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Abstract

Data assimilation is the process of finding the best estimate of the current state of a

system. In numerical weather prediction (NWP) this system is the atmosphere and

oceans. In most operational weather forecasting centres variational data assimila-

tion is performed using a different set of variables from the actual model variables.

The transformation of variables simplifies the problem by assuming that the errors

in the transformed variables are uncorrelated. The validity of this hypothesis is

key to the accuracy of the data assimilation. Recently a potential vorticity (PV)

based set of variables has been proposed. These new variables are thought to ex-

ploit more accurately important dynamical properties of the atmosphere. Here we

present new results, obtained with a simplified 1-D shallow water model, comparing

the PV-based variables to the vorticity-based variables currently used at operational

weather forecasting centres, including the Met Office. The validity of the fundamen-

tal assumption that the errors in the transformed variables are uncorrelated is tested

in a variety of dynamical regimes. The results show that the errors in the PV-based

variables are uncorrelated across all regimes tested. This is not the case, however,

for the vorticity-based variables. This suggests that the PV-based control variables

imply a better representation of the background errors than the current vorticity-

based variables. Finally, initial data assimilation results are presented. Experiments

are run in high and low Burger regimes and analysis increments compared when the

vorticity and PV-based control variable transforms used in the assimilation.
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Chapter 1

Introduction

Data assimilation is used in numerical weather prediction (NWP) to find the

initial conditions for model forecasts. By combining observational data, statistical

data, knowledge of atmospheric dynamics and a previous short forecast the best

estimate, or analysis, of the state of the atmosphere is found. Due to the chaotic

nature of the governing equations errors in the initial conditions may grow rapidly

in the forecast [42] and thus proper definition of initial conditions forms a vital

part of NWP. With approximately 107 variables this is a huge problem and special

methods need to be found to make the problem practical to solve.

Data assimilation is formulated statistically so ideally should work with

statistically independent random variables. In operational weather prediction

centres around the world the data assimilation is usually performed using a

different set of variables to the model variables [16], [40], [41], [47]. These variables

are the control variables and the choice of these is key to the data assimilation

system performance. The transformation of variables simplifies the problem by

assuming that errors in the new variables are uncorrelated. One way that is

thought to do this accurately is by using control variables whose evolution can be

considered independent. A balanced / unbalanced partitioning of control variables

is usually made. Here an attempt is made to separate the slow large-scale balanced

mode and the fast unbalanced modes as it is thought there is little or no

dynamical interaction between these flows and so their errors are uncorrelated.
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The use of control variables in data assimilation was first introduced in [47]. Here

balance between mass and momentum is introduced by combining the balanced

parts of mass and momentum fields into a single variable. In this multivariate

formulation, increments to this single balanced variable produce consistent

balanced increments in both the mass and momentum fields.

All operational centres use control variables that are based on the ideas of [47] and

are essentially vorticity-based (one exception is the data assimilation system used

for the High Resolution Limited Area Model

(HIRLAM) [25], which is mass-based, but this has similar limitations). The

definitions of balance used in all these transforms does not represent the correct

separation of variables in all flow regimes. Surprisingly, until now relatively little

work has focused on addressing these deficiencies. Recently, however, a new set of

control variables has been proposed [11] that should be valid across all regimes.

The new variables use a conserved quantity, the potential vorticity (PV), to

capture the balanced motion.

Initial theoretical and numerical results using the PV-based control variables are

promising, though not conclusive. In [67] the PV-based transform is derived for

the 2D Shallow Water equations on a sphere and numerical solutions are compared

to the vorticity-based variables in specific dynamical regimes. These results are in

agreement with the theory though the transforms were not implemented into a

data assimilation system. In [11] the PV-based transform is tested in the

European Centre for Medium Range Weather Forecasting’s (ECMWF) operational

data assimilation system. Some promising results were obtained. However, serious

numerical issues were encountered as a result of the vertical grid in the ECMWF

model. To resolve these problems aspects of the transform had to be compromised,

which was not ideal.

In this study we extend the body of work on the PV-based control variable

transform. We test the validity of the fundamental assumption that the control

variables are uncorrelated. The statistical results we obtain are new and in

agreement with those predicted by the theory. The results provide further
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justification for the use of the PV-based variables over the current vorticity-based

implementations. Finally, initial data assimilation experiments are run to compare

each transform. Specifically we aim to address the following questions:

1. How accurate is the fundamental assumption that the control variables are

uncorrelated?

The assumption that the control variables are uncorrelated is made in all the

most advanced data assimilation systems and yet its accuracy has not been

fully investigated.

2. Are there any approximations to the PV-based transform that can be used?

What affect does this have on the data assimilation?

For the PV-based transform to be implemented operationally it must be

efficient. We therefore derive an approximated form that makes the

transform more attractive from a practical perspective. We then consider the

impact this approximation has on the correlation of the control variables.

3. Finally, does a more accurate representation of balance and unbalanced

dynamics in the control variable transform influence the analysis produced

by the data assimilation?

It remains unclear whether a better representation of balance in the control

variable transform will actually be evident in the analysis produced by the

data assimilation.

The thesis is structured as follows. Chapter 2 introduces the dynamical aspects

of the work. We use the Shallow Water Equations (SWEs) to demonstrate

important dynamical properties that are vital to the developmemt of this research.

We introduce the concept of balance and find solutions to the linearised equations

through a normal mode analysis. Crucially, the normal modes of the linearised

equations are linked to balanced and unbalanced parts of the flow. Most

importantly, in this linear system, the balanced mode is characterised by the

linearised potential vorticity (PV), a conserved quantity for the SWEs.
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Chapter 3 introduces the concepts of data assimilation. There are many types of

data assimilation methods and this work concentrates on one of the most advanced

methods, four-dimensional variational data assimilation (4D VAR). This method is

used at the Met Office and the European Centre for Medium Range Weather

Forecasting (ECMWF) in an incremental formulation. Even with advancements in

numerical methods and computing power there are still many practical difficulties

in implementing the incremental 4D VAR algorithm operationally. One of these

issues is specifying the necessary background / forecast error statistics. This is a

problem for several reasons:

• The true state of the atmosphere is never known exactly and therefore we are

unable to calculate the errors in the background guess or the forecasts.

• The amount of data required to specify all the necessary error covariance

information is 107 × 107 and a matrix of this size is impossible to store in

computer memory. We note that in this work the number of variables is

greatly reduced.

To proceed further with this method we model these error statistics using control

variable transformations. The control variable transforms that are implemented

operationally are described and their limitations discussed. This motivates our

work as the PV-based transform is designed to overcome these limitations.

However, this is yet to be verified.

Chapter 4 introduces the 1D form of the Shallow Water Equations and these

equations are used for the remainder of the work. We describe the discrete model

and present a variety of experiments used to verify the model is coded correctly

and to demonstrate its behaviour. We use the ideas introduced in Chapter 2 to

interpret these results. Before the incremental 4D VAR can be implemented we

require a linear approximation of the 1D SWE model and its adjoint. Both these

models are developed and tested using standard methods. Once these models are

verified they are implemented into the data assimilation.
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Chapter 5 derives the vorticity-based and PV-based control variable transforms

for the 1D SWEs. We test the numerical implementation of the transforms and

derive mathematical conditions necessary for the transforms to be solved. The

properties of the control variables in different dynamical regimes are then

demonstrated by qualitatively comparing the fields. We obtain results that are in

agreement with the theory presented in Chapter 2.

Chapter 6 contains the main results of this work. From these new results we are

able to answer Questions 1 and 2, drawing conclusions regarding the effectiveness

of the each transform. We test the validity of the fundamental assumption that the

control variables are uncorrelated in a variety of dynamical regimes. The results

show that the errors in the PV-based variables are uncorrelated across all regimes

tested. This is not the case, however, for the vorticity-based variables. This

suggests that the PV-based control variables imply a better representation of the

background errors than the current vorticity-based variables. To address Question

2 the consequences of using an approximated form of the PV-based transform is

investigated. We consider the impact of this approximation on the correlations

between the control variables. Finally, we use our statistical method to derive

auto-correlations for each control variable. The auto-covariances are a vital

component of the data assimilation as they provide a length scale for each variable

that indicates how far background information should be spread. The length scales

produced are then interpreted to assess the success of each transform in capturing

the balanced and unbalanced dynamics. We demonstrate that the auto-covariances

are highly dependent on regime and therefore this should be accounted for in the

assimilation system.

Chapter 7 considers simple single observation experiments where the observation

is taken at the initial time t = 0. In this simple scenario the results can be

analysed more easily. We first consider the theoretical influence that each control

variable transform has on the analysis produced by the assimilation. This is

achieved using a modified version of the best linear unbiased estimate (BLUE),

which is adapted to include the control variable transform. From this analysis
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much can be learnt regarding the influence of the vorticity and PV-based

transforms on the data assimilation and we are able to identify fundamental

differences between the transforms. To complete the specification of the data

assimilation system that we develop we chose to model the auto-covariances using

simple Gaussian correlation functions. Finally, simple assimilation results are

presented when each control variable transform is used in our data assimilation

system. The results demonstrate the theory that is presented in this work.

Chapter 8 draws conclusions from these results regarding the effectiveness of the

PV-based transforms. We then make suggestions for possible further work in this

area.

We now introduce the dynamical background to the project and discuss concepts

of balance and dynamic regimes that are key to this research. We do this in the

framework of the 2D shallow water equations (SWEs).
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Chapter 2

Dynamical Background

The shallow water equations (SWEs) are often used as a test case for atmospheric

research. They approximate the full governing equations used in numerical

weather prediction (NWP) whilst being capable of describing important aspects of

atmospheric and oceanic motions [49]. They lead to a simplified set of equations

that has the vertical coordinate removed. We use the SWEs to introduce concepts

key to this research and a further simplified version of the SWEs is used later in

this work.

2.1 Shallow Water Equations

The properties of the governing equations used in NWP are extremely complicated

and will not be examined here, but a detailed analysis is provided in [49] and [24].

Progress is often made by identifying small parameters and using these parameters

to derive simpler forms of the equations, which can be analysed. The SWEs are

one such system of approximate equations. The link between the governing system

of equations and the SWEs is demonstrated in certain key dynamical properties

that are introduced later in this chapter.

The SWEs describe a layer of shallow, rotating, inviscid and incompressible fluid,

as shown in figure 2.1. The height of the surface above the reference level z = 0 is

h + H̃, where h(x, y, t) is the fluid depth and H̃(x, y) is the height of the orography.
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Figure 2.1: Diagram for the Shallow Water Equations.

The acceleration due to gravity, g, acts perpendicular to the reference level z = 0

and f is the coriolis parameter. The rotation rate ω is constant and choosen to be

about the z axis and so the coriolis parameter is given by f = 2ω. The velocity has

components u and v in the horizontal x and y directions respectively. The SWEs

are then given by the non-linear partial differential equations

x-momentum:
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂(h + H̃)

∂x
(2.1)

y-momentum:
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g

∂(h + H̃)

∂y
(2.2)

Continuity:
∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0. (2.3)

The fundamental assumption in deriving the SWEs that the fluid is shallow. This

implies that the aspect ratio,
H

L
<< 1, (2.4)

where H is the characteristic height scale and L the characteristic horizontal scale.
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The aspect ratio is also small for large-scale atmospheric motions where typical

horizontal scales are much larger than the vertical scales. We now analyse some of

the dynamical properties of the SWEs.

2.1.1 The Potential Vorticity

To derive a conserved quantity for the SWEs we start by eliminating h from

equations (2.1) and (2.2) by cross differentiation of (2.1) by y and (2.2) by x. Then

∂(2.2)/∂x − ∂(2.1)/∂y gives

Dζ

Dt
= −(ζ + f)D, (2.5)

where the vertical component of the relative vorticity is given by

ζ =
∂v

∂x
− ∂u

∂y
, (2.6)

the divergence D by

D =
∂u

∂x
+

∂v

∂y
(2.7)

and the material derivative D
Dt

is defined by

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

We can then write equation (2.3) as

Dh

Dt
+ hD = 0 (2.8)

and substitute D in (2.5) giving

Dζ

Dt
=

ζ + f

h

Dh

Dt
.

With a constant f this can be written as

D

Dt

(
ζ + f

h

)
= 0. (2.9)

Therefore following the motion of each fluid column the quantity

q =
ζ + f

h
(2.10)
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is conserved. Therefore if the depth h increases, the absolute vorticity, ζ + f, must

also increase proportionally. This conserved quantity q is the potential vorticity

(PV). The conservation of PV is a powerful dynamical constraint. In NWP models

that are used operationally, similar quantities can be derived which are conserved

by the model dynamics. Accurately representing the initial PV and transporting it

in an NWP model is vital to obtaining accurate forecasts ([33] page 55).

The PV is key to this research. In section 2.3.3 we will see that one of the normal

modes of the SWEs, linearised about a resting state, is characterised by the

linearised form of the PV. Now we introduce the concept of geostrophic balance

and derive the geostrophic approximation. To do this we first identify several key

parameters that help to characterise the behaviour of the equations.

2.1.2 Key parameters

We non dimensionalise SWEs by scaling the momentum equations (2.1) to (2.3)

and writing them in terms of non dimensional variables given by

x = Lx∗,

y = Ly∗,

u = Uu∗,

v = Uv∗,

t = Tt∗,

and

h(x, y, t) + H̃(x, y) = Hh∗,

where L,U, T and H are characteristic length, velocity, time and surface height

scales chosen so that the magnitude of the non-dimensional variables are order

unity. The scaled momentum equations are then

U

T

∂u∗

∂t
+

U2

L

(
u∗∂u∗

∂x
+ v∗∂u∗

∂y

)
− fUv∗ = −gH

L

∂h∗

∂x
(2.11)
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U

T

∂v∗

∂t
+

U2

L

(
u∗∂v∗

∂x
+ v∗∂v∗

∂y

)
+ fUu∗ = −gH

L

∂h∗

∂y
. (2.12)

We now assume that the time scale is equal to the advective time L/U , i.e.

T =
L

U
. (2.13)

Then, dividing equations (2.11) and (2.12) by fU, we obtain

Ro

(
∂u∗

∂t
+ u∗∂u∗

∂x
+ v∗∂u∗

∂y

)
− v∗ = −B2

u

Ro

∂h∗

∂x
(2.14)

Ro

(
∂v∗

∂t
+ u∗∂v∗

∂x
+ v∗∂v∗

∂y

)
+ u∗ = −B2

u

Ro

∂h∗

∂y
, (2.15)

where the Rossby number Ro is defined by

Ro =
U

fL
(2.16)

and the Burger number Bu by

Bu =

√
gH

fL
. (2.17)

The parameters Ro and Bu are dimensionless. The Rossby number is a measure

the significance of rotation in the flow [49] and is ratio of the inertial time scale,

τ1 = f−1 to the advective time scale τ2 = L/U [12]. If we take characteristic

values, f = 0.0001s−1, U = 10ms−1, L = 106m relevant to large-scale,

mid-latitude, motion of the Earth’s atmosphere this gives Ro = 0.1. This type of

motion is therefore characterised by small Rossby number. We note that, if the

SWEs are solved on a sphere where f is variable, as we approach the equator

f → 0 and the Rossby number becomes infinite. Motion in the mid-latitudes and

equatorial regions is therefore very different. This work is concerned mainly with

mid-latitude, large scale motion defined by small R0.

The Burger number defined in equation (2.17) is the ratio of the Rossby number,

defined in equation (2.16), and the Froude number

Fr =
U√
gH

. (2.18)

The Froude number is the ratio of velocity with gravity wave speed,

cg =
√

gH. (2.19)
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In most deep atmosphere cases the Froude number is small, i.e. the advection

velocity is much less than the gravity wave speed (though stationary gravity waves

are sometimes generated around orographic features, in this case the characteristic

height would be taken to be the orographic height).

An important length scale is

Lr =

√
gH

f
(2.20)

where Lr is the Rossby radius of deformation for a layer of depth H. The Rossby

radius of deformation is the distance a gravity wave travels in one inertial period.

We can see that the Burger number is also related to the Rossby radius. It is in

fact the ratio of the horizontal scale of motion to the Rossby radius of

deformation. In summary we have

Bu =

√
gH

fL
=

Ro

Fr

=
Lr

L

and when L = Lr we have Ro = Fr. Therefore the Rossby radius of deformation is

also the scale at which the Froude number and Rossby number are equal and

rotation effects become important.

In the atmosphere the Burger number can vary greatly; for example, the Burger

number approaches infinity at the equator as f approaches zero, but is close to

zero when typical scales of motion are very large relative to the Rossby radius.

This can happen for large horizontal flows or almost stationary gravity waves. For

example, large weather systems or flows over mountains.

If it is assumed that Bu is order 1 and Ro << 1 then the advective terms in (2.14)

and (2.15) are small in comparison to the Coriolis terms. Therefore, in order for u∗

and v∗ to be non-zero, the pressure gradient term must balance the Coriolis term.

These ideas are now discussed in more detail.

2.2 Balance

Geostrophic balance is a fundamental concept in this work. Later in this chapter

we will see that the linearised SWEs support two types of motion; slow Rossby
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waves and fast inertial-gravity waves. These types of motion are also present in the

atmosphere. It is suggested in [12] that we may think of the fast inertial-gravity

waves as a form of meteorological noise. The justification for this is that the

majority of synoptic and planetary scales of the atmosphere are dominated by the

advective time scale, and inertial-gravity waves are normally a minor part of the

flow [12]. Flows where the motion is dominated by the advective time scale, and

therefore have Ro << 1, are said to be balanced.

Historically in NWP attempts to capture this balanced motion by a reduced set of

equations filtering inertial-gravity waves. This reduced set of equations constitutes

a balanced model. There is a great deal of research concerning balanced models in

NWP and applications within the field, for example [3], [63] and hierarchies of

balance conditions for the SWEs are examined in [18]. These are not discussed

here though similar ideas are exploited later to define the control variable

transform. We now demonstrate simple first-order balance in the SWEs. Firstly,

this is done with a scale analysis and then formally through an asymptotic

expansion in the Rossby number.

2.2.1 Balance in the SWEs

If we apply scaling to the governing equations of NWP that correspond to

large-scale motions we may derive the geostrophic approximation. Here the

momentum balance for the horizontal velocity reduces to a balance between the

horizontal pressure gradient and the horizontal component of the Coriolis

acceleration [49]. The accuracy of this approximation is demonstrated in the free

atmosphere where observations of the wind field are very close to geostrophic in

the midlatitudes. The wind coincides with the isobars, lines of constant pressure,

which are perpendicular to the pressure gradient.

For the SWEs in a regime where Ro << 1 and Bu ≈ 1 equations (2.14) and (2.15)

approximate to a geostrophic balance relationship given by

v∗ =
B2

u

Ro

∂h∗

∂x∗
(2.21)
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and

u∗ = −B2
u

Ro

∂h∗

∂y∗
, (2.22)

for the non-dimensional variables defined in section 2.1.2. Written in dimensional

form this relationship is given by

fv = g
∂(h + H̃)

∂x
(2.23)

and

fu = −∂(h + H̃)

∂y
. (2.24)

This regime is relevant to large scale, mid-latitude motions in the atmosphere.

Here the horizontal velocities are simply related to gradients of the depth of the

fluid.

We may formally demonstrate the balance in the SWEs through an asymptotic

expansion in the Rossby number. For this analysis we follow [49] and write

equations (2.1) to (2.3) in terms of the departure η of the free surface from its level

at rest. So the height of the free surface h(x, y, t) + H̃(x, y) is given by

h(x, y, t) + H̃(x, y) = H + η(x, y, t),

where the constant H is the height of the free surface at rest, and the depth of the

fluid, h, in terms of η is given by

h(x, y, t) = H + η(x, y, t) − H̃(x, y).

Therefore equations (2.1) to (2.3) become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂η

∂x
(2.25)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g

∂η

∂y
(2.26)

∂η

∂t
+ u

∂

∂x
(η − H̃) + v

∂

∂y
(η − H̃) +

(
H + η − H̃

) (
∂u

∂x
+

∂v

∂y

)
= 0. (2.27)
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We now scale equations (2.25) to (2.27) and write them in terms of non

dimensional variables x∗, y∗, u∗, v∗, t∗ and η∗ where

x = Lx∗, y = Ly∗, u = Uu∗, v = Uv∗, t = Tt∗ as before and let

η = Noη
∗.

Here L,U, T and N0 are characteristic length, velocity, time and surface height

departure scales chosen so that the magnitude of the non dimensional variables are

order unity. The scaled equations are then

U

T

∂u

∂t
+

U2

L

(
u
∂u

∂x
+ v

∂u

∂y

)
− fUv = −gN0

L

∂η

∂x
(2.28)

U

T

∂v

∂t
+

U2

L

(
u

∂v

∂x
+ v

∂v

∂y

)
+ fUu = −gN0

L

∂η

∂y
(2.29)

N0

T

∂η

∂t
+

U

L

(
u

∂

∂x
(N0η − H) + v

∂

∂y
(N0η − H)

)

+
U

L
(H + N0η − H̃)

(
∂u

∂x
+

∂v

∂y

)
= 0, (2.30)

where the superscripts have been dropped from the non-dimensional variables.

Now we look for motions where the Rossby number, Ro, is small, i.e.

Ro =
U

fL
= ǫ << 1.

We also assume that

ǫT =
1

fT
<< 1,

so that the time scale T is much greater than the inertial time 1/f. We then

choose N0 such that

fU = gN0/L,

and therefore the right hand sides of (2.28) and (2.29) are the same order as the

Coriolis terms in the equations allowing non-trivial solutions. This is a fair

assumption if we consider typical values for large-scale atmospheric motions in the

mid-latitudes. Taking characteristic values; f = 0.0001s−1, U = 10ms−1, L = 106m
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and g = 10ms2, gives N0 = 100m. This is a reasonable scale of departure from the

atmospheric depth H, which is of order 105m. Therefore we have

N0 =
fUL

g
= ǫ

f 2L2

g

and

h = H

(
1 + ǫB2

uη − H̃

H

)
,

where Bu is the Burger number defined in equation (2.17). Dividing momentum

equations (2.28) and (2.29) by fU and equation (2.30) by HU/L gives

ǫT
∂u

∂t
+ ǫ

(
u
∂u

∂x
+ v

∂u

∂y

)
− v = −∂η

∂x
(2.31)

ǫT
∂v

∂t
+ ǫ

(
u

∂v

∂x
+ v

∂v

∂y

)
+ u = −∂η

∂y
(2.32)

ǫT B2
u

∂η

∂t
+ ǫB2

u

(
u

∂η

∂x
+ v

∂η

∂y

)
− u

∂

∂x

(
H̃

H

)
− v

∂

∂y

(
H̃

H

)

+(1 + ǫB2
uη − H̃

H
)

(
∂u

∂x
+

∂v

∂y

)
= 0, (2.33)

We now assume that

Bu = O(1),

and that the time scale T is given by the advective time L/U, as in equation

(2.13), therefore

ǫT = ǫ.

We are now in a position to examine the orders of magnitude of the terms in the

equations. This allows us to determine relationships between terms of equal

magnitude. Considering each variable as a function of x, y, t and ǫ we can expand

in a power series as follows

u(x, y, t, ǫ) = u0(x, y, t) + ǫu1(x, y, t) + . . .

v(x, y, t, ǫ) = v0(x, y, t) + ǫv1(x, y, t) + . . .

η(x, y, t, ǫ) = η0(x, t) + ǫη1(x, t) + . . . ,
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where expansion functions uk, vk, ηk are O(1) and independent of ǫ. We then

substitute into equations (2.31) to (2.33). Since ǫ is arbitrary, terms of like order in

ǫ must balance.

The O(1) terms are given by

v0 =
∂η0

∂x
(2.34)

and

u0 = −∂η0

∂y
, (2.35)

which is the geostrophic relationship, given by equations (2.23) and (2.24), but in

a non-dimensional form. The first order, linear balance equations (2.34) and (2.35)

imply that,
∂u0

∂x
+

∂v0

∂y
= 0 (2.36)

and so the O(1) terms are non-divergent.

Assuming that H̃/H = O(ǫ), which is reasonable since a characteristic orographic

height would be much less than the atmospheric depth, we are unable to determine

the fields u0, v0 and η0 from just the O(1) terms. This is because the O(1) terms

in (2.33) just give us equation (2.36) again and no additional information.

We now look to the O(ǫ) terms in the asymptotic expansion

∂u0

∂t
+ u0

∂u0

∂x
+ v0

∂u0

∂y
− v1 = −∂η1

∂x
(2.37)

∂v0

∂t
+ u0

∂v0

∂x
+ v0

∂v0

∂y
+ u1 = −∂η1

∂y
(2.38)

Bu

(
∂η0

∂t
+ u0

∂η0

∂x
+ v0

∂η0

∂y

)
− u0

∂ηb

∂x
− v0

∂ηb

∂y
+

(
∂u1

∂x
+

∂v1

∂y

)
= 0, (2.39)

where we have also assumed that the orographic height is order ǫ smaller than the

fluid depth and we write H̃(x, y)/H in terms of a new function ηb(x, y) given by

H̃

H
= ǫηb(x, y),

with ηb = O(1). Here we see that the O(ǫ) velocities u1 and v1 are not in

geostrophic balance with the O(ǫ) pressure terms. In fact, departures from this
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balance are caused by the material derivative of the O(1) velocities, which are

geostrophic.

If we continue with this analysis a closed system can be obtained by eliminating η1

from equations (2.37) and (2.38). This leads to the quasigeostropic scaling of the

SWEs. This scaling of the SWEs can be used to investigate many types of

atmospheric motions and is an example of a balanced model [63]. Further analysis

of quasigeostrophic motion is not required here but it can be found in [49] and [12].

2.2.2 Summary

In this section we defined the SWEs and demonstrated several important

properties that make the SWEs a suitable test bed for atmospheric research. We

derived a conserved quantity, the PV. We then defined several important

dimensionless parameters; the Rossby, Froude and the Burger numbers. We then

used a crude order-of-magnitude argument to demonstrate balance in the SWEs.

This was then formally reinforced through an asymptotic expansion in the Rossby

number. We found that the order 1 terms in the asymptotic expansion are in

geostrophic balance. Geostrophic balance is a simple, first order, balance

approximation that we use throughout this work. Higher order balance conditions

are examined in detail in [18].

We now turn the our attention to the solutions of a linearised form of SWEs. The

link between geostrophic balance and the slow solution of the linearised SWEs is

then demonstrated.

2.3 Analysis of the SWEs

We now consider the behaviour of the SWEs for small amplitude motions. This

section draws on [9], [12], [48] and [49]. We see how the linearised equations are

solved through a normal mode analysis, resulting in decoupled system of equations

in new dependent variables. We then extend this analysis in a way similar to [9]

and [48] to develop an idea of what the decoupled variables represent in physical

33



space. We find that the normal modes are related to the linearised PV, the

geostrophic departure and the divergence.

2.3.1 The linearised SWEs

To analyse the kind of motions possible in the SWEs we examine solutions of a

linearised form of equations (2.1) to (2.3). This is done by assuming only small

amplitude oscillations about a state of rest.

The thickness of the undisturbed fluid layer at rest is given by h̄, which is constant

in space and time, and we let f = f0, a constant, this is referred to as the f -plane

assumption. We then linearise equations (2.1) to (2.3) about a state of rest

ū = 0, v̄ = 0

u = ū + u′ = u′

v = v̄ + v′ = v′

h = h̄ + h′,

where the primed variables are perturbations. Substituting into equations (2.1) to

(2.3) and ignoring products of u′, v′ and h′, we obtain

∂u′

∂t
+ g

∂φ

∂x
− f0v

′ = 0 (2.40)

∂v′

∂t
+ g

∂φ

∂y
+ f0u

′ = 0 (2.41)

∂φ

∂t
+ φ̄

(
∂u′

∂x
+

∂v′

∂y

)
= 0, (2.42)

where φ̄ = gh̄ and φ = gh′ is the deviation from φ̄.

We also note, using the PV equation (2.9), that under this linearisation the

linearised PV, q′, is given by

q′ =
1

h̄

(
ζ ′ − φf0

φ̄

)
, (2.43)

where ζ ′ is a perturbation to the relative vorticity defined in equation (2.6), and

q = q̄ + q′ with q̄ = f/h̄. We note that all of the PV linearisations we use in this

work are found by linearising the PV equation directly, as we show later in section
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2.4.2. An alternative approach would be to linearise the model equations before

deriving the analogue of linearised PV for the linearised equations.

We choose to follow [12] and write the above equations in terms of the

streamfunction ψ and velocity potential χ using the Helmholtz theorem. This gives

u′ = −∂ψ

∂y
+

∂χ

∂x
, (2.44)

and

v′ =
∂ψ

∂x
+

∂χ

∂y
, (2.45)

where the streamfunction, ψ, is defined by

∇2ψ = ζ (2.46)

and the velocity potential, χ, by

∇2χ = D, (2.47)

with ∇2 = ∂2

∂x2 + ∂2

∂y2 is the horizontal Laplacian and the vorticity ζ and divergence

D are given by equations (2.6) and (2.7) respectively.

We derive an equation for the vorticity by calculating ∂(2.41)
∂x

− ∂(2.40)
∂y

giving

∂

∂t
∇2ψ + f0∇2χ = 0. (2.48)

An equation for the divergence is found by taking ∂(2.40)
∂x

+ ∂(2.41)
∂y

to obtain

∂

∂t
∇2χ − f0∇2ψ + ∇2φ = 0. (2.49)

We can also write equation (2.42) in terms of the divergence,

∂φ

∂t
+ φ̄∇2χ = 0. (2.50)

We now look for solutions of the linear system of equations defined by (2.48) to

(2.50). We do this by finding the normal modes of the system. This results in a

decoupled system of transformed equations that can easily be solved.
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2.3.2 Solutions Of The Linearised SWEs

We now find the normal modes of the linear system given by equations (2.48) to

(2.50). We do this primarily to demonstrate the link between the normal modes

and physically meaningful variables that we use later in this work to define our

control variables. As well as this the normal mode analysis also helps us to

understand the behaviour of the SWEs.

To find the normal modes of equations (2.48) to (2.50) we follow [12] and assume

the following dependence of ψ, χ and φ on x and y,

ψ(x, y, t) = ψ̂m
n (t)ei( (mx+ny)

a ) (2.51)

χ(x, y, t) = iχ̂m
n (t)ei( (mx+ny)

a ) (2.52)

φ(x, y, t) = f0

√
Kφ̂m

n (t)ei( (mx+ny)
a ), (2.53)

where constant

K =
(m2 + n2)φ̄

a2f 2
0

, (2.54)

(m,n) are the wavenumbers and a is the radius of the earth. This gives a periodic

domain of length 2πa in both the x and y directions. We note that the constant K

defined above can be written as

K =
L2

r

L2
= B2

u, (2.55)

where Lr =
√

φ̄/f0 is the Rossby radius, L is the length scale for wavenumbers

m,n given by L =
√

(a2/n2 + m2), and Bu is the Burger number defined in

equation (2.17).

Substituting (2.51) to (2.53) into equations (2.48) to (2.50) we obtain

dψ̂

dt
+ if0χ̂ = 0, (2.56)

i
dχ̂

dt
− f0ψ̂ + f0

√
Kφ̂ = 0, (2.57)

dφ̂

dt
− if0

√
Kχ̂ = 0, (2.58)
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where ψ̂ = ψ̂m
n , χ̂ = χ̂m

n , and φ̂ = φ̂m
n . We now assume a temporal dependence of

the form

ψ̂(t) = Ψe−ifoσt, (2.59)

χ̂(t) = Xe−ifoσt, (2.60)

φ̂(t) = Φe−ifoσt, (2.61)

where σ is a non-dimensional frequency and Ψ, X and Φ are constants. Therefore

substituting (2.51) to (2.53) into equations (2.48) to (2.50) we obtain

(L − σI)




Ψ

X

Φ




= 0, (2.62)

for each horizontal scale (m,n) where I is the identity and

L =




0 1 0

1 0 −
√

K

0 −
√

K 0




. (2.63)

We see that the form of (2.51) to (2.53) is chosen to make L real and symmetric.

By diagonalising L we are able to decouple the system into three indepenently

evolving equations in time that can easily be solved. We therefore solve an

eigenvalue problem with eigenvalue σ. The matrix L has three eigenvectors and

three eigenvalues for a given (m,n). The three eigenvalues are found by setting the

determinant of L − σI equal to zero. If this is calculated we obtain a cubic

frequency equation for σ given by

σ3 − σK − σ = 0,

and therefore

σ = 0,±
√

1 + K.

The eigenvectors are found by substituting each eigenvalue back into

(L − σI) e = 0,
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where e is the eigenvector of eigenvalue σ. Each eigenvector is defined up to a

multiplicative constant. We can therefore fix one element to be 1 say and

determine the remaining two elements.

To determine the eigenvector of the first eigenvalue σ = 0 we solve

(L − σI) e =




0 1 0

1 0 −
√

K

0 −
√

K 0







Rψ

Rχ

Rφ




=




0

0

0




(2.64)

for Rψ, Rχ, and Rφ, where Rψ, Rχ, and Rφ are the ψ, χ, and φ elements of the

eigenvector e. This is done by setting Rφ = 1 and obtaining Rψ =
√

K and

Rχ = 0. Therefore the eigenvector for the eigenvalue σ = 0 is



Rψ

Rχ

Rφ




=
1√

1 + K




√
K

0

1




. (2.65)

This eigenvector is called the geostrophic, or Rossby mode because it describes a

stationary, but non-trivial, geostrophic solution. If we were to use a non-constant

f, or include orography, this solution would no longer be stationary, and would

become the Rossby wave solution.

We note that the normalisation factor, 1/
√

1 + K, in (2.65) is chosen as in [12],

making the magnitude 1. If the magnitude of each eigenvector is 1 then the matrix

formed by the eigenvectors of L is orthonormal.

It is possible to demonstrate that this mode is geostrophic by substituting the

eigenvector into the assumed temporal dependence (2.59) and (2.61) and we see

that this mode implies

Ψ =
√

KΦ.

In original model variables, using (2.59), (2.61), (2.51) and (2.53), this gives

f0ψ = φ.

Since the geostrophic mode is non divergent, i.e. X = 0, we have from the

Helmholtz theorem, equations (2.44) and (2.45),

u′ = −∂ψ

∂y
= − 1

f0

∂φ

∂y
(2.66)
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Figure 2.2: Plot of the Rossby mode components, Rψ (solid line) and Rφ (dashed

line), against K.

and

v′ =
∂ψ

∂x
=

1

f0

∂φ

∂x
, (2.67)

which is the geostrophic relation, equations (2.23) and (2.24), derived previously.

If we plot the Rossby mode components against K we are able to see how the

relative contributions of each component changes with K. A plot of the Rossby

mode components against K is shown in figure 2.2. Here we see there are 3 cases;

K << 1, K = 1 and K >> 1. For K = B2
u = 1, using equation (2.55), we see that

the contributions of Rψ and Rφ to the Rossby mode are equal. For K = Bu << 1

the mode is dominated by the Rφ and K = Bu >> 1 it is dominated by Rψ.

We now find the eigenvector associated with the positive eigenvalue
√

1 + K. It is

found by setting the ψ element of the to 1 in a similar as we did for the Rossby

mode. The eigenvector is given by




G1
ψ

G1
χ

G1
φ




=
1√

2(1 + K)




1
√

1 + K

−
√

K




, (2.68)
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where G1
ψ, G1

χ, and G1
φ are the ψ, χ, and φ elements of the eigenvector.

For the negative eigenvalue σ = −
√

1 + K we have



G2
ψ

G2
χ

G2
φ




=
1√

2(1 + K)




1

−
√

1 + K

−
√

K




, (2.69)

where G2
ψ, G2

χ, and G2
φ are the ψ, χ, and φ elements of the eigenvector of the

negative eigenvalue. These two modes are the inertial-gravity modes.

If we calculate the dimensional frequency of the inertial-gravity modes by

multiplying the non-dimensional frequency σ by f0 we obtain

foσ =

√

f 2
0 +

(m2 + n2)gh̄

a2
.

This frequency is made up of two terms. The first term describes is the inertial

frequency and the second is the non-rotating gravity wave frequency. The two

terms are equal if

1√
(n2 + m2)/a2

=

√
gh̄

f0

≡ Lr,

where Lr is the Rossby radius of deformation defined in equation (2.20). The

non-rotating gravity wave speed is given by

cg =
√

gh̄. (2.70)

To decouple the system we expand ψ̂(t), χ̂(t), and φ̂(t) in the eigenfunctions (2.65),

(2.68) and (2.69) and define r(t), g1(t), and g2(t) as the expansion coefficients for

the Rossby and inertial-gravity modes. We then obtain



ψ̂(t)

χ̂(t)

φ̂(t)




= E




r(t)

g1(t)

g2(t)




(2.71)

where

E =




Rψ G1
ψ G2

ψ

Rχ G1
χ G2

χ

Rφ G1
φ G2

φ




(2.72)
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is a matrix whose columns are the eigenvectors of L. The matrix L, defined by

(2.63), is real and symmetric and so has an orthonormal basis of eigenvectors. The

eigenvectors (2.65), (2.68) and (2.69) are normalised so that there magnitude is 1

and therefore E is orthogonal. We can then write



r(t)

g1(t)

g2(t)




= E−1




ψ̂(t)

χ̂(t)

φ̂(t)




= ET




ψ̂(t)

χ̂(t)

φ̂(t)




. (2.73)

We can now decouple the system. We first write equations (2.56) to (2.58) in the

form 


dψ̂
dt

dχ̂
dt

dφ̂
dt




= −if0L




ψ̂

χ̂

φ̂




, (2.74)

which in terms of r(t), g1(t), and g2(t) is



dr
dt

dg1

dt

dg2

dt




= −if0Λ




r

g1

g2




, (2.75)

where Λ = E−1LE and

Λ =




σR 0 0

0 σ1
G 0

0 0 σ2
G




,

a diagonal matrix of eigenvalues. The system given by (2.75) is therefore

decoupled and reduces to
dr

dt
= −iσRf0r(t),

dg1

dt
= −iσ1

Gf0g1(t)

and
dg2

dt
= −iσ2

Gf0g2(t)

in terms of new dependent variables r(t), g1(t) and g2(t). The equations have

simple solutions

r(t) = r(0)exp(−iσRf0t) = r(0),
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g1(t) = g1(0)exp(−iσ1
Gf0t)

and

g2(t) = g2(0)exp(−iσ2
Gf0t).

Before we give physical meaning to the new dependent variables r(t), g1(t), and

g2(t) we first find the solutions in terms of ψ̂(t), χ̂(t), and φ̂(t).

To find the solution for ψ̂(t) we use equation (2.71) and write ψ̂(t) in terms of

r(t), g1(t), and g2(t), giving

ψ̂(t) = Rψr(t) + G1
ψg1(t) + G2

ψg2(t)

= Rψr(0) + G1
ψg1(0)exp(−iσ1

Gf0t) + G2
ψg2(0)exp(−iσ2

Gf0t)(t).

Now we use equation (2.73) to write r(0), g1(0), and g2(0) in terms of original

variables ψ̂, χ̂, and φ̂. We then obtain, after some manipulation,

ψ̂(t) =
Kψ̂0 +

√
Kφ̂0

1 + K
+

ψ̂0 −
√

Kφ̂0

1 + K
cos αt − iχ̂0√

1 + K
sin αt, (2.76)

where α = f0

√
1 + K and ψ̂0, χ̂0 and φ̂0 are the initial ψ̂, χ̂ and φ̂ fields. We can

follow the same steps and find the solutions for χ̂(t) and φ̂(t). These are given by

iχ̂(t) =
ψ̂0 −

√
Kφ̂0

1 + K
sin αt + iχ̂0 cos αt, (2.77)

and

√
Kφ̂(t) =

Kψ̂0 +
√

Kφ̂0

1 + K
− K(ψ̂0 −

√
Kφ̂0)

1 + K
cos αt +

iKχ̂0√
1 + K

sin αt. (2.78)

Geostrophic Adjustment and the Rossby Radius of Deformation

We notice that the solutions (2.76), (2.77) and (2.78) have a stationary component

and a time-dependent component. The stationary solution is given by

ψ̂(t) =
√

Kφ̂(t) =
Kψ̂0 +

√
Kφ̂0

1 + K
(2.79)

and χ̂(t) = 0. This is the geostrophic solution. This stationary, geostrophically

balanced solution is dependent on the initial perturbation and also the Rossby

radius. To understand this dependence we recall equation (2.54) and write

K =
(m2 + n2)φ̄

a2f 2
0

=
L2

r

L2
= B2

u, (2.80)
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where Lr =
√

φ̄/f0 is the Rossby radius, L is a characteristic length scale with

L =
√

(a2/n2 + m2) and Bu is the Burger number defined in equation (2.17).

Writing (2.79) in terms of Lr then gives

ψ̂(t) =
Lr

L
φ̂(t) =

ψ̂0 + (L/Lr)φ̂0

1 + (L2/L2
r)

. (2.81)

Here the time-dependent solution is not dispersed, but in cases where it is this

process is known as geostrophic adjustment and in [24] the process is shown to

have a characteristic time scale less than or equal to f−1.

There are three cases we can consider for equation (2.81), as was demonstrated for

equation (2.65); Bu << 1, Bu = 1 and Bu >> 1. For Bu >> 1 we have

ψ̂(t) = Buφ̂(t) ≈ ψ̂0, (2.82)

and the stationary geostrophic component is equal to the initial ψ perturbation.

For Bu << 1 we have

ψ̂(t) = Buφ̂(t) ≈ Buφ̂0, (2.83)

and the stationary component is equal to the initial φ perturbation. When Bu = 1

ψ̂(t) = Buφ̂(t) =
ψ̂0 + φ̂0

2
, (2.84)

so the stationary component is the average of both the initial ψ and φ

perturbations. These results are in agreement with the behaviour of the Rossby

mode observed in figure 2.2.

2.3.3 Normal Modes In Physical Space

Now that we have found solutions to the SWEs we would like to understand what

the new dependent variables r(t), g1(t), and g2(t) represent in physically. To do

this we can use equation (2.73) and the orthogonality condition E−1 = ET . We

write (2.73) as 


r(t)

g1(t)

g2(t)




=




Rψ Rχ Rφ

G1
ψ G1

χ G1
φ

G2
ψ G2

χ G2
φ







ψ̂(t)

χ̂(t)

φ̂(t)




, (2.85)
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we can then project onto the Rossby mode, equation (2.65), by setting the

inertial-gravity components to zero and calculating

y =
(

Rψ Rχ Rφ

)




ψ̂(t)

χ̂(t)

φ̂(t)




. (2.86)

To see what this represents in physical space we multiply y by a constant

C1 =

√
K
√

1 + Kf 2
0

h̄φ̄

giving

C1y = −1

h̄

(
m2 + n2

a2
ψ̂ +

f 2
0

√
K

φ̄
φ̂

)
.

We recognise that, in the original perturbation variables this is the linearised PV q′

given by (2.43). Thus we find that not only is the Rossby mode geostrophically

balance but it is also characterised by the linearised PV. This association of the

PV and the geostrophically balanced flow is exploited later to define a set of

balanced control variables.

To interpret what the remaining two variables g1(t) and g2(t) represent in physical

space we take linear combinations of the inertial-gravity eigenvectors. We see that

C2

(
(G1

ψ + G2
ψ) (G1

χ + G2
χ) (G1

φ + G2
φ)

)




ψ̂(t)

χ̂(t)

φ̂(t)




= −
(

m2 + n2

a2

)
(ψ̂ −

√
Kφ̂),

where the constant C2 = −f0

√
2(1 + K)m2+n2

2a2 , and we recognise this quantity, in

original perturbation variables, as the geostrophic departure

aζ = f0∇2ψ −∇2φ. (2.87)

Also

C3

(
(G2

ψ − G1
ψ) (G2

χ − G1
χ) (G2

φ − G1
φ)

)




ψ̂(t)

χ̂(t)

φ̂(t)




= −
(

m2 + n2

a2

)
χ̂,
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where the constant C3 = − m2+n2

2
√

1+Ka2 , is the divergence D in original perturbation

variables.

An important extension of these ideas is finding the balanced component of any

given set of data. This is achieved by projecting the data onto the basis of

eigenfunctions. Then all but the Rossby mode is set to zero and we project back

into physical variables, giving only the balanced component. This is the Rossby

adjustment problem and it has important applications in NWP, see for

example [61].

In [18] the normal modes of the SWEs are used to define a mapping from physical

space to the linearised PV, divergence and the geostrophic departure (or

ageostrophic vorticity in [18]). The SWEs are then written in terms of the

linearised PV, divergence and the geostrophic departure and the accuracy of

various balance approximations are examined numerically. A similar mapping to

that of [18] is used later to define a new set of variables based on the normal

modes of the SWEs.

2.3.4 Summary

In analysing the solutions to this linearised version of the SWEs we have found two

types of motion; one mode is the slow, balanced Rossby mode, the other two, fast,

unbalanced inertial-gravity modes. We have demonstrated the link between the

balanced geostrophic solution and the PV. The unbalanced solutions are related to

the divergence and geostrophic departure. Later in this work we define control

variable transformations that attempt to exploit these relationships.

We now examine how relative contributions to the linearised PV, which

characterises the balanced solution, may change with the Burger number.

2.4 Potential Vorticity and Burger Regimes

We have seen the relationship between the PV and the balanced Rossby mode. We

now consider the behaviour of vorticity and height fields that satisfy both the
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linearised PV equation (2.43) and the linear balance equation defined in the next

section. Here the linearisation state is non-trival. We show how the ratio of

absolute vorticity and height changes with Burger number. We start by defining

the linear balance equation.

2.4.1 The Linear Balance Equation

The linear balance equation (LBE) can be derived from the geostrophic mode

found in the linear analysis in section 2.3.2. We combine the geostrophic, or

Rossby mode equations (2.66) and (2.67) by taking ∂(2.67)/∂x − ∂(2.66)/∂y to

give a linear balance equation

f0ζ = ∇2φ, (2.88)

or, using the streamfunction ψ

f0∇2ψ = ∇2φ, (2.89)

where the vorticity ζ is given by

ζ =
∂v

∂x
− ∂u

∂y
= ∇2ψ

and the geopotential height φ by

φ = gh.

The LBE forms a fundamental part of this research and is used throughout this

work in the form of equation (2.89).

2.4.2 Contributions to the Linearised PV

We now look at how the relative contributions of height and vorticity to the

linearised PV change with the Burger number. First, we derive an equation for the

linearised PV q′. We linearise u, v and h about a varying linearisation state to

obtain

u(x, y, t) = ū(x, y, t) + u′(x, y, t),

v(x, y, t) = v̄(x, y, t) + v′(x, y, t)
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and

h(x, y, t) = h̄(x, y, t) + h′(x, y, t).

Then we have

ζ̄ =
∂v̄

∂x
− ∂ū

∂y
ζ ′ =

∂v′

∂x
− ∂u′

∂y
,

and

q̄ =
ζ̄ + f0

h̄
. (2.90)

Therefore

q = q̄ + q′ =
ζ̄ + ζ ′ + f0

h̄ + h′
,

and neglecting products of perturbations gives

h̄q̄ + h̄q′ + h′q̄ = ζ̄ + ζ ′ + f0.

Using equation (2.90) we obtain

h̄q′ + h′q̄ = ζ ′ ⇒ q′ =
1

h̄
(ζ ′ − h′q̄) ,

which is similar to equation (2.43). This can be written as

q′

q̄
=

ζ ′

ζ̄ + f0

− h′

h̄
. (2.91)

We now assume that increments in vorticity, ζ ′, and height, h′, satisfy the scaled

linearised PV equation (2.91) and the LBE (2.89). It is then possible to show,

following [67], that
q′

q̄
= −N

h′

h̄
, (2.92)

and (
1 − 1

N

)
q′

q̄
=

ζ ′

ζ̄ + f0

, (2.93)

where

N = 1 +
f0B

2
u

ζ̄ + f0

.
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The Burger number, Bu, is always positive and so is N. If we consider a fixed q′/q̄

and let N >> 1 we can see from equation (2.92) that the scaled height increments

h′/h̄ will not contribute much to the scaled PV increments. However, equation

(2.93) tells us that the scaled PV increments will be sensitive to changes in ζ ′, and

q′

q̄
≈ ζ ′

ζ̄ + f0

.

The value of N will be large for large Bu, and therefore in this regime the PV

increments will be well approximated by vorticity.

Following [67] we may also obtain the following relationships

(
1 − 1

P

)
q′

q̄
= −h′

h̄
, (2.94)

and
q′

q̄
= P

ζ ′

ζ̄ + f0

, (2.95)

where

P = 1 +
ζ̄ + f0

f0B2
u

.

Therefore for fixed q′/q̄ and P << 1 we have

q′

q̄
≈ h′

h̄
.

Hence in a low Bu regime height increments are a good approximation to the scale

PV increment.

We have shown in section 2.3.3 that the linearised PV characterises the balanced

flow. The analysis above tells us that in a high Burger regime we can approximate

the linearised PV, and so the balanced flow, well using vorticity increments. In a

low Burger regime it is the height increments that approximate the balance.

2.5 Summary

In this chapter we presented the SWEs and demonstrated some of their many

important properties. We started by deriving a conserved quantity, the PV. We

then defined three key parameters Ro, Bu and Fr using the non-dimensional form
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of the equations. The concept of balance was introduced and we demonstrated

that, in the limit of small Rossby number, a first order approximation of the SWEs

is given by the geostrophic balance relationship.

The SWEs were then linearised. We found that the linear system supports two

types of motion. One is the balanced Rossby mode, which is geostrophic and

non-divergent. The two other modes are unbalanced inertial-gravity modes. By

decoupling the linear equations into new dependent variables we are able to show

that the slow mode is characterised by the linearised form of the PV. The

remaining two fast inertial gravity modes are related to the divergence and the

geostrophic departure.

We then examined the behaviour of increments in height and absolute vorticity

that satisfy both LBE and the linearised PV. We demonstrated that in a high

Burger regimes the linearised PV, or the balance flow, is rotational and

approximated well by the vorticity. On the other hand in low Burger regimes the

balanced flow is characterised by height increments.

In the next chapter we discuss how these properties may be exploited in data

assimilation.
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Chapter 3

Data Assimilation and the Control

Variable Transform

In this chapter we introduce data assimilation and the control variable transform.

We aim to provide motivation for, and set in the context of the wider field, the

work of the subsequent chapters.

We start with a brief overview of data assimilation. Our attention is then focused

on the data assimilation method of interest; four-dimensional variational data

assimilation (4D VAR). We discuss the practical issues surrounding the

implementation of the algorithm, specifically the inherent problems involved in

defining the background error covariance matrix. The control variable transform is

central to handling this matrix. We discuss the current implementations of the

control variable transform in operational centres around the world and highlight

their potential limitations. The PV-based control variable transform is then

presented as a possible alternative that should overcome these limitations. We

discuss several studies of the PV-based transform, [11], [67] and [68], that, whilst

not being conclusive, have provided positive results. The work of this project aims

to extend these results and examine further the possible benefits of the PV-based

transform.

In the final section we discuss various methods of generating the statistics required

to implement the 4D VAR data assimilation system. This includes how
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auto-covariance structures are generated and can be modelled in the data

assimilation.

3.1 Data Assimilation

Data assimilation is the process of finding the best estimate of the current state of

a system. In numerical weather prediction (NWP) this system is the atmosphere

and oceans. The ’best estimate’ of the current state is referred to as the analysis

and it is used as the initial conditions for the model forecast. Due to the chaotic

nature of the governing equations any errors in the initial conditions may grow

rapidly in the forecast [41]. Thus data assimilation forms a vital part of NWP.

However, observations are sparse. Typically there may be 107 model variables and

only 106 observations, and additional knowledge of the atmosphere is required.

This additional information is known as the background and usually comes from a

previous short forecast. The data assimilation therefore combines observations,

statistical data, knowledge of atmospheric dynamics and a previous short forecast

to find the best initial conditions for the model forecast. Recently there have been

many advancements in numerical methods, observational networks and computer

processing power but it is clear that without a sophisticated data assimilation

system these benefits cannot be fully realised.

There are many types of data assimilation methods, for example; optimal

interpolation, various Kalman filter based methods, 3D VAR and 4D VAR. Here

we will concentrate on 4D VAR as this is currently the most advanced method and

is in operational use in an incremental formulation at the Met Office and the

ECMWF [53]. There are a variety of practical and theoretical issues surrounding

4D VAR and its implementation, for instance the determination and representation

of background error statistics, and it is therefore the focus of much research.

We now present 4D VAR and the incremental 4D VAR algorithm, which is used

later in this work. The theory of the control variable transform is then introduced

in the context of 4D VAR.
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Figure 3.1: 4D VAR diagram

3.1.1 4D VAR

4D VAR data assimilation allows observations to be distributed in time as well as

space. One of the earliest proposals of this type of method is given in [57]. This

method, however, has a state vector containing all model fields at all times and is

prohibitively large to implement practically. In [38] the state vector is reduced to

just the model fields at the initial time. This method became known as 4D VAR

and is described in [5], [12], [15], [33] and [39].

The objective of the 4D VAR is to find the model state x0 at time t = t0 that

minimises the cost function,

J [x0] =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑

i=0

(Hi[xi] − yo
i )

TR−1
i (Hi[xi] − yo

i ), (3.1)

with the constraint

xi = M(ti, t0,x0),

where M(ti, t0,x0) is the non-linear model evolved to time ti, i = 1, . . . , n, xb is
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the background field found from a previous short forecast, yo
i are the observations

at time t = ti and Hi is the observation operator that maps model space to

observational space. The background error covariance matrix is defined by B,

which is of size approximately O(107 × 107), and Ri is the observation error

covariance matrix of size O(106 × 106) in full operational systems.

A schematic diagram of 4D VAR is shown in figure 3.1. Here we see that the 4D

VAR combines observational data available at various times in the data

assimilation to improve the initial background guess, xb. Departures, or

innovations, of the background from the observations are calculated at the

observation times by evolving the background state at time t = 0s to the

observation times. The innovations are then used to find the best least-squares fit

between the background and the observations, given the specified error statistics.

The analysis state xa at time t = 0 has a trajectory through the assimilation

window that is closer to the observations than the initial guess. A forecast is then

run from the end of the assimilation window. When a new set of observations is

available the process is repeated using the current forecast as a background state.

The potentially non-linear model M and operator H means that 4D VAR is a

non-linear least squares minimisation problem. Due to the size of the problem 4D

VAR has only recently been implemented operationally and it was not until an

incremental formulation of the problem was developed in [7] that the method

became practical. The incremental formulation is now described.

3.1.2 Incremental 4D VAR

Incremental 4D VAR minimises a series of approximate convex quadratic cost

functions [7],

J̃ (k)[x′
0
(k)

] =
1

2
(x′

0
(k) − x′b)TB−1(x′

0
(k) − x′b)

+
1

2

n∑

i=0

(Hix
′
i
(k) − di)

TR−1
i (Hix

′
i
(k) − di), (3.2)

where k is the iteration count and Hi is the linearised observation operator. Here

the increment x′
i
(k) = M(ti, t0,x

(k))x′
0
(k) where M(ti, t0,x

(k)) ≡ Mi denotes the
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linear evolution from t0 to ti of the linear model about the current guess

trajectory. The model M is a linear approximation to the non-linear model M,

one example of a linear model that might be used is the tangent linear model.

This is discussed in section 4.4.1. The background increment x′b is given by

x′b = xb − x
(k)
0 (3.3)

and the innovation vector di by

di = yo
i −Hi[x

(k)
i ]. (3.4)

Even with the incremental formulation of the 4D VAR problem there are still

many practical problems to overcome. One of the main difficulties is the

specification of the background error covariance matrix. Operationally B is too

large to be used directly and must be modelled in some way. This is done using

the control variable transform.

3.2 Control Variable Transforms in

Incremental 4D VAR

The modelling of the background error covariance matrix is achieved by

transforming from model variables to new control variables to perform the data

assimilation. When represented as control variables background errors for each

control variable are then assumed to be uncorrelated with each other. In other

words the control variable transform is assumed to remove the multi-variate

component of the background error covariance, or the cross-covariance. Thus the

transformed background error covariance matrix becomes a block diagonal matrix

containing only the univariate covariance, or auto-covariance, for each individual

control variable. This greatly reduces the size of the problem. We note that

operationally further transformations are then applied to remove the

auto-covariance. Effectively the problem of modelling and storing the B matrix

has been shifted to defining the control variable transform.
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The transform from control variable increments, z′, to model variable increments,

x′, is known as the U -transform,

x′ = Uz′, (3.5)

and its inverse,

z′ = Tx′, (3.6)

is known as the T -transform. Here z′ are the control variable increments and x′

the model variable increments. Substituting into the incremental cost function

(3.2) we obtain,

J̃ (k)[z′0
(k)

] =
1

2
(z′0

(k) − z′
b
)TUTB−1U(z′0

(k) − z′
b
)

+
1

2

n∑

i=0

(Hi(MiUz′0
(k)

) − di)
TR−1

i (Hi(MiUz′0
(k)

) − di), (3.7)

where MiUz′0
(k) represents the control variable increment at time t0 for iteration k

transformed to model space and evolved by the linear model to the observation

time ti. If we now assume that the errors in the control variables are uncorrelated

we imply that U is such that

UTB−1U = Λ−1, (3.8)

where Λ is a block diagonal matrix specifying the only univariate component, or

auto-covariance, of the background error covariance for each control variable. The

matrix Λ block diagonal since the cross-covariance between control variables is

assumed to be removed by the transform. We see later that further

transformations can then be applied to diagonalise Λ though this is not

implemented in this work. A much simpler form of (3.2) is then obtained

J̃ (k)[z′0
(k)

] =
1

2
(z′0

(k) − z′
b
)TΛ−1(z′0

(k) − z′
b
)

+
1

2

n∑

i=0

(Hi(MiUz′0
(k)

) − di)
TR−1

i (Hi(MiUz′0
(k)

) − di). (3.9)

The assumption that U satisfies equation (3.8) implies that the background error

covariance matrix for the orginal model variable background errors is of the form

B = UΛUT . (3.10)
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Having now presented the theory of the control variable transform as it applies in

the incremental 4D VAR cost function, we defer discussion of the choice of control

variables and the details of the transform design until section 3.3. The

implementation of the incremental 4D VAR algorithm is now described.

3.2.1 The Incremental 4D VAR algorithm

The incremental 4D VAR algorithm involves an inner and outer iteration. The

inner iteration minimises the approximate quadratic cost function, equation (3.9).

One iteration of the incremental 4D VAR algorithm described below is known as

the outer loop. The iterative algorithm proceeds as follows, where k is the iteration

number:

1. Define the current guess x
(k)
0 with x

(0)
0 = xb.

2. Run the non-linear model with initial conditions x
(k)
0 to obtain xi for each

time step ti.

3. Calculate innovation vectors for each observation

d
(k)
i = yo

i −Hi[x
(k)
i ].

4. Calculate the background increment

x′
b
(k)

= xb − x
(k)
0 .

5. Transform the background increment

z′b
(k)

= T(k)x′
b
(k)

,

where T(k) is the T transform on outer iteration k.

6. Start the inner loop minimisation: Find z′0
(k) that minimises (3.9).

7. Transform solution of inner loop minimisation

x′
0
(k)

= U(k)z′0
(k)

,

where U(k) is the U transform on outer iteration k.
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8. Update the current guess

x
(k+1)
0 = x

(k)
0 + x′

0
(k)

.

9. Repeat outer loop (steps 2 to 8) until desired convergence is reached.

In the above algorithm we use the T - and the U -transform on each outer iteration

(steps 5 and 7). We can avoid using the T -transform provided the control variable

transform is static, that is to say, the transform does not depend on the current

linearisation state x
(k)
i . If this is the case then the increment z′0

(k+1) can be

calculated directly from the values of control variables increments on the previous

outer loop, without the need for the T -transform.

To demonstrate this we start by assuming that we have z′0
(k) and z′b

(k) and want to

find z′b
(k+1). We also know that

x
(k+1)
0 = x

(k)
0 + x′

0
(k)

= x
(k)
0 + U(k)z′0

(k)
(3.11)

and

x′
b
(k)

= xb − x
(k)
0 = U(k)z′b

(k)
, (3.12)

since z′b
(k) = T(k)x′

b
(k). Then the background increment for the next iteration is

given by

z′b
(k+1)

= T(k+1)
(
xb − x

(k+1)
0

)

= T(k+1)
(
xb − x

(k)
0 − U(k)z′0

(k)
)

using equation (3.11)

= T(k+1)
(
U(k)z′b

(k) − U(k)z′0
(k)

)
using equation (3.12)

= T(k+1)
(
U(k)z′b

(k)
)
− T(k+1)

(
U(k)z′0

(k)
)

= z′b
(k) − z′0

(k)
provided T(k+1)U(k) = I.

In the case of a static control variable transform, which does not depend on the

linearisation state,

T(k+1) = T(k) = . . . = T(0) = T

U(k+1) = U(k) = . . . = U(0) = U
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and so

T(k+1)U(k) = TU = I,

eliminating the need for the T -transform in the incremental 4D VAR algorithm.

We now describe the details of the inner loop minimisation.

3.2.2 The Inner Loop

The inner loop minimisation, step 6, can be solved by various methods including

quasi-Newton and conjugate gradient methods. In most NWP applications

conjugate gradient methods are used since they are the best compromise between

convergence properties and memory requirements for high dimensional

problems [4]. For these reasons we also choose a conjugate gradient method for the

inner loop minimisation. Various conjugate gradient methods are compared in [43],

of these the Beale restarted memoryless quasi-Newton method of [58] performed

best. The routine is implemented in the CONMIN package [59] and has been used

successfully in [54].

The routine requires the calculation of the cost function (3.9) and its gradient with

respect to control variables at time t = 0. The gradient of the cost function with

respect to the control variables at the start of the data assimilation window is

given by

∇J̃ (k)[z′0
(k)

] = Λ−1(z′0
(k) − z′

b
)

+UT
n∑

i=0

MT
1 . . .MT

i HT
i R−1

i (Hi(MiUz′0
(k)

) − di), (3.13)

where MT
i is the adjoint of the linear model M(ti, t0,x

(k)) in (3.9) and di is the

innovation vector at time t = ti with di = yo
i −Hi[x

(k)
i ], as defined previously. The

adjoint model MT
i propagates gradient information from time ti to time ti−1,

allowing us to compute the gradient with respect to the control variables at the

initial time.

The inner loop cost function is found by calculating (3.9), which is written in

terms of control variables. The background penalty (the first term) is trivial to
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compute in these variables, but the observation term (the second term) requires

use of the U-transform and the linear model, as the observation operators act on

model-space increments at the appropriate times.

The gradient of the incremental cost function at time t0, equations (3.13) is then

calculated using the adjoint model. The gradient at time ti is propagated

backwards to time ti−1, then the gradient contribution at ti−1 is calculated, and

the process is repeated until time t0. This gives the value of the gradient with

respect to model variables at time t = 0. We then apply the adjoint of the

U -transform, UT , to obtain the gradient with respect to control variables. We then

include the background gradient.

The U -transform and its adjoint are used once every inner iteration and so must

be computationally efficient. One way that it is possible to save resources in the

incremental 4D VAR is to perform the inner loop at a lower resolution than the

outer loop. In fact the inner loop minimisation in the Met Office and the

ECMWF’s data assimilation system is performed at a lower resolution [53].

3.2.3 Summary

In this section we introduced the concepts of data assimilation. We then focused

our attention on one of the most advanced data assimilation methods, 4D VAR.

We discussed the practical issues surrounding the implementation of the method.

4D VAR is actually solved in an incremental form, but even with this

simplification we still need to model the background error covariance matrix. This

is done using the control variable transform. The transformation to a new set of

variables simplifies the problem by assuming the new variables are uncorrelated.

We then described the incremental 4D VAR algorithm. From this it is clear that

the U -transform must be computationally efficient. This is because we actually

require the U -transform and its adjoint once every inner iteration and once every

outer loop. The T -transform is only required at the beginning of each outer loop

and, in fact, we demonstrated that if the transforms are static then background
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increments can be calculated from the previous increments. Therefore, for a static

transform, the T -transform is not required at all in the algorithm. We note,

however, that the T -transform is still needed when calculating background error

statistics for the control variables. This is discussed in section 3.4.

In this section the control variable transform was introduced very generally.

However, the success of the data assimilation is highly dependent of the choice of

the control variables since they are assumed to be uncorrelated. In the following

section we discuss the possible choices of control variables.

3.3 Choice of Control Variable

So far we have introduced the theory of the control variable transform but have

not discussed the basis on which the transform can be constructed. It is clear that

a good choice of control variables is essential to ensure that errors in these

variables are uncorrelated, or nearly uncorrelated. The importance is highlighted

when only a single observation, located at a point j, is assimilated at time t = 0s.

In this simple scenario it can be shown that the analysis increment

xa − xb ∝ BeT
j = UΛUTeT

j

where xa is the model state at time t = 0 that minimises the cost function (3.1)

and eT
j is the jth unit vector. The quantity BeT

j is the jth column of the

background error covariance matrix B sometimes refered to as a structure

function. This method is used later to test the control variable transforms.

We use dynamical properties to attempt to identify possible control variables. In

section 2.3.2 two kinds of atmospheric motion were identified as normal modes;

one of these is unbalanced, the inertial-gravity waves, the other, geostrophically

balanced, the Rossby waves. It is thought that a good choice of control variables

will involve capturing the balanced and unbalanced modes in separate control

variables since we assume that there is little or no interaction between these flows.

In the linear case the modes evolve independently and therefore they would be an
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obvious choice of control variable. In the non-linear case the degree of this

interaction may depend in some way on the degree of the non-linearity.

It is also desirable for the data assimilation to generate increments that in some

way respect important dynamical properties of the system, an example of this

being the balance relationship. Introducing these relationships in the assimilation

can be achieved through the control variable transform.

We may therefore think of the control variable transform as having a dual purpose:

1. It is a necessity required to simplify the problem.

2. It is a means to introduce important dynamical relationships into the data

assimilation.

With this in mind we start this section describing the modelling of the background

error covariance matrix. We make the distinction between the univariate

auto-covariance and multi-variate cross-covariance of the control variables

background errors; the latter of these of particular interest in this research. The

current choice of control variables that are used operationally and their

shortcomings are also discussed.

3.3.1 Modelling the Background Error Covariance

Matrix

The background error covariance matrix is vital to the success of the data

assimilation [20]. Ironically, we will never know the true background errors since

we never have access to the truth. Even if we did, we would still be forced to

model them since the matrix is too large to be stored in memory. Given this

impossible task we must, however, attempt to represent the background errors

realistically in the data assimilation.

Background errors are usually split into two contributions; block diagonal elements

that represent the auto-covariance between grid points corresponding to particular

control variables (the univariate component of B), and cross-covariance between
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grid points corresponding to different control variables (the multivariate

component of B) [64]. Operationally the control variable transform is used to

remove both the cross-covariance and the auto-covariance [16], [40]. The theory we

presented in section 3.2 describes a transform that only removes the

cross-covariance. The removal of the covariance is generally made through a series

of transformations. At the Met Office this is written as [62]

z = ThTvTx (3.14)

x = UUvUhz, (3.15)

The transformations T and U are referred to as the parameter transforms and are

assumed to remove the cross-covariance of the variables, this theory was

introduced in section 3.2. Subsequent transforms Th and Tv model the horizontal

and vertical auto-covariance. The Met Office’s covariance model is discussed in

detail in [30]. Applying this sequence of transforms results is a transformed

background error covariance matrix equal to the identity matrix. We note that in

this work we are concerned only with the parameter transform and the validity of

the assumption that the cross-covariance is removed. The transform at the Met

Office therefore implies a B matrix of the form

B = UUvUhU
T
hUT

v UT , (3.16)

where we assume that the errors in the control variables are completely

uncorrelated, i.e. UTB−1U = I. The transformations have simplified the data

assimilation as the size of the problem is greatly reduced. By using the control

variable transform it is not necessary to store the covariance information explicitly

since it is implicit in the definition of U.

We now discuss how the parameter transform has been derived in operational

centres around the world.
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3.3.2 The Parameter Transform In Some Leading

Assimilation Schemes

In [13] Daley states that the key to successful implementation of 3D VAR is an

accurate specification of the multivariate forecast error covariance using

appropriate linear relationships. Here Daley specifically identifies the parameter

transform as the vital component in the data assimilation. Much effort and

research is focused on the generation and modelling auto-covariance and the

representation of the cross-covariance by the parameter transform.

A separation into so-called balanced and unbalanced control variables is usually

made and it is then assumed that these control variables are uncorrelated [47]. At

present the control variable transforms are often based on the linear balance

equation (given in section 2.4.1 for the SWEs) and assume that either the height

or the vorticity is a totally balanced variable. That is to say, the variables are

assumed to satisfy the linear balance equation, equation (2.89), exactly. This

definition of balance is at best approximate and only valid in specific dynamical

regimes. So, whilst relatively sophisticated modelling of auto-covariance is carried

out, the fundamental assumption regarding the cross-covariance of control

variables is potentially flawed. The shortcomings of these control variable

transforms can be summarised as follows:

1. Height or vorticity is taken to be the totally balanced variable, which is a

poor assumption in some regimes.

2. Linear balance is enforced for the ’balanced’ variable and this is not always

appropriate.

3. Sophisticated treatment of auto-covariance is made without giving

much attention to point 1.

The use of a control variable transform in variational data assimilation was first

introduced in [47]. Here the linear balance relationship is used partition the mass

variable into balanced and unbalanced components. The balanced and unbalanced
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variables are defined using the linear balance relationship in terms of the relative

vorticity. The control variables are taken to be the vorticity, divergence and the

unbalanced mass variable (as well as specific humidity). The implication is that

the vorticity is a totally balanced variable and the divergence is totally unbalanced.

It is then assumed that the balanced and unbalanced variables are uncorrelated.

The control variable transform described in [47] is essentially vorticity-based, that

is to say, the vorticity control variable is assumed to be totally balanced and

satisfies the linear balance equation exactly. The vorticity-based control variable

transform of [47] has subsequently been implemented in several operational data

assimilation systems. These include the Met Office, the ECMWF, the Canadian

Meteorological Centre’s 3D VAR system [22] and in the CIRA/CSU 4D VAR

system [70]. We now discuss how the parameter transform is defined in these

leading assimilation schemes.

The Met Office

A very similar implementation of the control variable transform is operational at

the Met Office [40], [41]. In the current Met Office data assimilation system the

control variables are the stream function ψ, the velocity potential χ and an

’unbalanced’, residual pressure Pu (as well as the relative humidity to account for

moisture) [40]. Although the vorticity and the divergence are not used directly as

a control variable (due to conditioning) the problem solved is the same and

fundamental assumptions of [47] have been made; the vorticity is totally balanced

and the divergence totally unbalanced. Then, using the linear balance equation a

balanced pressure field is calculated and subtracted from the full pressure field to

obtain the residual unbalanced pressure, in the same way as [47].

ECMWF

One of the most sophisticated control variable transforms is used in the ECMWF

data assimilation system. Here assumed correlations between each variable are

systematically removed [16]. The control variables are the vorticity, the
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unbalanced divergence, unbalanced temperature and pressure (as well as specific

humidity). The balance relationships were initially determined using statistical

regression assuming the same structure as the linear balance equation. In [16] the

statistical relationship is compared to that of the analytical linear balance

equation and found to be very similar. Recently improvements to the balance

operator have been made to include the non-linear balance equation and the

quasi-geostrophic omega equation [20]. These equations are linearised about the

background state thus keeping the inner loop minimisation quadratic and

incorporating flow dependence in the transform. In addition to these

improvements the transformation is more refined than those discussed previously

since the divergence is not assumed to be totally unbalanced. The similarity,

however, lies in the assumption that vorticity is totally balanced.

HIRLAM

One exception to the vorticity-based transform is used in the high resolution

limited area model (HIRLAM) [25]. Here a balanced height / mass field and the

ageostrophic unbalanced wind are used as a control variables. This is the opposite

of the assumption made in the vorticity-based transform; in [25] the height, or

mass, is considered to be totally balanced and a balanced geostrophic wind is

defined using the linear balance equation. The balanced wind is subtracted from

the full wind giving an ageostrophic wind. This method was chosen for simplicity

in the limited area model. Using the ageostrophic wind has serious problems near

the equator due division by f, which goes to zero at the equator, and neglecting

the correlations between mass and ageostrophic wind [25]. Since the height is

assumed to be totally balanced the control variables will only be a valid separation

of balanced and unbalanced components in a low Burger regime. In a high Burger

regime the height is not a good approximation to balance and therefore is not the

appropriate balanced variable.
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Ocean Data Assimilation

Historically ocean data assimilation systems generally assume the model variables

are uncorrelated, for example [65]. Recently this deficiency has been addressed

in [66] were a multivariate balance operator for ocean data assimilation is defined.

This method uses a similar approach as [16]; one variable, the temperature, is

taken in totality (in [16] the variable taken in totality is the vorticity) and assumed

correlations are then systematically removed from one variable, and then the next

using balance relationships. The linear balance relationship is used in the case of

the horizontal velocities.

3.3.3 Summary

A defining factor of all the control variable transforms discussed is that they are

based on the ideas of [47] and can be thought of as vorticity-based, or

height/mass-based in the case of [25]. The assumption that the balanced and

unbalanced components of the flow are uncorrelated forms the basis of these ideas.

However, none of these transforms successfully capture the balanced flow in all

regimes.

To attempt to address the problems above a PV-based control variable transform

was recently developed in [11] that should be valid across all regimes. We now

discuss the PV-based control variable transform.

3.3.4 The PV-based Transform

In [11] a new version of control variables is derived based on the PV, which

characterises the balanced flow of the linearised system. The PV-based transform

defines the control variables using the normal modes of the system. We note that

if the system were linear the normal modes would be the ideal choice of control

variable since they evolve independently. The balanced variable is the linearised

PV q′, as we found in section 2.3.3, the two unbalanced variables are the

divergence and the geostrophic departure, which are linear combinations of the two
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fast modes, which have zero PV. This is demonstrated in section 2.3.3.

It was found in [11] that using these variables directly resulted in serious numerical

issues and so an equivalent version was tested using the balanced stream function,

ψb, the unbalanced geopotential, φu and the divergence. We note that the

rotational wind has been split here into balanced and unbalanced components, and

not used in totality as in the vorticity-based control variable transform discussed

previously. The divergence is not split in [11] but this can be added at a later stage.

Unfortunately even with the revisions to the PV-based transform problems with

the ECMWFs vertical discretisation were still encountered [11]. To deal with these

issues it was necessary to make many compromises in the transform. The

transform still performed satisfactorily; better forecasts measured against the

analysis were obtained in the tropics and also positive improvements in the

northern hemisphere. Negative aspects of the experiments could all be traced back

to the numerical difficulties.

Another contribution to work on the PV-based transform has come

from [67]. In [67] and [68] the PV-based transform is derived for the 2D SWEs. In

this work the qualitative advantages of the transform are demonstrated. This is

done by making a visual comparison of the vorticity and PV-based control variable

fields in several regimes. The work demonstrated that the PV-based transform

theoretically feasible and also that it may provide a better representation of

balance than the vorticity-based transform. However, the PV-based transform was

not implemented into a data assimilation scheme and the correlation of the

PV-based variables was not investigated.

The results of both [11] and [67] are in agreement and give encouraging results

regarding the PV-based transform. This, however, is not comprehensive since the

following has not yet been addressed:

1. The PV-based control variables have not been conclusively tested in a data

assimilation system that is manageable enough to be studied.

2. The assumption that the variables are uncorrelated has never been verified.
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3. More fundamentally, the accuracy of the assumption that balanced and

unbalanced flows are uncorrelated in the non-linear system has never been

quantified.

With this in mind we now out line the aims of this project.

3.3.5 Project Aims

In this work we attempt to address the following questions:

1. Can we quantify the accuracy of the fundamental assumption that the

balanced and unbalanced flows are uncorrelated?

In section 3.3.2 we discussed the various methods of deriving the parameter

transform. Each of the transforms only approximates the balanced and

unbalanced modes of the linear system. In addition, they all are based on the

assumption that the balanced and unbalanced flows are uncorrelated yet this

remains to be validated. By testing the correlation of balanced and

unbalanced PV-based variables, which are not approximate, we address this

question.

2. How accurate is the current assumptions regarding the vorticity-based

control variables?

We know that there are potential problems with the vorticity-based control

variables in low Burger regimes but we would like to quantify the impact of

this on the correlations of the control variables.

3. Can we demonstrate that the PV-based variables give quantitatively better

representation of the background statistics?

The PV-based control variables must improve on the limitations of the

vorticity-based transform. We therefore aim to quantify the difference.

4. How do the control variable transforms influence the analysis?
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Improving the analysis is the ultimate goal of the PV-based transform. We

thus aim to consider simple assimilation experiments using the vorticity and

PV-based control variables. In this simple setting the analysis is relatively

straightforward and much can be learnt regarding the impact of the

transforms on the data assimilation. We aim to demonstrate the different

influences of the vorticity and PV-based transforms on the analysis.

3.4 Auto-Correlations

Before data assimilation can be performed we must generate auto-covariances for

each control variable. This involves first generating a population of model field

perturbations by a choosen method, some of which are discussed in the following

section. The population is then transformed to control variable perturbations

using the appropriate T-transform, from which auto-covariances are computed.

The auto-covariances represent the block diagonal components of the background

error covariance matrix after only the parameter transform, discussed in section

3.3.2, has been applied. Operationally the auto-covariances must then be modelled

by the control variable transform since they are too large to be used directly. In

our system this is not the case.

Ideally the process of generating background error auto-covariances would be

repeated before each assimilation. Operationally, however, it would not be

practical and therefore a climatological approach is adopted; auto-covariances are

generated in a calibration stage and then used in all subsequent assimilations.

Zonally averaged quantities are used and the method produces a climatological

representation of the background error auto-covariance. We choose to follow this

approach in our work to reflect the implementation in a full operational system.

We now discuss the methods for generating and modelling the auto-correlations.
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3.4.1 Generating Auto-Correlations

In NWP we can never know the background error covariances since we never know

the truth (if we knew the truth we would not need the data assimilation).

Therefore we must find other ways to generate background statistics. There are

two main approaches. One is to attempt to extract information regarding the

background errors from innovations (differences between observations and the

background state). The other method is to find a surrogate quantity that is

thought to be similar to background errors but whose statistical characteristics are

available [20].

The calculation of background covariances from innovations was used in [27]. This

is done by assuming that observation and background errors are uncorrelated and

further that the errors in the observations are spatially uncorrelated. These are

relatively safe assumptions for certain types of observations. It is then possible to

show that the covariances of the background errors are described by the innovation

covariance. This method does have some practical problems. Firstly, background

errors are generated in terms of observed quantities but in the 4D VAR cost

function the background errors are required in terms of control variables. Further,

the method can only be used in data-dense areas and only if observation errors are

truly uncorrelated [19].

The second approach involves finding an alternative quantity that is thought to

have similar statistics to background errors. There are several advanced methods

that use these ideas; the so-called NMC method, the analysis ensemble method

(AEM) and the quick cov’s method (QCM).

The NMC method used in [47] assumes that background errors are similar to

forecast errors. More specifically the method assumes that the spatial correlations

of background errors are similar to the correlations of differences between 24 hour

and 48 hour forecasts valid at the same time. Forecast times are taken 24 hours

apart to remove the diurnal signal, which would otherwise dominate the statistics.

This method is convenient to implement in an operational centre since the forecast
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data required can be obtained from historical archives. However, the method does

not perform well downstream of data sparse areas since the 24 hour forecast will

be very similar to the 48 hour forecast. Also, the time interval of 24 hours is not

appropriate since the background field is usually a 6 hour forecast. Therefore we

might expect that any data obtained from the NMC method to be much more

balanced than is actually the case for the background field, which has only 6 hours

to geostrophically adjust before it is used [19].

Background statistics at the ECMWF are generated using the AEM [20]. Here the

data assimilation is run for many cycles in each of which random perturbations are

added to the observations. A set of perturbed background fields is then obtained

and it is assumed that background errors are similar to the differences between

pairs of the perturbed background fields. Again this method also has some

drawbacks: It assumes that observational error statistics are accurately known.

There is a potential of feedback since the data assimilation is cycled. Also, the

statistics obtained are highly dependent on the current analysis and the system

itself. That said, the AEM is considered to produce the best results [20].

It is worth noting that the two most advanced methods, the NMC and the AEM,

both require an operational data assimilation system. This creates a paradox: We

require statistical knowledge to set up the data assimilation, yet the most

advanced methods require an operational system to generate the statistical data.

Therefore, when implementing a data assimilation system it is necessary to use

another method for initial generation of covariances. These must then be

optimised using a more sophisticated method.

A method that has been used for generating initial statistical data is based on

using forecast differences as an alternative quantity. In this sense it is similar to

the NMC since it uses forecast differences as a proxy for background errors. We

refer to this method as the quick-covs method (QCM). It was suggested in [51] as

an initial step to setting up the data assimilation. Here we generate a single long

forecast using our model. We then take forecast differences at regular intervals of

time apart. This is done until we have a data set of multiple time differences.
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Using these differences we may look at the correlations of the difference fields. We

can examine the correlation between control variables by transforming the forecast

time-differences using the relevant T transform. The QCM used in [51] takes 6

hour time-differences since the background state is a 6 hour forecast. The

difference fields are then adjusted to remove the diurnal signal. The QCM method

is used later in this work to test the correlation of the control variables.

3.4.2 Modelling The Auto-Covariance Matrices

Once the auto-covariances have been found they need to be modelled in the B

matrix. This can be done in many ways, for example using diffusion operators

in [64].

In the cost function it is the inverse matrix that appears and so modelling the

auto-correlations directly would mean inverting a very large matrix. It is, however,

possible to model the inverse matrix directly. In this work we use the method

outlined in [31] following work in [2]. Here we directly define B−1 in such a way

that B comprises of approximate Gaussian shaped structure functions with

homogeneous correlation length L. The Gaussian correlation function, ρg, is

defined by

ρg(x) = e−x2/2L2

. (3.17)

The correlation function ρL for the inverse Laplace smoother is given by

ρL = ω0 + ω1 (Lxx)
2 , (3.18)

where Lxx is a second derivative matrix with periodic boundary conditions and

coefficients ω0 = 1/L and ω1 = ω0(L
4/2) are chosen such that the inverse function

approximates a Gaussian distribution with length scale L [31].

If we generate the B−1 matrix given by (3.18) and invert it we obtain the modelled

B matrix. As a comparison we plot in figure 3.2 a column of the modelled B with

the Gaussian function. Here we see the functions are very similar except at the

start of the tails were the Laplace smoothing function is negative. This appears to
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Figure 3.2: Plot shows Gaussian function (red dashed line) and Laplace-based

smoothing correlation function (blue solid line) for a length scale L = 20.

be a good enough approximation for our purpose, which is to represent a spatial

length scale for each control variable. We choose this method to model the

auto-covariances generated later in this work.

3.5 Summary

In this chapter we introduced the concepts of data assimilation and focused on 4D

VAR. We highlighted key issues evolving the implementation of such a method,

specifically how the control variable transform is used to model background error

covariances. We explained in detail the steps in the incremental 4D VAR

algorithm. The current issues concerning the parameter transform were presented.

We identified a deficiency in the definition of the balanced variables in all the

current operational control variables; all current control variables are either

vorticity-based or height/mass-based. These definitions of balance are not

appropriate in all Burger regimes and therefore can potentially violate the

assumption that they are uncorrelated. A PV-based control variable transform is

then introduced, which addresses these issues. The current results relating to the
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PV-based transform were discussed and suggest that there is potential for the

transform to address the limitations of the current implementations, but this has

not been fully examined in a data assimilation system.

In the final section we discussed how auto-covariances are generated operationally.

We outlined the variety of methods available to generate auto-covariances and also

a method that can be used to model them in the B matrix.

We now present the numerical model we will be using throughout the remainder of

this work.

74



Chapter 4

Numerical Models

We now introduce the model used for the remainder of this research. We choose to

use a simplified one-dimensional form of the shallow water equations (SWEs) that

were introduced in section 2.1. These equations have the same key properties as

the two-dimensional equations but in one-dimensional form.

The continuous model is then discretised using a semi-implicit, semi-Lagrangian

scheme. We present the discrete equations and discuss their implementation. We

highlight several aspects of the numerical model that require extra attention when

deriving the linear models necessary for the incremental 4D VAR. The discrete

model is then tested and we demonstrate some of the dynamical properties of the

model that have been shown analytically in section 2.1. These include conservation

of potential vorticity (PV) and geostrophic adjustment. We also demonstrate the

changes in behaviour of the model as we change dynamical regimes.

Next the tangent linear model (TLM) and the adjoint model (AM) are derived

from the non-linear model code. We discuss the various methods for deriving these

models and then outline the method used. We now introduce the continuous

model used for the remainder of this research.

75



4.1 1D Shallow Water Equations

The two-dimensional SWEs were introduced in section 2.1 and are given by

equations (2.1), (2.2) and (2.3). We now simplify equations (2.1), (2.2) and (2.3)

by assuming that velocities u and v and the depth h do not vary in the y direction.

We write the velocity in the x direction as

Uc + u

where Uc is a constant forcing mean flow. We then solve for u, the departure from

this constant flow. The 1D SWE model is then given by

∂u

∂t
+ (Uc + u)

∂u

∂x
− fv = −g

∂(h + H̃)

∂x
, (4.1)

∂v

∂t
+ (Uc + u)

∂v

∂x
+ fu = 0, (4.2)

∂h

∂t
+

∂h(Uc + u)

∂x
= 0. (4.3)

Here H̃ = H̃(x) is the height of the orography, f the Coriolis parameter, taken to

be constant, and g is the gravitational force. The model domain is periodic in the

x direction. In equation 4.2 ∂h
∂y

is choosen to balance the fUc, which is why these

terms are not present in the equation.

This special case of the SWEs has been applied to various mesoscale phenomena in

the atmosphere for example flow over mountains [29]. This model was also used

in [46] to examine the accuracy of a conservative finite difference scheme in

capturing the formation of hydraulic jumps.

The model is chosen as it retains the key properties of the 2D SWEs whilst being

significantly simpler to develop. We have a non-trivial first order balance

relationship

fv − g
∂(h + H̃)

∂x
= 0. (4.4)

This relationship is found through an asymptotic expansion in small Rossby

number as in section 2.2. The balance equation is a fundamental component of

both the vorticity and the PV-based transforms and is applied to increments in a
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linearised form. We let u(x, t) = ū(x, t) + u′(x, t), v(x, t) = v̄(x, t) + v′(x, t) and

h(x, t) = h̄(x, t) + h′(x, t), where ū(x, t), v̄(x, t) and h̄(x, t) are reference states. If

we assume that the reference states satisfy the balance equation (4.4) to first order

accuracy, then we obtain a corresponding first-order linear balance equation for the

increments, given by

fv′ − g
∂h′

∂x
= 0. (4.5)

This can be written in terms of the streamfunction ψ and the geopotential φ as in

equation (2.89), i.e.

f∇2ψ′ = ∇2φ′, (4.6)

where the 1D streamfunction is given by

∇2ψ′ =
∂v′

∂x
. (4.7)

The potential vorticity (PV) is conserved in a one-dimensional form of equation

(2.10), i.e.

q =
1

h
(f + ζ) , (4.8)

where the one-dimensional vorticity ζ is given by

ζ =
∂v

∂x
. (4.9)

It can also be shown, as in section 2.3 for the 2D case, that the 1D SWEs

linearised about a simple reference state have three normal modes. The slow, or

balanced mode again satisfies linear balance and is characterised by the linearised

PV. The remaining two fast modes can be related to the geostrophic departure,

aζ
′, defined by

aζ
′ = f

∂v′

∂x
− g

∂2h′

∂x2
, (4.10)

as in equation (2.87) for the 2D SWEs, and the divergence

D′ =
∂u′

∂x
, (4.11)

in the same way as for the 2D equations shown in section 2.3. We now derive a

discrete form of equations (4.1), (4.2) and (4.3). We use a semi-implicit,

semi-Lagrangian scheme to solve the system.
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4.2 The Discrete Model

A discrete form of the 1D SWEs is now derived using a two-time-level

semi-implicit, semi-Lagrangian (SISL) scheme. The SISL scheme is chosen since it

is used widely in NWP. This type of scheme is implemented at both the Met

Office [14] and the ECMWF [28]. We desire that in our simplified model we have

similar numerical properties to the models at these operational centres.

In the following section a brief description of the SISL scheme is given. This

scheme is then applied to our 1D SWEs and the discrete equations derived. The

model is an extension of work in [34] and [35].

After the non-linear model has been tested we turn our attention to deriving the

Tangent Linear Model (TLM) and the Adjoint Model. These models are required

for use in the incremental 4D VAR that was introduced in section 3.1.2.

4.2.1 The Semi-Lagrangian Scheme

Historically, early numerical weather prediction (NWP) models were based on

Eulerian finite difference schemes. Here the time-step size ∆t is limited by the

speed of the fastest wave through the Courant-Friedrichs-Lewy, or CFL, condition

given by

0 ≤ µ ≤ 1 where µ = c∆t/∆x, (4.12)

where ∆x is the spatial step size. The parameter µ is the Courant number and c is

the speed of the fastest wave. The CFL condition (4.12) is a necessary stability

condition for Eulerian finite difference schemes [17]. A Lagrangian scheme, on the

other hand, does not have these restrictions but the grid will tend to become

irregular and therefore some areas may be poorly resolved [60]. The

semi-Lagrangian scheme gets the best of both worlds by taking a Lagrangian time

step onto a new regular grid at the next time level. At each time step it is

necessary to find where the points on the new regular grid (the arrival points)

came from (the departure points).

The popularity of the SISL scheme in NWP is due to the fact that there is no CFL
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stability restriction linked to the speed of the fastest wave and also removes

stability restrictions due to advection speeds. Therefore increased time-steps can

be achieved without increasing the spatial resolution [60]. This is particularly

useful for latitude / longitude grids where the grid size decreases moving pole-ward.

4.2.2 The Discrete Model Equations

We now apply the scheme outlined in the previous section to our 1D SWEs.

Firstly the 1D SWEs, equations (4.1) to (4.3), are written in terms of their full

Lagrangian derivatives as follows,

Du

Dt
+ φx + gH̃x − fv = 0, (4.13)

Dv

Dt
+ fu = 0, (4.14)

D ln φ

Dt
+ ux = 0, (4.15)

where

D

Dt
≡ ∂

∂t
+ (Uc + u)

∂

∂x
(4.16)

and φ = gh. This form of the equations is chosen as it is a more convenient when

applying the SISL scheme. Also this formulation avoids growth in computational

noise due to using time-extrapolated quantities when calculating the u∂h
∂x

term in

(4.3) [60].

Applying a two-time-level semi-implicit, semi-Lagrangian scheme to the equations

above gives the following time-discrete equations

un+1
a − un

d

∆t
+ α1

[
φx + gH̃x − fv

]n+1

a
+ (1 − α1)

[
φx + gH̃x − fv

]n

d
= 0, (4.17)

vn+1
a − vn

d

∆t
+ α2 [fu]n+1

a + (1 − α2) [fu]nd = 0, (4.18)

ln φn+1
a − ln φn

d

∆t
+ α3 [ux]

n+1
a + (1 − α3) [ux]

n
d = 0, (4.19)

where the subscript x denotes the derivative with respect to x, superscript n is the

value at time level n and ∆t is the time step. The constants α1, α2, α3 are chosen
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to meet the stability requirements of the scheme. This is discussed in section 4.2.3.

The advection terms are time differences along trajectories and all other terms are

time averages along trajectories. The Coriolis terms are treated in this way as this

avoids the introduction of instability due to using extrapolated values to evaluate

the Coriolis terms [60]. The subscripts a and d represent the arrival and departure

points.

In the following sections we will discuss the properties of the numerical scheme and

describe in more detail how the model is solved.

The Solution Algorithm

Equations (4.17) to (4.19) are solved on a staggered grid which is a 1D analogue of

the Arakawa B-grid. The grid has φ on xi points and u and v on xi+1/2 points.

The staggered grid is chosen due to prevent uncoupling of neighbouring points

which can occur using a standard unstaggered grid. This uncoupling of

neighbouring points leads to poor conservational properties [17], [33].

We now outline how equations (4.17) to (4.19) are solved. The method proceeds as

follows:

1. Find the departure points xd = xi − ai.

We find the departure points xd = xi − ai at time tn by calculating the

displacement ai using an iterative procedure defined in [56]

a(k+1)
m = ∆tu(xm − a(k)

m , tn) + ∆tUc, (4.20)

with a(0) = 0. The velocity at the mid-point of the trajectory is found by

extrapolation formula,

u(xi, ∆tn+1/2) =
3

2
u(xi, tn) − 1

2
u(xi, ∆tn−1).

The value of u at φ points is the average of the two neighbouring u values

and the value of u at xi − a
(k)
i /2 is found by linear interpolation. It is worth

noting that the INT Fortran function is used in this code. The function takes
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the integer value of a real number. This function is non-differentiable and

therefore will have to be handled carefully when developing the Tangent

Linear Model, this will be addressed later in the report. In [60] it is found

that there is no value in performing this iteration more than twice. A

sufficient condition for the convergence of this iteration is given by

∆t < [max(|ux| , |uy| , |vx| , |vy|]−1, (4.21)

for 2D flow [60]. Thus the maximum time step size is restricted by properties

of the flow. For our 1D model this condition can be written as

max |ux|∆t = max |ui+1 − ui|
∆t

∆x
< 1. (4.22)

We will show later that the 1D SWEs permit jumps in certain dynamical

regimes and hence the condition may be violated. We can limit the potential

for breach of this condition by our choice of ∆t and ∆x.

2. Find values of variables at departure points.

We can assume that we know all values at all grid points at time n and

therefore by interpolating to the departure points we may find all the terms

at tn in equations (4.17) to (4.19). We then write the equations with all

known terms on the right hand side and unknown terms on the left,

un+1
a + ∆tα1

[
φx + gH̃x − fv

]n+1

a
= un

d

−∆t(1 − α1)
[
φx + gH̃x − fv

]n

d
(4.23)

vn+1
a + ∆tα2 [fu]n+1

a = vn
d − ∆t(1 − α2) [fu]nd (4.24)

ln φn+1
a + ∆tα3 [ux]

n+1
a = ln φn

d

− ∆t(1 − α3) [ux]
n
d . (4.25)

The right hand sides of each of the above equations are evaluated at each

grid point using a centred difference for the spatial derivatives with,
(

∂φ

∂x

)

u

=
φi+1 − φi

∆x
,
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and (
∂u

∂x

)

φ

=
ui+1 − ui

∆x
,

with the subscript u and φ meaning evaluated at a u or φ point. Then a

cubic-Lagrange interpolation formula is used to interpolate the values of the

right hand side of (4.17) to (4.19) to the departure points. This type of

interpolation is used as it a good compromise between cost and accuracy [60].

3. Solve elliptic equation for φ.

We then can eliminate u and v and solve an elliptic equation for φ of the

form,

−cφn+1
i+1 + 2cφn+1

i − cφn+1
i−1 + ln(φ)n+1

i = Ri, (4.26)

where c is a constant and Ri consists of known terms that are computed at

the departure points. Equation (4.26) could be solved iteratively but since

the tri-diagonal matrix formed by the left hand side is not strictly diagonally

dominant and is singular the iteration is not well defined [34]. Therefore the

equation is linearised by putting

φn+1
i = φn

i + φ′
i.

We then add φ′
i/φ

n
i to both sides. The iteration then becomes

−cφ
′(m+1)
i+1 + (2c +

1

φn
i

)φ
′(m+1)
i − cφ

′(m+1)
i−1

= Ri − ln(φn
i + φ

′(m)
i ) +

φ
′(m)
i

φn
i

+ cφn
i+1 − 2cφn

i + cφn
i−1, (4.27)

where m is the iteration count and φ
′(0)
i = 0. At each iteration a direct

solution is found. This is a fixed point iteration and will converge to the

correct solution if the sufficient condition

|φ′
i| <

φn
i

2
, (4.28)

is met [34].
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4. Find u and v at next time level.

Now that we have φn+1 we are able to find un+1 and vn+1, hence completing

one time step.

4.2.3 Stability and Accuracy

We now briefly discuss time accuracy and stability of the scheme. We note that

good spatial accuracy can be gained by good choice of interpolation.

It has been shown that a choice of αi = 0.5, i = 1, 2, 3 in the discrete equations

(4.17) to (4.19) gives a second order accurate scheme in time [60]. For α < 0.5,

however, the scheme becomes unstable. Therefore to avoid any instability due to

machine round-off α′
is are chosen to be a little above 0.5 as this will guarantee

stability and give close to second order accuracy [55]. In our model we choose

αi = 0.6 with i = 1, 2, 3.

4.3 The Behaviour of the Model

The model was implemented as outlined above and tested extensively. In the next

section we demonstrate some of the dynamical properties shown analytically in

chapter 2. First we describe the tests that were used to validate the model code.

4.3.1 Testing the Model

Our model is an extension of the model used in [34] and [35], where a 1D Shallow

Water model with no rotation is considered, which does not include the velocity v.

As an initial check forecasts from each of these models are compared under specific

conditions. By setting

f = 0, (4.29)

Uc = 0, (4.30)

v0 = 0, (4.31)
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in our model, where v0 is the initial condition for v and Uc is the forcing mean

flow, the models are identical. The two model forecasts were compared and the

matched to the tolerance set in the elliptic solver; the maximum difference in the

forecast fields produced by each model was found to be O(10−10) indicating that

the model code is correct in this case.

The next stage of testing involved comparing the results of [46] to those of our

model. These tests involved running the model with:

1. Rotation, but without orography.

2. Orography, but without rotation.

3. Orography and rotation.

The results are in agreement with those of [46] taking into consideration the fact

the SISL scheme used in our model is not capable of representing the formation of

jumps as well as the numerical schemes used in [46].

Further testing is carried out by considering the dynamical properties of our model

introduced in chapter 2. We start with the conservation of potential vorticity (PV).

4.3.2 Conservation Of Potential Vorticity

In section 2.1.1 we demonstrated that the PV is conserved in the 2D SWEs. In our

model the 1D form of the PV is conserved, given by

q =
1

h
(∂v/∂x + f).

The next test examines how well our model actually conserves this quantity. Since

the SISL numerical scheme has not been specifically designed to conserve the PV

we would not expect this to be exact.

A plot of the q is shown in figure 4.1 for a long model integration. We see that the

initial PV, the top plot, is advected by the flow from west to east. Initially the

maximum PV is over the central orography, which is given by

H̃(x) = Hc

(
1 − x2

a2

)
for 0 ≤ |x| ≤ a, (4.32)
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Figure 4.1: PV conservation: Top plot is the PV at the initial time t = 0, the central

plot is the PV at time t = 5000s and the bottom plot is the PV at time t = 10, 000s.

where Hc is the maximum height of the orography and a = 0.4 is the width. As

time moves on the PV is advected by the flow. The PV is conserved well though

toward the end of the run the initial shape is slightly degraded. Table 4.1 shows

the actual values of the PV at every 200 time steps. Here ∆t = 25s and, even after

a period of nearly 3 hours, our model conserve this quantity to a high degree of

accuracy.

Time step Maximum PV Total PV

0 0.0000020000000000 0.0084566366447693

200 0.0000019999982466 0.0084563832849261

400 0.0000019999999368 0.0084536772439323

Table 4.1: PV Conservation: Maximum and Total PV every 200s.

4.3.3 Varying The Rossby Number

The Rossby number was defined previously by equation (2.16) as

R0 =
U

fL
, (4.33)
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Figure 4.2: Varying the Rossby number: Model fields at time t = 10000s for R0 =

0.2. The top plot shows the u field, the middle plot is the v field and the bottom

plot is the depth h, where the orography H is shown with the green line.

where U is a characteristic velocity and L is a characteristic length scale. This

parameter is a measure of how important rotation is in the flow [49]. In the mid

latitudes for atmospheric motions which carry weather systems R0 ≈ 0.1. Here we

can expect the Earth’s rotation to be important. In this regime it has been shown

that the formation of jumps is prevented, or at least delayed, by the rotation [46].

As the Rossby number increases rotation becomes less dominant and when

R0 ≈ 1.0 we reach a regime where the rotation can no longer prevent the formation

of jumps.

In this experiment we look at how varying the Rossby number will affect the flow

in our model. We consider R0 = 0.2 and R0 = 2.0. The Rossby number is varied by

fixing f and U and varying the length scale L. The length scale that we take is the

width of the orography, a, where the orography is given by (4.32) with Hc = 50m.

Figures 4.2 and 4.3 show the results for the experiment with R0 = 0.2 and

R0 = 2.0. They are as we would expect; rotation dominates in the first regime and

the formation of a jump is prevented, in the second case rotation no longer
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Varying the Rossby number: Model fields at time t=10000s for R=2.0
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Figure 4.3: Varying the Rossby number: Model fields at time t = 10000s for R0 =

2.0. The top plot shows the u field, the middle plot is the v field and the bottom

plot is the depth h, where the orography H is shown with the green line.

dominates and a jump starts to form.

Further examination of figure 4.2 shows that there is a time oscillation in u and v

and two smooth gravity waves propagating away from the orography. The

oscillation in the velocity fields is such that it is the 1D equivalent of an inertial

oscillation. Inertial oscillations are long inertial-gravity waves with periods

approximately equal to f [24]. This motion is rarely seen in the atmosphere as it

requires the absences of a pressure gradient force. Usually this is observed in

oceanic flows or in large lakes.

To verify that the inertial oscillation is a true solution of our model and, if so, to

confirm its period 2π/f , we consider a very simple case. We ignore orography and

introduce no variation with x in u, v, and h in the initial conditions. Equations

(4.1) to (4.3) therefore reduce simply to

∂u

∂t
= fv, (4.34)

∂v

∂t
= −fu, (4.35)
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Figure 4.4: Inertial Oscillation for f = 0.01. The top plot is the value of u at a fixed

point in the domain, the end point, plotted against time. In the bottom plot we

have the same for v.

which can be combined to form the harmonic oscillator equations

∂2v

∂t2
+ f 2v = 0, (4.36)

∂2u

∂t2
+ f 2u = 0. (4.37)

Equations (4.36) and (4.37) have solutions of the form

u = V sin(ft),

and

v = V cos(ft),

with period 2π/f . The inertial oscillation is therefore a solution of the model. We

now show the numerical results of running this simple experiment. Figure 4.4

shows the value of u and v fields for a fixed point in space at each time step. There

is no variation with x in u, v and h. We see that the period of the oscillation is a

little above 600s and this compares well to 2π/f ≈ 628 with f = 0.01.

Returning to the experiment with R0 = 2.0, the second regime, we see that

rotation is no longer able to prevent the jump from forming. The SISL scheme
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cannot be expected to represent the jump well and we see in figure 4.3 over and

under shoots on the jump.

Now that we have verified that our model does accurately represent changes in

flow regimes, we turn our attention to the geostrophic adjustment problem

introduced in section 2.3.2.

4.3.4 Geostrophic Adjustment Experiments

Using the 1D SWEs

In 2.3.2 we introduced geostrophic adjustment for the linearised 2D SWEs. We

now demonstrate this process using our model. We start with an initially

unbalanced state confined to the centre of the domain, the solid blue line in figures

4.5 and 4.6, and elsewhere all the fields are constant and in balance. We run two

experiments: the first with the length scale of the unbalanced region is greater

than the Rossby radius, i.e.

Lu > Lr,

where Lu is the unbalanced length scale and

Lr =

√
φ

f

is the Rossby radius, defined previously by equation (2.20). The second

experiment has

Lu > Lr.

Both the experiments are run without orography and U = 0. For small amplitude

perturbations the model evolution should be close to linear and therefore should be

similar to the solutions of the linear problem given in section 2.3.2.

In figures 4.5 and 4.6 the initial state is the solid blue line and the final state is the

dashed red line. The departure from balance is given by

DLB = fv − ∂φ

∂x

and is the top plot in figures 4.5 and 4.6, the middle plot is φ and the bottom plot

is ψ. In both the experiments Lu = 500m, but the Rossby radius is varied by
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Figure 4.5: Geostrophic adjustment: Lr < Lu. The blue solid line indicates the initial

fields, the red dashed line indicates the final fields. The top plot is the departure

from balance, the middle plot is φ and the bottom plot is ψ.

changing the depth of the fluid so that Lr = 100m in the first experiment and

Lr = 2000m in the second experiment.

In each of the experiments we see that the unbalanced perturbation is dispersed

leaving behind an adjusted balanced state. This can be seen by looking at the

DLB in the figures for both experiments. We see that initially at time t = 0 (the

blue solid line) the DLB is non-zero in the centre of the domain. At the end of the

experiment (dashed red line) the DLB in the centre of the domain is

approximately zero. In figure 4.5 the Burger number Bu = 0.2 and as predicted in

section 2.3.2 the ψ field adjusts to balance the φ field. On the other hand in figure

4.6 for Bu = 4.0, the opposite is observed and this time the φ field adjusts to

balance the ψ field.

By looking at the geostrophic adjustment problem in our model we are able to

verify that the model has a non-trivial balanced state even when orography is not

included. We are also confident that its behaviour is as we would expect from the
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Figure 4.6: Geostrophic adjustment: Lr > Lu. The blue solid line indicates the initial

fields, the red dashed line indicates the final fields. The top plot is the departure

from balance, the middle plot is φ and the bottom plot is ψ.

theory described in 2.3.2.

Having now tested the non-linear model we turn our attention to developing a

linear approximation to the non-linear model. This linear model is called the

tangent linear model (TLM) and we also derive its adjoint. These models are

required for the inner loop minimisation in the incremental 4D VAR algorithm.

4.4 Deriving The Linear Models

There are several approaches for deriving the linear models necessary to implement

the incremental 4D VAR algorithm. The first we refer to as the discrete method

and the second the semi-continuous method [34]. Both of the methods start from

the continuous non-linear equations. The discrete method finds the discrete

non-linear model equations and then linearises the non-linear code directly to

obtain the tangent linear model (TLM). By considering the TLM code as a

sequence of linear operations the Adjoint model can be found directly from the
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TLM code by applying a few simple rules. These will be discussed in the following

sections. Thus both the TLM and the adjoint model are derived. The

semi-continuous method, on the other hand, first linearises the continuous

non-linear model and then discretises the continuous linear equations to derive

what is referred to as the perturbation forecast model. The adjoint of the

perturbation forecast model can be found from the linear model code in the same

way as the direct method.

The semi-continuous method was proposed in [40] and is used in the Met Office

data assimilation. The choice of this method partly involved the additional

freedom to design the linear model with specific goals in mind and partly due to

the ambiguity of some aspects of the direct method. For instance, in NWP, there

are many non-differentiable physical processes and it is not clear how to define

their adjoint. Also, iterative procedures are commonly used in these models and

again it is not obvious how to apply the direct method.

We choose, however, to follow the direct method since in our model none of the

limitations of the direct method apply; we do not have any physical processes and

the only iterative procedures lie in solving an elliptic equation that can be solved

directly in the TLM, and in the departure point calculation, which only requires

two iterations [60] and therefore can just be treated as two statements. We now

derive the TLM and adjoint model using the direct method.

4.4.1 The Tangent Linear Model

The Tangent Linear Model is developed directly from the non-linear model source

code. There are several steps which required extra analysis.

Firstly, in the departure point calculation equation (4.20) we use the Fortran

intrinsic function INT, which is non-differentiable. To linearise this part of code we

assume that the departure point and arrival point are in the same grid box and

thus we no longer require the function. Also, since the departure point iteration is

performed only a fixed number of times we are able to linearise the code directly
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by assuming that each iteration is just another Fortran statement.

The exception is the elliptic iteration (4.27). In developing the TLM we actually

linearise the original elliptic equation (4.26) which is equivalent to (4.27). To do

this we put

φi = φi + δφi,

and

Ri = Ri + δRi,

and the linear form of (4.26) is

−cδφn+1
i+1 + (2c +

1

φi

)δφn+1
i − cδφn+1

i−1 = δRi, (4.38)

which can be solved directly as the tri-diagonal matrix formed by the left hand

side is strictly diagonally dominant. Therefore an iterative procedure to solve this

equation is not required.

Testing the Tangent Linear Model

We verify TLM is coded correctly by testing the models:

1. Correctness.

2. Validity.

The TLM correctness is verified by considering the residual and relative errors of

the evolution of a perturbation in the non-linear model compared to that of the

evolution of the same perturbation in the TLM. The evolution of the non-linear

model from time t0 to tn is given by

x(tn) = M(tn, t0)[x(t0)] = M(tn, t0)[x(t0) + δx(t0)], (4.39)

where M(tn, t0) is the non-linear model evolution from t0 to tn and

x(t0) = x(t0) + δx(t0) where x is the linearisation state and δx(t0) is a small

perturbation to it. The evolution of δx(t0) in the TLM is

δx(tn)TL = M(tn, t0)δx(t0), (4.40)
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Figure 4.7: Tangent Linear Model correctness test for u:

where M(tn, t0) is the TLM evolution from t0 to tn and δx(tn)TL is the

perturbation evolved to time tn by TLM. This can be compared with the total

perturbation resulting from the non-linear model evolution,

δx(tn)NL = M(tn, t0)[x(t0) + δx(t0)] −M(tn, t0)[x(t0)], (4.41)

where δx(tn)NL is the perturbation evolved to time tn by non-linear model. We

can now consider the relative error in the TLM evolution. This can be expressed

∥∥∥δx(tn)NL − δx(tn)TL
∥∥∥
2

‖δx(tn)TL‖2 . (4.42)

If we consider the perturbation γδx where γ is a scalar, then in the limit

lim
γ→0

∥∥∥γδx(tn)NL − γδx(tn)TL
∥∥∥
2

|γ| = 0. (4.43)

If we take γ = 10−p and plot the logarithms of relative error against γ we should

see the relative error decrease linearly with γ to 0 [69]. This is what is observed in

figures 4.7 for u and 4.8 for v.

The results for the correctness of the TLM are independent of the size of the

perturbation. So to assess whether the TLM is a qualitatively good approximation

to the non-linear model we need to look the model’s validity. Here we assess
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Figure 4.8: Tangent Linear Model correctness test for v

whether the TLM approximates the non-linear model well enough for a

realistically sized perturbation over the length of time we require. To answer this

we take 10% perturbations to all model variables. The non-linear model and TLM

were integrated over a time of 10000s, which is approximately the length of time of

an operational 4D-VAR data assimilation window. We require the TLM to be a

good approximation of the evolution of the perturbation over this time window.

Figure 4.9 shows the non-linear perturbations, δx(tn)NL as given by (4.41)

evolved to 10, 000s (the solid line) and the TLM evolution δx(tn)TL, given by

(4.40), at the same time (the dashed line). We see that the TLM evolution stays

very close to that of the non-linear evolution. The only exceptions are in a few

places where there are sharp changes in the fields but this is to be expected in a

linear approximation. This test was run in several regimes and similar results were

obtained.

By verifying the TLM’s correctness and validity we can be satisfied that the TLM

does provide an accurate approximation to the non-linear model over the required

time. We can now move on to deriving the adjoint of the TLM.
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Figure 4.9: Tangent Linear Model Validity Test. Non-linear (solid line) vs Tangent

Linear (dashed line) perturbations at 10,000s. The top plot shows the perturbations

for u, the middle plot the perturbations for v and the bottom plot the perturbations

for φ.

4.4.2 The Adjoint Model

Now that we have a TLM and it has been tested for correctness and validity we can

derive the Adjoint directly from the TLM source code. This is achieved by viewing

the code as a sequence of linear operators. This process is described in detail in [4].

Once the Adjoint model is coded the definition of an Adjoint, MT ,

〈Mδx,Mδx〉 =
〈
δx,MTMδx

〉
, (4.44)

where M is the TLM, MT the Adjoint model, and 〈, 〉 the inner product, can be

applied to test the model. This test proceeds as follows,

1. Start with perturbation δx.

2. Apply the TLM to obtain Mδx.

3. Calculate the left hand side of equation (4.44).

4. Apply the Adjoint model to Mδx i.e. calculate MTMδx.
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Inner Product Value

〈Mδx,Mδx〉 518151.6667245743
〈
δx,MTMδx

〉
518151.6667245743

Table 4.2: Adjoint test results

5. Calculate the right hand side of equation (4.44).

6. Verify that the equality holds to machine precision.

This test was run several times and the adjoint definition was satisfied to machine

precision. Table 4.2 is a sample of the results using random numbers to generate

fields. We can now be confident that the adjoint model is coded correctly.

4.5 Summary

We started this chapter by introducing the 1D SWEs, which will be used in the

remainder of this work. We choose to solve the equations using a SISL scheme, a

scheme used throughout NWP. The scheme is then applied to the 1D SWEs and

the steps in the numerical method are outlined.

After the model was tested we then demonstrated some key properties of the

model. We looked at the conservation of PV and the behaviour of the model in

different Rossby regimes. We then gave two examples of geostrophic adjustment.

We then applied the direct method of adjoint construction to develop both the

TLM and the adjoint models from our non-linear model. The details of each model

are then described and the standard tests for each presented with our test results.
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Chapter 5

Control Variable Transforms for

the 1D Shallow Water Equations

The final stage in the set up of the incremental 4D VAR is the development of the

control variable transform. We now derive two different versions of the control

variable transform; a vorticity-based transform, and a PV-based transform.

In chapter 3 the use of the control variable transform in 4D VAR was introduced

as a method of modelling the background error covariances. The control variable

transform has two distinct components; the first is to represent the

cross-correlations between model variables referred to as the parameter transform,

and the second to model the auto-correlations for each control variable, which is

not considered in this work.

We now concentrate solely on the parameter transform. From the discussion in

section 3.3.1 we see that most of the current implementations of the control

variable transform are derived from the ideas of [47] and are vorticity-based. The

only exception is the height/mass-based transform of [25] that uses very similar

ideas. These transforms only approximate the balanced variable since they assume

that either vorticity (or mass) is a completely balanced variable. Whilst vorticity is

a good approximation to the balanced flow in a high Burger regime, it is not a valid

approximation in all regimes [68], as we demonstrate in section 2.4.2. This could

potentially cause the data assimilation to generate unrealistic analysis increments.
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To overcome this potential limitation a PV-based transform was proposed in [11]

and initial results, whilst not being conclusive, suggest potential benefit.

In this chapter we derive the vorticity-based and PV-based transforms for the 1D

Shallow Water Equations (SWEs) defined by equations (4.1) to (4.3). The

transforms are derived using the dynamical concepts presented in chapter 2. We

recall that the linearised form of the 2D SWEs model has three normal modes.

The same is true for the 1D equations. The slow, balanced mode is characterised

by the linearised PV, q′. The remaining two fast modes can be related to the

geostrophic departure, aζ
′, defined by

aζ
′ = fζ ′ − g

∂2h′

∂x2
, (5.1)

which is the one dimensional departure from equation (2.88), and the divergence D′

D′ =
∂u′

∂x
, (5.2)

the one dimensional form of equation (2.7). We recall that, in the system defined

by equations (4.1) to (4.3), we have assumed the model variables do not vary in

the y direction.

In [18] the normal modes of the SWEs are used to define a mapping from physical

space to q′,D′ and aζ
′ (aζ

′ is referred to as the ageostrophic vorticity in [18]). A

similar mapping is now used to derive the control variable transform.

The vorticity-based control variables are a convenient approximation to the normal

mode decomposition where the balanced variable is approximated by the vorticity

and all the rotational wind is assumed to be balanced. The PV-based variables, on

the other hand, allow for an unbalanced component of the rotational wind and are

similar to those used in [18]. The PV-based variables do not approximate the

balanced mode.

5.1 Vorticity-Based Transform

The vorticity-based control variables are the streamfunction ψ′, velocity potential

χ′ and ’unbalanced pressure’ or, in the case of the SWEs, the residual unbalanced
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height h′
res. The Helmholtz decomposition is used to separate velocities into

rotational and divergent parts. In 1D the Helmholtz decomposition reduces to

vorticity

ζ ′ =
∂v′

∂x
=

∂2ψ′

∂x2
, (5.3)

and divergence

D′ =
∂u′

∂x
=

∂2χ′

∂x2
, (5.4)

with velocities u′ and v′ given by

u′ =
∂χ′

∂x
, (5.5)

v′ =
∂ψ′

∂x
. (5.6)

We now assume that ψ′ is a totally ’balanced’ variable, following [47], and use the

linearised balance relationship, given by (4.5), to define a balanced height variable

h′
b, i.e.

f
∂2ψ′

∂x2
− g

∂2h′
b

∂x2
= 0, (5.7)

where the subscript b refers to the ’balanced’ part of the height variable. The

residual height is then given by

hres = h − hb.

5.1.1 Vorticity-Based Scheme: The T-Transform

Using the vorticity equation (5.3) and the linear balance equation (5.7) the

T -transform

z′ = Tx′

with

x′ =




u′

v′

h′




,
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and

z′ =




ψ′

h′
res

χ′




in the context of the 1D SWEs is given by solving a sequence of equations. We use

the notation < x > to denote the mean value of x. We note that when

differentiated quantities are used as control variables we must store the mean

values else they will be lost. The method proceeds as follows:

Step 1 Solve
∂2χ′

∂x2
= D′ (5.8)

for χ′ subject to periodic boundary conditions. The solution is unique up to

an additive constant.

Step 2 Solve
∂2ψ′

∂x2
= ζ ′ (5.9)

for ψ′ subject to periodic boundary conditions. The solution is unique up to

an additive constant.

Step 3 Calculate the residual height h′
res by

h′
res = h′ − h′

b = h′ − f

g
ψ′, (5.10)

where

h′ = h′
b + h′

res.

The variable h′
b in equation (5.10) is found by integrating (5.7), the linear

balance equation, twice to give

h′
b =

f

g
ψ′ + c1x + c2,

where c1 and c2 are constants of integration. Then c1 = 0 because both ψ′

and h′
b are periodic in x, and we set c2 = 0.
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Step 4 Store the spatial mean values of u′ and v′, < u′ > and < v′ > respectively.

These are extra control variables that are needed as these means cannot be

otherwise recovered from ψ′, χ′ or h′
res in the U-transform (see below).

Equations (5.9) for ψ′ and (5.8) for χ′ are solved with periodic boundary

conditions and the solutions are unique up to a constant provided the right hand

side has a zero mean value. In both cases the right hand sides are derivatives of

periodic functions and therefore will always have a zero mean value. The solutions

are therefore unique up to a constant and we choose this constant such that the

mean value < ψ′ > of ψ′ is zero and the mean value < χ′ > of χ′ is also zero,

where the angled brackets indicate we are taking the mean value of the variable.

In solving (5.9) for ψ′ and (5.8) for χ′ we lose a degree of freedom by virtue of the

fact that we choose ψ′ and χ′ to have zero mean values. This available degree of

freedom is used to retain the mean values < v > of v and < u > of u that are lost

through differentiation. The values < u > and < v > are also control variables.

The model variables and the vorticity-based control variables now have equal

degrees of freedom. The T-transform essentially solves a sequence of equations

producing the control variable increments given model variable increments.

5.1.2 Vorticity-Based Scheme: The U-Transform

Using equations (5.5), (5.6) and (5.7) we are able to

derive the U -transform,

x′ = Uz′.

Given the control variable increments the U -transform proceeds as follows:

Step 1 Find the velocity v′ from ψ′ and < v′ >

v′ =
∂ψ′

∂x
+ < v′ > . (5.11)

Step 2 Find the balanced height increment h′
b from ψ′ and calculate the full height

increment h′

h′ = h′
b + h′

res =
f

g
ψ′ + h′

res. (5.12)
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Step 3 Find the velocity u′ from χ′ and < u′ >

u′ =
∂χ′

∂x
+ < u′ > . (5.13)

Again a sequence of equations is solved and we reconstruct the original model

variables from the control variables.

It is worth noting at this point that the consideration of the mean values < u′ >

and < v′ > is more natural in the implementation of the transforms at the Met

Office. At the Met Office the transforms are solved in spectral space and are only

applied to wavenumbers one and above.

5.1.3 Numerical Implementation of the

Vorticity-Based Transform

We now describe the numerical implementation of the vorticity-based transform.

We start with the T -transform.

T-Transform

The equations (5.9) and (5.8) for ψ′ and χ′ are solved in the same way. We now

describe the solution method taking χ′ as an example. We desire to solve

∂2χ′

∂x2
= R(x) (5.14)

with periodic boundary conditions. The equation has a unique solution up to an

additive constant provided the right hand side has a zero mean value, this is

sometimes refered to as the compatibility condition. In this case R(x) = ∂u′

∂x
so the

zero mean condition is satisfied since u is periodic in x. The solution χ′ is therefore

unique up to an additive constant and we choose this constant such that

< χ′ >= 0.

We have now specified all the required boundary conditions and solve the equation

using discrete Fourier transforms (DFT). The DFT of a field X is given by

X̂ ′(kn) =
1√
N

∑

j=1,N

X(xj)e
−iknxj , (5.15)
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for each wave number kn = 2πn
∆xN

with n = 1, . . . , N − 1, where ∆x is the spatial

grid length. The inverse transform is given by

X(xj) =
1√
N

∑

n=1,N−1

X̂(kn)eiknxj . (5.16)

We apply the Fourier transform to the discrete equation

χi+1 − 2χi + χi−1

∆x2
= Ri, (5.17)

where the prime has been dropped from the χ′ for convenience. This gives

1√
N∆x2

∑

n=1,N−1

χ̂′(kn)
(
eiknxi+1 − 2eiknxi + eiknxi−1

)
=

1√
N

∑

n=1,N−1

R̂(kn)eiknxi .

(5.18)

After further manipulation we obtain

χ̂′(kn) =
∆x2

(2 cos(kn∆x) − 2)
R̂(kn), (5.19)

using the identity eikn∆x = cos(kn∆x) + i sin(kn∆x). Thus, to solve the equation

we execute the following steps:

1. Transform the right hand side:

The right hand side is transformed to Fourier space using a discrete Fourier

transform, equation (5.15), for permitted wavenumbers, kn, with

kn =
2πn

∆xN
for n = −N

2
, . . . ,

N

2
− 1

where N is the number of points in domain.

2. Calculate solution in Fourier space:

Solution is calculated in Fourier space by multiplying each mode

n = −N

2
, . . . ,

N

2
− 1

by
∆x2

(2 cos(kn∆x) − 2)
.
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3. Enforce boundary conditions and mean:

We enforce the boundary condition for the mean value by setting zero mode

χ̂′(k0) = 0. The periodic boundary conditions are satisfied naturally in

Fourier space.

4. Calculate solution in model space:

Apply the inverse transform, equation (5.16), to obtain the solution in model

space.

Once we have followed the above method we obtain the control variables χ′ and ψ′.

It is then simple to calculate h′
res from ψ′,

h′
resi = h′

i −
f

g
ψ′

i, (5.20)

where the subscript i indicates the value of the variable at point i∆x. Thus we

obtain the required control variables.

U-Transform

We now describe the numerical solution of the U-transform. This transform must

be efficient since it is used once every inner iteration and once every outer iteration

of the incremental 4D VAR algorithm. The model variables u′, v′, and h′ are

re-constructed from the control variables as follows;

u′
i =

χ′
i+1 − χ′

i

∆x
+ < u′ >, (5.21)

v′
i =

ψ′
i+1 − ψ′

i

∆x
+ < v′ >, (5.22)

h′
i =

f

g
ψ′

i + hres
′
i, (5.23)

for

i = 1, . . . , N,

where N is the number of grid points and xN+1 = x1 and x0 = xN . We note that χ′

and ψ′ values are located on φ points on the staggered grid used in the non-linear

model, see figure 5.1. Thus finding u′ and v′ is straightforward, as is calculating h′.

We now derive the PV-based control variable transform.
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Figure 5.1: Control variables on the staggered grid.

5.2 PV-Based Transform

We start by defining our variables. Again the Helmholtz decomposition is used to

separate velocities into rotational and divergent parts. In 1D the Helmholtz

decomposition reduces to equations (5.3) to (5.6). Additionally we let

h′ = h′
b + h′

u

and

v′ = v′
b + v′

u ⇒ ψ′ = ψ′
b + ψ′

u,

where the subscripts refer to the balanced and unbalanced parts of the variable. So

we have

v′
b =

∂ψ′
b

∂x
(5.24)

and

v′
u =

∂ψ′
u

∂x
. (5.25)
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Splitting the velocity v′ in this manner allows for balanced and unbalanced

components of the rotational wind. Therefore not all the rotational wind is

assumed balanced, as it is with the vorticity-based variables.

We define the reference PV for our simplified model as in [67], giving

q̄ =
1

h̄

(
f +

∂v̄

∂x

)
, (5.26)

where the reference states v̄(x, t), h̄(x, t) and q̄(x, t) are either the first guess, or

background state, on the first outer loop of the incremental 4D VAR, or updates to

the background on subsequent outer loops.

For the PV-based transform we define the balanced variables v′
b and h′

b such that

they satisfy the linear balance equation (5.7)

f
∂2ψ′

b

∂x2
− g

∂2h′
b

∂x
= 0 (5.27)

and the linearised PV equation. To derive the linearised PV equation we

follow [67] and start by linearising (5.26) around a varying reference state

q(x, t) = q̄(x, t) + q′(x, t)

v(x, t) = v̄(x, t) + v′(x, t)

h(x, t) = h̄(x, t) + h′(x, t),

where the overbar denotes the reference state and the prime is a perturbation to it.

This gives

q =
1

h

(
f +

∂v

∂x

)
=

1

h̄ + h′

(
f +

∂v̄

∂x
+

∂v′

∂x

)
.

Therefore, neglecting products of the perturbations, we have

q̄h̄ + q′h̄ + q̄h′ = f +
∂v̄

∂x
+

∂v′

∂x

and using equation (5.26) gives

q′h̄ =
∂v′

∂x
− q̄h′. (5.28)
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The balanced variables v′
b and h′

b are associated solely with the linearised PV, q′,

so we have
∂v′

b

∂x
− q̄h′

b = q′h̄. (5.29)

There are also corresponding equations for the unbalanced variables. We define the

unbalanced variables v′
u and h′

u such that they satisfy the departure from linear

balance (DLB) equation

fv′
u − g

∂h′
u

∂x
= fv′ − g

∂h′

∂x
(5.30)

and
∂v′

u

∂x
− q̄h′

u = 0, (5.31)

i.e. the unbalanced variables do not contribute to the PV increment.

Re-writing these equations using the balanced and unbalanced streamfunctions ψ′
b

and ψ′
u gives the following four equations

f
∂2ψ′

b

∂x2
− g

∂2h′
b

∂x2
= 0, (5.32)

∂2ψ′
b

∂x2
− q̄h′

b = q′h̄, (5.33)

f
∂2ψ′

u

∂x2
− g

∂2h′
u

∂x2
= aζ

′, (5.34)

∂2ψ′
u

∂x2
− q̄h′

u = 0. (5.35)

These equations, with appropriate boundary conditions specified later define four

variables ψ′
b, ψ

′
u, h

′
b and h′

u, although only two are needed as control variables. We

choose to use ψ′
b and h′

u (χ′ is the third control variable, which is identical to the

vorticity-based formulation). This gives us one balanced and two unbalanced

variables to reflect the normal modes. Theoretically we could have also choosen h′
b

and ψ′
u instead of ψ′

b and h′
u, but this would require division by f. This would cause

problems when solving the transform on the sphere where f → 0 on the equator.

5.2.1 PV-Based Scheme: The T-Transform

Using equations (5.32) to (5.35) and (5.4) the T -transform

z′ = Tx′
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with

x′ =




u′

v′

h′




,

and

z′ =




ψ′
b

h′
u

χ′




is given by solving the following sequence of equations:

Step 1 Solve
∂2χ′

∂x2
= D′ (5.36)

for χ′ subject to periodic boundary conditions. The solution is unique up to

an additive constant. This is the same equation as (5.8) in the

vorticity-based control variable transform.

Step 2 Solve
∂2ψ′

b

∂x2
− f q̄

g
ψ′

b = q′h̄ (5.37)

for ψ′
b subject to periodic boundary conditions. The right hand side is known

from the model variable increment fields. The equation has a unique solution

provided q̄ > 0. This is discussed in detail in the next section.

Step 3 Solve

f q̄h′
u − g

∂2h′
u

∂x2
= aζ

′ (5.38)

for h′
u subject to periodic boundary conditions. As before the right hand side

is known from the model variable increment fields and the equation has a

unique solution provided q̄ > 0.

Step 4 Store mean values of u′ and v′. These are lost through differentiation.

Equation (5.37) is found by substituting h′
b = f

g
ψ′

b from (5.32), the linear balance

equation, into equation (5.33). Here we have integrated (5.32) twice with both
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constants of integration defined to be zero, as was done for the vorticity-based

variables. Equation (5.38) is found by substituting ∇2ψ′
u from equation (5.35) into

equation (5.34).

Equation (5.36) is solved with periodic boundary conditions for χ′ and has a

unique solution up to an additive constant provided the right hand side has a zero

mean value. The right hand side is a derivative of a periodic function and therefore

will always have a zero mean value. The solution is therefore unique up to a

constant and we choose this constant such that < χ′ >= 0. We therefore lose a

degree of freedom in χ′. We use this available degree of freedom to retain the mean

value < u > that is lost through differentiation. We also note that a degree of

freedom in ψ′ = ψ′
b + ψ′

u is lost since the unbalanced streamfunction ψ′
u is found by

solving (5.35) i.e.
∂2ψ′

u

∂x2
= q̄h′

u (5.39)

subject to periodic boundary conditions. The right hand side is known and must

have a mean value of zero for the equation to have a solution. Provided that this is

true the solution ψ′
u is unique up to an additive constant, chosen to be zero. Thus,

we again lose a degree of freedom. This available degree of freedom is used to store

the mean value < v > . The degrees of freedom in both the control variables and

the model variables are now equal. Again, as with the vorticity-based variables,

the mean values < u > and < v > are also control variables.

We note from equation (5.38) that if we first apply the T -transform to our model

variable increments we will always produce h′
u such that the mean of q̄h′

u is zero.

However, the T -transform is not applied before the U -transform in the incremental

4D VAR algorithm since the inner minimisation is performed in control space.

This issue is addressed later in this section. We first present the inverse transform,

the U -transform, in the context of our simplified SWEs.
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5.2.2 PV-Based Scheme: The U-Transform

Using equations (5.5), (5.24), (5.25), (5.32) and (5.35) we are able to derive the

U -transform

x′ = Uz′

for the simplified SWEs. Given the PV-based control variable increments the

U -transform proceeds as follows:

Step 1 Find the balanced velocity increment v′
b from ψ′

b

v′
b =

∂ψ′
b

∂x
. (5.40)

Step 2 Find the unbalanced velocity increment v′
u from ψ′

u

v′
u =

∂ψ′
u

∂x
, (5.41)

where ψ′
u is found by solving

∂2ψ′
u

∂x2
= q̄h′

u

subject to periodic boundary conditions. The right hand side is known and

must have a mean value of zero for the equation to have a solution. Provided

that this is true the solution ψ′
u is unique up to an additive constant.

Step 3 Reconstruct the full velocity increment v′

v′ = v′
b + v′

u+ < v > . (5.42)

Step 4 Find the balanced height increment h′
b from ψ′

b and reconstruct the full

height increment h′

h′ = h′
b + h′

u =
f

g
ψ′

b + h′
u. (5.43)

Here we have assumed that h′
u is such that equation (5.39) has a solution.

We discuss this in more detail in the following sections.

Step 5 Find the velocity u′ from χ′ and < u >

u′ =
∂χ′

∂x
+ < u > . (5.44)
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So the U -transform solves a series of equations that reconstructs the model

variable increments from the control variable increments.

In equation (5.41) the unbalanced streamfunction ψ′
u is found by solving (5.39).

The right hand side of (5.39) is known and must have a mean value of zero for the

equation to have a solution. We must now consider this in the practical

implementation of the U -transform in the incremental 4D VAR algorithm.

We minimise the cost function in control space and therefore the condition that

the mean of q̄h′
u is zero may not be satisfied unless explicitly enforced. It is not

straight forward how to do this since q̄, defined by equation (5.26), is varying in x

and is modified on every outer iteration. It is possible to modify h′
u on each inner

iteration so that the mean of q̄h′
u is zero. This can be achieved since we are always

able to subtract a constant from h′
u such that < q̄h′

u >= 0. The mean of the full

height increment is therefore split between h′
b and h′

u. The implementation is

discussed in more detail in the following section.

The problem could be avoided by choosing to approximate q̄ by a constant. An

approximation of this sort was made in [11]. This would mean that we are simply

able to explicitly set < h′
u >= 0 and the condition < q̄h′

u >= 0 will always be

satisfied. We then store the mean of the full height increment solely in h′
b. This

approximation is also desirable from an operational perspective since the transform

would be less computationally demanding. In the following section we consider the

possible implications of making this approximation in the PV-based transform. We

choose to make the approximation

q̄ =
1

h̄

(
f +

∂v̄

∂x

)
≈ f

< h̄ >
, (5.45)

to equation (5.26), and note that this is the PV of the linearisation state used in

the linear analysis of section 2.3.1. The approximation essentially assumes that

∂v̄
∂x

= 0. This is consistent with the climatological assumptions and zonally averaged

quantities used in determining the background error covariance matrix, which are

discussed in section 3.4; the climatological average of ∂v̄
∂x

is likely to be close to zero.
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5.2.3 Numerical Implementation of the PV-Based

Transform

We now describe the numerical implementation of the PV-based transform. We

start with the T -transform.

T-Transform

The equation for ψ′
b is

∂2ψ′
b

∂x2
− f q̄

g
ψ′

b = R(x), (5.46)

where R(x) = ∂v′

∂x
− q̄h′. We solve the equation on a periodic domain of N points

with x0 = xN and xN+1 = x1. Derivatives are approximated using a standard

central difference so the second derivative of ψ′
b at point xi = i∆x, where ∆x is the

spatial step size is given by

(
∂2ψ

∂x2

)

i

=
ψi+1 − 2ψi + ψi−1

∆x2
. (5.47)

Here the subscript and the prime has been dropped from ψ′
b for convenience.

Equation (5.46) therefore approximates to

ψi+1 − 2ψi + ψi−1

∆x2
− f

g
q̄iψi = Ri, (5.48)

where q̄i = q̄(xi) and Ri = R(xi). Enforcing the periodic boundary conditions this

approximation gives rise to a tri-diagonal system of N equations, given by




−2 − ∆x2 f
g
q̄1 1 1

. . . . . . . . .

1 −2 − ∆x2 f
g
q̄i 1

. . . . . . . . .

1 1 2 − ∆x2 f
g
q̄N







ψ1

...

ψi

...

ψN




= ∆x2




R1

...

Ri

...

RN




.

This system has a unique solution provided the matrix on the left hand side is

diagonally dominant i.e.

|ai| ≥ |bi| + |ci| (5.49)
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with strict diagonal dominance,

|ai| > |bi| + |ci| (5.50)

on at least one row. Here ai is the diagonal element on row i and bi and ci are the

neighbouring off diagonal elements. This condition is met if q̄j > 0 at point j and

q̄i ≥ 0 for i = 1, . . . , N. We will discuss this condition more in section 5.2.3.

Assuming that this is true we solve the system using a periodic tri-diagonal solver

from [17].

The equation for h′
u is

f q̄h′
u − g

∂2h′
u

∂x2
= R(x) (5.51)

where R(x) = f ∂2ψ′

∂x2 − g ∂2h′

∂x2 . We solve the equation on a periodic domain of N

points with x0 = xN and xN+1 = x1 as before. Derivatives are approximated in the

same way as for ψ′
b above. Discretising the equation gives

f q̄ihi − g
hi+1 − 2hi + hi−1

∆x2
= Ri, (5.52)

where the prime and the subscript have been dropped from the h′
u for convenience.

This yields the following tri-diagonal system



2g + ∆x2f q̄1 −g −g
. . . . . . . . .

−g 2g + ∆x2f q̄i −g
. . . . . . . . .

−g −g 2g + ∆x2f q̄N







h1

...

hi

...

hN




= ∆x2




R1

...

Ri

...

RN




.

Again this system has a unique solution provided the matrix on the left hand side

is diagonally dominant with strict diagonal dominance on at least one row. We can

guarantee this is met if again q̄j > 0 for some point j and q̄ ≥ 0 for i = 1, . . . , N.

Assuming this is true the system is solved in the same way as for ψ′
b.

The variable χ′ is the same as for the vorticity-based variables, and the equation is

therefore solved in exactly the same way, as described in section 5.1.3.

Equations (5.46) and (5.51) for the PV-based variables h′
u and ψ′

b were the first

equations tackled in this work. The initial method chosen to solve the equations
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was standard finite differences, as described above. We find that the periodic

tri-diagonal system obtained once equations (5.46) and (5.51) are discretised is

s.d.d. (given a minor constraint on the sign of the linearised PV, which is satisfied

by choice of initial conditions). These systems are easily solved with a standard

tri-diagonal solver. Therefore, this approach is straightforward to implement.

Later we choose a spectral method to solve the equations for χ′ and ψ′ as this is a

natural way to enforce the boundary conditions. In retrospect, a spectral solution

method could be applied to all the equations and this might be more efficient.

However, for our purposes, calculation times are not a primary consideration since

the domain is relatively small.

U-Transform

We now describe the numerical solution of the U -transform. The model variables

u′, v′, and h′ are re-constructed from the control variables as follows,

u′
i =

χ′
i+1 − χ′

i

∆x
+ < u >, (5.53)

v′
i =

ψ′
bi+1 − ψ′

bi

∆x
+

ψ′
ui+1 − ψ′

ui

∆x
+ < v >, (5.54)

h′
i =

f

g
ψb

′
i + hu

′
i + c, (5.55)

for

i = 1, . . . , N

where N is the number of grid points and xN+1 = x1 and x0 = xN . The constant c

is determined as a result of adjusting h′
u so that the equation (5.39) for ψu has a

solution. The calculation of c is given in the next section.

As before all derivatives are approximated with a standard central difference

scheme, as shown in figure 5.1. Thus finding u′ is straightforward as is calculating

v′ once we have found ψ′
u. However, there are two complications to the

U -transform: Firstly, we must find ψ′
u. Secondly, choosing the constant c needed to

give h′. These are now discussed.
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U-Transform: Equation for ψ′
u

In the transform we must solve

∂2ψ′
u

∂x2
= q̄h′

u (5.56)

for ψ′
u. As we have seen earlier, for an equation of this form with periodic

boundary conditions to have a solution we require the right hand side to have a

zero mean. This may not be the case since h′
u is generated by the minimisation

routine and is not constrained to meet this condition. We therefore define h̃′
u as

the unbalanced height increment that is generated by the minimisation. Since

there is no guarantee that h̃′
u will be such that the mean of the q̄h̃′

u is zero we need

to adjust the value in such a way to respect this condition, i.e. adjust h̃′
u so that

< q̄(h̃′
u − c) >=< q̄h′

u >= 0.

Assuming that this is done we may solve the equation in exactly the same way as

described in the T -transform when solving for χ′, see section 5.1.3.

To adjust h̃′
u we define

h̃′
u = h′

u + c where (5.57)

c =

∫
q̄h̃′

u dx
∫

q̄ dx
. (5.58)

The constant c is then subtracted from h̃′
u and added back onto h.

In the next chapter we also test an approximation to the PV-based transform

where we approximate q̄ ≈ f
<h̄>

. Since q̄ is then a constant to solve equation (5.56)

we only need to constrain the mean value of h′
u to be zero in the minimisation,

which can be done by explicitly setting it to zero. Therefore there is no need to

adjust h′
u, since

< h′
u >= 0 ⇒< q̄h′

u >= 0,

when q̄ is a constant. When we do not have a constant q̄ the adjustment must be

calculated on every inner iteration of the minimisation, as we outlined above.
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Other Considerations: q̄

As we have mentioned in the previous section for ψ′
b and h′

u to have unique

solutions in the T -transform we require that q̄ > 0, to respect condition (5.50).

This condition is also present in the continuous problem as we require the

solutions to be real. In the minimisation it is possible to have a situation where at

some point xi, q̄i < 0. We therefore need to handle this situation explicitly. We do

this by smoothing q̄ so that it never falls below a small positive number close to

zero, i.e. if q̄i < ǫ, with ǫ << 1, say, then set explicitly q̄i = ǫ.

5.3 Testing the Transforms

The transforms are tested by looking at the errors

e1 = ‖x − U(Tx)‖ (5.59)

e2 = ‖z − T(Uz)‖ . (5.60)

Here we are testing if the correct inverse is coded. The data used to generate the

initial fields x and z in these tests were taken from two possible sources:

1. Actual model data.

2. Random fields.

When the tests are run for the vorticity and the PV-based transforms we find that

the errors e1 and e2 are order 10−12 or less (i.e. machine precision). The discrete

Fourier transform is tested in a similar way and in addition we also compare

numerical solutions to exact solutions in specific cases where the analytical

solutions are known. Again all errors the order of machine accuracy.

The adjoint transforms for both the vorticity and PV-based transforms are also

required in the incremental 4D VAR algorithm. These are derived and tested

following the methods described in section 4.4.2.
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Figure 5.2: Model fields, Bu = 4.0: From top to bottom the first plot is v, then φ,

u, q and DLB.

5.4 Qualitative Comparison of the Control

Variables

We now qualitatively compare the control variables. We do this by transforming

selected model fields into vorticity and PV-based variables (here the PV-based

variables have not been approximated). The model fields are taken from model

runs in a high Burger regime (Bu = 4.0) and a low Burger regime (Bu = 0.2). We

recall the results of [67]: the vorticity-based variables are a good approximation to

balance in high Burger regimes and therefore the sets of control variables should

appear to be similar. In a low Burger regime the PV is approximated by height

and so the vorticity-based variables should not accurately represent the balance

variable, and the vorticity and PV-based variables should be different.

The results of the experiment with Bu = 4.0 are shown in figures 5.3, for the

vorticity-based variables, and 5.4, for the PV-based variables. The original model

fields are shown in figure 5.2 where in descending order v, φ, u are plotted with the
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PV, q, and the departure from linear balance (DLB). Here we see that the fields

are in balance, i.e.

DLB = fv − g
∂h

∂x
≈ 0,

everywhere except the area over the central orography defined as in equation

(4.32). The two sets of control variables appear very similar (χ is the same

variable in both cases). There are some differences in the form of ψ and ψb and

also hres and hu but these are slight. We see that the unbalanced height variable in

both cases has the disturbance correctly located over the central orography. The

balanced variables are related to the PV, with minimum located at the point of

the PV maximum, though the vorticity-based balanced variable ψ has its

minimum slightly to the right of the PV minimum. We notice that the balanced

variables have horizontal scales larger than the unbalanced variables.

The results of the experiment with Bu = 0.2 are shown in figures 5.6, for the

vorticity-based variables, and 5.7, for the PV-based variables. The original model

fields are shown in figure 5.5 where in descending order v, φ, u are plotted with the

q and the departure from linear balance (DLB) as before. Again we see that the

domain is approximately in balance (DLB ≈ 0) everywhere apart from the area

over the central orography. This time, however, the two sets of control variables

appear very different (except χ which is the same variable in both cases). We see

that the balanced PV-based variable ψb is very similar to the original φ field and

the reciprocal of the PV field, which agrees with the theoretical result that the PV

is dominated by height in this regime. The unbalanced component of φ is not

present in ψb. The assumed ’balanced’ vorticity-based variable ψ has a spurious

signal over the central orography, which does not correspond to the location of the

PV and, in fact, is in the unbalanced region. The unbalanced PV-based variable,

hu, is in agreement with the DLB; it has a signal over the central orography and is

approximately zero elsewhere. The vorticity-based variable hres has a signal across

the whole domain, which does not agree with the imbalance present in the original

model fields.

Finally we note the mean values of the control variables. For the vorticity-based
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Figure 5.5: Model fields, Bu = 0.2: From top to bottom the first plot is v, then φ,

u, q and DLB.

variables we saw in section 5.1.1 that the mean of φ, < φ >, is retained totally in

the mean of hres, and ψ has a zero mean. In section 5.2.1 we see that the

PV-based variables have < φ > split between ψb and hu. The unbalanced height

retains only the fraction of the mean of φ that is required such that the mean of

q̄hu is zero. The majority of < φ > is retained within ψb and multiplied by f−1,

thus it is 100 times larger.

The results of both experiments are in agreement with the theory presented

in [67]. In this section the transforms were applied to full model fields, which

enabled us to perform an initial comparison of the control variables. However, in

the incremental 4D VAR the transforms will only be applied tp increments. In the

next chapter we attempt to test the transforms quantitatively by looking at the

correlation of balanced and unbalanced variables.
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5.5 Summary

In this chapter we derived the vorticity and PV-based transforms for the 1D

SWEs. We then discussed their numerical implementation. Some conditions are

found that need to be handled carefully in the implementation, the most important

of which is solving the equation for ψu in the PV-based transform, equation (5.56).

The solution requires that hu is such that the mean of q̄hu is zero. We propose a

solution to this problem but we also note that a convenient approximation to the

PV-based transform would involve approximating the linearised PV by

q̄ ≈ f

< h̄ >
. (5.61)

We can then constrain the mean of hu to be zero. In the next chapter we consider

the effect of this type of approximation.

After describing the numerical tests that were carried out to verify the transforms,

we make a qualitative comparison of the control variables in different Burger

regimes. The results of this experiment are in agreement with the theory described

in previous chapters: We find that the vorticity-based and PV-based control

variables are similar in a high Burger regime, but are different in a low Burger

regime, and the PV-based variables appear to capture the balance correctly in

both regimes. The vorticity-based transform on the other hand does not correctly

represent the balanced flow.

In the next chapter we try to quantify the difference in the transforms by looking

at the correlation of the variables in different Burger regimes.
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Chapter 6

Statistical Experiments

In the previous chapter we demonstrated the qualitative behaviour of the vorticity

and PV-based variables as we change Burger regime. This is in agreement with the

theory. In this chapter we present new results that quantify the success of each

transform in removing cross-correlations. Specifically we address the main aim of

this research: How accurate is the fundamental assumption that the control

variables are uncorrelated? And further what affect does approximating the

PV-based transform have on the correlations between the balanced and

unbalanced PV-based variables?

To do this we examine the correlation of the control variables in both high and low

Burger regimes. The method we choose to test the correlation of the control

variables is that used in [51], which we will call the ’quick covs method’ (QCM)

and was introduced in section 3.4.1. Whilst this is a relatively simple method it is

found to be effective for initial determination of forecast error statistics if used

carefully.

Our new results show that the whilst the PV-based variables remain uncorrelated

in all regimes tested, the vorticity-based variables often show significant

correlation. We are therefore able to conclude that the vorticity-based variables

are not a valid choice of control variable at low Burger number.

The QCM is also used to generate auto-correlations for each control variable. The

auto-correlations provide, amongst other things, a spatial length scale for each
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control variable. This length scale tells us how far background information should

be spread for each variable. We can then interpret this length scale as further

evidence that the PV-based variables are valid across regimes. Finally, the

auto-correlations are then modelled and implemented into the block diagonal

components of the cost function.

We start by deriving the background error statistics implied by each transform.

This highlights a key difference between the vorticity and the PV-based transforms;

that the PV-based transform introduces state-dependence into the implied

background statistics. We also note the importance of the auto-correlations.

6.1 Implied Background Statistics

Having derived the vorticity and PV-based transforms for the simplified SWEs we

are now able to find the background error statistics implied by each control

variable transform. We do this by applying only the parameter transform (defined

in section 3.3.2) and then assume that the control variables are now uncorrelated

with each other. So equation (3.8) becomes

UTB−1U = Λ−1, (6.1)

where Λ is a block diagonal matrix of auto-correlations. Rearranging the above

equation gives

B = UΛUT . (6.2)

We can write the background term of the cost function, defined by equation (3.2),

for the simplified SWEs as

2J̃
(k)
b [x′

0
(k)

] = (x′
0
(k) − x′b)TB−1(x′

0
(k) − x′b)

= (δu, δv, δh)(UΛUT )−1




δu

δv

δh



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= (δu, δv, δh)




A(u,u) C(u,v) C(u,h)

C(v,u) A(v,v) C(v,h)

C(h,u) C(h,v) A(h,h)




−1 


δu

δv

δh




(6.3)

where δu = u′
0
(k) − u′b etc., the block matrices A specify the auto-covariances and

the block matrices C specify the implied covariances.

In the following analysis we find the background error covariance statistics that are

implied by each control variable transform. For ease of notation we do not consider

the mean values of the increments u′ and v′ although they are accounted for in the

calculations.

6.1.1 Implied Background Error Covariance Statistics

For the vorticity-based control variables UV is defined by equations (5.11) to

(5.13). The transform can be written in matrix notation as



u′

v′

h′




=




∂
∂x

0 0

0 ∂
∂x

0

0 f
g

1







χ′

ψ′

h′
res




.

Therefore the background error covariance matrix for model variables u′, v′ and h′

implied by the transform is

BV = UV ΛV UT
V =




(
∂
∂x

)
Λχ

(
∂
∂x

)T
0 0

0
(

∂
∂x

)
Λψ

(
∂
∂x

)T (
∂
∂x

)
Λψ

f
g

0
((

∂
∂x

)
Λψ

f
g

)T (
f
g

)2
Λψ + Λhr




,

where Λχ,Λψ and Λhr
are the auto-covariance matrices for χ′, ψ′ and h′

res

respectively.

For PV-based control variables UPV is given by equations (5.40) to (5.42). Writing

the transform in matrix notation implies



u′

v′

h′




=




∂
∂x

0 0

0 ∂
∂x

Q

0 f
g

1







χ′

ψ′
b

h′
u




.
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So the PV-based control variables imply a background error covariance matrix

BPV =




(
∂
∂x

)
Λχ

(
∂
∂x

)T
0 0

0
(

∂
∂x

)
Λψb

(
∂
∂x

)T
+ QΛhu

QT
(

∂
∂x

)
Λψb

f
g

+ QΛhu

0
((

∂
∂x

)
Λψb

f
g

+ QΛhu

)T (
f
g

)2
Λψb

+ Λhu




,

where the operator Q is given by

Q =

(
∂

∂x

(
∇−2q̄ ·

))

with ∇2 ≡ ∂2

∂x2 , and Λχ,Λψb
and Λhu

are the auto-covariance matrices for χ′, ψ′
b

and h′
u respectively.

The first thing we notice in BV and BPV is that there are no implied covariances

between u′ and other model variables. This de-coupling of u is a result of assuming

that there is no variation in the y direction in the 1D SWEs model and hence the

divergence depends solely on u. Implied covariance with u could be introduced by

splitting the velocity in the same way as is done with v. We would then need a

relationship defining a balanced component of u. This is not considered at present.

A comparison of BV and BPV shows that the differences between the implied

background error statistics are the covariance C(v,h), C(h,v) and A(v,v). The

statistical model is more complicated for the PV-based variables and whilst BV is

static, the PV-based implied background error statistics include the reference state

PV, q̄. Thus the PV-based transforms have introduced state-dependence into the

implied background error statistics by the inclusion of q̄. The state-dependence

introduces a mechanism to change the implied background statistics each outer

iteration of the incremental 4D VAR algorithm through the linearisation state.

This is something that is not possible if we use the vorticity-based variables. We

note that some state dependence is also included in the new ECMWF

transform [20]. This is achieved through the use of a non-linear balance operator,

which is linearised for use in their incremental 4D VAR system.
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6.1.2 Summary

By visualising the implied background error covariance matrices BV and BPV in

this way we are able to see the different implications that the vorticity and

PV-based transforms have on the data assimilation. Most importantly, that

through the reference state PV we are able to introduce state dependence in the

implied background error statistics of the PV-based control variables.

We also highlighted the importance of the auto-covariance matrix Λ. In the final

section of this chapter we generate these auto-covariances for each of our control

variables. We observe that these auto-covariance structures also change with

regime.

At the end of section 5.2 an approximation

q̄ = f/ < h̄ >

to the PV-based transform was proposed. This approximation would greatly

simplify the implementation of the U -transform. In the following section we try to

identify the consequences of this approximation. We now introduce the statistical

method we choose to investigate the correlation of the balanced and unbalanced

vorticity and PV-based control variables.

6.2 The Correlation of Control Variables

It is assumed in the data assimilation that the control variables are uncorrelated.

We now investigate the validity of this assumption. There are several questions we

aim to address:

1. Are the balanced and unbalanced components of the flow uncorrelated?

This is true in the linear system but how true is this assumption for the

non-linear model?

2. Is the PV-based transform more successful at removing

cross-correlations than the vorticity-based transform?
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We have demonstrated some theoretical arguments in the previous chapters

but this hypothesis is yet to be verified experimentally.

3. What are the consequences of using an approximate q̄ = f/ < h̄ > in the

PV-based transform?

We can attempt to assess this by comparing the correlation between the

approximated PV-based variables and the correlation between the variables

when the full linearised PV is used.

We look at correlations of the vorticity and PV-based control variables where we

fix the Burger number to be either high or low whilst varying the Rossby number.

Before these questions can be addressed we describe the ’quick covs method’

(QCM) used to generate the correlations.

6.2.1 Statistical Method

The background field in operational centres is a previous short forecast. Therefore

a natural assumption is that background errors will be similar to forecast errors.

There are many ways to obtain forecast error statistical data as discussed in

section 3.4.1. A popular example is the NMC method, as described in [47]. This

method requires an operational data assimilation system. Therefore for initial

analysis we choose the much simpler approach proposed in [51] and introduced in

3.4.1. This method is sometimes referred to as the ’quick covs method’ (QCM).

Essentially, the QCM assumes that background error statistics are similar to

forecast error statistics. This assumption is also made by the AEM and NMC

methods discussed in section 3.4.1. However, whereas the NMC method assumes

forecast error statistics are similar to the differences between 24 and 48-hour

forecasts valid at the same time, the QCM assumes that forecast error statistics

are similar to the statistics of differences between forecasts at different times.

Hence, errors are assumed to have statistics similar to those of the time derivatives

of each variable. Therefore, in the absence of an operational data assimilation
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system, forecast differences can be used as an initial source for forecast error data,

and so a proxy for background error statistics [51].

Here we generate a single long forecast using our model. We then take forecast

differences at regular intervals of time apart. This is done until we have a data set

of multiple time differences. Using these differences we may look at the

correlations of the difference fields of each variable. We can examine the

correlation between control variables by transforming the forecast time-differences

using the relevant T transform.

We start by considering a time difference ψ′k, say, of field ψ at time tk with

ψ′k = ψtk+τ − ψtk =
(
ψtk+τ

1 − ψtk
1 , . . . , ψtk+τ

N − ψtk
N

)T
=

(
ψ′k

1, . . . , ψ
′k
N

)T
,

where tk is some time in a model forecast, τ is one time-differencing interval later,

N is the number of points in the domain and the subscript indicates the grid

point. The interval τ remains to be chosen. We now consider two time difference

values ψ′k
i , for psi, and h′k

i , for h, at x = i∆x and time t = tk. We treat these

values as one realisation of two random variables Ψ and h. At time tk we therefore

have N realisations Ψ and h with

Ψk =
{
ψ′k

1, . . . , ψ
′k
N

}

and

hk =
{
h′k

1, . . . , h
′k
N

}
.

If we now assume that we have M sets of time differences, i.e. k = 1, . . . ,M, of ψ

and h for times t1, . . . , tM we then have

Ψ =
{
Ψ1, . . . , ΨM

}
,

and

h =
{
h1, . . . ,hM

}
.

This gives a total of N × M realisations of Ψ and h. We can now calculate their

covariance. Writing Ψ and h in full gives

Ψ =
{
ψ′1

1, . . . , ψ
′1
N , ψ′2

1, . . . , ψ
′2
N , . . . . . . , ψ′M

1 , . . . , ψ′M
N

}
, (6.4)
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and

h =
{
h′1

1, . . . , h
′1
N , h′2

1, . . . , h
′2
N , . . . . . . , h′M

1 , . . . , h′M
N

}
, (6.5)

where the subscript indicates the grid point and the superscript the time-difference

field. We now drop the primes for convenience. Their covariance is then given by

COV (Ψ,h) =< (Ψ− < Ψ >)(h− < h >) >=< Ψh > − < Ψ >< h >, (6.6)

where

< Ψh >=
(ψ1

1h
1
1 + . . . + ψM

N hM
N )

N × M
, (6.7)

and < · > represents the mean value. Therefore < h > is given by

< h >=
h1

1 + . . . + hM
N

N × M
, (6.8)

and

< Ψ >=
ψ1

1 + . . . + ψM
N

N × M
. (6.9)

We then calculate the correlation coefficient

ρ =
COV (Ψ,h)

σψσh

, (6.10)

where the σψ and σh represent the standard deviations of Ψ and h, and

σh =
√

(< (h− < h >)2 >) =
√

(< h2 > − < h >2), (6.11)

with

< h2 >=
h2

1 + . . . + h2
N×M

N × M
. (6.12)

The standard deviation of Ψ, σψ, is calculated in the same way.

The correlation coefficient varies such that

−1 ≤ ρ ≤ 1,

with ρ close to 1 or −1 indicating strong positive or negative correlation. A value

of ρ close to 0 indicates variables are uncorrelated.
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Experiment Details

Correlation coefficients are calculated in the same way for (ψ′, h′
res), (ψ′

b, h
′
u),

(ψ′
b, h

′
u)approx and (ψ, h + H̃), where (ψ′

b, h
′
u)approx are the PV-based variables when

the approximation q̄ = f/ < h̄ > is made and ψ and h + H̃ are full model fields.

In the following correlation experiments the model is set up as follows. The

orography is given by

H̃(x) = Hc

(
1 − x2

a2

)
, (6.13)

with a and Hc specified in Table 6.1 below, along with other model parameters.

The spatial and temporal grid spacing is chosen so that the sufficient condition for

convergence of the displacement iteration, equation (4.22), in the numerical

scheme should always be satisfied. For the grid spacing given in table 6.1 condition

(4.22) becomes

|ux|∆t = |ui+1 − ui|
∆t

∆x
= |ui+1 − ui|

2.5

12.5
< 1, (6.14)

or

|ui+1 − ui| < 5. (6.15)

Thus, for the initial conditions and flow regimes in the following experiments, using

this choice of grid spacing should mean that the sufficient condition is always met.

We must now choose the time-differencing interval τ. The QCM can be very

sensitive to the length of the time-difference interval used. In the NMC method

the interval is one day to avoid contamination by the diurnal signal, which will

otherwise dominate the error statistics. In our model the dominant signal will be

different and we need to make sure that we have identified the cause and choose the

time interval appropriately. This is analysed in the following section, here we set

Uc = 0.5ms−1 in the high Burger regime and Uc = 2.5ms−1 the low Burger regime.

Identifying the Dominant Signal: High Burger Regime.

The QCM is very sensitive to a dominant signal in the forecast differences. We

therefore need to identify if there is a dominant signal in our data and remove it if
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Parameter Value

Number of Grid Points N 500

Grid Spacing ∆x 12.5m

Time Step ∆t 2.5m

Coriolis Parameter f 0.01s−1

Width of Orography a 40∆x

Maximum Height of Orography (Low Burger) Hc 0.019m

Maximum Height of Orography (High Burger) Hc 7.6m

Height of Surface at Rest (Low Burger) D 0.1m

Height of Surface at Rest (High Burger) D 40.0m

Table 6.1: Experiment Set-Up.

it is not of relevance. In [51] the interval is 6 hours since the background state is a

6 hour forecast. However, the time-differences are then adjusted to account for

diurnal changes, which would otherwise corrupt the data.

To identify the dominant oscillation in the high Burger case we generate a forecast

and plot values of each variable at fixed points in space against time. Plots for u

are shown in figure 6.1 for values of ui at point xi with i = 125, 250, 375 and 500,

where xi = i∆x. The plots for v and φ are for the same points in space and shown

in figures 6.2 and 6.3. For u we see a fast oscillation with a period of approximately

300s. We see a corresponding fast oscillation in φ with the same period. This fast

oscillation in φ is combined with a slow motion that is coupled with v.

This would suggest that there is a gravity wave associated with the fast motion

and the slow motion is the balanced flow associated with the advection of the PV.

From figures 6.2 and 6.3 we are able to locate the PV maximum by the minimum

of φ, and the mid-point between the minimum and maximum of v. This is

advected across the entire domain in a approximately 12, 500s. Therefore its speed

is approximately N∆x/12500 = 0.5ms−1; the forcing flow in this experiment is

Uc = 0.5ms−1.

The gravity wave speed, cg, defined by equations (2.19) in this experiment is
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Figure 6.1: Values of u at fixed points in space plotted against time for Bu = 4.0.

Top plot is value of u at point x125 = 125∆x, then following plots, in descending

order, are values of u at points x250, x375 and x500.
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Figure 6.2: Values of v at fixed points in space plotted against time for Bu = 4.0..

Top plot is value of v at point x125 = 125∆x, then following plots, in descending

order, are values of v at points x250, x375 and x500.
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Figure 6.3: Values of φ at fixed points in space plotted against time for Bu = 4.0.

Top plot is value of φ at point x125 = 125∆x, then following plots, in descending

order, are values of φ at points x250, x375 and x500.

cg =
√

gD ≈ 20ms−1, where D is the mean depth. Gravity waves in the positive x

direction therefore cover the length of the domain in time N∆x
(
√

gD+Uc)
≈ 300s

(accounting for the forcing flow Uc), the approximate frequency of the fast signal

observed in u, v and φ. This gravity wave periodicity is the likely cause of this

signal. The oscillation is a product of the periodicity of this particular problem.

We therefore choose to filter the signal from our data as we are interested in the

correlation of the control variables. We are able to filter this signal by choosing a

time interval τ of approximately 300s.

We can provide additional evidence that this choice of time-differencing interval is

appropriate by calculating correlations of each variable in time. These results are

given in appendix A.1. We expect to see the correlations decaying with time but

this may not be the case if there is an oscillation that is dominating the data.
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Figure 6.4: Values of u at fixed points in space plotted against time for Bu = 0.2.

Top plot is value of u at point x125 = 125∆x, then following plots, in descending

order, are values of u at points x250, x375 and x500.

Identifying the Dominant Signal: Low Burger Regime.

In the low Burger regime the gravity wave speed is much slower. The gravity wave

speed cg =
√

Dg ≈ √
0.1g ≈ 1ms−1, where D is the mean depth. Gravity waves in

the positive x direction therefore cover the length of the domain in time

N∆x
(
√

gD+Uc)
s ≈ 1790s, taking Uc = 2.5ms−1. This time is much longer than in the

high Burger regime and therefore our correlation results should not be affected by

this signal. To verify this we again plot point values of the model variables as was

done in the high Burger case, see figures 6.4, 6.5 and 6.6 for plots of u, v and φ

respectively. In the plots for v and φ we again see a slow motion associated with

the advection of the PV with Uc = 2.5ms−1.

There is not an obvious oscillation in any of the plots as was the case with the high

Burger experiments. There is no periodic signal from the gravity wave since the

speed is much slower. Therefore we are free to choose the time differencing interval

in the low Burger regime. We choose the interval to be the same as in the high

Burger experiments. Using this interval we can check if it is appropriate by looking
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Figure 6.5: Values of v at fixed points in space plotted against time for Bu = 0.2.

Top plot is value of v at point x125 = 125∆x, then following plots, in descending

order, are values of v at points x250, x375 and x500.
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Figure 6.6: Values of φ at fixed points in space plotted against time for Bu = 0.2.

Top plot is value of φ at point x125 = 125∆x, then following plots, in descending

order, are values of φ at points x250, x375 and x500.
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again at the time-correlations, see appendix A.2. We see that the time-correlations

decay as we would expect and do not appear corrupted by the gravity wave signal.

6.2.2 Correlation Results

We now present the main result of our research. The experiments are run using

the method introduced at the start of 6.2.1. We use a time differencing interval

appropriate to both the high and low Burger regimes. We first look at correlations

in a high Burger regime where the Rossby number is varied between 0.02 and 1.0.

Correlation Experiment Results: High Burger Regime

Plotted in figure 6.7 are the correlation coefficients, calculated from equation

(6.10), between full model fields (ψ, h + H̃), model field time-differences (ψ′, h′),

vorticity-based variables (ψ′, h′
res) and PV-based variables (ψ′

b, h
′
u) where the full

linearised PV is used and the approximation q = f/ < h̄ > is used.

In this experiment the flow Uc has been varied between 0.5ms−1 and 5.0ms−1. We

therefore choose a time-differencing interval of N∆x
(
√

gH+2.5)
s = 277.5s taking an

approximate average mean flow Uc = 2.5ms−1. By varying the mean flow Uc we

change the Rossby number, R0 = U/fL, and the Froude number, Fr =
√

gDf,

where U ≈ Uc, and L and D are characteristic length and fluid depth scales. The

scale D and other parameters are given in table 6.1. We take the characteristic

length scale L = a, the width of the orography. Therefore, with

0.1ms−1 < U < 5.0ms−1

we have

0.02 < R0 < 1.0

and

0.005 < Fr < 0.25.

In figure 6.7 we observe the following:
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Figure 6.7: Time-differencing interval 277.5s: Plot of correlation coefficient against

Rossby number for Bu = 4.0. The solid line is the correlation for full model field ψ

and h+H̃, the dashed line for model field time differences ψ′ and h′. Vorticity-based

control variable correlations ψ′ with h′
res are indicated with the crosses and PV-based

variables ψ′
b with h′

u using the full q̄ are circles and the approximate q̄ = f/ < h̄ >,

squares.
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1. A strong correlation between model variables in the full fields (ψ, h + H̃) and

the difference fields (ψ′, h′), which decreases as the Rossby number increases.

This indicates a high degree of balance. The correlation increases as the

Rossby number decreases and the flow becomes increasingly balanced. The

balance relationship is less relevant as R0 increases to 1.0, as we would expect

from the analysis in section 2.2.1. This is because the balance approximation

(2.89) is valid in the asymptotic limit of small Rossby number.

2. The correlation between the vorticity-based variables (ψ′, h′
res) and between

the PV-based variables (ψ′
b, h

′
u) is much less than the model variables.

Both control variable transforms have been successful in removing the strong

correlation between model variables (ψ′, h′).

3. Correlation between vorticity-based variables (ψ′, h′
res) and between the

PV-based variables (ψ′
b, h

′
u) is very similar.

This is what we expect to see in a high Burger regime. The balanced variable

is approximated well by the vorticity and therefore we should see similar

correlations between the vorticity and PV-based variables.

4. The correlation between PV-based variables increases slightly as the Rossby

number approaches 1.

The correlation between vorticity-based variables stays relatively constant

with changing R0. The increase in the correlation between PV-variables

could be attributed to the fact that as Ro increases the flow becomes

increasingly non-linear. This type of behaviour is discussed in section 2.2.1

where, for Rossby numbers close to 1, the non-linear advective terms are no

longer negligible. Thus the linear approximations used in the PV-based

transform are becoming less accurate and this is reflected in the correlation

of the PV-based variables. However, this increase is slight and the PV-based

variables are still significantly less correlated than the model variables.
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5. The correlation between PV-based variables when we use an approximate

q̄ = f/ < h > is almost exactly the same as when the full PV is used.

The approximation therefore seems to be have little effect on the correlation

between the PV-based variables.

Point 1, to some extent, gives validity to our choice of statistical method. The

behaviour of the correlation between model full fields and increment fields is

exactly as we would expect. As the Rossby number decreases we see an increase in

correlation between these variables.

In previous sections we gave justification for the choice of the time-differencing

interval τ = 277.5s. To demonstrate that our choice of τ is appropriate to the high

Burger regime, and that the QCM is sensitive to any dominate signal in the data,

we can compare the results using different time intervals. We compare the time

differencing interval τ = 277.5s, figure 6.7, to whose when we use an interval that

is not appropriate.

Figure 6.8 shows the correlation coefficients using τ = 100s, which does not filter

the gravity wave signal. The results in figure 6.8 do not correspond with the

balances we understand to be present. There is very little balanced correlation in

the time-differenced model fields ψ′ and h′. However, the full model fields ψ and

h + H̃ are highly correlated. As the Rossby number is decreased the balance

approximation becomes more accurate and therefore ψ and h + H̃ become

increasingly correlated. This behaviour is observed. The same should also be

apparent in the time-difference fields. However, this is not observed in the

correlations. This is because the gravity wave signal is dominating the correlations.

An implication of the lack of correlation between ψ′ and h′ is that an unduly

strong negative correlation in the vorticity-based variables, ψ′ and h′
res, is

produced. This is because h′
res, from equation (5.10), is given by

h′
res = h′ − f

g
ψ′

and since no correlation between ψ′ and h′ is found in the data this results in a

negative correlation of ψ′ and h′
res when the data is transformed using the
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Figure 6.8: Time-differencing interval 100s: Plot of correlation coefficient against

Rossby number for Bu = 4.0. The solid line is the correlation for full model field

ψ and h + H̃, the dashed line for model field time differences ψ′ and h′. Vorticity-

based control variable correlations ψ′ with h′
res are indicated with the crosses and

PV-based variables ψ′
b with h′

u using the full q̄.
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vorticity-based T transform. If we look at the results when the correct time filter

is used, figure 6.7, we see correlations that are in line with our expectations.

Correlations between full model fields and between time-differenced model

increments agree almost exactly. We also observe similar correlations for the

vorticity and PV-based variables. We can therefore be confident that the periodic

motion of gravity waves around the domain does not corrupt these results.

Correlation Experiment Results: Low Burger Regime

In a low Burger regime we see the largest difference between the correlations of the

vorticity and PV-based control variables. The correlation coefficients of (ψ, h + H̃),

(ψ′, h′), (ψ′, h′
res), (ψ′

b, h
′
u) and (ψ′

b, h
′
u)approx are shown in figure 6.9 for the low

Burger number experiment. We observe the following:

1. Strong balanced correlation between model variables for small Rossby

number.

As the Rossby number decreases the correlations between the full fields

increases as in the high Burger experiment. For Rossby number close to 1.0

we are not in a low Rossby number regime and we see that the flow is

unbalanced. This is observed in the small correlation of ψ and h + H̃. The

correlation in the time-difference fields (ψ′, h′) remains relatively unaffected

by changes in the Rossby number. This is attributed to a stationary wave in

the forecast fields that is tied to the orography. This can be seen in figure

6.10. The stationary wave is not seen in the time-difference fields but does

have a signal in the full field correlations, and further the behaviour of this

standing wave is affected by the changes in Rossby number. This behaviour

is not seen in the high Burger experiment as the flow is rotation dominated.

Here the Froude number is larger than the Rossby number. The jump in the

correlation of ψ and h + H̃ corresponds to Rossby number becoming small

and the Froude number decreasing below 1.

2. The PV-based variables are uncorrelated.
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Figure 6.9: Plot of correlation coefficient against Rossby number for Bu = 0.2, time-

differencing interval is 277.5s. The solid line is the correlation for full model field ψ

and h+H̃, the dashed line for model field time differences ψ′ and h′. Vorticity-based

control variable correlations ψ′ with h′
res are indicated with the crosses and PV-based

variables ψ′
b with h′

u using the full q̄ are circles and the approximate q̄ = f/ < h̄ >,

squares.

The transforms are successful in removing the correlation of the model

variables and are therefore a valid choice of control variable in these regimes.

3. The vorticity-based variables show a strong negative correlation.

The vorticity-based variables are therefore not a valid choice of control

variable in a low Burger regime.

4. The correlation between the approximated PV-based variables are almost

identical to when the full PV is used.

The same behaviour is observed in the high Burger experiment.
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Figure 6.10: Plots show stationary wave in v for times one inertial period apart.

The wave is tied to the central orography. This is not seen by the time-difference

statistics but is seen in the statistics of the full model fields ψ and h + H̃

The low Burger regime was found not to have a dominant oscillation. We therefore

concluded that we are free to choose the time-differencing interval. To demonstrate

that this is true and that these results are not sensitive to the interval we have

plotted results using an interval of 100s. These results are shown in figure 6.11. A

comparison of figure 6.9 and figure 6.11 shows qualitatively very little difference in

the correlations and our conclusions are the same.

6.2.3 Summary

These results demonstrate that the PV-based variables provide a much better

choice of control variables than the current vorticity-based variables in a low

Burger regime.

We have been able to validate our hypothesis that the PV-based variables are valid

in both high and low Burger regimes, whilst the vorticity-based transforms fail in

the low regime.

We also considered the practical implementation of the PV-based transform. We
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Figure 6.11: Plot of correlation coefficient against Rossby number for Bu = 0.2,

time-differencing interval is 100s. The solid line is the correlation for full model field

ψ and h + H̃, the dashed line for model field time differences ψ′ and h′. Vorticity-

based control variable correlations ψ′ with h′
res are indicated with the crosses and

PV-based variables ψ′
b with h′

u using the full q̄ are circles.
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considered a possible approximation

q̄ = f/ < h̄ >

in the PV-based transform. This approximation simplifies the transform. We

demonstrated that this approximation makes little difference to the correlation

between the variables in both the high and the low Burger regimes.

Before any correlation experiments were run we identified the dominant signal in

our model. In the high Burger case this dominant signal was a product of the

gravity wave interacting with the periodic boundary conditions. By choosing an

appropriate time interval we are able to filter it producing good results. The effect

of choosing the wrong time interval was demonstrated and produced clearly

incorrect results. Thus demonstrating that this signal is undesirable in this case.

We can therefore have confidence in our results.

In the low Burger experiments we were not able to identify a dominant signal.

Therefore the choice of time-difference interval should not affect the correlation

results. This we demonstrated by comparing the correlations calculated when very

different time intervals were used to generate the data.

The experiments have not considered any spatial correlations of control variables,

though the results are sufficient for our conclusions. The correlations we have

generated actually correspond to the diagonal elements of the off-diagonal block

matrices in the matrix B as shown in equation (6.3) (i.e. the diagonal elements of

the block matrices C). We have also not considered the correlation between the

unbalanced control variables, for example (χ, hu). We would expect there to be

some correlation here since the divergence and the geostrophic departure are linear

combinations of the normal modes, see section 2.3.3. Investigation of the degree of

this correlation is left as further work; the key result is demonstrating that the

balanced and unbalanced variables are actually uncorrelated.
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6.3 Auto-Correlations

In section 6.1.1 the importance of the auto-correlations was demonstrated. We

introduced the QCM and validated the time-differencing interval in both a high

and low Burger regime. We then presented results that clearly show the benefits of

the PV-based transform. To verify our findings in actual assimilation experiments

we must first generate auto-correlations for our control variables. The

auto-correlations provide, among other things, a spatial length scale for each

control variable. This length scale tells us how far background information should

be spread. The auto-correlations are then modelled and implemented into the

block diagonal components of the cost function.

The auto-correlations provide information regarding the inherent length scale of

each variable. This length scale can be compared to the Rossby radius of

deformation, discussed in section 2.3.2, and used to assess the degree to which each

variable is representing balanced and unbalanced dynamics of the problem.

To generate the auto-correlations we use the QCM and time intervals as in the

correlation experiments. We now describe the calculation of the auto-correlations

for each control variable.

6.3.1 Generating Auto-Correlations

We assume that we have a set of forecast time-differences u′, v′, φ′, ψ′, ψ′
b, χ′, h′

res,

and h′
u generated using the QCM. We start by considering a time difference x′ of a

field x with

x′k = xtk+τ − xtk =
(
x1

tk+τ − xtk
1 , . . . , xtk+τ

N − xtk
N

)T
=

(
x′k

1, . . . , x
′k
N

)T
,

where tk is some time in a model run, τ is the time-differencing interval, and N is

the number of points in the domain. The interval τ is chosen in line with the

previous results in this chapter to be τ = N∆x/(
√

gD + Uc). We now consider two

elements x′k
i and x′k

i+j of a time difference x′k at time tk. We treat these as
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realizations of random variables Xk and Xk
+j. So we have N realisations

Xk =
{
x′k

1, . . . , x
′k
N

}
,

and N realisations

XK
+j =

{
x′k

j+1, . . . , x
′k
N , x′k

1, . . . , x
′k
j

}
,

where the subscript indicates the spatial index and the domain is periodic with

xN+1 = x1. If we now assume that we have M sets of time differences for x we then

have

X =
{
X1, . . . , XM

}
,

and

X+j =
{
X1

+j, . . . , X
M
+j

}
,

where the superscript indicates the temporal index. This gives N × M realisations

of X and X+j and we can now calculate their correlations.

The covariance is given by

C+j = COV (X,X+j) =< (X− < X >)(X+j− < X+j >) >=< XX+j > − < X >2,

using the fact that the expectation

< X >=
x′1

1 + . . . + x′1
N + . . . + x′M

1 + . . . + x′M
N

N × M
=< X+j >,

and where

< XX+j >=
x′1

1x
′1
j+1 + . . . + x′1

Nx′1
j + . . . + x′M

1 x′M
j+1 + . . . + x′M

N x′M
j

N × M
.

Next the correlation coefficients are calculated

ρ+j =
C+j

σ2
X

,

where the σX represents the standard deviations of X, and we note

σX =
√

< X2 > − < X >2 =
√

< X2
+j > − < X+j >2 = σX+j

and ρ+0 = 1.

Finally we let j = −N
2
, . . . , N

2
− 1 and plot ρ =

(
ρ−N/2, . . . , ρN/2−1

)T
against j.

This generates correlation structures which are taken to be homogeneous when

modelled in the data assimilation problem described in 3.4.
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Experiment Details

The time differencing starts after 200 time steps (500s), of the forecast and each

difference is taken over period τ. We generate a set of 20 time differences. The

experiment is performed in a high and a low Burger regime and is set up as in

Table 6.1. The mean flow Uc is either Uc = 1.25ms−1 in the high Burger

experiment or Uc = 0.75ms−1 in the low Burger experiment.

For the high Burger experiments we choose a regime with Ro = 0.25. In this

regime we demonstrated that there are strong correlations between the model

variable time-differences < ψ′, h′ > and also full fields < ψ, h + H̃ > indicating a

high degree of balance in the flow, though not totally balanced. Also the vorticity

and PV-based variables have very similar correlations between balanced and

unbalanced variables, see figure 6.7.

In the low Burger experiments we choose a regime with Ro = 0.15 and Fr = 0.75.

This ensures that the gravity wave speed is always greater than the advective

velocity (since Fr < 1.0). In this regime both the correlation between the

time-differences < ψ′, h′ > and the correlation between the full fields < ψ, h + H̃ >

are large indicating a high degree of balance in the flow, see figure 6.9.

6.3.2 Results

We now present the auto-correlations in high and low Burger regimes for model

variables and each set of control variables.

Results: High Burger Number

The auto-correlations are generated as discussed in section 6.3.1 and plots of ρ

against j for the high Burger regime are shown in figures 6.12, 6.13 and 6.14 for

model variables, vorticity-based variables and PV-based variables respectively.

In this regime we expect the correlation structures to be very similar for the

vorticity and PV-based variables since the PV is approximated well by rotation.

This is what is observed in figures 6.13 and 6.14, here the correlation structures
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Figure 6.12: Model Variables: Auto-correlations for Bu = 4.0, τ = 300s, Uc =

1.25ms−1. Plot of the correlation coefficient ρ+j against j, where ρ+j is the correlation

coefficient of grid points a distance j∆x apart. The Rossby radius and the zero line

are marked with a red dashed line.
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Figure 6.13: Vorticity-Based Variables: Auto-correlations for Bu = 4.0, T = 300s,

Uc = 1.25ms−1. Plot of the correlation coefficient ρ+j against j, where ρ+j is the

correlation coefficient of grid points a distance j∆x apart. The Rossby radius and

the zero line are marked with a red dashed line.
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Figure 6.14: PV-Based Variables: Auto-correlations for Bu = 4.0, T = 300s, Uc =

1.25ms−1. Plot of the correlation coefficient ρ+j against j, where ρ+j is the correlation

coefficient of grid points a distance j∆x apart. The Rossby radius and the zero line

are marked with a red dashed line.

are almost identical for both sets of variables.

Balanced variable correlations should be on a scale L ≈ Lr where Lr is the Rossby

deformation radius defined by equation (2.20). For length scales of approximately

Lr geostrophic effects become important. The Rossby radius is also the distance a

gravity wave travels in one inertial period. In this experiment

Lr =

√
gH

f
≈ 2000m,

or 160 grid points. Unbalanced variables should have a correlation length scale

L ≤ Lr. This behaviour is explained in more detail in section 2.3.2.

We see that the correlation scale is largest for the balanced variables ψ′ and ψ′
b and

of order approximately Lr. The correlation scale for the unbalanced variables h′
res

and h′
u are less than the Rossby deformation radius. These results indicate that

both the vorticity-based and PV variables are capturing the balance and

unbalanced flows well in this regime.

The linear balance equation (2.89) is a relationship that holds approximately
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between φ′ and ψ′. A strong correlation between the height and velocity variables

would demonstrate the accuracy of this approximation. We can assess such a

correlation and hence the degree of balance by comparing the auto-correlations of

φ′ with those of ψ′. We observe that the auto-correlations are very similar

indicating that there is a significant amount of balance in the flow. This was

demonstrated in the correlation experiment in section 6.2.2, figure 6.7. The QCM

is again producing correlation structures that are in agreement with our

understanding of the balance in this regime.

Results: Low Burger Number

The auto-correlations are generated as discussed in section 6.3.1 and plots of ρ

against j for the low Burger regime are shown in figures 6.15, 6.16 and 6.17 for

model variables, vorticity-based variables and PV-based variables respectively.

In the low Burger regime the correlation structures for h′
res and h′

u are very

different. Here the Rossby deformation radius

Lr ≈ 100m,

or 8 grid points, so we would expect that correlations for the unbalanced height

variable to be on a scale L < Lr if it accurately represents the unbalanced motion.

This is the case for the PV-based variable h′
u but not the vorticity-based variable

h′
res. In this regime the PV is approximated by height, or mass, and the

vorticity-based variables do not account for this and hence we see correlation

structures for h′
res on too large a scale. We can therefore conclude that the

PV-based variables are accurately capturing this behaviour whilst the

vorticity-based variables are not.

We also might expect to see a correlation length of ψ′
b greater than ψ′ since

large-scale balanced correlations are captured in the balanced variable. However,

this is not observed and correlation lengths of ψ′
b and ψ′ are very similar. This is

because in this regime large-scales are scales greater than

Lr ≈ 100m < Lorography = 500m,
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Figure 6.15: Model Variables: Auto-correlations for Bu = 0.2, T = 300s, Uc =

0.75ms−1. Plot of the correlation coefficient ρ+j against j, where ρ+j is the correlation

coefficient of grid points a distance j∆x apart. The Rossby radius and the zero line

are marked with a red dashed line.
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Figure 6.16: Vorticity-Based Variables: Auto-correlations for Bu = 0.2, T = 300s,

Uc = 0.75ms−1. Plot of the correlation coefficient ρ+j against j, where ρ+j is the

correlation coefficient of grid points a distance j∆x apart. The Rossby radius and

the zero line are marked with a red dashed line.
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Figure 6.17: PV-Based Variables: Auto-correlations for Bu = 0.2, T = 300s, Uc =

0.75ms−1. Plot of the correlation coefficient ρ+j against j, where ρ+j is the correlation

coefficient of grid points a distance j∆x apart. The Rossby radius and the zero line

are marked with a red dashed line.

where the length scale Lorography is the radius of the orography. It is the length

scale Lorography that dominates the correlation length scales of the control variable

in figures 6.16 and 6.17. The radius of the orography is 40 grid points and is equal

to the correlation length scales in ψ′ and ψ′
b. Therefore any difference in the

correlation lengths of ψ′
b and ψ′ is swamped by this greater scale.

There is a strong balance signal in the low Burger regime since the auto-

correlation structure of ψ′ is very similar to that of φ′. Also the correlation scale of

h′
u is of order L < Lr, which is the correct length scale for the unbalanced variable

in this regime. We can therefore conclude that the PV-based variables are

representing the balanced and unbalanced dynamics well. This cannot be said for

the vorticity-based variables.
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6.3.3 Summary

The auto-correlations of each control variable are needed before assimilation

experiments can be run. These structures provide a spatial length scale for each

control variable which is used to spread observational information in the

assimilation. The length scales found from the auto-correlations are in agreement

with the theory.

We have demonstrated the sensitivity of the auto-correlations to the dynamical

regime, characterised by the Burger number. It is therefore necessary to use the

appropriate auto-correlation statistics in each Burger regime. Usually in

operational centres the auto-correlations are static and do not change with regime.

These results demonstrate a high degree of sensitivity to regime for all variables

and therefore this should be taken into account in the data assimilation. We also

see that the balanced and unbalanced the length scale is intimately linked to the

Rossby radius.

The results have also provided further evidence that the PV-based variables are

able to capture the balanced and unbalanced motions in both high and low Burger

regimes. The vorticity-based variables fail to do so in the low Burger regime. This

can be seen by comparing auto-correlations of h′
u and h′

res in the low Burger case.

Here the length scale of the unbalanced variable should be on a scale L < Lr, the

Rossby radius of deformation. This is not the case for h′
res.

We note that the auto-correlation structures for each variable, in each regime,

show some negative correlations as well as secondary peaks. In [12] negative

correlations are observed in non-divergent and irrotational flows. In the data

assimilation the initial objective of the auto-correlation is to primarily provide a

length to spread observational information. Our model is a relatively simple test

problem and we have a very simple central orography. This orography seems to

have a rather large affect on the correlation scales and could also contribute the

negative tails and secondary peaks in the correlations. In the initial assimilation

experiments in the following chapter we choose initially to model only the positive
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parts of these structures.

The correlation length scales can now be implemented into the background term of

the cost function (3.9). These will be modelled using the Laplace-based correlation

term as defined in section 3.4.2.

6.4 Summary and Conclusions

The experiments presented in this chapter evaluate the accuracy of the

fundamental assumption that the control variables are uncorrelated. Our new

results show that the assumption is accurate for both the vorticity and PV-based

variables in a high Burger regime. However, when we move to a low Burger regime

the assumption only holds for the PV-based variables. Thus the vorticity-based

variables are not a valid choice of control variable in this regime. The correlation

results demonstrate what is predicted by the theory of previous chapters, and the

initial results in [11], [67]. In addition we examined the affect that approximating

the PV-based transform has on the correlations between the balanced and

unbalanced variables. We are able to conclude that the approximation makes very

little difference to the correlation between these variables.

We started this chapter by presenting the background error covariance implied by

each control variable transform. This demonstrated that the PV-based transform

implies background error statistics that depend on q̄ and are therefore state

dependent. The background error statistics implied by the vorticity-based

transform are static.

We then tested the hypothesis that the PV-based transform is valid across regimes

by calculating the correlations between balanced and unbalanced control variables.

We are able to validate the theoretical results we presented previously. We

demonstrated that for the high Burger regime the vorticity and the PV-based

transforms are very similar. Both transforms produce uncorrelated variables and

so both are a good choice of control variable. In the low Burger case we found that

the vorticity-based variables are correlated and are therefore not a valid choice of
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control variable in this regime. The PV-based variables on the other hand remain

uncorrelated.

We also demonstrated that the approximation

q̄ = f/ < h̄ >

in the PV-based transform makes little difference to the correlation of the

variables. This is perhaps not too surprising since the PV-based transform is

derived based on a linearisation about a resting state, where the linearisation PV

is given by q̄ = f/ < h̄ > .

The implied background error statistics also illustrated the importance of the

auto-correlation matrices. The auto-correlations for each variable were found for

specific high and low Burger regimes selected from the results of the correlation

experiments. The auto-correlations are shown to be highly dependent on the

regime and this should be accounted for in the data assimilation. Additionally the

auto-correlations provide further evidence that the PV-based transform is valid

across regimes.

To obtain good results it was essential to remove the dominant signal in the data.

In this chapter we carefully demonstrated that the source of this signal is a gravity

wave propagating around the periodic domain. Given this, we note that an

alternative method to remove this signal would be to filter the data before taking

time-differences. For example, a low-pass filter could then be applied to remove

the high frequency gravity wave signal. A huge body of work exists in this field.

The low-pass filter and others are described in detail in [45]. Though this is not

done in these experiments, a filter could be applied in the following way:

1. Generate the forecast fields.

2. Filter the forecast fields to remove the high frequency gravity wave signal.

3. Take time differences of the filtered model fields.

4. Transform the filtered, time-differenced fields to control variables.
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5. Compute the correlations.

In the next chapter we run some initial simple assimilation experiments using each

control variable transform. We intend to perform an initial evaluation of how the

assimilation behaves using the control variable transforms.
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Chapter 7

Assimilation Experiments

In the previous chapter we presented the main results of our research. We

performed experiments to test the correlations between the control variables in

different regimes. We found that the vorticity and the PV-based variables are both

valid choices of control variables in a high Burger regime. However, it is found that

there is significant correlation between vorticity-based variables in a low Burger

regime. The PV-based variables on the other hand remain uncorrelated.

In this chapter we consider some initial simple assimilation experiments using the

vorticity and PV-based variables. The aims are as follows:

1. To analyse theoretically the expected influence of each control variable

transform on the analysis. This is done using the best linear unbiased

estimator or BLUE.

2. To highlight potential numerical problems that may arise when using the

control variable transforms.

3. To demonstrate that the transforms give similar increments in high Burger

regime and different increments in a low Burger regime.

We now have a complete data assimilation system, before we run any assimilation

experiments we first validate that it is working correctly. We do this using some

standard tests.
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In our simple experiments we consider a single observation in one variable at the

initial time t = 0. In this simple setting the analysis of results is relatively simple

and we find that much can be learnt about the effect of each of the control variable

transforms on the analysis produced by the assimilation.

To aid in the analysis of the results the best linear unbiased estimate (BLUE) is

adapted to include the control variable transformation. This analysis helps us to

interpret the results of the assimilation experiments. The BLUE solution of the

assimilation problem [33] is obtained for a special case of incremental 4D VAR

that is essentially a 3D VAR setting since the observation is at the initial time

t = 0. However, in the following experiments we run the assimilation with multiple

outer iterations. We may then use the BLUE as a guide to understanding the

analysis increments we might expect to obtain from the assimilation. The

experimental set up is chosen this way so that the analysis of the results is clear.

This procedure is sufficient for our initial comparison of the influence of the

vorticity and PV-based control variables on the data assimilation. From this

analysis we are able to draw conclusions regarding the behaviour of each of the

transforms in the assimilation. From the BLUE analysis we can also see when we

will expect to encounter numerical difficulties in the minimisation.

Before we are able to run any experiments we must choose how to model the

auto-correlations for each control variable in the data assimilation. In the previous

chapter we demonstrated that these are a vital aspect of the assimilation. In the

BLUE analysis later in this chapter we show that care must be taken to implement

the auto-correlations successfully with the control variables.

It might seem natural to use the experimental auto-correlations we generated in

the previous chapter. However, we see that given the properties of the matrices

they cannot be used. So for these experiments we choose to simply to model the

auto-correlations using the Laplace-based smoother introduced in section 3.4.2,

which models the inverse of Gaussian functions. The results obtained give us

additional insight into the behaviour of the transforms. They also demonstrate the

important differences in the analysis increments generated by the data assimilation

161



when the vorticity and the PV-based transforms are used.

Before the results are discussed we describe briefly how the data assimilation

system was tested in its entirety. This final validation of the system is made using

the gradient test, which is described in [44].

7.1 Testing The Data Assimilation System

The gradient test verifies the calculation of the cost function gradient as, even

after thorough testing of the tangent linear model and the adjoint, as discussed in

section 4.4.1 and 4.4.2, errors may still be present in the full data assimilation

system.

The gradient test is described in [44]. This test verifies the correctness of the

gradient and function calculation used in the data assimilation by a Taylor

expansion of the cost function (3.2)

J [x0 + αb] = J [x0] + αbT∇J [x0] + O(α2),

where α is a small scalar and b is a vector of unit length (for example

b = ∇J ‖∇J‖−1). Rearranging the above, a function of α is found,

E(α) =
J [x0 + αb] − J [x0]

αbT∇J [x0]
= 1 + O(α).

For small alpha we should have E(α) close to 1 [44].

The gradient test is run using each control variable transform and is successful in

both cases. Examples of the gradient test results for each of the control variables

can be found in appendix B.

Having tested the data assimilation in its entirety we now present the single

observation experiments.
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7.2 Single Observation Experiments:

BLUE Analysis

For initial evaluation of the influence of the vorticity and PV-based transforms’ on

the data assimilation we consider single observation experiments. Here the single

observation is taken at time t = 0.

In order to gain insight into how the control variable transforms influence the

assimilation we start by finding the best linear unbiased estimate, or BLUE [33],

for the special case of the transformed incremental 4D VAR cost function when we

have only one observation at the initial time t = 0. We do this to analyse the affect

of each control variable transform on the analysis produced by the assimilation in

these single observation experiments. In addition, it aids in our interpretation of

the following results. From the BLUE we are also able infer potential numerical

problems that might be encountered. We bear in mind that we are only

considering the parameter transform (i.e. a control variable transform that is

assumed to remove only the cross-correlations of variables) and auto-correlations

are specified in the block diagonal components of the transformed background

error covariance matrix. For this special case, we note that the cost function is

linear due to the fact the two possible sources of non-linearity, the observation

operator and the non-linear model, are not present. This is because the

observation is at the initial time and hence the non-linear model is not required,

and the observations are of model quantities at grid points, and therefore the

observation operator H merely picks out the location of the observation. The

problem is essentially a 3D VAR minimisation. The only exception is when using

the full PV-based variables over multiple outer loops. In this case, there can be a

non-linear effect due to the influence of the linearisation state PV. This occurs

because the linearisation state is updated after each outer loop. Thus, we can

consider the BLUE to be the solution of the minimisation when model variables,

vorticity-based variables and the approximate PV variables are used as control

variables. However, when the full PV-based variables are used with multiple outer
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loops, the BLUE is the solution of a given outer iteration of the assimilation.

To find the BLUE we consider the gradient of the transformed incremental cost

function defined in equation (3.9) (where the observation is at time t = 0) with

respect to the control variables. The gradient is given by equation (3.13), but we

may simplify since our observation is at the initial time t = 0, to obtain

∇J̃ [z′0] = Λ−1
z (z′0 − z′

b
) − UTHTR−1(d − HUz′0). (7.1)

Here Λz is the background error covariance matrix for the control variables z′. The

matrix is block diagonal as the control variables are assumed to be uncorrelated

with each other; thus only the auto-correlation of each control variable needs to be

specified. UT is the adjoint of the U transform. We discuss the modelling of the

auto-correlations in the next section.

At the minimum we have

∇J̃ [z′
a
] = Λ−1

z (z′
a − z′

b
) − UTHTR−1(d − HUz′

a
0) = 0, (7.2)

where z′
a is the analysis at the minimum. Rearranging this equation and adding

and subtracting UTHTR−1HUz′
b gives

z′
a − z′

b
=

(
Λ−1

z − UTHTR−1HU
)−1

UTHTR−1(d − HUz′
b
). (7.3)

We note that here we consider H to be linear. After further manipulation we can

write the analysis increment z′
a − z′

b as

z′
a − z′

b
= ΛzU

THT
(
HUΛzU

THT + R
)−1

(d − HUz′
b
), (7.4)

which is the BLUE using the control variable transform for this problem.

We can simplify further since we consider an experiment where we have only one

observation at point j. The matrix R is now simply a scalar and, since the

observation is of a model quantity, the operator H = eT
j is the jth unit vector (i.e.

H is 1 × n matrix, where n is the dimension of z, with zeros in every entry except

at the jth point where we have a 1). We also note that

(
HUΛzU

THT + R
)−1

(d − HUz′
b
)
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is also a scalar and therefore

z′
a − z′

b ∝ ΛzU
Tej. (7.5)

The ej on the right hand side will pick out the jth column of ΛzU
T . Therefore we

derive a proportional relationship for the analysis increment; the analysis

increment in control space, z′
a − z′

b, is proportional to a column of the transpose

of the U -transform acted on by the auto-correlation matrix Λz.

The BLUE clearly demonstrates the importance of the control variable transform

and the prescribed background auto-correlations to the analysis increment. In fact

the influence from the observation comes in the form of a multiplicative constant.

From equation (7.5) we can also observe some potential problems. If there is a null

space in the matrix Λz the problem is ill-posed and does not have a unique

solution. The null space of a matrix A is the set of all vectors x for which Ax = 0.

Any multiple of a vector in the null space can be added without changing the

solution of equation (7.4). If there is a nearly null space, i.e. if Λz has some very

small eigenvalues, then we can expect the problem to be ill-conditioned and there

will be numerical difficulties when solving the minimisation; the minimisation will

require a large number of iterations to fully converge to the BLUE solution.

In our single observation test if we use only model variables that are assumed to be

uncorrelated we obtain

x′a − x′b ∝ ΛxIej = Λxej,

since we replace U with the identity matrix, i.e. the analysis increment is

proportional to a column of Λx, as mentioned in section 3.3. However, when we

consider the control variable transforms the analysis increments in control space

for the vorticity and PV-based variables will differ due to the influence of UT
V and

UT
PV , where the subscript indicates the vorticity or PV-based transform

respectively.

Applying this analysis to our transforms, for an arbitrary outer loop, we see that
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when vorticity-based control variables are used we have




χ′a − χb

ψ′a − ψb

h′
res

a − hb
res




∝




σ2
χΛ̂χ 0 0

0 σ2
ψΛ̂ψ 0

0 0 σ2
hres

Λ̂hres







(
∂
∂x

)T
0 0

0
(

∂
∂x

)T f
g

0 0 1




ej,

writing the matrices in block form as in section 6.1.1. For PV-based variables we

have



χ′a − χb

ψ′a
b − ψb

b

h′a
u − hb

u




∝




σ2
χΛ̂χ 0 0

0 σ2
ψb

Λ̂ψb
0

0 0 σ2
hu

Λ̂hu







(
∂
∂x

)T
0 0

0
(

∂
∂x

)T f
g

0 ∂
∂x

(∇−2q̄ ·)T
1




ej.

Here the outer loop index k has been dropped for convenience. The block diagonal

components Λz represent the auto-covariance of each control variable, as indicated

by the subscript. The auto-covariance matrices are written as the product of the

appropriate auto-correlation matrix and variance.

So if we have a high Burger regime experiment with a single u or h observation

from the BLUE we would expect the analysis increments in control space for the

vorticity and PV-based variables to be very similar to each other. This is because

these columns in the UT
V and UT

PV are equal and the auto-covariances are very

similar. However, these control variable analysis increments will then be

transformed to model variable increments using the inverse transforms. So the

actual model variable increments that result might be different.

We can also see that the increments when we have a single v observation will be

different; in the vorticity case only ψ′ will be incremented, whereas for the

PV-based variables we expect to see increments to both balanced and unbalanced

variables ψ′
b and h′

u respectively. This can be seen above since a single v

observation will have HT = ej, with j a point such that we pick out a column in

the central block column of UT
V and UPV . In UT

V only the central block, which

corresponds to ψ′, is non-zero. The implications of this can be fully understood by

examining the vorticity-based transform. In section 5.1.2, equation (5.11) is the

only means available to increment v. Further, since the h′
res increment for a single
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v observation will be zero, equation (5.12) becomes h′ = f
g
ψ′. So the increment to

φ′ = gh′ satisfies the linear balance equation (2.89). Therefore, we can conclude

that for a single v observation the vorticity-based variables will only produce a

balanced increment to the model variables. However, this behaviour is only present

in the 1D problem we are studying.

Despite these differences in control variable increments, the theory we presented in

this work suggests that in a high Burger regime we would expect that the model

variable increments produced by both will be similar, since the vorticity-based

variables should approximate the PV-based variables. The aim of the following

experiments is to test whether this is in fact the case.

We also note the state dependence in UT
PV by virtue of q̄. So in our iterative

assimilation q̄ will constantly be updated on each outer loop. However, UT
V is

static and will be the same on each outer iteration of the assimilation.

Finally, we see that there will be problems solving the minimisation if the

variances of the control variables are very different sizes. Since the

cross-correlation of the control variables is assumed to be removed the background

term is essentially split into three separate terms for each control variable. For the

minimisation to be appropriately weighted the background error variances should

be of similar magnitude. As well as this the observation term must be weighted to

balance the background terms. We also see that UT
V is block-upper triangular.

Therefore, if the variance of h′
res is very small relative to the other variances, the

matrix UT
V will have a large nearly null space.

We now describe how we choose to model the auto-correlations in the following

experiments.

7.3 Modelling The Auto-Correlations

In section 3.4 we discussed how auto-correlations are generated and used in

operational centres. A proxy quantity for background error statistics is used to

generate statistical data. Then a method is applied to model the auto-correlations
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within the data assimilation. Due to the size of the problem this is not done

exactly and, since the auto-correlations are global averages, this may not be

appropriate in any case. So, before we are able to run our simple assimilation

experiments, we must choose how we will model the auto-correlations. We now

examine two possibilities.

7.3.1 Experimental Auto-Correlations

In this section we analyse whether it is possible to use the auto-correlations

generated from the experiments in section 6.3 directly in the data assimilation. To

do this we create isotropic and homogeneous correlation matrices using the

experimental auto-correlations and investigate their properties.

A valid correlation matrix must be symmetric semi-definite with a unit

diagonal [26]. The matrix A is said to be positive definite if, for all vectors x ∈ Rn,

xT Ax > 0, and A is semi-definite if xT Ax ≥ 0. A matrix is positive definite if and

only if all the eigenvalues of the matrix are positive. Any positive semi-definite

matrix A has a Cholesky decomposition A = XT X.

The experimental auto-correlation matrices are symmetric and have a unit

diagonal by construction. However, it is found that the matrices are not symmetric

positive definite. Some relatively small negative eigenvalues exist. As well as this

there are many very small positive eigenvalues suggesting that there is a large

nearly null space. For example, the auto-correlation matrix for ψ has 500

eigenvalues of which 471 are in the range −5 × 10−5 and +5 × 10−5. As shown in

section 7.2, a nearly null space will cause the minimisation to be ill-conditioned

and so these matrices cannot be used.

If the auto-correlation matrix is not symmetric positive definite then from a

statistical perspective this is not correct. Also, from a least-squares perspective,

this means that the normal equations of the problem are not defined since the

auto-correlation matrix Λz cannot be written as AT A for some matrix A.

The existence of these small negative (and positive) eigenvalues can be attributed
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to numerical noise. Examples of this problem are found in many disciplines. In

finance this is a common problem [26]. There are methods for finding close

approximate matrices that are valid correlation matrices, for example [26].

However, we leave this as further work and choose to model the auto-correlations

using Gaussian functions since matrices formed in this way will be valid correlation

matrices.

7.3.2 Gaussian Auto-Correlations

For each control variable we use the Laplace-based smoother introduced in section

3.4.2 to model the inverse of Gaussian functions. The Gaussian functions have the

correlation length scales of the auto-correlation structures found in section 6.3.1.

Plots of the auto-correlations and a column of the modelled auto-correlation

matrices Λ are found in appendix C in figures C.1 to C.3 for the high Burger

regime and figures C.4 to C.6 for the low Burger regime. Here the number of grid

points separation, j, is plotted against the correlation coefficient.

Figure 7.1 is an example of how the auto-correlations are modelled. We see that we

do not attempt to model exactly the auto-correlations found in practice, as derived

in Chapter 6. The Laplace-based smoother captures well the central, positive

correlations. This is by no means the only way to represent the auto-correlations,

some methods used in operational centres are described in [30] and [25]. The

method we select is used in [32] and is chosen for ease of implementation. In these

experiments we use the auto-correlations as a guide to providing an appropriate

length scale with which to spread background information.

We now present some simple experimental results using each of the control

variable transforms. These results demonstrate the conclusions we made in section

7.2 regarding the influence of the transforms on the data assimilation.
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High Burger Regime: Structure Functions For PV Variables
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Figure 7.1: High Burger regime, PV-based variables:

Auto-correlations for ψb (top), hu (middle) and χ (bottom) plotted with Laplace-

smoother approximation (red dashed line).

7.4 Assimilation Experiments

We now present the single observation assimilation experiment results. These

results demonstrate the conclusions made from the analysis in section 7.2 of the

BLUE. We will show that the vorticity and PV-based control variable transforms

produce similar analysis increments in high Burger regime, but different

increments in a low Burger regime. Before we present the results we first give

specific details of the experiments.

7.4.1 Experiment Details

The following experiments are set up as in section 6.2.1 and 6.3.1. The truth and

the background are fields from the same forecast run, with a separation in time

equal to the time-differencing interval used in the experiments in section 6.2.1.

The observation point is taken to be at i = 423, or 423∆x = 5287.5m. At this

point the error in the background guess is due to the PV being incorrectly located.

Since the background field is taken to be a length of time later in the same forecast

the PV has been advected further than in the true field.
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The correlation scales used in the Laplace-based smoother and the background

error variances for each control variable are given in Table 7.1. The background

error variances for each control variable are calculated from the experiments in

section 6.2.1. We see that they are very different in magnitude and thus it is

difficult to obtain good results. However, for the observation error variances given

in Tables 7.2 and 7.3 we were able to converge the minimisation, though many

iterations were required. In each experiment the minimisation was run for 20 outer

loops, each with 5000 inner iterations. Such a large number of iterations was

required since the difference in size of the variances for the height variables and the

ψ variables is vast and the background terms in the cost function have very

different weights. To verify this we tested the data assimilation with equal

variances. In these tests the convergence was much faster and each control variable

was incremented evenly. A result of using different observation error variances in

these experiments is that we cannot expect the scales of the increments from the

vorticity and PV-based variables to be exactly the same. However, we are able to

compare the shape of the increments.

High Burger Regime Low Burger Regime

Control Variable Variance Length Scale Variance Length Scale

χ 6.7 × 10−4 40 1.6 × 10−5 15

ψ 1.1 × 10−1 40 1.1 × 10−4 15

hres 7.6 × 10−9 30 2.4 × 10−11 15

ψb 1.1 × 10−1 40 9.5 × 10−5 15

hu 6.3 × 10−9 30 1.6 × 10−12 5

Table 7.1: Experiment Set-Up.

In the high Burger regime the Rossby radius is

Lr =

√
gH

f
≈ 2000m,

or 160 grid points and is the same as in section 6.3.2. In the low Burger regime the
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Rossby radius is

Lr ≈ 100m,

or 8 grid points as in section 6.3.2. We now present the results of the simple single

observation experiments.

High Burger Regime

Transform u v φ

PV 7 × 10−9 1 × 10−6 6 × 10−11

Vorticity 7 × 10−9 1 × 10−4 6 × 10−13

Table 7.2: Observation Error Variances for high Burger regime.

Low Burger Regime

Transform u v φ

PV 1 × 10−10 1 × 10−14 1 × 10−13

Vorticity 1 × 10−10 1 × 10−14 1 × 10−12

Table 7.3: Observation Error Variances for low Burger regime.

7.4.2 Assimilation Results: High Burger Regime

The analysis increment from the experiment for a single u observation are shown

in figure 7.2. The control variable and model variable increments are the same

when using vorticity and PV-based variables since both sets of variables use the

same χ. The increment to u is just the derivative of the χ increment. More

interesting results are obtained when we have a single v or h observation.

The analysis increments from the experiment with a single h observation are shown

in figure 7.3 for the vorticity variables and figure 7.4 for the PV-based variables.

We see that all the increments have a very similar shape for both variables. This

demonstrates the theory presented in section 2.4 that in the high Burger regime we

expect the vorticity and PV-based variables to be similar. We also demonstrate
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Figure 7.2: High Burger Regime, Vorticity and PV-Based Control Variables: Single

u observation. Plot of analysis increment to χ (top) and resulting increment to u

(bottom).

one of the conclusions from the BLUE analysis in section 7.2 that the increments

to the control variables, when we have a single h observation, are very similar.

Our analysis of the BLUE in section 7.2 predicts that we will see a difference in

control variable increments when we have a single v observation. In this case we

can see from the BLUE that, for the PV variables, we obtain an increment to both

the balanced streamfunction and the unbalanced height, this is demonstrated in

figure 7.6.

For the vorticity variables we concluded from the BLUE analysis that we only

obtain an increment to the full streamfunction ψ, we are able to demonstrate this

in figure 7.5 where the increments to χ and hres are zero. Therefore, when the

control variable increment is transformed to model variable increments, we are

only able to obtain a geostropically balanced increment to φ. This can be seen since

from equation (5.12); since hres = 0 the increment to h = f
g
ψ, which satisfies the

linear balance equation (2.89). This behaviour is only present in the 1D problem

we are studying. However, for the PV-based variables the increments to v and h

are not totally balanced as they are a combination of unbalanced and balanced

increments. Despite this the resulting increments to the model fields are very
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Figure 7.3: High Burger Regime, Vorticity Based Control Variables: Single h obser-

vation. Plots, from the top down, are the analysis increment to control variables ψ

and hres. Next are the resulting model variable increments to v and φ.
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Figure 7.4: High Burger Regime, PV-Based Control Variables: Single h observation.

Plots, from the top down, are the analysis increment to control variables ψb and hu.

Next are the resulting model variable increments to v and φ.
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Figure 7.5: High Burger Regime, Vorticity Based Control Variables: Single v obser-

vation. Plots, from the top down, are the analysis increment to control variables ψ,

followed by the resulting model variable increments to v and φ.

similar. Again we have been able to demonstrate experimentally the behaviour

that we expected to see in the high Burger regime.

With these simple single observation experiments we have been able to

demonstrate that in the high Burger regime the increments from both the vorticity

and PV-based variables are very similar. We see that when we have an observation

of v the vorticity variables can only provide a balanced increment to φ that is in

balance with ψ. However, this behaviour is only present in the 1D problem we are

studying.

We now move onto the low Burger regime experiments. Here we expect to see

some differences in the transforms. These come from the behaviour of each

transform as we change regime, which also produces differences in length scales of

the auto-correlations (the length scale in the Gaussian correlations were chosen to

fit the actual auto-correlations).

7.4.3 Assimilation Results: Low Burger Regime

The PV-based transform has been designed with the ability to represent the

balanced flow in all regimes. The vorticity-based variables on the other hand will
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Figure 7.6: High Burger Regime, PV-Based Control Variables: Single v observation.

Plots, from the top down, are the analysis increment to control variables ψb and hu.

Next are the resulting model variable increments to v and φ.

not be able to represent the balanced flow in a low Burger regime. Therefore, in a

low Burger regime we would expect the data assimilation to produce different

increments when using the vorticity and PV-based control variables. The results in

this section aim to demonstrate this experimentally.

We have thus far shown that the PV and vorticity based variables are similar in a

high Burger regime. We therefore aim to show that the resulting model variable

increments in a low Burger regime are different when using the vorticity based

variables, which do not represent the balanced flow well, to those obtained when

the PV-based transform is used. Indeed, this is what we find. We do not present

the results for χ here since this is the same variable in both cases in our

experiments. We are interested in experiments with a single v and h observation.

We start with the results for h. These are shown in figure 7.7 for the vorticity based

variables and figure 7.8 for the PV-based variables. We see that the length scales of

the increments are different. The Rossby deformation radius in this experiment is

Lr ≈ 100m,

compared to approximately 2000m in the high Burger regime. The PV-based

variables are on a smaller scale than they were in the high Burger experiments.
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Figure 7.7: Low Burger Regime, Vorticity-Based Control Variables: Single h

observation. Plots, from the top down, are the analysis increment to control variables

ψ and hres. Next are the resulting model variable increments to v and φ.
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Figure 7.8: Low Burger Regime, PV-Based Control Variables: Single h observation.

Plots, from the top down, are the analysis increment to control variables ψb and hu.

Next are the resulting model variable increments to v and φ.
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Figure 7.9: Low Burger Regime, Vorticity Based Control Variables: Single v

observation. Plots, from the top down, are the analysis increment to control variable

ψ, followed by the resulting model variable increments to v and φ.

This reflects the change in the intrinsic length scale, the Rossby radius, which is

much smaller in a low Burger regime than a high regime. In the vorticity case the

increments are on a larger scale than the PV-based case and, in fact, have length

scales that are not very different to that of the increments in the high Burger

regime. This does not reflect the change in the Rossby radius from the high Burger

regime to the low Burger regime.

The increments from the assimilation experiments with a single v observation are

shown in figure 7.9 for the vorticity based variables and figure 7.10 for the

PV-based variables. Here we see the greatest difference. Again we are able to

demonstrate that we only produce a balanced increment through ψ in the vorticity

case as we concluded from the BLUE analysis previously. However, the PV-based

variables have a large-scale increment to the unbalanced height resulting in an

increment to v that is different from that produced by the vorticity based

variables. The vorticity-based control variables are not able to increment the

unbalanced flow at all in this case.

In the vorticity case, increments to v are produced only via ψ as shown by the

BLUE, which is assumed to be totally balanced, that is to say, ψ is assumed to
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Figure 7.10: Low Burger Regime, PV-Based Control Variables: Single v observation.

Plots, from the top down, are the analysis increment to control variables ψb and hu.

Next are the resulting model variable increments to v and φ.

satisfy the linear balance equation exactly. However, for the PV-based variables

the velocity v is split and increments to v can be produced from either its balanced

or unbalanced component, or both.

7.4.4 Summary

In these simple assimilation experiments we were able to demonstrate the main

differences in the transforms, which we concluded from the analysis of the BLUE

and from the theory in section 2.4. We demonstrated that the increments

generated by the two control variable transforms are indeed very similar in a high

Burger regime, as expected from the theory.

In the low Burger regime we succeeded in showing that the transforms produce

different increments. In this regime, for a single h observation, the increments

produced by the PV-based variables appear more representative of the intrinsic

length scale. The increments are on smaller scales than those of the vorticity-based

variables and represent the change in intrinsic length scale from high to low Burger

regimes.

Due to the large differences in the sizes of the background error variances the
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weighting of the background terms was far from equal. Therefore, it was hard to

obtain good results; many iterations were required to obtain solutions that we

expect from the BLUE analysis. This is clearly not feasible in a operational

assimilation system but was possible in our experiments. Before further

assimilation experiments are run with this system a preconditioning step should be

implemented. This is left as further work.

7.5 Conclusions

In this chapter we considered some simple assimilation experiments. Before

presenting the assimilation results we first analysed theoretically the expected

influence of each control variable transform on the analysis using the best linear

unbiased estimator or BLUE. From the BLUE we were able to see a major

difference between the analysis increments we can obtain when using the

vorticity-based control variables and the PV-based control variables. The

vorticity-based variables will only produce a balanced analysis increment when we

have a single v observation. This is because the only variable that is able to

increment v is ψ, which is related to φ by the linear balance relationship. However,

this behaviour is only present in the 1D problem we are studying. The PV-based

variables on the other hand can produce both balanced and unbalanced increments

to v.

From the BLUE we are also able to determine when we will encounter numerical

problems in the minimisation. We see that if the auto-correlation matrix has a

nearly null space then the problem will be ill-conditioned. This is in fact the case

when we examine the properties of the experimental auto-correlation matrices and

therefore they may not be used in the assimilation. Since the cross-correlation

between control variables is assumed to be removed by the transform the

background term is essentially three separate terms for each control variable. We

see that if the variances of these control variables are not of similar magnitude then

the background terms will not be evenly weighted and the minimisation will take

180



many iterations to fully converge. This is what is observed in these experiments.

The experiments we presented demonstrate the behaviour that is expected from

the theory; the vorticity and PV-based control variables are similar in high Burger

regimes and both represent the balance in the model, but they are different in low

Burger regimes were only the PV-based control represents the balanced flow

accurately, therefore the analysis increments obtained are different.
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Chapter 8

Conclusions and Further Work

Data assimilation is the process of finding the best estimate of the current state of

a system. In numerical weather prediction this system is the atmosphere and

oceans. It is a critical stage in the production of weather forecasts: More accurate

initial conditions produce more accurate forecasts. However, the problem is huge

and, to be practical to solve, sophisticated methods must be developed that

simplify the problem, whilst respecting the inherent characteristics of large-scale

atmospheric motions.

The 4D VAR data assimilation problem became practical to solve when an

incremental formulation was introduced in [7]; here a sequence of linearised

quadratic cost functions are solved. Even with these simplifications further

approximations are necessary to handle the background error covariance matrix.

Typically, this is achieved using the control variable transform. The use of a

control variable transform in variational data assimilation was first introduced

in [47]. Here the model variables are transformed into a new set of variables and

the new variables are assumed to be uncorrelated with each other. The

background error covariance matrix is then block diagonal. Thus, we may think of

the control variable transform as having a dual purpose; it is a necessity required

to simplify the problem, and also a means to introduce important dynamical

relationships into the data assimilation.

The quality of the analysis produced by the assimilation is highly dependent on
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the choice of control variables. In most operational centres the control variables

are based on a balanced / unbalanced partitioning of the model variables first used

in [47]. Here the assumption is that the balanced flow is uncorrelated with the

unbalanced flow. However, all of the control variables used operationally at best

only approximate this balanced / unbalanced partitioning. These control variables

are essentially vorticity-based, that is to say that vorticity is assumed to be totally

balanced. One exception are height/mass-based variables where it is assumed that

the height/mass is totally balanced [25]. This method has similar deficiencies since

it too approximates the balanced variable, in addition there are complications

around the equator. In low Burger regimes the vorticity-based variables are no

longer representative of the balanced and unbalanced dynamics and our

assumption that these variables are uncorrelated breaks down. This is because the

PV, or the balanced flow, is dominated by height in this regime, something that

the vorticity-based variables are not capable of representing. The reverse is true

for the height/mass-based variables.

In this work we consider a new set of PV-based control variables proposed in [11]

that should be valid across all dynamical regimes. In Chapter 2 we introduce some

key dynamical concepts using the 2D SWEs, defined by equations (2.1) - (2.3). We

define balance and make the link between PV and the balanced flow by means of a

normal mode analysis of the 2D SWEs. In 2.3.3 we show that of the three normal

modes of the linearised system, two are unbalanced and one balanced. The

balanced mode is represented by the linearised PV. We then show that the

linearised PV can be approximated well by vorticity in a high Burger regime and

height in a low Burger regime.

In Chapter 3 we introduce the data assimilation problem and discuss 4D VAR. We

describe the incremental 4D VAR algorithm when the control variable transform is

included. We give an overview of the various implementations of the transform in

operational centres around the world. We conclude that there is a deficiency in the

definition of the balanced variables in all the current operational control variables;

all current control variables are either vorticity-based or height/mass-based. These
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definitions of balance are not appropriate in all Burger regimes and therefore can

potentially violate the assumption that the control variables are uncorrelated.

Next, we introduce the PV-based control variable transform, which should address

these problems. We discuss the current work in this area and motivate our

research.

We choose to investigate the control variables in the framework of the 1D SWEs,

equations (4.1) - (4.3). This is a relatively simple model that retains key dynamics

similar to those of the full atmosphere. In Chapter 4 we describe the numerical

model and demonstrate it properties. Two vital equations are the linear balance

equation (4.5) and the PV equation (4.8). We then develop both the tangent linear

and adjoint models required for the data assimilation.

In Chapter 5 we present the key relationships and approximations we need to

derive the vorticity and PV-based transforms in the framework of the 1D SWEs.

We derive the transforms and their numerical implementation. We then propose

an approximate version of the PV-based transform where

q̄ ≈ f

< h̄ >
.

This approximation will improve the efficiency of the transform. We then test the

numerical implementation of the transforms and make a qualitative comparison of

their properties.

We present new results in Chapter 6 concerning the validity of the fundamental

assumption that the control variables are uncorrelated. We introduce a statistical

method, the ’quick-covs method’, which we use to generate statistical data. We

then test the correlation of the control variables in a variety of dynamical regimes.

Next, we generate auto-correlations for each variable.

Finally, we develop a complete incremental 4D VAR data assimilation system for

the 1D SWEs, which implements both the vorticity and PV-based control variable

transforms. In Chapter 7 we consider simple assimilation experiments with the

system where we have a single observation at the initial time t = 0.

We now discuss the conclusions we are able to draw from the new results of this
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work.

8.1 Conclusions

In this work we make a new link between the theory of the vorticity and PV-based

transforms behaviour in different dynamical regimes and what may be verified

experimentally. Our new results extend the theory and experiments that are

presented in [11], [67] and [68] by quantifying the accuracy of our assumptions

regarding the balanced and unbalanced variables. In addition, we implement the

control variable transforms into an assimilation system where they may be easily

studied.

We make a qualitative comparison of the control variables that demonstrates the

PV-based variables provide a better representation of the balanced and unbalanced

dynamics than the vorticity-based variables in a low Burger regime. We show that

the PV-based variables represent the balanced and unbalanced parts of the flow

correctly in both and high and low Burger regime. However, in the low Burger

regime the vorticity-based variables fail to capture the balanced flow, and in fact

locate this flow in a region that is actually unbalanced.

We show that the PV-based control variable transforms imply background error

statistics that include state dependence through the linearisation state PV. The

vorticity-based variables imply background error statistic that are static.

The main new results of our research test the validity of the assumption that the

control variables are uncorrelated. We demonstrate that whilst both the vorticity

and PV-based control variables are uncorrelated in a high Burger regime, only the

PV-based variables remain uncorrelated in a low Burger regime. The

vorticity-based variables show significant negative correlations. Therefore, they are

not a valid choice of control variables in this regime. The PV-based variables on

the other hand are valid. We are able quantify the accuracy of the fundamental

assumption that the balanced and unbalanced flows are uncorrelated by the

correlations of the balanced and unbalanced control variables in both the vorticity

185



and PV-based variables. These are new results that are in agreement with the

theory regarding the vorticity and PV-based variables in different dynamical

regimes.

We also show that the approximation we propose to the PV-based transform,

q̄ ≈ f
<h̄>

, has little affect on the correlations of the balanced and unbalanced

PV-based variables in all the regimes we test. Therefore, the approximate

PV-based control variables also are valid in all regimes. This will be convenient in

more complex systems.

The auto-correlations we generate for each control variable show that these

structures are highly dependent on the dynamical regime and it is not correct to

use the same auto-correlations in all regimes, as is done operationally. They also

demonstrate how successfully each set of control variables represents the balanced

and unbalanced flows in each regime. We show that in a low Burger regime the

unbalanced height PV-based variable has a correlation scale less than the Rossby

radius as we would expect from a truly unbalanced variable. The residual height

vorticity-based variable on the other hand has a length scale that is much larger,

which is in fact more appropriate for the balanced variable.

We consider data assimilation experiments with a single observation at the initial

time. Using the BLUE modified to include the control variable transform, we show

that a fundamental difference between the vorticity and PV-based control variables

is that when we have a single v observation the vorticity-based variables can only

produce a balanced increment to the model variables v and φ. However, the

PV-based variables can produce both the balanced and unbalanced increments.

The superior representation of balance and unbalanced dynamics provided by the

PV-based transform will improve the analysis increments produced by the data

assimilation since both balanced and unbalanced errors can be corrected when a v

observation is available.

Our single observation experiments reinforce the theory and also demonstrate the

differences in the vorticity and PV-based variables. Both the control variables

produce very similar analysis increments in a high Burger regime. However, in a
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low Burger regime we demonstrate that the analysis increments produced using

the PV-based variables are are different to those produced when the

vorticity-based variables are used. In this regime the PV-based increments that

appear to be better representations of the balance in the system.

In addition, using the assimilation system that we develop we have been able to

demonstrate the potential numerical problems that we see might exist from the

BLUE analysis. The auto-correlation matrices must be valid correlation matrices

and also the weighting of background terms must be equal to have good

convergence. Further work is needed to precondition the problem before more

extensive assimilation experiments can be run.

8.2 Further Work

The main task for further research is to investigate the impact of the control

variable transforms on the data assimilation in a more realistic setting. This would

involve an incomplete set of observations and assimilations run using the vorticity

and PV-based control variables in high and low Burger regimes. Identical twin

experiments would be run where we perturb a known true state to obtain a

background field. This background field would then be used as an initial guess in

the assimilation experiments. There are many ways that we could choose to

perturb the truth; we suggest the following:

1. Use a background field from the same true trajectory but valid at a different

time.

2. Add a perturbation to the truth such that the perturbation to v and φ is

balanced.

3. Add a perturbation to the truth such that the perturbation to v and φ is

unbalanced.

Suitable methods to assess the quality of the analysis and the performance of the

data assimilation then need to be used. There are a variety of ways we propose to
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do this:

1. Compare the root mean square of the analysis error xa
0 − xt

0, where xt
0 is the

truth at time t = 0, when each control variable transform is used.

2. Compare the root mean square of the forecast error xf
m − xt

m, where xf
m is

the forecast at time t = tm, generated from each analysis.

3. Assess how accurately the analysis captures the balanced mode.

Since the PV represents the balanced mode we can consider the root mean

square error between the analysis PV and the true PV. We can also look at

the size of the departure from linear balance in the truth and the analysis.

4. Compare the convergence properties and computational efficiency of the

assimilation using each control variable.

5. Consider the conditioning of the minimisation by generating matrix forms of

each transform and computing the Hessian matrix of the incremental cost

function.

For the PV-based variables we would have to do this for each dynamical

state separately by including the linearised PV. We could then also examine

how the conditioning changes as the outer loops proceed.

Before these experiments can be run we must first address the numerical issues in

the minimisation since a very large number of iterations is required. This would

involve finding a better model for the auto-correlations. This might be achieved by

developing a method to adjust the experimental auto-correlation matrices so that

they can be used in the assimilation. We could also find an alternative way to

represent these correlations that respects the characteristics of each of the

variables auto-correlations. We would also implement further transforms to

precondition the problem and diagonalise the block components of the

auto-covariances. This would produce a cost function that is equally weighted and

thus improve the convergence of the minimisation.
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Once we have a good representation of the auto-correlations and a well conditioned

cost function the assimilation system can be used to perform further statistical

experiments with methods such as the NMC method. We might also consider the

correlations of the two unbalanced variables as well. We know from the normal

mode analysis that the two unbalanced modes are combinations of the geostrophic

departure and the divergence, so the unbalanced variables might have some

correlation. It would be interesting to quantify this for both the control variable

transforms.

We could then consider additions to the PV-based transform. We could split the u

velocity into balanced and unbalanced variables,

u = ub + uu,

using an appropriate equation with which to define the balanced component of u.

We can then assess the impact of this on the behaviour of the PV-based

transforms in the same way as done for the standard PV-based transform. These

ideas are considered in more detail in [21].

Finally, we would like to examine the effect of the transforms in a full operational

forecasting model or at least a more sophisticated model than the 1D SWEs. The

same methods we employ here can be used to assess the performance of the

variables in this framework.
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Appendix A

Time Correlations

A.1 High Burger Regime

We can provide additional evidence that a time-differencing interval of

approximately 300s is appropriate by calculating correlations of each variable in

time. We expect to see the correlations decaying with time. If there is a dominant

oscillation that is producing an artificial signal in the data then this will dominate

the correlations. We therefore look for any unrealistic time-correlations as we vary

the time interval τ.

Covariance for the time correlations are calculated in much the same way as in the

correlation experiment described previously. We again assume that each

component of each vector is equivalent to one realisation of a single random

variable. So therefore we have a set of N × M realisations of each random variable

where N is the number of points in the domain and M is the number of time

differences, for example

ψ+0 =
{
ψ1

1, . . . , ψ
1
N , ψ2

1, . . . , ψ
2
N , . . . . . . , ψM

1 , . . . , ψM
N

}
, (A.1)

and

ψ+j =
{
ψ1+j

1 , . . . , ψ1+j
N , ψ2+j

1 , . . . , ψ2+j
N , . . . . . . , ψM+j

1 , . . . , ψM+j
N

}
, (A.2)

where the subscript indicates the grid point and the superscript the difference field

index. So here we are calculating the covariance of the same variable for
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Figure A.1: Inappropriate Time Interval: Time correlations with the

time-difference interval τ = 100s. The correlation coefficient between two time-

difference fields jτ apart is plotted against j.

time-differences jτ apart. The covariance is calculated as follows

COV +j(ψ′, ψ′+j) =< (ψ′− < ψ′ >)(ψ′+j− < ψ′+j >) > (A.3)

where the superscript j indicates that we are calculating the covariance of

time-differences jτ apart. By calculating the correlation co-efficient we can plot

correlation against j, the temporal separation of the time-differences.

The time correlation experiments are run with several time intervals in line with

the observations of the dominant oscillation. We have also included a plot of

time-correlations against j where we have chosen a sampling time interval that is

not in line with our observations.

The time difference interval in figure A.1 is one inertial period, or 100s (40 time

steps, ∆t = 2.5s). We expect the correlations of each variable to decay with time.

The results give time-correlations that are swamped by another signal and do not

decay with time. This demonstrates the QCM’s sensitivity to this dominant signal

and that this time difference interval is not appropriate.

The time correlations for time-difference intervals of 287.5s, 312.5s and 337.5s are

shown in figures A.2 to A.4. These particular time-difference intervals are chosen

to be around 300s following observations of the dominant signal and the
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Figure A.2: Time correlations with time-difference interval τ = 287.5s.
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Figure A.3: Time correlations with time-difference interval τ = 312.5s.
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Figure A.4: Time correlations with time-difference interval τ = 337.5s.

hypothesis that it is caused by gravity wave periodicity. The time interval that is

most effective at filtering the wave is 312.5s or 125 time steps. We observe smooth

correlation structures and start to lose the smooth structure for intervals either

side of 312.5s.

We notice that the correlations of φ decay much faster with an interval of 312.5s

than 100s, and are no longer dominated by the inertial-gravity signal. Also the

correlations of u are smoother, more coherent and decaying slowly. Therefore

choosing a time-difference interval of 312.5s has given the best results.

A.2 Time Correlations: Low Burger Regime

For the low Burger regime, figure A.5, we see that the time-correlations decay as

we would expect and do not appear corrupted by the gravity wave signal.
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Figure A.5: Low Burger regime: Time-correlations for T = 100s.
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Appendix B

Gradient Test Results

In figures B.1 to B.4 we see the results of the gradient test when the

vorticity-based and PV-based transforms are used in the data assimilation. Figures

B.1 and B.3 are plots of the quantity E(α), as defined in section 7.1 and [44],

against perturbation size and figures B.2 and B.4 are plots of E(α) − 1 against the

perturbation size. We expect to see the value of E(α) approach 1 as α decreases.

The results agree with those described in [44].
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Figure B.1: Gradient Test Results: Vorticity-based variables.
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Figure B.2: Gradient Test Results: Vorticity-based variables.
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Figure B.3: Gradient Test Results: PV-based variables.
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Figure B.4: Gradient Test Results: PV-based variables.

197



Appendix C

Modelled Auto-Correlations
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Figure C.1: High Burger regime, model variables:

Auto-correlations plotted with Laplace-smoother approximation.
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High Burger Regime: Structure Functions For Vorticity−Based Variables
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Figure C.2: High Burger regime, Vorticity-based variables:

Auto-correlations plotted with Laplace-smoother approximation.
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High Burger Regime: Structure Functions For PV Variables
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Figure C.3: High Burger regime, PV-based variables:

Auto-correlations plotted with Laplace-smoother approximation.
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Low Burger Regime: Auto−Correlations For Model Variables
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Figure C.4: Low Burger regime, model variables: Auto-correlations plotted with

Laplace-smoother approximation.
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Low Burger Regime: Auto−Correlations For Vorticity−Based Variables
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Figure C.5: Low Burger regime, Vorticity-based variables:

Auto-correlations plotted with Laplace-smoother approximation.
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Low Burger Regime: Auto−Correlations For PV Variables

−250 −200 −150 −100 −50 0 50 100 150 200

0

0.5

1

j

<h
u
,h

u
>

−250 −200 −150 −100 −50 0 50 100 150 200

−0.5

0

0.5

1

j

<c
hi

,c
hi

>

Figure C.6: Low Burger regime, PV-based variables: Auto-correlations plotted with

Laplace-smoother approximation.
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Glossary of Symbols and
Acronyms

Continuous Model Related

h Fluid Depth

u Velocity in x direction

v Velocity in y direction

φ Geopotential Height

H̃ Orographic Height

f Coriolis Parameter

g Gravitational Acceleration

Uc Forcing mean flow

D Divergence

ζ Relative Vorticity

q Potential Vorticity

η Departure of free surface from rest level

ψ Streamfunction

χ Velocity Potential

R0 Rossby Number

Bu Burger Number

Fr Froude Number

Lr Rossby Radius of Deformation

cg Gravity Wave Speed

H Characteristic Height

D Characteristic Depth

L Characteristic Horizontal Length

U Characteristic Horizontal Velocity

T Characteristic Time

N0 Characteristic Surface Height Departure
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Numerical Model Related

∆x Spatial step size

∆t Temporal step size

xi Distance i∆x

tm Time m∆t

φj
i Variable, φ in this example, at time tj and position xi

Data Assimilation

J Cost function

J̃ (k) Incremental cost function on outer loop k

∇J̃ (k) Gradient of incremental cost function on outer loop k

xi Model state at time t = ti

xb Background field

yo
i Observation vector at t = ti

B Background error covariance matrix

Ri Observation error covariance matrix at time t = ti

Hi Observation operator at time t = ti

Mi Non-linear model evolution to time t = ti

Hi Linearised observation operator at time t = ti

Mi Tangent Linear model evolution from time ti−1 to ti

MT
i Adjoint model at time t = ti

di Innovation vector at time t = ti

x′(k)
0 Model variable increment at time t = t0 for outer loop k

x′b Background increment

Control Variable Transforms

z′
(k)
0 Control variable increment at time t = t0 for outer loop k

z′
b Background increment in control space
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U U -transform

UT Adjoint of U -transform

T T -transform

Λ Block diagonal auto-covariance matrix

Λ̂ Block diagonal auto-correlation matrix

σ2 Variance of control variable indicated by subscript

aζ Geostrophic departure

hres Residual height vorticity-based control variable

hb Balanced height variable

hu Unbalanced height PV-based control variable

vb Balanced component of v

vu Unbalanced component of v

ψb Balanced streamfunction PV-based control variable

ψu Unbalanced streamfunction PV-based control variable

Acronyms

PV Potential Vorticity

NWP Numerical Weather Prediction

HIRLAM High Resolution Limited Area Model

ECMWF European Centre for Medium Range Weather Forecasting

SWEs Shallow Water Equations

4D VAR Four-Dimensional Variational Data Assimilation

3D VAR Three-Dimensional Variational Data Assimilation

TLM Tangent Linear Model

AM Adjoint Model

SLSI Semi-implicit, semi-Lagrangian scheme

DLB Departure from Linear Balance
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