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Abstract

Hazardous or extreme weather is often caused by localised, convective scale features.

The high social and economic impact of such events has created a growing need within

numerical weather prediction to improve the accuracy of convective scale forecasting.

Many operational centres around the world are developing forecasting models with spa-

tial resolutions down to 1km. Such high resolution allows the dominant motions at the

convective scale to be generally well represented.

Initial conditions for numerical forecasting models are provided using data assimila-

tion, a method which combines observations with a current estimate of the atmospheric

state. However, due to limits in computer power, very high resolution models can only

cover a limited area domain. This means that there may be phenomena present in the

atmosphere with length scales that are longer than the domain of the model.

It is important that the data assimilation on the limited area model (LAM) capture

both the small and large scales, including lengthscales longer than the LAM domain.

To investigate how different scales are treated in a LAM data assimilation, we nest a

limited area domain within a 1D linear advection-diffusion model and implement a four

dimensional variational (4D-Var) data assimilation scheme. We use a discrete Fourier

sine transform to investigate which wavelengths are captured by the data assimilation.

We show that, with high resolution observations, the LAM data assimilation is able

to accurately represent the small scales. However, it cannot capture the truth exactly,

due to errors coming from the boundary conditions. We demonstrate that errors from

the boundary conditions, as well as limitations in the resolution of the LAM, cause errors

at low wavenumbers. We also show that lengthscales longer than the LAM domain are

aliased onto other wavenumbers, with the majority of the information being aliased onto

the longest waves contained by the LAM spectrum. Using this knowledge we develop

a new method for improving the low wavenumbers within the LAM 4D-Var whilst still

maintaining the accuracy in the small scales achieved by the high resolution.

i



Declaration

I confirm that this is my own work and the use of all material from other sources has

been properly and fully acknowledged.

Gillian Baxter

ii



Acknowledgements

Firstly I would like to thank my academic supervisors, Dr Sarah Dance, Dr Amos Lawless

and Prof. Nancy Nichols, for their help, guidance, support and patience. I would also

like to thank my Met Office supervisor, Sue Ballard.

My thanks go to the staff and students of the Mathematics and Meteorology depart-

ments, with whom I have had many useful discussions. I particularly thank the members

of the student data assimilation group and my monitoring committee members: Dr Peter

Sweby, Dr David Stephenson and Dr Robert Plant.

I thank all of my friends in the Mathematics department and elsewhere, for their

friendship and support over the past four years. I am particularly grateful to Jenny, all

the girls who have shared Office 300 and all my housemates. Your friendship, moral sup-

port, and in the case of Jenny; your extensive Fortran knowledge and endless patience,

have been invaluble.

I also wish to thank my family; for the love and encouragement you always give me

and for keeping me sane (well, at least as sane as I ever was!) during the past four years.

Finally, I acknowledge the financial support of the Natural Environment Research

Council (NERC) and the UK Met Office.

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Principal results of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data Assimilation 6

2.1 Types of data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Variational schemes . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Why 4D-Var is the method of choice . . . . . . . . . . . . . . . . 11

2.2 The mathematical formulation of 4D-Var . . . . . . . . . . . . . . . . . 13

2.3 Practical implementation of 4D-Var . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Minimisation of the cost function J . . . . . . . . . . . . . . . . 16

2.3.2 The adjoint model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Error covariance matrices . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Control variable transforms . . . . . . . . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The discrete Fourier transform 22

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Calculating the DFT of sin (κξj) analytically . . . . . . . . . . . 23

3.2.2 The power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Properties of the DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



3.4 Features of the power spectrum . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Location of amplitude . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Limited Area Models 30

4.1 Operational models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 The LAM models . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 The data assimilation schemes . . . . . . . . . . . . . . . . . . . 34

4.2 Problems caused by having a limited area domain . . . . . . . . . . . . . 35

4.2.1 Lateral boundary conditions . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 The ‘long-wave’ problem . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 A 4D-Var algorithm for a LAM domain 44

5.1 A parent domain and a nested LAM domain . . . . . . . . . . . . . . . . 44

5.2 Modifications to the 4D-Var algorithm for the LAM domain . . . . . . . 46

5.3 Working in incremental space . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 A gridpoint and a spectral scheme for the LAM domain . . . . . . . . . 50

5.4.1 The gridpoint scheme . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 The spectral scheme . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 The discrete Fourier transform on a LAM domain 53

6.1 Calculating the DFT from its definition . . . . . . . . . . . . . . . . . . 53

6.2 Wavelengths on a LAM domain . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 The DFT over a LAM domain . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 L = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.2 A general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 The sine transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.1 Calculating the sine transform from its definition . . . . . . . . . 64

6.4.2 The sine transform for a linear combination of sine waves . . . . 65

6.4.3 The sine transform when L = 1 . . . . . . . . . . . . . . . . . . . 66

v



6.4.4 The sine transform when L = 1/4 . . . . . . . . . . . . . . . . . 68

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 A 1D linear advection-diffusion model 72

7.1 The advection-diffusion equation . . . . . . . . . . . . . . . . . . . . . . 72

7.2 The discrete problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 The model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.1 The parent model . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.2 The LAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.3 Convergence of the model . . . . . . . . . . . . . . . . . . . . . . 79

7.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.5 The data assimilation algorithm . . . . . . . . . . . . . . . . . . . . . . . 82

7.6 The gradient test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 The representation of different scales in a 4D-Var analysis on a LAM

domain 86

8.1 Short waves with the gridpoint scheme . . . . . . . . . . . . . . . . . . . 88

8.1.1 The benefit of data assimilation and high resolution observations 92

8.1.2 The ability of the LAM to capture the truth . . . . . . . . . . . 97

8.1.3 Summary of the small scales . . . . . . . . . . . . . . . . . . . . 101

8.2 Long-waves with the gridpoint scheme . . . . . . . . . . . . . . . . . . . 101

8.2.1 One long-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.2 Several long-waves . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2.3 Summary of the long-wave results with a gridpoint scheme . . . 106

8.3 Long and short waves with the spectral scheme . . . . . . . . . . . . . . 109

8.3.1 One long-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3.2 Several long-waves . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3.3 Non-sine waveforms with the spectral assimilation scheme . . . . 115

8.3.4 Summary of the spectral scheme results . . . . . . . . . . . . . . 117

8.4 The background trajectory xb
i . . . . . . . . . . . . . . . . . . . . . . . . 118

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vi



9 Manipulating scales in a 4D-Var analysis using the background error

covariance matrix Σ 126

9.1 How the matrix B corresponds to choices of the matrix Σ . . . . . . . . 128

9.2 Initial tests with a non-zero background error covariance matrix Σ . . . 130

9.3 More realistic examples with a non-zero background error covariance ma-

trix Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.3.1 A background xb with no random noise . . . . . . . . . . . . . . 137

9.3.2 A background with random noise . . . . . . . . . . . . . . . . . . 143

9.4 Comparisons with other work . . . . . . . . . . . . . . . . . . . . . . . . 153

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10 Conclusions and future work 157

10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

vii



List of Figures

3.1 The power spectrum of sin(ξj) . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 The power spectrum of sin(3ξj) + 2 sin(7ξj). . . . . . . . . . . . . . . . . 27

3.3 The power spectrum of the real (red) and imaginary (green) parts of the

DFT of sin(ξj + π/4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Schematic of the LAM domain and buffer zone. . . . . . . . . . . . . . 32

4.2 Comparing methods of providing boundary values for the LAM. . . . . 34

4.3 Diagram illustrating the observational information lost from observations

outside the LAM domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 The extension zone of the HIRLAM model, as shown in [35] . . . . . . 39

4.5 Diagram illustrating a feature being ‘cut-off’ by the LAM boundary. . . 39

4.6 Diagram illustrating the problem of aliasing. . . . . . . . . . . . . . . . 41

4.7 The long-wave problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Diagram of model domains. . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Comparing the same wave on domains of different length. . . . . . . . . 55

6.2 (a) Power spectrum of fj with N = 16, scaled by the factor 2/N . (b)

Power spectrum of fj with N = 256, scaled by the factor 2/N . (c)

Difference between N = 256 and N = 16 power spectra amplitudes. . . . 57

6.3 Power spectra of the individual waves contained in fj , scaled by the fac-

tor 2/N . (a) 2 sin (πj/N), (b) 2 sin (2πj/N), (c) sin (4πj/N) and (d)

sin (8πj/N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 The power spectrum of the sine transform of fj over the domain L = 1 . 66

6.5 The power spectrum of the sine transform of fj over the domain L = 1/4 69

6.6 The power spectrum of the sine transform of 2 sin (2πxj) over the domain

L = 1/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



7.1 The model output at t = 0.25 for different spatial resolutions and the

error compared to the analytic solution. . . . . . . . . . . . . . . . . . . 81

7.2 Verification of the gradient calculation for the gridpoint scheme . . . . . 84

7.3 Verification of the gradient calculation for the spectral scheme . . . . . . 84

8.1 Model outputs and power spectra at t = 0 when the truth is ur(xr
j) =

2 sin(2π2xr
j) + sin(2π4xr

j) + sin(2π8xr
j). . . . . . . . . . . . . . . . . . . . 90

8.2 Model outputs and power spectra at the middle of the assimilation win-

dow when the truth is ur(xr
j) = 2 sin(2π2xr

j) + sin(2π4xr
j) + sin(2π8xr

j). 91

8.3 Model outputs and power spectra at t = 0, comparison of the LAM with

and without data assimilation. . . . . . . . . . . . . . . . . . . . . . . . 93

8.4 Model outputs and power spectra at the middle of the assimilation win-

dow, comparison of the LAM with and without data assimilation. . . . . 94

8.5 Difference between the sine wave u(xj) = sin(2π4xj) generated at a higher

resolution (red) compared to simply interpolating a lower resolution wave

(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.6 Model outputs and power spectra at t = 0, comparing the analysis gen-

erated at the same resolution on the parent and LAM domain. . . . . . 98

8.7 Model outputs and power spectra at the middle of the assimilation win-

dow, comparing the analysis generated at the same resolution on the

parent and LAM domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.8 Model outputs and power spectra at t = 0 when the truth is ur(xr
j) =

2 sin(2πxr
j) + 2 sin(2π2xr

j) + sin(2π4xr
j + sin(2π8xr

j). . . . . . . . . . . . 103

8.9 Model outputs and power spectra at the middle of the assimilation win-

dow, when the truth is ur(xr
j) = 2 sin(2πxr

j) + 2 sin(2π2xr
j) + sin(2π4xr

j +

sin(2π8xr
j). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.10 Model outputs and power spectra at t = 0 when the truth is ur(xr
j) =

2 sin(2πxr
j/8) + 2 sin(2πxr

j/2) + 2 sin(2πxr
j) + 2 sin(2π2xr

j) + sin(2π4xr
j) +

sin(2π8xr
j) + sin(2π32xr

j). . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.11 Model outputs and power spectra at the end of the assimilation window,

when the truth is ur(xr
j) = 2 sin(2πxr

j/8) + 2 sin(2πxr
j/2) + 2 sin(2πxr

j) +

2 sin(2π2xr
j) + sin(2π4xr

j) + sin(2π8xr
j) + sin(2π32xr

j). . . . . . . . . . . 108

8.12 Model outputs and power spectra at t = 0 when the truth is ur(xr
j) =

2 sin(2πxr
j) + 2 sin(2π2xr

j) + sin(2π4xr
j) + sin(2π8xr

j). . . . . . . . . . . . 111

ix



8.13 Model outputs and power spectra when the truth is ur(xr
j) = 2 sin(2πxr

j/2)+

2 sin(2π2xr
j) + sin(2π4xr

j) + sin(2π8xr
j). . . . . . . . . . . . . . . . . . . . 112

8.14 Model outputs and power spectra when the truth is ur(xr
j) = 2 sin(2πxr

j/4)+

2 sin(2πxr
j/2) + sin(2π4xr

j) + sin(2π7xr
j) + sin(2π8xr

j) + sin(2π19xr
j). . . 114

8.15 Model outputs when the truth is equation (8.1). . . . . . . . . . . . . . 116

8.16 Comparing sources of xb for a tanh wave example. . . . . . . . . . . . . 120

8.17 Comparing sources of xb for a tanh wave example with a phaseshift. . . 121

8.18 Comparing sources of xb for a sine wave example. . . . . . . . . . . . . 122

8.19 Error between model outputs with different resoltions for sine and tanh

waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.1 Plots of the matrix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2 Plot of row 8 of the matrices Bγ, in blue, and Bµ, in red. . . . . . . . 130

9.3 Model outputs and power spectra for the case with Σ−1

0 . . . . . . . . . 132

9.4 Model outputs and power spectra for the case with Σ−1

1 . . . . . . . . . 133

9.5 Model outputs and power spectra for the case with Σ−1
α . . . . . . . . . 134

9.6 Model outputs and power spectra for the case with Σ−1

β . . . . . . . . . 135

9.7 Model outputs at t = 0 for Σ−1

0 , ΣA, Σα and Σβ. . . . . . . . . . . . . 139

9.8 Errors in the power spectrum at t = 0 for Σ−1

0 , ΣA, Σα and Σβ . . . . . 140

9.9 Errors in the power spectrum at t = 0 for Σ−1

0 , ΣA, Σα and Σβ , a close

up of k = 0, . . . , 4 and k = 16, . . . , 20. . . . . . . . . . . . . . . . . . . . . 141

9.10 Model outputs at t = 0 for Σ−1

0 , ΣA, ΣB and Σγ . . . . . . . . . . . . . 145

9.11 Errors in the power spectrum at t = 0 for Σ−1

0 , ΣA, ΣB and Σγ . . . . 147

9.12 Errors in the power spectrum at t = 0 for Σ−1

0 , ΣA, ΣB and Σγ , a close

up of k = 0, . . . , 4 and k = 16, . . . , 20. . . . . . . . . . . . . . . . . . . . . 148

9.13 Errors in the power spectrum at t = 0 for Σµ, Σν , Σω and Ση. . . . . . 151

9.14 Errors in the power spectrum at t = 0 for Σµ, Σν , Σω and Ση, a close

up of k = 0, . . . , 4 and k = 16, . . . , 20. . . . . . . . . . . . . . . . . . . . . 152

x



Acronyms

NWP Numerical weather prediction

LAM Limited area model

LBC Lateral boundary condition

3D-Var 3 dimensional variational data assimilation

4D-Var 4 dimensional variational data assimilation

KF Kalman filter

EnKF Ensemble Kalman filter

DFT Discrete Fourier transform

FFT Fast Fourier transform

Data Assimilation Notation

x state vector

xa analysis vector

xt ‘true state’ vector

xb background state/prior estimate

y observation vector

h observation operator

H linearisation of observation operator h

B background error covariance matrix

Σ background error covariance matrix in spectral space

R observation error covariance matrix

m non-linear model

M linear forward model

MT adjoint model

K gain matrix

J cost function

Jb background term of cost function

Jo observation term of cost function

xi



Model Notation

u Temperature variable

xP Parent spatial coordinate

xL LAM spatial coordinate

t Time

c Advection velocity

σ Diffusion constant

∆xP Parent grid spacing

∆tP Parent timestep

∆xL LAM grid spacing

∆tL LAM timestep

N Number of parent gridpoints

M Number of LAM gridpoints

T Number of parent model timesteps in the assimilation window

S Number of LAM timesteps in the assimilation window

h Ratio of LAM to parent gridspace

τ Ratio of LAM to parent timestep

D Number of parent model gridspaces covered by LAM

B1 Parent gridpoint corresponding to first LAM boundary

B2 Parent gridpoint corresponding to second LAM boundary

b Width of buffer zone

xii



Chapter 1

Introduction

The ultimate problem in meteorology [18, p. 6].

This bold statement has been used to describe the problem of forecasting the weather [11,

Ch. 1 ], [18, p. 6]. According to Bjerknes, to produce the best weather forecast it is

necessary to satisfy two conditions, which define weather prediction as an initial-value

problem [18, p. 7]:

1. The present state of the atmosphere must be characterised as accurately

as possible.

2. The intrinsic laws, according to which the subsequent states develop out

of the preceding ones, must be known.

The first condition is addressed in current numerical weather prediction (NWP) sys-

tems using a method known as data assimilation. Data assimilation is the process of

combining a previous model forecast (background) with observations to generate initial

conditions that most accurately describe the observed reality. The second condition is

addressed within a numerical model. The aim is to have a model which satisfies the

known physical properties of the atmosphere as accurately as possible, given the restric-

tions imposed by computer power, our ability to solve the equations numerically, and

our ability to understand fully the processes governing the atmosphere.
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1.1 Motivation

When forecasting the weather there are many scales to consider. We might be forecasting

synoptic scale phenomena, of order 1000km or more. Most of the high and low pressure

areas seen on weather maps are on the synoptic scale. Alternatively, we might be

forecasting more localised phenomena that occur on the mesoscale or convective scale

(of order a few to several hundred km). Squall lines, fronts and storm bands are all

mesoscale weather events. Individual thunderstorms occur on the convective scale.

Hazardous or extreme weather is often caused by convective scale features. Convec-

tive storms produce some of the most damaging weather experienced in the UK [60].

The leading cause of floods in the UK over the summer months is severe rainfall from

convective events [36]. For example, it was a convective storm that led to the flood

in Boscastle, UK, in 2004 [32]. The high social and economic impact of such floods

has created a growing need within numerical weather prediction (NWP) to improve our

ability to forecast these storms accurately.

A reason for the difficulty in predicting convective storms is that in order to represent

them accurately, spatial resolutions of order 100m are needed to resolve the dominant

motions properly [10]. However, running operational forecast models at such high res-

olutions would require computer power beyond that currently available. Nevertheless,

research at the UK Met Office has shown that very useful results can be obtained with

horizontal resolutions of order 1km, because the mesoscale flows leading to storm initi-

ation, organisation and propagation are generally well represented [51], [75]. The 1km

resolution also allows us to do away with convective parameterisations and to use a

more accurate orography, for example, at the coastal boundary. Coastal effects can be

important triggering mechanisms on the convective scale [9]. Sea-breezes, which are

triggered by the land-sea boundary, played a key role in the initiation of the storm and

subsequent flash flooding in Boscastle [32].

Despite technological improvements there are still limits to computer power however,

and if a model is to run at a very high resolution it can only have a limited domain

size. For example, the UK Met Office runs a 4km resolution model centred over the UK,

with a horizontal domain of 288×360 grid points (1152km×1440km) and 70 vertical
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levels [61]. This domain is currently being upgraded to 1.5km resolution.

The limited area nature of high resolution models can cause problems for a data assim-

ilation algorithm. One problem is the need for lateral boundary conditions (LBCs) and

the errors these LBCs introduce. Another problem is the range of scales a limited area

model (LAM) is able to capture. It is important that the LAM be able to capture the

small scale detail in order to accurately forecast convective features. However, due to

the limited area domain there may be phenomena present in the atmosphere with length

scales longer than the domain of the model and it is also important that the LAM be

able to accurately represent these larger scales.

1.2 Goals of thesis

The aims of this thesis are:

• To consider some of the problems caused by the limited area nature of high reso-

lution models.

• To investigate the treatment of different length scales by 4D-Var (four dimensional

variational data assimilation) on a LAM domain. We consider both small and large

scales, including lengthscales longer than the domain of the LAM.

• To use the knowledge gained about the treatment of different length scales to

demonstrate a possible method of improving a LAM 4D-Var solution.

1.3 Principal results of thesis

The principal results that are shown in this thesis are:

1. Given high resolution observations, the LAM analysis is able to accurately repre-

sent the small scales.
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2. Even with perfect observations and no background term, the LAM data assim-

ilation cannot capture the truth exactly, due to errors introduced through the

LBCs.

3. Errors introduced through the LBCs, as well as differences in resolution between

the truth and the LAM, cause the LAM data assimilation to have errors at low

wavenumbers.

4. In the LAM data assimilation waves with lengthscales longer than the domain of

the LAM are aliased onto other wavenumbers, with the majority of the information

being aliased onto the longest waves contained by the LAM spectrum.

5. In spectral space, the background error covariance matrix Σ can be used to control

how the different wavenumbers are affected by the data assimilation.

6. The matrix Σ can be specified in such a way as to improve the representation

of the low wavenumbers whilst also allowing the smaller scales to be accurately

represented.

1.4 Thesis outline

In Chapter 2 we introduce data assimilation, what it is and why we use it. We briefly

introduce some of the many different types of data assimilation before focussing in detail

on 4D-Var, which is the type of data assimilation to be used for the work presented in

this thesis.

In Chapter 3 we introduce the discrete Fourier transform (DFT) and the power spectrum.

We demonstrate features of the power spectrum and how they enable us to use the DFT

as a tool to understand the analysis generated by the data assimilation.

Limited area models (LAMs) are described in Chapter 4. We introduce some of the

LAMs currently in use in operational weather centres around the world. We also discuss

some of the problems the limited area causes for both the model and the data assimila-

tion, in particular, the need for lateral boundary conditions (LBCs) and the problem of

having length scales in the atmosphere longer than the domain of the model.
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In Chapter 5 we set up a coarse and a fine, nested grid and discuss the adaptations

made to the standard 4D-Var scheme to apply it on these domains. We outline a 4D-

Var scheme in both physical and spectral space.

In Chapter 6 we investigate the features of the DFT, introduced in Chapter 3, but now

applied over a LAM domain.

The model used in this thesis is described in Chapter 7. We outline the design of the

experiments and how observations are generated for the data assimilation.

The treatment of both long and short waves by a 4D-Var scheme on a LAM domain

are investigated in Chapter 8. In particular, we demonstrate the effects of the lateral

boundary conditions on the accuracy of the LAM data assimilation and demonstrate

how different scales are treated by the 4D-Var.

In Chapter 9 we apply the results of Chapter 8 to develop a method for manipulating

the LAM analysis by controlling which wavenumbers are affected by the 4D-Var.

We conclude in Chapter 10 and discuss possible future work.
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Chapter 2

Data Assimilation

To generate a numerical weather forecast we need not only a numerical weather pre-

diction (NWP) model but also a best estimate of the initial values of the atmospheric

state [52]. The sources of information we have to provide this estimate are the model

itself and any available observations. The initial conditions could be provided by a

previous model forecast. However, no model is perfect and there will always be model

error. The atmosphere is a continuous system and we are approximating it on a discrete,

finite grid. Sub-grid scale effects are parameterised and equations governing physical

processes often have to be simplified before we can solve them numerically or have the

computer power to do so. Even with a perfect model there is still the difficulty that the

atmosphere is a chaotic system [59]. Even tiny errors in the model’s initial conditions

will magnify over time rendering the forecast useless. We therefore use observations to

constrain the system and keep the model output grounded in reality.

Just as the previous model forecast is not enough by itself to provide the initial con-

ditions, neither are the observations sufficient to provide the initial conditions on their

own. There are several reasons for this [64]:

1. The observations can and do have errors.

2. The observations may not be direct observations of model variables.

3. The state obtained purely from observations may not satisfy the physical properties

and dynamical equations that govern the model.
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4. We do not have sufficient observations to give a complete representation of the

atmospheric state.

In order to generate initial conditions that accurately describe the observed reality we

therefore combine a previous model forecast (background) with observations. The tool

that allows us to do this is data assimilation and the initial conditions are known as the

‘analysis’ [50, p.13], [64].

An NWP model requires an estimate of the state that is accurate at the initial time.

However, the aim of a weather prediction model is to produce an accurate forecast. The

aim of data assimilation therefore has to be to generate an analysis that most accurately

describes the observed reality at the present (initial) time but also one that will generate

an accurate estimate of the future state of the system [64].

Many types of data assimilation have been developed, varying in computational cost,

optimality and speed [12]. In this chapter we introduce a few of the different types

of data assimilation schemes and illustrate the main differences between the varying

approaches. We then go on to consider the scheme to be used in the work in this thesis

in more detail, demonstrating its derivation and discussing its practical implementation.

2.1 Types of data assimilation

There are many different types of data assimilation schemes. These schemes can be

sequential or variational and three-dimensional (space) or four-dimensional (space-time).

Sequential algorithms, such as Optimal Interpolation (OI) [50, Section 5.4.1], [54] or

the Kalman filter (KF) [49], use optimal estimation equations to compute the analysis

explicitly. Variational algorithms, such as 3D-Var (three-dimensional variational data as-

similation) [56], [70], or 4D-Var (four-dimensional variational data assimilation) [16], [50,

Section 5.6.3], compute the analysis by minimising a cost function J as a least squares

problem.

In three-dimensional schemes, observations are distributed in space only and are taken

to be valid at one single time level. In four-dimensional schemes, observations are
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distributed in time as well as space.

Variational data assimilation is the method of choice in many numerical weather predic-

tion centres and is expected to remain so for the foreseeable future [7]. For this reason

we now discuss the variational techniques in more detail.

2.1.1 Notation

Before we discuss the algorithms themselves we begin by defining the notation to be

used here. We base this notation on that outlined by [44]. We have:

• a state vector x ∈ R
N , which describes the column vector of variables that repre-

sent the state of the system and defines our model space.

• an analysis vector xa ∈ R
N , which is the solution generated by the assimilation

scheme.

• a ‘true state’ xt ∈ R
N valid at the analysis time. This is what we are trying to

estimate with the analysis.

• a background state/prior estimate xb ∈ R
N , usually provided by an earlier fore-

cast.

• a vector of observations y ∈ R
P .

• a matrix h, and its linearisation (or Jacobian) H, where h is an observation

operator which is applied to the state vector to convert from model to observation

space, y = h(xt) + ǫ, where ǫ is the error. For example in the case of a direct

observation it might be the interpolation of a wind observation that is not located

at a grid point, for an indirect observation it might be the physical relationships

connecting an observed radar reflectivity and the model variables. h maps from

R
N to R

P .

• a covariance matrix B ∈ R
NxN associated with the background errors η, where

xb = xt + η. The background errors η are assumed to be Gaussian and unbiased.

• a covariance matrix R ∈ R
PxP associated with the observation errors ǫ. The

observation errors ǫ are assumed to be Gaussian and unbiased.
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2.1.2 Variational schemes

In variational assimilation algorithms we find the analysis xa which minimises a cost

function as a least squares problem. The cost function is minimised directly, using an

iterative scheme, to find the analysis [56], [64].

A 3D-Var scheme [56], [70] finds the analysis by minimising the cost function

J(x) =
1

2
(x − xb)T B−1(x − xb) +

1

2
(y − h(x))T R−1(y − h(x)). (2.1)

The cost function J is a measure of the distance of the solution from the background xb

and the observations y, weighted by the inverse of the error covariance matrices B

and R respectively. In 3D-Var the observations y are all assumed to be valid at a single

time and there is no time dependence in the cost function.

4D-Var is closely linked to 3D-Var [71]. In 4D-Var however, a time-sequence of obser-

vations can be used by utilising the model dynamics. As with 3D-Var, 4D-Var looks for

the analysis as a solution of a minimisation problem, but now using the cost function

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

T∑

k=0

(yk − hk(xk))T Rk
−1(yk − hk(xk)), (2.2)

subject to the strong constraint that the model states must also be a solution of the

model equations

xk = mk−1(xk−1), (2.3)

where k is the timestep, T is the total number of timesteps in the assimilation window

and m is the nonlinear model operator [16], [50, Section 5.6.3], [70].

A strong constraint means that we assume the model equations to be perfect [17].

However, due to the complex nature of the atmosphere our model will never actually be

perfect. It is possible to formulate the 4D-Var problem with a weak constraint instead so

that the perfect model assumption can be relaxed. This results in an additional term in

the cost function to account for model error [17]. In this thesis however, we will assume

a perfect model and not include this term in our cost function. As well as an additional

term to account for model error, it is also possible to impose other additional weak

constraints. One such example for a limited area domain is discussed in Section 4.2.1.
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The difference between the 4D-Var cost function (2.2) and the cost function for 3D-

Var (2.1) is the time dependence in the observation term. A 4D-Var scheme is run over

an assimilation window and the observations are allowed to be distributed in time. The

model equations are evolved forward in time and then the values predicted by the model

are compared with the observations at the time the observations are valid. We try to

find an analysis xa such that if we run the model forward from xa we get a best fit

trajectory through the observations and the background.

2.1.3 The Kalman Filter

In contrast to the variational technique used by 4D-Var, the Kalman Filter (KF) is a

4-dimensional sequential method [49]. It too allows observations to be assimilated over

a time window. However, the KF steps through time, assimilating observations timestep

by timestep, to give the optimal analysis at each observation time, given all previous

information.

The KF can be viewed in two stages: forecast (denoted f) and analysis (denoted a).

The forecast stage comprises of the state forecast

x
f
k = Mk−1xa

k−1
, (2.4)

and the error covariance forecast

P
f
k = Mk−1P a

k−1
MT

k−1
, (2.5)

where Mk is the linear model at time tk and Pk is the error covariance matrix at time

tk, such that at the beginning of the assimilation window P0 = B, where B is the error

covariance matrix used in 4D-Var. For simplicity we have neglected the model error

term from the error covariance forecast here but it can be included in the formulation.

The analysis stage comprises of the Kalman gain computation

Kk = P
f
k HT

k

[
HkP

f
k HT

k + Rk

]−1
, (2.6)

the state analysis

xa
k = x

f
k + Kk

[
yk − Hkx

f
k

]
, (2.7)

and the error covariance of the analysis

P a
k = [I − KkHk]P f

k , (2.8)
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where xa
k is the analysis at time tk, with the associated error covariance P a

k .

In the least squares sense, the KF algorithm is the optimal way to assimilate observations

sequentially. It provides the best linear unbiased estimate of the state and its error

covariance [50, 5.6.1].

2.1.4 Why 4D-Var is the method of choice

One advantage of variational algorithms is that they can handle indirect observations

in their ‘raw’ format, eliminating the need for retrieval operations [65]. They can also

link observations to model variables in a nonlinear manner and project information

from model space to observation space, and vice versa, via nonlinear observation oper-

ators [19], [65].

4D-Var also has the advantage that observations can be distributed in time as well as

space, by utilising the model dynamics. This means that not only are the observa-

tions being used at the appropriate time, but also that several observations at the same

location can be used within one assimilation period [71]. 4D-Var can extract dynam-

ically consistent information from a time-series of observations [57]. When fitting to

the observations, solutions which are inconsistent with the dynamical equations can be

penalised [19]. This temporal benefit is not available from 3D-Var as the observations

are assumed to be valid at a single time level. It is however, available from the Kalman

filter.

The KF algorithm is the optimal way to assimilate observations sequentially (in the

least squares sense). It provides the best linear unbiased estimate of the state and its

error covariance [50, 5.6.1]. There are similarities between 4D-Var and the KF. Over

the same time interval, assuming a linear model, a perfect model, Gaussian errors and

that both algorithms use the same data (including the same background information

at t0), the final analysis produced by the KF is equal to the final value of the optimal

trajectory estimated by 4D-Var [16], [70]. However, intermediate trajectory values will

be different and 4D-Var values will be more accurate since 4D-Var assimilates all the

observations simultaneously. It has also been shown that 4D-Var is more successful in

reconstructing the physical fields in data void areas [24].
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Both 4D-Var and the KF benefit from using evolved error covariances [57]. However, a

major advantage of the KF is that it advances the background error covariances via an

error covariance forecast step. This error covariance forecast provides a flow dependent

background error covariance matrix at the end of the time window, rather than esti-

mating it as a constant covariance matrix as is done in 4D-Var. Although 4D-Var does

provide an implicit propagation of the error covariance matrix [65], these propagated

covariances are not available as an output at the end of the 4D-Var assimilation. Hence,

if we are cycling with 4D-Var, we have to use the same background error covariance

matrix at the start of each assimilation window, rather than an updated version as

would be provided by the KF. However, NWP models are too large to use a full KF.

The error covariance forecast is too computationally expensive due to the error covari-

ance forecast covariance matrix being typically of O(107x107). The KF does provide a

useful reference for the design of approximate algorithms such as the ensemble Kalman

filter (EnKF) [42], though due to the approximations made these schemes are no longer

optimal in the least squares sense.

A major difficulty with 4D-Var is that to minimise the cost function we use an adjoint

model (This is discussed in Section 2.3.1). The adjoint model can be difficult to code

and requires rigourous testing.

The benefits provided by 4D-Var make it worthwhile however, and variational data

assimilation is the method of choice in many numerical weather prediction centres and

is expected to remain so for the foreseeable future [7]. 4D-Var has been operational at

ECMWF since November 1997 [71], at Météo-France since 2000 [28] and the UK Met

Office since 2004 [57].

4D-Var also has benefits in the context of mesoscale and storm-scale applications, in

particular, the ability to use indirect observations and a nonlinear observation operator,

as most high resolution data comes from remote sensing and does not measure model

variables directly. The data can also have a high temporal, as well as spatial, resolution

and 4D-Var can take advantage of this. The status and progress of 4D-Var and in

particular the problems associated with applying it to the prediction of storm-scale

atmospheric phenomena are reviewed by [19], [58], [65] and [81].

Variational data assimilation is being and will be used with increasingly higher reso-
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lution, limited area models. 4D-Var is currently run at JMA (Japan meteorological

Agency) at 5km resolution [46]. The UK Met Office 4km model is currently run with

3D-Var with the aim of moving to 4D-Var [22] and there are already plans published by

Météo-France for a 3D-Var-based high-resolution limited-area system with a model of

2.5km grid length [26].

Given the benefits of 4D-Var for high resolution applications and that 4D-Var is being

aimed for operationally as the method of choice, 4D-Var is the method we use in this

thesis.

In the rest of this Chapter we go on to discuss 4D-Var in greater detail, in particular its

formulation and practical implementation.

2.2 The mathematical formulation of 4D-Var

In order to understand the 4D-Var scheme we begin by discussing how 4D-Var is for-

mulated.

The 4D-Var problem can be formulated mathematically using linear algebra or by using

the technique of calculus of variations. Although in most practical applications the

linear algebra approach is used, it is more illuminating to first consider the formulation

using calculus of variations. As we are working with a discrete model in this thesis, we

consider the discrete formulation here.

For the discrete 4D-Var problem we aim to minimize the cost functional (equation (2.2)),

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

T∑

k=0

(yk − hk(xk))T Rk
−1(yk − hk(xk)),

subject to the strong constraint (as given by equation (2.3)) that

xk = mk−1(xk−1),

where the subscript k denotes quantities at observation time k from k = 0 to k = T and

m is a nonlinear function.

The cost function (2.2) measures the distance between the model state and the obser-

vations and between the model state and the background, weighted by the inverse of
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the error covariance matrices. The strong constraint (2.3) here is the model equation,

which describes the dynamics of the discrete system. The model equation is assumed

to be error free i.e. we assume we have a perfect model. This assumption is also often

made in operational systems.

Following the method of Lagrange multipliers shown in [18, Section 13.2 and Appendix

C], considering only the observational term for simplicity, we seek the minimum of

Jo(x0) =
1

2

T∑

k=0

(yk − hk(xk))T Rk
−1(yk − hk(xk)), (2.9)

subject to the constraint (2.3), which can also be written as

xk − mk−1(xk−1) = 0. (2.10)

The problem can be rewritten using discrete Lagrange multipliers which take into ac-

count the additional information provided by the constraint (2.10). The whole problem

can now be expressed as the minimisation with respect to xk and λk of

L =
T∑

k=0

{
1

2
(yk − hk(xk))T Rk

−1(yk − hk(xk)) + λk
T (xk − mk−1(xk−1))

}
, (2.11)

where λk is a vector of Lagrange multipliers at time tk, known as the discrete adjoint

variables. It is the functional L that we now want to minimise, as a minimum of L will

minimise Jo as well, whilst also imposing the necessary constraint (2.10). The minimum

of L can be found by differentiating L with respect to each of the variables xk and λk

and setting the results to zero, i.e. we require the first variation of L to be zero.

Taking first the variation on xk

∂L
∂xk

= −Hk
T Rk

−1(yk − hk(xk)) + λk − MT
k λk+1,

where Hk = ∂hk

∂xk

∣∣∣
xk

and Mk = ∂mk

∂xk

∣∣∣
xk

(also known as the Jacobians), and then the

variation on λk

∂L
∂λk

= xk − mk−1(xk−1),

leads to the Euler-Lagrange equations

−Hk
T Rk

−1(yk − hk(xk)) + λk − MT
k λk+1 = 0, (2.12)

xk − mk−1(xk−1) = 0. (2.13)
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Equation (2.13) gives the constraint equation (2.10). Integrating equation (2.12) back-

wards in time from tT to t0 gives the adjoint equations

λT +1 = 0 (2.14)

λk = Mk
T λk+1 + Hk

T Rk
−1(yk − hk(xk)), k = T , . . . , 0. (2.15)

The gradient of Jo at the initial time is then given by

∇Jo(x0) = −λ0. (2.16)

This can now be used in an iterative equation that requires the gradient of J to be

calculated. M is known as the forward linear model and MT as the adjoint model.

Equation (2.16), found using Lagrange multipliers, is the same as the result found using

linear algebra. This is shown in Section 2.3.1.

This calculus of variations approach to formulating 4D-Var is illuminating in under-

standing the construction of 4D-Var as a constrained minimisation but is less helpful in

understanding the practical implementation. We now go on to consider the implemen-

tation of 4D-Var using the linear algebra formulation.

2.3 Practical implementation of 4D-Var

In order to implement a 4D-Var system we must minimise the discrete cost function (2.2),

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

T∑

k=0

(yk − hk(xk))T Rk
−1(yk − hk(xk)),

to find our analysis. However, 4D-Var is a nonlinear constrained optimization problem

which is very difficult to solve for the general case. Fortunately it can be greatly simpli-

fied using the tangent linear hypothesis. The tangent linear hypothesis allows the cost

function to be linearised and solved using a method known as Incremental 4D-Var [16].

It is Incremental 4D-Var that is most often used operationally in NWP.

In this thesis however, we use a linear model (Chapter 7) and therefore the cost function
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does not need to be linearised and can simply be written as

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb)

+
1

2

T∑

k=0

(yk − Hkxk)T Rk
−1(yk − Hkxk), (2.17)

def
= Jb + Jo,

and the constraint is

xk = Mk−1xk−1. (2.18)

where Jb is defined to be the background term and Jo is defined to be the observation

term.

2.3.1 Minimisation of the cost function J

To minimise the cost function we require a minimisation algorithm. Possible choices

include the quasi-Newton or conjugate gradient methods [64]. Detailed descriptions of

these methods can be found in [82], or [33, Sections 9.3, 10.2], for example, and are

therefore not described here. However, these types of gradient-descent algorithms will

require the value of J and its gradient ∇J to be calculated at each iteration and we

therefore need to consider how these can be evaluated.

The evaluation of the cost function is relatively straight forward by simply calculating

equation (2.17) as shown. Jb can be calculated directly. To calculate Jo we must simply

use our tangent linear model Mk to evolve our solution forward in time. We can then

calculate and store

dk = Rk
−1 (yk − Hkxk) , (2.19)

where dk are known as the normalised departures. These departures can then be used

to calculate Jo, as a series of contributions.

Jo(x) =
1

2

T∑

k=0

Jok(x), (2.20)

where

Jok(x) = (yk − Hkxk)T dk. (2.21)
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The evaluation of the gradient can also be done in two parts. The gradient of Jb can

simply be found by calculating ∇Jb directly,

∇Jb = B−1 (x0 − xb) . (2.22)

To calculate ∇Jo directly would be computationally unfeasible as it would require N

forward model runs. The adjoint allows ∇Jo to be calculated with just one adjoint

model run. We first need to factorise

∇Jo(x) =
1

2

T∑

k=0

∇Jok(x),

= −
T∑

k=0

M1
T . . .Mk

T Hk
T dk,

= −{HT
0

d0 + MT
1

[HT
1

d1 + MT
2

[HT
2

d2 +

MT
3

[HT
3

d3 + · · · + MT
T

HT
T

dT ] · · · ]]}. (2.23)

Equation (2.23) can now be calculated from right to left by initialising the adjoint

variable λ to zero at the final time, λT +1 = 0 (as in equation (2.14)). We then step

backwards through the timesteps, at each step adding the forcing term HT
k dk to λk,

before applying the adjoint model to give λk−1. Hence equation (2.23) becomes [12]

∇Jo(x) = −λ0. (2.24)

The gradient of Jo has been found here using linear algebra. The result (equation (2.24))

is the same as that found in Section 2.2 (equation (2.16)) derived by the method of

Lagrange multipliers.

Here the adjoint model is defined as the transpose of the tangent linear model, i.e. MT .

Operationally however, the adjoint is not constructed explicitly from the transpose of the

tangent linear model matrix. The adjoint model, and how it is tested, is now considered

in the next section.

2.3.2 The adjoint model

Operationally, the discrete model is linearised to give the tangent linear model and then

the discrete adjoint equations are constructed from these discrete linearised equations.

The adjoint is derived directly from the tangent linear model code using an ‘automatic

adjoint’ method [29].
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However, we can also use the matrix form of the discrete tangent linear equations to

find the transpose. Due to the (small) size of the system to be used in this thesis, it

is perfectly feasible here to simply transpose the matrix M to generate the adjoint, so

that is what is done in our scheme (Chapter 5).

Once the adjoint is constructed, it needs to be tested. There are two different aspects

which need to be tested and these are done using separate methods.

The Adjoint test

When the adjoint equations have been derived directly from the model code, the adjoint

code needs to be tested to verify it is producing the correct adjoint. To do this we use

the definition

〈Ab, c〉 =
〈
b,AT c

〉
, (2.25)

where A is a linear operator, AT is its adjoint, b and c are vectors and the brackets

〈. . . , . . .〉 denote an inner product [29].

Therefore, for our model M and its adjoint MT we can use equation (2.25) as a test

by first applying the model to the initial conditions δx0 to produce a final state, then

applying the adjoint to this final state.

If the adjoint is correct we should get

〈Mδx0,Mδx0〉 −
〈
δx0,M

T Mδx0

〉
= 0.

The Gradient test

We must verify that the adjoint produces the correct gradient of the cost function. To

do this we use the gradient test, a method already established to test adjoint models,

for example [53], [63].

A Taylor expansion of the cost function J gives

J(x + αδx) = J(x) + αδx
T∇J(x) +O(α2), (2.26)

where α is a small scalar and δx is a vector of unit length. This formula can be
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rearranged to give a function of α

φ(α) =
J(x + αδx) − J(x)

αδx
T∇J(x)

= 1 +O(α). (2.27)

We should expect to get values of φ(α) close to 1 for values of α that are small but not too

close to machine zero. We should also get values close to zero for the residual φ(α)− 1.

This can be displayed clearly by plotting a graph of log(α) against log(φ(α) − 1).

2.3.3 Error covariance matrices

To run a 4D-Var scheme we need to define the error covariance matrices.

The matrix R

The matrix R is the error covariance matrix associated with the observation errors.

Operationally in NWP, the matrix R is assumed to be diagonal and all the cross-

covariances are set to be zero, i.e. the errors are assumed to be uncorrelated. In reality

however, this assumption often does not hold. For example, with errors coming from

forward modelling error. However, the error correlations are difficult to estimate and

the computational cost of computing the cost function and its gradient is much cheaper,

in terms of matrix-vector multiplications, if R is diagonal [12].

The matrix B

The matrix B is the error covariance matrix associated with the background errors.

There are many techniques which have been developed to estimate the matrix B. The

favoured method has been the NMC (National Meteorological Centre) method which

compares forecasts of different lengths, valid at the same time. A review of the matrix B,

including its role within Var assimilation, its mathematical properties and methods of

estimating it, can be found in [6].

2.3.4 Control variable transforms

To minimise the cost function J(x) (equation (2.2)) we vary the components of x iter-

atively. The vector x here is known as the control variable.
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In Section 2.3.1 we demonstrated how to minimise the cost function with respect to x.

However, this method still leaves the problem of representing and inverting the matrix B.

For NWP this is simply infeasible, as the matrix B is typically of O(107 × 107). To

overcome this problem, the cost function is instead posed in terms of a different control

variable, by means of a control variable transform [7]. This new control variable is

designed to have beneficial properties. The principle is for it to simplify the background

term of the cost function.

Operationally, the control variable transform is designed to convert from model variables

to new variables which have no correlations between parameters and are also uncorre-

lated in both the vertical and the horizontal.

A discussion on control variable transforms, including those used operationally by the

UK Met Office and ECMWF (European Centre for Medium range Weather Forecasting)

can be found in [7] or [56].

2.4 Summary

We have described several types of data assimilation, sequential and variational, 3-

dimensional and 4-dimensional. We have introduced examples of these different types of

scheme and discussed differences in their implementation. We have also considered the

benefits of the different schemes. 3D schemes have the advantage that they are generally

computationally cheaper to run but the 3D assumption can cause information to be lost

from the observations. 4D schemes allow observations to be treated more realistically

as they can be distributed in time and assimilated at the time they are valid. However,

this addition of a time dimension does cause 4D methods to be computationally more

expensive.

Having considered the different schemes available, we went on to discuss 4D-Var in more

detail. We considered its mathematical formulation as well as its practical implemen-

tation. This was done because 4D-Var is the scheme that will be used throughout the

rest of this thesis.

We now go on to introduce the discrete Fourier transform (DFT) and its power spectrum
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in Chapter 3. We demonstrate features of the power spectrum and how they enable us

to use the DFT as a tool to understand the analysis generated by the data assimilation.
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Chapter 3

The discrete Fourier transform

In this chapter we introduce the discrete Fourier transform (DFT) and the power spec-

trum. The DFT can be an extremely useful method for understanding the analysis

generated by the data assimilation. We demonstrate features of the power spectrum

and how they relate to properties of the DFT, and thus how they enable us to use the

DFT as a tool to understand the analysis.

3.1 Definition

Sines, cosines and imaginary exponentials have the property that they are orthogonal

over a series of discrete, equally spaced points [37, p.25],

Lemma 3.1

1

N

N−1∑

j=0

e−isξj =





1 if s = Nm, m ∈ Z

0 otherwise,

where ξj = 2πj/N

Using this orthogonality we can construct the discrete Fourier transform (DFT) for a

function f defined at discrete values ξj over the domain (a, b) where j = 0, ..., N and

ξ0 = a, ξN = b. This is discussed by [1, p. 788-9], amongst others.
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The DFT of a function fj (where fj = f(ξj)) is defined to be

DFT (fj) = f̂k =
N−1∑

j=0

fje
−i2πjk/N , k = 0, 1, . . . , N − 1, (3.1)

where k is the wavenumber and N is the number of gridpoints [13, p.52]. The inverse

transform (IDFT) is

fj =
1

N

N−1∑

k=0

f̂ke
i2πjk/N , j = 0, 1, . . . , N − 1. (3.2)

This discrete Fourier transform (DFT) can be calculated on a computer using a method

called the Fast Fourier Transform (FFT). This FFT reduces the number of computer

operations needed from O(N2) to O(N log(N)) [1, p.791]. For small values of N this is

not so significant but for large values of N this reduction in computational expense is

essential in making the calculations possible.

3.2 A simple example

In order to understand better the DFT we begin by studying it for a simple example,

namely the sine wave fj = sin (κξj).

3.2.1 Calculating the DFT of sin (κξj) analytically

To investigate the structure of the DFT we first calculate it analytically for the sine

wave fj = sin (κξj).

Letting fj = sin (κξj), 0 ≤ κ ≤ N − 1 where κ ∈ N is the wavenumber, equation (3.1)

becomes

f̂k =
N−1∑

j=0

sin (κξj)e
−iξjk. (3.3)

Writing sin(κξj) = 1
2i

(
eiκξj − e−iκξj

)
this becomes

f̂k =
1

2i

N−1∑

j=0

(
eiκξj − e−iκξj

)
e−iξjk,
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Figure 3.1: The power spectrum of sin(ξj), scaled by the factor 2/N .

which can be rearranged to give

f̂k =
1

2i

N−1∑

j=0

e−iξj(k−κ) − 1

2i

N−1∑

j=0

e−iξj(k+κ). (3.4)

In order to evaluate equation (3.4) we use the fact that the complex exponential function

obeys the orthogonality relation given by Lemma (3.1). Using Lemma (3.1) with s =

k − κ and then s = k + κ and noting that 1
i = −i, equation (3.4) becomes

f̂k =





−iN
2 if k = κ,

iN
2 if k = N − κ,

0 otherwise.

(3.5)

3.2.2 The power spectrum

In order to demonstrate the propeties of the DFT which are of interest here, we first

need a convenient method of analysing the DFT coefficients. To do this we consider

the square of their modulus. A suitably scaled plot of these moduli is called a power

spectrum [25, p.53]. We apply a scaling factor of 2/N to the DFT coefficients, where

N is the number of gridpoints. This results in a standard trigonometric wave (i.e. one

with an amplitude of one) having an amplitude of one in the power spectrum. For
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example, Figure 3.1 shows the power spectrum of sin(ξj) on the domain x = [0, 1),

where ξj = 2πxj , j = 0, · · · , N − 1, xj = j/N and N = 16.

By setting κ = 1 in equation (3.5), we see that it agrees with the power spectrum of

sin(ξj) plotted in Figure 3.1, which has amplitude at k = 1 and k = N − 1 and is zero

everywhere else. By applying the scaling factor 2/N to equation (3.5) we also obtain an

amplitude of one.

From this simple example we can begin to see the usefulness of the power spectrum.

The power spectrum provides a method to observe the features of the DFT coefficients

in an illustrative way.

There are many known properties of the DFT and descriptions of these can be found

in [13, Section 4.1 and 4.2], [25, p.49] and [72, p.53-56] amongst others. We will explore

a few of these properties and relate them to the features we see in the power spectrum.

We will demonstrate how the DFT can be used as a tool to understand the analysis

generated by the data assimilation.

3.3 Properties of the DFT

1. Linearity

The DFT is a linear function [25, p.49], such that, for a function

yj = afj + bgj ,

where a and b are scalars, the DFT of yj is

ŷk = af̂k + bĝk.

2. Symmetry of the Complex Conjugate

For a real sequence fj with j = 0, · · · , N−1, its DFT will, in general, be a sequence

of N complex numbers. In particular f̂k and f̂N−k are related by

f̂N−k = f̂∗k

for k = 0, · · · , N − 1, where ∗ denotes the complex conjugate [13, p.56].
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3. Phase

In general, the DFT of a function fj can be written as

f̂k = f̂R
k + if̂ I

k ,

where f̂R
k is the real part and f̂ I

k is the imaginary part.

However, for an even function gj , its DFT can simply be written as

ĝk = ĝR
k .

For an odd function hj , its DFT can simply be written as

ĥk = iĥI
k.

i.e. even functions transform to real parts only, and odd functions transform to

imaginary parts only [72, p.53]. This can easily be shown from the definition (3.1).

3.4 Features of the power spectrum

3.4.1 Location of amplitude

If we consider the sine and cosine waves as a basis for function space, then a non-

zero value of the DFT coefficient is determined by the wavenumbers which contribute

components to the function being transformed. A non-zero magnitude in the power

spectrum at wavenumber κ means the function being transformed contains a component

of the wave with wavenumber κ.

In particular, for functions that are simply a linear superposition of sine waves, this

means the power spectrum will pick out the wavenumbers of those waves in the function.

For a single sine wave example, this property is clearly demonstrated in the calculation

shown in Section 3.2.1 and in Figure 3.1. As we see, the transform of sin (ξj) has non-

zero magnitude at κ = 1 and at κ = 15 = N − 1. This second location is caused by the

second property given in Section 3.3, the symmetry property of the complex conjugate.

It causes a function to have non-zero transform values in two places, not one. One

location corresponds to the wavenumber κ and one corresponds to the wavenumber

N − κ, as seen in Figure 3.1.
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Figure 3.2: The power spectrum of sin(3ξj) + 2 sin(7ξj), scaled by the factor 2/N .

Figure 3.2 shows the power spectrum of the wave y = sin(3ξ) + 2 sin(7ξ), i.e. a linear

combination of sine waves. As we see, we can again pick out the wavenumbers present

in the function by the non-zero magnitude in the power spectrum. This is the case for

a function with more than one wavenumber component due to the linearity property of

the DFT given in Section 3.3.

This feature of the power spectrum demonstrates one way we can use the DFT to

understand the analysis generated by the data assimilation. The power spectrum allows

us to identify the wavenumbers that form the components of the analysis.

3.4.2 Magnitude

If we again consider the sine and cosine waves as a basis for function space, then from

the magnitude in the power spectrum we can identify scaling factors on the components

of a function.

From the linearity property of the DFT given in Section 3.3, if a function has a scaling

factor then the DFT coefficients also have the same scaling factor (which will be squared

in the power spectrum). Therefore a magnitude not equal to one at wavenumber κ in the

power spectrum signifies a scaling factor on the function component with wavenumber κ.

This can be seen in Figure 3.2 where the wave y = sin(3ξ)+2 sin(7ξ) has a scaling factor

of 2 on the wave with wavenumber κ = 7 and this corresponds to an amplitude of 4 in
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the power spectrum.

This property of the power spectrum allows us to use the DFT to identify scaling factors

in an analysis produced by the data assimilation.

3.4.3 Phase

As stated in Section 3.3, odd functions transform to imaginary parts only and even

functions transform to real parts only. Functions can be odd or even, or can be made

up of a combination of both odd and even parts. By considering the real and imaginary

parts of the DFT separately we can understand better the phase of a function. For

example, yj = sin(κξj) is an odd function and therefore has purely imaginary DFT

coefficents. This is demonstrated in the calculation done in Section 3.2.1. However, if

we now consider a sine wave with a phase shift we can see another useful property of

the DFT.

To illustrate how the DFT can be used to understand phase we take the function yj =

sin(ξj +φ), where φ represents a phase shift. We take φ = π
4 . Using trigonometric angle

summation formulae we can rewrite our function as

yj = sin(ξj +
π

4
),

=
1√
2

(sin(ξj) + cos(ξj)) .

As we see, our function is a sum of an odd and an even function.

We now consider the real and imaginary parts of the DFT of our function. Figure 3.3 is

a plot of the square of the absolute value of the real (red) and imaginary (green) parts

of the DFT. As can be seen half the amplitude is in the real part and half is in the

imaginary part. This corresponds to our function being a sum of an odd and an even

part. It is an equal split between real and imaginary because the function is an equal

split between odd and even parts. The DFT can identify differences in phase and this

is easily seen in the power spectrum.

The capability to use the the power spectrum to identify differences in phase can be

used as a method of understanding the analysis generated by the data assimilation.
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Figure 3.3: The power spectrum of the real (red) and imaginary (green) parts of the DFT of sin(ξj+π/4),
scaled by the factor 2/N .

3.5 Summary

We have shown that it is possible to learn a lot of information about a solution by simply

performing a DFT and considering the features of its power spectrum in relation to the

known properties of the DFT. By considering the sine and cosine waves as a basis for

function space, we have shown that the wavenumber and pattern, amplitude and phase

of the components of a function can all be found from the DFT and its power spectrum.

We have also demonstrated methods for how this can be done. These methods have

been demonstrated here on basic sine wave examples but can easily be applied to more

complicated functions.
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Chapter 4

Limited Area Models

There are many different limited area models (LAMs) currently being run operationally

at weather centres around the world. We begin by introducing some of these operational

schemes. We go on to discuss problems associated with the limited area nature of high

resolution models such as the need for boundary conditions and the problem of having

atmospheric phenomena with length scales longer than the domain of the model.

4.1 Operational models

In order to produce more accurate forecasts of high impact weather, weather centres

around the world are developing and running high resolution, limited area forecast

models. The high resolution allows a more accurate representation of the dominant

motions at the convective scale and therefore a more accurate convective scale forecast.

Data assimilation schemes are also being developed for these high resolution, limited

area models.

4.1.1 The LAM models

Many different weather centres run limited area, mesoscale models operationally. These

models vary in domain size, resolution and model specifications.
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• The Unified model (UM) at the UK Met Office is run on limited area domains as

well as globally [79].

• The WRF (Weather Research and Forecasting) model is a multiagency collabo-

ration [78]. Current major WFR partners include NCAR, the National Oceanic

and Atmospheric Administration’s (NOAA)’s National Center for Environmental

Prediction (NCEP), NOAA Forecast Systems Laboratory (FSL), AFWA and the

Center for the Analysis and Prediction of Storms (CAPS) at Oklahoma Univer-

sity. The WRF model is a convective-mesoscale model for use by both research

and industry.

• The ALADIN/France model is a LAM run operationally at Météo-France [26].

Also being developed is the AROME (The Application of Research to Opera-

tions at MesoscalE) system, the next generation LAM NWP system for Météo-

France [26].

• HIRLAM (High Resolution Limited Area Model), a collaboration between the Na-

tional Meteorological services in Denmark, Finland, Iceland, Ireland, Netherlands,

Norway, Spain and Sweden, runs HIRLAM-5 [38], a high resolution NWP system

for the synoptic scale. It is also developing HARMONIE for the mesoscale, in

collaboration with ALADIN.

• The Japan Meteorological Agency (JMA) has operated a mesoscale numerical

prediction (Meso NWP) since March 2000 in aid of disaster relief [41]. Initially

the mesoscale model (MSM) in the meso NWP system was a hydrostatic model

but was upgraded to the JMA non-hydrostatic model (JMA-NHM) in September

2004.

These are just some of the models run around the world, both operationally and for

research purposes. All of the models have their individualities but also share some

common themes.

One theme shared by mesoscale models is the increasing resolution they are being run

at. At the UK Met Office the NAE (North Atlantic and Europe model) is run at

12km resolution and a 4km resolution domain is also operational [51]. This 4km ver-

sion is currently being upgraded to 1.5km. WRF has a 1-10km resolution range [8].
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Figure 4.1: Schematic of the LAM domain and buffer zone.

HIRLAM-5 is run at 5-15km resolution [39] and HARMONIE has a target resolution of

2.5km [40]. Aladin has a horizontal resolution of about 9.5km and AROME will run at

2.5km gridmesh [26]. The MSM at JMA currently has a 5km resolution [46].

Another shared property of all the models is that their lateral boundary conditions

(LBCs) are provided from a larger, courser resolution (parent) model. In order to relax

the solution on the interior of the LAM domain to the values prescribed by the parent

model at the boundaries, a buffer zone is implemented at the boundaries of the LAM, as

illustrated in Figure 4.1. This relaxation is often done via Davies relaxation1 [20], [21].

Operationally, the Davies Relaxation is implemented in a discrete form and the solution

at a gridpoint is given by

ubuffer
i = (1 − αi)u

L
i + αiu

P
i , (4.1)

where u is the model variable, i = 0, . . . , b− 1 are the LAM gridpoints within the buffer

zone with i = 0 corresponding to the external boundary, ubuffer
i is the value of u in the

buffer zone, uL
i is the value of u calculated by the limited area model, uP

i is the value

of u coming from the parent model and αi is the relaxation term at gridpoint i. On the

external boundary α1 = 1, and αi = 0 for all lines beyond the buffer zone.

1MSM at JMA utilises a Rayleigh damping term [46] instead but this damping term is closely related

to Davies relaxation.
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Although all the models utilise this relaxation across a buffer zone, the structure of the

relaxation term αi and the width of the buffer b varies between models. For exam-

ple, in the WRF system b = 4 and α is a simple linear interpolation [78] whereas in

HIRLAM-5, b = 10 is the default in the reference system and the default value of α is

αi = 1
2 {1 + cos[πi/b]} [38]. As well as a relaxation zone, HIRLAM also implements an

extension zone to obtain periodicity on the LAM domain [35]; this will be discussed in

Section 4.2.1.

All the LAMs get their LBCs from a parent model. However, the frequency with which

they are provided differs between the models. In the WRF system the LBCs are specified

by the parent model at every coarse-grid time step [78]. In contrast, in MSM the LBCs

are only given at the initial time and at the end of the assimilation window and are

interpolated between these two times [41]. This interpolation could degrade the accuracy

of the model as it forces all variations at the boundaries to be equal in size and monotonic,

when in reality the values vary nonuniformly and may oscillate. This is illustrated in

Figure 4.2. Points A and B are the boundary value u0 at the initial time and end of the

assimilation window respectively. The dotted line is the linear interpolation between the

points and the red dots are the boundary values obtained from this interpolation. The

solid blue line shows the model value at the boundary over the assimilation window and

the blue dots show the boundary conditions obtained from this trajectory. As can be

seen, these two sets of LBC values can be significantly different, which would have an

effect on the LAM using them. Errors in the LBCs may also propagate inwards over the

assimilation window so that even though only the boundaries of the LAM are forced to

agree with the parent model, the solution on the interior of the LAM has been degraded.

By providing LBCs at every coarse-grid timestep some of the natural nonuniformity of

the variation is maintained and may help provide a more accurate analysis across the

LAM domain.

All the models discussed so far share one more common theme, they run on a grid

with a constant resolution. However, as well as a nested-grid approach, there has been

interest in developing stretched/variable resolution grids for high resolution NWP [3].

A global stretched/variable resolution grid with enhanced resolution over the region of

interest has been used for regional scale forecasts and climate modelling at the Canadian

Meteorological Centre (CMC) [15], [27]. A stretched/variable resolution grid has the
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Figure 4.2: Comparing methods of providing boundary values for the LAM. Points A and B are the
boundary value u0 at the initial time and end of the assimilation window respectively. The dotted line is
the linear interpolation between the points and the red dots are the boundary values obtained from this
interpolation. The solid blue line shows the model value at the boundary over the assimilation window
and the blue dots show the boundary conditions obtained from this trajectory.

benefit that it does not require LBCs and provides self-consistent interactions between

the global and regional scales of motion. However, the variable resolution has its own

complications. In particular, there is the question of how to perform data assimilation

on a variable resolution grid. At CMC the 3D-Var analysis increments are generated on

a fixed resolution grid and then interpolated to the variable resolution.

4.1.2 The data assimilation schemes

Variational data assimilation (Var) is the method of choice for global models in many

numerical weather prediction centres and is expected to remain so for the foreseeable

future [7]. For LAMs, Var is also the method of choice. HIRLAM [43] and the JMA

model run 4D-Var with the option to run as 3D-Var. WRF currently runs with 3D-Var,

while 4D-Var is under developement [78]. Aladin at Météo-France and both the NAE

and 4km UK model at the Met Office have 3D-Var systems.

Var is being and will be used with increasingly higher resolution models. There are

already plans published by Météo-France for a 3D-Var-based high-resolution limited-

area system with a model of 2.5km grid length [26], the Met Office 4km UK model is

being upgraded to 1.5km and HARMONIE at HIRLAM, which has a target resolution

of 2.5km, has a 3D-Var scheme with 4D-Var under development [40].
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Although the methods of implementation may vary between the centres, most of the

Var systems in use operationally on LAMs solve the same basic cost function. The

Var used by JMA however is a notable exception. It contains an extra term Jc in

the cost function [46]. This Jc is a penalty term to suppress spurious inertia-gravity

waves [41]. At Météo-France there are also plans to introduce an additional term, Jk,

to the standard cost function (This will be discussed in Section 4.2.1). This term would

add the large-scale structures from a parent model as an extra source of information,

by means of a weak constraint.

Having discussed some of the operational schemes, their similarities and differences and

how they overcome some of the issues caused by the limited area domain size, we now go

on to consider some of the problems associated with limited area models in more detail.

4.2 Problems caused by having a limited area domain

Only having a limited area can create some problems for both the data assimilation and

the model itself.

4.2.1 Lateral boundary conditions

A significant problem caused by the limited area nature of storm-scale forecasting models

is the need for lateral boundary conditions (LBC). A global model grid stretches over the

whole globe so has no ‘edges’ and is simply periodic. For a limited area model (LAM)

this is not the case. The grid now has ‘edges’ so as well as initial conditions we also

need to have LBCs for both the model and the data assimilation. These LBCs can have

several associated problems.

Lateral boundary conditions for the model

One property the research models at the world’s weather centres all have in common

is that they take these LBCs from another model which covers a larger domain. This

model is refered to by various names but here will be called the ‘parent’ model. The
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LBCs supplied by the parent model can be a major source of error in the LAM [65],[84].

This is due to several reasons.

1. The horizontal, vertical and temporal resolution of the parent model is generally

coarser than that of the LAM and thus the LBCs have to be interpolated to the

LAM grid at every timestep. Even if the parent model run providing the LBCs

is perfect, there will be interpolation errors introduced when it is interpolated to

the LAM resolution.

2. There may also be differences in model setup and parameterisation, even if the

resolution is the same in both models. This will cause differences in the model

outputs and these differences at the boundaries may cause spurious waves and

gradients, which can influence the LAM interior.

3. The parent model may simply be wrong for some reason. It may have an at-

mospheric feature occuring in the wrong spatial location or developing too early

or too late for example, and this error will be transmitted to the LAM at the

boundary interface.

These problems and others are dicussed by [84]. Although these are problems associated

with the LAM itself, they can also be exacerbated in the data assimilation. This is

discussed in the next section.

One way to negate these problems is to simply locate the boundaries sufficiently far from

the area of meteorological interest such that errors cannot be transmitted inwards from

the boundary in the time window of the forecast [84]. For high resolution forecasting

however, this is simply impractical as the domain can only be a limited size and there

are insufficient computer resources to allow for boundaries to be sufficiently far away.

As discussed in Section 4.1.1, one method that is implemented operationally is the

use of a ‘buffer zone’. The buffer zone blends the two solutions near the boundaries

and therefore avoids any sharp jumps, which could arise because the models evolve

independently, by smoothing any discrepencies between the models at the boundaries.
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Lateral boundary conditions for the data assimilation

As well as being required for the model, LBCs are also required for the data assimilation

algorithm. These LBCs share or exacerbate some of the problems already discussed but

also cause others specific to the data assimilation.

The operational assimilation-forecast cycle has the following steps:

Step 1 Run a coarse resolution model to provide a forecast over a large domain.

Step 2 Run the LAM, from a previous LAM analysis, to provide a background forecast

over the assimilation time window, using LBCs from the forecast in Step 1.

Step 3 Run the data assimilation to combine the LAM background forecast with obser-

vations to produce the LAM analysis.

Step 4 Run the LAM over the full forecast period, using the analysis from Step 3 and the

LBCs from Step 1.

One problem is that the LAM analysis is unable to use observational information from

outside its domain. Near the boundary this may be detrimental locally [2]. This is

illustrated in Figure 4.3. Although the observation lies outside the area covered by the

LAM domain, the B matrix spreads out the influence of this observation and would

allow it to provide information at gridpoints inside the LAM domain. However, because

the LAM cannot see this observation, the knowledge it infers about gridpoints within

the LAM domain is also lost. It may also impact negatively if there is a large scale

feature partially lying within the LAM domain [34]. In order to capture the feature

properly information could be needed from outside the domain but this information is

unavailable to the LAM.

Another problem is that the LBCs interpolated from the parent model have the potential

to degrade the quality of the analysis produced by the LAM. The background error

covariance matrix spreads information so errors at the boundaries will be spread inwards.

During a 4D-Var assimilation window, the model dynamics will also spread the errors

from the boundaries into the interior of the LAM, contaminating the analysis [65].

Furthermore, the analysis is updated separately from the LBCs, as illustrated in Steps
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observation

LAM domain

Figure 4.3: Diagram illustrating the observational information lost from observations outside the LAM
domain. The red dot is an observation and the dotted lines indicate the spreading of this observational
information by the matrix B. The green area is the part of the LAM domain that would be influenced
by the observation if it were visable to the LAM.

1-4 above. This can create inconsistencies between features represented in the LAM and

the coarser model providing the LBCs. For example, the position of a weather front

may be different in the two domains.

As discussed in Section 2.3.4, a control variable transform is used to remove horizontal

correlations in the state variable. In global variational assimilation schemes this control

variable transform results in a state variable defined in spectral space. However, applying

a spectral transform on the LAM poses a problem as the solution on the LAM domain

is not periodic. This leaves us with two choices for the treatment of the boundaries

in the assimilation. One option is to analyse the boundaries and update the LBCs

in the forecast. This option is implemented by HIRLAM [35]. To do it they utilise

an extension zone, as shown in Figure 4.4. This extension zone is a region added to

the edge of the LAM domain over which the solution on the LAM is made periodic.

It makes it possible to have non-zero boundary increments on the LAM and have the

periodic solution necessary to apply standard fast Fourier transforms for the transform

of the control variable. However, a problem caused by updating the LBCs is that the

assimilation time window is much shorter than the full forecast period. At the end of the

assimilation window we have to revert to the LBCs from the coarse background forecast

(from Step 1), potentially creating discontinuities in the LBCs.

The second option is to not analyses the boundaries and force them to remain the
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LAM

buffer zone

extension zone

Figure 4.4: The extension zone of the HIRLAM model, as shown in [35]

LAM domain

Figure 4.5: Diagram illustrating a feature being ‘cut-off’ by the LAM boundary. The colours indicate
the size of the increment, white being zero increment and pink being the largest increment.

same as those of the parent. If we think in terms of increments, this second option

can be described as having zero boundary conditions, as the boundaries are not allowed

to change. A consequence of zero boundary conditions is that we have the periodic

solution we need in incremental space to perform a spectral control variable transform.

In particular, having zero boundary conditions mean that a sine transform can be used,

as is implemented at the UK Met Office [55]. However, zero boundary conditions can

result in phenomena being ‘cut-off’ or contained by the boundary when they should pass

through it [2]. This is demonstrated in Figure 4.5.

One attempt by [2] to improve this problem of phenomena being ‘cut-off’ by the bound-
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aries has been to modify the LAM background by adding on the analysis increments of

the coarse analysis, filtered to scales greater than a specified length scale N . The anal-

ysis in the LAM is then only done for scales less than N km. Results presented in [2]

show this can improve the increments in the region of the boundary but the increments

at the boundary are still zero so phenomena are still being cut off. This method will not

solve the problem when the LAM assimilation is run more frequently than the model

providing the LBCs [2], as the results are produced assuming that the coarse model

analysis is available at the time of the LAM analysis. Operationally, this may not be

the case. However, it might be possible to use a coarse model forecast to provide the

large scales, but this has not been tested.

An alternative method proposed by [34] attempts to improve the consistency of the LAM

analysis with the LBCs provided by the parent model by including an extra term in the

cost function. This extra term measures the distance between the lateral boundary

values of the analysis and the LBCs from the global model in a low resolution geometry.

This fits with the recommendations in [65] and [87] that the LBCs be included as part

of the control variable in addition to the initial conditions. Slightly positive or neutral

results were seen for the proposed method [34]. However, testing the method on a very

high resolution, small domain size is still to be done and the method is only considered

for a 3D-Var assimilation scheme; no comment is made as to how this method could

be extended to a 4D-Var scheme. As with the previous method, this method is not

currently operational.

Another problem caused by the limited domain size is that there may be features present

in the atmosphere with lengthscales that are longer than the domain of the model.

However, before we discuss this we first need to consider aliasing.

4.2.2 Aliasing

Aliasing is a phenomenon whereby small-scale waves are misinterpreted as much larger-

scale waves. Following the description in [18, Appendix H], the problem is demonstrated

in Figure 4.6. The red line is a plot of the wave sin (2π9x) and the 9 black dots are

observations taken at equally spaced intervals. As can be seen by the blue line, the 9

observations also fit the wave sin (2πx). With just these 9 points, there is no way to
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Figure 4.6: Diagram illustrating the problem of aliasing. The red solid line is f(x) = sin (2π9x) and the
blue dashed line is f(x) = sin (2πx). Black dots are observation points.

distinguish between the small-scale and the larger-scale wave. With eight grid lengths,

as there are in Figure 4.6, only the first eight degrees of freedom can be extracted and

any waves with higher wavenumber are misrepresented.

Aliasing can be explained algebraically if we consider the Fourier series. For a function

f(xj) where xj = 2πj/N and j = 0, ..., N − 1, the discrete Fourier modes are based on

the points xj , for which the (n+Nm)th mode (wherem is an integer) is indistinguishable

from the nth mode [37, p.31],

ei(n+Nm)xj = einxjei2πmj = einxj .

High-order modes will therefore be misrepresented as lower-order modes.

In an NWP model, this can mean that atmospheric phenomena at scales below the

resolution of the model are aliased onto lower wavenumbers, causing errors at the longer

scales. The phenomenon of aliasing with reference to data assimilation is discussed

by [18, Appendix H]. The higher resolution of LAMs should reduce this aliasing effect

compared with the parent model, as more small scales can be resolved. However, the

LAM can also suffer a different aliasing problem caused by its limited area domain. This

is now discussed in Section 4.2.3.
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LAM domain

Observations

Figure 4.7: The long-wave problem. The long wave (green line) is longer than the domain of the LAM.
Observations of this wave (shown as red dots) could be used by the data assimilation to correctly
reconstruct the wave section, or they could be used to incorrectly reconstruct a wave with a shorter
wavelength which fits in the domain of the LAM (blue dashed line).

4.2.3 The ‘long-wave’ problem

Another problem for a LAM which is a consequence of the limited area domain is that

there may be atmospheric phenomena with lengthscales that are longer than the domain

of the model. For example, a Rossby wave can have a length scale of several thousand

kilometers compared to the 1152km domain of the Met Office 4km model.

The problem of having lengthscales longer than the domain of the model is referred to

here as the ‘long-wave’ problem and these long lengthscales will be referred to collec-

tively as ‘long-waves’. Accurately representing these long-waves is important because

meteorological processes are known to be multiscale phenomena and there are strong

feedbacks between synoptic and convective scale behaviours [19]. It has been shown in

case studies [74] that if the large scales are poorly represented then we cannot hope to

generate an accurate forecast of the convective scales, even if we have captured the local

dynamics well.

However it may be difficult to capture the long-waves correctly on the LAM domain

as their wavenumbers are not among the range of the limited area model. Data as-
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similation may help as atmospheric measurements can contain a large range of scales.

However, observations of the long-waves may be aliased onto shorter wavelengths. This

is demonstrated in Figure 4.7 where only a section of the long-wave (shown in green)

is contained within the LAM domain. If we have observations (shown as red dots) of

this long-wave section, the data assimilation may correctly reconstruct the long-wave.

It might however, interpret the observations as coming from a wave whose wavelength

does fit within the LAM domain and reconstruct that wave instead (as shown in blue).

In contrast to the tradional view of aliasing described in Section 4.2.2, the long-wave

problem can be considered as a ‘reverse’ aliasing problem, with long-wave information

being aliased onto shorter wavelengths that are part of the spectrum of the domain.

4.3 Summary

In this chapter we discussed some of the operational limited area models currently in

use around the world. We commented on the similarities and differences between the

models and their data assimilation schemes as well as how they deal with some of the

issues caused by having only a limited domain size.

We then went on to consider in more detail some of the problems caused by the limited

domain size. We discussed problems caused by the need for boundary conditions and we

also introduced the long-wave problem: the problem of having atmospheric phenomena

with length scales longer than the domain of the limited area model.

It is important that a LAM analysis be able to capture both small and large scales,

including scales longer than the domain of the model. In this thesis we aim to understand

where information about the different scales is projected by the data assimialtion and

to investigate a possible method for using this knowledge to improve the representation

of large scales, including long-waves, in a 4D-Var LAM analysis whilst still accurately

capturing smaller scale detail.

In Chapter 5 we go on to discuss the adaptations to the 4D-Var scheme introduced in

Chapter 2, to enable it to be used for a limited area domain.

43



Chapter 5

A 4D-Var algorithm for a LAM

domain

In this Chapter we introduce a general limited area model (LAM) domain and discuss the

modifications needed to a standard 4D-Var scheme in order to run it on this limited area

domain. We also discuss minimising the 4D-Var scheme in both physical and spectral

4D-Var space.

5.1 A parent domain and a nested LAM domain

We have two 1D domains with different resolutions. The layout of both model domains

can be seen in Figure 5.1. The first domain is the larger of the two and has coarser

resolution. This will be referred to as the ‘parent’ domain and on it we run the ‘parent’

model. The parent domain is divided up to contain N internal spatial gridpoints and

there are T parent timesteps in the assimilation window.

Within the parent domain is nested a smaller domain, the LAM domain, and on this

domain we run the LAM. The LAM covers D parent grid spaces where D = B2 − B1

and B1, B2 are the parent gridpoints corresponding to the boundaries of the limited area

domain. The LAM domain can have a finer resolution than the parent domain. There

are M internal spatial gridpoints in the LAM and S LAM timesteps in the assimilation
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Figure 5.1: Diagram of model domains.

window.

The lateral boundary conditions (LBCs) for the LAM are provided by the parent model.

In order to relax the solution on the interior of the LAM domain to the values prescribed

at the boundaries there is a buffer zone implemented at the boundaries of the LAM. The

buffer zone covers b LAM gridpoints and a Davies Relaxation scheme is used [20], [21].

We use Davies Relaxation because this is what is used operationally [79], as discussed

in Section 4.1. We use a linear interpolation function

αi = 1 − [i/b],

where b is the width of the buffer zone. When the resolution between the parent and

LAM differs, the LBCs provided by the parent model are interpolated onto the resolution

of the LAM grid.
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5.2 Modifications to the 4D-Var algorithm for the LAM

domain

As discussed in Section 2.2, to generate an analysis using 4D-Var we must minimise the

cost function (2.17)

J(x) =
1

2
(x − xb)T B−1(x − xb) +

1

2

T∑

k=0

(yk − Hk(xk))
T R

−1

k (yk − Hk(xk)),

subject to the model equation (2.18)

xk+1 = Mkxk.

However, the LAM has Davies Relaxation performed in the buffer zone which takes

values from the parent model so it is not possible to write the model equations including

the modifications at the boundaries in this form. We can however write the LAM model

equations as

xk+1 = M̂kxk + Px
p
k+1

, (5.1)

where xk is now the state vector on the LAM domain at time level k, M̂k is a modified

matrix at time level k that takes account of the scaling factor in the buffer zone due

to the Davies relaxation, P is a matrix of scaling factors for the influence of the global

values in the buffer zone due to the Davies relaxation and x
p
k is a vector of values from

the parent model at time level k.

For simplicity we assume that the matrix M̂k is the same at all time levels and we can

therefore replace M̂k in equation (5.1) with the constant matrix M̂ . Assuming that M̂

represents a three-point discretisation scheme of the form

xi,k+1 = ηxi−1,k + γxi,k + µxi+1,k,
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we have

cM =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 . . . 0

ψ1η ψ1γ ψ1µ 0 . . . 0

0 ψ2η ψ2γ ψ2µ 0 . . . 0

. . .

0 0 ψb−1η ψb−1γ ψb−1µ 0 . . . 0

0 0 η γ µ 0 . . . 0

. . .

0 0 η γ µ 0 0

0 . . . 0 ψb−1η ψb−1γ ψb−1µ 0 0

0 . . . 0 ψb−2η ψb−2γ ψb−2µ 0 0

. . .

0 . . . 0 ψ1η ψ1γ ψ1µ

0 . . . 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(5.2)

and

P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

φ0 0 . . . 0

0 φ1 0 . . . 0

0 0 φ2 0 . . . 0

...

0 0 φb−1 0 . . . 0

0 0 0 0 0

. . .

0 0 0 0 0

0 . . . 0 φb−1 0 0

0 . . . 0 φb−2 0 0

...

0 . . . 0 φ1 0

0 . . . 0 φ0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (5.3)

where φ = {φi}b−1
i=0 is a vector of Davies Relaxation coefficients and ψi = 1 − φi, where

the subscript here refers to the spatial step.

It is clear that this change in the form of the model equations can have no effect on ∇Jb

[equation (2.22)] but it is less clear what effect it has on ∇Jo [equation (2.23)]. Therefore,
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we now consider ∇Jo. From the model equations (5.1) we have

x1 = M̂x0 + Px
p
1,

x2 = M̂x1 + Px
p
2 = M̂(M̂x0 + Px

p
1) + Px

p
2,

x3 = M̂x2 + Px
p
3 = M̂(M̂(M̂x0 + Px

p
1) + Px

p
2) + Px

p
3,

...

xT = M̂xT −1 + Px
p
T

= M̂(· · · (M̂(M̂x0 + Px
p
1) + Px

p
2) · · · ) + Px

p
T
.

Inserting these into Jo from equation (2.17) gives

Jo =
1

T

T∑

k=0

(yk − Hk(xk))
T R

−1

k (yk − Hk(xk)),

=
1

2
(y0 − H0(x0))

T R
−1

0 (y0 − H0(x0))

+
1

2
(y1 − H1(x1))

T R
−1

1 (y1 − H1(x1))

+
1

2
(y2 − H2(x2))

T R
−1

2 (y2 − H2(x2))

+ · · · + 1

2
(yT − HT (xT ))T R

−1

T
(yT − HT (xT )),

=
1

2
(y0 − H0(x0))

T R
−1

0 (y0 − H0(x0))

+
1

2
(y1 − H1(M̂x0 + Px

p
1))

T R
−1

1 (y1 − H1(M̂x0 + Px
p
1))

+
1

2
(y2 − H2(M̂(M̂x0 + Px

p
1) + Px

p
2))

T R
−1

2

(y2 − H2(M̂(M̂x0 + Px
p
1) + Px

p
2)),

+ · · · + 1

2
(yT − HT (M̂(· · · (M̂x0 + Px

p
1) + Px

p
2) · · · ) + PxP

T
)
T
R

−1

T

(yT − HT (M̂(· · · (M̂x0 + Px
p
1) + Px

p
2) · · · ) + PxP

T
)
T
. (5.4)

Notice here that the Px
p
k terms do not depend on x0, so the gradient with respect to

x0 is just an expression like equation (2.23)

−∇Jo = HT
0

d0 + M̂T [HT
1

d1 + M̂T [HT
2

d2 +

M̂T [HT
3

d3 + · · · + M̂THT
T

dT ] · · · ]], (5.5)

where

dk = R
−1

k (yk − Hk(xk)),

but now M̂ is given by equation (5.2). This illustrates that the LAM model can use the

same code to generate the gradient of the cost function as the parent model by simply

using the matrix M̂ instead of the standard matrix M .
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5.3 Working in incremental space

The state vector x can be expressed as

x = xb + δx,

where δx are known as the increments. If we are using a linear model then modelling the

increments is equivalent to modelling the full state and we can easily convert our model

to an incremental model. We wish to model the increments instead of the full state in

this thesis because it allows us to perform the data assimilation in spectral space as well

as in physical (gridpoint) space. This spectral data assimilation scheme is discussed in

Section 5.4.

When working with the full model state, the LAM boundaries are forced to remain

equal to the values prescribed by the parent model. Since it is this same parent model

that provides the background for the data assimilation on the LAM, when working in

incremental space the increments on the boundaries are automatically set to zero [i.e. we

impose zero boundary conditions on the LAM data assimilation in incremental space].

It is these zero boundary conditions that we utilise for the spectral scheme.

It is worth noting here that since we have constant zero boundary values when working

in incremental space, in this work we omit the two boundary gridpoints from our state

vector. Therefore, the incremental state vector is δx = {δxi}i=N−1
i=1 compared to the full

state vector x = {xi}i=N
i=0 . Omitting the boundary points from the state vector does not

alter the output generated by the LAM but it simplifies the spectral transform that is to

be used for the spectral data assimilation scheme. This will be discussed in Section 5.4

As well as converting our model to incremental space, we can also rewrite the cost

function in terms of increments. Starting from equation (2.17) we have

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb) +

1

2

T∑

k=0

(yk − Hkxk)T R
−1

k (yk − Hkxk),

=
1

2
δx0

T B−1δx0 +
1

2

T∑

k=0

(yk − Hkxb
k − Hkδxk)T R

−1

k (yk − Hkxb
k − Hkδxk),

=
1

2
δx0

T B−1δx0 +
1

2

T∑

k=0

(δyk − Hkδxk)T R
−1

k (δyk − Hkδxk), (5.6)

= J(δx0)
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where δyk = yk − Hkxb
k. We also now have the model constraint

δxk+1 = Mkδxk. (5.7)

From equation (5.6) it is easy to rewrite the gradients in terms of increments. The

gradient of Jb with respect to δx0 becomes

∇Jb = B−1δx0,

and the gradient of Jo with respect to δx0 is still

−∇Jo = HT
0

d0 + MT [HT
1

d1 + MT
2

[HT
2

d2 + · · · + MTHT
T

dT ] · · · ],

but now

dk = R
−1

k (δyk − Hkδxk).

5.4 A gridpoint and a spectral scheme for the LAM do-

main

5.4.1 The gridpoint scheme

The 4D-Var algorithm discussed so far performs the data assimilation in gridpoint (phys-

ical) space. The algorithm that performs the data assimilation in incremental gridpoint

space with control variable δx, using the cost function (5.6) will be referred to through-

out this thesis as the ‘gridpoint’ scheme.

5.4.2 The spectral scheme

As well as the gridpoint version of the algorithm we also set up a 4D-Var algorithm that

performs the data assimilation in spectral space via a sine transform.

The sine transform

For a periodic function f = fj, defined on a given domain divided into equally spaced
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discrete intervals with grid points numbered j = 0, 1, 2, · · · , N and f0 = fN = 0, the

Fourier sine transform is defined to be

sine transform(fj) = f̃κ =
N−1∑

j=1

fj sin (πjκ/(N)), (5.8)

where κ is the wavenumber [68].

The sine transform and its properties are discussed in Section 6.4.

The spectral version of the algorithm will be referred to throughout this thesis as the

‘spectral’ scheme. This spectral version is developed because it is a spectral scheme that

is used operationally on the LAM by the Met Office, as discussed in Section 4.2.1.

Both the gridpoint and the spectral schemes are used in this thesis. By using both a

gridpoint and a spectral based data assimilation scheme we can compare the output

of the two methods when given identical data and investigate the effect of the sine

transform.

To change the data assimilation scheme to a spectral one we need to perform a control

variable transform, as discussed in Section 2.3.4. The control variable transform used

here is the sine transform and it transforms the increments from physical to spectral

space. We define control variable transform

z = Wx, (5.9)

and an inverse transform

x = Uz, (5.10)

where W ∈ R
N×N is the sine transform and U ∈ R

N×N is the inverse sine transform.

In matrix notation the sine transform W can be written as

W = {Wjκ}, j = 1, . . . , N − 1 κ = 1, . . . , N − 1 (5.11)

where

Wjκ =

√
2

N
sin (πjκ/(N)). (5.12)

The
√

2
N term is a normalisation factor. Matrix W has a similar form to the more usual

Fourier matrix [80]. The dimensions of the matrix W here fit that of the incremental

state vector δx, where the boundary points have been omitted.
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Now that we have our new control variable we consider the effect it has on the cost

function. We start from equation (5.6) but now in terms of z instead of x.

J(z0) =
1

2
(Uδz0)T B−1(Uδz0) +

1

2

T∑

k=0

(δyk − HkUδzk)T R
−1

k (δyk − HkUδzk).

This can be written as

J(z0) =
1

2
δz0

TΣ−1δz0 +
1

2

T∑

k=0

(δyk − HkUδzk)T R
−1

k (δyk − HkUδzk), (5.13)

where

Σ−1 = UTB−1U . (5.14)

We now consider the effect the control variable transform has on the gradient of the cost

function. The gradient of Jb with respect to the new control variable is

∇Jb(z0) = Σ−1δz0, (5.15)

and the gradient of Jo with respect to the new control variable is

−∇Jo(z0) =
T∑

k=0

UT M̂TM̂T · · ·M̂T
︸ ︷︷ ︸

k functions

HT
k R

−1

k (δyk − HkUδzk). (5.16)

As we see, the only effect is the addition of a UT term at the start of the ∇Jo equation

and the change from B−1 to Σ−1 in the ∇Jb equation. These changes are easily made

to the gridpoint data assimilation code.

5.5 Summary

We have introduced a general, nested LAM domain. We have discussed the use of MT

as the adjoint model in the 4D-Var algorithm and also the modifications to M that are

required to apply this to the LAM domain. A gridpoint and a spectral scheme for the

LAM domain have also been discussed. We now go on to consider the implications the

LAM domain has on the DFT methods that were introduced in Chapter 3. We also

compare the results from the DFT with those generated using a Fourier sine transform.

52



Chapter 6

The discrete Fourier transform on

a LAM domain

In Chapter 3 we demonstrated methods of using the discrete Fourier transform (DFT)

and its power spectrum to understand properties of a solution, in particular, how we can

use the power spectrum to identify the wavenumber and amplitude of the components

of a solution. However, there can be a problem when we try to apply the DFT over the

LAM domain: As discussed in Chapter 4, we may have waves whose wavelengths are

longer than the LAM domain. These wavenumbers are not part of the LAM spectrum.

In this chapter we aim to understand where the information from these waves is projected

when we perform the DFT over the LAM domain.

We begin by considering how the DFT is calculated from its definition.

6.1 Calculating the DFT from its definition

We consider the DFT performed on a general sine wave of amplitude α and wavenum-

ber θ

ϕj = α sin (2πθxj), (6.1)

and a general cosine wave of amplitude β and wavenumber ϑ

φj = β cos (2πϑxj), (6.2)
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where θ ∈ R, ϑ ∈ R, xj = j∆x, j = 0, 1, 2, · · · , N − 1, ∆x = L/N is the gridspacing

and L is the length of the domain (i.e. x ∈ [0, L)).

If we further restrict θ and ϑ such that θL ∈ N and ϑL ∈ N, then following the same

methods used in Section 3.2.1, the orthogonality relation defined by Lemma 3.1 and also

utilising the identity

cos (x) ≡ 1

2

(
eix + e−ix

)
, (6.3)

the DFTs of ϕj and φj can be written as

ϕ̂k =





−iαN/2 if k − θL = 0 (i.e. k = θL),

iαN/2 if k + θL = N (i.e. k = N − θL),

0 otherwise,

(6.4)

and

φ̂k =





βN/2 if k − ϑL = 0 (i.e. k = ϑL),

βN/2 if k + ϑL = N (i.e. k = N − ϑL),

0 otherwise.

(6.5)

Since the DFT is a linear operator, for any function fj which is a linear combination of

sine and cosine waves we can construct the DFT from a combination of these general

cases.

In equations (6.4), and (6.5) we assume that θL ∈ N (or ϑL ∈ N). However, if this

assumption does not hold then we have not satisfied the hypothesis of Lemma 3.1 that k

has to be an integer, and therefore we cannot use Lemma 3.1 to simplify the DFT. This

causes problems on the LAM domain.

The situation θL /∈ N can occur on the LAM domain in one of two ways:

1. The wavelength of the wave is longer than the domain of the model (θL < 1),

2. The wavelength of the wave is shorter than the domain of the model but the

domain size is not an interger multiple of the wavelength (θL > 1).

In this Chapter we will only consider the first case θL < 1 (the long-wave case).

Before we consider the DFT over the LAM domain for a long-wave, we need first to

understand what the wavenumbers we have on the parent domain correspond to on a
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Figure 6.1: Comparing the same wave on domains of different length.

LAM domain. For simplicity we take xp ∈ (0, 1] as our parent domain, i.e. L = 1 for

the parent domain, and therefore for the LAM domain L < 1.

6.2 Wavelengths on a LAM domain

On the parent domain xp ∈ (0, 1] and we have the sine wave with wavenumber κp

u = sin (2πκpxp). (6.6)

For a LAM domain x ∈ (0, L] where L < 1, only a section of the wave u will fit in the

LAM domain.

To find the wavenumber of this section of wave on the LAM domain, we rewrite u as

u = sin

(
2πκx

L

)
, (6.7)

where κ is to be found.

We equate the arguments of equations (6.6) and (6.7) to find

κ = Lκp,

i.e. wavenumbers on the LAM domain x ∈ (0, L], where L = 1/m, are 1/m what they

are on the parent domain xp ∈ (0, 1].
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This is illustrated in Figure 6.1 for the case of a LAM domain which is half that of

the parent (i.e. m = 2). As can be seen, the sine wave on the parent domain has

wavenumber 2 (two full wavelengths fit in the parent domain) but the same wave on the

LAM domain has wavenumber 1 (only one wavelength fits in the LAM domain).

Now that we understand the equivalence between wavenumbers on the domain L = 1

and those on the domain L < 1 of the same wave, we can consider the DFT when L < 1,

knowing where we expect the amplitude to appear in the power spectrum.

6.3 The DFT over a LAM domain

To investigate how the DFT behaves over a LAM domain, and in particular how a ‘long

wave’ is treated by the DFT, we consider the DFT of a function fj which is a linear

combination of sine waves.

We take the example

fj = 2 sin (2πjL/N) + 2 sin (4πjL/N)

+ sin (8πjL/N) + sin (16πjL/N), (6.8)

and begin with the LAM domain L = 1/2.

6.3.1 L = 1/2

Substituting L = 1/2 into equation (6.8) gives us our wave as

fj = 2 sin (πj/N) + 2 sin (2πj/N)

+ sin (4πj/N) + sin (8πj/N), (6.9)

on the LAM domain. Here the longest wavelength contained in fj is longer than L.

The power spectrum of fj , taking N = 16, is shown in Figure 6.2(a). As discussed in

Section 3.2.2, when plotting the power spectrum all of the DFT coefficients are scaled

by the factor 2/N . Also, in all the power spectra of DFTs shown in the rest of this

thesis we only plot the first half of the spectrum, we do not plot the amplitude caused
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Figure 6.2: (a) Power spectrum of fj with N = 16, scaled by the factor 2/N . (b) Power spectrum of fj

with N = 256, scaled by the factor 2/N . (c) Difference between N = 256 and N = 16 power spectra
amplitudes.

by the symmetry of the complex conjugate, as discussed in Section 3.4.1, i.e. we plot

the amplitude at wavenumber κ but not the corresponding amplitude at wavenumber

N − κ.

From equation (6.4) we expect the 2 sin (2πj/N) wave to produce a peak with amplitude

4 at k = 1, the sin (4πj/N) wave to produce a peak with amplitude 1 at k = 2 and

the sin (8πj/N) wave to produce a peak with amplitude 1 at k = 4. However, we do

not know where information about the 2 sin (πj/N) wave will be sent. It has wavenum-

ber k = 1/2 but equation (6.4) requires k ∈ N. As can be seen in Figure 6.2(a) there

is considerable amplitude at k = 0. There is also a discrepancy in the amplitude we

expect at other wavenumbers. This discrepancy could be a result of errors caused by

resolution. With N = 16 the short wavelengths may not be well resolved and this error

would then show up in the power spectrum. To check if this is the case we re-run the
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Figure 6.3: Power spectra of the individual waves contained in fj , scaled by the factor 2/N . (a)
2 sin (πj/N), (b) 2 sin (2πj/N), (c) sin (4πj/N) and (d) sin (8πj/N).

DFT calculation using N = 256, a high enough resolution to accurately represent all the

wavelengths. The power spectrum with N = 256 is shown in Figure 6.2(b). Compari-

son with Figure 6.2(a) shows that it does not appear that changing the resolution has

affected the power distribution. This is confirmed by Figure 6.2(c) which plots the differ-

ence between the power spectrum with N = 256 and the power spectrum with N = 16.

As can be seen the change in amplitude is at most O(10−2). This suggests the unex-

pected features we see in the power spectrum are caused by the long wavelength. To

investigate this further we consider the wavelengths contained in fj individually. The

power spectra of each wave are shown in Figure 6.3. As can be seen, the waves with

wavenumbers k = 1, 2, 4 do produce the power spectra we expect. Figure 6.3(a) shows

that all the amplitude at k = 0 and the changes at k = 1, 2, 3, . . . result from the long

wave.

To understand better the power spectrum of fj and in particular the effect of the

58



2 sin (πj/N) wave we consider the definition of the DFT in more detail.

Since fj is a linear combination of sine waves, the DFT of fj can be written as

f̂k = ak + bk + ck + dk, (6.10)

where

ak =
1

i

N−1∑

j=0

(
e−i2πj(k−L)/N − e−i2πj(k+L)/N

)
,

bk =
1

i

N−1∑

j=0

(
e−i2πj(k−2L)/N − e−i2πj(k+2L)/N

)
,

ck =
1

2i

N−1∑

j=0

(
e−i2πj(k−4L)/N − e−i2πj(k+4L)/N

)
,

dk =
1

2i

N−1∑

j=0

(
e−i2πj(k−8L)/N − e−i2πj(k+8L)/N

)
,

We first consider k = 0. By substituting k = 0 and L = 1/2 into equation (6.10) we

get b0 = c0 = d0 = 0 from Lemma 3.1. However a0 is not in the form of the orthogonality

relation so it requires different treatment. Using angle summation formulas and the

properties of telescopic sums, a0 can be written as

a0 =
1

i

N−1∑

j=0

(
eiπj/N − e−iπj/N

)
,

= 2
N−1∑

j=0

sin (πj/N),

=
1

sin (π/N)

N−1∑

j=0

2 sin (πj/N) sin (π/N),

=
1

sin (π/N)

N−1∑

j=0

[cos (πj/N − π/N) − cos (πj/N + π/N)] ,

=
−1

sin (π/N)

N−1∑

j=0

[cos ((j + 1)π/N) − cos ((j − 1)π/N)] ,

=
1

sin (π/N)
[2 + cos (π/N) − cos ((N − 1)π/N)] ,

6= 0.

So at k = 0 we have

f̂0 = a0 =
1

sin (π/N)
[2 + cos (π/N) − cos ((N − 1)π/N)] . (6.11)

59



For the case with resolution N = 256, this gives

a0 =
1

sin (π/256)
[2 + cos (π/256) − cos (255π/256)]

which would give a peak on the power spectrum at k = 0 of amplitude corresponding

to the value we see at k = 0 in Figure 6.3(a) and Figure 6.2(b).

Next we consider k = 1. By substituting k = 1 and L = 1/2 into equation (6.10) we

again get c1 = d1 = 0 from Lemma 3.1 and also get that b1 = −iN . Again however, a1

cannot be simplified using the orthogonality relation and is left as

a1 =
1

i

N−1∑

j=0

(
e−iπj/N − e−i3πj/N

)
.

So at k = 1 we have

f̂1 = a1 + b1. (6.12)

Again for the case with resolution N = 256, this gives

a1 =
1

i

255∑

j=0

(
e−iπj/256 − e−i3πj/256

)

which would give an amplitude in the power spectrum at k = 1 corresponding to the

value we see at k = 1 in Figure 6.3(a). Also

a1 + b1 =
1

i

255∑

j=0

(
e−iπj/256 − e−i3πj/256

)
− i256

which would give an amplitude in the power spectrum at k = 1 corresponding to the

value we see at k = 1 in Figure 6.2(b).

If we consider k = 2 in the same way we get that b2 = d2 = 0, c2 = −iN/2 and

a2 =
1

i

N−1∑

j=0

(
e−i3πj/N − e−i5πj/N

)
.

So at k = 2 we have

f̂2 = a2 + c2. (6.13)

For the case with resolution N = 256, this gives

a2 =
1

i

255∑

j=0

(
e−i3πj/256 − e−i5πj/256

)
,

60



N DFT amplitude in power spectrum

8 10.0547 6.3185

16 20.3063 6.4429

32 40.7109 6.4741

128 162.9665 6.4839

256 325.9452 6.4844

Table 6.1: Value of bf0 for different values of N .

which would give an amplitude in the power spectrum at k = 2 corresponding to the

value we see at k = 2 in Figure 6.3(a). Also

a2 + c2 =
1

i

255∑

j=0

(
e−i3πj/256 − e−i5πj/256

)
− i128,

which would give an amplitude in the power spectrum at k = 2 corresponding to the

value we see at k = 2 in Figure 6.2(b).

Continuing with these calculations shows that dk will give us a peak in the power

spectrum at k = 4 and that all other non-zero values are contributed by ak, but that

the magnitude of these contributions quickly decays for k > 1.

As we have seen, the majority of the long wave information is being sent to k = 0, but

it also appears that the exact amplitude at k = 0 may also depend on the number of

gridpoints in the domain. To investigate this we again consider the DFT of fj over the

domain L = 1/2 but now we vary the number of gridpoints. From equation (6.11) we

have, at k = 0,

f̂0 =
1

sin (π/N)
[2 + cos (π/N) − cos ((N − 1)π/N)] . (6.14)

The value of f̂0 for different values of N is shown in Table 6.1. From it we see that

the value of f̂0 is dependent on the value of N but as the value of N increases the

value of f̂0 approaches a limit. This is because for large N , π/N << 1 and for x << 1

we have sin (x) ≈ x so the coefficient in equation (6.14), 1/ sin (π/N), behaves as N/π

for large N . Since the DFT has a normalisation factor of 2/N this coefficient becomes

simply 2/π, which is independent of N . Therefore for large N (high resolution) the

amplitude at k = 0 does not vary with N . However, for small values of N the coefficient

in equation (6.14) cannot be approximated by a constant and the amplitude at k = 0
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does vary as N increases. For very low resolutions this variation could be significant,

increasing N from 8 to 16 will increase the amplitude at k = 0 by O(10−1), but as the

resolution increases the amplitude at k = 0 approaches a limit.

To investigate whether the majority of the long-wave information is always sent to k = 0

we now consider the definition of the DFT for a general LAM domain of length L.

6.3.2 A general case

The continuous Fourier series approximation of a function has many known properties,

including convergence results for specific classes of functions. The discrete Fourier series

interpolation has convergence properties very similar to those of the continuous case.

Of particular interest here is the fact that the discrete case shares the same asymptotic

behaviour as the continuous case [37, p.27].

Following the notation used in [37, Section 2], for a continous function f(ξ), on an

equidistant grid with an even number 2N of gridpoints ξj ∈ [0, 2π}, where

ξj = 2πj/2N,

the discrete Fourier coefficients f̂k are given by1

f̂k =
1

2Nĉk

2N−1∑

j=0

f(ξj)e
−ikξj ,

where

ĉk =





2 if |k| = N/2,

1 if |k| < N/2.

This defines a new projection of f

I2Nf(ξ) =
∑

|n|<N

f̂ke
ikξ.

This is the discrete Fourier transform, based on an even number of gridpoints. I2N is

also the interpolation operator.

Using this notation, the error estimate for the discrete approximation can now be stated

as
1This is essentially equivalent to the definition given in Section 3.1 but we now use 2N gridpoints

instead of N .
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Theorem 6.1 For any f(ξ) ∈ W r
p [0, 2π] with r > 1/2, there exists a positive constant

C, independent of N , such that

‖f − I2Nf‖L2[0,2π] ≤ CN−r
∥∥∥f (r)

∥∥∥
L2[0,2π]

.

where W q
p [0, 2π] is the Sobolev space, defined by the norm

‖f‖W q
p [0,2π] =


 ∑

|k|≤∞

(1 + k2q)
∣∣∣f̂k

∣∣∣
2




1/2

.

Theorem 6.1 tells us that the rate of convergence of the discrete expansion depends only

on the smoothness of the function being approximated [37, p.41].

In particular, a function f(ξ) ∈ C∞
p [0, 2π] has a convergence rate faster than any alge-

braic order of N−1. This is known as spectral accuracy.

Theorem 6.1 also tells us that the majority of long-wave information will be sent to

wavenumber k = 0. If we consider the wave (6.9) used in Section 6.3.1 for example, the

derivative does not have a continuous periodic extension. The rate of convergence will

therefore only be 1/N . However, a convergence rate of 1/N still means the majority of

the ‘long-wave’ information is sent to wavenumber k = 0. This will be the case for a

single ‘long-wave’ or a linear combination of several.

If, as in Chapter 3, we consider the sine and cosine waves as a basis for function space,

then for a function f there will be a contribution at k = 0 from every component of f

with a wavelength longer than the domain L. 2

This general result would suggest that it is important to treat well wavenumber k = 0

if we want to accurately represent long waves in a numerical model.

This allocation of the long-wave information to wavenumber k = 0 could cause a problem

if instead of performing a DFT we perform a sine transform, as a sine transform will

2It is worth noting here that this combining of contributions may lead to a reduction in the amplitude

in the power spectrum rather than an increase. This is due to the fact that some of the contributions

may have a negative sign, and they are combined and then squared to produce the power spectrum.

Therefore, although the DFT itself is linear, the power spectrum of a function made up of two waves is

not necessarily the power spectrum of each separate wave added together. This is clearly demonstrated

in Figures (6.2(a)) and (6.3).
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always have zero amplitude at k = 0. To investigate this we now perform a sine transform

on the function fj from equation (6.8).

6.4 The sine transform

From Section 5.4.2, for a periodic function f = fj , defined on a given domain divided

into equally spaced discrete intervals with grid points numbered j = 0, 1, 2, · · · , N and

f0 = fN = 0, the Fourier sine transform is defined to be

sine transform(fj) = f̃k =

√
2

N

N−1∑

j=1

fj sin (πjk/(N)),

where k is the wavenumber.

For large values of N , the sine transform can be calculated utilising efficient code avail-

able for the FFT. However, due to the (small) size of the vectors being considered here,

we can simply perform the sine transform via matrix multiplication, as described in

Section 5.4.2.

To understand better the sine transform we start by considering its calculation from the

definition.

6.4.1 Calculating the sine transform from its definition

We begin by considering the effect of the sine transform on a general sine wave, as we

did for the DFT in Section 3.2.1. We have a general sine wave with wavenumber θ and

amplitude α

ϕj = α sin (2πθxj).

The sine transform of ϕj over the domain [0, L) is

ϕ̃k =
N−1∑

j=1

ϕj sin (πjk/N),

= α
N−1∑

j=1

sin (2πθjL/N) sin (πjk/N).
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Using the identity

sin (x) ≡ 1

2i

(
eix − e−ix

)
, (6.15)

and that sin (0) = 0, the sine transform of ϕj becomes

ϕ̃k =
−α
4

N−1∑

j=0

[
e

iπj(2θL+k)
N − e

iπj(2θL−k)
N − e

−iπj(2θL−k)
N + e

−iπj(2θL+k)
N

]
. (6.16)

Equation (6.16) can be simplified for some cases using Lemma 3.1.

As with the DFT, the sine transform is a linear function, so now if we consider the sine

and cosine waves as a basis for function space, we can construct the sine transform for

any function fj from a combination of the general cases.

6.4.2 The sine transform for a linear combination of sine waves

To compare the sine transform with the DFT we now again consider the case when

fj = 2 sin (2πjL/N)) + 2 sin (4πjL/N)

+ sin (8πjL/N) + sin (16πjL/N), (6.17)

as before.

Using equation (6.16) the sine transform of fj can be written as

f̃k = a+ b+ c+ d, (6.18)

where

a =
−1

2

N−1∑

j=0

[
e

iπj(2L+k)
N − e

iπj(2L−k)
N − e

−iπj(2L−k)
N + e

−iπj(2L+k)
N

]
,

b =
−1

2

N−1∑

j=0

[
e

iπj(4L+k)
N − e

iπj(4L−k)
N − e

−iπj(4L−k)
N + e

−iπj(4L+k)
N

]
,

c =
−1

4

N−1∑

j=0

[
e

iπj(8L+k)
N − e

iπj(8L−k)
N − e

−iπj(8L−k)
N + e

−iπj(8L+k)
N

]
,

d =
−1

4

N−1∑

j=0

[
e

iπj(16L+k)
N − e

iπj(16L−k)
N − e

−iπj(16L−k)
N + e

−iπj(16L+k)
N

]
.

From equation (6.18) it is easy to see that for any domain size, f̃k is always zero at k = 0,

as we would expect. Therefore, we need only consider k ≥ 1.
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Figure 6.4: The power spectrum of the sine transform of fj over the domain L = 1, scaled by a factor
of 2/N .

As with the DFT, we start by considering the domain L = 1. This allows us to compare

the power spectrum of the sine transform with that which we would expect with the

DFT.

6.4.3 The sine transform when L = 1

Figure 6.4 shows the power spectrum of f̃k over the domain L = 1 with N = 256. As we

did for the power spectrum of the DFT, Section 3.2.2, when we plot the power spectrum

of the sine transform we apply a scaling factor of 2/N to the coefficients which results

in an amplitude of one in the power spectrum for a standard trigonometric wave.

As can be seen we get four peaks as we would expect. However, fj is a combination

of waves with wavenumbers κ = 1, 2, 4, 8 so for the DFT we would expect peaks in the

power spectrum at k = 1, 2, 4, 8 but the peaks in the power spectrum shown in Figure 6.4

are instead at k = 2, 4, 8, 16. To investigate the reason for this apparent shift and also

to understand better the sine transform itself we consider its definition.

We first consider the sine transform at k = 1. Substituting k = 1 and L = 1 into

equation (6.18) gives a = b = c = d = 0, from Lemma 3.1, so f̃1 = 0 which corresponds

to the amplitude we see at k = 1 in Figure 6.4.
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Considering k = 2 in the same way we get b = c = d = 0 but now we have

a =
N−1∑

j=0

1 = N,

so f̃2 = N . After applying the scaling factor 2/N , this corresponds to the amplitude we

see at k = 2 in Figure 6.4.

Considering k = 3 in the same way we get a = b = c = d = 0 so f̃3 = 0 which corresponds

to the amplitude we see at k = 3 in Figure 6.4.

Next considering k = 4 in the same way we get a = c = d = 0 but now we have

b =
N−1∑

j=0

1 = N,

so f̃4 = N , which after applying the scaling factor 2/N , corresponds to the amplitude

we see at k = 4 in Figure 6.4.

Continuing these calculations, we get

f̃k =





N if k = 2,

N if k = 4,

N/2 if k = 8,

N/2 if k = 16,

0 otherwise,

which, having applied the scaling factor 2/N , give peaks in the power spectrum of 4

at k = 2, 4 and of 1 at k = 8, 16. These correspond exactly to the peaks we observe in

Figure 6.4. The reason for the apparent shift in location of amplitude in Figure 6.4 can

also be explained from the definition of the sine transform. If we consider equation (5.8)

f̃k =
N−1∑

j=1

fj sin (πjk/N),

we see that the sine transform does not contain the factor of 2 in the sine term that

appears in the exponential term of the DFT. This has the effect of multiplying L by 2

in the definitions of a, b, c, d in equation (6.18). This factor of 2 results in a wave with

wavenumber κ producing a peak in the power spectrum at k = 2κ.

Now that we understand the sine transform over a domain large enough to contain full

wavelengths of the waves present in fj , we consider the sine transform over a LAM

domain.
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Due to the doubling effect on the wavenumbers caused by the sine transform, unlike

with the DFT, all the wavenumbers contained by fj correspond to whole wavenumbers

in the power spectrum when L = 1/2. Therefore, we instead consider L = 1/4.

6.4.4 The sine transform when L = 1/4

Before we perform the sine transform we need to know what we expect. From Section 6.3

we know that the wavenumbers in fj on the domain L = 1/4 are κ = 1/4, 1/2, 1, 2

and from Section 6.4 we know that the sine transform produces peaks in the power

spectrum at k = 2κ. We therefore expect peaks in the power spectrum at k = 1/2, 1, 2, 4.

However, amplitude cannot be assigned to wavenumbers that are not whole numbers.

The 2 sin (2πjL/N) wave in fj is too long to be represented and we are therefore unclear

as to how this wave will be treated by the sine transform.

The power spectrum of f̃k over the domain L = 1/4, with N = 64, is shown in Figure 6.5.

As can be seen, there is considerable amplitude at k = 1. However, there is lower

amplitude than we would expect at k = 2. Since the 2 sin (2πjL/N) wave in fj is the

one we suspect is causing these peculiarities we consider the sine transform of this wave

separately. Its power spectrum is shown in Figure 6.6. As can be seen, the majority of

the amplitude is at k = 1, with a cascade of amplitude through the higher wavenumbers.

This cascade effect is due to the convergence properties of the sine transform, as discussed

for the DFT in Section 6.3.2.

To understand Figure 6.5 better we consider again the definition of the sine transform.

From equation (6.18) the sine transform is always zero at k = 0 so we only consider k ≥ 1.

We first consider the sine transform at k = 1. Substituting k = 1 and L = 1/4 into

equation (6.18) gives c = d = 0 and b = N from Lemma 3.1 but a does not fit the form

of the orthogonality relation so has to be treated differently.

a = −1

2

N−1∑

j=0

[
e

iπ3j
2N − e

−iπj
2N − e

iπj
2N + e

−iπ3j
2N

]
.

so for N = 64 we have

a = −1

2

63∑

j=0

[
e

iπ3j
128 − e

−iπj
128 − e

iπj
128 + e

−iπ3j
128

]
,
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Figure 6.5: The power spectrum of the sine transform of fj over the domain L = 1/4, scaled by a factor
of 2/N .

which, after applying the scaling factor 2/N , corresponds to the amplitude we see at

k = 1 in Figure 6.6(a) and

f̃1 = −1

2

63∑

j=0

[
e

iπ3j
128 − e

−iπj
128 − e

iπj
128 + e

−iπ3j
128

]
+ 64,

which, after applying the scaling factor 2/N , corresponds to the amplitude we see at

k = 1 in Figure 6.5.

The value of f̃k at k = 2, 3, 4, · · · can be calculated in the same way and show that the

apparent peculiarities in Figure 6.5 are caused by the long-wave.

As with the DFT, there is a cascading effect of the ‘long-wave’ information through

the wavenumbers contained by the spectrum. In comparison to the DFT, instead of

being sent to wavenumber k = 0, in the sine transform the majority of the long-wave

information is sent to wavenumber k = 1.

6.5 Summary

We have discussed the effect the LAM domain has on the DFT and illustrated that

the same wave on domains of different size will have a different wavenumber. We have

demonstrated for a general case that, when using the DFT, the long-wave information

is aliased onto other wavenumbers, with the majority being aliased onto wavenumber
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Figure 6.6: (a) The power spectrum of the sine transform of 2 sin (2πxj) over the domain L = 1/4,
scaled by a factor of 2/N . (b) Close up of 0 − 0.5 amplitude section.
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k = 0 and then cascading down through the spectrum. In comparison, when using the

sine transform, the magnitude at k = 0 is automatically set to zero and the majority of

the long-wave information is instead sent to wavenumber k = 1.
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Chapter 7

A 1D linear advection-diffusion

model

We wish to model a simple PDE in order to mimic the operational system in a simple

model. We want our model to have as many of the properties of the operational model as

possible in order to be able to understand the potential problems. However, by using a

simple 1D-PDE model we are more able to identify the cause of problems and investigate

them individually.

We have pre-existing code for a parent model of the 1D heat equation [4] and this is

adapted here to include a nested LAM model. The heat equation is also extended to

the 1D linear advection-diffusion equation.

7.1 The advection-diffusion equation

Mathematical models involving a combination of advection and diffusion are widespread.

For example, in meteorology the advection-diffusion equation can be used to model the

dispersal of atmospheric pollution [62, p.3].

We use the 1D linear advection-diffusion equation [62, p.12]

ut + cux = σuxx, t ≥ 0, (7.1)
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on the domain x ∈ (0, 1], with periodic boundary conditions

u(x, t) = u(x+ 1, t), (7.2)

where u = u(x, t) is the temperature, x is the spatial coordinate, t is time, c is the

advection velocity and σ ≥ 0 is the diffusion constant.

7.2 The discrete problem

The continuous problem (7.1) is now approximated by a discrete problem. Equation (7.1)

can be discretised using an explicit Euler discretisation for the time derivative, centered

difference for the diffusion and upwind difference for the advection [23, p.138]. The

resulting finite-difference approximation to equation (7.1) is

uj,n+1 − uj,n

∆t
= −c

(
uj,n − uj−1,n

∆x

)
+ σ

(
uj+1,n − 2uj,n + uj−1,n

(∆x)2

)
, (7.3)

with boundary conditions

u0,n = uN,n, (7.4)

where uj,n = u(xj , tn) and xj = j∆x, tn = n∆t where ∆x is the grid length and ∆t is

the timestep. It is worth noting here that since we discretise the advection term using

an upstream scheme, we assume c ≥ 0.

Equation (7.3) can be rewritten succinctly as

uj,n+1 = (ν + µ)uj−1,n + (1 − ν − 2µ)uj,n + µuj+1,n, (7.5)

where

ν =
c∆t

∆x
and µ =

σ∆t

(∆x)2
.

Before we use this finite difference scheme we need to know if it is accurate and stable

for the problem we are considering.

7.2.1 Accuracy

To check the accuracy of the finite difference approximation (7.5) we calculate the trun-

cation error of the scheme.
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Assuming u is a solution of the continous problem the truncation error τj,n is

τj,n =
u(j∆x, (n+ 1)∆t) − u(j∆x, n∆t)

∆t

+c

(
u(j∆x, n∆t) − u((j − 1)∆x, n∆t)

∆x

)

−σ
(
u((j + 1)∆x, n∆t) − 2u(j∆x, n∆t) + u((j − 1)∆x, n∆t)

(∆x)2

)
, (7.6)

where {u(j∆x, n∆t)} is the set of values obtained by restricting the exact solution u(x, t)

to the nodal points xj , tn [45, p.368], [48, p.296].

Using a Taylor expansion about j∆x, n∆t gives

u(j∆x, (n+ 1)∆t) = u(xj , tn + ∆t)

= u+ (∆t)ut +
(∆t)2

2!
utt +O(∆t3)

u((j ± 1)∆x, n∆t) = u± (∆x)ux +
(±∆x)2

2!
uxx +

(±∆x)3

3!
uxxx

+
(±∆x)4

4!
uxxxx +O(∆x5).

To ease notation, in all the truncation error analysis we write u for u(j∆x, n∆t), ut for

ut(j∆x, n∆t), ux for ux(j∆x, n∆t) and so on.

Substituting the Taylor expansions into equation (7.6) gives, after cancellation,

τj,n = ut +
∆t

2
utt +

(∆t)2

3!
uttt +O(∆t3)

+c

[
ux − (∆x)

2
uxx +

(∆x)2

3!
uxxx − (∆x)3

4!
uxxxx +O(∆x4)

]

−σ
[
uxx +

(∆x)2

12
uxxxx +O(∆x4)

]
. (7.7)

Now from equation (7.1) we know ut + cux − σuxx = 0, which leaves

τj,n =
∆t

2
utt +

(∆t)2

3!
uttt − c

(∆x)

2
uxx + c

(∆x)2

3!
uxxx

−
[
c
(∆x)3

4!
+ σ

(∆x)2

12

]
uxxxx +O(∆t3,∆x4). (7.8)

From equation (7.8) we can see that

τj,n → 0 as





∆t → 0

∆x → 0
(7.9)

and that τj,n is O(∆x,∆t).

74



Considering the truncation error (7.7), we can see that equation (7.3) is also a second

order accurate in space, first order accurate in time approximation to the modified

equation
∂u

∂t
+ c

∂u

∂x
= σ

(
1 +

Pe

2

)
∂2u

∂x2
, (7.10)

where Pe = c∆x/σ is the grid Peclet number [23, p.138]. Comparing the modified

equation (7.10) with the original advection-diffusion equation (7.1) shows that the dis-

cretisation scheme (7.3) generates an inaccurate approximation to the diffusion term

unless Pe/2 is sufficiently small [23, p.138]. The Peclet number is a nondimensional

parameter classically defined as the ratio of the strength of advection to diffusion. Since

here the length scale is the grid spacing, Pe is a measure of the relative strengths of

advection and diffusion at the smallest spatial scales resolved on the grid [23, p.138].

7.2.2 Stability

As well as being accurate we also require a stable scheme. To investigate the stability

of the scheme we use a Fourier stability analysis [23, p.43-45]. Let

uj,n = ane
ikj∆x. (7.11)

Substituting this into equation (7.3) gives

an+1e
ikj∆x − ane

ikj∆x = −ν
(
ane

ikj∆x − ane
ik(j−1)∆x

)

+µ
(
ane

ik(j+1)∆x − 2ane
ikj∆x + ane

ik(j−1)∆x
)
,

which after cancellation and rearrangement can be written as

an+1 = an

[
1 − ν

(
1 − e−ik∆x

)
+ µ (2 cos (k∆x) − 2)

]
.

Replacing the exponential term with sines and cosines and then rearranging, this can

be written as

an+1 = an [1 − (ν + 2µ) (1 − cos (k∆x)) − iν sin (k∆x)] ,

or more succinctly as

an+1 = G(k)an,

where

G(k)
def
= 1 − (ν + 2µ) (1 − cos (k∆x)) − iν sin (k∆x),
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is known as the amplification factor. For a scheme to be absolutely stable we require

|G(k)| ≤ 1. Therefore, we have the stability condition

|1 − (ν + 2µ) (1 − cos (k∆x)) − iν sin (k∆x)| ≤ 1.

If we note here that if
√
a ≤ 1 then a ≤ 1, then we need

[1 − (ν + 2µ) (1 − cos (k∆x))]2 + ν2 sin2 (k∆x) ≤ 1.

We can express everything in terms of cosines using the trigonometric formula

sin2 a+cos2 a = 1, and if we also note that ν = µPe then we can write the inequality as

[1 − (µPe+ 2µ) (1 − cos (k∆x))]2 + (µPe)2
(
1 − cos2 (k∆x)

)
≤ 1.

Multiplying out the first term, factorizing the second, cancelling the 1 on both sides and

pulling out the common factor (1 − cos (k∆x)) gives

(1 − cos (k∆x))
[
(µPe+ 2µ)2 (1 − cos (k∆x)) − 2 (µPe+ 2µ) + (µPe)2 (1 + cos (k∆x))

]
≤ 0.

Now 1 − cos (k∆x) ≥ 0 for all values of k∆x so we need

(µPe+ 2µ)2 (1 − cos (k∆x)) − 2 (µPe+ 2µ) + (µPe)2 (1 + cos (k∆x)) ≤ 0,

which after rearranging becomes

(
4µ2 + 4µ2Pe

)
(1 − cos (k∆x)) + 2µ2Pe2 ≤ 2 (µPe+ 2µ) .

Here note that 1 − cos (k∆x) ∈ [0, 2], so it is sufficient to have

2
(
4µ2 + 4µ2Pe

)
+ 2µ2Pe2 ≤ 2 (µPe+ 2µ) ,

which can also be written as

(µPe+ 2µ)2 ≤ µPe+ 2µ.

Now since (µPe+ 2µ) ≥ 0 we can divide through and are left with

µ(Pe+ 2) ≤ 1.

Now note that ν = µPe and we have

ν + 2µ ≤ 1,
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or
∆t(2σ + c∆x)

∆x2
≤ 1, (7.12)

as a sufficient condition for stability.

It is worth noting here that if we set σ = 0 in equation (7.12) then we get

ν ≤ 1,

the standard stability condition for the advection equation [23, p.45]. If we instead

set c = 0 in equation (7.12) then we get

µ ≤ 1

2
,

the standard stability condition for the heat equation [62, p.17].

Now that we know the accuracy and stabilty conditions of the scheme, we can apply the

discrete equations to a parent and LAM domain.

7.3 The model design

We now use the discrete equation (7.5) to approximate equation (7.1) on the parent and

LAM domains. On the parent domain we use uP , xP , tP as the temperature, space and

time coordinates respectively and on the LAM we use uL, xL, tL.

7.3.1 The parent model

The parent domain xP ∈ (0, 1] is divided up to contain N spatial gridpoints and there

are T parent timesteps. On the parent grid equation (7.5) becomes

uP
j,n+1 = (νP + µP )uP

j−1,n + (1 − νP − 2µP )uP
j,n + µPuP

j+1,n, (7.13)

where

νP =
c∆tP

∆xP
and µP =

σ∆tP

(∆xP )2
,

with boundary conditions

uP
0,n = uP

N,n. (7.14)

Here uP
j,n = uP (xP

j , t
P
n ), xP

j = j∆xP , and tPn = n∆tP . The gridspacing ∆xP = 1/N and

the timestep ∆tP = 0.5/T .
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7.3.2 The LAM

The LAM domain is nested within the parent domain. The design of the LAM domain

can be seen in Figure 5.1. The LAM covers D parent grid spaces where D = B2 − B1

and B1, B2 are the parent gridpoints corresponding to the boundaries of the limited

area domain. Therefore, we have the boundary conditions

xL
1 = xP

B1, xL
M = xP

B2. (7.15)

M is the number of spatial gridpoints in the LAM and S is the number of LAM

timesteps. The spatial and temporal resolutions of the LAM are defined by their ratio

to the parent resolutions. If ∆xP is the parent gridspacing then the LAM gridspac-

ing is ∆xL = ∆xP /h, and if the parent timestep is ∆tP then the LAM timestep is

∆tL = ∆tP /τ . Therefore M = (D×h)+1 and S = T ×τ . Once the value of h has been

chosen, the value of τ is chosen such as to keep the value of µL the same as µP . This is

done because the scheme is second order accurate in space1 and first order accurate in

time so we wish to keep the value of ∆t/∆x2 constant.

On the LAM grid equation (7.5) becomes

uL
j,n+1 = (νL + µL)uL

j−1,n + (1 − νL − 2µL)uL
j,n + µLuL

j+1,n, (7.16)

where

νL =
c∆tL

∆xL
and µL =

σ∆tL

(∆xL)2
.

However, due to the design of the LAM domain we have the boundary conditions

uL
1,n = uP

B1,n/τ , uL
M,n = uP

B2,n/τ . (7.17)

When the LAM is run with a smaller timestep than that of the parent model, the parent

model output is interpolated to the LAM timesteps at gridpoints B1 and B2 to provide

the uP
B1,n/τ , u

P
B2,n/τ values.

In order to relax the solution on the interior of the LAM domain to the values prescribed

at the boundaries there is a buffer zone implemented at the boundaries of the LAM, as

described in Section 5.1.

1if Pe is sufficiently small, as discussed in Section 7.2
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7.3.3 Convergence of the model

Now that we have a model we need to check that it converges and that it is converging

to the truth. One advantage of the advection-diffusion equation is that is is possible to

find an analytic solution. This makes testing convergence very simple. We consider the

1D advection-diffusion equation

ut + cux = σuxx, t ≥ 0, (7.18)

on the domain x ∈ (0, 1], subject to periodic boundary conditions

u(0, t) = u(1, t). (7.19)

We try a solution of the form

uω(x, t) = eiωxT (t). (7.20)

Note here that ω is chosen such as to satisfy the periodic boundary conditions, so it can

take the value of any integer multiple of 2π

ω = 2πn where n = 0,±1,±2, · · · .

Substituting this solution into equation (7.18) gives a first order ODE for T ,

T ′ + T
(
icω + σω2

)
= 0. (7.21)

Substituting a solution of the form eλt into equation (7.21) yields

λ = −
(
icω + σω2

)

and therefore

T (t) = e−(icω+σω2)t.

A solution is now

uω(x, t) = eiωxe−(icω+σω2)t,

therefore the general solution can be written as a Fourier type solution

u(x, t) =
∞∑

n=−∞

ane
i2πn(x−ct)e−σ(2πn)2t, (7.22)

where an are constants to be determined by the initial conditions.
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For example, if we have the initial conditions

u(x, 0) = sin (4πx), (7.23)

then substituting into equation (7.22) gives

u(x, 0) = sin (4πx) =

∞∑

n=−∞

ane
i2πnx. (7.24)

Using Fourier orthogonality relationships gives

an =





−i/2 when n = 2

i/2 when n = −2

0 otherwise.

(7.25)

Therefore

u(x, t) =
−i
2

(
ei4π(x−ct) − e−i4π(x−ct)

)
e−σ16π2t,

= sin (4π(x− ct))e−σ16π2t, (7.26)

in this example. By running the model from the initial conditions (7.23) we can now

compare the model output with this analytic solution.

Figure 7.1(a) shows the analytic solution (7.26) (black line) and the model solutions

when run at four different spatial resolutions, at time t = 0.25. We take σ = 0.001,

c = 0.1 and we take ∆t such as to keep the value of µ constant. The spatial resolutions

are ∆x1 = 1/16 (blue), ∆x2 = 1/32 (green), ∆x3 = 1/64 (red) and ∆x4 = 1/128 (pink).

As can be seen, as ∆x decreases the model converges to the analytic solution. It is also

worth noting is that the model is more diffusive at lower resolutions. The convergence

of the model is further confirmed if we consider the errors. Figure 7.1(b) shows the error

in the model outputs, where the error is model output minus analytic solution. As we

see, as ∆x decreases so to does the error. This example demonstrates that we do have

a convergent model and that it is converging to the truth.

7.4 Observations

To run any data assimilation scheme we need observational data from somewhere. As

we have no experimental data to use for observations, we run twin experiments; The
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Figure 7.1: In (a) the black line is the analytic solution, in (a) and (b) the dashed blue line with cirles
is the ∆x = 1/16 case, the dashed green line with crosses is the ∆x = 1/32 case, the dotted red line is
the ∆x = 1/64 case and the solid pink line is the ∆x = 1/128 case.
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parent model is run once at a high resolution to generate a reference trajectory which is

then treated as the truth. From this reference trajectory we take artifical observations

which are then used in the data assimilation on both the parent and the LAM. The

parent model is then run a second time at a lower resolution and from different initial

conditions. It is this model run which is referred to as the parent model. The resolution

of the reference trajectory (truth) is defined by its ratio to the resolution of the LAM. The

spatial resolution is ∆xtruth = ∆xL/g and the temporal resolution is ∆ttruth = ∆tL/ρ.

The values of g and ρ are chosen to keep µtruth = µL.

7.5 The data assimilation algorithm

Having considered the model itself we now implement our 4D-Var data assimilation

algorithm on both the parent and LAM models. The original parent model [4] of the 1D

heat equation already has a working gridpoint (physical) 4D-Var scheme so we adapt

this code to work for our advection-diffusion parent model. We also adapt it to both

an incremental gridpoint (Section 5.4.1) and a spectral (Section 5.4.2) scheme for the

LAM.

As discussed in Section 2.3.1, to generate an analysis using 4D-Var we must minimise

the cost function

J(x) =
1

2
(x − xb)T B−1(x − xb) +

1

2

T∑

k=0

(yk − Hxk)T R
−1

k (yk − Hxk),

subject to the model equation

xk = Mxk−1.

To do this we need a minimisation algorithm. The original code [4] uses the CONMIN

program [76], which allows the user the choice of using either a conjugate gradient

method [73], [33, Sections 9.3, 10.2] or a Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method [31], [77]. Throughout the work presented in this thesis we use the conjugate

gradient option.

Both methods are iterative schemes and require the value of J and its gradient ∇J to

be calculated at each iteration.
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7.6 The gradient test

With an adjoint model coded for both the LAM and the parent model, we need to

check that this adoint model is coded correctly. To do this we use the gradient test, as

previously described in Section 2.3.2. The gradient test is run on both the parent model

and the LAM, and on both the gridpoint and spectral data assimilation schemes.

Figure 7.2 shows an example result for the gridpoint scheme. The parent model is

run with N = 16 gridpoints and 10 timesteps and the vector δx is generated using

random data with unit norm. The LAM results shown are with the LAM covering

parent gridpoints 8 to 16 and having four times the spatial resolution and sixteen times

the temporal resolution of the parent model. The buffer zone width is 4. The LAM data

assimilation is the incremental version. As can be clearly seen in Figure 7.2, for values

of α between 10−3 and 10−13 we obtain a value of φ(α) that is close to 1. This confirms

that the cost function and the gradient of the cost function have been coded correctly

in our gridpoint data assimilation scheme.

We now need to test the spectral scheme. Figure 7.3 shows an example result for the

spectral scheme. The vector δx is again generated using random data with unit norm.

Again the results shown are with the LAM covering half the domain of the parent model

(gridpoints 8 to 16) with four times the spatial resolution and with 160 timesteps. The

buffer zone width is 4. The matrix Σ−1 was set to equal the identity matrix. As can

be clearly seen in Figure 7.2, for values of α between 10−3 and 10−13 we obtain a value

of φ(α) that is close to 1. This confirms that the cost function and the gradient of the

cost function have been coded correctly in our spectral data assimilation scheme.

The test was run, on both schemes, for various different LAM domain sizes, for different

ratios of space and time stepsize and different buffer zone widths. The unit value of

φ(α) over a range of α was observed in all cases.
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Figure 7.2: Verification of the gradient calculation for the gridpoint scheme: (a) variation of φ(α) with
respect to (α) for the parent model, (b) variation of log(φ − 1) with respect to log(α) for the parent
model, (c) variation of φ(α) with respect to (α) for the LAM, (d) variation of log(φ− 1) with respect to
log(α) for the LAM.
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Figure 7.3: Verification of the gradient calculation for the spectral scheme: (a) variation of φ(α) with
respect to (α) for the LAM, (b) variation of log(φ− 1) with respect to log(α) for the LAM.
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7.7 Summary

We have introduced the 1D linear advection-diffusion model. We have demonstrated the

stabilty and accuracy of the discretisation scheme and have also tested the accuracy of

the data assimilation code using established methods. We now go on to use this model

and the 4D-Var data assimilation scheme to investigate the behaviour of 4D-Var on a

LAM grid.
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Chapter 8

The representation of different

scales in a 4D-Var analysis on a

LAM domain

We aim to understand how different wavelengths are reproduced in a 4D-Var analysis

on a LAM domain. We also investigate how the representation of a wave on the LAM

domain compares to the same wave on the parent domain. To investigate these questions

we consider a reference trajectory with a range of scales. It is this reference trajectory

that is taken to be the truth, as described in Section 7.4, and it is this truth that we

aim to recapture with our data assimilation.

Within a 4D-Var scheme the initial conditions (first guess) and the background xb do

not necessarily have to be the same [12]. Although throughout this Chapter the initial

conditions are set equal to the background, in both the parent and LAM schemes, for

clarity we will still distinguish between them.

As well as the background xb, valid at time t = 0, we also have the model trajectory

generated by running the model forward from the background. This trajectory will be

called the background trajectory.

Throughout this Chapter, the background for the LAM and the lateral boundary condi-

tions (LBCs) are provided by the same parent model run, i.e. the LBCs are provided by
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the background trajectory. The background trajectory also provides the parent values

used in the Davies relaxation (Section 5.1). The background trajectory may simply be

from a run of the parent model from specified initial conditions or it may be from a

parent analysis.

For all the results shown in this Chapter, the inverse background error covariance matrix

B−1 is set equal to zero and therefore there is no background term in the cost function

(i.e. Jb = 0). However, the background trajectory will still influence the LAM analysis

through the boundary conditions and the buffer zone.

As described in Section 7.4, the observations are taken from a reference trajectory. In

this chapter we take perfect observations with no added random noise or error. In both

the parent and the LAM assimilation, we take an observation at every gridpoint and

every timestep, unless otherwise stated. It is noted here that this means that the same

observations are seen by the parent and LAM data assimilation, but the LAM also has

some extra higher resolution observations not seen by the parent assimilation. Having

observations at every gridpoint and every timestep will be referred to in this work as

having ‘full observations’.

Although experiments have been run with a variety of domain values, in all the results

to be presented here, we take our parent model to have 15 internal gridpoints and 10

timesteps in the assimilation window t ∈ [0, 0.5]. The LAM covers the right half of the

parent domain, starting at the middle parent gridpoint. The spatial resolution of the

LAM is four times that of the parent model and there are 16 LAM timesteps for every

parent timestep. The buffer zone covers 4 LAM gridpoints. The spatial resolution of the

reference trajectory, which provides our ‘truth’ as well as the observations, is twice that of

the LAM and there are 4 timesteps for every LAM timestep. The constant of diffusivity

is σ = 0.001 and the advection speed is c = 0.1. The observation error covariance matrix

is taken to be R = N
2 I in the parent assimilation and R = M

2 I in the LAM assimilation,

where N is the number of parent gridpoints and M is the number of LAM gridpoints,

as described in Section 7.3. However, this choice of matrix R is arbitrary since we have

perfect observations and no background term in the cost function.

Once we have generated a parent and a LAM analysis we compare both of these to

the truth. We show how the parent and LAM compare to the truth by plotting the
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temperature u against the spatial coordinate x. As well as comparing them in physical

space we also take the DFT over the LAM domain, as described in Chapter 6, to compare

the results in spectral space. We display the DFT coefficients in a power spectrum,

plotted against wavenumber k. We compare the truth with the analyses generated by

the data assimilation both at the initial time t = 0 and at the middle of the assimilation

window, as this is when a 4D-Var analysis is most accurate [67].

We start by considering how different scales are treated in a 4D-Var assimilation using

the gridpoint scheme (Section 5.4.1) and then go on to compare the results with those

generated using the spectral scheme (Section 5.4.2).

Until otherwise stated we use the gridpoint assimilation scheme as defined in Sec-

tion 5.4.1. The background and the initial conditions for the LAM assimilation are

provided by the parent analysis, interpolated to the LAM grid. The parent analysis also

provides the LBCs for the LAM.

8.1 Short waves with the gridpoint scheme

Although in this thesis we aim to understand how all the different scales are treated by a

4D-Var scheme, it is important to remember why we want to use high resolution models:

To improve convective-scale forecasting. This requires a high resolution model which

can resolve small-scale detail. However, if the LAM data assimilation cannot capture

scales which are too short to be resolved by the parent, then we are achieving no benefit

from using the higher resolution and are creating further problems by having to use a

limited area domain.

We therefore begin by considering the treatment of waves which are too short to be

resolved by the parent model and investigate whether the treatment of these waves is

improved in the LAM data assimilation compared to that of the parent.

We have the reference trajectory

ur(xr
j) = 2 sin(2π2xr

j) + sin(2π4xr
j) + sin(2π8xr

j),

at time t = 0. This contains only waves whose wavelengths are shorter than the LAM
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domain, with the shortest wave being too short to be resolved by the parent model. We

would expect this wave to be treated more accurately by the LAM data assimilation.

The initial condition for the parent scheme is

uP (xP
i , 0) = 2 sin(2πxP

i ).

Figure 8.1(a) shows the truth and both analyses in physical space, at the initial time

t = 0. As can be seen, the higher resolution of the LAM compared with the parent

allows it to pick up the higher resolution features in the truth that cannot be captured

by the parent assimilation. The LAM analysis is an extremely good match to the truth

everywhere except close to the boundaries. The LAM is able to fit to the oscillations in

the truth caused by the small-scale wave. In contrast, the parent analysis is smoother

and is unable to capture the small-scale detail, rendering it less accurate than the LAM

analysis. This impression of increased accuracy in the LAM analysis is even more clearly

demonstrated in Figure 8.1(b), which shows the rms (root mean square) error of both the

LAM and parent analyses. To get a meaningful comparison we interpolate the parent

analysis to the LAM grid and use this to calculate the error in the parent analysis. As

can be seen, the LAM is significantly more accurate throughout the domain except for a

couple of isolated points. It is also worth noting that the largest rms errors in the LAM

analysis are close to the boundaries, where the LAM is being influenced by the parent

through the boundaries and buffer zone. If we also calculate the average rms error over

the LAM domain, we see that the LAM has an average rms error of is 0.2875, compared

to the 0.7568 of the parent. This clearly demonstrates the improvement in accuracy we

would expect due to the higher resolution of the LAM.

The benefits of the LAM’s higher resolution can also be seen by considering the power

spectrum, as shown in Figure 8.1(c). As we would expect from Section 6.3, the truth

has amplitude in the power spectrum at wavenumbers k = 1, 2, 4. The parent analysis

has amplitude at wavenumbers k = 1, 2 but has no amplitude at k = 4. This is because

the parent grid does not have high enough resolution to capture this wave. In contrast,

the higher resolution of the LAM grid has allowed the LAM analysis to capture all three

waves, demonstrated by amplitude in the power spectrum at k = 1, 2, 4. This clearly

illustrates that that the increased resolution of the LAM has allowed it to better fit the

truth and produce a more accurate analysis. However, it is also interesting to note here
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(a) Model outputs at t = 0.
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(b) rms error between the truth and the model

outputs at t = 0.
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(c) Power spectrum at t = 0.

Figure 8.1: The truth is ur(xr
j ) = 2 sin(2π2xr

j ) + sin(2π4xr
j ) + sin(2π8xr

j ). In (a) the green dash-dotted
line is the truth, the blue dash line is the parent analysis and the solid red line is the LAM analysis.
The green circles are the observations seen by the parent data assimilation and the green crosses are the
extra observations seen by the LAM data assimilation. The vertical dotted line is the boundary of the
LAM domain. In (b) blue is the error in the parent analysis and red is the error in the LAM analysis.
In (c) green is the truth, red is the LAM analysis and blue is the parent analysis.
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(a) Model outputs at the middle of the assimilation window.
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(b) rms error between the truth and the model

outputs at the middle of the assimilation win-

dow.
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(c) Power spectrum at the middle of the assim-

ilation window.

Figure 8.2: The truth at t = 0 is ur(xr
j ) = 2 sin(2π2xr

j ) + sin(2π4xr
j ) + sin(2π8xr

j ). In (a) the green
dash-dotted line is the truth, the blue dash line is the parent analysis and the solid red line is the LAM
analysis. The green circles are the observations seen by the parent data assimilation and the green
crosses are the extra observations seen by the LAM data assimilation. In (b) blue is the error in the
parent analysis and red is the error in the LAM analysis. In (c) green is the truth, red is the LAM
analysis and blue is the parent analysis.
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that while the LAM is considered more accurate because it captures the k = 4 wave

that is missed by the parent, for the k = 1 wave the LAM is only marginally better than

the parent and for the k = 2 wave it is actually marginally worse.

If we now consider the middle of the assimilation window, we see in Figure 8.2(a) that

the LAM analysis still looks better than the parent, as it fits to the truth more closely.

The LAM matches the truth everywhere except close to the boundaries. This inaccuracy

at the boundaries is due to the influence of the background trajectory at the LBCs and

buffer zone. The higher accuracy of the LAM analysis compared to the parent analysis,

is also confirmed by the rms error plotted in Figure 8.2(b).

If we consider the power spectrum, shown in Figure 8.2(c) we see that while the LAM

is more accurate in the sense that it is capturing the k = 4 wave that is completely

unresolved in the parent analysis, the LAM is actually less accurate than the parent in

its representation of both the k = 1 and k = 2 waves. This is caused by the conflict

in the LAM analysis of trying to fit to high resolution observations whilst also being

constrained by inaccurate boundary conditions provided by the background trajectory.

Figures 8.1 and 8.2 demonstrate the ability of the LAM to resolve finer scale detail than

can be captured by the parent model. This is what we would hope and confirms the

benefit of using high resolution models. However, there are further points of interest

raised by Figures 8.1 and 8.2. These are now considered.

8.1.1 The benefit of data assimilation and high resolution observations

As we see in Figures 8.1 and 8.2, the higher resolution of the LAM allows it to resolve

the small scale detail. However, it is worth noting the role of the data assimilation.

Although the resolution of the LAM makes resolving the small scales possible, simply

running the LAM at this high resolution is not sufficient to achieve the high resolu-

tion detail: the data assimilation is also needed. This is illustrated in Figures 8.3(a)

and 8.4(a), where the reference trajectory (truth) at t = 0 is

ur(xr
j) = 2 sin(2π2xr

j) + sin(2π4xr
j) + sin(2π12xr

j).
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(a) Model outputs at t = 0.
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(b) Power spectrum at t = 0.

Figure 8.3: The truth at t = 0 is ur(xr
j ) = 2 sin(2π2xr

j ) + sin(2π4xr
j ) + sin(2π12xr

j ). In (a) Green is
the truth, red is the LAM analysis run with full observations, pink is the LAM analysis run with low
resolution observations, light blue is the LAM model run without data assimilation and dark blue is
the parent analysis. The green crosses are the high resolution (full) LAM obs and the green circles are
the parent (low) resolution observations. In (b) Green is the truth, yellow is the high resolution (full)
LAM obs, dark green is the parent (low) resolution observations, red is the LAM analysis run with
full observations, pink is the LAM analysis run with low resolution observations, light blue is the LAM
model run without data assimilation and dark blue is the parent analysis.
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(a) Model outputs at the middle of the assimilation window.
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(b) Power spectrum at the middle of the assimilation window.

Figure 8.4: The truth at t = 0 is ur(xr
j ) = 2 sin(2π2xr

j ) + sin(2π4xr
j ) + sin(2π12xr

j ). In (a) Green is
the truth, red is the LAM analysis run with full observations, pink is the LAM analysis run with low
resolution observations, light blue is the LAM model run without data assimilation and dark blue is
the parent analysis. The green crosses are the high resolution (full) LAM obs and the green circles are
the parent (low) resolution observations. In (b) Green is the truth, yellow is the high resolution (full)
LAM obs, dark green is the parent (low) resolution observations, red is the LAM analysis run with
full observations, pink is the LAM analysis run with low resolution observations, light blue is the LAM
model run without data assimilation and dark blue is the parent analysis.
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Plotted is the truth (green), the parent analysis (dark blue), the LAM analysis generated

using full observations (red) and the LAM model run without data assimilation (light

blue). In order to consider the benefit of high resolution observations, the LAM analysis

generated with just the observations seen by the parent (i.e. low resolution observations)

is also plotted (pink).

Considering t = 0 first, we begin by noting that the LAM model run without data

assimilation matches the parent analysis exactly in physical space. This is as we would

expect due to the parent analysis providing the initial conditions for the LAM. However,

if we consider the power spectrum over the LAM domain, shown in Figure 8.3(b), we

see that the power spectrum of these two outputs does not match in spectral space.

This difference is caused by the resolution of the outputs. Although they appear the

same in physical space, the LAM model is run from the parent analysis interpolated to

the LAM grid. This change in resolution is what causes the differences in the power

spectrum. It can be understood as follows: If we have the wave sin(2π4x) on the parent

grid then we get an amplitude of 1 at k = 2 in the power spectrum. Likewise, if we

have the sin(2π4x) wave on the LAM grid then we again get an amplitude of 1 at k = 2

in the power spectrum. However, if we interpolate the wave on the parent grid to the

LAM resolution, we do not get an amplitude of 1 at k = 2 in the power spectrum, as

demonstrated in Figure 8.5. This is because, as shown in Figure 8.5(a), in relation to

the LAM resolution the interpolated wave is not a perfectly resolved sin(2π4x) wave, it

contains some error, and this error shows up in the power spectrum. This consequence

of interpolating from the parent resolution to the LAM resolution and the resulting

behaviour in the power spectrum is worth bearing in mind when we consider other

results.

The implication for the LBCs is also worth noting. Even if the parent trajectory pro-

viding the LBCs is perfect, as is assumed with zero boundary conditions, it is perfect

with respect to the parent resolution. As Figure 8.5(a) demonstrates, the corresponding

interpolation is not perfect with respect to the LAM resolution. This error introduced

by the differences in resolution is an issue for differences in the size of timesteps as well

as the spatial steps. Therefore, errors will be introduced into the LAM through the

LBCs.
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(a) Difference between sine waves when generated at a higher resolution compared

to simply interpolating a lower resolution.
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(b) Differences in power spectra.

Figure 8.5: Difference between the sine wave u(xj) = sin(2π4xj) generated at a higher resolution (red)
compared to simply interpolating a lower resolution wave (blue). (a) shows the difference in physical
space and (b) shows the differnce in the power spectra.
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We also notice from Figure 8.3(b) that the LAM analysis generated with low resolution

observations has failed to capture the high resolution detail and remains equal to the

parent analysis. This is due to the information content of the low resolution observa-

tions. On the parent grid, the high resolution detail in the observations is aliased to

other wavenumbers; in the case of the sin(2π12xr
j) wave this information is aliased to

wavenumber k = 2. When we have the same low resolution observations on the LAM

grid, although there is now the resolution to resolve the small scale wave, without extra

high resolution information the small scale wave is still aliased.

If we now consider the middle of the assimilation window, we see in Figure 8.4(a) that the

LAM model run without data assimilation no longer matches the parent analysis, due to

being run at a different resolution. However, the model run without data assimilation

does match the LAM assimilation run with low resolution observations. This clearly

demonstrates the need for high resolution observations. The only model trajectory that

closely matches the truth is the LAM analysis run with full observations.

We also note that by the middle of the assimilation window there is no longer any

amplitude in the power spectrum at k = 6, as can be seen in Figure 8.4(b). This is

because the small scales have been damped by the model diffusion.

Figures 8.3 and 8.4 demonstrate that a high resolution model alone is not sufficient

to improve the accuracy of the small scales. Data assimilation with high resolution

observations is also needed if we are to represent the small scales accurately.

8.1.2 The ability of the LAM to capture the truth

Another important observation to be made from Figure 8.1 is that, although the LAM

has the necessary resolution to resolve all the wavenumbers in the reference trajectory,

we have perfect observations and there is no background term in the cost function,

the LAM analysis does not fit the observations exactly. This is due to the influence

of the background trajectory through the LBCs and buffer zone. In Figure 8.1(a) the

LAM analysis matches the truth everywhere except close to the boundaries. The rms

error plotted in Figure 8.1(b) also shows the largest errors in the LAM are close to the

boundaries. These inaccuracies cause errors in the power spectrum of the LAM analysis.

97



0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

x

u

(a) Model outputs at t = 0.

−1 0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

wavenumber k

|D
F

T
|2

(b) Power spectrum at t = 0.

Figure 8.6: Comparing the analysis generated at the same resolution on the parent and LAM domain.
The truth at t = 0 is ur(xr

j ) = 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π12xr
j ). Green is the truth, red is the

LAM analysis on the LAM domain, pink is the analysis generated on the parent domain at high (LAM)
resolution and blue is the low resolution parent analysis.
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(a) Model outputs at the middle of the assimilation window.
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(b) Power spectrum at the middle of the assimilation window.

Figure 8.7: Comparing the analysis generated at the same resolution on the parent and LAM domain.
The truth at t = 0 is ur(xr

j ) = 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π12xr
j ). Green is the truth, red is the

LAM analysis on the LAM domain, pink is the analysis generated on the parent domain at high (LAM)
resolution and blue is the low resolution parent analysis.
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Errors coming from the background trajectory mean the LAM cannot capture the truth.

To understand further the ability of the LAM to capture the truth, as well as generating

a LAM analysis we now also generate a parent analysis at the same high resolution as the

LAM, in order to provide a comparison without the influence of boundary conditions.

We again use the reference trajectory

ur(xr
j) = 2 sin(2π2xr

j) + sin(2π4xr
j) + sin(2π12xr

j),

at t = 0. The model outputs in physical space are shown in Figure 8.6(a). As we

see, the parent analysis generated at the high (LAM) resolution can capture the truth

accurately over the whole domain. In comparison, the LAM analysis has errors near the

boundaries caused by the LBCs. If we also consider the power spectrum, as shown in

Figure 8.6(b), the improved accuracy on the full domain is evident, particularly at low

wavenumbers.

However, it should be noted that the high resolution parent analysis is still not an exact

match to the truth. This is because of the model itself. At higher resolutions the

model is less diffusive, as discussed in Section 7.3.3. The aim of 4D-Var is to find an

analysis that, as well as being accurate at the initial time, also produces an accurate

trajectory through the assimilation window. Due to this feature, the data assimilation

is compensating for the discrepencies between the model runs. It over estimates the

amplitudes at time t = 0 to account for the extra diffusion through the assimilation

window at the LAM resolution. If we consider the power spectrum at the middle of the

assimilation window, as shown in Figure 8.7(b), we see that the high resolution parent

assimilation now does match the truth. In comparison, the LAM analysis does not, due

to the influence of the LBCs.

Figure 8.7 also demonstrates that inaccuracies at different scales have different causes.

At wavenumber k = 6, the error in the high resolution parent analysis is approximately

the same as that for the LAM analysis. This is because, in both cases the error is

caused by the data assimilation compensating for the higher diffusion rate at the LAM

resolution. At k = 1 and k = 2 however, although the diffusion rate does cause the

high resolution parent analysis to have some inaccuracies, those in the LAM analysis

are of greater magnitude. This is because the LAM analysis also has errors at low
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wavenumbers due to the LBCs.

The errors introduced because of the LBCs are an important point to note, as it affects

what we can expect to achieve with a LAM assimilation: even with a high enough

resolution to resolve all the scales in the reference trajectory, the LAM cannot capture

the truth, due to the errors introduced by the background trajectory at the boundaries

and buffer zone.

8.1.3 Summary of the small scales

We have demonstrated that, when given high resolution observations, the higher reso-

lution of the LAM does allow the data assimilation to capture small scale detail that

cannot be resolved by the parent analysis.

However, we also demonstrated that the LAM analysis cannot capture the truth exactly,

even with perfect observations and no background term, due to the errors from the LBCs.

We showed that the LAM analysis has errors on the low wavenumbers caused by having

to constrain the analysis to match the LBCs. Due to the model being less diffusive at

higher resolution the LAM analysis also has errors introduced by trying to compensate

for the difference in diffusion rate compared to the truth. These errors occur on all

wavenumbers but the high wavenumbers are affected to a lesser degree due to these

scales diffusing away more rapidly.

Having considered the scales which are contained within the spectrum of the LAM,

we now consider the treatment of long-waves, which have lengthscales longer than the

domain of the LAM.

8.2 Long-waves with the gridpoint scheme

In Section 4.2.3 we introduced the long-wave problem. This is the problem of having

waves whose wavelengths are longer than the domain of the model. These waves are
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referred to here as long-waves. We now consider how these long-waves are treated on a

LAM domain.

We start by considering a case with a single long-wave.

8.2.1 One long-wave

We have the reference trajectory

ur(xr
j) = 2 sin(2πxr

j) + 2 sin(2π2xr
j) + sin(2π4xr

j) + sin(2π8xr
j),

at time t = 0. This contains one wave whose wavelength is longer than the domain of

the LAM. The initial condition for the parent scheme is

uP (xP
i , 0) = 2 sin(2πxP

i ).

Figure 8.8(a) shows the truth and both analyses in physical space, at the initial time

t = 0. As was the case in Section 8.1, the LAM analysis looks more accurate as it fits

more closely to the truth. Again however, the LAM analysis has errors close to the

boundaries due to the influence of the background trajectory. This is also confirmed by

the plot of rms error shown in Figure 8.8(b) and by the average rms error values over

the LAM domain, which are 0.2864 for the LAM analysis compared to the 0.7561 of the

parent.

However, the truth contains a wave which is longer than the domain of the LAM.

To understand how this wave is treated we consider the power spectrum, shown in

Figure 8.8(c). We see amplitude at k = 1, 2, 4 as we would expect but now there is

considerable amplitude at k = 0. The amplitude at k = 1 for the truth is also higher

than we would expect. From Section 6.3 we know that this amplitude at k = 0 and k = 1

is caused by the long-wave. From Figure 8.8(c) it can be seen that the long-wave in the

truth is also aliased to other wavenumbers when the DFT is performed over the LAM

domain. This highlights an important distinction that we must be aware of. As well as

understanding where information is aliased to so that we can investigate its effects, we

also need to consider the magnitude of the aliasing effects, i.e. are the aliasing effects

of the same magnitude in the analyses as they are in the truth. That is why we plot
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(a) Model outputs at t = 0.
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(b) rms error between the truth and the model

outputs at t = 0.
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(c) Power spectrum at t = 0.

Figure 8.8: The truth is ur(xr
j ) = 2 sin(2πxr

j ) + 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π8xr
j ). In (a) the

green dash-dotted line is the truth, the blue dash line is the parent analysis and the solid red line is
the LAM analysis. The green circles are the observations seen by the parent data assimilation and the
green crosses are the extra observations seen by the LAM data assimilation. In (b) blue is the error in
the parent analysis and red is the error in the LAM analysis. In (c) green is the truth, red is the LAM
analysis and blue is the parent analysis.
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(a) Model outputs at the middle of the assimilation window.
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(b) rms error between the truth and the model

outputs at middle of the assimilation window.
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(c) Power spectrum at the middle of the assim-

ilation window.

Figure 8.9: The truth at t = 0 is ur(xr
j ) = 2 sin(2πxr

j ) + 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π8xr
j ). In (a)

the green dash-dotted line is the truth, the blue dash line is the parent analysis and the solid red line is
the LAM analysis. The green circles are the observations seen by the parent data assimilation and the
green crosses are the extra observations seen by the LAM data assimilation. In (b) blue is the error in
the parent analysis and red is the error in the LAM analysis. In (c) green is the truth, red is the LAM
analysis and blue is the parent analysis.
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the power spectrum of the truth as well as the analyses. The comparison in magnitude

between the truth and the analyses is as important as the actual amplitude location.

In Figure 8.8(c) we see that the LAM is capturing the aliased information at k = 0

well while the parent analysis does a poorer job. However, the parent analysis is more

accurate at k = 1, and the inaccuracies at k = 2 have about the same magnitude in

both analyses, but the LAM overestimates while the parent underestimates.

If we now consider the middle of the assimilation window, we see from Figure 8.9(a)

that the LAM analysis again appears to fit the truth more closely than the parent. This

is confirmed by the rms error shown in Figure 8.9(b). As before, the largest errors in

the LAM are close to the boundaries, caused by errors introduced through the LBCs.

Looking at the power spectrum shown in Figure 8.9(c) we see that at the middle of the

assimilation window, the LAM matches the truth more closely at all wavenumbers.

From these examples we see that the long-wave information is aliased onto other wavenum-

bers, specifically the lowest wavenumbers that can be represented in our spectrum. A

large proportion of the long-wave information is often aliased onto wavenumber k = 0.

This is because of the properties of the discrete Fourier transform, as discussed in Sec-

tion 6.3.2.

So far we have only considered a truth with a single long-wave. We now go on to consider

a case with several long-waves to see if we can make the same conclusions.

8.2.2 Several long-waves

We have the reference trajectory

ur(xr
j) = 2 sin(2πxr

j/8) + 2 sin(2πxr
j/2) + 2 sin(2πxr

j) + 2 sin(2π2xr
j)

+ sin(2π4xr
j) + sin(2π8xr

j) + sin(2π32xr
j),

at time t = 0. This contains several waves whose wavelengths are longer than the domain

of the LAM. It also contains wavelengths that are too short to be resolved by the parent

analysis as well as a wave too short to resolved by the LAM. The initial condition for

the parent scheme is

uP (xP
i , 0) = sin(2πxP

i ).
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Figure 8.10(a) shows the truth and both analyses, in physical space, at the initial time

t = 0. The LAM looks more accurate than the parent as it appears to be mapping

the shape of the truth more closely. However, the shortest wave contained in the truth

cannot be resolved, even by the LAM, and these high resolution oscillations in the truth

make it difficult to judge the accuracy of the analyses by simply plotting their values.

We therefore consider the rms error of both analyses, plotted in Figure 8.10(b). As can

be seen, the LAM is significantly more accurate at all but a couple of isolated gridpoints,

and as before, the largest errors in the LAM are close to the boundaries.

The accuracy of the analyses can also be understood by considering the power spectra.

The power spectra of the truth and both analyses is shown in Figure 8.10(c). As we

expect, the LAM captures wavenumbers missed by the parent. However, the magnitude

at wavenumbers k = 1 and k = 2 is actually more accurate in the parent analysis.

As well as allowing us to compare the accuracy of the two analyses, the power spectrum

also allows us to investigate the aliasing effect on the long-wave information. As in the

one long-wave case, there is significant amplitude at k = 0. This is all aliased from the

long-waves. There is also aliasing to other wavenumbers, in particular k = 1.

If we also consider the middle of the assimilation window, we see in Figure 8.11(a) that

the LAM analysis still looks to fit the truth marginally more closely and this is confirmed

by the rms error plotted in Figure 8.11(b). Figure 8.11(c) shows the power spectra of

the truth and both analyses. The majority of the long-wave information is still being

aliased to wavenumber k = 0 with some being sent to k = 1. By the middle of the

assimilation window the parent analysis is significantly more accurate than the LAM at

k = 0.

8.2.3 Summary of the long-wave results with a gridpoint scheme

In Chapter 6 we demonstrated that long-waves are aliased onto other wavenumbers.

Here we have demonstrated that this same aliasing effect occurs with observational

information of long-waves in the data assimilation. When the observations contain

information from waves longer than the domain of the model, these long-waves are

aliased onto other wavenumbers. The majority of the aliasing is onto the longest waves
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(a) Model outputs at t = 0.
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(b) rms error between the truth and the model

outputs at t = 0.
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(c) Power spectrum at t = 0.

Figure 8.10: The truth is ur(xr
j ) = 2 sin(2πxr

j/8) + 2 sin(2πxr
j/2) + 2 sin(2πxr

j ) + 2 sin(2π2xr
j ) +

sin(2π4xr
j ) + sin(2π8xr

j ) + sin(2π32xr
j ). In (a) the green dash-dotted line is the truth, the blue dash line

is the parent analysis and the solid red line is the LAM analysis. The green circles are the observations
seen by the parent data assimilation and the green crosses are the extra observations seen by the LAM
data assimilation. In (b) blue is the error in the parent analysis and red is the error in the LAM analysis.
In (c) green is the truth, red is the LAM analysis and blue is the parent analysis.
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(a) Model outputs at the middle of the assimi-

lation window.
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(b) rms error between the truth and the model

outputs at the middle of the assimilation win-

dow.
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(c) Power spectrum at the middle of the assimilation window.

Figure 8.11: The truth is ur(xr
j ) = 2 sin(2πxr

j/8) + 2 sin(2πxr
j/2) + 2 sin(2πxr

j ) + 2 sin(2π2xr
j ) +

sin(2π4xr
j ) + sin(2π8xr

j ) + sin(2π32xr
j ). In (a) the green dash-dotted line is the truth, the blue dash line

is the parent analysis and the solid red line is the LAM analysis. The green circles are the observations
seen by the parent data assimilation and the green crosses are the extra observations seen by the LAM
data assimilation. In (b) blue is the error in the parent analysis and red is the error in the LAM analysis.
In (c) green is the truth, red is the LAM analysis and blue is the parent analysis.
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contained within the spectrum of the model. In particular, a significant amount of the

long-wave information can be aliased onto wavenumber k = 0. We have demonstrated

this for a single long-wave and a combination of several.

This aliasing is corrupting the longest waves on the LAM domain and we have shown

that, in some cases, the parent analysis actually represents these wavenumbers more

accurately than the LAM. This is because of the conflict in the LAM data assimilation

between trying to fit to the high resolution observations while also being constrained

to inaccurate boundary conditions. In Chapter 9 we go on to investigate whether this

knowledge can be used to manipulate the data asimilation to generate a more accurate

LAM analysis.

Aliasing long-wave information onto other wavenumbers could cause a problem for a

spectral scheme. A spectral scheme that uses a sine transform will automatically set the

value at k = 0 to be zero. This means that we potentially lose a significant proportion

of the information about all the long-waves contained in a trajectory. The information

aliased to other (k 6= 0) wavenumbers could also cause problems. The data assimilation

scheme cannot distinguish between the information at k = κ belonging to the wave with

wavenumber κ and that coming from the aliased long-wave. As the data assimilation is

being performed in spectral space this could cause the observational data to be corrupted

and degrade the analysis. Also, because we are working in finite, discrete space the

Fourier series is truncated. This loss of high resolution information could degrade the

quality of the spectral analysis.

To investigate these potential problems we now repeat our experiments using the spectral

scheme (Section 5.4.2). We compare the analysis generated by the spectral scheme with

that generated by gridpoint scheme.

8.3 Long and short waves with the spectral scheme

To investigate the impact of the aliasing effect of the long-waves on a spectral scheme, we

now compare the analysis generated by the spectral scheme (as defined in Section 5.4.2)

with that generated by the gridpoint scheme for the same system.
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Our spectral scheme uses a Fourier sine transform and therefore to compare the results

in spectral space we now use the sine transform instead of the DFT, and it is this that

is shown in the power spectra. Due to the use of the sine transform, information can

no longer be aliased onto wavenumber k = 0, as it is in the DFT, as the sine transform

automatically sets the amplitude to zero at k = 0. As well as comparing the analyses

from the spectral and gridpoint schemes we therefore also need to investigate where the

long-wave information is projected onto when we use a sine transform.

8.3.1 One long-wave

We start with the reference trajectory we had in Section 8.1

ur(xr
j) = 2 sin(2πxr

j) + 2 sin(2π2xr
j) + sin(2π4xr

j) + sin(2π8xr
j),

at time t = 0.

We perform the LAM data assimilation in both spectral and gridpoint space. The LAM

analysis shown in Figure 8.12(b) is that of the spectral scheme. The gridpoint analysis

is not plotted because it lies directly under the spectral analysis. The exactness of this

match is confirmed by the difference between the two, shown plotted in Figure 8.12(a).

The magnitude of this difference is of O(10−6) compared to the O(1) magnitude of

the analyses. The equivalence between the spectral and gridpoint assimilation is also

confirmed as both analyses have identical power spectra, as shown in Figure 8.12(c).

As discussed in Section 6.4, for the sine transform the wave with wavenumber k = 1 on

the domain L = 1/2 is not treated as a long-wave. This is demonstrated in Figure 8.12(c)

where the power spectrum of the truth has amplitude at k = 1, 2, 4, 8.

To consider the effect of a long wave with the spectral scheme we now consider the

reference trajectory

ur(xr
j) = 2 sin(2πxr

j/2) + 2 sin(2π2xr
j) + sin(2π4xr

j) + sin(2π8xr
j),

at time t = 0.

A LAM analysis is generated using both the spectral and gridpoint data assimilation

schemes. To compare the two analyses, their difference is plotted in Figure 8.13(a). As
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(a) Difference between the spectral and grid-

point analysis.
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(b) Model outputs at t = 0.
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(c) Power spectrum at t = 0.

Figure 8.12: The truth is ur(xr
j ) = 2 sin(2πxr

j ) + 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π8xr
j ) at t = 0. In

(a) the green dash-dotted line is the truth, the red line is the LAM analysis, the blue dashed line is
the background and the green crosses are the observations. In (c) green is the truth, red is the LAM
analysis and pink is the gridpoint analysis.
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(a) Difference between the spectral and grid-

point analysis at t = 0.
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(b) Model outputs at t = 0.
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(c) Power spectrum at t = 0.
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(d) Model outputs at the middle of the assimi-

lation window.
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(e) Power spectrum at the middle of the assim-

ilation window.

Figure 8.13: The truth is ur(xr
j ) = 2 sin(2πxr

j/2) + 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π8xr
j ) at t = 0. In

(b) and (d) the green dash-dotted line is the truth, the red line is the LAM analysis, the blue dashed
line is the background and the green crosses are the observations. In (c) and (e) green is the truth, red
is the LAM analysis and blue is the parent analysis.
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can be seen, the two agree to O(10−5). Therefore, in the other plots shown in Figure 8.13

only the spectral LAM analysis is plotted.

In Figures 8.13(b) and 8.13(d) the truth is plotted along with both the LAM and parent

analyses, at the initial time and at the middle of the assimilation window respectively.

In both we see that the LAM fits the truth more closely as it is able to pick out the

higher resolution detail missed by the parent. This is confirmed by the power spectra

plotted in Figures 8.13(c) and 8.13(e).

It is worth noting here that as occurred in Sections 8.1 and 8.2, although the LAM is

more accurate in the sense that it picks out wavenumbers missed by the parent, at some

wavenumbers the magnitude is actually more accurate in the parent than the LAM. For

example, at k = 4 the parent is more accurate than the LAM at both times.

The power spectra shown in Figures 8.13(c) and 8.13(e) also allow us to examine how

the long-wave is treated by the spectral scheme. In Section 8.2 we saw long-waves being

aliased onto k = 0. However, the sine transform automatically sets k = 0 to be zero by

definition. As can be seen in Figures 8.13(c) and 8.13(e), the long-waves are still aliased

onto wavenumbers that are contained by the spectrum but a significant amount is now

sent to k = 1, instead of k = 0 as before.

To see if this pattern of aliasing applies when we have more than one long-wave, we now

consider a case with several long-waves.

8.3.2 Several long-waves

We now consider the reference trajectory

ur(xr
j) = 2 sin(2πxr

j/4) + 2 sin(2πxr
j/2) + sin(2π4xr

j)

+ sin(2π7xr
j) + sin(2π8xr

j) + + sin(2π19xr
j),

at time t = 0.

Figure 8.14(a) shows the difference between the spectral and gridpoint LAM analyses.

As with the single long-wave case, Section 8.3.1, the difference is of O(10−5) and so we

only plot the spectral LAM analysis in the other plots in Figure 8.14.
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(a) Difference between the spectral and grid-

point analysis.
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(b) Model outputs at t = 0.
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(c) Power spectrum at t = 0.
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(d) Model outputs at the middle of the assimi-

lation window.
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(e) Power spectrum at the middle of the assim-

ilation window.

Figure 8.14: The truth is ur(xr
j ) = 2 sin(2πxr

j/4)+2 sin(2πxr
j/2)+sin(2π4xr

j )+sin(2π7xr
j )+sin(2π8xr

j )+
sin(2π19xr

j ) at t = 0. In (b) and (d) the green dash-dotted line is the truth, the red line is the LAM
analysis, the blue dashed line is the background and the green crosses are the observations. In (c) and
(e) green is the truth, red is the LAM analysis and blue is the parent analysis.
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Again, like in Section 8.3.1, in both Figures 8.14(b) and 8.14(d) we see that at both the

initial time and the middle of the assimilation window respectively, the LAM analysis

fits the truth more closely as it can pick out the higher resolution detail lost by the

parent.

Considering the power spectra shown in Figures 8.14(c) and 8.14(e) we see that the

long-waves are sent to wavenumber k = 1. Wavenumber k = 1 contains the information

from several different long-waves. However, this does not cause problems for the data

assimilation as evidenced by the agreement between the spectral and gridpoint LAM

analysis.

As well as considering sine wave examples, we also need to consider other waveforms.

In particular, we should consider waveforms with a slowly converging Fourier series, to

see if this causes a problem for the spectral scheme.

8.3.3 Non-sine waveforms with the spectral assimilation scheme

We now consider a tanh wave example, as this has a slowly converging Fourier series.

The truncating of higher order terms by the discrete sine transform may therefore cause

the spectral scheme to lose information and produce a poorer analysis.

We have the reference trajectory

ur(xr
j) = tanh(64xr

j − 16) for j = 1, . . . , S/2

ur(xr
S+1−j) = tanh(64xr

j − 16) for j = 1, . . . , S/2 (8.1)

at time t = 0, where S is the number of gridpoints in the reference trajectory.

The model outputs in physical space are plotted in Figure 8.15. Figure 8.15(a) shows

the difference between the gridpoint and spectral scheme LAM analyses. As we see,

the largest difference between them is of O(10−4) compared to the O(1) magnitude

of the analyses. This illustrates that the spectral and gridpoint schemes produce the

same analysis, even for functions with slowly converginging Fourier series. Given this

high level of agreement, just the spectral scheme analysis is plotted in Figures 8.15(b)

and 8.15(c).
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(a) Difference between the spectral and grid-

point analysis.
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(b) Model outputs at t = 0.
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(c) Model outputs at the middle of the assimi-

lation window.

Figure 8.15: The truth is equation (8.1) at t = 0. The green dash-dotted line is the truth, the red line
is the LAM analysis, the blue dashed line is the background and the green crosses are the observations.
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Figure 8.15(b) shows the model outputs at t = 0. We see that the parent analysis

over-compensates in the regions of rapid change. Although this has diminished by the

middle of the assimilation window, it is still evident. At both times the LAM analysis

is more accurate accross the entire LAM domain.

8.3.4 Summary of the spectral scheme results

When using a Fourier sine transform over a LAM domain, long-waves are aliased onto

other wavenumbers. The majority goes to the longest waves contained in the spectrum.

In particular, a significant amount goes to k = 1. However, in contrast to Section 8.2

where we used the DFT, k = 0 is always set to zero, due to the definition of the sine

transform.

We also see that although the long-waves are aliased onto other wavenumbers, this does

not cause a problem for the spectral data assimilation scheme in our model. The spectral

scheme produced the same analysis as that produced by the gridpoint scheme, to at least

O(10−5) accuracy.

The agreement between the spectral and gridpoint schemes is because of the discrete na-

ture of the schemes. If we truncate the continuous Fourier sine transform at wavenumber

k = N , then information contained at wavenumbers higher than N would be lost. How-

ever, the discrete Fourier sine transform does not suffer in the same way. If we have a

finite interval divided into N equally spaced points then the discrete sine transform over

the interval is automatically truncated at k = N by definition. However, as discussed

in Section 4.2.2, on N gridpoints we cannot represent waves with wavenumbers higher

than N . Any waves with wavenumbers higher than N are aliased onto longer waves.

Therefore, no information is lost by the truncation in the discrete sine transform. This

can be demonstrated by comparing a function fj and what we get back if we transform

into spectral space and then transform back.

From Section 5.4.2, the sine transform of a function fj is

f̃k =

√
2

N

N−1∑

j=1

fj sin (πjk/(N)).
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If we now transform f̃k back into physical space we get

gj =

√
2

N

N−1∑

k=1




√
2

N

N−1∑

j=1

fj sin (πjk/(N))


 sin (πjk/(N)).

If information is being lost by the transform then we would expect fj 6= gj .

gj =
2

N

N−1∑

j=1

fj

N−1∑

k=1

sin2 (πjk/(N)),

=
N−1∑

j=1

fjδj,k, by orthogonality,

= fj .

i.e. the truncation is not causing high resolution information to be lost by the transfor-

mation.

8.4 The background trajectory xb
i

How we generate the background trajectory xb
i can have a significant effect on the LAM

4D-Var analysis.

It was stated in Section 5.3 that the model in incremental space is equivalent to the

model in full state space, if we have a linear model. This equivalence is also true for the

cost function, since

(yi − Hxi) =
(
yi − Hxb

i − Hδxi

)
= (δyi − Hδxi) , (8.2)

where δyi = yi−Hxb
i are the innovations and xb

i is the background trajectory. However,

there is an error that can be introduced into equation (8.2) depending on how we generate

the background trajectory xb
i .

To maintain the equivalence between the full space and the incremental space shown in

equation (8.2), the background trajectory for the LAM should be the background value

at time t0 interpolated to the LAM grid, and then the LAM model run from this initial

condition to provide the background trajectory values xb
i to be used in the calculation

of the innovations δyi. Symbolically, this can written as

xbP
0

interpolate−→ xb
0

xb
i
=Mxb

i−1−→
{

xb
i

}T

i=0
,
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where xbP
0

is the parent resolution background at time t0 and xb
0

is the LAM resolution

background at time t0.

However, the background trajectory values xb
i could instead be generated by simply

interpolating the parent model values at each timestep.

{
xbP

i

}T

i=0

interpolate−→
{

xb
i

}T

i=0
,

This results in different background trajectory values xb
i , due to the fact that running the

model at different resolutions can yield different values, even at the common gridpoints.

Running the model at a low resolution then interpolating does not yield the same result

as running the model at a high resolution.

This difference in the background trajectories is demonstrated in Figure 8.16(c) for the

tanh wave example we saw in Section 8.3.3. It shows the values to be used for xb
i if

we interpolate a low resolution model run (call this background 1) compared to the

values if we run the model at a higher resolution (call this background 2). As we see in

Figure 8.16(c), there is a clear difference in the two choices.

If we now consider the analysis generated using each choice of background, we see that

each choice can result in a very different analysis. Figure 8.16(a) shows the two analyses

at the initial time t = 0. Only one background is shown because both the backgrounds

have the same initial values. As we can see, the analysis generated with background 1

deviates more from the truth. This is caused by the error introduced by the incorrect

conversion to incremental space. As well as being present at the initial time, if we

consider Figure 8.16(b), which shows the analyses at the middle of the assimilation

window, we see that this difference between the two analyses is still present and the

analysis generated with background 1 is still less accurate.

The extent of the difference made on the analysis by the choice of background depends

on the form of the wave being captured by the analysis. On the tanh wave shown in

Figure 8.16 the difference is easily visable, and if we consider a background with a phase

shift, as shown in Figure 8.17, the difference is even more apparent. However, for the sine

wave examples the difference is much less noticable, as illustrated in Figure 8.18. This

difference in dependence is caused by how variable the model output is with different

resolutions. Figure 8.19 shows the difference in model output between a resolution of
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(a) Model outputs at t = 0.
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(b) Model outputs at the middle of the assimi-

lation window.
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(c) Background values at the middle of the as-

similation window.

Figure 8.16: The truth is given by equation (8.1) at t = 0. In (a) and (b) the green dash-dotted line is
the truth, the red line is the LAM analysis with backgroud 2, the pink dashed line is the LAM analysis
with background 1 and only in (a) the blue dotted line is the background. In (c) green is the truth, the
blue dash line is background 1 and the solid pale blue line is background 2.
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(a) Model outputs at t = 0.
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(b) Model outputs at the middle of the assimi-

lation window.
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similation window.

Figure 8.17: The truth is given by equation (8.1) at t = 0 and the background has a phase shift. In (a)
and (b) the green dash-dotted line is the truth, the pink line is the LAM analysis with background 1, the
red line is the LAM analysis with backgroud 2 and in (a) only the blue dotted line is the background.
In (c) green is the truth, the blue dash line is background 1 and the solid pale blue line is background 2.
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(a) Model outputs at t = 0.
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(b) Model outputs at the middle of the assimi-

lation window.
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(c) Background values at the middle of the as-

similation window.

Figure 8.18: The truth is ur(xr
j ) = 2 sin(2πxr

j ) + 2 sin(2π2xr
j ) + sin(2π4xr

j ) + sin(2π8xr
j ) at t = 0. In (a)

and (b) the green dash-dotted line is the truth, the pink line is the LAM analysis with background 1, the
red line is the LAM analysis with backgroud 2 and in (a) only the blue dotted line is the background.
In (c) green is the truth, the blue dash line is background 1 and the solid pale blue line is background 2.
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Figure 8.19: Error between model outputs with different resoltions for sine and tanh waves.

16 and 64 gridpoints, for both a tanh and a sine wave. As can be seen, the sine wave

has a small difference throughout the domain whereas the tanh wave agrees at all but

a few gridpoints. However, when the tanh wave does differ it differs by a much more

significant amount, 5 times that of the sine wave. It is this large inaccuracy that causes

the noticable differences seen in the analysis.

From these examples we see that it is important to generate the background values

from a model run at the same resolution as that of the assimilation to be carried out.

However, with models being run at a very high resolution, this extra run of the high

resolution model to produce the background values is an added expense on already

stretched computer resources. However, if the LAM is being cycled and the background

is coming from a previous LAM forecast, with only the boundary counditions being

provided by the parent model, then the background is already at the higher resolution

and there is no longer an issue. This cycling on the LAM, with a previous LAM forecast

being used to provide the LAM background, is what is done operationally at the UK

Met Office [3].

8.5 Summary

We have shown that, as we would expect, running a 4D-Var scheme at a higher resolution

does enable the analysis to capture the smaller scales which are missed by the parent

123



analysis. However, we also showed that to do this the LAM data assimilation requires

high resolution observations.

We also note however, that even with perfect observations and no background term in

the cost function, the LAM analysis cannot correctly reconstruct the truth, due to the

influence of the background trajectory at the LBCs and buffer zone. We have also shown

that these errors caused by the LBCs affect the low wavenumbers of the LAM spectrum.

Due to the model being less diffusive at higher resolution the LAM analysis also has

errors introduced by trying to compensate for the difference in diffusion rate compared

to the truth. These errors occur on all wavenumbers but the high wavenumbers are

affected to a lesser degree due to these scales diffusing away more rapidly.

When the observations contain information from waves longer than the domain of the

model, these long-waves are aliased onto other wavenumbers. The majority of the alias-

ing is onto the longest waves contained within the spectrum of the model. In particular,

when using the DFT a significant amount of the long-wave information is aliased onto

wavenumber k = 0. In contrast, when using the Fourier sine transform k = 0 is always

set to zero and instead a significant amount of the long-wave information is aliased

onto wavenumber k = 1. This has been demonstrated for a single long-wave and a

combination of several.

The LBCs and aliasing of long-wave information is corrupting the low wavenumbers in

the LAM analysis and we have shown that, in some cases, the parent analysis actually

represents these wavenumbers more accurately. In Chapter 9 we go on to investigate

whether this knowledge can be used to manipulate the data asimilation to generate a

more accurate LAM analysis.

Although the long-waves are aliased onto other wavenumbers, we have shown that this

does not cause a problem for the spectral data assimilation scheme. The spectral

scheme produced the same analysis as that produced by the gridpoint scheme, to at

least O(10−5) accuracy. This agreement between the spectral and gridpoint schemes is

because of the discrete nature of the schemes.

We have also shown the importance of generating the background values from a model
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run at the same resolution as that of the assimilation to be carried out. Simply inter-

polating a coarser model run introduces errors into the LAM analysis. However, it is

noted that if the LAM is being cycled and the background is coming from a previous

LAM forecast, with only the boundary counditions being provided by the parent model,

then the background is already at the higher resolution and there is no longer an issue.

Throughout this Chapter the background error covariance matrix has been set to zero.

We now go on to consider the spectral scheme with a non-zero background error covari-

ance matrix. We investigate whether we can control how the data assimilation affects

different wavenumbers by manipulating the background error covariance matrix in spec-

tral space.
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Chapter 9

Manipulating scales in a 4D-Var

analysis using the background

error covariance matrix Σ

Now that we understand where information about different scales is projected in a 4D-

Var scheme, we want to see if we can use this knowledge to improve the LAM analysis.

We want to improve the representation of low wavenumbers because these wavenumbers

are inversely affected by the LBCs, as discussed in Section 8.1.2, and because it is

the low wavenumbers that contain the aliased long-wave information, as discussed in

Section 8.2. We aim to improve the accuracy of the low wavenumbers whilst maintaining

the improvement in the small scales achieved by the increase in resolution of the LAM,

compared to the parent model.

In Chapter 8 we always had the inverse background error covariance matrix set to be

zero. We therefore had no background term Jb in the cost function. We now introduce

a non-zero inverse background error covariance matrix and aim to use this matrix to

constrain the different scales.

As discussed in Section 5.4.2, in the spectral scheme we use a control variable transform

(the sine transform) and write the cost function (equation (5.6)) in terms of a new
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control variable δz, where δz is related to δx by equation (5.9),

δz = Wδx,

where W is the sine transform. The cost function is now given by equation (5.13),

J(z0) =
1

2
δz0

TΣ−1δz0 +
1

2

T∑

k=0

(δyk − HUδzk)T R
−1

k (δyk − HUδzk),

where U is the inverse sine transform and Σ−1 is given by equation (5.14),

Σ−1 = UTB−1U .

From equation (5.13) we see that, for the spectral scheme, we can consider the back-

ground error covariance matrix in physical space, matrix B, or in spectral space, matrix

Σ.

The background error covariance matrix controls how much the observational informa-

tion is spread out. In physical space the spread of observational information is based on

proximity to the observation. The matrix B controls how far an observation’s influence

will reach (radius of influence) and by how much. The matrix B is defined by how one

point in space is connected to another. Its covariances depend on physical length scales.

In contrast, the matrix Σ is defined in terms of wavenumbers.

The diagonal entries of an error covariance matrix are the variances. In spectral space

they are the variances on the different wavenumbers. We aim to use the knowledge

about the different wavenumbers gained in Chapter 8 to allow us to choose the diagonal

entries of matrix Σ in such a way as to control how the different wavenumbers are

affected by the data assimilation scheme. We then aim to use this control of how the

different wavenumbers are treated to enable the LAM analysis to accurately capture all

the scales present in the truth.

We begin by comparing, in physical space, the matrix B corresponding to choices of

matrix Σ.
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9.1 How the matrix B corresponds to choices of the ma-

trix Σ

While it is useful for us to define the background error covariance matrix in spectral

space, as this allows us to specify the variances on the different wavenumbers instead of

physical locations, it is important to consider how the choice of the matrix Σ relates to

the corresponding matrix B.

We consider Σγ = diag{γi} and Σµ = diag{µi} for a system with 31 gridpoints where

γi =





0.005 if i = 1, 2, 3

0.01 if i = 4, . . . , 10

0.1 if i = 11, . . . , 16

0.5 if i = 17, . . . , 24

1 if i = 25, . . . , 31

(9.1)

and

µi =





1 if i = 1, 2, 3

0.5 if i = 4, . . . , 10

0.1 if i = 11, . . . , 16

0.01 if i = 17, . . . , 24

0.005 if i = 25, . . . , 31 .

(9.2)

In Σγ we have placed a very small variance on the large scales and a large variance on the

small scales. This corresponds to what we would expect to do in our model, constraining

the large scales to match the background while allowing the observations to influence the

smaller scales. As can be seen in Figure 9.1(a), the corresponding matrix Bγ displays

an oscillating structure, suggesting that the correlations are in the shortest wavelengths,

as we would hope. This is a good sign and warrants further investigation.

In Σµ we have placed a large variance on the large scales and a small variance on the

small scales. This results in the corresponding matrix Bµ resembling a more traditional

matrix B with correlations on the large scales, as can be seen in Figure 9.1(b).

This can be further seen by considering a single row of the matrix B. This is known as

the structure function and illustrates how information is spread by the matrix B. The
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Figure 9.1: Plots of the matrix B.
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Figure 9.2: Plot of row 8 of the matrices Bγ , in blue, and Bµ , in red.

structure function of matrix Bγ and matrix Bµ are plotted in Figure 9.2. As we see,

the blue line corresponding to Bγ oscillates rapidly which will result in increments on

the small scales. In comparison, the red line corresponding to Bµ is smoother with a

wider spread which will result in increments on the larger scales. These are promising

results as they suggest that we can alter which scales are affected in the LAM analysis

by our choice of matrix Σ. It is therefore worth testing different choices of Σ in the

model. Initial tests with Σ−1 6= 0 are shown in Section 9.2.

9.2 Initial tests with a non-zero background error covari-

ance matrix Σ

We begin by investigating whether, by our choice of matrix Σ, we can control which

wavenumbers are affected by the data assimilation.

We first run the 4D-Var spectral scheme with Σ−1

0 = 0 (no background term in the

cost function), Σ−1

1 = I (a small variance on all scales), Σ−1
α = diag{αi} and Σ−1

β =

diag{βi}, where

αi =





0 if i < M/2

1 if i ≥M/2 ,
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(no background term for the large scales and a small variance on the small scales) and

βi =





1 if i < M/2

0 if i ≥M/2 ,

(no background term for the small scales and a small variance on the large scales), M

is the number of LAM gridpoints.

In all four experiments the only thing to change is the matrix Σ−1, everything else

is kept the same. The reference trajectory at time t = 0 is a linear combination of

sine waves with coefficient one and wavenumbers κ = 1, 2, 4, 5, 8, 12, 13, 18, 22, 27. As

discussed in Section 7.4, the reference trajectory is used to provide the truth and the

observations. The background is xb = 0 and therefore the background trajectory (as

defined in Chapter 8) is also zero at all time levels. We have full, perfect observations

and the inverse observational error covariance matrix is R−1 = 2
M I. As in Chapter 8,

the LAM domain covers the right half of the parent domain, starting at the middle

parent gridpoint.

Figures 9.3, 9.4, 9.5 and 9.6 show the model outputs and the power spectra for the case

with Σ−1

0 , Σ−1

1 , Σ−1
α and Σ−1

β respectively.

As can be seen in Figure 9.3(a), with Σ−1

0 the analysis is quite spiky and closely fits

the truth. This is because for the case with Σ−1

0 there is no background term in the

cost function. However, the background trajectory does still have some effect on the

analysis because of the boundary conditions. As discussed in Section 8.1.2, this is why

the analysis does not fit the truth exactly, despite having the resolution to capture all

the wavenumbers present in the truth.

In contrast to the spiky analysis generated with Σ−1

0 , for the case with Σ−1

1 , which

has a small variance on all wavenumbers, the analysis is much smoother, having been

pulled back towards the zero background, as seen in Figure 9.4(a). The influence of the

background can also be seen by considering the power spectra. In the power spectrum of

the Σ−1 = 0 case, shown in Figure 9.3(b), the analysis has the same amplitude as the

truth or greater. As described in Section 8.1.2, this increase in amplitude on the lower

wavenumbers is caused by the inaccuracies at the boundaries between the background

trajectory and the truth at times t > 0, as well as the increased diffusion in the LAM
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Figure 9.3: Model outputs and power spectra for the case with Σ
−1

0
. Green is the truth, red is the LAM

analysis and blue is the background.
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Figure 9.4: Model outputs and power spectra for the case with Σ
−1

1
. Green is the truth, red is the LAM

analysis and blue is the background.
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Figure 9.5: Model outputs and power spectra for the case with Σ
−1

α . Green is the truth, red is the LAM
analysis and blue is the background.
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Figure 9.6: Model outputs and power spectra for the case with Σ
−1

β . Green is the truth, red is the LAM
analysis and blue is the background.
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caused by the difference in resolution compared to the truth. For the Σ−1

0 case, there

is no background term in the cost function so the zero amplitude of the background

trajectory is not affecting the power spectrum of the analysis, except through the LBCs.

However, in Figure 9.4(b) we see that for the Σ−1
1 case the amplitude in the analysis

is much lower than that of the truth, having been influenced by the zero background as

well as the observations.

For the cases with split variances, Σ−1
α and Σ−1

β , we would hypothesize that the power

spectra should resemble half of the power spectrum for the Σ−1

0 case and half of the one

for the Σ−1

1 case, depending which way round we order the zeros and the ones. Looking

at Figures 9.5(b) and 9.6(b), we see that this is indeed the case. Taking Figure 9.5(b)

first, we see that for wavenumbers 1, . . . , 15, where αi = 0, the amplitude in the power

spectrum agrees with that for the Σ−1

0 case. For wavenumbers 16, . . . , 31, where αi = 1,

the amplitude in the power spectrum agrees with that for the Σ−1

1 case. The reverse

can be seen for Figure 9.6(b).

If we now consider the model outputs in physical space, we see that these characteristics

can still be observed. For the case with Σ−1
α , shown in Figure 9.5(a), the analysis is

smoother and for the case with Σ−1

β , shown in Figure 9.6(a), the analysis is more spiky.

This is because in Σ−1
α we let the lower wavenumbers be influenced by the observations

while the higher wavenumbers are dominated by the zero background. This results

in little small scale detail and a smoother analysis. In contrast, in Σ−1

β we let the

higher wavenumbers be influenced by the observations while the lower wavenumbers are

dominated by the zero background. This results in a lot of information in the small

scales and a spikier analysis.

These results confirm the hypothesis that the wavenumbers can be constrained individ-

ually by the choice of matrix Σ. Now that we have shown it is possible to constrain

the scales seperately, we go on to investigate whether we can specify the matrix Σ in

such a way as to improve the accuracy of the low wavenumbers whilst also accurately

capturing the small scales.
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9.3 More realistic examples with a non-zero background

error covariance matrix Σ

Having demonstrated in Section 9.2 the potential to use the matrix Σ to influence

different wavenumbers we now want to try varying matrix Σ in more realistic cases.

We take our reference trajectory to be

ur(xr
j) = 5 sin(πxr

j) + sin(2πxr
j) + sin(36πxr

j).

This combines one long-wave and two waves which are contained in the possible spectrum

of the LAM, one low wavenumber and one high.

This reference trajectory is used to provide the observations. However, whereas in

Chapter 8 we used perfect observations, we now add random noise to the observations.

This random noise has variance σ2
o = 0.25 on all wavenumbers and the observation

error covariance matrix is R = σ2
oI, where I is the identity matrix. We use the value

σ2
o = 0.25 for our observation error variance because this is a typical error value for a

thermometer, and in our advection-diffusion model the model variable is temperature.

We have observations at every LAM gridpoint and timestep.

As in Chapter 8, we take the parent model to have N = 16 gridpoints and there are

10 parent timesteps in the assimilation window. The LAM covers the right-hand side

of the parent grid, starting at the middle gridpoint. The LAM has four times the

spatial resolution of the parent model and there are 16 LAM timesteps for every parent

timestep. The reference trajectory has twice the spatial resolution of the LAM and four

times the temporal resolution. The diffusion constant is still σ = 0.001 but now the

advection speed is c = 1.

9.3.1 A background xb with no random noise

Given the presumption that longer waves are accurately represented in the model pro-

viding the background, we choose a background that correctly contains these waves but

does not contain any higher resolution information. The background at t = 0 is

up(xr
j) = 5 sin(πxp

j ) + sin(2πxp
j ).
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The background trajectory is then generated by first running the parent model forward

from these initial conditions. The background is then interpolated to the LAM grid

and re-run at the LAM resolution using boundary conditions provided from the parent

resolution run. Generating the background trajectory in this way agrees with a set-up

where the background is provided by a parent model with a coarser resolution but larger

domain size than the LAM.

Varying the choice of matrix Σ, we run the data assimilation (spectral scheme) with the

same observations, background and background trajectory, to compare how the choice

of matrix Σ affects the different scales in the analysis.

We use Σ−1

0 = 0 (no background term in the cost function), ΣA = 0.052I (the same

small variance on all wavenumbers), Σα = diag{α2
i } and Σβ = diag{β2

i } where

αi =





0.005 if i = 1, . . . , 15

0.5 if i = 16, . . . ,M ,

and

βi =





0.005 if i = 1

0.05 if i = 2, . . . , 15

0.5 if i = 16, . . . ,M .

Σβ has a very small variance on wavenumber k = 1, a small variance on the other

lower wavenumbers and a variance equal to that on the observations on the higher

wavenumbers. Σα has the same variance as Σβ on the higher wavenumbers but has an

extremely small variance on all the lower wavenumbers, instead of just k = 1.

We choose Σα and Σβ like this because, as discussed in Section 8.1.2, the LAM over

estimates the low wavenumbers due to the LBCs. The low wavenumbers also contain the

aliased long-wave information, as shown in Section 8.2. By placing a smaller variance on

the low wavenumbers we aim to constrain these scales to match the background, which

is assumed to accurately capture the large scales. The higher wavenumbers are given a

larger variance with the aim of letting the observations have a greater influence on the

small scales.

Figure 9.7 shows the model outputs for the four choices of matrix Σ. The four analyses

are plotted offset from each other on the same axis to enable them to be compared

more easily. The reference trajectory (truth) is shown in green, the background in blue
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Figure 9.7: Model outputs at t = 0 for Σ
−1

0
, ΣA, Σα and Σβ . Green is the reference trajectory (truth),

blue is the background and red is the analysis. The green crosses are observations.

and the analyses are in red. The observations are shown by green crosses. The bottom

analysis is generated using Σ−1
0, the analysis generated using ΣA is then offset by

three, the analysis generated using Σα is then offset by six and the analysis generated

using Σβ is offset by nine.

As we would expect, the analysis generated with Σ−1

0 closely fits the observations due

to there being no background term in the cost function. In comparison, the analysis

generated with ΣA, which has an extremely small variance on all wavenumbers, closely

fits the background and has little high resolution detail. This is because the variance

on the background is smaller than the variance on the observations by a factor of a

hundred. This results in the analysis being strongly constrained by the background and

allows the observations to have little effect. The benefit of the high resolution detail

in the observations is therefore not felt by the analysis. The analyses generated with

Σ = α2
i I and Σ = β2

i I fit the observations closely but have slightly lower amplitude

than the Σ−1

0 case, due to the influence of the background, though this is difficult to

observe by eye.

The differences in the analyses can be better understood by considering the power
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Figure 9.8: Errors in the power spectrum at t = 0 for the observations (dark blue), the background (mid blue), the analyses generated with Σ
−1

0
(light blue), ΣA (yellow),

Σα (orange) and Σβ (red).
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Figure 9.9: Errors in the power spectrum at t = 0, a close up of k = 0, . . . , 4 and k = 16, . . . , 20 for the
observations (dark blue), the background (mid blue), the analyses generated with Σ

−1

0
(light blue), ΣA

(yellow), Σα (orange) and Σβ (red). A close up of k = 0, . . . , 4 and k = 16, . . . , 20.

spectra. Although the power spectra of all four analyses are similar there are subtle

differences that reveal properties of the analyses. To make the differences in the power

spectra more apparent, instead of plotting the power spectra themselves we instead plot

the absolute error in the power spectra. These absolute errors are plotted in Figure 9.8.

The absolute errors are the magnitude of the difference between the power spectra of

the analyses and that of the reference trajectory (truth). Also shown in Figure 9.8 are

the absolute errors in the observations (dark blue) and the background (mid blue). As

there are a lot of wavenumbers the columns are quite tightly packed and difficult to see.

Therefore, a close up of the wavenumbers contained in the reference trajectory is shown

in Figure 9.9. Light blue is the error in the Σ−1

0 analysis, yellow the ΣA analysis, orange

the Σα analysis and red the Σβ analysis.

Concentrating on the errors at k = 1 and k = 18 to begin with, we see in Figure 9.9 that

the observations (dark blue) have errors at both wavenumbers (≈ 0.5 at k = 1 and ≈ 0.1

at k = 18). This is as we would expect having added random noise to the observations.

The background has a small error (< 0.1) at k = 1, caused by the difference in resolution

compared to the reference trajectory. It also has a large error (> 1.2) at k = 18, caused
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by the lack of high resolution information in the background. We plot these errors, as

well as those of the analyses, because we can use these errors to understand the errors

in the analyses.

We consider the Σ−1

0 case first. Having the matrix Σ−1 being equal to zero means

that there is no background term in the cost function, leaving just the observation term.

Despite this, the power spectrum of the Σ−1

0 case (light blue) does not exactly match

that of the observations. This is because despite the lack of background term in the cost

function, the background trajectory does still influence the analysis through the lateral

boundary conditions and the buffer zone, as discussed in Section 8.1.2. This influence

could be what causes the analysis to be more accurate than the observations at k = 1.

However, it is also worth noting that at k = 18, as well as many other wavenumbers,

the error in the Σ−1

0 analysis is greater than that of the observations. This is also due

to the influence of the background trajectory through the LBCs.

Now considering the error in the power spectrum of the analysis generated using ΣA

(yellow), which has an extremely small variance on all wavenumbers, we see that it has

a very small error at k = 1. This is as we would expect, due to the analysis being

constrained to closely match the background. At k = 18 however, there is a large

error, again caused by the constraining of the analysis to match the background via

our choice of Σ. By having a much smaller variance on the background compared to

the observations, the analysis is heavily constrained to match the background and the

information contained in the observations about wavenumber k = 18 cannot influence

the analysis.

Using these patterns in the power spectrum we can understand better the analyses for

the Σα and Σβ cases. In each analysis there are only small errors (< 0.2) at both k = 1

and k = 18, as well as at the other wavenumbers. This demonstrates that by varying

the values in Σ we can constrain the scales differently. By placing a small variance on

the lower wavenumbers they have benefited from the accurate large scale information in

the background, while a larger variance on the higher wavenumbers have allowed those

wavenumbers to be influenced by the high resolution information in the observations.

It is also interesting to note the difference in the error at k = 2 between the Σα and

Σβ cases. Due to the random error, the observations have an error (> 0.2) at k = 2.
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In both the Σα and Σβ cases the influence of the background has meant the errors

in the analyses are less than those of the observations. However, the error at k = 2

in the Σβ case is greater than that in the Σα case. This is caused by the differences

in the variances placed on the low wavenumbers. While both cases have the same,

extremely small, variance on k = 1, Σβ has a larger variance on k = 2, . . . , 15, allowing

the observations to have more influence. In contrast, Σα has the same, extremely small,

variance for k = 2, . . . , 15 as it has for k = 1. This constrains more low wavenumbers to

match the background and reduces the error in the analysis. This demonstrates that as

well as constraining wavenumber k = 1, there is also a benefit in constraining more of

the low wavenumbers.

These results demonstrate that we can choose Σ in such a way as to influence the

large and small scales differently. Also by constraining the low wavenumbers to match

the background we can better represent the long-wave information, which is aliased to

low wavenumbers on the LAM domain as discussed in Chapter 8, and reduce the errors

resulting from the LBCs causing the LAM analysis to overestimate the low wavenumbers,

as discussed in Section 8.1.2.

In reality however, the parent model would never capture the large scales perfectly

(although the zero boundary conditions assume that we do). Therefore, we now repeat

our experiments using a background that has random noise added to the large scales.

9.3.2 A background with random noise

We again choose a background that correctly contains the longer waves but does not

contain any higher resolution information, following the presumption that longer waves

are accurately represented in the model providing the background. However, the parent

model output will never be perfect, therefore, we now add some random noise to this

background. The background is generated by first running the parent model forward

from the initial conditions

up(xr
j) = 5 sin(πxp

j ) + sin(2πxp
j ).

This is then interpolated to the LAM grid as before. However, random noise is now

added to the initial conditions, on the LAM resolution, at the wavenumbers contained
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in the spectrum of the parent model. These new initial conditions give us the background

for the LAM. The background trajectory is then generated by running the background

forward, at the LAM resolution, using the LBCs from the parent model run. The random

noise has variance 0.52 and is added to wavenumbers k = 1, . . . , 7. This variance is equal

to that of the noise added to the observations. All the other parameters are kept equal

to those in Section 9.3.1.

Varying the choice of Σ, we again run the data assimilation (spectral scheme) with the

same observations and background, as we did in Section 9.3.1. We compare how the

choice of matrix Σ affects how the different scales are treated in the analysis and whether

we can specify the matrix Σ in such a way to improve the low wavenumbers in a LAM

analysis. These low wavenumbers are adversely affected by the LBCs as well as being

where the long-wave information is aliased onto in the LAM analysis. We therefore want

to capture these low wavenumbers as accurately as possible.

The same variance on all wavenumbers compared to splitting the variances

We begin by using Σ−1

0 = 0, ΣA = 0.052I (the same, small variance on all wavenum-

bers), ΣB = 0.52I (a variance on all wavenumbers matching that of the random noise

on wavenumbers k = 1, . . . , 7 of the background) and Σγ = diag{γ2
i }, where

γi =





0.5 if i = 1, . . . , 7

5.0 if i = 8, . . . ,M ,

(the correct variance on wavenumbers k = 1, . . . , 7 and a large variance elsewhere to

allow greater influence from the observations).

Figure 9.10 shows the model outputs for the four choices of Σ. The four analyses are

plotted offset from each other on the same axis to enable them to be compared more

easily. The reference trajectory (truth) is shown in green, the background in blue and

the analyses are in red. The observations are shown by green crosses. The bottom

analysis (marked by red dots) is generated using Σ−1

0 , the analysis generated using

ΣA (marked by red diamonds) is then offset by three, the analysis generated using ΣB

(marked by red stars) is then offset by six and the analysis generated using Σγ (marked

by red cirles) is offset by nine.
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Figure 9.10: Model outputs at t = 0 for Σ
−1

0
, ΣA, ΣB and Σγ . Green is the reference trajectory

(truth), blue is the background and the green crosses are observations. The analyses are shown in red.
The bottom analysis (marked by red dots) is generated using Σ

−1

0
, the analysis generated using ΣA

(marked by red diamonds) is then offset by three, the analysis generated using ΣB (marked by red stars)
is then offset by six and the analysis generated using Σγ (marked by red cirles) is offset by nine.
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As we would expect, the analysis generated with Σ−1

0 again closely fits the observations

due to having no background term in the cost function. In comparison, the analysis

generated with ΣA, which has an extremely small variance on all wavenumbers, closely

fits the background and has little amplitude in the high resolution oscillations. This

is because of the extremely low background variance, which constrains the analysis to

closely match the background. The other two analyses both appear to be very similar

to that of the Σ−1

0 case, and while there are subtle differences between them these are

difficult to observe by eye. To better understand the differences between the analyses

we consider again the absolute errors in the power spectra.

Figure 9.11 shows the absolute errors in the power spectra. Again, as there are a lot of

wavenumbers the columns are quite tightly packed and difficult to see. Therefore, a close

up of the wavenumbers contained in the reference trajectory is shown in Figure 9.12.

Dark blue is the error in the observations, mid blue is the error in the background, light

blue is the error in the Σ−1

0 analysis, yellow the ΣA analysis, orange the ΣB analysis

and red the Σγ analysis.

Concentrating on the errors at k = 1 and k = 18 to begin with, we see in Figure 9.12

that the observations have errors at both k = 1 (≈ 0.5) and k = 18 (≈ 0.2). This is as

we would expect having added random noise to the observations. The background also

has an error (≈ 0.15) at k = 1, caused by the random noise. It also has a large error

(> 1.2) at k = 18, caused by the lack of high resolution information in the background.

We plot these errors, as well as those of the analyses, so that we can use these errors to

understand the errors in the analyses.

If we consider the Σ−1
0 case first, we see that although there is no background term in

the cost function, the power spectrum of the analysis does not exactly match that of the

observations. In fact, the error at k = 18 is almost double that of the observations. This

increase in error is caused because although there is no background term in the cost

function, the background does still influence the analysis through the lateral boundary

conditions and the buffer zone, as discussed in Section 8.1.2.

Now considering the analysis generated with ΣA, which has an extremely small variance

on all wavenumbers, we see that it has a small error at k = 1. This is as we would expect,

due to it being constrained to closely match the background. In fact, the error at k = 1
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Figure 9.11: Errors in the power spectrum at t = 0 for the observations (dark blue), the background (mid blue), the analyses generated with Σ
−1

0
(light blue), ΣA

(yellow), ΣB (orange) and Σγ (red).
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Figure 9.12: Errors in the power spectrum at t = 0, a close up of k = 0, . . . , 4 and k = 16, . . . , 20 for the
observations (dark blue), the background (mid blue), the analyses generated with Σ

−1

0
(light blue), ΣA

(yellow), ΣB (orange) and Σγ (red). A close up of k = 0, . . . , 4 and k = 16, . . . , 20.

is actually slightly lower than that of the background. This demonstrates the possibility

of improving the representation of low wavenumbers on the LAM, even compared to the

background, by over constraining the low wavenumbers in Σ. At k = 18 however, there

is a large error (> 1.2), again caused by the constraining of the analysis to match the

background via our choice of Σ.

The ΣB case has the same variance on all wavenumbers and this is the correct variance

from the added random noise on wavenumbers k = 1, . . . , 7. It also means we have the

same variance on the background as on the observations. This analysis is fairly accurate

at all wavenumbers. It has a small error at k = 1 but it is worse than the ΣA case. This

demonstrates the benefit in overconstraining the low wavenumbers, as ΣA has a lower

variance than ΣB. Using the correct variances does not necessarily give the best results.

The error at k = 18 is also worse than some of the other analyses. This is because the

variance on the background is still too small at high wavenumbers.

In the Σγ case we keep the correct variance for the lower wavenumbers, but increase

the variance on the higher wavenumbers. This agrees with the presumption that while
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the larger scales are accurately represented in the background, the small scales are not.

Comparing this analysis with the ΣB case, which has a smaller variance than Σγ on

the higher wavenumbers, we see that while it has roughly the same error at k = 1 it

has generally worse errors at most other wavenumbers. This demonstrates the need

for balance. While the larger background variances at higher wavenumbers in Σγ have

allowed the observations to influence k = 18, making this noticably better in the Σγ

case compared to the ΣB case, the larger variances have also allowed the errors in the

observations to negatively influence the analysis at other wavenumbers. This highlights

that while the background does not accurately represent the small scales, it is still

important to not use overly large variances in Σ.

By overconstraining the low wavenumbers, the ΣA analysis is more accurate than the

background at low wavenumbers. By splitting the scales in Σγ we can constrain the

low wavenumbers to match the background while allowing the observations to influence

the higher wavenumbers. These results show the possibility of specifying Σ in such a

way as to enable the LAM analysis to accurately capture all the scales present in the

truth. Therefore, we now try more choices of Σ, altering the variances on the different

wavenumbers.

Comparing choices of Σ with different variances on different wavenumbers

We aim to choose the variances in the matrix Σ in such a way as to reduce the error in

the LAM analysis, particularly at low wavenumbers. From Section 8.1.2 we know that

the LBCs cause the LAM to over estimate the low wavenumbers. From Section 8.2 we

know that the long-wave information is also aliased to the low wavenumbers. By placing

a smaller variance on the low wavenumbers we aim to constrain these scales to match

the background, which is assumed to accurately capture the large scales. The higher

wavenumbers are given a larger variance with the aim of letting the observations have a

greater influence on the smaller scales. We now compare different choices of matrix Σ.

All have variances split between the different scales, but the actual variances used at

the different scales varies between them.
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We have Σµ = diag{µ2
i }, Σν = diag{ν2

i }, Σω = diag{ω2
i } and Ση = diag{η2

i }, where

µi =





0.05 if i = 1, . . . , 7

0.5 if i = 8, . . . ,M ,

νi =





0.05 if i = 1, . . . , 7

5.0 if i = 8, . . . ,M ,

ωi =





0.005 if i = 1, . . . , 7

0.5 if i = 8, . . . ,M ,

ηi =





0.005 if i = 1, 2

0.05 if i = 3, . . . , 7

0.5 if i = 8, . . . ,M .

As we saw in Figure 9.10, the subtleties between the different analyses are difficult to

observe in physical space. We therefore do not plot the model outputs in physical space

and just consider the absolute errors in the power spectra.

Figure 9.13 shows the absolute errors in the power spectra. As before, since the columns

are quite tightly packed and difficult to see, a close up of the wavenumbers contained in

the reference trajectory (truth) is shown in Figure 9.14. Dark blue is the error in the

observations, mid blue is the error in the background, light blue is the error in the Σµ

analysis, yellow the Σν analysis, orange the Σω analysis and red the Ση analysis.

If we concentrate on k = 1 to start with, we see in Figures 9.13 and 9.14 that all four

analyses are at least marginally better than the background. This demonstrates the

benefit of over constraining the low wavenumbers, as in all four choices of Σ the variance

on wavenumber k = 1 is lower than the true variance. This is further demonstrated by

the smallest errors at k = 1 being for the analyses that most constrain wavenumber

k = 1, namely Σω and Ση.

It is also interesting that the smallest error at k = 1 is on the Ση case, even though it

only constrains the first two wavenumbers by the highest amount. In contrast, the Σω

case has strongly constrained all of the first seven wavenumbers, but this actually has

a slightly detrimental effect on the errors. At all of the first seven wavenumbers, and

several others, the Σω case has larger errors than the Ση case. This shows that while it
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Figure 9.13: Errors in the power spectrum at t = 0 for the observations (dark blue), the background (mid blue), the analyses generated with Σµ (light blue), Σν (yellow),
Σω (orange) and Ση (red).
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Figure 9.14: Errors in the power spectrum at t = 0, a close up of k = 0, . . . , 4 and k = 16, . . . , 20 for the
observations (dark blue), the background (mid blue), the analyses generated with Σµ (light blue), Σν

(yellow), Σω (orange) and Ση (red). A close up of k = 0, . . . , 4 and k = 16, . . . , 20.

is beneficial to constrain the lowest wavenumbers, it is important to maintain a balance

and not overly constrain too many wavenumbers.

The benefit of overconstraining the low wavenumbers is also evident by comparing the

Σγ analysis (red) in Figure 9.12 and the Σν analysis (yellow) in Figure 9.14. Σγ and

Σν have the same variances on the higher wavenumbers but while Σγ has the correct

variance on the low wavenumbers (as specified by the added random noise), Σν has

an overly small variance on these wavenumbers. Comparing the errors in the power

spectrum, we see that while both have similar errors at k = 18, at k = 1 the Σν analysis

is more accurate. This improvement in accuracy is due to overconstraining the low

wavenumbers.

Now considering k = 18, we see from Figure 9.13 and 9.14 that the largest errror is in

the Σν case. This choice of Σ has a variance of 5 on all wavenumbers above k = 7, the

largest variance of any of the analyses. This demonstrates an important point. While the

small scales are not well represented in the background and it is necessary to set a large

enough variance in Σ such as to allow the observations to influence these wavenumbers,
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it is also important to maintain a balance between the background and observation

variances and not set the variances in Σ too large, even at high wavenumbers. The

other three analyses all have the same variance at wavenumbers above k = 7 and their

errors at these wavenumbers are all relatively similar. One may be slightly better at one

location but another is better elsewhere.

These results demonstrate the potential of Σ to affect the different length scales in an

analysis. By placing a smaller variance on the lower wavenumbers we can not only

constrain the large scales so as to not degrade them in the LAM analysis, we can

actually improve them compared to the background. At the same time we can accurately

represent the small scales by balancing the variance on the higher wavenumbers in the

background with that on the observations.

9.4 Comparisons with other work

As described in Section 4.2.1, there have been other attempts to improve the problems

of accurately representing all the scales in a LAM analysis.

Ballard et al [2] does a complete split of the scales, merging the large scales from a parent

model run with the small scales from the LAM. We could accomplish a similar distinct

splitting of the scales by placing a small variance on the low wavenumbers to constrain

those to the background, and a large variance on the high wavenumbers to allow those

to be influenced by the observations. A version of scale splitting using our method was

demonstrated in Section 9.2. Although both methods seem to perform a similar scale

splitting, there are also distinct differences between splitting the scales using our method

and that used by Ballard et al. In particular, in the Ballard et al method the LAM data

assimilation is first run as normal using a background which is provided by a previous

LAM forecast. The small scales from this analysis are then blended with the large scales

from a parent analysis to generate the final LAM analysis, which is then used to generate

the forecast. However, by generating the scales in separate analyses and then blending

them, it is not guaranteed that the resulting analysis obeys the model equations. In

our method however, the generation of the LAM analysis and the scale splitting is all

done in one step. This guarantees an analysis which obeys the model equations and
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potentally creates a smoother transition between the large and small scales. However, it

also means the small scales do not benefit from the information in previous LAM runs,

as the background is provided by the parent model.

Guidard and Fischer [34] constrain the large scales to those of the model providing the

boundary conditions by means of an extra term Jk in the cost function. Comparing to

our method, constraining the large scales in the LAM analysis to those of the parent

analysis providing the boundary conditions is precisely what we are doing when we set

a small variance on the low wavenumbers in Σ.

As described in [34], in the Guidard and Fischer cost function, there are two background

terms; the standard background term

Jb(δx) =
1

2
δxT B−1δx,

where δx = x−xb, and an extra term Jk. This extra term Jk measures the discrepancies

from the large scales of the global analysis. In order to introduce a constraint with

respect to the corresponding global analysis xAA, they add a new source of information

H1(x
AA), a subset of the global analysis. H1 is an operator bringing a vector from the

global model space to a low-resolution LAM space, in order to constrain only the large

scales in the LAM. Thus, H1(x
AA) represents some large scales of the global analysis

over the LAM domain.

The Jk term is given by

Jk(δx) =
1

2

(
dk − H2δx

)T
V −1

(
dk − H2δx

)
,

where dk = H1(x
AA)−H2(x

b) are the innovations with respect to the global large scales,

V is the matrix of global-large-scale-error covariances and H2 is the linearisation of H2,

where H2 is the an operator bringing a vector from the nominal-resolution LAM space

to the same low-resolution LAM space as H1.

There appear to be similarities between the methods of both Guidard and Fischer,

Ballard et al and ourselves. However, there are also clear differences. In the Ballard

et al method, the large scales are constrained by the large scales in the parent analysis

and the small scales are constrained by the small scales in the LAM background. In the

Guidard and Fischer method, the large scales are constrained by both the large scales

154



in the parent analysis and the large scales in the LAM background. The small scales

are constrained by the small scales in the LAM background. In our method, the large

scales are constrained by the large scales in the parent analysis and the small scales are

(extremely weakly) constrained by the small scales in the parent analysis. However, the

small scales are zero in the parent analysis.

Another difference between both these methods and the method using Σ developed in

this thesis is that both the Guidard and Fischer and the Ballard et al methods have

thus far only been used with 3D-Var, where as our method has been tested using 4D-

Var. However, there is nothing in our method that is dependant on it being used with

4D-Var and it could easily be run for a 3D-Var scheme. Doing this would enable a direct

comparison of the methods, which would be useful future work.

9.5 Summary

We have illustrated how choices of the matrix Σ relate to the corresponding matrix B

in physical space. By placing a small variance on the low wavenumbers and a large

variance on the high wavenumbers we generate a matrix B which oscillates and spreads

information on the small scales. In contrast, if we place a large variance on the low

wavenumbers and a small variance on the high wavenumbers we get the more traditional

matrix B which has a smoother, wider form and spreads information on the large scales.

The correspondence between Σ and B was promising so we tested some simple choices

of Σ in our model. Initial tests confimed that by putting a different variance on the

large and small scales, Σ could split the scales in the analysis.

Further tests were done in a more realistic setting where the observations had added

random noise and a background was taken to be the same as the reference trajectory

but without the small scale information. This was done both with and without adding

random noise to the background. Comparisons between analyses generated with different

choices of Σ confirmed that varying the variances on the different wavenumbers allows

the scales to be affected seperately in the data assimilation.

From the results of Chapter 8 we know that the LAM over estimates the low wavenum-
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bers due to the LBCs and that the long-wave information is also aliased to the low

wavenumbers. It was also shown that the parent analysis can be more accurate at the

larger scales. Here we showed that by placing a smaller variance on the lower wavenum-

bers we can not only constrain the large scales so as to not degrade them in the LAM

analysis, we can actually improve them compared to the background. At the same time

we can accurately represent the small scales by balancing the variance on the higher

wavenumbers in the background with that on the observations.

We also compared our methods to the work done by Guidard and Fischer [34] and

Ballard et al [2]. It would appear, at least on initial inspection, that all three methods

are using the same large scale information from the background to benefit the LAM

analysis. It is just the method with which this information is absorbed that differs.

This comparison of the methods warrants further study.
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Chapter 10

Conclusions and future work

Hazardous or extreme weather is often caused by convective scale features. The need

to predict these events accurately has created a growing need in NWP to improve our

ability to forecast on the convective scale. To accurately predict the convective scale we

need high resolution forecast models, in order to resolve the dominant motions correctly.

However, this high resolution means the model can only have a limited area domain size.

This causes problems for both the model and the data assimilation.

In Chapter 4 we introduced problems caused by the limited area nature of storm-scale

forecast models: the need for lateral boundary conditions and the problem of captur-

ing atmospheric phenomena with length scales longer than the domain of the limited

area model, refered to in this thesis as long-waves, as well as small scale behaviour.

Investigating the problems caused by the limited area domain has been the focus of this

thesis.

To generate an accurate forecast on the convective scale it is important that a LAM

analysis be able to capture all the different scales, both small and large, including those

longer than the domain of the model. We investigated which scales can be captured

by a LAM analysis and where information of these scales is projected. We also demon-

strated a possible method to use this knowledge to improve the representation of the

low wavenumbers in a LAM 4D-Var analysis whilst still maintaining the accurate repre-

sentation of smaller scales. We now summarise the results and discuss ideas for future

work.
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10.1 Conclusions

We began in Chapter 2 by introducing data assimilation. We discussed variational

techniques, in particular 4D-Var. In Chapter 4 we introduced the limited area models

used operationally and considered some of the problems caused for both the model and

the data assimilation by only having a limited domain size.

Chapters 2 and 4 provided the information necessary to set up a 4D-Var scheme on both

a parent and a nested LAM domain. This was utilised in Chapter 5 where we outlined

a general LAM domain and discussed the modifications necessary for performing 4D-

Var on a LAM domain. The data assimilation was discussed for both a physical space

(gridpoint) and spectral space scheme.

We introduced the DFT and the power spectrum in Chapter 3 as a method of under-

standing the analysis generated by the 4D-Var. The effect of the LAM domain on the

DFT was examined in Chapter 6 and the sine transform was introduced. We demon-

strated that long-waves are aliased onto other wavenumbers contained by the spectrum

of the LAM. With the DFT the majority of the long-wave information is aliased onto

wavenumber k = 0 and with the sine transform onto k = 1.

In Chapter 7 we introduced the 1D-advection-diffusion model as the model to be used in

this thesis. Using information from Chapter 5 we set up both a gridpoint and spectral

4D-Var scheme on our LAM domain.

In Chapters 8 and 9 we used the model and 4D-Var schemes outlined in Chapter 7

to investigate how different scales are treated by the data assimilation. Using this

knowledge we have developed a new method to improve the different scales in a LAM

4D-Var analysis using the background error covariance matrix Σ. By controlling the

variances in matrix Σ we can improve the representation of the larger scales whilst also

maintaining the increased accuracy in the small scales achieved by the higher resolution

of the LAM.

The main conclusions of Chapters 8 and 9 are summarised below;

• The higher resolution of the LAM data assimilation allows it to capture small
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scale detail that cannot be resolved by the parent model. However, to achieve

this improvement in the small scales there must be high resolution observations

available to the LAM data assimialtion.

• Even with perfect observations and no background term in the cost function, the

LAM analysis cannot correctly capture the truth due to inaccuracies introduced

through the boundary conditions.

• Errors introduced through the lateral boundary conditions, as well as limitations

in the resolution of the LAM, cause the LAM data assimilation to have errors at

low wavenumbers.

• In the LAM data assimilation, observational information of waves with lengthscales

longer than the domain of the LAM is aliased onto other wavenumbers which are

contained in the spectrum of the LAM, with the majority of the information being

aliased onto the low wavenumbers in the LAM spectrum.

• Comparing the gridpoint and spectral schemes, it was shown that the truncation

of high order wavenumbers in the finite spectral transform does not cause the

spectral assimilation scheme to produce different results to the gridpoint scheme.

• It is important to generate the background trajectory xb
i at the LAM resolution,

and not simply interpolate a low resolution trajectory.

• Length scales in the 4D-Var analysis can be affected separately by the choice of

variances in the background error covariance matrix Σ.

• By over-constraining the low wavenumbers, we can not only stop them being

degraded in the LAM analysis, we can actually improve them compared with the

background. At the same time we can accurately represent the small scales by

balancing the variances on the higher wavenumbers in the background with those

on the observations.

The new method introduced in this thesis, which uses the matrix Σ to control the differ-

ent scales, constraining the low wavenumbers to match the background while allowing

the high resolution observations to benefit the small scales, could be applied to current

operational methods which already implement a spectral control variable transform.
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The matrix Σ method has shown promise here and warrants further study. However,

the results generated also have some limitations.

By using a linear 1D-advection-diffusion model we were able to consider the different

aspects of our problem in isolation. We investigated the effects of resolution and lateral

boundary conditions, as well as the different length scales in separate experiments,

making it much easier to identify which aspect was causing a particular outcome. This

was possible because of the simple nature of our model. We also had an analytic solution

with which to compare our model outputs.

As an initial test model the advection-diffusion model worked well. However, the dis-

cretisation scheme used suffered from numerical diffusion [62], being more diffusive at

lower resolutions. This caused the LAM analysis to over estimate amplitudes at the

inital time. Observing the effect of this error was interesting as all NWP models suffer

from model error. However, to apply the method developed in this thesis operationally

these results would need repeating for a different scheme, to quantify the errors.

Before the results of this thesis could be considered for operational applications they also

need to be tested on a model with more of the properties of a full atmospheric model.

Nonlinearity in particular, is an important property of atmospheric models, especially

at the convective scale [19]. All of our results have been generated with a linear model.

It is less clear whether the splitting of the scales using matrix Σ could be done so easily

in a nonlinear model, as the wavenumbers could have more dependancy on each other.

This requires further study before the method could be applied operationally.

Another limitation is that the assumption that the parent analysis accurately captures

the larger scales may not always hold. However, this assumption is already made oper-

ationally when zero boundary conditions are imposed on the LAM [2]. Even if the large

scales in the parent analysis are wrong for some reason, it may still prove beneficial to

constrain the large scales in the LAM analysis to match those in the parent analysis.

Given that the boundary conditions for the LAM are forced to remain equal to those

provided by the parent, by constraining the large scales in the LAM analysis to match

those in the parent analysis, the LAM is more consistent with the boundary conditions.

This creates a smoother transition from the boundaries to the LAM interior and could

reduce errors at the boundaries, such as ‘cut-off’ (as described in Section 4.2.1).
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10.2 Further work

As discussed in Section 10.1, before our results using matrix Σ could be applied opera-

tionally they need to be tested in a nonlinear case. A useful next step would therefore

be to incorporate some nonlinearity into our model. One possibility would be to develop

our advection-diffusion model into a model of the 1D-Kuramoto-Sivashinsky (K-S) equa-

tion [69]. This equation contains the advection and the diffusion term we already have,

but also contains a higher order spatial derivative and a nonlinear term. It exhibits

self-sustained chaotic behaviour of a multiscale nature and has previously been used as

a test model for 4D-Var on multiscale systems by [69]. The K-S model could be used

to investigate whether nonlinearity affects the aliasing of the long-wave information, as

well as whether the scales can still be split using matrix Σ when there is a nonlinear

dependence between the wavenumbers.

A second extension to this work would be a more direct comparison between the ma-

trix Σ method developed in this thesis, the Jk term proposed by Guidard and Fischer [34]

and the scale-splitting proposed by Ballard et al [2]. As discussed in Chapter 9, all three

methods are using large scale information from a parent analysis to benefit the LAM

analysis. It is the method with which this information is absorbed that differs. Another

difference is the small scale detail. Unlike both the other methods, our matrix Σ method

does not at any point use a background provided by a LAM forecast. This means there

is no small scale detail coming from the background. All the small scale detail is pro-

vided by the observations. The impact of this on the accuracy of the LAM analysis

compared with those generated using the other methods would be useful to consider in

future work.

If it did prove that the lack of high resolution detail in the background was detrimental

to the accuracy of the LAM analysis, it would also be useful future work to consider a

possible amendment to the background used in our method. A possible improvement

could be to combine the large scales from a parent analysis with the small scales from

a previous LAM forecast, and then use this combined state as the background for the

LAM data assimilation. By splitting the scales in the background we would provide

both large and small scale background information to the data assimilation. However,

by splitting the scales in the background, and not in the analysis itself (as done in the
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Ballard et al method [2]), we avoid the risk of an analysis that no longer satisfies the

model equations.

Another useful next step would be to perform a direct comparison of the methods.

A detailed mathematical analysis of the methods could provide an insight into their

apparent similarities and provide a more formal comparison between them. Currently,

both the Guidard and Fischer [34] and Ballard et al [2] methods have only been tested

with 3D-Var. The mathematical formulation of the Jk term in a 4D-Var scheme has not

been considered. However, the matrix Σ method developed in this thesis with 4D-Var,

is equally applicable to 3D-Var, so 3D-Var could be used for initial comparison tests.

If the three methods do produce similar results then the matrix Σ method provides an

advantage as it does not need to be reformulated for use with 4D-Var.
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