��� 	

and hence it follows that

S���	 ��� � �������� ������� � �������� � ��������e�i�� � � � ������

This identity is equivalent to the identity ������ which was derived within the

framework of di�erential equations� Before the symmetry relations are rederived	

the denitions of the re�ection and transmission coe�cients	 as given previously

in Chapter �	 are restated here for convenience as follows�

R� � ����� � � 	

T� � �����e�i��
s
U���

U���
�

������

R� � �����e�i��
s
U���

U���
� e��i�� 	

T� � ����� 	

������

where the subscripts �	 � distinguish between waves incident from the left or the

right respectively�

Substituting �� � �� �and therefore �� � �a� 	 �� � �b�� and �� � �� �and

therefore �� � �a� 	 �� � �b�� in S gives

S���	 ��� � ����� � ����� � j�����j� � ��
��
j�����j� � � 	

and employing ������ reduces this to the symmetry relation ������ 	 namely	

jR�j� �
��U���

��U���
jT�j� � � �

By the same procedure

S���	 ��� � � implies ��U���T� � ��U���T� 	

S���	 ��� � � implies ��U���R�T� � ���U���T �R� 	

S���	 ��� � � implies jR�j� �
��U���

��U���
jT�j� � � �

��



In the nal part of this section	 we need to recall the rank two system of

equations dened in Chapter �� This relates �j��� and �j��� �j � �	 ��	 the end

point values of the solutions �j �j � �	 �� of the integral equation ������ with

the inner products �
j	 P fk� �j	 k � �	 ��� The 
j �j � �	 �� � L���	 �� are the

solutions of the real valued integral equations

�I � LP �
j � fj �j � �	 �� 	

where I is the identity operator and the operators L and P are dened by

�L
��x� �
�

���

Z �

�
sin ���jx� tj�
�t� dt and �P
��x� � ��x�
�x� 	

and where the free terms are dened by f��x� � cos���x� and f��x� � sin���x��

In Chapter � and the rst part of Chapter � 	 we have used variational techniques

to approximate the values of these inner products� For convenience we give the

rank two system of equations here	 namely	

�
B�
�
B� b� b�

b� b

�
CA � i

�
B� B� B�

B� B�

�
CA
�
B� c� � b� c � b�

c� � b� c� � b

�
CA
�
CA
�
B� �j���

�j���

�
CA

� �
�
B� b�

b�

�
CA� i

�
B� B� B�

B� B�

�
CA
�
B� c� � b�

c� � b�

�
CA �j � �	 �� 	

������

where the values of known constants bi and ci �i � �	 � � � 	 �� are chosen according

to whether �j corresponds to the solution of the integral equation ������ for an

incident wave from the left or right	 or the complex conjugate of the solution of

������ for an incident wave from the left or right �as seen earlier in this section�	

and

B� � �
��A�� � A��� and B� � �

��A�� � �iA�� �A���

and

Ajk �
�

���
�
j	 P fk� �j	 k � �	 ���

Now the re�ection and transmission coe�cients are dened by ������ and ������

in terms of �j��� and �j��� �j � �	 �� and therefore 	 through the rank two

system of equations ������	 in terms of the inner products �
j	 P fk� �j	 k � �	 ���

When calculating the re�ection and transmission coe�cients	 it was noticed that

��



even by using poor approximations to the inner products �
j	 P fk� �j	 k � �	 ��	

the resulting re�ection and transmission coe�cients still satised the symmetry

relations� This property is explained by the following theorem�

THEOREM ��� The re�ection and transmission coe�cients de�ned by ����	


and �����
 satisfy the symmetry relations �����
 ����	
 �����
 �����
 for any

approximation to the values of the inner products �
j	 P fk� �j	 k � �	 ���

Proof�

The rank two system of equations ������ is used to express ���� and ����	 and

thus the re�ection and transmission coe�cients	 in terms of the inner products

�
j	 P fk� �j	 k � �	 ���

Two approaches can now be used� The direct approach is to invert the rank

two system ������	 and substitute the complicated resulting expressions for Ri and

Ti �i � �	 �� into the symmetry relations� After some long	 but simple	 algebraic

manipulation one nds that all the terms containing these inner products cancel�

Therefore	 whatever values these inner products take	 the resulting re�ection and

transmission coe�cients	 which are dened in terms of them	 will always satisfy

the symmetry relations�

A second	 more illuminating approach follows from rewriting the rank two

system in three parts	 which are given by

�
B� dj

ej

�
CA � i

�
B� B� B�

B� B�

�
CA
�
B� �j � dj

�j � ej

�
CA �j � �	 �� 	 ������

where �
B� dj

ej

�
CA �

�
B� b� b�

b� b

�
CA
�
B� �j���

�j���

�
CA�

�
B� b�

b�

�
CA �j � �	 �� 	 ������

and �
B� �j

�j

�
CA �

�
B� c� c

c� c�

�
CA
�
B� �j���

�j���

�
CA�

�
B� c�

c�

�
CA �j � �	 �� � ������

A substitution of ������ and ������ into ������ yields the original rank two system

������� For ease of notation	 we write ������ as

xj � iWy
j

�j � �	 �� 	 ������

��



where

xj �

�
B� dj

ej

�
CA 	 y

j
�

�
B� �j � dj

�j � ej

�
CA and W �

�
B� B� B�

B� B�

�
CA �

Now as B� is real	 W � � W 	 where � denotes the conjugate transpose�

It follows that

y�
�
x� � y�

�
�iWy

�
� � ��iy�

�
W �y

�
�� � ��iy�

�
Wy

�
�� � ��y�

�
x��

� � �x��y� 	

and so the identity

y�
�
x� � x��y� � � ������

results� Recapping the above procedure	 the two forms of ������ have been

used to eliminate the W matrix to give the identity ������� The inner prod


ucts �
j	 P fk� �j	 k � �	 �� only appear in the W matrix which only occurs in

equation ������ of our breakdown of the rank two system� So now an identity

������	 very similar to the previous identity ������ found in our integral equation

framework	 has been derived that relates �j��� and �j��� �j � �	 �� and is inde


pendent of the inner products� Therefore this identity will always be satised no

matter what values the inner products take� Finally the symmetry relations are

found by using similar choices of �j �j � �	 �� in ������ to those used earlier� �

One consequence of this theorem is that the symmetry relations can no longer

be used as a method of checking the accuracy of the computed re�ection and

transmission coe�cients�

We cannot prove from the Green�s identity approach that the re�ection and

transmission coe�cients given by an approximation to the solution of the bound


ary 
value problem ������ and ������ automatically satisfy the symmetry relations�

This is because this approach relies on the fact that the right
hand side of the

di�erential equation ������ is zero to derive the symmetry relations� An approxi


mation to the solution of the BVP ������ and ������ will not satisfy the DE ������

exactly and so the right
hand side of ������ will no longer be zero� Chamberlain

and Porter ���� consider this problem using a di�erent approach� They prove

that for an approximation to the full linear wave scattering problem of the form

������ and ������	 the re�ection and transmission coe�cients given by any ap


proximation to the solution of the BVP ������ and ������ automatically satisfy

��



the symmetry relations� It follows that the symmetry relations are an intrinsic

part of the problem rather than of its exact solution	 in the sense that they are

always satised whatever the accuracy of the solution�

In this chapter	 several extensions to the work appearing in Chamberlain ���

� ��� have been presented� A new integral equation method has been developed

which solves the mild
slope	 Eckart and linearised shallow water equations over

a range of their parameters in less than one half of the CPU time required by

Chamberlain�s ��� integral equation procedure� Eckart�s approximation has been

investigated and improved and	 as a by
product	 a new	 explicit and very accu


rate approximation to the solution of the dispersion relation has also been found�

Finally	 after rederiving the symmetry relations of the re�ection and transmis


sion coe�cients of these approximations	 we have shown that these coe�cients

satisfy the symmetry relations even when they are inaccurately calculated	 an

unexpected property�

��



Chapter �

A new approximation to wave

scattering

In this chapter� a new approximation to the full linear wave scattering problem

is derived� A Galerkin approach is used to derive an approximation to the time�

independent velocity potential � which takes account of decaying wave modes as

well as progressive wave modes� The present approach uses an n�term approxi�

mation based on the propagating wave mode and the �rst �n� �� decaying wave

modes over a 	at bed� If none of the decaying wave mode terms are used and if

we discard terms that are second�order on the basis of the mild�slope assumption

jrhj � kh� where h is the undisturbed 	uid depth and k is the corresponding

wave number� then this approach reduces to the mild�slope approximation� The

extended approximation is then tested on a selection of beds of varying steep�

ness and the results are compared with the corresponding results given by the

mild�slope approximation�

��� A Galerkin approximation method

Recall from Chapter 
� that the time�independent velocity potential � satis�es

�r�� �  � h � z �  � �����

��

�z
� �� �  on z �  � ���
�

��

�z
�rh � r� �  on z � �h�x� y� � �����

�




where �r � � �

�x
� �

�y
� �

�z
� and r � � �

�x
� �

�y
�� We also require additional conditions

on lateral boundaries or a radiation condition if the 	uid extends to in�nity to

completely specify �� For the moment� we do not concern ourselves with these

additional conditions as our initial aim is to reduce the dimension of the boundary�

value problem for � by approximating its dependence on the z co�ordinate� This

is achieved via a direct application of the classical Galerkin method�

We seek a weak solution � � � of ����� � ����� in the sense that the residual

�r�� is required to be orthogonal to a given function �� In other words� we require�����
�����
D

�����

�h
� �r��dz

�
dxdy �  �

where D can be any domain in the plane z � � Integrating by parts gives������
������
D

������

�h

�
�r�� � ��zz

�
dz � ���z � ��z�

z��
z��h

�
dxdy �  �

which becomes������
������
D

������

�h

�
�r�����zz

�
dz��� ��z�����z������z��rh�r��z��h

�
dxdy �� �����

when boundary conditions ���
� and ����� are imposed on �� Equation ����� is

a weak form of the boundary�value problem ����� � ����� and can be used to

generate approximations to the solution of that problem�

We shall use a Galerkin approximation � � � of the form

��x� y� z� �
n��X
j��

�j�x� y�wj�x� y� z� � �����

where wj �j � � �� � � � � n� �� are given functions and �j �j � � �� � � � � n� �� are

to be determined from ������ We choose our given function � as

��x� y� z� � wk�x� y� z� �

for some k � �� �� � � � � n � ��� After some simple manipulation� which includes

use of the identity

r� ��jwj� � wjr��j � 
r�j � rwj � �jr�wj �

it is found that the functions �k �k � � � � � � n��� must satisfy the coupled system

of di�erential equations

n��X
j��

��
	r��j

���

�h
wjwkdz ��fjk�r�j �



�
�������

�

�h

wj

��wk

�z�
dz � �gjk

�
A �j

�
� �  � �����

��



for k � � �� � � � � n� �� where

�fjk � �fjk�wj� wk� � rh �wjwk�z��h � 

Z �

�h
wkrwjdz

and

�gjk � �gjk�wj� wk� �

�
wj

�
�wk� �wk

�z

��
z��

�

�
wj

�wk

�z
� wkrh�rwj

�
z��h

�
Z �

�h
wkr�wjdz �

Chamberlain and Porter ��� have used this Galerkin approach with a ��term

approximation �that is� n � � in ����� � to derive a new approximation to � that

contains the mild�slope approximation as a special case� They also show that

this new approximation to � can be derived via a variational approach� which

is similar to the recent work of Miles ���� Indeed� Chamberlain and Porter ���

use the same trial function in both the Galerkin and variational approaches� The

variational principle used in ��� is 	L �  where L is the functional given by

L��� �

�����
�����
D

�
�



�����z�� � �




����

�h
� �r���dz

�
dxdy �

By considering variations which vanish on the lateral boundary C���h� �� where
C is the boundary of D� it follows that L is stationary at � � � if and only if �

satis�es ����� � ������ So the variational principle 	L �  can be used to generate

approximations � � �� In particular� if we use the approximation � given by ������

then after imposing 	L �  for all variations in �k �k � � �� � � � � n � �� which

vanish on C� ��h� �� we eventually �nd after some straightforward manipulation

that �k �k � � �� � � � � n� �� must satisfy ������

The theory up to this point holds for any wj �j � � �� � � � � n � ��� but now

a particular choice of these functions is made� To do this we now consider wave

scattering problems that are independent of the y co�ordinate� The separation

solution of ����� � ����� for uniform depth� given in section 
��� suggests we choose

the functions wj �j � � �� � � � � n� �� as

wj �
ig



�wj � �wj �

cos�Bj�z � h��

cos�Bjh�
�j � � �� � � � � n� �� � �����

in which h � h�x� is the undisturbed 	uid depth and the functions

Bj � Bj�h� � Bj�x� �j � �� 
� � � � � n� �� are the �rst n � � real� positive roots

��



of the relation

� � � Bj tan�Bjh� � �����

arranged in ascending order of magnitude� Equation ����� has an imaginary root

B� � �ik� and so we can write �w� in the form

�w� �
cosh�k�z � h��

cosh�kh�
� �����

where k � k�h� is the real positive root of the local dispersion relation

� � k tanh�kh� � �����

For each �xed value of �� the equations ����� and ����� implicitly de�ne

Bj � Bj�h� �j � �� � � � � n� �� and k � k�h� respectively� Notice that these

wj �j � � � � � � n� �� are an orthogonal set for z � ��h� � and they satisfy the

same surface condition as �� namely

�wj � �wj

�z
�  on z �  �j � � �� � � � � n � �� �

It follows that the function ��w� is an approximation to the progressive wave

mode part of � and the functions ��w�� ��w�� � � � � �n��wn�� are approximations

to the �st� 
nd� � � � � �n� ��th decaying wave mode parts of � respectively�

With this choice for the functions wj �j � � �� � � � � n � ��� it follows from

equations ����� and ����� that� at each x�

Z �

�h
�wj �wkdz �

���
�	

 j �� k �

uj�h� j � k �

where

uj�h� �
�


Bj

tan�Bjh�

�
� �


Bjh

sin�
Bjh�

�
�j � � �� � � � � n� �� �

with B� � �ik� The approximate solution ��x� z� �
n��X
j��

�jwj � � satis�es the

same free surface condition as �� namely

��

�z
� �� �  on z �  �

We recall from Chapter 
 that over a 	at bed� the general solution of ����� � �����

is given by � �
�X
j��

�jwj� Hence� over a 	at bed� � �
n��X
j��

�jwj is the only solution

��



of ����� � ����� corresponding to the progressive wave mode and the �rst �n� ��

decaying wave modes� Also� since the free surface elevation � is de�ned by

��x� t� � Re

��i

g

��x� �e�i�t
�

�

then the approximate solution is such that � � Re
n
e�i�t

Pn��
j�� �j

o
�

Substituting ����� and ����� into ����� reduces ����� to the coupled system

uk
�
���k �B�

k�k
�
�

n��X
j��

n
fjk�

�
j � gjk�j

o
�  �k � � �� � � � � n� �� � ������

where the prime denotes di�erentiation with respect to x� B��h� � �ik�h��

fjk�x� � �fjk� �wj� �wk� � h� � �wj �wk�z��h � 

Z �

�h
�wk �w

�
jdz ����
�

and

gjk�x� � �gjk� �wj� �wk� �
h
�wkh

� �w�
j

i
z��h

�
Z �

�h
�wk �w

��
j dz � ������

If the second step of the mild�slope approximation is used� in which terms

O�h��� jh�j�� are assumed to be negligibly small� then the coupled system ������

reduces to

uk
�
���k �B�

k�k
�
�

n��X
j��

n
fjk�

�
j

o
�  �k � � �� � � � � n� �� � ������

where the terms gjk �j� k � � �� � � � � n� �� are omitted because

gjk � O�h��� jh�j�� �j� k � � �� � � � � n� �� �

�See ���

� below for details��

The method we have employed to derive ������ clearly shows that the two

approximations � �
n��X
j��

�jwj and gjk �  are quite independent� Therefore� we

may suppose that the retention of gjk �j� k � � �� � � � � n � �� gives the coupled

system ������ a wider scope than ������� and so we focus our attention on the

coupled system �������

In the simple case when ����� is just a ��term trial function� then the coupled

system ������ reduces to

�u��
�
��
�
�
�
k�u� � g��

�
�� �  � ������

��



This is a relatively new approximation to the progressive wave mode part of �

and equation ������ is known as the modi�ed mild�slope equation �MMSE�� This

equation was �rst derived by Chamberlain ��� and more recently by Chamberlain

and Porter ��� via the Galerkin and variational procedures given earlier in this

section� Investigations of the modi�ed mild�slope equation over a variety of bed

pro�les are carried out in Chamberlain and Porter ��� and in a subsequent paper

by Chamberlain and Porter ���� Similarly� with the ��term trial approximation�

the coupled system ������ reduces to

�u��
�
��
�
� k�u��� �  � ������

the well�known mild�slope equation �MSE�� Miles ��� adjusted a variational prin�

ciple for non�linear free surface 	ows� due to Luke ����� so that it applied to lin�

earised free surface problems� Miles then used this modi�ed variational principle

to derive the mild�slope equation by apparently discarding a term equivalent to

g�� in the process� The variational principle used by Miles ��� di�ers from the

one used by Chamberlain and Porter ��� in that Miles� variational principle is for

a real�valued potential instead�

Massel ���� used the same Galerkin method as used here with the same choice

for the functions wj� but allowed the depth function to vary in both the x and y

directions� However� allowing h to vary in this way makes the above choice for

the orthogonal functions wj inappropriate in di�raction problems� for example�

as the approximation does not allow for cylindrical waves which arise in these

problems� Massel should have reduced the dimension of the problem by one�

by removing the y dependence� before making the above choice of the functions

wj because this is the situation that these wj are appropriate for� as we have

already demonstrated� The system of di�erential equations Massel derives does�

however� reduce to the system ������ when the y dependence is removed from

the problem� although this is not obvious on �rst reading of the paper because of

Massel�s complicated notation� In his paper� Massel only solves the system ������

in the simpli�ed case of a ��term trial function� In other words� Massel solves the

modi�ed mild�slope equation ������� Massel left the solution of ������ in the case

of an n �� �� term trial function to another paper which is yet to appear�

��



Other approximations for wave scattering by a bed of varying topography that

include decaying wave mode terms have been given by O�Hare and Davies ����

and Rey ��
�� The approximation used by both sets of authors is very similar

and involves replacing the bed pro�le by a series of horizontal shelves joining at

vertical steps� Over each 	at shelf� the velocity potential has an in�nite series

representation �see Chapter 
 section 
��� which contains both progressive and

decaying wave mode terms� Continuity of the velocity potential and its horizon�

tal derivative is imposed throughout the 	uid depth at the ends of each shelf�

which gives a matrix system to solve� As a large number of vertical steps is re�

quired in order to obtain reliable results� the resulting matrix system is large and

consequently both these methods are computationally expensive�

The complicated notation used by Massel ���� in his version of the system

������ is avoided in this approach by evaluating fjk and gjk explicitly�

Di�erentiating ����� and ����� with respect to h gives

� �wj

�h
� sec�Bjh�

��
h
�Bj

�h
�Bj

�
tan�Bjh� cos�Bj�z � h��

�
�
�Bj

�h
�z � h� �Bj

�
sin�Bj�z � h��

� ������

and
�Bj

�h
�

�
B�
j


Bjh� sin�
Bjh�
������

for j � � � � � � n��� Now� di�erentiating ������ and ������ with respect to h gives

�� �wj

�h�
�
cos�Bj�z�h��

cos�Bjh�

��
h
��Bj

�h�
�


�Bj

�h
�
�h

�Bj

�h
�Bj�

� tan�Bjh�

�
tan�Bjh�

�
z�Bj

�h
�h
�Bj

�h
�Bj�� z�

�
�Bj

�h

��
�
�

�sin�Bj�z�h��

cos�Bjh�

�
�

�
h
�Bj

�h
�Bj

��

tan�Bjh� � h
��Bj

�h�
� 


�Bj

�h

�z

�


�Bj

�h
�h
�Bj

�h
�Bj� tan�Bjh� �

��Bj

�h�

��

������

and

��Bj

�h�
�

�

Bj


Bjh� sin�
Bjh�

�� h

Bjh� sin�
Bjh�

�
� � cos��Bjh�

�i
���
�

for j � � � � � � n� �� It follows that

�w�
j �

� �wj

�h
h� �j � � � � � � n� ��

��



and

�w��
j �

�� �wj

�h�
�h��

�
�
� �wj

�h
h�� �j � � � � � � n� �� �

Therefore� the functions fjk and gjk �j� k � � � � � � n � �� de�ned by ����
� and

������ respectively can be written as

fjk�x� �

�
� �wj �wk�z��h � 


Z �

�h
�wk

� �wj

�h
dz

�
h� ���
��

and

gjk�x� �

�Z �

�h
�wk

� �wj

�h
dz

�
h��

�

��
�wk

� �wj

�h

�
z��h

�
Z �

�h
�wk

�� �wj

�h�
dz

�
�h��

�
�

���

�

A little algebra incorporating the use of relations ����� and ����� shows that the

integrals appearing in ���
�� and ���

� are given by

������
�

�h

�wk

� �wj

�h
dz �

�������
�����	

sec�Bkh�sec�Bjh�

�
B�
j

B�
k �B�

j

�
�k �� j� �

sec��Bkh�

� �Dk � sin�Dk��

�
sin�Dk��Dk cos�Dk�

�
�k � j�

and

�������
�

�h

�wk

�� �wj

�h�
dz �

��B�
j sec�Bkh�sec�Bjh�

Dk � sin�Dk�



B�
B�

k��B�
j�B�

k� sin
��Bjh��

�Bk �Bj��Bk �Bj�
��
�
CA �k �� j�

and�������
�

�h

�wk

�� �wk

�h�
dz �

�Bksec��Bkh�

�
 �Dk�sin�Dk��
�

h
�Dk�� � ��Dk�� sin �Dk�

��Dk

�
Dk�
 sin�Dk�

��
sin��Dk��
 cos�Dk�

�

�� sin��Dk�
�
� � 
 cos����Dk�

� i
�

where Dk � 
Bkh� and B� � �ik� It is simple to see that the remaining terms

in ���
�� and ���

� are given by

�
�wk �wj

�
z��h

� sec�Bkh�sec�Bjh� �j� k � � � � � � n� ��

and

�
�wk

� �wj

�h

�
z��h

�

sec�Bkh�sec�Bjh�Bj sin

��Bjh�


Bjh� sin�
Bjh�
�j� k � � � � � � n� �� �

��



��� Scaling

We choose the same class of depth pro�les as in Chapter 
� which are varying

only in some �nite interval of x� We assume that

h�x� �

���
�	

h� �x �  �

h� �x 	 l �

where h�� h� and l are given constants� and where h�x� is continuous on ��
�
��

We allow h to have a slope discontinuity at the ends of the varying bed� that is�

at x �  and x � l� At the moment we shall consider the scattering of plane

harmonic waves normally incident on a given depth pro�le� The generalisation

to obliquely incident waves will be dealt with later�

The scaling process now employed is the same as that used in Chapter 
�

Therefore� we let

�x �
x

l
�

�z �
z

h�
�

H��x� �
�

h�
h�l�x� �

Uk��x� �
�

h�
uk�l�x� �k � � � � � � n� �� �

Wk��x� �z� �
�


l
wk�l�x� h��z� �k � � � � � � n� �� �

��k��x� �
�

l
�k�l�x� �k � � � � � � n� �� �

Fjk��x� �
l

h�
fjk�l�x� �j� k � � � � � � n� �� �

Gjk��x� �
l�

h�
gjk�l�x� �j� k � � � � � � n� �� �

Again� we introduce dimensionless parameters �� � and �k �k � � � � � � n��� by

� �

lp
gh�

� � � h��l and �k � Bkl �

�



Remembering that B� � �ik� we also de�ne the real dimensionless parameter

� by � � i��� As in Chapter 
� we shall discard the accents from the scaled

independent variable and from the �k �k � � � � � � n��� in the pursuit of a simple

notation�

In terms of these dimensionless quantities the coupled system of equations

������ is

Uk

�
���k � �k

��k
�
�

n��X
j��

n
Fjk�

�
j �Gjk�j

o
�  �k � � �� � � � � n� �� � ���
��

where the prime denotes di�erentiation with respect to x� The functions Uk are

given by

Uk �
�


�k�
tan��k�H�

�
� �


�k�H

sin�
�k�H�

�
�k � � � � � � n� �� ���
��

and the functions �k are the positive real roots of

� �
�� � �k tan��k�H� �k � �� � � � � n � ��� ���
��

arranged in ascending order of magnitude and �� � �i�� where � is the positive

real root of

�
�� � � tanh���H� � ���
��

For j� k � � � � � � n� �� where j �� k� the functions Fjk and Gjk are given by

Fjk � sec��k�H�sec��j�H�

�
�k

� � �j
�

�k
� � �j

�

�
H � ���
��

and

Gjk�

�
sec��k�H�sec��j�H�

�j
�

�k
� � �j

�

�
H ��

�
�

�j� sec��k�H�sec��j�H�


�j�H � sin�
�j�H�

�
B���j��k����j
���k�� sin���j�H��

��k � �j���k � �j�
��

�
CA�H ����

���
��

For k � � � � � � n� � the functions Fkk and Gkk are given by

Fkk �
sec���k�H�


 �Dk � sin�Dk��

�
� sin�Dk� �Dk�
�cos�Dk��

�
H � ���
��

��



and

Gkk �
sec���k�H�

� �Dk�sin�Dk��

�
sin�Dk��Dk cos�Dk�

�
H ��

� �

�


�k� sec���k�H�

�Dk�sin�Dk��
�

�
�Dk�

� � ��Dk�
� sin�Dk�

��Dk

�
Dk�
 sin�Dk�

��
cos��Dk��
 cos�Dk���

�

�� sin�Dk� sin�
Dk�
�
�H ��

�
�

�����

where Dk � 
�k�H�

If we apply the second approximation step of the mild�slope approximation

to the coupled system ���
��� then the reduced system is the same as ���
�� with

just the Gjk terms omitted�

OnceH� � and � have been assigned then all the other quantities in equations

���
�� � ����� can be calculated� The functions � and �k �k � � � � � � n��� must

be calculated numerically� This can be done using the e�cient iterative methods

given� for example� by Newman �����

The only other information we require is the boundary or asymptotic condi�

tions on �k �k � � � � � � n� ���

��� Boundary conditions

On the 	at bed for x � � the non�dimensional system of di�erential equations

���
�� reduces to the decoupled set of equations given by

���� � ����
�
�� �  �

���k � ���
k�

�
�k �  �k � �� � � � � n � �� �

where the notation �� � ��� and ��
k � �k�� �k � �� � � � � n��� is used� Similarly�

on the 	at bed for x 	 �� the system ���
�� reduces to the decoupled set of

equations given by

���� � ����
� �� �  �

���k � ���
k�

�
�k �  �k � �� � � � � n � �� �

where the notation �� � ���� and ��
k � �k��� �k � �� � � � � n � �� is used� In

this section we shall only consider the case of a talud � with the simpli�cation

�




to a hump arising from putting h� � h� and therefore �� � �� and ��
k � ��

k

�k � �� � � � � n� ���

The 	uid domain under consideration extends to in�nity� Therefore� we pre�

scribe radiation conditions for �k �k � � � � � � n��� that are based on the radiation

condition for � described in Chapter 
� Hence� we assume that two plane waves

propagating from x � �
 with known coe�cients A� respectively are incident

on the talud� The ��dimensional analogue of the radiation condition for � implies

that the outgoing wave solutions must be bounded at x � �
� Hence� there

will result 
 outgoing plane waves with unknown coe�cients B�
� heading towards

x � �
 respectively� There will also result 
�n � �� outgoing decaying wave

modes with �n � �� of these heading towards x � 
 with unknown coe�cients

B�
k �k � �� � � � � n� �� and with �n� �� heading towards x � �
 with unknown

coe�cients B�
k �k � �� � � � � n� ��� Therefore� we assume

���x� �

�����
���	

A�ei��x �B�
� e

�i��x x �  �

A�e�i��x �B�
� e

i��x x 	 � �

������

�k�x� �

�����
���	

B�
k e

��
k
x x �  �k � �� � � � � n� �� �

B�
k e

���
k
x x 	 � �k � �� � � � � n� �� �

����
�

We shall now use this information to give boundary conditions on �� ��� by

returning to our original approximation � � � given by ����� and employing the

Galerkin procedure again� It follows from ������ and ����
� that our approxima�

tion throughout the 	uid domain� after scaling� is given by

��x� z� �

�������
�����	

���x� z� �x � � �

���x� z� � � x � �� �

���x� z� �x 	 �� �

where

���x� z� �
�
A�ei��x �B�

� e
�i��x

�
W �

� �
n��X
j��

B�
j e

��jxW �
j �

���x� z� �
n��X
j��

�jWj �

���x� z� �
�
A�e�i��x �B�

� e
i��x

�
W �

� �
n��X
j��

B�
j e

���jxW �
j �

��



Here� we have used the notationW �
j � Wj�� z��W

�
j � Wj��� z� �j � � � � � � n����

where Wj �
i

�
��

�Wj� and the functions �Wj �j � � � � � � n� �� are given by

�W��x� z� �
cosh ��� �z �H��

cosh ���H�
and �Wj�x� z� �

cos ��j� �z �H��

cos ��j�H�
�

The set of functions
n
�Wj � j � � � IN

o
is orthogonal for z � ��H� � and in par�

ticular ����

�H
�Wj

�Wkdz �

���
�	

 k �� j �

Uj k � j �

where Uj � Uj�x� is de�ned by ���
���

We wish our approximation � to possess as many properties of � as possible�

and so we certainly need to require that � and ��

�x
are continuous at the ends of

the talud� that is� at x �  and x � �� throughout the 	uid depth� In other

words� we require

�� � �� �
���
�x

�
���
�x

�x � ��H�� � z � � �

�� � �� �
���
�x

�
���
�x

�x � ���H��� � z � � �

Boundary conditions on �j �j � � � � � � n � �� are now derived from the above

matching equations by employing the same Galerkin procedure used in section

��� to derive the di�erential equation system satis�ed by �j �j � � � � � � n� ���

Invoking the continuity of � at x �  gives

n��X
j��

C�
j
�W �
j �

n��X
j��

�j�� �W
�
j ��H�� � z � � � ������

where

C�
j �

���
�	

A� �B�
� �j � � �

B�
j �j � �� � � � � n� �� �

Multiplying ������ by �W �
k �for some k � �� �� � � � � n � ��� and integrating with

respect to z from �H�� to  gives

C�
k � �k�� �k � � � � � � n� �� � ������

In the same manner� invoking continuity of � at x � � gives

C�
k � �k��� �k � � � � � � n� �� � ������

��



where

C�
k �

���
�	

A�e�i�� �B�
� e

i�� �k � � �

B�
k e

���
k �k � �� � � � � n� �� �

As we allow the depth function H�x� to have a slope discontinuity at x � 

and x � �� then it follows that for j � � � � � � n� �

� �Wj

�x

�����
x���

��  �
� �Wj

�x

�����
x���

�  �
� �Wj

�x

�����
x���

��  and
� �Wj

�x

�����
x���

�  �

since the depth function H�x� is constant for x �  and x 	 �� Therefore�

invoking continuity of ��

�x
at x �  gives

n��X
j��

D�
j
�W �
j �

n��X
j��

�
��j

�Wj � �j
� �Wj

�x

�
x���

� ������

where

D�
j �

���
�	

i��
�
A� �B�

�

�
�j � � �

��
jB

�
j �j � �� � � � � n� �� �

Multiplying ������ by �W �
k �for some k � �� �� � � � � n � ��� and integrating with

respect to z from �H�� to  gives

D�
k ���k��� � �k���� ��kH�� tan��k�H��jx����

n��X
j��

d�jk�j�� �k � � ����n� �� �

where

djk�x� �
�

Uk

��������
�

�H�x	

�
z��j � ��jH��

� sin��j� �z �H��

cos��j�H�

cos��k� �z �H��

cos��k�H�
dz

and d�jk � djk���� Evaluating the integral in the expression for djk gives

djk�x� �

�������
�����	

� ��j�
�H �

Uk

sec ��j�H� sec ��k�H�

��k � �j� ��k � �j�
j �� k �

� ��kH�� tan��k�H� �
��k

�k

� 
�H��k cos
� ��k�H�

sin �
�k�H� � 
�k�H
j � k �

Similarly� invoking the continuity of ��

�x
at x � � gives

D�
k ���k���� � �k����� ��kH�� tan��k�H��jx����

n��X
j��

d�jk�j��� �k � � ����n� �� �

where

D�
k �

���
�	
�i��

�
A�e�i�� �B�

� e
i��
�

�k � � �

���
kB

�
k e

���
k �k � �� � � � � n� �� �

��



and d�jk � djk����� Substituting ������ into the expression for D�
k and ������ into

the expression for D�
k gives the coupled boundary conditions

�����������i��� ��H�� tanh���H��j
x���

n��X
j��

d�j��j�� � 
i��A
�� ������

�������������i��� ��H�� tanh���H��j
x���

n��X
j��

d�j��j�� ��
i��e�i��A��������

��k����k����k�� ��kH�� tan��k�H��j
x���

n��X
j��

d�jk�j�� �  � ������

��k�����k�����k�� ��kH�� tan��k�H��j
x���

n��X
j��

d�jk�j��� �  � �����

where k � � � � � � n�� and where the derivatives are evaluated inside the interval

�� ���

The approximation to the free surface elevation is given by

��x� t� � Re
n
e�i�t��x� �

o
��
 � x �
� �

These boundary conditions also make the approximation to the free surface con�

tinuous at x �  and x � �� However� the approximation to the slope of the free

surface is continuous at x �  and x � � only when the slope of the bed is also

continuous at x �  and x � ��

Massel ���� uses the same approach to derive the boundary conditions for his

version of the z independent system ���
��� However� in his approach� Massel

omits the � 
Wj

�x

����
x���

terms when he imposes his version of the matching condition

���
�x

� ���
�x

at x �  ��H�� � z � � and omits the � 
Wj

�x

����
x���

terms when he

imposes his version of ���
�x

� ���
�x

at x � � ��H��� � z � �� These omissions

imply that Massel�s boundary conditions are only correct when

� �Wj

�x

�����
x���

�  �
� �Wj

�x

�����
x���

�

that is� when the depth function has a continuous slope at the ends of the talud�

Massel ���� only goes on to give solutions in the case of a ��term approximation�

However� as a means of testing the ��term approximation� he considers the talud

problem considered by Booij ���� for which Booij computed solutions of the full

linear problem� Unfortunately� this depth function has slope discontinuities where

��



the talud joins the 	at beds� Therefore� the results given by Massel ���� for

the ��term approximation for Booij�s test problem are wrong because he uses

inappropriate boundary conditions�

In the case of a ��term approximation� the di�erential equation system ���
��

reduces to the modi�ed mild�slope equation

�U��
�
��
�
�
�
��U� �G��

�
�� �  �

This is the di�erential equation that Massel ���� solved with his incorrect bound�

ary conditions� Chamberlain and Porter ���� ��� have also used this equation in

a variety of test problems� The above equation reduces to the well�known mild�

slope equation if the G�� term is omitted� Some of the authors that have used this

equation include Berkho� �
�� ���� Smith and Sprinks ����� Booij ���� Kirby �
���

O�Hare and Davies ����� Chamberlain ���� ���� Rey ��
�� Chamberlain and Porter

��� and ���� For both the modi�ed mild�slope and mild�slope equations� all the

above authors have used the boundary conditions which arise from enforcing the

continuity of �� and ��� at the junctions where the varying depth region meets

the 	at beds� For the scaling used in this chapter� these boundary conditions are

given by

����� � i������ � 
i��A� �

������ � i������� � �
i��e�i��A� �
������

where A���	 denotes the coe�cient of the incident wave from the right �left��

None of the above authors returned to the approximation ��W� � � and required

���W�� and ���W��x to be continuous throughout the 	uid depth at the junctions

where the varying depth region meets the 	at beds� which is the approach we

have used in this section� The boundary conditions used by Massel ���� with

the modi�ed mild�slope equation correspond to the above boundary conditions

������ and possibly explains why he omits the �j
� 
Wj

�x
terms in his derivation of

the boundary conditions�

The boundary conditions that we have derived for the ��term approximation

��



are

�����������

�
i��

�
�


�
� 
�H cosh� ���H�

sinh �
��H� � 
��H

�
��
������

��

�
i��A��

�������������
�
i��

�
�


�
� 
�H cosh� ���H�

sinh �
��H� � 
��H

�
��
������

��

��
i��e�i��A��

����
�

As far as is known� these boundary conditions are completely new and reduce to

������ only when the varying bed has a continuous slope at the junctions with

the 	at beds�

We shall refer to the sets ������ and ����
� of boundary conditions for the mild�

slope and modi�ed mild�slope equations as the old set and new set of boundary

conditions respectively�

In Section ���� we compare results given by the modi�ed mild�slope and mild�

slope equations with both the new and old sets of boundary conditions for Booij�s

��� test problem� We see that the results given by both equations with the new

set of boundary conditions are much closer to the full linear results� justifying the

approach we have used here to derive the boundary conditions ������ � ������

All that remains to be done in this section is to de�ne the re	ection and

transmission coe�cients of the outgoing plane waves� which we shall denote by

R� and T �� and the decay coe�cients of the decaying wave modes� which we

shall denote by Rk and T k �k � �� � � � � n � ��� The de�nitions we shall use

here correspond to the de�nitions of the re	ection and transmission coe�cients

used in Chapter 
 for the mild�slope approximation� In equation ������ we have

de�ned the coe�cients of the incident waves from x � �
 as A� respectively�

Linearity allows us to superpose �through the scattering matrix given below in

������� solutions corresponding to waves incident from x � �
 with solutions

corresponding to waves incident from x �
� Therefore� we do not need to solve

the problem with two incident waves� Instead� by solving the problem for only

one incident wave� its amplitude may be� without loss of generality� set equal to

unity� The notation we use is summarised as follows�

If A� �  then Rk
� �

B�
k

A�
and T k

� �
B�
k

A�
�k � � � � � � n� �� �

If A� �  then Rk
� �

B�
k

A�
and T k

� �
B�
k

A�
�k � � � � � � n� �� �

��



From equations ������ and ����
� we see that ���� � A� � B�
� �

����� � A�e�i�� � B�
� e

i��� �k�� � B�
k �k � �� � � � � n � �� and �k��� � B�

k e
���

k

�k � �� � � � � n���� We can use these expressions to write the re	ection� transmis�

sion and decay coe�cients in terms of the end�point values of �k �k � � � � � � n���

as follows�

If A� � �

R�
� �

����

A�
� �� T �

� �
�����e�i��

A�
� ������

Rk
� �

�k��

A�
� T k

� �
�k���e�

�

k

A�
�k � �� � � � � n� �� � ������

If A� � �

R�
� �

�����e�i��

A�
� e��i��� T �

� �
����

A�
� ������

Rk
� �

�k���e�
�

k

A�
� T k

� �
�k��

A�
�k � �� � � � � n� �� � ������

We note that for an incident wave from the left� the transmitted decaying

wave mode at x � � is T k
� e

���
k �k � � � � � � n � �� and for an incident wave from

the right� the re	ected decaying wave mode at x � � is Rk
�e

���
k �k � � � � � � n� ���

Therefore� these quantities can be calculated regardless of the size of the functions

��
k �k � �� � � � � n� ��� Once the coe�cients Rk

�� R
k
�� T

k
� and T k

� �k �  � � � � n� ��

have been determined� then we can deduce values for B�
k �k �  � � � � n� �� �the

unknown coe�cients of the outgoing plane wave and decaying wave modes� in

terms of A� �the given incident wave coe�cients�� The outgoing plane wave

coe�cient B�
� comprises of two parts � the part of A� transmitted beyond the

talud that is a plane wave and the part of A� re	ected back from the talud that

is a plane wave� A similar argument applies to the other outgoing plane wave

coe�cient B�
� and to the decaying wave mode coe�cients B�

k �k � �� � � � � n� ���

and we can summarise these resulting relationships as follows�



B� B�

k

B�
k

�
CA �



B� T k

� Rk
�

Rk
� T k

�

�
CA


B� A�

A�

�
CA �k � � � � � � n� �� � ������

The matrix on the right�hand side of equation ������ is called the scattering

matrix�

��



We only need to consider the problem of approximating the re	ection� trans�

mission and decay coe�cients� and then the B�
k �k �  � � � � n � �� can be deter�

mined through ������ for any A��

��� A system of Fredholm integral equations

We wish to solve the coupled di�erential equation system ���
�� together with

boundary conditions ������ � ������ We know from Chamberlain ��� that when

the system ���
�� is a scalar equation �that is� when ���
�� is generated using a ��

term approximation� then an integral equation procedure can be used to solve the

boundary�value problem to a high degree of accuracy� When the system ���
��

is a vector equation �that is� when ���
�� is generated using an n �n � �� term

approximation� an integral equation solution method is much more di�cult to

implement� A method of converting the system ���
�� and boundary conditions

������ � ����� into a system of Fredholm integral equations is now given� The

resulting system of integral equations presents serious problems for numerical

solution methods and no attempt is made to solve this integral equation system

here�

Chamberlain ��� expends much e�ort in �nding a straightforward method to

convert the mild�slope equation and its boundary conditions into an integral equa�

tion� He uses a variation of parameters method to obtain the integral equation�

We can also use this method for our system ���
�� and boundary conditions ������

� ������ As the idea here is only to indicate the form of the system of integral

equations that results� we just give the major steps that occur in the conversion

process to the vector integral equation�

We introduce the variable changes

�k�x� � �k�x�

vuut U�
k

Uk�x�
�k � � � � � � n� �� � ������

where U�
k � Uk�� �k � � � � � � n � ��� Substituting ������ into ���
�� and re�

arranging� we �nd that the functions �k �k � � � � � � n � �� satisfy the coupled

�



di�erential equation system

� ��k �
�
��
k

��
�k � �k�k �

n��X
j��

j ��k

��
Mjk �

U �
j


Uj

Njk

�
�j �Njk�

�
j

�
� ������

Here� we have used the notation

�k � �k
� �

�
��
k

��
�

U ��
k


Uk

�
�
U �
k


Uk

��

� Gkk

Uk

�k � � � � � � n� �� �

Mjk �

vuutU�
j

U�
k

U
� �

�

j U
� �

�

k Gjk �k � � � � � � n� �� �

Njk �

vuutU�
j

U�
k

U
� �

�

j U
� �

�

k Fjk �k � � � � � � n� �� �

where Gjk and Fjk �j� k � � � � � � n � �� are given by equations ���
�� � �����

and the functions �k �k � � � � � � n� �� are given by equations ���
�� and ���
���

As usual� we have used the notation ��
k � �k��� ��

k � �k��� and U�
k � Uk��

�k � � � � � � n� ���

The boundary conditions satis�ed by the functions �k �k � � � � � � n� �� can

be found in exactly the same method as that used to �nd the boundary conditions

for �k �k � � � � � � n � �� in section ���� Omitting the details of this process� it

turns out that we can write these boundary conditions in the form

� �k��� � ��
k�k�� � �
��

krk �k � � � � � � n � �� � �����

� �k���� � ��
k�k��� � 
��

ke
��
ksk �k � � � � � � n� �� � ������

where

r� �
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i��

��
	
i��A� � ����

�
U �
�


U�
�� ��H�� tanh���H�

������
��

�
n��X
j��

d�j��j��

�
� �

s� �
ei��


i��

��
	
i��A�e�i��

vuutU�
�

U�
�

������

�
i��������

�
U �
�


U�
�� ��H�� tanh���H�

������
��

�

�

vuutU�
�

U�
�

n��X
j��

vuutU�
j

U�
j

d�j��j���

�
� �

rk �
��

��

k

��
	�k��

�
U �
k


Uk

�� ��kH�� tan��k�H�

������
��

�
n��X
j��

d�jk�j��

�
� �

��



sk �
�e���k

��

k

�
�k���

�
��
k���

k�
�
U �
k


Uk

�� ��kH�� tan��k�H�

������
��

�

�

vuutU�
k

U�
k

n��X
j��

vuutU�
j

U�
j

d�jk�j���

�
� �

for �k � �� � � � � n� ��� and where U�
k � Uk��� �k � � � � � � n� ���

The merit of writing the boundary conditions for �k �k � � � � � � n� �� in the

form given by ����� and ������ is that it is now simple to use a variation of

parameters procedure to convert the boundary�value problem ������ � ������ into

the integral equation system given by

�k�x� � rke
���

k
x � ske

��
k
x

� �


��
k

�����������
�

�

e��
�

k
jx�tj

�
�k�t��k�t��

n��X
j��

j ��k

n
Pjk�t��j�t��Njk�t��

�
j�t�

o�
dt �

����
�

for k � � � � � � n� �� where for j� k � � � � � � n� � and j �� k

Pjk�t� � Mjk�t��
U �
j�t�


Uj�t�
Njk�t� �

To convert this into a Fredholm system of integral equations� we need to

remove the � �j terms in the integral� which we can do on integrating by parts� Let

R �

�����������
�

�

e��
�

k
jx�tj

n��X
j��

j ��k

Njk�t��
�
j�t�dt

�
n��X
j��

j ��k

�
�Njk���j��e

���
k
x �Njk����j���e

���
k
���x	

�
�����

�
e��

�

k
jx�tj

�
sgn�x� t���

kNjk�t� �N �
jk�t�

�
�j�t�dt

�
�

From section ���� we recall that for j �� k

Fjk�x� �



�h �Wj

�Wk

i
z��H

� 


�������
�

�H

�Wk

� �Wj

�H
dz

�
AH �

� sec��k�H�sec��j�H�

�
�k

� � �j
�

�k
� � �j

�

�
H � �j� k � � � � � � n� �� �

where �Wk�z�H� � cos��k� �z �H�� sec��k�H� �k � � � � � � n� �� and for j �� k�������
�

�H

�Wk

� �Wj

�H
dz � sec��k�H�sec��j�H�

�
�j

�

�k
� � �j

�

�
�j� k � � � � � � n� �� �

�




Therefore� it follows that we can rewrite Fjk �for j �� k� as

Fjk�x� �



�
��������

�

�H

�
�Wk

� �Wj

�H
� �Wj

� �Wk

�H

�
dz

�
AH ��x� �

Hence� for j �� k� we �nd that F �
jk and Gjk are related by

F �
jk�x� �



�
��������

�

�H

�
�Wk

� �Wj

�H
� �Wj

� �Wk

�H

�
dz

�
AH ���x�

�



�
��������

�

�H

�
�Wk

�� �Wj

�H�
� �Wj

�� �Wk

�H�

�
dz�

�
�Wk

� �Wj

�H
� �Wj

� �Wk

�H

�
z��H

�
A�H ��x���

� Gjk �Gkj �j� k � � � � � � n� �� �

For j �� k� we can now see that N �
jk is given by

N �
jk�x� � �

�




�
U �
j�x�

Uj�x�
�
U �
k�x�

Uk�x�

�
Njk�x��Mjk�x��

U�
j

U�
k

Mkj�x� �j� k � � � � � � n��� �

After substituting R into the system ����
� and rearranging� we �nd that the

functions �k �k � � � � � � n� �� satisfy the system of Fredholm integral equations

given by

�k�x� � �rke
���

k
x � �ske

��
k
x

� �


��
k

�����������
�

�

e��
�

k
jx�tj

�
�k�t��k�t��

n��X
j��

j ��k

Qjk�t��j�t�
�
dt �

������

for k � � � � � � n� �� where

�rk � rk � �


��
k

n��X
j��

j ��k

Njk���j�� �k � � � � � � n� �� �

�sk � sk �
e��

�

k


��
k

n��X
j��

j ��k

Njk����j��� �k � � � � � � n� ��

and� for j �� k�

Qjk�x� t� �
U�
j

U�
k

Mkj�t� �

�
U �
k�t�


Uk�t�
� sgn�x� t���

k

�
Njk�t� �j� k � � � � � � n� �� �

We can express this equation in operator form as

��x� � f �x��
�
L�
�
�x�  � x � � � ������

��



where

��x� �
�
���x�� ���x�� � � � � �n���x�

�T
�

f�x� �
�
�r�e

i��x � �s�e
�i��x� �r�e

���
�
x � �s�e

��
�
x� � � � � �rn��e

���n��x � �sn��e
��n��x

�T
�

and the operator L is de�ned by

�
L�
�
�x� �

�������������������

�

�
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�
CCCCCA



BBBBB�

���t�
���

�n���t�

�
CCCCCA dt �

where the terms in the kernel are de�ned by

ljk�x� t� �

�������
�����	

�


��
j

e��
�

j jx�tj�j�t� �k � j� �

��

��

j

e��
�

j jx�tjQkj�x� t� �k �� j� �

It is possible to use a variational approach analogous to that used by Cham�

berlain ��� and summarised in Chapter 
� to �nd approximate solutions of �������

However� this issue is not pursued here because numerical evaluation of the ker�

nel� which is discontinuous� is formidable and an ideal solution procedure has not

been formulated yet� It is for this reason that alternative solution methods were

sought�

��� Solution procedure

Another approach to solve the system of di�erential equations ���
�� could be to

decouple the system by di�erentiating with respect to x� However� this process

does not advance the cause because the coe�cients in the resulting di�erential

equations are a lot more cumbersome than those appearing in ���
���

The solution procedure we shall employ is to rewrite the second�order bound�

ary �value problem given by the di�erential equation system ���
�� and boundary

conditions ������ � ����� as a system of �rst�order di�erential equations satisfying

some initial conditions� There is then a great wealth of numerical solution meth�

ods available to solve the �rst�order system �see� for example� Lambert �
���� We

��



convert the second�order system ���
�� into a �rst�order system by introducing

the functions

�k � ��k �k � � � � � � n� �� �

Therefore� the system ���
�� can be rewritten as

p� � q�x� p� � ������

where the 
n vectors p and q are given by

p � ���� ��� � � � � �n��� ��� ��� � � � � �n���
T
�

q �
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�n��

��
��� � �

U�

n��X
j��

�Fj � �j �Gj � �j�

��
��� � �

U�

n��X
j��

�Fj � �j �Gj � �j�

���

�n��
��� � �

Un��

n��X
j��

�Fj n�� �j �Gj n�� �j�

�
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

�

Let � � ���� � � � � �n���
T � denote the solution of the boundary�value problem

���
��� ������ � ������ If we knew the initial conditions that � and �� satisfy at

x � � then we would only require a numerical method to solve one initial�value

problem� given by ������ and these initial conditions� to �nd an approximation

to � at x � �� However� this is not the case because we only know the boundary�

value problem satis�ed by �� Therefore� we only know n conditions on � and

�� at x � � with the other n conditions on � and �� being given at x � ��

This means that we have to resort to �nding 
n independent solutions of ������

and then the solution � of the boundary�value problem is given by the particular

linear combination of these independent solutions which satis�es the boundary

conditions ������ � ������

��



We can write the boundary conditions ������ � ����� in vector form as

���� �D���� � s� ������

and

����� �D����� � s� � ������

Here� the n� n matrices D� and D� are given by

D� �

�
���������

���
� � �d�� �

�d�� �

���

�d�� n��

�d�� �

���
� � �d�� �

���

�d�� n��

� � �

� � �
� � �

� � �

�d�n�� �

�d�n�� �

���

���
n�� � �d�n�� n��

�
���������
�

and

D� �

�
���������

��
� � �d�� �

�d�� �

���

�d�� n��

�d�� �

��
� � �d�� �

���

�d�� n��

� � �

� � �
� � �

� � �

�d�n�� �

�d�n�� �

���

��
n�� � �d�n�� n��

�
���������
�

where

�d�kk � d�kk � �� ��kH�� tan��k�H��jx��� �k � � � � � � n� ��

and

�d�kk � d�kk � �� ��kH�� tan��k�H��jx��� �k � � � � � � n� �� �

The n vectors s� and s� are given by

s� �
�
�
��

�A
�� � � � � � 

�T

and

s� �
�

��

�e
��
�A�� � � � � � 

�T
�

Here� we have employed the usual notation ��
j � �j��� ��

j ��j��� �j � � � � � � n���
and �� � �i� with � and �j �j � �� � � � � n��� the solutions of the relations ���
��

and ���
�� respectively�

Now let �
�
� �

�
� � � � � �

�n
denote linearly independent solutions of ������� and

therefore also linearly independent solutions of the coupled system ���
��� Then�

��



as we have already noted� the solution � of the boundary�value problem is given

by

� � c���
� c���

� � � � � c�n��n
������

for some constants cj � C �j � �� � � � � 
n�� These constants are chosen so that

� given by ������ satis�es the boundary conditions ������ and ������� There�

fore� substituting ������ into ������ and ������ leaves a matrix equation for the

constants cj �j � �� � � � � 
n�� which is given by

Mc � s � ������

where M is a 
n � 
n matrix given by M � �m�� m�� � � � � m�n� with the 
n

vectors mj �j � �� � � � � 
n� and s given by

mj �



BBB�

��
j
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CCCA �j � �� � � � � 
n�

and

s �
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Once ������ has been solved� then we can �nd the value of �� the solution of the

boundary�value problem� at x � � and hence calculate the re	ection� transmission

and decay coe�cients�

All that remains to be done is to �nd the 
n independent solutions of �������

We shall use a Runge�Kutta method of the form

p
n��

� p
n
� h

RX
j��

djq
n

j
�

in which h is the step size� x� � � xn � x� � nh� p
n
� p�xn� and

qn
j
� q

�
xn � �jh� pn � h

Pj��
s�� �jsq

n

s

�
� to approximate p���� These Runge�Kutta

numerical schemes are de�ned on choosing h� �j and �js �j � �� � � � � R

and s � �� � � � � j� and their use is well�documented �see Lambert �
��� for ex�

ample�� The results we produce in this chapter will be found using the �th�stage

method �R � �� given by Fehlberg ���� which is of order �� that is� accurate

to O�h��� This �fth�order Runge�Kutta procedure uses a corresponding fourth�

order Runge�Kutta procedure for step size control� Fehlberg uses the fact that

��



the di�erence between his �th�order Runge�Kutta method and the corresponding

�th�order method provides an approximation of the leading term of the trunca�

tion error in the �th�order method� He assumes that if the truncation error is

represented� with su�cient accuracy� by its leading term� then a step size control

can easily be implemented into the �th�order Runge�Kutta procedure� A test is

made to see whether the truncation error� as obtained from the di�erence be�

tween the �th and �th�order methods� exceeds a certain pre�set tolerable error�

If it does� the step size is halved� the step is recomputed and tested again� On

the other hand� if the truncation errors are much smaller than the tolerable error�

then the step size is doubled� Fehlberg �nds this type of step size control is quite

reliable because� unlike some other methods incorporating step size control� it is

based on a complete coverage of the leading term of the truncation error�

We expect that the use of decaying wave mode terms to approximate the

scattering problem will cause greater numerical problems than those which occur

when the approximation uses only progressive wave mode terms� This is because

for wave scattering problems over any depth pro�le� the decaying wave mode

functions �k �k � �� � � � � n � �� satisfying ���
�� increase with k and are much

larger than the corresponding progressive mode function �� which satis�es ���
���

for any given values of the parameters � and � � We can see this by noting that

the kth root of the equation

� ��� �
�H � ��k�H� tan��k�H� �k � IN�

can be rede�ned as

�k�H � k� � 	k � � 	k �
�



� �k � IN� �

It follows that

k� � �k�H �
�
k � �




�
� �k � IN� �

Therefore

�k�� � �k �
�


�H
�k � IN� �

For example� with a depth pro�le given by

H�x� �
�

�
�

�

�
cos��x� � � x � �� �

��



and parameter values � � � and � � ��� the functions � and �k �k � �� � � � � ��

evaluated at x �  and x � � are given by

�� � ����� � �� � ��
��� �

��
� � ����
�� � ��

� � �
����� �

��
� � �
����� � ��

� � �
���
� �

��
� � ������
 � ��

� � ����� �

Therefore� the inclusion of decaying wave modes is certainly going to make

the terms in the coupled system ���
�� more rapidly varying� This means that

any numerical solution method will require many more steps in �� �� for a prob�

lem including decaying wave mode terms than a method which solves the problem

without decaying wave mode terms� to achieve the same solution accuracy� Hence�

a solution method involving step size control should be more e�ective in control�

ling the accuracy of the solution� in a wave scattering problem involving decaying

wave mode terms� than a �xed step method�

We shall proceed by choosing the simple initial conditions for the n vectors

�
j
�j � �� � � � � 
n� given by

�
j
�� � ej

��
j
�� � 

��
�� j � �� � � � � n �����

and

��
j
�� � ej�n

�
j
�� � 

��
�� j � n� �� � � � � 
n � ������

where the n vectors ej �j � �� � � � � n� have a ��� in the jth entry� and zeros in the

rest� This choice of initial conditions clearly makes �
j
�j � �� � � � � 
n� linearly

independent�

The solution procedure is to use the Runge�Kutta method to �nd approx�

imations to �
j
��� �j � �� � � � � 
n� with �

j
��� ��

j
�� �j � �� � � � � 
n� given by

����� and ������� Then we solve the matrix system ������ to �nd the constants

cj �j � �� � � � � 
n�� The general solution �� given by ������� is then constructed�

and the re	ection� transmission and decay coe�cients are found using ������ �

�������

The solution procedure was implemented on the MATLAB software package

�produced by the Math Works Inc��� This was used because it is purpose built for

��



handling vectors and for solving matrix equations� The Runge�Kutta procedure

outlined in this section is the default numerical solution method for �rst�order

systems of di�erential equations on MATLAB� Full details of how this Runge�

Kutta procedure is implemented in MATLAB can be found in Forsythe� Malcolm

and Moler �
���

��� Numerical results

We now present test examples which use the procedure outlined in section ���

to solve the boundary�value problem given by the di�erential system ���
�� and

boundary conditions ������ � ������ We �nd results using one� two� three and

four decaying wave mode terms and compare them with the existing results given

by the mild�slope and modi�ed mild�slope approximations� We examine whether

the results converge as the number of decaying mode terms in the approximation

is increased� We make no attempt to justify the choices used for the parameters

� and � � as we only wish to see if the numerical method can solve the problem

accurately�

In the results presented in this section� and in section ���� we refer to the

approximation � � � given by

��x� z� �
N��X
j��

�j�x�wj�x� z�

which generates the di�erential system ���
��� as the �N �term approximation��

Therefore the ��term approximation is the modi�ed mild�slope approximation�

The results given by the modi�ed mild�slope approximation will be referred to as

the results given by the MMSE and the results given by the mild�slope approxima�

tion will be referred to as the results given by the MSE� The boundary conditions

used with the MMSE and MSE in this section are those given by ����
�� that is�

the new boundary conditions that were derived in section ����

For the 
�term approximation� we illustrate the convergence of the numerical

method� as we increase the tolerance in the step size control� and go on to give

the solutions of interest� We then investigate the behaviour of the initial� value

problem solutions �
j
�j � �� � � � � 
n� as we increase the number of terms in the

trial approximation and for di�erent values of the parameters � and � �

�



Example ���

Suppose that a wave of unit amplitude is incident from x � �
 on a talud

whose scaled depth pro�le is given by

H�x� � � � �



x� � � x � �� �

This depth pro�le represents a concave talud� We choose parameter values

� � 
 �

� � �� �

�This could represent the physical situation where h� � �m� l � 
m� 
 �
p
gs����

We shall seek approximations to the re	ection coe�cient of the progressive wave

and the coe�cients of the re	ected decaying wave modes at x � �

Concentrating on the 
�term approximation� we now use the computer pro�

gram to generate approximations to �
j
��� �j � �� � � � � �� for a series of tolerances

in the Runge�Kutta method� The results are presented in Table ����

Tolerance �
�

�
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� �� �

�
�
�
� ��
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Table ���� Approximations to �
j
��� �j � �� � � � � ��

We observe that the step size control on the Runge�Kutta method works

well� with the approximations to �
j
��� �j � �� � � � � �� converging to � signi�cant

�gures ���s�f�� for a tolerance of ���� For all these tolerances� the M matrix

in equation ������ has a condition number �� � ��� MATLAB can solve ������

very accurately to give the constants cj �j � �� � � � � �� correct to ���d�p�� that is�

Mc � s � O������� Table ��
 presents the approximation to the amplitude of

the re	ected plane wave jR�
�j and to the amplitude of the re	ected decaying wave

��



mode at x �  jR�
�j calculated using the above tolerances in the Runge�Kutta

method� We can see that both amplitudes of re	ection have converged to ��d�p�

Tolerance jR�
�j ��d�p�� jR�

�j ��d�p��
��� ����� ����

��� ����� ����

�� ����� ����

Table ��
� Approximations to jR�
�j and jR�

�j for the 
�term approximation

when the tolerance in the Runge�Kutta method is ����

Now� remember that we wish to compare our results with those given by the

mild�slope equation �MSE� and the modi�ed mild�slope equation �MMSE�� We

can either use Chamberlain�s integral equation procedure to do this or use the

Runge�Kutta method given in this chapter� In keeping with the spirit of this

chapter� we use the Runge�Kutta method with a tolerance of ��� to �nd the

following approximations to the coe�cient of the re	ected plane wave�

MSE� R�
� � ������� � ������i �jR�

�j � �������

MMSE� R�
� � ������� � ������i �jR�

�j � �������

These results are accurate to ��d�p�� in the sense that they agree to ��d�p� with

results given by the Runge�Kutta method with an increased tolerance of ���

Now with a 
�term trial approximation� the coe�cient of the re	ected plane wave

�using a tolerance of ��� in the Runge�Kutta method� is given by


�term� R�
� � ���

� � ���
�
i �

We shall now investigate the solutions of the initial�value problem �������

����� and ������ as we increase the number of terms in the trial approximation�

For the MMSE �that is� the ��term approximation�� the Runge�Kutta method

gives approximations to �
�
��� and �

�
��� as

�
�
��� � ����� and �

�
��� � �
� �

Comparing these solutions of the initial�value problem ������������ and ������

with those given in Table ��� for the 
�term approximation illustrates that in the

�





�term approximation case the solutions of the initial�value problem are growing�

From the 	at bed solutions of the di�erential system ���
��� we know that the sys�

tem has decaying growing wave mode solutions that behave as decaying growing

exponentials� Applying boundary conditions ������ � ����� to ���
�� then re�

moves these growing wave mode solutions� In our solution method� as we are

solving ���
�� with some initial�values �that do not correspond to the initial� val�

ues satis�ed by the solution of the BVP ���
��� ������ � ����� �� then these grow�

ing wave modes are still present and cause the growth of the initial�value solution

from x �  to x � �� The degree to which these growing wave mode terms a�ect

the solution is certainly dependent on the magnitude of �k �k � �� � � � � n � ���

We have already shown that �k�� � �k �k � IN�� This implies that if we increase

the number of terms in the approximation� then the magnitude of the solutions

of the initial�value problem ������������ and ������ at x � � will also increase�

If we now use the ��term approximation� then with a tolerance of ��� in the

Runge�Kutta method� we �nd that
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�
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clearly illustrating the large growth in the solutions of the initial� value problem

from x �  to x � �� The condition number of the matrix M in equation ������

is now

cond�M� � ���� �� �

and MATLAB can calculate the constants cj �j � �� � � � � �� correct to ��d�p� The

coe�cient of the re	ected progressive wave is given by

��term� R�
� � ����
�� � ������i �jR�

�j � ��������

The above estimate for R�
� agrees to ��d�p� with that given when the tolerance

in the method is increased to ��� Notice that this re	ection coe�cient agrees

��



with the corresponding re	ection coe�cient given by the 
�term approximation

in the �rst 
 decimal places�

If we now use the ��term approximation� then with a tolerance of ��� in the

Runge�Kutta method� we �nd that
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again illustrating the large growth in the solutions of the initial� value problem

from x �  to x � �� The condition number of the matrix M in equation ������

is now

cond�M� � 
�� � ��� �

MATLAB can still solve ������� but the constants cj �j � �� � � � � �� are only given

correct to ��d�p� The coe�cient of the re	ected progressive wave is given by

��term� R�
� � �����
� � ������i �jR�

�j � �����
��

The above estimate for R�
� agrees to ��d�p� with that given when the tolerance in

the method is increased to ��� With a tolerance of �� in the Runge�Kutta

method� the estimate for R�
� is given by

��term� R�
� � ������� � �����i �jR�

�j � ��������

This estimate for R�
� agrees to ��d�p� with that given when the tolerance in the

method is increased to ����� So� as the size of the solutions of the initial�value

problem grow� we need to increase the tolerance in the Runge�Kutta method in

order to maintain the solution accuracy�

Finally� if we use the ��term approximation� then with a tolerance of �� in

the Runge�Kutta method� we �nd that
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illustrating huge growth in the solutions of the initial� value problem from x � 

to x � �� The condition number of the matrix M in equation ������ is now

cond�M� � �� � ��� �

MATLAB can still solve ������� but the constants cj �j � �� � � � � �� are only given

correct to ��d�p� The coe�cient of the re	ected progressive wave is given by

��term� R�
� � ����� � ����i �jR�

�j � ������

The above estimate for R�
� agrees to ��d�p� with that given when the tolerance in

the method is increased to �����

With � or more terms in the approximation� we �nd that the solutions of

the initial�value problems at x � � are so large that MATLAB can no longer

solve ������ and so solutions of the BVP cannot be found� It follows from the

relation ���
�� that once � and � have been prescribed� the maximum value of

the functions �k �k � �� � � � � n � �� occurs at the minimum value of H� that is�

at the minimum depth� In this example the minimum depth is at x � � and the

maximum values are

����� � ���� � ����� � 
���� � ����� � ����� � ����� � ���� � ����� � �
�� �

Obviously� we wish to stop the solutions of the initial�value problem �������

����� and ������ growing� To do this we need to know the initial conditions that

the solution of the BVP satis�es� as these initial conditions would remove the

growing exponential terms from the initial�value problem� However� we do not

know these initial conditions and so the question then becomes whether we can

improve the situation� In other words� can we choose initial conditions so that the

solutions of the �rst�order system ������ do not grow as rapidly as the solutions

of ������ that satisfy the initial conditions ����� and ������ !

We have already noted that the di�erential equation system ���
�� has decay�

ing growing wave mode solutions over a 	at bed with undisturbed 	uid depth

H�� given by

�k�x� � Ske
��
k
x � Tke

���
k
x � � x � �� �k � �� � � � � n� �� �

��



for some constants Sk and Tk �k � �� � � � � n� ��� Initial conditions of the form

�k�� � � ��k�� � ���
k �k � �� � � � � n� �� �

clearly remove the growing exponential term in these 	at bed solutions� We have

found that if we use these n � � initial conditions with the �rst�order system

������� the solutions of the revised IVP at x � � are smaller by up to � orders in

magnitude than the solutions obtained with the original initial conditions�

�
j
�� � ej

��
j
�� � 

��
�� j � 
� � � � � n �

We have not yet found an improved choice for the remaining n�� initial conditions

and so we retain the present ones� Therefore� the initial conditions we are now

going to employ with the �rst�order system ������ are

�
j
�� � ej

��
j
�� � dj

��
�� j � �� � � � � n ����
�

and

��
j
�� � ej�n

�
j
�� � 

��
�� j � n� �� � � � � 
n � ������

where dj � ���
j ej �j � 
� � � � � n� and d� is the zero vector� With this choice of

initial conditions� the functions �
j
�j � �� � � � � 
n� are clearly linearly indepen�

dent�

We now return to the example at hand� For the 
�term approximation� using

a tolerance of ��� in the numerical method� we �nd that the solution �
�
of ������

together with initial condition ����
� is

�
�
��� �



B� ����
�����

�
CA �

which is a reduction of 
 orders in magnitude on the previous solution� Now

cond�M� � ������ which is a reduction of � order of magnitude on the previous

value�

For the ��term trial approximation� using a tolerance of ��� in the numerical

method� the solutions �
�
��� and �

�
��� of ������ with initial conditions given by

��



����
� are

�
�
��� �



BBBBB�
��
��
�����

����

�
CCCCCA� �� �

�
��� �



BBBBB�

�
��

������
������

�
CCCCCA � ���

So �
�
��� and �

�
��� have been reduced by 
 orders of magnitude from the previous

solutions� Now cond�M� � ��� � ��� which is again a reduction of one order in

magnitude from the previous value�

For the ��term approximation� using a tolerance of �� in the numerical

method� the solutions �
�
���� �

�
��� and �

�
��� of ������ with initial conditions

given by ����
� are now such that

�
�
��� � O

�
��
�
� �

�
��� � O

�
��
�
� �

�
��� � O

�
��
�
�

So �
�
��� has been reduced by � order of magnitude� �

�
��� has been reduced by 


orders of magnitude and �
�
��� has been reduced by � orders of magnitude from

the previous solutions� Now cond�M� � ���� ���� which is again a reduction of

� order in magnitude from the previous solution�

For the ��term approximation� using a tolerance of �� in the numerical

method� the solutions �
�
���� �

�
��� and �

�
��� of ������ with initial conditions

given by ����
� are now such that

�
�
��� � O

�
�
�
� �

�
��� � O

�
�
�
� �

�
��� � O

�
�
�
� �

�
��� � O

�
�
�
�

So �
�
��� is the same order of magnitude as before� �

�
��� has been reduced by �

order of magnitude� �
�
��� has been reduced by 
 orders of magnitude and �

�
���

has been reduced by � orders of magnitude from the previous solutions� Now

cond�M� � �������� which is again a reduction of � order in magnitude from the

previous solution� Now� MATLAB can determine the constants cj �j � �� � � � � ��

correct to ��d�p� The coe�cient of the re	ected progressive wave is given by

��term� R�
� � ������ � �����i �jR�

�j � �������

The above estimate for R�
� agrees to ��d�p� with that given when the tolerance in

the method is increased to �����

��



However� the solutions of the initial�value problem ������� ����
� and ������

for a � or higher term approximation are still too large and so MATLAB cannot

solve the system �������

Let us now compare these n�term approximation estimates for R�
� where

n � �� � � � � �� From above we recall that

MMSE� R�
� � ������� � ������i �jR�

�j � ������� �


�term� R�
� � ���

� � ���
�
i �jR�

�j � ������ �

��term� R�
� � ����
�� � ������i �jR�

�j � ������� �

��term� R�
� � ������� � �����i �jR�

�j � ������� �

��term� R�
� � ������ � �����i �jR�

�j � ������ �

From these results� we can see that as we increase the number of terms in the

approximation� the estimate of R�
� converges� We also notice that jR�

�j given by

the ��term and ��term approximations agree to ��d�p�

The coe�cient of the �rst decaying wave mode evaluated at x �  given by the


�term� ��term� ��term and ��term approximations calculated using a tolerance

of ���� ���� �� and �� respectively are


�term� R�
� � ���� � ����i �jR�

�j � ����� �

��term� R�
� � ������ � �����i �jR�

�j � ������ �

��term� R�
� � ������ � ��

�i �jR�

�j � ������ �

��term� R�
� � ����� � ��
�i �jR�

�j � ����� �

Again� we see convergence in the estimate of R�
� as the number of terms in the trial

function is increased� with jR�
�j given by the ��term and ��term approximations

the same to ��d�p�

The coe�cient of the second decaying wave mode evaluated at x �  given

by the ��term� ��term and ��term approximations calculated using a tolerance of

���� �� and �� respectively are

��term� R�
� � ��� � ����i �jR�

�j � ����� �

��term� R�
� � ���� � ��
�i �jR�

�j � ��� �

��term� R�
� � ��� � ���i �jR�

�j � ��� �

The convergence is again evident� with jR�
�j given by the ��term and ��term

approximations the same to ��d�p�

��



The coe�cient of the second decaying wave mode evaluated at x �  given by

the ��term and ��term approximations calculated using a tolerance of �� are

��term� R�
� � ���� � ����i �jR�

�j � ����� �

��term� R�
� � ��� � ���i �jR�

�j � �
� �

which agree to the �rst � decimal places� The coe�cient of the fourth decaying

wave mode evaluated at x �  given by the ��term approximation calculated

using a tolerance of �� is

��term� R�
� � �� � ��i �jR�

�j � ��� �

The coe�cient of the �rst decaying wave mode evaluated at x �  is one order

of magnitude larger than the corresponding coe�cient of the second decaying

wave mode� As �k � �k�� �k � IN�� the �k � ��th decaying wave mode decays

away more rapidly than the kth as x  �
� This clearly illustrates that the

�rst decaying wave mode is much more signi�cant than the second decaying wave

mode� which will be more signi�cant than the third� etc�

We shall now investigate the solutions of the initial�value problem �������

����
� and ������ for a di�erent choice of the parameters � and � � If we now

assign the following values to � and � given by

� � � � � � �
 �

then the maximum values of the functions �k �k � �� � � � � n � �� in the interval

�� �� are now

����� � 
���� � ����� � ����� � ����� � ����� �

So for these values of � and � the functions �k �k � �� � � � � n � �� are much

larger than at the previous values of � and � � Consequently� the solutions of

the initial�value problem ������� ����
� and ������ evaluated at x � � will also be

larger in magnitude at these values of � and � � Indeed� using a tolerance of ��

in the Runge�Kutta method� we �nd for a 
�term approximation that

�
�
��� �



B���
�


����

�
CA� ��� �

�
��� �



B������
�
�
�

�
CA� ���

��



�
�
��� �



B������

����

�
CA � �

�
��� �



B����

����

�
CA� ���

Now� cond�M� � ��� � ��� where M is the matrix in equation ������� and

MATLAB can determine the constants cj �j � �� � � � � �� accurate to ��d�p�

For a ��term approximation

�
�
� O����� � �

�
� O����� � �

�
� O������

�
�
� O����� � �

�
� O����� � �

�
� O������

Now� cond�M� � � � ���� where M is the matrix in equation ������� and we

cannot now determine the constants cj �j � �� � � � � ���

In this section� we have shown that as the number of decaying wave mode

terms in the approximation is increased� the results given can visibly be seen to

converge� We have demonstrated that the solution method we are employing to

solve the BVP ���
��� ������ � ����� is restricted by the magnitude of the func�

tions �k �k � �� � � � � n � ��� which limits the number of terms we can use in the

approximation to �� We have also seen that the tolerance in the Runge�Kutta

method needs to be increased as the size of the initial�value problem solution�

s increase in order to maintain solution accuracy� The n�term approximation

should give di�erent �and more accurate� approximations to the coe�cients of

the scattered waves over steep bed pro�les than the MSE and the MMSE� be�

cause the decaying modes are more signi�cant for steeper bed pro�les� As the

slope of the bed pro�le reduces� the results given by these approximations should

become very similar as the e�ect of the decaying modes diminishes� In section

���� we examine the results given by these approximations as the steepness of

a depth pro�le is varied� We show how the maximum values of the functions

�k �k � �� � � � � n � �� in the interval �� �� vary as the steepness of the bed is

varied� We �nd that the steeper the bed pro�le� the smaller the magnitude of

the functions �k �k � �� � � � � n� ��� As the slope of the bed pro�le decreases� so

�k �k � �� � � � � n� �� increase in magnitude� So� the solution method given here

can be used to obtain the results given by the 
� � and ��term approximations

for steep bed pro�les� which are the results of prime interest� We �nd that the

results given by the 
� � and ��term approximations converge to those given by

��



the MMSE before the bed pro�le becomes too mild for results to be found� These

results are presented graphically in section ����

��� Graphical results

In this section� we consider three examples where the results are best presented

graphically� In the �rst example we plot the approximation to the free surface

at two di�erent time intervals for normal incidence� In the other two examples�

we show how the amplitude of the re	ected progressive wave varies with the

steepness of the bed pro�le� We consider two shapes of bed pro�le � a talud

and a hump� and compare results given by the MSE� MMSE� 
�term� ��term and

��term approximations� We also compare results given by the MSE and MMSE

with the two sets of boundary conditions discussed in section ����

Example ���

Here the depth pro�le is given by

H�x� �
�

�
�

�

�
cos

�

�x�

�
� � x � �� �

which represents an asymmetric hump whose height is half the still water depth�

The parameters � and � are chosen to be

� � 
�� �

� � �� �

The n�term approximation to the free surface elevation is given by

� � Re

��
	e�i�t

n��X
j��

�j

�
� �

For an incident wave of unit amplitude from x � �
� the approximation to the

free surface at time t � 
j �
�
�j � � � IN� is given by

��x� t� � Re

�������
�����	

ei��x �R�
�e
�i��x �

Pn��
j�� R

j
�e

��jx �x � � �Pn��
j�� �j�x� � � x � �� �

T �
� e

i��x �
Pn��

j�� T
j
�e

���jx �x 	 �� �

The results displayed in Fig���� were obtained by running the computer program

with a tolerance of ��� in the Runge�Kutta method for the MSE� MMSE� 
�term

���
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3−term

2−term

MMSE  

MSE   

Figure ���� Free surface elevation

and ��term approximations� and a tolerance of �� for the ��term approximation�

With these tolerances� the solutions for each approximation had converged to

��d�p� The depth pro�le is also displayed in Fig���� and we have exaggerated the

amplitude of the waves to make the �gure clearer� The dashed lines represent the

amplitude of the incident wave and the dotted line represents the undisturbed free

surface� At this instant� we observe that destructive interference produces a wave

which has an amplitude smaller than that of the incident wave in x � � All the

decaying wave modes decay away very rapidly as they move away from the hump

and the contribution they all make to the free surface shape at the left and right�

hand ends in Fig���� is negligible� We note that the n�term approximation to the

free surface has converged �as far as one can tell by the eye� when n � �� with

only a small di�erence in results given by the MMSE and ��term approximations�

So� for these values of � and � the hump is steep enough for the decaying wave

modes to make a small� but noticeable contribution�

Fig���
 displays the same free surface after 
t has increased by �
��� The

diagram indicates the presence of constructive interference in x � � Again�

there is a small di�erence in the results given by the MMSE and the ��term

approximation�

��
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Figure ��
� Free surface elevation after 
t has increased by �
��

Example ���

We now return to the talud problem considered by Booij ���� in which the

accuracy of the mild�slope approximation was tested as the gradient of the talud

varied� This was done by comparing the amplitude of the re	ection coe�cient

�jR�
�j� given by the MSE with the corresponding value computed using the full

linearised theory� The boundary conditions used by Booij ��� with the MSE

correspond to the set ������ given in section ���� The varying depth pro�le we

are considering here is given by

H�x� � �� 


�
x � � x � �� �

so at x �  and x � �� where the talud meets the 	at beds� the slope of the

depth pro�le is discontinuous� In ���� the unscaled problem Booij considered had

	at bed depths h� � ��m and h� � �
m� Booij computed jR�
�j using the full

linearised theory at values of a parameter Ws which denotes the length of the

talud� Our parameters � and � are de�ned in terms of Ws by

� �
Wsp
��

� � �
��

Ws

� so that � �

p
��

�
�

���



Returning to the de�nitions of � and � � we recall that

� �

lp
gh�

� � � h��l �

So with � and � given in terms of Ws as above� we see that

p
��� �


�

g
l �

�

��
�

�
��

g
l
�

It follows that varying Ws is equivalent to varying the length l of the talud� and

therefore the steepness of the talud at each �xed value of ��

g
� the deep water wave

number� Following Booij ���� we seek results for our new approximation for values

of Ws from �� to � at intervals of ��� As Ws varies from �� to �� �� �
p
��

and � decreases monotonically� Therefore� the functions �k �k � �� � � � � n � ���

the roots of the relations

� ��� �
�H � ��k�H� tan��k�H� �k � IN� �

monotonically increase as Ws increases� Note that the minimum depth in this

example occurs at x � �� and so the maximum value of �k �k � �� � � � � n � �� in

the interval �� �� is at x � �� When Ws � ��� we �nd that

����� � ���� � ����� � ���� � ����� � ��� � ����� � ��
� �

When Ws � �� we �nd that

����� � �
�� � ����� � ������ � ����� � 
�
��� � ����� � ������ �

We saw in section ��� that when the maximum value of �k �k � �� � � � � n� �� was

greater than �� solutions of the boundary�value problem could not be found�

Therefore as Ws increases� there will be a value of Ws at which the function

�� is large enough to make the solutions of the initial�value problem for the 
�

term approximation too large for the system ������ to be solved to a minimum

accuracy� The minimum accuracy we require is three decimal places� For the ��

term approximation� the value of Ws at which the system ������ cannot be solved

to this minimum accuracy will be smaller than that for the 
�term as �� � ���

and so on for the �������term approximations�

Using the solution procedure outlined in sections ��� and ���� it turns out that

for the 
�term approximation� when Ws � ����� ����� � ������

���



cond�M� � ��� � ��� and equation ������ cannot be solved to the minimum

accuracy we have speci�ed� When Ws � 
���� ����� � ����� and the results giv�

en by the ��term approximation cannot be found to the minimum accuracy for

Ws 	 
���� When Ws � ����� ����� � ����� and the results given by the ��term

approximation cannot be found to the minimum accuracy for Ws 	 ����� For

all the n�term approximations� we initially use a tolerance in the Runge�Kutta

method of ��� which rises to ���� as Ws increases� in accordance with the size

of the solutions of the initial� value problem� The initial�value problem solutions

obtained therefore have all converged to at least � signi�cant �gures� Remember

that for the MSE and MMSE we do not have a problem with the initial�value

problem solutions growing because these approximations do not contain any ex�

ponentially growing decaying wave modes� Therefore� for the MSE and MMSE

we use a tolerance of ��� in the Runge�Kutta method over the whole Ws range

which gives solutions accurate to ��d�p�

The �rst set of results we give� are those given by the MSE and MMSE with

the old set ������ and new set ����
� of boundary conditions� These are presented

in Fig����� It is clear from the graphs that the results given by both the MSE

and MMSE with the new set of boundary conditions ����
� are much closer to

the amplitude of the re	ection coe�cient Booij ��� computed using full linearised

theory� The results given by theMMSE closely agree with all the computed results

for the full linearised theory� The results given by the MSE closely agree with the

computed results for the full linearised theory for Ws � ��� which corresponds

to taluds with gradient up to �� This implies that the MSE can give reliable

results for taluds with a maximum gradient of up to �� rather than a maximum

gradient of up to �
�
which Booij ��� suggested� The results given by the MSE with

boundary conditions ����
� begin to vary from the full linear ones for small Ws

because the terms O�r�h� jrhj�� that were neglected in this approximation are

now clearly not negligible� The results given by the MMSE are much closer to

the full linear results for these small values of Ws �as one would expect�� as no

terms of O�r�h� jrhj�� have been neglected� As Ws tends to zero� � tends to

zero� which is equivalent to the wavelength becoming much larger than the water

depth� In other words� the limit as Ws tends to zero is the shallow water limit�

���
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Figure ���� Re	ected amplitude over the depth pro�le H�x���� �
�x ��x� ���

Also as Ws tends to zero� the talud is tending to a step� and so the amplitude of

the re	ection coe�cient should tend to the exact value of the re	ection coe�cient

for wave incidence on a step in shallow water which Lamb �
�� derived� namely

jR�
�j �

p
h� �

p
h�p

h� �
p
h�

� �
���

in the present case� It can be seen from Fig���� that when Ws � ��� the MMSE

with the new boundary conditions ����
� gives

jR�
�j � �
�� �

which is quite close to Lamb�s result� and certainly much closer than any of

the other approximations� From the evidence in Fig����� we conclude that the

approach used in section ��� to derive the boundary conditions is the correct

approach� Notice also from Fig���� that the amplitude of the oscillations of jR�
�j

���



given by the MSE and MMSE with the new boundary conditions ����
� is much

larger than that given with the old boundary conditions ������� Booij ��� claimed

that the results given by the full linear theory and the MSE with the old boundary

conditions ������ were in �good agreement� for Ws � ��
� He does not publish any

values of jR�
�j for full linearised theory for Ws � ��
 to con�rm this claim� but

from the evidence in Fig���� it is reasonable to suppose that these results would

be much closer to those given with the new boundary conditions ����
� rather

than those given by the old ones as claimed�

In Fig���� we present the results obtained from the boundary�value problem

2−term     

3−term     

4−term     

MMSE       

Full linear
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Figure ���� Re	ected amplitude over the depth pro�le H�x���� �
�
x ��x� ���

���
��� ������ � ������ for the MMSE� 
�term� ��term and ��term approximations�

It is clear from the graph� that as the number of terms in the trial function

is increased� the closer the results become to the full linear ones� The results

given by the 
�term approximation have converged to those given by the MMSE

���



when Ws � ���� which corresponds to taluds with gradient less than �
�
� In other

words� taluds with gradients of up to �
�
are mild enough to make the contribution

from the �rst �and largest� decaying mode negligible� Therefore� it is not of

great importance that we cannot �nd results for the 
�term approximation for

Ws � ����� as the results will be the same as those given by the MMSE which we

can �nd for Ws � �����

ForWs � ���� that is� for gradients less than �
�
� the results given by the ��term

approximation have converged to those given by the 
�term approximation� So

the contribution from the second decaying mode becomes negligible for taluds

with gradient up to �
�
�

Finally� the results given by the ��term approximation are practically the

same as those given by the ��term approximation� with no observable di�erence

forWs � ��� that is� for taluds with gradients less than �
�� From the similarity be�

tween the ��term and ��term approximation results� we conclude that the n�term

approximation has essentially converged when n�� and so we do not compute

solutions for the ��term or higher term approximations�

Rey ��
� also considers this problem� by using a method which approximates

the depth pro�le as a series of horizontal shelves separated by abrupt vertical

steps� The results presented in Fig���� are in good agreement with those found

by Rey�

Let us now consider another problem� where the depth pro�le is now given by

a hump�

Example ���

We consider a depth pro�le given by

H�x� � 
x� � 
x� � � � x � �� �

This corresponds to a hump whose height is half the still water depth which has

slope discontinuities at x �  and at x � �� where it meets the 	at beds� We

wish to solve the boundary� value problem ���
��� ������ � ����� at values of a

parameter � starting at ��� ending at �� with intervals of ��� The parameters

� and � are de�ned in terms of � by

� � � � � �
�

�
�

���



With these de�nitions for � and � � varying � corresponds to varying the length

l of the hump or� equivalently� to varying the steepness of the depth pro�le� as in

Example ���� As � increases� �� � � and � decreases� so �as in Example ���� the

functions �k �k � �� � � � � n � �� monotonically increase� The minimum depth in

this example occurs at x � �
�
� and so the maximum value of �k �k � �� � � � � n� ��

in the interval �� �� is at x � �
�
� When � � ��� we �nd that
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and when � � �� we �nd that
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As in Example ���� as � increases� there is a value of � at which the function ��

is large enough to make the solutions of the initial�value problem for the 
�term

approximation too large for the system ������ to be to be solved to the minimum

accuracy ���d�p��� Similarly� at smaller values of �� solutions for the ��term and

��term approximations will not be available� It turns out that for the 
�term

approximation� when � � ����� ���
�
�
� � ������ cond�M� � 
�� � ��� and equa�

tion ������ cannot be solved to the minimum accuracy we have speci�ed� When

� � ����� ���
�
�
� � ����
 and the results given by the ��term approximation cannot

be found to the minimum accuracy for � 	 ����� When � � 
��� ���
�
�
� � �����

and the results given by the ��term approximation cannot be found to the mini�

mum accuracy for � 	 
��� As in Example ���� for all the n�term approximations�

we initially use a tolerance in the Runge�Kutta method of ��� which rises to

���� as � increases� in accordance with the size of the solutions of the initial�

value problem� Again we use a tolerance of ��� in the Runge�Kutta method for

the MSE and MMSE� which gives solutions accurate to ��d�p� over the whole �

range�

As in the previous example� the �rst set of results we give� are for the MSE

and MMSE with the old set ������ and new set ����
� of boundary conditions�

These are presented in Fig����� It is clear from the graphs that the results given

by both the MSE and MMSE with the new set of boundary conditions ����
�

are very di�erent to those given with the old boundary conditions ������� The

���
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Figure ���� Re	ected amplitude over the depth pro�leH�x��
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results given by the MMSE with the old boundary conditions just decay away

as � increases� Those given by the MSE with the old boundary conditions make

small oscillations� For � � � the MMSE results with the new boundary conditions

have practically converged to those given by the MSE� There is a clear overall

decreasing trend in these results which is because as � increases the physical

water depth becomes equal to a large number of wavelengths and consequently

less energy is re	ected� The behaviour in the results as � tends to zero is a

result of the modelling� because for small values of � the hump corresponds to a

submerged thin step� Decaying wave mode terms are signi�cant in this case and

as the mild�slope or modi�ed mild�slope approximations do not contain decaying

wave mode terms� we cannot expect reliable results� In Chapter �� we �nd second�

order accurate approximations to the re	ection and transmission coe�cients for

the full linear wave scattering problem over a hump� We �nd that the results

�




given by the MSE and MMSE with the new boundary conditions ����
� are very

similar to these full linear results� with those given by the MMSE the closest�

In Fig���� we present the results obtained from the boundary�value problem

2−term

3−term

4−term

MMSE  
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���
��� ������ � ������ for the MMSE� 
�term� ��term and ��term approximations�

It is clear from the graph� that as the number of terms in the trial function is

increased� the results are converging� The results given by the 
�term approxima�

tion have nearly converged to those given by the MMSE when � � ��� In other

words� for � � ��� the slope of the hump is mild enough to make the contribution

from the �rst �and largest� decaying mode almost negligible� When � � ���� the

results given by the ��term approximation have very nearly converged to those

given by the 
�term approximation� So the contribution from the second decaying

mode becomes essentially negligible for � � ���� Finally� the results given by the

��term have nearly converged to those given by the ��term approximation when

�
�



� � 
��� Therefore� the contribution from the fourth decaying mode becomes

essentially negligible for � � 
��� From the similarity between the ��term and

��term approximation results� we conclude that the n�term approximation has

essentially converged when n�� and so we do not compute solutions for the ��

term or higher term approximations� In this example we have not seen the same

convergence in the results given by the n�term �n � �� approximations as we did

in the previous example� This is because the steepness of a hump of the same

maximum height as a talud and the same length is e�ectively twice that of the

talud� So unfortunately� the slope of the hump does not become mild enough

for us to see the same convergence in the results given by the n�term �n � ��

approximations as seen in Example ��� before the results given by these n�term

�n � �� approximations become inaccurate�

For small values of �� the hump we are considering is similar to a thin rect�

angular block� whose height is half the 	uid depth� Mei and Black ��� considered

this type of problem using full linear theory� for blocks of various width and the

limiting case of a thin barrier�For small wave numbers� their results show that

there is a large di�erence in the amplitude of the re	ected wave given by a thin

barrier and the blocks they considered� The results given in Fig���� by the 
� �

and ��term approximations when � � ��� that is� when the 	at bed depth is 


times the length of the hump are consistent with those of Mei and Black� in the

sense that they lie between the corresponding estimates Mei and Black give for

the thin barrier and the narrowest block they consider� where the 	at bed depth

is half the length of the step�

In Chapter �� we �nd that our decay mode approximation results for this

hump problem are in good agreement with the results we compute using full

linearised theory�

We round o� this chapter by developing the theory given so far to encompass

obliquely incident waves�

�





��	 Obliquely incident waves

In this chapter� the theory employed so far is only for ��dimensional problems�

In other words� it applies to waves that are normally incident on depth pro�les

which are independent of y� We shall now generalise this to allow waves incident

other than normally on such pro�les� Consider a plane wave train arriving from

x � �
 whose direction of propagation makes an angle �� to the normal to the y

axis� Let the angle which the transmitted wave makes to the normal be denoted

by ��� where �� �� �� in general�

If the 	uid depth in x �  is less than that in x � � then �� � �� �Mei

����� for example�� We note that there exists a critical angle �crit which for any

incident wave with angle of incidence in the interval
h
�crit�

�

�

i
total re	ection

occurs � a well�known result in optics� We do not consider these total re	ection

problems here as this would require us to derive alternative boundary conditions�

with which we are not concerned� We shall consider wave scattering problems

in which part of the incident wave is re	ected and part of it is transmitted� If

the 	uid depth in x �  is greater than than that in x � �� that is� if h� � h��

then �� � �� � this is the case depicted in Fig� ��� In this case the incident wave

reflected

incident

transmitted

θ

θ

θ1

0

0

y

xx=0 x=1

Figure ���� Top view of an obliquely incident wave approaching a talud for h��h��
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is always transmitted whatever the angle of incidence� For an oblique incidence

problem as depicted in Fig� ���� we can follow the same procedure used in section

��� to see that the approximation to the free surface elevation � is given by

� � Re

�
e�i�t

n��X
k��

��k

�
�

Here the functions ��k � ��k�x� y� �k � � � � � � n� ��� after scaling� satisfy

Uk

�
r���k � �k

� ��k
�
�

n��X
j��

�
Fjk

� ��j
�x

�Gjk
��j

�
�  �k � � � � � � n� �� � ������

with Uk � Uk�x�� �k � �k�x�� Fjk � Fjk�x� and Gjk � Gjk�x� �j� k � � � � � � n����

de�ned by ���
�� and ����� respectively� since H � H�x��

The wave numbers �� and �� of the incident and the scattered progressive

waves can be calculated from the dispersion relation ���
�� once the parameters

� and � have been prescribed� Similarly� the corresponding terms ��
k and ��

k

�k � �� � � � � n� �� of the scattered decaying wave modes can be calculated from

���
��� The incident and scattered waves have an x and y component� with

the incident wave components in the x and y directions having wave numbers

�� cos �� and �� sin �� respectively� As the depth pro�le H is independent of y�

the y component of the waves cannot change across the talud� In other words�

� �x� y� � IR�

��k�x� y� � �k�x�e
i��y sin �� �k � � � � � � n� �� � ������

for some �k�x� �k � � � � � � n � ��� Substituting ������ into ������ and dividing

through by ei��y sin �� gives

Uk

�
���k�

�
��

� sin� ����k
�
�
�k
�
�

n��X
j��

n
Fjk�

�
j�Gjk�j

o
�  �k � � � � � � n� ��� ������

with the prime denoting di�erentiation with respect to x� This equation reduces

to our original coupled equation ���
�� in the event of an incident wave of normal

incidence� The asymptotic behaviour of �k �k � � � � � � n� �� can be summarised

by

���x� �

�����
���	
ei��x cos �� �R�e

�i��x cos �� x �  �

T�e
i�Tx x 	 � �

������

�
�



�k�x� �

�����
���	
Rke

��
k
x cos �� x �  �k � �� � � � � n� �� �

Tke
��T

k
x x 	 � �k � �� � � � � n� �� �

������

Here� �T is the x�component of the wave number of the transmitted progressive

wave� and �Tk �k � �� � � � � n��� are the x�components of the corresponding terms

of the transmitted decaying wave modes� The procedure outlined in section ���

can be used to derive the boundary conditions for �k �k � � � � � � n � �� from

equations ������ and ������� The transmitted progressive wave has wave number

�� and we know in advance that its y�component is �� sin ��� Therefore

�T �
q
��� � ��� sin

� �� �

Similarly� the y�component of the functions ��
�� � � � � �

�
n�� is �� sin �� and therefore

�Tk �
q
���

k�
� � ��� sin

� �� �k � �� � � � � n� �� �

We can also deduce from the above work that ��� the angle between the normal

to the y�axis and the direction of the transmitted wave� is given by

�� sin �� � �� sin �� �

This is analogous to a well�known result in optics known as Snell�s law and this

determines whether �� � �� or �� 	 ���

We can now use the numerical methods outlined in section ��� to solve e�

quation ������ together with its appropriate boundary conditions� The required

solutions ��k �k � � � � � � n��� are then found using equation ������� We return to

the problem considered in section ���� where we gave plots of the approximation

to the free surface for a plane wave incident normally on the depth pro�le

H�x� �
�

�
�

�

�
cos

�

�x�

�
� � x � �� �

with parameter values

� � 
�� �

� � �� �

Now suppose we have an incident wave of unit amplitude from x � �
 obliquely

incident on the bed at an angle �� � �

� to the normal� The graphical repre�

sentations of the free surface given by the MMSE� 
�term� ��term and ��term

�
�



approximations are very similar� so we just present the results for the 
�term

approximation here� The 
�term approximation to the free surface elevation at

time t � 
j �
�
�j � � � IN� is given by

� � Re

�������
�����	
ei��y sin ��

�������
�����	

ei��x cos �� �R�e
�i��x cos �� �R�e

��
�
x cos �� �x � � �

���x� � ���x� � � x � �� �

T�e
i�Tx � T�e

��T
�
x �x 	 �� �

������
������

Fig� ��� displays the approximation to the free surface elevation given by the


�term approximation� To give the �gure more meaning we have included the

depth pro�le used� and the amplitude of the waves has been exaggerated to

improve clarity� Notice the presence of constructive interference in x � �

Figure ���� Free surface for oblique incidence given by the 
�term approximation�

In the oblique incidence problem there is a possibility that at certain values

of the wave number � and the angle of incidence ��� waves may propagate in

the y direction with amplitude that tends to zero as jxj  
� These �trapped�

waves therefore evade the radiation conditions used and it follows that at these

parameter values the solution is non�unique�

�
�



It is clear that the numerical method that we have used to solve the boundary�

value problem ���
��� ������ � ����� is restricted by the size of the functions

�k �k � �� � � � � n � ��� A major objective of any future work will be to devel�

op a solution routine that overcomes this problem� The size of the functions

�k �k � �� � � � � n � �� will cause problems in most numerical solution procedures

of the boundary� value problem� These problems might be avoided by developing

an approximate solution method to solve the integral equation equivalent to this

boundary�value problem which we presented in section ����

In this chapter� we have shown that by incorporating decaying wave mode

terms into the formulation of the original mild�slope approximation to the ve�

locity potential for the full linearised wave scattering problem� we can �nd good

approximations to the velocity potential� This new approximation has been com�

pared with two older approximations that only contain progressive wave mode

terms� namely the mild�slope and modi�ed mild�slope approximations� We have

shown that for steep depth pro�les� where the decaying wave modes are signi��

cant� the results given by the new approximation agreed much more closely with

results Booij ��� obtained using full linear theory� From the results given in sec�

tions ��� and ���� the new �decaying mode� approximation of the coe�cients of

the scattered waves is seen to essentially converge when the number of decaying

wave modes included has reached three� even for the steepest bed pro�les� The

milder the depth pro�le� the fewer the number of decaying modes needed for con�

vergence� until eventually the gradient of the depth pro�le becomes mild enough

to make all the decaying modes negligible� In the course of developing this ap�

proximation� it has been found that the boundary conditions that have been used

in the past by all authors with the mild�slope approximation are incorrect� By

this� we mean that an alternative set of boundary conditions can be found which

make the mild�slope approximation results agree far more closely with computed

results of the full linear problem than the original ones�

�
�



Chapter �

The full linear problem for a

hump

In this chapter� the depth pro�les that are considered are local elevations in an

otherwise �at uniform bed� which we refer to as humps� A second�kind integral

equation is derived from the full linear boundary�value problem �BVP� satis�ed

by the velocity potential� which was given in Chapter 	� The BVP was de�ned

there in terms of two orthogonal horizontal co�ordinates x and y and a vertical

co�ordinate z� We shall be considering the two�dimensional problem� which is

independent of y� in this chapter�

Initially� as the kernel of the integral equation presents serious numerical prob�

lems to evaluate accurately� we make an approximation� The approximation�

which is equivalent to one that is used in the mild�slope and modi�ed mild�slope

approximations� is to remove the decaying wave mode terms to leave just the

progressive wave mode terms� This process makes the kernel of the second�kind

integral equation simple to compute and Chamberlain
s integral equation proce�

dure� which was reviewed in Chapter 	� can be used to solve it very accurately�

Unfortunately this approximation is found to be quite inaccurate when the results

are compared with those from reliable approximations�

It is found� however� that the second�kind integral equation for the potential

can be converted into a �rst�kind integral equation for the tangential �uid veloc�

ity� The kernel of the �rst�kind equation is given in terms of a Green
s function

whereas the kernel of the second�kind equation is given by the normal derivative

�	�



of another Green
s function evaluated on the hump� It follows that the kernel in

the �rst�kind equation is much easier to compute numerically than the kernel of

the second�kind equation� It is shown that the �rst�kind integral equation can be

derived directly from the corresponding boundary�value problem for the associ�

ated stream function� A variational principle is used to deliver approximations to

the coecients of the scattered waves which are second�order accurate compared

to the approximation of the solution of the �rst�kind equation� The subsequent

results are used to further test the accuracy of the decay mode approximation

derived in Chapter � and also to test the accuracy of the modi�ed mild�slope and

mild�slope approximations�

��� A second�kind integral equation

The problem under consideration is that of �nding the velocity potential

� � ��x� z� for waves incident from x � �� on an arbitrary� that is� sym�

metric or asymmetric� hump of �nite length l� This depth pro�le is such that

h�x� � h� �x � ���� �� � �l��� and h�x� � h� �x � ��� l�� The problem domain

is as depicted in Fig�����

A

B

A

Bh h

x=0 x=l

x

z

-

-

+

+

0 (x)

Figure ���� The problem domain�
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From Chapter 	� we recall that in this situation � satis�es

�r�� � � � h � z � � �

��

�z
� �� � � on z � � � �����

��

�n
� � on z � �h�x� �

where �r � � �

�x
� �

�z
� and � � ��

g
� together with radiation conditions in the form

��x� z� � cosh �k��z � h���

cosh �k�h��

h
A�eik�x �B�e�ik�x

i
as x��� ���	�

and

��x� z� � cosh �k��z � h���

cosh �k�h��

h
A�e�ik�x �B�eik�x

i
as x�� � �����

As discussed in Chapters 	 � �� linearity removes the need to solve the problem

for two incident waves� Therefore� for an incident wave from x � �� �A� � ���

the coecients of the re�ected and transmitted waves are de�ned as

R� �
B�

A�
and T� �

B�

A�
�

Similarly� for an incident wave from x � � �A� � ��� the coecients of the

re�ected and transmitted waves are de�ned as

R� �
B�

A�
and T� �

B�

A�
�

The coecients of the outgoing waves B� for two incident waves are given in

terms of these re�ection and transmission coecients� Following the steps used

in Chapter 	� this relationship is given by

�
B� B�

B�

�
CA �

�
B� T� R�

R� T�

�
CA
�
B� A�

A�

�
CA �

where the matrix on the right�hand side of the above equation is called the scat�

tering matrix�

The second�kind integral equation is derived via Green
s identity

��������
��������
D

�
� �r�G�G �r��

	
dxdz � 	

�������
C



�
�G

�n
�G

��

�n

�
dc � �����

���



where the domain D and boundary C will be de�ned as required and where �

�n

is the outward normal derivative� which is de�ned as

�

�n
� �

�
�z

� h��x� �
�x�

� � �h��x���
	 �
�

�

where the prime denotes di�erentiation with respect to x� The Green
s function

G is chosen to satisfy

�r�G � �	�x� x��	�z � z�� � h� � z � � �

�G

�z
� �G � � on z � � � �����

�G

�n
� � on z � �h� �

together with a radiation condition ensuring that G behaves like an outgoing

wave as jxj � �� In other words�

G � e�ik�x as x� �� � �����

This Green
s function is well�known and one can �nd derivations of its integral

or series forms in Wehausen and Laitone ���� and Thorne ����� The in�nite series

representation of G is given by

G �x� zjx�� z�� � i

	k�
c�� cosh�k��z � h��� cosh�k��z� � h��� e

ik�jx�x�j

�
�X
n��

�

	B�
n

c�n cos
�
B�
n�z � h��

	
cos

�
B�
n�z� � h��

	
e�B

�
njx�x�j�

�����

where

c�� �
�k�

	k�h� � sinh �	k�h��
�

c�n �
�B�

n

	B�
nh� � sin �	B�

nh��
�n � IN� �

Here k� is the root of the �at bed dispersion relation

� � k� tanh�k�h�� �

and B�
n are the roots of the equation

�� � B�
n tan�B

�
nh�� �n � IN� �

arranged in ascending order of magnitude�
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Figure ��	� First domain used in Green
s identity�

If Green
s identity ����� is now applied to the domain depicted in Fig���	�

where �x�� z�� is inside D and the vertical boundaries are assumed to be a great

distance from the hump so that the radiation conditions ���	�� ����� and �����

apply there� then it is simple to show that

���x�� z�� � �cosh �k��z� � h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i
�

���������
Ch

�
�
�G

�n


z��h�x�

dc �

where Ch is the curved part of C� Noticing that dc �
�
� � �h��x���

	�
� dx� then

this equation can be written as

��x�� z�� �
cosh �k��z� � h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

�

���������
l

�

�

h��x�

�G

�x
�
�G

�z

�
�


z��h�x�

dx �

�����

Equation ����� is an integral representation of ��x�� z�� in terms of ��x��h�x��
for � 
 x 
 l� that is� in terms of � evaluated on the hump� Applying Green
s

identity ����� to a slightly di�erent domain� depicted in Fig����� where �x�� z��

now lies on the hump� gives

� � �cosh �k��z� � h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i
�

���������
Ch

�
�
�G

�n


z��h�x�

dc�
�

	
��x�� z�� �

Here� the left�hand side is now zero because �r�G � �r�� � � in D and the

extra term on the right�hand side arises from the line integral around the small

indentation at �x�� z��� The above equation is a second�kind integral equation for

��	
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Figure ���� Second domain used in Green
s identity�

� on the hump� On the hump� z� � �h�x�� and so we can rewrite this equation

as

�
���x���h�x��� �

cosh �k��h� � h�x����

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

�

����������
l

�

�
��h��x��G

�x
�
�G

�z


z��h�x�
z���h�x��

��x��h�x��
�
A dx �

�����

Therefore� in order to �nd the velocity potential in the �uid domain� the inte�

gral equation ����� must be solved and its solution then substituted into equation

������ The kernel of the above integral equation is not easy to compute numerical�

ly because the series which de�nes it has poor convergence properties� Hence� we

wish to avoid solving this second�kind integral equation� Initially� we try making

an approximation in ����� which simpli�es the second�kind integral equation� and

this process is outlined in the next section�

We �nish this section by �nding expressions for the coecients of the re�ected

and transmitted waves in terms of the velocity potential evaluated on the hump�

Suppose we have an incident wave from x � �� �so that A� � ��� then if� in

equation ������ we take the limit x� � �� and compare the result with the

appropriate radiation condition ���	� for �� we �nd that the re�ection coecient

is given by

R��
B�

A�
�
c�� cosh �k�h��

	A�

Z l

�

�
�h��x� cosh �k��h��h�x���
�i sinh �k��h��h�x���

�
eik�x��x��h�x�� dx�

������

���



Similarly� by taking the limit x� � �� we �nd that the transmission coecient

is given by

T��
B�

A�
���

c�� cosh �k�h��

	A�

Z l

�

�
h��x� cosh �k��h��h�x���
�i sinh �k��h��h�x���

�
e�ik�x��x��h�x�� dx�

������

For an incident wave from x �� �so that A� � �� by the same process as above�

we �nd that the coecients of the re�ected and transmitted waves are given by

R��
B�

A�
�
c�� cosh �k�h��

	A�

Z l

�

�
h��x� cosh �k��h��h�x���
�i sinh �k��h��h�x���

�
e�ik�x��x��h�x�� dx

����	�

and

T��
B�

A�
���

c�� cosh �k�h��

	A�

Z l

�

�
�h��x� cosh �k��h��h�x���
�i sinh �k��h��h�x���

�
eik�x��x��h�x�� dx�

������

��� An approximation

The mild�slope and modi�ed mild�slope approximations to the velocity potential

are derived on the basis that decaying modes are negligible� It is our intention to

make an approximation in the same spirit as these approximations in the integral

equation ������ Therefore� the approximation we make in ����� is to omit all the

decaying wave mode terms in the Green
s function� The resulting approximation

���x���h�x��� to ��x���h�x��� on the hump is the solution of the integral equation

�
����x���

cosh �k��h��h�x����
cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

�
c��
	
cosh�k��h��h�x����

Z l

�

�
sgn�x��x�h��x�cosh�k��h��h�x���

�i sinh�k��h��h�x���
�
eik�jx�x�j���x�dx�

������

where ���x� � ���x��h�x��� and the sgn function is de�ned by

sgn�x��x� �
���
��

� x� � x �

�� x� � x �

���



The approximation to the velocity potential in the �uid is given by

���x�� z���
cosh �k��z��h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

�
c��
	
cosh�k��z��h���

Z l

�

�
sgn�x��x�h��x�cosh�k��h��h�x���

�i sinh�k��h��h�x���
�
eik�jx�x�j���x�dx�

������

We shall refer to this new approximation to the velocity potential as the integral

approximation�

Therefore� in order to �nd the approximation ���x�� z�� to the velocity po�

tential in the �uid� we must solve the second�kind integral equation ������ and

substitute its solution into equation ������� The kernel of the second�kind in�

tegral equation ������ is discontinuous at x � x�� which will cause problems in

numerical integration routines if we attempt to solve this integral equation as

it stands� These problems are avoided by using a variable change and some s�

traightforward manipulation to give a new second�kind integral equation whose

kernel is continuous�

We de�ne a new function 
 � 
�x� by


�x� �
�

	
���x�sech �k��h� � h�x��� cosh �k�h�� � ������

Then equation ������ can be rewritten as


�x�� �
h
A�eik�x� �A�e�ik�x�

i

� c��

Z l

�

�
sgn�x��x�h��x�cosh��k��h��h�x���

� i
� sinh�	k��h��h�x���

�
eik�jx�x�j
�x�dx�

������

We now di�erentiate the above integral equation twice with respect to x� to �nd

the boundary�value problem satis�ed by 
� Di�erentiating ������ once gives


 ��x��� ik�
h
A�eik�x� �A�e�ik�x�

i
� 	c��h

��x�� cosh
� �k��h� � h�x���� 
�x��

�ik�c��

Z x�

�

h
h��x�cosh��k��h��h�x���� i

� sinh�	k��h��h�x���
i
eik��x��x�
�x�dx

�ik�c��

Z l

x�

h
h��x�cosh��k��h��h�x���� i

�
sinh�	k��h��h�x���

i
eik��x�x��
�x�dx�

���



where the prime denotes di�erentiation with respect to x�� Di�erentiating this

equation for 
 � gives


 ���x���	u�x��

��x���

h
	 �u��x���k�v�x����k��

i

�x�� �� � x� � l�� ������

where

u�x�� � c��h
��x�� cosh

� �k��h� � h�x����

and

v�x�� �
�

	
c�� sinh �	k��h� � h�x���� �

From equation ������ and the equation for 
 � we deduce that 
 satis�es the bound�

ary conditions


 ���� � ik�
��� � 	ik�A
� � 	u���
��� �


 ��l�� ik�
�l� � �	ik�A
�e�ik�l � 	u�l�
�l� �

where the functions are evaluated at x� � �� and x� � l��

By writing the di�erential equation ������ satis�ed by 
 in self�adjoint form�

we see that the boundary�value problem satis�ed by 
 is of the same form as

the boundary�value problem which arises from both the mild�slope and modi�

�ed mild�slope approximations to the velocity potential� We can therefore use

Chamberlain
s ��� integral equation procedure� which was reviewed in Chapter 	�

to �nd highly accurate estimates of 
 and thus the re�ection and transmission

coecients given by our integral approximation�

Using the same scaling procedure as used in Chapter 	� which is brie�y sum�

marised as

�x�
x

l
� U��x�� lu�l�x�� V ��x�� lv�l�x�� H��x��

�

h�
h�l�x�� �
��x��

�

�l�

�l�x��

and discarding the accents� the di�erential equation ������ in terms of these di�

mensionless quantities is


 ���x���	U�x��

��x���

h
	 �U ��x�����V �x�������

i

�x�� �� � x� � ��� ������

where

U�x�� � C�
�H

��x�� cosh
� ��� ���H�x���� �

V �x�� � �
�C

�
� sinh �	�� ���H�x���� �

C�
� �

���
	�� � sinh �	�� �

�

���



and �� � k�l is the positive real root of

��
� � �� tanh ��� � �

and where �� and  are two dimensionless parameters given by

�� �
�lp
gh�

�  � h��l �

We need to convert ������ into self�adjoint form� which is done by introducing an

integrating factor J given by

J�x�� � exp
�
�	

Z x�

�
U�x�dx

�

� exp



C�
�

	��

�
	�� ���H�x��� � sinh�	�� ���H�x����

��
� ���	��

The self�adjoint form of equation ������ is then given by

�
J�x��


��x��
��

� J�x��
�
	 �U ��x��� ��V �x���� ��

�
�

�x�� � ���	��

This equation is of the same form as the mild�slope equation which was given in

Chapters 	 � �� Therefore� we can solve this equation using the integral equation

procedure Chamberlain ��� used to solve the mild�slope equation� Following this

procedure� which is outlined in Chapter 	� we introduce a new variable � de�ned

by

��x�� � 
�x��
q
J�x�� �� 
 x� 
 ��

and �nd that � satis�es the second�kind integral equation

��x�� �
�
c� � c����� � c�����

	
ei��x�

�
�
c	 � c
���� � c�����

	
e�i��x�

� i

	��

Z �

�
ei��jx��tj��t���t� dt

�� � x� � �� � ���		�

where

��t� �
J ���t�

	J�t�
�


J ��t�

	J�t�

��

� 	
�
U ��t�� ��V �t�

�

and where the constants cj �j � �� � � � � �� are given by

c� � A�� c� � � i

	��
C�
�H

������ c� � � �

c	 � A�� c
 � �� c� �
iei��

	��
C�

�H
����� �

���



From the de�nition of the integrating factor J � it is simple to see that the above

equation for � can be rewritten as

��t� � U ��t� � U��t�� 	��V �t� � ���	��

Notice that � is continuous for t � ��� �� and so the kernel in the second�kind

integral equation ���		� for � is also continuous�

The coecients of the re�ected and transmitted waves for our integral ap�

proximation are given by replacing � in the de�nitions ������ � ������ of the

re�ection and transmission coecients for the full linear problem by our integral

approximation to �� namely ��� It is then simple to see that the re�ection and

transmission coecients for our integral approximation are given in terms of ��

the solution of the integral equation ���		�� as follows�

For an incident wave from x � �� �so that A� � ��� the coecients of the

re�ected and transmitted waves are given by

R� �
����

A�
� � �

T� �
����

A�
e�i�� �

For an incident wave from x �� �so that A� � ��� the coecients of the re�ected

and transmitted waves are given by

R� �
����e�i��

A�
� e��i�� �

T� �
����

A�
�

We now use Chamberlain
s ��� procedure to �nd approximations to these re�

�ection and transmission coecients given by the integral approximation� which

are second�order accurate compared to the estimate of the solution � of the inte�

gral equation ���		�� We compare the results given by the integral approximation

with the corresponding results given by the mild�slope and modi�ed mild�slope

approximations� We shall use the new boundary conditions derived in Chapter �

with both the modi�ed mild�slope and mild�slope equations�

Example ���

Suppose that a wave of unit amplitude is incident from x � �� on a hump

whose scaled depth pro�le is given by

H�x� � x� � x� � �� 
 x 
 �� �

���



This corresponds to a hump whose height is one quarter of the still�water depth

and whose slope is discontinuous at x � � and at x � �� where it meets the �at

beds� We choose parameter values

�� � 	 �

 � ��	 �

Using a ��dimensional trial space we �nd that for the integral approximation

maximum error in jR�j � ��� � ���� �

R� � ������ � ������i �

jR�j � ��	��� �

Similarly� using a ��dimensional trial space we �nd that for the mild�slope ap�

proximation gives

maximum error in jR�j � ��� � ����	 �

R� � ������ � ����	�i �

jR�j � ������ �

Finally� using a ��dimensional trial space we �nd that for the modi�ed mild�slope

approximation gives

maximum error in jR�j � ��	 � ����	 �

R� � ����	� � ������i �

jR�j � ������ �

It is clear that the integral approximation predicts a much larger re�ected ampli�

tude than either the mild�slope or modi�ed mild�slope approximations�

We now consider an example where we �nd solutions given by the modi�ed

mild�slope� mild�slope and integral approximations as we vary the steepness of

the hump depth pro�le�

Example ���

We consider a depth pro�le given by

H�x� � 	x� � 	x� � �
 x 
 �� �

This corresponds to a hump whose height is half the still�water depth which has

slope discontinuities at x � � and at x � �� where it meets the �at beds� We

���



seek solutions given by the modi�ed mild�slope� mild�slope and integral approxi�

mations at values of a parameter � starting at ����� �nishing at ��� with intervals

of ����� The parameters �� and  are de�ned in terms of � by

�� � � �  �
�

�
�

We have already considered this problem for the new �decaying mode
 approxi�

mation in Chapter � and recall that with these de�nitions for �� and  � varying

� corresponds to varying the length l of the hump� which translates to varying

the steepness of the depth pro�le�

We use the �cheap
 solution method given in Chapter � to �nd results for

each approximation imposing the usual two signi�cant �gure tolerance in the

error� The results are depicted in Fig� ���� The re�ected amplitude given by

|R
 1

|

ω

Integral approximation           

Mild−slope approximation         

Modified mild−slope approximation
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Figure ���� Re�ected amplitude over the depth pro�leH�x��	x��	x�� ��
x
���

the integral approximation has much higher peaks than the corresponding peaks

given by the modi�ed mild�slope and mild�slope approximations� The number of

peaks in the re�ected amplitude given by all three approximations is the same�

���



and for large values of ��� � ��� that is� as the slope of the hump becomes milder�

the re�ected amplitude given by the new integral approximation is closer to that

given by the other two approximations�

The evidence given by these two examples clearly suggests that the integral

approximation �� to � which was derived by omitting all the decaying wave mode

terms in the kernel of the second�kind integral equation ������ is not equivalent

to either the modi�ed mild�slope or the mild�slope approximations� From the

evidence given in Chapter � for Booij
s ��� talud problem� we saw that both the

modi�ed mild�slope and the mild�slope approximations gave good approximations

to the full linear results� When decaying modes were added to the approximation�

the results became even closer to the full linear ones that Booij had computed�

Similarly� we expect that the results given in Chapter � by the new �decaying

mode
 approximation for this current hump problem are tending to those giv�

en by full linear theory as the number of decaying modes is increased� From

Fig���� in Chapter �� we see that the height of the peaks in the amplitude of

the re�ected wave for this scattering problem given by the new �decaying mode


approximations and the modi�ed mild�slope and mild�slope approximations are

very similar� As the peaks in the amplitude of the re�ected wave given by the

integral approximation are nearly twice the height of the peaks given by both the

modi�ed mild�slope and mild�slope approximations� then we conclude that the

integral approximation is a poor approximation to the full linear problem�

If we recall how we made the integral approximation� it is really quite sur�

prising that the integral approximation produces recognisable results at all� We

approximated the kernel of the integral equation ������ which is an in�nite series�

with just the �rst term of this series� From the results we have obtained� it is

clear that this estimate of the in�nite series is quite poor� a not surprising fact�

Instead of trying to improve the approximation in the full linear integral e�

quation ������ we �nd that accurate estimates of the solutions of the full linear

problem itself can be obtained� This is achieved by �rstly converting the second�

kind integral equation ����� for the velocity potential on the hump into a �rst�kind

integral equation for the tangential �uid velocity on the hump�

���



��� A �rst�kind integral equation

We now return to the full linearised problem which was stated in section ���� The

Green
s identity domain under consideration is as depicted in Fig����� In this pic�

x=0 x=l

s

s

C

D

z

x

h(x)
h0

(x0 ,z0 )

Ch

n

Figure ���� The Green
s identity domain�

ture� �

�n
denotes the outward normal derivative� �

�s
the tangential derivative and

s the arc length along Ch� the curved part of C� measured from x � �� z � �h��
The outward unit normal was de�ned in Chapter 	 in terms of two orthogonal

horizontal co�ordinates x and y and a vertical co�ordinate z� For the problem

domain we are considering� which is independent of y� the outward unit normal

n at �x� z� on Ch is given by

n � � �

�� � �h��x����
�
�

�h��x�� �� �

where the prime denotes di�erentiation with respect to x� The unit tangent s at

�x� z� on Ch is given by

s �
�

�� � �h��x����
�
�

��� �h��x�� �

It follows that the normal and tangential derivatives at �x� z� on Ch are given by

�

�n
�

��

�� � �h��x����
�
�

�
�

�z
� h��x�

�

�x



��	



and
�

�s
�

�

�� � �h��x����
�
�

�
�

�x
� h��x�

�

�z


�

Taking the normal derivative of equation ������ the integral representation of the

velocity potential in the �uid� gives

��

�n�
�x�� z�� �

�

�n�

�
cosh �k��z� � h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

� �

�n�

���������
Ch

�
�
�G

�n


z��h�x�

ds

�x�� z�� in D �

The exponential term in the in�nite series ����� for G guarantees that G is an

in�nitely di�erentiable function of �x� z� and �x�� z�� for �x� z� �� �x�� z��� As

�x�� z�� is in D and �x� z� is on Ch� then we can take �

�n�
under the integral in the

above equation to give

��

�n�
�x�� z�� �

�

�n�

�
cosh �k��z� � h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

�
���������
Ch

�
�

��G

�n��n


z��h�x�

ds �

���	��

where �x�� z�� is in D�

Notice that the Green
s function G de�ned by ����� can be written as

G�x� zjx�� z�� � f�x� x�� z � z� � 	h�� � f�x� x�� z � z�� � ���	��

where

f�x� z� �
i

�k�
c�� cosh �k�z� e

ik�jxj �
�X
n��

�

�B�
n

c�n cos
�
B�
nz
	
e�B

�
njxj �

AsG is a Green
s function� singular at �x� z� � �x�� z��� it follows that the function

f�x� x�� z � z�� is a Green
s function� singular at �x� z� � �x�� z��� satisfying

�r�f�x� z� � �	�x�	�z� � h� � z � � �

The function f�x� x�� z� z� � 	h�� is regular in D� that is� it satis�es Laplace
s

equation at all points in D� We now de�ne a new function L � L�x� zjx�� z�� by

L�x� zjx�� z�� � f�x� x�� z � z� � 	h��� f�x� x�� z � z�� �

���



It follows that L is also a Green
s function in the sense that

�r�L � 	�x� x��	�z � z�� � h� � z � � �

Notice that G behaves like a line source near �x�� z�� and L behaves like a line

sink near �x�� z��� From the de�nition of f it is simple to see that L is given by

the in�nite series

L �x� zjx�� z�� � i

	k�
c�� sinh �k��z�h��� sinh �k��z��h��� e

ik�jx�x�j

�
�X
n��

�

	B�
n

c�n sin
�
B�
n�z�h��

	
sin

�
B�
n�z��h��

	
e�B

�
njx�x�j�

���	��

Lemma ��� Suppose G � G�x� zjx�� z�� and L � L�x� zjx�� z�� are de�ned by

����� and ����	� respectively� Then �G

�n
and �L

�s
satisfy

�

�n�



�G

�n

�
�

�

�s�



�L

�s

�
and

�

�s�



�G

�n

�
� � �

�n�



�L

�s

�

for all �x� z� and �x�� z�� provided �x� z� �� �x�� z��� �In this sense �G

�n
and �L

�s
can

be thought of as conjugate functions��

Proof

This follows directly from �nding the above derivatives of the in�nite series

����� and ���	�� for G and L�

It follows from Lemma ���� that equation ���	�� can be rewritten as

��

�n�
�x�� z�� �

�

�n�

�
cosh �k��z� � h���

cosh �k�h��

h
A�eik�x� �A�e�ik�x�

i

� �

�s�

���������
Ch

�
�
�L

�s


z��h�x�

ds �

���	��

where �x�� z�� is in D� The right hand side of the above equation can be rewritten

as the tangential derivative of a function by noticing that

�

�n�

�
cosh �k��z� � h���

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�

�

�s�

�
i sinh �k��z� � h���

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�

Therefore� equation ���	�� can be written as

��

�n�
�x�� z���

�

�s�

�
��i sinh�k��z��h���

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�
���������
Ch

�
�
�L

�s


z��h�x�

ds

�
��� ���	��

���



where �x�� z�� is in D� Integration by parts gives���������
Ch

�
�
�L

�s


z��h�x�

ds �
�
�L
�
Ch

�
���������
Ch

�
L
��

�s


z��h�x�

ds �

The velocity potential is certainly bounded on the bed and from the in�nite series

���	�� for L it is clear that

L����h�jx�� z�� � L�l��h�jx�� z�� � � � �x�� z�� in D �

Therefore for �x�� z�� in D���������
Ch

�
�
�L

�s


z��h�x�

ds � �
���������
Ch

�
L
��

�s


z��h�x�

ds �

Equation ���	�� can now be written as

��

�n�
�x�� z���

�

�s�

�
��i sinh�k��z��h���

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�

���������
Ch

�
L
��

�s


z��h�x�

ds

�
���

where �x�� z�� is in D� If we now let �x�� z�� tend to a point on Ch� then this

equation becomes

��
�

�s�

�
��i sinh�k��z��h���

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�

���������
Ch

�
L
��

�s


z��h�x�

ds

�
���

where �x�� z�� is on Ch� Integrating this equation with respect to s� gives

c�
i sinh�k��h��h�x����

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�

��������
Ch

�
L
��

�s


ds ��
x�
 l�� ���	��

where c is a constant to be found�

In the neighbourhood of a corner of angle �� of a boundary on which ��

�n
takes

prescribed continuous values� the velocity potential � is given as the sum of the

bounded separation solutions near r � � by

� � �� �
�X
j��

ajr
j�
� cos



j��

�

�
� 
 � 
 � � ������

where r� � are polar co�ordinates relative to the corner� aj �j � IN� are constants

and �� has prescribed values on � � � and � � �� We consider the case when

��

�n
� � on the boundary as depicted in Fig����� It follows that the tangential

derivative of � on the boundary � � � is

���
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Figure ���� Polar co�ordinate system at a corner�

��

�s

�����
���

�
��

�r

�����
���

�
�

�

�X
j��

����jajjr
j�

�
�� � � as r� � since � � � � � �

The same result clearly holds on the boundary � � �� Therefore� as the depth

pro�les Ch that we are considering are all humps �so that � � ��� it follows that

��

�s
evaluated on Ch is zero� and therefore bounded� at the ends of the hump� that

is� at x � � and x � l� It follows that as L�x� zj���h�� � � for �x� z� on Ch� then�
�
��������
Ch

�
L
��

�s


ds

�
�
x���

� � �

Substituting x� � � in ���	�� then gives c � � and so it follows that the tangential

�uid velocity evaluated on the hump satis�es the �rst�kind integral equation��������
Ch

�
L
��

�s


ds�

i sinh�k��h��h�x����
cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�� ��
x�
 l�� ������

Notice that in the �uid the stream function � associated with the velocity

potential � is such that

��

�x
�

��

�z
and

��

�z
� ���

�x
� ����	�

provided the derivatives exist� and on the bed � is related to � by

��

�n
�

��

�s
and

��

�s
� ���

�n
� ������

as long as the derivatives exist� In other words� � and � are related by the

Cauchy�Riemann equations in any orthogonal co�ordinate system� We can now

rewrite ������ in terms of the normal derivative of � evaluated on the hump as��������
Ch

�
L
��

�n


ds � i sinh�k��h��h�x����

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�� ��
x�
 l��

���



This �rst�kind integral equation for ��

�n
evaluated on Ch looks like the result

of applying Green
s identity ����� to � and L� Indeed� in the next section we

show that this is precisely the case and therefore we can give a much more direct

derivation of equation ������ than we did in this section�

��� A direct derivation of the �rst�kind inte�

gral equation

Let us recall that the problem domain we are considering is as depicted in Fig�����

and that the time independent velocity potential � satis�es

�r�� � � � h � z � � �

��

�z
� �� � � on z � � �

��

�n
� � on z � �h�x� �

where �r� � ��

�x�
� ��

�z�
and � � ��

g
� together with the radiation conditions

��x� z� � cosh �k��z � h���

cosh �k�h��

h
A�eik�x �B�e�ik�x

i
as x���

and

��x� z� � cosh �k��z � h���

cosh �k�h��

h
A�e�ik�x �B�eik�x

i
as x�� �

From equations ����	� and ������� it follows that � satis�es

�r�� � � � h � z � � �

���

�z�
� �

��

�z
� � on z � � �

� � � on z � �h�x� �

����������
���������

������

together with the radiation conditions

��x� z� � i sinh �k��z � h���

cosh �k�h��

h
A�eik�x �B�e�ik�x

i
as x��� ������

and

��x� z� � i sinh �k��z � h���

cosh �k�h��

h
�A�e�ik�x �B�eik�x

i
as x�� � ������

���



Note that the stream function is arbitrary to within a constant and we have

chosen � � � on z � �h�x�� that is� we have chosen the streamline � � � to

be the bed� We have also expressed the radiation conditions on � at x � ��
in terms of the coecients of the incident and scattered waves� It follows that

the coecients of the re�ected and transmitted waves due to an incident wave

from either x � � or x � �� are as given in section ��� by equations ������ �

������� We shall show later that the re�ection and transmission coecients can

be expressed in terms of ��

�n
evaluated on Ch�

We shall now derive the �rst�kind integral equation via Green
s identity

��������
��������
D

�
� �r�L� L �r��

	
dxdz � 	

�������
C



�
�L

�n
� L

��

�n

�
dc � ������

where D is the domain with boundary C depicted in Fig����� Following the work

in the previous section� the Green
s function L is chosen to satisfy

�r�L � 	�x� x��	�z � z�� � h� � z � � � ������

��L

�z�
� �

�L

�z
� � on z � � � ������

L � � on z � �h� � ������

together with a radiation condition that L behaves like an outgoing wave as

jxj � �� In other words�

L � e�ik�x as x��� � ������

We have already shown that the Green
s function L de�ned by the in�nite se�

ries ���	�� satis�es ������� From equation ���	�� it is clear that L also satis�es

conditions ������ � �������

The structure of the Green
s function L given by ���	�� is unusual� in that L

is not de�ned in terms of an orthogonal sequence on �h� � z � � because

Z �

�h�
sin

�
B�
i �z�h��

	
sin

�
B�
j �z�h��

	
dz�

��

B�
i

cos
�
B�
i h�

	
sin

�
B�
jh�

	
��� �i ��j��

This raises the question of whether the Green
s function L satisfying ������ �

������ can be determined without �rst �nding the Green
s function G given by

������ We can show that L is indeed given by ���	�� without �rst �nding G by

���



considering a fourier series expansion for �L

�z
� given by

�L

�z
�x� zjx�� z�� �

�X
n��

dn�xjx�� z��vn�z� �

Here v��z� � c� cosh�k��z � h���� vn�z� � cn cos�B�
n�z � h��� �n � IN�� and the

functions dn �n � � � IN� are to be found� All the other functions are de�ned

earlier in this chapter�

Integrating the above expression for �L

�z
with respect to z gives

L �x� zjx�� z�� � �

k�
d��xjx�� z��c� sinh �k��z � h���

�
�X
n��

�

B�
n

dn�xjx�� z��cn sin
�
B�
n�z � h��

	
�

where there is no constant of integration because we require L � � on z � �h��
It is clear that L as de�ned above also satis�es the free surface condition �������

From Chapter �� we know that the sequence fvn � n� � � INg is orthonormal

for z � ��h�� ��� Therefore� the unknown functions dn are given by

dn�xjx�� z�� �
������
�

�h�

�L

�z
�x� zjx�� z��vn�z�dz �n� � � IN� � ����	�

Integration by parts gives

d��xjx�� z�� �
c�
k�

sinh �k�h��
�L

�z

�����
z��

� �

k�

�������
�

�h�

��L

�z�
w��z�dz �

dn�xjx�� z�� �
cn
B�
n

sin
�
B�
nh�

	�L
�z

�����
z��

� �

B�
n

�������
�

�h�

��L

�z�
wn�z�dz �n � IN��

������

where w��z� � c� sinh�k��z � h��� and wn�z� � cn sin�B�
n�z � h��� �n � IN��

Di�erentiating ����	� twice with respect to x and then integrating the result by

parts gives

d����xjx�� z�� � c� cosh �k�h��
��L

�x�

�����
z��

� k�

�������
�

�h�

��L

�x�
w��z�dz �

d��n�xjx�� z�� � cn cos
�
B�
nh�

	��L
�x�

�����
z��

�B�
n

�������
�

�h�

��L

�x�
wn�z�dz �n � IN��

������

where the prime denotes di�erentiation with respect to x�

From ������� it follows that

�����

�h�

�
�r�L

	
wn�z�dz � 	�x� x��wn�z�� �n� � � IN� � ������

���



Substituting equations ������ and ������ into ������ and employing the equations

� � k� tanh�k�h�� and �� � B�
n tan�B

�
nh�� �n � IN�� we �nd that

d��� � k�
�d� � c� cosh �k�h��

�
��L

�x�
��

�L

�z

�����
z��

� �	�x� x��k�w��z���

d��n �
�
B�
n

	�
dn � cn cos

�
B�
nh�

	���L
�x�

��
�L

�z

�����
z��

� 	�x� x��B�
nwn�z�� �n � IN��

As �x�� z�� is in D� then �r�L � � on z � � and so as L satis�es the surface

condition ������ then it also satis�es the surface condition

��L

�x�
� �

�L

�z
� � on z � � �

Therefore� the unknown functions dn �n�� � IN� satisfy the ordinary di�erential

equations

d��� � k�
�d� � �	�x� x��k�w��z�� �

d��n �
�
B�
n

	�
dn � 	�x� x��B�

nwn�z�� �n � IN��

These equations can be solved using variation of parameters to give

d��xjx�� z�� �

����
���
L�e

ik�x�M�e
�ik�x x � x� �

L�e
ik�x�M�e

�ik�x � w��z��

	i

�
eik��x�x���e�ik��x�x��

	
x � x�

and� for n � IN�

dn�xjx�� z�� �

����
���
Lne

B�
nx�Mne

�B�
nx x � x� �

Lne
B�
nx�Mne

�B�
nx �

wn�z��

	

�
eB

�
n�x�x���e�B�

n�x�x��
	

x � x� �

Imposing the radiation condition ������ gives the unknown constants in the above

expressions� It follows that

d��xjx�� z�� � i

	
c� sinh �k��z� � h��� e

ik�jx�x�j

and

dn�xjx�� z�� � ��

	
cn sin

�
B�
n�z� � h��

	
e�B

�
njx�x�j �n � IN� �

Therefore� the Green
s function L satisfying ������ � ������ is given by

L �x� zjx�� z�� � i

	k�
c�� sinh �k��z � h��� sinh �k��z� � h��� e

ik�jx�x�j

�
�X
n��

�

	B�
n

c�n sin
�
B�
n�z � h��

	
sin

�
B�
n�z� � h��

	
e�B

�
njx�x�j�

���



The method that we have used to construct L here can be used to con�

struct the Green
s function G given by ������ Notice that L and G are only

de�ned for �h� � z � �� Hence� it is clear that these two Green
s function�

s are not suitable to be used with other types of depth pro�les that satisfy

h�x� � h� �x � ���� �� � �l���� such as ripples in the sea bed or a trench�

as h� is no longer the greatest �uid depth� The issue of �nding the Green
s

functions L and G for depth pro�les corresponding to ripples and trenches is a

separate problem and is not pursued here� This is the reason why we just consider

hump depth pro�les in this chapter�

If Green
s identity ������ is now applied to the domain depicted in Fig�����

where �x�� z�� is inside D and the vertical boundaries are assumed to be a great

distance from the hump� so that the radiation conditions ������� ������ and ������

apply there� then

��x�� z�� �

��������
�

��

�
���L

�z
�L

��

�z

�����
z��h�

dx�

���������
Ch

�
�
�L

�n
�L��

�n

�����
z��h�x�

ds

�

�������
�

l

�
���L

�z
�L

��

�z

�����
z��h�

dx�

��������
�

�h�

�
�
�L

�x
�L��

�x

�����
x��

dz

�

��������
�

��

�
�
�L

�z
�L��

�z

�����
z��

��dx��
���������
�h�

�

�
���L

�x
�L

��

�x

�����
x���

��dz� �

������

As � � � on z � �h�x� �x � ������ and L � � on z � �h�� then the �rst and

third integrals in ������ are zero� The �fth integral in ������ is non�zero because

� and L satisfy a second�order boundary condition at the surface z � �� This

integral is given by

�
��������
�

��

�
�
�L

�z
�L��

�z

�����
z��

dx �	
�
A�eik�x Lj z��

x���
�A�e�ik�x Lj z��

x��

�
�

�	

�
ic��
	k�

sinh �k��z��h���

cosech �k�h��

h
A�eik�x��A�e�ik�x�

i
�

The sum of the fourth and sixth integrals in the right hand side of ������ is given

���



by

��������
�

�h�

�
�
�L

�x
�L��

�x

�����
x��

dz �

���������
�h�

�

�
���L

�x
�L

��

�x

�����
x���

��dz�

�
�	k�

cosh �k�h��

�����

�h�

h
A�eik�x Ljx����A�e�ik�x Ljx��

i
sinh �k��z � h��� dz

�
�	k�

cosh �k�h��

�
��ic��

	k�

h
A�eik�x��A�e�ik�x�

i
cosech �k��z��h���

�	k�h��sinh �	k�h���

�k�

�
� �

Substituting these expressions for the integrals into ������ gives

��x�� z�� �
ic��
	k�

h
A�eik�x��A�e�ik�x�

i
cosech �k��z� � h���

�
	 sinh�k�h���

	k�h��sinh �	k�h��

	 cosh�k�h��



�
���������
Ch

�
L
��

�n

�����
z��h�x�

ds �

which simpli�es to

��x�� z�� �
i sinh �k��z� � h���

cosh�k�h��

h
A�eik�x��A�e�ik�x�

i
�
���������
Ch

�
L
��

�n

�����
z��h�x�

ds �

If we now let �x�� z�� tend to a point on Ch� then this equation reduces to the �rst�

kind integral equation for ��

�n
evaluated on Ch that was derived in the previous

section� namely��������
Ch

�
L
��

�n


ds � i sinh�k��h��h�x����

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�� ��
x�
 l��

From equation ������ which relates � and � on the bed� we can rewrite this

�rst�kind equation as��������
Ch

�
L
��

�s


ds�

i sinh�k��h��h�x����
cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�� ��
x�
 l��

or equivalently as��������
l

�

�
Lj z��h�x�

z���h�x��

��

�x
�x��h�x��


dx

�
i sinh �k��h��h�x����

cosh �k�h��

h
A�eik�x��A�e�ik�x�

i
�� ��
x�
 l��

������

If the boundary�value problem ����� � ����� for � has a unique solution� then

it is given by solving the above �rst�kind integral equation�

��	



Evans ����� whilst considering water wave scattering by a shelf� showed that

as the point �x� z� approaches �x�� z���

G  �

	�

�
log

n
�x� x��

� � �z � z��
�
o �

� � log
n
�x� x��

� � �z � z� � 	h��
�
o �

�

�
�

where the notation f  g means that ��f�g�
�n

is bounded for all points on the

shelf� This result holds for any bed contours including humps� The above result

can also be deduced from equation ���	��� where we expressed G as a sum of two

in�nite series� It is simple to show that on a hump� as �x� z�� �x�� z�� then

�

�n

�
log

n
�x� x��

� � �z � z��
�
o �

�

�
�

��

	R�x��
�

where

R�x�� �
�� � �h��x�����

�
�

h���x��

is the radius of curvature of Ch at �x���h�x���� Therefore� the above normal

derivative is bounded for all x� � ��� l�� The other logarithm given above is only

singular on Ch at �x�� z�� � ����h�� and �x�� z�� � �l��h��� It is simple to show

that at these points the value of �
�n

�
log f�x� x��� � �z � z� � 	h���g

�
�

�
is ��

�R����

and ��
�R�l��

respectively�

It follows that� except for discrete values of the parameters of the problem for

which the homogeneous form of the second�kind integral equation ����� satis�ed

by � on Ch has non�trivial solutions� the second�kind integral equation ����� has

a unique solution and therefore so does the boundary�value problem ����� � �����

for ��

It is possible that there are discrete values of the parameters of the problem for

which the homogeneous form of the second�kind integral equation ����� has non�

trivial solutions� which corresponds to trapped modes over the hump� However�

in all the problems we have considered there has been no evidence of such modes�

nor do we expect them for these bed geometries�

We have derived a �rst�kind integral equation for the tangential velocity ��

�s
on

Ch� We actually want to �nd approximations to the coecients of the re�ected

and transmitted waves due to a wave incident on the hump� These coecients

were de�ned earlier by equations ������ � ������ in terms of � evaluated on the

hump� We can rewrite these equations in terms of ��

�s
evaluated on the hump as

follows�

���



For an incident wave from x � ��� the coecient of the re�ected wave was

de�ned as

R��
c�� cosh �k�h��

	A�

Z l

�

�
�h��x� cosh �k��h��h�x���
�i sinh �k��h��h�x���

�
eik�x��x��h�x�� dx�

Integration by parts gives

R� �
c�� cosh �k�h��

	A�k�

�h
��x��h�x��eik�x sinh �k��h��h�x���

il
�

�
�������
l

�

eik�x sinh �k��h��h�x��� ��
�x

�x��h�x��dx

�

As � is bounded on Ch� that is� on the hump� then R� is given in terms of the

tangential velocity on the hump by

R� � �c
�
� cosh �k�h��

	A�k�

�������
l

�

eik�x sinh �k��h��h�x��� ��
�x

�x��h�x��dx �

Similarly� the transmission coecient is de�ned by

T� � � �
c�� cosh �k�h��

	A�k�

�������
l

�

e�ik�x sinh �k��h��h�x��� ��
�x

�x��h�x��dx �

For an incident wave from x � �� the coecients of the resulting re�ected and

transmitted waves are given by

R� �
c�� cosh �k�h��

	A�k�

�������
l

�

e�ik�x sinh �k��h��h�x��� ��
�x

�x��h�x��dx

and

T� � �� c�� cosh �k�h��

	A�k�

�������
l

�

eik�x sinh �k��h��h�x��� ��
�x

�x��h�x��dx �

We are now ready to solve the �rst�kind integral equation for ��

�s
evaluated on

Ch� given by ������� for a wave incident from either x � ��� and hence calculate

the coecients of the resulting re�ected and transmitted waves� We do this using

a variational approach� after we have non�dimensionalised the problem�

���



��� Non�dimensionalisation

We use the same scaling procedure as used in previous chapters� which is brie�y

summarised as follows� Let

�x �
x

l
�

�z �
z

h�
�

H��x� �
�

h�
h�l�x� �

����x� �z� �
�

�l�
��l�x� h��z� �

Then� after discarding the accents from these de�nitions to simplify the notation�

the �rst�kind integral equation ������ may be written in non�dimensional form as������
�

�

�
Lj z��H�x�

z���H�x��

��x�
�
dx

�
i sinh ��� ���H�x����

cosh ��� �

h
A�ei��x��A�e�i��x�

i
�� ��
x�
���

������

where ��x� � ��

�x
�x��H�x�� and A� �A�� is the amplitude of the incident wave

from x � �� �x ���� The Green
s function L is now rede�ned to be

L �x� zjx�� z�� � i

	��
C�
� sinh ��� �z � ��� sinh ��� �z� � ��� ei��jx�x�j

�
�X
n��

�

	��
n

C�
n sin

�
��
n �z � ��

	
sin

�
��
n �z� � ��

	
e��

�
njx�x�j�

where

C�
� �

���
	�� � sinh �	�� �

� C�
n �

���
n

	��
n � sin �	��

n �
�n � IN� �

�� � k�l is the positive� real root of

��
� � �� tanh ��� � �

��
n � B�

nl �n � IN� are the positive real roots of

���
� � ��

n tan
�
��
n
	

�n � IN� �

arranged in ascending order of magnitude and where �� and  are two dimen�

sionless parameters given by

�� �
�lp
gh�

�  � h��l �

���



The coecients of the re�ected and transmitted waves due to an incident wave

from x � �� are given by

R� � �C
�
� cosh ��� �

	A���

����

�
ei��x sinh ��� ���H�x�����x�dx � ������

T� � � �
C�
� cosh ��� �

	A���

����

�
e�i��x sinh ��� ���H�x�����x�dx � ������

and for an incident wave from x �� are given by

R� �
C�
� cosh ��� �

	A���

����

�
e�i��x sinh ��� ���H�x�����x�dx � ������

T� � �� C�
� cosh ��� �

	A���

����

�
ei��x sinh ��� ���H�x�����x�dx � ����	�

��	 A variational principle

We start this section by recasting the �rst�kind integral equation ������ on the

Hilbert space L���� ��� which is the set of all equivalence classes of complex�valued

Lebesgue measurable functions 
 satisfying the condition
R �
� j
j� ��� This space

has pointwise operations with inner product de�ned by �f� g� �
R �
� fg and norm

de�ned by kfk �
q
�f� f� �Young ������ This space includes functions f �� �

where kfk � �� so equivalence classes of functions are considered to re�establish

the norm� Two functions f and g are said to be equivalent if they are unequal

only on a set of measure zero� such a set being one which can be covered by a

sequence of arbitrarily small open intervals� Two equivalent functions are written

f � g �a�e��� that is� f and g are equal almost�everywhere� All function equalities

in the Hilbert space are meant in this almost�everywhere sense�

We now introduce an operator K de�ned by

�K�� �x�� �
Z �

�
k�x�� x���x�dx �� 
 x� 
 �� � ������

where k�x�� x�� the kernel of K� is de�ned by

k �x�� x� �
i

	��
C�
� sinh��� ���H�x��� sinh��� ���H�x���� e

i��jx�x�j

�
�X
n��

�

	��
n

C�
n sin

�
��
n ���H�x��

	
sin
�
��
n ���H�x���

	
e��

�
njx�x�j�

������

It is quite simple to show that if

fn�x�� x� �
�

	��
n

C�
n sin

�
��
n ���H�x��

	
sin
�
��
n ���H�x���

	
e��

�
njx�x�j �n � IN� �

���



then

kfnk �

sZ �

�

Z �

�
jfn�x�� x�j� dxdx�


 �

�	��
n�

�
�

C�
n



	 �

�

��
n

�e���
�
n � ��

� �
�

�� �n � IN��

Hence fn � L���� �� � L���� �� �n � IN�

Now �n � IN� C�
n is bounded and for a �xed  � ��

n � n	



�O� �

n
� as n�� �see

Wehausen and Laitone ����� for example�� Therefore� it follows that
P�

n�� kfnk
converges and hence

P�
n�� fn converges in L���� �� � L���� ��� Hence

k �x�� x� �
�X
n��

fn �x�� x�

converges in L���� �� � L���� ��� where

f��x�� x� �
i

	��
C�
� sinh��� ���H�x��� sinh��� ���H�x���� e

i��jx�x�j �

We also have that for all n � IN� the functions fn are continuous and are therefore

measurable and

kk �x�� x�k �

sZ �

�

Z �

�
jk�x�� x�j� dxdx�



�X
n��

sZ �

�

Z �

�
jfn�x�� x�j� dxdx� �� �

and so k is called an L��kernel on ��� �� � ��� ��� From Porter and Stirling �����

it follows that the operator K de�ned by ������ is a bounded linear map from

L���� �� to itself and that K is a compact operator and so is not invertible� The

adjoint operator K� of K is a unique bounded linear map from L���� �� to itself

with the property that

��� 
 � L���� �� �K�� 
� � ���K�
� �

As k is an L��kernel� the adjoint operator K� is given by

�K��� �x�� �
Z �

�
k�x� x����x�dx �� 
 x� 
 �� �

The proof of this result can be found in Porter and Stirling ����� From the

de�nition ������ of the kernel k� we can see that k�x� x�� � k�x�� x� and k�x� x�� ��
k�x� x�� and so k is called complex symmetric�

���



The �rst�kind integral equation ������ can now be written as an operator

equation in L���� �� by de�ning g as

g�x�� � �i sinh ��� ���H�x����

cosh ��� �

h
A�ei��x��A�e�i��x�

i
�

Then � is the solution of

K� � g ������

in L���� ���

Notice that if we now de�ne �� to be the solution of ������ for a wave of unit

amplitude incident from x � �� �requiring A� � �� A� � � in �������� then the

re�ection coecient R� is given by

R� � �iC
�
� cosh

� ��� �

	��

�
��� g�

	
� ������

where

g��x����i sinh ��� ���H�x����

cosh ��� �
ei��x� �

Similarly� if we now de�ne �� to be the solution of ������ for a wave of unit

amplitude incident from x � � �requiring A� � �� A� � � in �������� then the

re�ection coecient R� is given by

R� � �iC
�
� cosh

� ��� �

	��

�
��� g�

	
� ������

where

g��x���
i sinh ��� ���H�x����

cosh ��� �
e�i��x� �

Now ��� g� is the integral of the product of �� the solution of the operator equation

������� and its free term g� We can �nd a variational principle that will give a

second�order estimate to ��� g� compared to the estimate of the solution of � of

�������

Consider the functional J � L���� ��� C given by

J�p� � 	�p� g�� �Kp� p� � ������

It is simple to establish that J��� � ��� g�� so that given an approximation p to

�� J�p� delivers an approximation to ��� g��

���



Lemma ��� The functional J�p� de�ned by ����
� is stationary at p � �� the

solution of ������� with stationary value ��� g��

Proof

Suppose that p � �� 	� where 	� represents the error in this approximation

to �� Then

J�p��J��� 	��

� ��� g� � 	�	�� g�� �K�� 	��� �K	����� �K	�� 	��

� ��� g� � 	�	�� g �K��� �K	�� 	�� �as k is complex symmetric�

� ��� g� �O
�
k	�k�

	
�

Hence J is stationary at p � � with stationary value equal to ��� g�� Therefore�

using a given �rst�order accurate approximation p to � in the functional J delivers

a second�order accurate approximation J�p� to ��� g��

We now need to consider the choice of our approximation to �� In other words�

given the integral equation K� � g� how do we choose p such that p  �  

We choose the trial function p in the form

p�x� �
NX
j��

aj�j�x� � ������

where the constants aj � C �j � �� � � � � N� are unknown and �j �j � � � � � � N�

are orthogonal functions that satisfy the same boundary conditions at x � � and

x � � as �� that is� they satisfy

�j��� � ���� and �j��� � ���� �j � �� � � � � N� �

We have already shown in section ��� that ��

�s
evaluated at the ends of Ch is

zero� In other words� ���� � � and ���� � �� Consequently� we choose

�j�x� � sin�j�x� �j � �� � � � � N� � ������

The approximation p �
PN

j�� aj�j to the solution � of the �rst�kind integral

equation ������ is therefore an element of the sub�space En of L���� �� which is

spanned by the orthogonal functions �j �j � �� � � � � N� given by �������

���



The constants aj � C �j � �� � � � � N� are determined by using the fact that

the variational principle 	J � � is stationary at p � �� Therefore� we choose p so

that
�J

�aj
� � �j � �� � � � � N� �

Hence the unknown constants aj � C �j � �� � � � � N� satisfy the N simultaneous�

linear equations

NX
j��

aj �K�j� �n� � ��n� g� �n � �� � � � � N� � ������

We can actually evaluate the functional J without needing to �nd explicitly

the approximation to �� This procedure is given in Porter and Stirling ����� p�	���

	���� where the stationary value is expressed as the quotient of the determinants

of two N �N matrices� The entries in the jth column of each matrix correspond

to an inner product involving �j� If we did not require to know the values of the

constants aj �j � �� � � � � N�� then the advantage of this method for evaluating the

stationary value of J is that it is not necessary to solve the set of simultaneous

equations ������� However� in our problem we want to know the approximation to

� so that we can calculate the norm of the residual error of the �rst�kind integral

equation� that is� calculate ������g �
NX
j��

ajK�j

������ �

This norm gives an indication of the accuracy of the approximation Kp to K��

Unfortunately� even if we show that
���g �PN

j�� ajK�j
��� decreases as the di�

mension of the trial space N increases� it does not follow that the approximation

p �
PN

j�� aj�j converges to � as N increases because K is not invertible� How�

ever� if we show that
���g �PN

j�� ajK�j
��� decreases as N increases� then this gives

an indication that p may be converging to �� The unavailability of a proof that

p �
PN

j�� aj�j converges to � as N �� is the price we have to pay by choosing

to solve the computationally attractive �rst�kind integral equation ������ for �

rather than the computationally dicult second�kind integral equation ����� for

� evaluated on Ch�

We can obtain second�order accurate approximations to the transmission co�

ecients directly from the second�order accurate approximations to the re�ec�

tion coecients using the symmetry relations these coecients satisfy� It may be

���



shown� by a simple application of Green
s identity to � and its complex conjugate

for an incident wave from x � ��� that

jR�j� � jT�j� � � � ����	�

Similarly� by applying Green
s identity to � and its complex conjugate for an

incident wave from x ��� it may be shown that

jR�j� � jT�j� � � � ������

Applying Green
s identity to � for an incident wave from x � �� and to � for

an incident wave from x �� gives

T� � T� � ������

Finally� applying Green
s identity to � for an incident wave from x � �� and

the complex conjugate of � for an incident wave from x �� gives

T�R� � �R�T� � ������

These relationships are well�known� with ����	� �rst derived by Kreisel �	�� and

the remainder derived by Newman ��	��

From equations ����	��������� it is simple to deduce that

jR�j � jR�j ������

and

	R� � 	R� � 		T� � �	n � ��� �n � ZZ� � ������

where 	z is the argument of the complex number z�

Once we have calculated the second�order accurate approximations ������ and

������ to R� and R� respectively� the second�order accurate approximation to T�

is given by substituting these values into equations ����	� and ������� The second�

order approximation to T� is then given by equation �������

We are now in a position to show how we implement this solution process�

���



��
 Numerical solution method

In order to determine the approximation to the re�ection coecients and to ��

we see from equation ������ that we need to calculate the inner products

��j� g� �j � �� � � � � N�

and

�K�j� �n� �j� n � �� � � � � N� �

In the previous section� we proved that the series for the kernel k of the

operator K converged in L���� �� � L���� ��� It follows that we can swap the

order of integration and summation in K�j� In other words� K�j can be written

as

�K�j� �x�� �
iC�

�

	��
w��x��

Z �

�
w��x�e

i��jx�x�j�j�x�dx

�
�X
n��

�

	��
n

C�
nwn�x��

Z �

�
wn�x�e

���njx�x�j�j�x�dx

�j � �� � � � � N��

where the functions wn�x� �n � � � IN� are de�ned by

w��x� � sinh ��� ���H�x��� �

wn�x� � sin ���
n ���H�x��� �n � IN� �

The advantage of writing K�j in the above form is that by integrating before

taking the sum� we avoid the numerical problem of calculating the kernel of K

at x � x�� where the kernel is logarithmically singular� We �nd that we only

need to take �� terms in the in�nite series for K�j for the series to converge to

��d�p� for any values of the parameters �� and  � This feature is illustrated in

the results section�

For ease of computation� we rewrite the functions K�j and inner products

�K�j� �n� �j� n � �� � � � � N� in terms of real�valued integrals� Since

ieijx�x�j � i cos�x� x��� sin�jx� x�j� �x� x� � IR �

and �j � IR �j � �� � � � � N�� then we can write K�j in real and imaginary parts

as

�K�j� �x�� � �Kr�j� �x�� � i �Ki�j� �x�� �j � �� � � � � N� �

��	



where

�Kr�� �x�� � �
�
C�
�

	��
w��x��

Z �

�
w��x� sin ���jx� x�j���x�dx

�
�X
n��

C�
n

	��
n

wn�x��
Z �

�
wn�x�e

���njx�x�j��x�dx

�

and

�Ki�� �x�� �
C�
�

	��
w��x��

 
cos���x��

Z �

�
w��x� cos���x���x�dx

�sin���x��
Z �

�
w��x� sin���x���x�dx

!
�

Similarly� we write �K�j� �n� �j� n � �� � � � � N� in terms of real and imaginary

parts as

�K�j� �n� � �Kr�j� �n� � i �Ki�j� �n� �j� n � �� � � � � N� �

Finally we express ��j� g� �j� n � �� � � � � N� in terms of real and imaginary parts�

For a wave of unit amplitude incident from x � �� �A� � ��� we write

��j� g� �
�
�j� g�

	
� ���j� f��� i ��j� f��� �j � �� � � � � N� ������

and for a wave of unit amplitude incident from x �� �A� � ��� we write

��j� g� �
�
�j� g�

	
� ���j� f�� � i ��j� f��� �j � �� � � � � N� � ������

where the functions f� and f� are given by

f��x��
sinh��� ���H�x���

cosh��� �
sin���x� and f��x��

sinh��� ���H�x���

cosh��� �
cos���x��

It is clear that once the real�valued inner products on the right�hand side of ������

have been calculated to give
�
�j� g�

	
�j � �� � � � � N�� then as these are the same

inner products that appear in the right�hand side of ������� we can �nd
�
�j� g�

	
�j � �� � � � � N� without calculating any more inner products� In other words� we

only have to �nd a solution for a wave incident from x � ��� and we can then

�nd the solution for a wave incident from x �� without having to calculate any

more inner products�

The functions Kr� and Ki� can only be approximated at a �nite number of

points x�� Therefore� the approximations p �
PN

j�� aj�j and Kp �
PN

j�� ajK�j

���



are only known at a �nite number of points� We use �� point composite Gauss�

Legendre quadrature to calculate the integrals because it delivers highly accurate

answers very economically for well�behaved integrands� Details of this quadrature

rule can be found in Johnson and Riess �	��� for example�

Chamberlain ��� used Gauss�Legendre quadrature to calculate

I�x�� �
Z �

�
f�x� sin ���jx� x�j� dx �

where f and its �rst derivative are continuous� real�valued functions� He found

that the quadrature rule was hampered by the presence of the slope discontinuity

which exists in the integrand at x � x�� Chamberlain showed that an ecient

remedy is given by writing

I�x���
Z �

�
�f�x��f�x��� sin ���jx�x�j� dx�f�x��

Z �

�
sin ���jx�x�j� dx � ������

The integrand in the �rst term of the right�hand side has a continuous �rst

derivative and the integral in the second term can be found explicitly and is

given by

Z �

�
sin ���jx� x�j� dx �

	

��

�
�� cos

�
�

	
��

�
cos

�
���x� � �

	
�
��

�

Details of how this process improves the performance of the quadrature rule are

given in Chamberlain ���� Similarly� we write

Z �

�
f�x�e��jx�x�jdx�

Z �

�
�f�x��f�x��� e��jx�x�jdx�f�x��

Z �

�
e��jx�x�jdx � ������

so that the integrand in the �rst term on the right�hand side has a continuous

�rst derivative and the integral in the second term is given by

Z �

�
e��jx�x�jdx �

�

�

h
	 �

�
e��x� � e�����x��

	i
�

The integration routine in our computer program therefore calculates the integrals

in Kr� by using ������ and �������

The solution process is now clear� Once the depth pro�le H and the pa�

rameters �� and  have been chosen� we calculate the functions Kr�j and Ki�j

�j � �� � � � � N�� The inner products �K�j� �n� �j� n � �� � � � � N� are then calcu�

lated by evaluating their component real�valued inner products� Similarly� ��j� g�

���



�j � �� � � � � N� are calculated for an incident wave from x � �� and from

x � �� We then substitute these inner products into equation ������ and solve

it to give the constants aj �j � �� � � � � N�� We then �nd the approximation�

s to the re�ection and transmission coecients� formulate p �
PN

j�� aj�j and

Kp �
PN

j�� ajK�j and evaluate the residual of the �rst�kind integral equation�

that is� evaluate kKp � gk�

��� Results

In this section we �nd approximations to the re�ection and transmission coe�

cients of the scattered waves due to a wave of unit amplitude incident from either

x � �� or x � � on a variety of hump depth pro�les� In the �rst example we

give numerical results and illustrate the convergence of K�j where j � ��� � � � � N�

and the convergence of the approximation to the re�ection coecient as the num�

ber of terms in the series for K is increased� After concluding that �� terms in

the series gives suciently accurate results� we then illustrate the convergence of

the approximation to the re�ection coecient and its modulus as the number of

terms in the trial function is increased� Finally� we present some graphical results�

compare them to results from previous model equations� such as the mild�slope

equation� and give some conclusions�

Example ���

Suppose that Ch is given by the depth pro�le

H�x� � x� � x� � �� 
 x 
 �� �

This corresponds to a hump whose height is one quarter of the still�water depth

with slope discontinuities at x � � and x � �� We choose parameter values

�� � 	 and  � ��	 �

Firstly� we shall examine the convergence of Kr�j �
PM

n��K
r
n�j� where

�Kr
��j� �x�� � � C�

�

	��
w��x��

Z �

�
w��x� sin���jx� x�j��j�x�dx

and

�Kr
n�j� �x�� � � C�

n

	��
n

wn�x��
Z �

�
wn�x�e

���njx�x�j�j�x�dx �n � �� � � � �M� �

���



as M is increased�

Instead of showing the convergence of �Kr�j� �x�� for chosen values of x� in

��� ��� we show the convergence of kKr�jk as M increases� to give an overall

M
���PM��

n�� Kr
n��

��� ���PM
n��K

r
n��

��� ���PM��
n�� Kr

n��

��� ���PM
n��K

r
n��

���
�� ���	���� ���	���� �������� ��������

	� ���	���� ���	���� �������� ��������

�� ���	��	� ���	���� �������� ��������

�� ���	���� ���	���� �������� ��������

�� ���	�		� ���	�	�� �������� ��������

�� ���	�	�� ���	�	�� �������� ��������

�� ���	���� ���	���� �������� ��������

�� ���	���� ���	���� �������� ��������

�� ���	���� ���	���� �������� ��������

��� ���	���� ���	���� �������� �������	

Table ���� Illustrating the convergence of
���PM

n��K
r
n�j

��� �j � �� ���

impression of the convergence of �Kr�j� �x�� in ��� �� as M increases� Table ���

gives
���PM��

n�� Kr
n�j

��� and ���PM
n��K

r
n�j

��� for j � � and j � � as M takes values from

�� to ���� We can see from Table ��� that for this depth pro�le and parameter

values� kKr�jk �j � �� �� converges quite slowly� but has converged to ��d�p�

when M � ���

Now let us examine the convergence of the approximation to the re�ection

coecient as M increases� Table ��	 gives the approximation to the re�ection

coecient R� delivered by a ��term and an ��term trial approximation as M

takes values from �� to ���� It is clear from Table ��	 that when M � ��� the

approximation to the re�ection coecient delivered by the ��term trial function

has converged to ��d�p� and that given by the ��term trial function has practically

converged to ��d�p� as well� Similarly� we �nd that for all choices of the parameters

�� and  of interest and all depth pro�les tested� using M � �� in the series for

Kr gives an approximation to the re�ection coecient which has converged to

���



M R� �� � term� R� �� � term�

�� �������� � ������	�i �������� � ��������i

	� �����	�� � ��������i �����	�� � �������	i

�� �������	 � ��������i ����	��� � �����	��i

�� �������� � ��������i ����	��� � ��������i

�� �����	�� � ��������i ����	��	 � ��������i

�� �������� � ��������i ����		�� � ������	�i

�� �������� � ��������i ����	��� � ������	�i

�� �������� � ������	�i ����	�		 � �������	i

�� ����	��� � ��������i ����	��� � �����	�	i

��� ����	��	 � ��������i ����	��� � �����	��i

Table ��	� Illustrating the convergence of the approximation to R�as M increases�

��d�p� for any number of terms in the trial function p� Therefore� for the results

presented in the rest of this section� we use M � �� in the series for Kr�

We now examine the behaviour of the approximation to the re�ection coe�

cient R� as we increase the number of terms in the trial function� Table ��� gives

the approximations to R�� jR�j and kKp � gk as the number of terms �N� in the

trial function is increased� From Table ���� it is clear that a ���term trial function

M R� jR�j kKp � gk
	 ����� � �����i ���	� ������

� ����� � �����i ���	� ������

� ����� � �����i ����� ����	�

� ����� � �����i ����� ������

�� ����	 � �����i ����� ������

�	 ����	 � �����i ����� ������

�� ����	 � �����i ����� ������

Table ���� Illustrating the convergence of the approximation to R�as N increases�
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delivers an approximation to the re�ection coecient that has converged to ��d�p�

We also note from Table ��� that as the number of terms in the trial function

is increased� so the norm of the residual error in the �rst�kind integral equation�

kKp� gk� decreases� This gives an indication that p may be converging to ��

For all other hump depth pro�les and values of parameters �� and  � we have

found that a ���term trial function gives an approximation to the re�ection and

transmission coecients that is correct to ��d�p�� in the sense that the estimates of

Kr�j �j � �� � � � � N� have converged to ��d�p� This accuracy is quite satisfactory

and so the results given in the rest of this section are obtained using a ���term

trial�function�

The approximation to the re�ection coecient R� for this problem is

R� � ������ � �����i �

Using the method described in Section ���� we �nd that the transmission coe�

cients are given by

T� � T� � ����� � �����i �

In Table ���� we compare the re�ection and transmission coecients of the

scattered waves given by the mild�slope �MSE�� modi�ed mild�slope �MMSE�

with both sets of boundary conditions� which were given in Chapter �� and the

n�term �n � 	� �� trial approximations� which were derived in Chapter �� with

the estimates we have obtained for full linear theory� It is clear from Table ���

that the results given by the MSE and MMSE with the new boundary conditions

are in much better agreement with the estimates we have obtained for full linear

theory than the results given by the MSE and MMSE with the old boundary

conditions� We can also see that as we increase the number of decaying modes in

the approximation to the full linear velocity potential� the results become closer

to those obtained for full linear theory�

We now compare the estimates to the solutions of the full linear problem

with those given by the above mentioned approximate models over a range of

parameter values� In the �rst example� we return to the wave scattering problem

for a hump that was considered in Chapter ��

���



Approximation R� T�

Full linear ����	 � �����i ����� � �����i

��term ����	� � ����	�i ������ � ������i

	�term ������ � ������i ������ � ������i

MMSE �new� ����	� � ������i ������ � ������i

MSE �new� ������ � ����	�i ����	� � ��	�	�i

MMSE �old� ������ � ������i ������ � ������i

MSE �old� ����	� � ������i ������ � ������i

Table ���� A comparison of estimates of R� and T��

Example ���

The depth pro�le is given by

H�x� � 	x� � 	x� � �� 
 x 
 �� �

This corresponds to a hump whose height is half the still�water depth which has

slope discontinuities at x � � and at x � �� where it meets the �at beds� We seek

solutions given by the mild�slope� modi�ed mild�slope and n�term �n � 	� �� ��

approximations and estimates to the solutions of full linear problem at values

of a parameter � starting at ����� �nishing at ��� with intervals of ����� The

parameters �� and  are de�ned in terms of � by

�� � � �  �
�

�
�

With these de�nitions for �� and  � varying � corresponds to varying the length

l of the hump� which corresponds to varying the steepness of the depth pro�le�

Using a ���term trial function to give estimates of the re�ection and trans�

mission coecients for the full linear problem� we �nd that the maximum value

of kKp � gk over the whole � range is ���� �����

The graphs of jR�j against � given using full linear theory� MSE and MMSE

with the new and the old boundary conditions are presented in Fig����� It is

clear from the graphs that the results given by both the MSE and MMSE with

the new set of boundary conditions are very much closer to those estimated for

���
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the full linear problem� than the results given by the MSE and MMSE with the

old boundary conditions� Indeed� the results given by the MSE and MMSE with

the old boundary conditions bear little resemblance to the full linear results�

From this evidence and that given in Chapter � for Booij
s ��� talud problem�

we conclude that the new boundary conditions are the appropriate boundary

conditions to use with the MSE and MMSE�

The results given by the MMSE with the new boundary conditions are the

closest to the full linear results� as expected� and give good agreement with the

full linear results for � � ���� However� the results given by the MSE with the

new boundary conditions only agree with the full linear results as well as the

results given by the MMSE when � � �� This illustrates that the MMSE gives

results in good agreement with the full linear results for humps with up to nearly

twice the maximum gradient that can be used with the MSE to give results that

���



are in good agreement with full linear theory�

In Fig���� we present the graphs of jR�j against � given using full linear theory

and the MMSE� 	�term� ��term and ��term approximations� It is clear from the
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���

graph that� as the number of terms in the n�term approximation is increased�

the closer the results become to the full linear ones� For � � �� the slope of

the hump is mild enough for the 	�term approximation to give good estimates to

the full linear solutions� Similarly� the �� and ��term approximations gives good

estimates of the full linear solutions when � � 	�� and � � � respectively�

As a �nal example� we consider a hump which is smoothly joined to the �at

beds at x � � and x � �� Remember from Chapter � that in this case the old

and new boundary conditions for the MSE and MMSE are the same�

Example ���

We consider a depth pro�le given by

H�x� �
�

�
�

�

�
cos �	�x� �� 
 x 
 �� �
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which corresponds to a hump whose height is half the still�water depth� We seek

solutions given by the mild�slope� modi�ed mild�slope and n�term �n � 	� �� ��

approximations and estimates of the solutions of full linear problem at values

of a parameter � starting at ����� �nishing at ��� with intervals of ����� The

parameters �� and  are de�ned in terms of � by

�� � � �  �
�

�
�

Again� with these de�nitions for �� and  � varying � corresponds to varying the

steepness of the depth pro�le�

Using a ���term trial function to give estimates of the re�ection and trans�

mission coecients for the full linear problem� we �nd that the maximum value

of kKp � gk over the whole � range is ���� �����

In Fig���� we present the graphs of jR�j against � estimated using full linear

theory and the MSE� MMSE� 	�term� ��term and ��term approximations� Again�
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it is clear from the graph that� as the number of terms in the n�term approxima�
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tion is increased� the closer the results become to the full linear ones� The results

given by the MSE over the whole � range are quite poor� The results given by

the MMSE are much closer to the full linear results than those given by the MSE

and give good agreement with the full linear results for � � ���� However� for

� � ���� it is clear that the slope of the hump is large enough to warrant the

inclusion of decaying modes in the approximation to the velocity potential� As

usual� we see that the greater the slope of the hump becomes� the more decaying

modes we need to use in the approximation to the velocity potential� As there

is little di�erence in the results given by the ��term and ��term approximations�

we do not calculate results for the ��term approximation� Again� we notice that

the results given by the n�term approximation converge to those given by the

�n � ���term approximation as � decreases� that is� as the slope of the hump

becomes milder�

In this chapter� we have shown how to obtain estimates of the coecients of

the scattered waves due to waves incident from x � �� on hump depth pro�les

for full linear theory� A new �rst�kind integral equation for the tangential �uid

velocity ��

�s
on the hump has been derived and a variational approach has been

used to generate approximations to the coecients of the scattered waves which

are second�order accurate compared to the approximation of the solution of the

�rst�kind equation� We have shown that estimates of the re�ection coecient

can be determined to ��d�p� using �� terms in the in�nite series of the kernel in

the �rst�kind equation and a ���term trial function� Results have been presented

of how the estimate of the modulus of the re�ection coecient for the full linear

model varies as the slope of the hump is varied� These results were compared with

the corresponding results given by earlier approximations to the full linear model�

namely the mild�slope� modi�edmild�slope and the n�term approximations� which

were derived in Chapter �� Further evidence was found to support the evidence

given in Chapter �� that the new boundary conditions derived in Chapter �� were

the appropriate ones to use with the MSE and MMSE� We also showed that the

���



mild�slope and modi�ed mild�slope approximations give good agreement with the

full linear results for humps with mild slopes� and that as the slope of the hump

becomes large� decaying wave mode terms are required in the approximation to

gives results that are in good agreement with the full linear results�

These estimates of the solutions of the full linear wave scattering problem over

humps will provide an invaluable new test to the accuracy of any new approxi�

mation to wave scattering by an arbitrary sea bed�
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Summary and Further Work

In this thesis the scattering of a train of small amplitude harmonic surface waves

on water by undulating one� and quasi�one�dimensional bed topography has been

investigated�

After re�establishing the full linear boundary�value problem satis�ed by the

velocity potential for the scattering of waves by varying topography in Chapter ��

three approximations to this problem were given� namely the mild�slope� Eckart

and linearised shallow water approximations� A highly accurate integral equation

method given by Chamberlain ��	 which can be used to solve these approximate

problems was then reviewed�

In Chapter 
� several extensions to the work appearing in Chamberlain ��	 �

��	 were presented� A new integral equation method was developed which solves

the mild�slope� Eckart and linearised shallow water equations over a range of

their parameters in less than one half of the CPU time required by previously

implemented integral equation procedures� Eckarts approximation was also in�

vestigated and improved and� as a by�product� a new� explicit and very accurate

approximation to the solution of the dispersion relation was also found� Finally�

after rederiving the symmetry relations satis�ed by the re�ection and transmis�

sion coe�cients given by these approximations� we showed that these coe�cients

satisfy the symmetry relations even when they are inaccurately calculated� an

unexpected property�

In Chapter �� we derived a new approximation to wave scattering that includ�

ed both decaying and progressive wave mode terms� This new approximation

was compared with two older approximations that only contain progressive wave

mode terms� namely the mild�slope and modi�ed mild�slope approximations� We

showed that for steep depth pro�les� where the decaying wave modes are signi��
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cant� the results given by the new approximation agreed much more closely with

the results Booij ��	 obtained using full linear theory� The maximum number of

decaying modes used in the new approximation was three� This was because the

di�erence in the results obtained using two and three decaying modes in the new

approximation was only very small for even the steepest depth pro�les� In oth�

er words� the results given by the new approximation had essentially converged

for the steepest depth pro�les when the number of decaying modes included had

reached three� The less steep the depth pro�le� the fewer the number of decaying

modes required for convergence until eventually the gradient of the depth pro�le

becomes mild enough to make all the decaying modes negligible� The solution

method� in which the governing system of second�order di�erential equations was

converted into a �rst�order system and then solved using a Runge�Kutta proce�

dure� could not be used for some values of the parameters of the problem� which

correspond to mild bed pro�les� Further work is required here to �nd a more ro�

bust solution method� This could possibly be achieved by using a �nite di�erence

method to solve the second�order system of di�erential equations and associated

boundary conditions� Alternatively� developing an approximate solution method

to solve the integral equation system equivalent to this boundary�value problem

is another possibility�

More work is still required to determine the properties of the re�ection and

transmission coe�cients given by the new �decaying mode approximation� The

estimates we have calculated of these coe�cients satisfy the usual symmetry rela�

tions� However� a proof that the exact coe�cients or any estimates of them satisfy

these symmetry relations has not yet been found� Chamberlain ��	 developed a de�

composition method for the modi�ed mild�slope and mild�slope equations which

allows wave scattering by complex bed pro�les to be deduced from wave scat�

tering over simple bed pro�les which together make up the complex bed pro�le�

This process is built around the symmetry relations satis�ed by the re�ection and

transmission coe�cients� It seems likely that such a method could be developed

for the �decaying mode approximation too� once the properties of the re�ection

and transmission coe�cients have been determined�

In the course of developing the �decaying mode approximation� a new set
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of boundary conditions was derived for the mild�slope and modi�ed mild�slope

equations� Previously� the boundary conditions for these equations had been

obtained by enforcing the continuity of the approximation to the free surface and

its slope at the ends of the varying depth region� The new boundary conditions

arise from enforcing the continuity of the approximation to the velocity potential

and its horizontal velocity throughout the �uid at the ends of the varying depth

region� The results given by the mild�slope and modi�ed mild�slope equations

with these new boundary conditions are in much better agreement with results

that have been computed using full linear theory and results that have been

found by using a type of approximation in the full linear wave scattering problem

di�erent to the ones that have been used in this thesis� The modi�ed mild�slope

equation together with these new boundary conditions can be derived from a

variational principle� The details of this process are the subject of a paper by

Porter and Staziker �in preparation��

Finally� we showed how to obtain estimates of the coe�cients of the scattered

waves due to plane wave incidence on hump depth pro�les for full linear theory� A

new �rst�kind integral equation for the tangential �uid velocity on the hump was

derived and a variational approach used to generate approximations to the re�ec�

tion coe�cients which are second�order accurate compared to the approximation

of the solution of the �rst�kind equation� The symmetry relations satis�ed by the

re�ection and transmission coe�cients were then used to calculate the transmis�

sion coe�cients� An alternative variational principle can be found which gives

approximations to both the re�ection and transmission coe�cients� However�

this alternative process is computationally more expensive than the method used

because a larger trial space is required� The re�ection coe�cient was determined

to three decimal places using the �rst �� terms of the in�nite series which de�nes

the kernel in the �rst�kind equation and a ���term trial function� Further work to

remove the logarithmic singularity in the in�nite series will improve the conver�

gence of this series and thus improve computational e�ciency� These estimates

of the solutions of the full linear wave scattering problem over humps provide an

invaluable new test of the accuracy of any new approximation to wave scattering

by an arbitrary sea bed�
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The modi�ed mild�slope approximation to the velocity potential is derived by

using a ��term plane wave trial function in a variational principle� The results ob�

tained give good agreement with full linear theory for all but the steepest of depth

pro�les� An apparently similar approximation in the variational principle which

was used for the �rst�kind integral equation is to omit all the decaying wave mode

terms in the series for the kernel� so that only the �rst term in the series is used�

However the results obtained by this approximation are poor and we �nd that the

amplitude of the re�ected wave increases as the water depth increases which is

exactly opposite to the behaviour of the exact solution� So the following question

arises� what approximation in the variational principle for the �rst�kind integral

equation corresponds to the modi�ed mild�slope approximation� Further work

is clearly required here to fully understand this approximation process� Once

it is understood� it could be used in other more complicated integral equations

arising from wave scattering� such as that derived by Evans ���	 for scattering

by a shelf of arbitrary pro�le� So far this second�kind integral equation has not

been solved due to the extremely complicated form of the kernel� If an approxi�

mation equivalent to the modi�ed mild�slope approximation could be made in a

variational principle� which is equivalent to solving this equation� then not only

could powerful solution techniques such as reiteration be used to solve the ap�

proximate equation� but it could also be possible to �nd explicit bounds on the

error incurred by making the approximation�
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