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Abstract

Many numerical weather prediction (NWP) centres around the world imple-

ment a variational data assimilation (Var) scheme to find the initial state of

the atmosphere, called the analysis. The analysis is used as the initial con-

ditions for a numerical forecast model. For an accurate weather forecast an

accurate analysis is essential. Var is formulated as a optimization problem

and is solved by a series of minimisations of linear least-square cost func-

tions. The speed of convergence of these minimisations and the sensitivity of

the analysis to perturbations are dependent on the condition number of the

Hessian of the least-squares cost function. A small condition number of the

Var Hessian is essential for an accurate forecast. Many NWP centres perform

a control variable transform (CVT) in order to solve a preconditioned Var

(PVar) scheme. In this thesis we consider the conditioning of Var and PVar

in detail by deriving new theoretical bounds on the condition number of the

Var and PVar Hessians. Using the bounds we show that the Var Hessian

is ill-conditioned when the error covariance matrix of the prior estimate is

ill-conditioned. We also show that preconditioning with the CVT produces a

significant reduction in the condition number of Var. Additionally, we show

using the theoretical bounds that the condition number of the PVar Hessian

is reduced if we increase the spacing of observations, reduce the accuracy of

the observations and reduce the number of observations. We demonstrate

these results numerically for both a simple one-parameter periodic system

and the Met Office PVar scheme. We also demonstrate that the CVT pro-

duces a significant increase in the convergence rate of the conjugate gradient

method used to solve the Var scheme.
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Chapter 1

Introduction

Numerical weather prediction (NWP) centres produce forecasts of future

weather states using a numerical model of the atmosphere to evolve an esti-

mate of the initial state of the atmosphere forward in time. The accuracy of

this estimate, called the analysis, is therefore a major factor in determining

the accuracy of the resultant forecast. Variational data assimilation (Var)

is one method popularly used in NWP centres for finding the analysis. In

Var the analysis is the minimiser of a cost function. The cost function is

essentially a weighted measure of the distance between the forecast states

and the available observations within a fixed time window, weighted using

the background (or forecast) and observation error covariance matrices. The

resulting solution is the maximum likelihood best estimate of the state of the

atmosphere under certain assumptions [40].

Var for NWP is a large and computationally expensive problem that in-

volves minimising a highly non-linear cost function with respect to more than

107 − 108 variables, given just 106 observations. To alleviate the computa-

tional expense, an incremental form of Var, first developed in [51], is usually

implemented instead. In this version, a sequence of linearised cost functions,

approximating the full non-linear problem, are solved. Each linearised cost
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function is now linear least-squares and is minimised in an inner-loop using

iterative gradient methods. The minimiser is then utilised in an outer-loop

step to update the current best estimate of the analysis.

A measure of the sensitivity of the inner-loop solution to perturbations is

given by the size of the condition number of the Hessian of the linearised

cost function. If the system has a large condition number we call it ill-

conditioned. A large condition number implies the solution is sensitive to

small perturbations in the system. An ill-conditioned problem also means

that convergence can be slow for the iterative solver used to find the solution.

Slow convergence of the iterative gradient methods used to solve the inner-

loop problem is assumed to be due to the ill-conditioning of the Hessian of

the linearised cost function. It was suggested that an ill-conditioned back-

ground/forecast error covariance matrix is the source of the ill-conditioned

Hessian [42].

In practice, operational NWP centres attempt to reduce the influence of the

conditioning of the background covariance matrix by transforming to new

variables with uncorrelated errors [10]. The aim is to reduce the condition

number, or precondition, the Hessian. Comparisons have shown that the

convergence rates can be significantly reduced by preconditioning [42], [18].

The factors that affect the condition number of the preconditioned system

are only partially understood and have only been studied in very simplified

circumstances [6], [63]. As computer processing power increases, the reso-

lution of the numerical model increases, producing a considerable computa-

tional challenge for NWP centres both now and in the future. Understanding

the conditioning of the unpreconditioned and preconditioned systems is in-

creasingly important to measure the capabilities and limitations of the Var

technique for NWP.
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1.1 Aims of Thesis

The main aim of this thesis is to gain a greater understanding of the con-

ditioning of the variational data assimilation problem. We aim to highlight

the major factors which affect the conditioning of both the unpreconditioned

and preconditioned Var systems. Specifically, we

• Show that common auto-correlation models, used to model the back-

ground error covariances matrix in Var, have condition numbers that

are sensitive to correlation lengthscale. Hence for highly correlated

background errors the background error covariance matrix will be ill-

conditioned.

• Derive new theoretical bounds on the condition number of the Var

Hessian. The bounds show that the conditioning of Var is dependent

on the conditioning of the background covariance matrix. In particular

we show that for highly correlated background errors the Hessian of

the unpreconditioned system will be ill-conditioned.

• Derive new theoretical bounds on the condition number of the Hes-

sian of the preconditioned Var system. We show in a simplified one-

dimensional model that the system is less sensitive to the lengthscale

and better conditioned than the Hessian of the unpreconditioned Var

system.

• Show, using the bounds on the conditioning of the preconditioned sys-

tem, that the conditioning is affected by the accuracy, number and po-

sitioning of the observations. In particular, we show that the condition

number of the Hessian of the preconditioned Var system is reduced by

thinning the observations, increasing the spacing between observations

and making the observations less accurate

• Show using experiments on a one-parameter, periodic system that our

preconditioned system offers a large increase in the convergence rate of

3



the conjugate gradient method compared to the unpreconditioned. In

addition, increasing the spacing and making the observations less accu-

rate also increases the convergence rate in the preconditioned system.

• Show that the theoretical results obtained for the preconditioned sys-

tem also apply to the Met Office operational Var scheme. Namely

we show that the condition number of the Met Office Var scheme is

reduced by thinning the observations, increasing the spacing between

observations and making the observations less accurate

1.2 Outline

The thesis structure is as follows.

In Chapter 2 we introduce 3D and 4D variational data assimilation (denoted

3DVar and 4DVar respectively) and the incremental formulation and give an

overview of the details of the methods as implemented in NWP centres.

We also introduce an incremental Var formulation that includes the control

variable transform (CVT). The CVT provides a method for modelling the

background error covariance matrix and also simplifies the background term

in the Var cost function. We show how the CVT is implemented in the Met

Office Var operational scheme. This chapter provides the context and the

motivation for the research in the subsequent chapters.

In Chapter 3 we introduce the concept of condition number and the impor-

tant role it plays in determining the accuracy of solutions to the Var scheme.

We also show how the condition number can indicate the convergence rate

of iterative gradient methods used to solve the Var minimisation. We briefly

discuss the concept of preconditioning as a way of improving the condition-

ing of a system. Finally we provide some basic mathematical tools which are

useful for establishing bounds on the conditioning of our theoretical problems

4



in later chapters.

In Chapter 4 we relate the condition number to the data assimilation prob-

lem we introduced in Chapter 2. In particular we introduce the concept

of conditioning with respect to Var and show how preconditioning can be

applied to the Var problem. We also discuss previous literature which con-

sidered the conditioning and preconditioning of the Var problem and discuss

the limitations in our current understanding. We then briefly describe how

the CVT effectively preconditions the Var scheme in an operational setting.

In Chapter 5 we discuss the background error covariance matrices and give

a brief outline of their importance in variational data assimilation. We show

that increasing the background error correlation lengthscale increases the

condition number of some standard auto-covariance matrices. The condi-

tioning of the background matrices is useful for understanding the results in

the subsequent chapters.

In Chapter 6 we consider the conditioning of the 3DVar problem in a theo-

retical setting. We derive new explicit bounds on the condition number of the

Hessians of both the unpreconditioned and preconditioned 3DVar schemes.

We show that the bounds on the condition number of the unpreconditioned

system are proportional to the condition number of the background covari-

ance matrix. Using results from Chapter 5 we demonstrate in experiments

with a periodic, one-parameter 1D problem, that the unpreconditioned sys-

tem is generally ill-conditioned. We also show how preconditioning signifi-

cantly improves the condition number of the system and that the conditioning

of the preconditioned system is affected by three main factors: the accuracy,

thinning and spacing of the observations. Finally we demonstrate that pre-

conditioning greatly improves the convergence rates of the conjugate gradient

method applied to solve the Var problem.
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In Chapter 7 we extend the bounds of Chapter 6 to the 4DVar case by

including the time parameter. We derive new bounds on the condition num-

bers of the new extended Hessians of the preconditioned and unprecondi-

tioned systems and formulate hypotheses. We test these hypotheses using a

simple advection model as our forecast equation. As in Chapter 6 we show

that the condition number of the unpreconditioned Hessian is proportional to

the condition number of the background error covariance matrix. Therefore

when the background matrix is ill-conditioned the unpreconditioned system

is ill-conditioned. We show that preconditioning with the CVT significantly

reduces the conditioning of the Var problem. We also demonstrate that ac-

curacy, thinning and spacing of the observations are again important for

determining the conditioning of the preconditioned system. Finally we show

that preconditioning improves the convergence rate of the conjugate gradient

method when applied to our 1D system.

In Chapter 8 we examine the conditioning of the Met Office Var scheme.

We begin by giving an introduction to the scheme and investigating the

conditioning of the current system design. We consider assimilating indi-

vidual observation types and show that the conditioning of the Met Office

Var scheme is dominated by the surface observations. Using pseudo and real

observations we show that thinning and spacing the observations and reduc-

ing the accuracy of the observations reduces the condition number. Hence,

we confirm that the results of Chapters 6 and 7 also hold in an operational

system.

In Chapter 9 we summarise the work, giving the main conclusions and the

questions that have still to be answered. We finish by giving suggestions on

the further work that could be done on this problem.
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We now introduce variational data assimilation. This is the main context

of the problem investigated in this thesis and motivates the research that

follows.

7



Chapter 2

Variational Data Assimilation

In this chapter we introduce variational data assimilation (Var), specifically

within the context of numerical weather prediction (NWP). The aim of this

chapter is to provide motivation and context for the research presented in

the subsequent chapters.

We begin by giving a brief overview of data assimilation and its application

to NWP. We then focus on variational data assimilation which is the data

assimilation method investigated in this thesis. We describe the practical

implementation of Var within NWP by introducing the computationally eas-

ier to implement incremental Var method. This reduced version of Var was

first described in [51] and marked the first realistic opportunity for using

Var in an operational setting. We also describe some technical points of

the minimisation used in incremental Var. Var requires the modelling of a

large background error covariance matrix. In practice, construction of the

background error covariance matrix can be simplified via a series of trans-

formations which is implemented in the incremental Var cost function as a

control variable transform (CVT). Finally we summarise this chapter.

8



2.1 Data Assimilation

Data assimilation is a method for combining past and present observations,

an initial guess of the current state of the system and a suitable numerical

model to find the ‘best estimate’ of the current state of the system, called the

analysis. In NWP the resultant estimate is used as the initial condition of

the numerical forecast model. The equations which model the atmospheric

flow are highly chaotic, meaning small errors will rapidly grow and means

an accurate analysis is vital for achieving an accurate forecast [32], [44].

Data assimilation is therefore an important component of NWP. It is also

computationally very challenging. Typically, major NWP centres, including

the European Centre for Medium Range Weather Forecasts (ECMWF) and

the UK Met Office, are required to find an analysis consisting of millions to

tens of millions of degrees of freedom. In contrast, observations are relatively

sparse (≈ 106) and unevenly distributed. Fewer observations than unknowns

mean the problem is underconstrained and therefore a prior guess, called

the background state, must be included. In addition, both the observations

and background states contain unknown errors that must be estimated and

accurately accounted for in the assimilation scheme.

There are a variety of different data assimilation techniques that have been

developed to tackle this state estimation problem including sequential meth-

ods, such as the Kalman filter and optimal interpolation, and variational

methods [32]. Currently, in most major operational NWP centres including

the Met Office [54] and the ECMWF [53], Var is the method of choice and

for the remainder of this thesis is the focus of our research. We now present

an introduction to the variational data assimilation method.
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2.2 Variational Data Assimilation

In the 1980’s NWP centres were moving away from optimal interpolation

data assimilation methods toward a more variational approach [38], [16],

[48], [32]. These approaches finally became what is now known as four-

dimensional variational data assimilation (4DVar). The objective of 4DVar

is to minimise the following weighted non-linear least squares cost function

with respect to the initial state vector x0,

J(x0) =
1

2
(x0 − xb)

TB−1(x0 − xb) +
1

2

n
∑

i=0

(Hi(xi) − yi)
TR−1

i (Hi(xi) − yi),

(2.1)

≡Jb + Jo, (2.2)

subject to satisfying the nonlinear forecast model

xi = M(ti−1, ti,xi−1). (2.3)

The resultant minimiser of (2.1) is called the analysis, xa.

Within this notation yi ∈ R
pi represent observations of the atmospheric vari-

ables at discrete time steps ti for i = 0, . . . , n collected within a time window

[t0, tn], called the assimilation window. The vectors xi ∈ R
N are the model

states defined at time ti found by evolving forward the state vector from time

ti−1 to ti using the atmospheric forecast model M(ti, ti−1,xi−1) : R
N −→ R

N .

Since there are generally fewer observations than elements in the model state

an apriori guess of the initial state called the background, xb, is required and is

usually found using a previous short forecast or from climatology data. Since

the observations and state vector are not necessarily of the same variable or

at the same grid points, nonlinear observation operators, Hi : R
N −→ R

pi ,

are defined at each time step to map elements from state space to observa-

tion space. The matrices B ∈ R
N×N and Ri ∈ R

pi×pi are error covariance

matrices and describe the variance and correlations of the background and

10
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Figure 2.1: Schematic of 4 dimensional Variational data assimilation. Minimise the
weighted distance between the analysis xa and the background xb (the Jb term) plus
a weighted difference between the observations and the forecast of the analysis (the J0

terms).

observation errors respectively.

Figure 2.1 gives a pictorial representation of 4DVar. The aim of Var is to

combine the initial guess xb with the observation data to give an improved

initial guess, the analysis xa. The forecast from the analysis then fits the

observation data more closely than the forecast from the background and is

used to give future weather states beyond the assimilation window. Essen-

tially 4DVar is a weighted non-linear least squares fit between observations

(the Jo term) and a background state (the Jb term). If observations are only

taken to be at one time point then the method is known as three-dimensional

variational data assimilation (3DVar) and no forecast model is required in

the assimilation. The cost function is solved iteratively using gradient opti-

mization methods.

If we assume that the observation and model operators are linear then we

write Hi = Hi and M(ti−1, ti,xi−1) = Mixi−1 where Hi and Mi are lin-
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ear operators. With these linear assumptions the analysis has the following

explicit form

xa = xb + (B−1 + ĤT R̂−1Ĥ)−1ĤT R̂−1d̂ (2.4)

where

Ĥ =
[

HT
0 , (H1M1)

T , . . . , (HnMn . . .M1)
T
]T

,

d̂T =
[

dT
0 , dT

1 , . . . , dT
n

]

, with di = yi − Hi(xi),

and R̂ is the block diagonal matrix with blocks Ri. Using (2.4) it can be

shown that the errors in the analysis have the following covariance matrix

[51]

A = (B−1 + ĤT R̂−1Ĥ)−1. (2.5)

Due to the nonlinearity of the forecast and observation operators and the

large number of variables in the solution vector the full variational data as-

similation problem is computationally impractical to implement in a NWP

system [46], [38]. We now describe a more computationally practical, incre-

mental form of 4DVar.

2.3 Incremental 4DVar

The full 4DVar problem (2.1) cannot be solved efficiently enough to be used

in an operational NWP system. It was not until the development of an incre-

mental version of 4DVar, first proposed in [51], that the implementation of a

variational data assimilation scheme in NWP became a realistic possibility.

In incremental 4DVar a series of linearised quadratic cost functions are min-

imised subject to a linearised forecast model. The linearised cost function is

solved iteratively at a lower resolution in the so-called inner-loop with the

resultant minimiser then used to update the current, full resolution estimate

of the analysis in a step known as the outer-loop. The reduced resolution in

12



the inner-loop produces a computationally more efficient algorithm. We now

give an outline of the incremental 4DVar algorithm.

2.3.1 The 4DVar Algorithm

Let k represent the kth iteration of the outer loop.

1. If k = 0 then let x
(k)
0 = xb.

2. Using the non-linear forecast model (2.3) generate the x
(k)
i for each

time step ti.

3. Generate the innovation vectors at each time ti,

d
(k)
i = yi −Hi(x

(k)
i ). (2.6)

4. Define the increment, δx
(k)
0 = x

(k+1)
0 − x

(k)
0 .

5. Solve the inner-loop problem, i.e. minimise the following linearised cost

function with respect to the increment δx
(k)
0

J̃ (k)[δx
(k)
0 ] =

1

2
[δx

(k)
0 − (xb − x

(k)
0 )]TB−1[δx

(k)
0 − (xb − x

(k)
0 )]

+
1

2

n
∑

i=0

(Hiδx
(k)
i − d

(k)
i )TR−1

i (Hiδx
(k)
i − d

(k)
i , )

(2.7)

subject to the linearised model equations

δx
(k)
i = M(ti−1, ti) δx

(k)
i−1 ≡ Miδx

(k)
i−1, (2.8)

where Hi and Mi are linearisations of the observation and model fore-

cast operators respectively, around x
(k)
i .
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6. Update the current estimate of the initial state

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 .

7. Repeat steps 2 to 6 until desired convergence or maximum number of

iterations has been reached.

Currently many operational NWP centres perform few if any outer loop

updates and hence most of the computational expense is associated with

the inner-loop minimisation in step 5 [54], [53]. Our research focuses on

the inner-loop and therefore iteration superscripts are suppressed from here

onwards. A convenient form of the linearised cost function which we make

use of in subsequent chapters is

J̃ [δx0] =
1

2
[δx0−(xb−x0)]

TB−1[δx0−(xb−x0)]+
1

2
(Ĥδx0−d̂)T R̂−1(Ĥδx0−d̂),

(2.9)

where

Ĥ =
[

HT
0 , (H1M̂1)

T , . . . , (HnM̂n)T
]T

,

d̂T =
[

dT
0 , dT

1 , . . . , dT
n

]

, with di = yi −Hi(xi),

and R̂ is the block diagonal matrix with blocks Ri. Here we define

M̂k = M(tk, t0) = Mk . . .M1, (2.10)

to be the linearised model equation mapping the state vector from time t0

to tk. In Chapter 6 we investigate the 3DVar system which can be written

in the more simple form

J̃ [δx0] =
1

2
[δx0−(xb−x0)]

TB−1[δx0−(xb−x0)]+
1

2
(H0δx0−d0)

TR−1
0 (H0δx0−d0).

(2.11)
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Of particular interest in this research is the Hessian, that is, the matrix of

second derivatives, of (2.9) which has the following form

J̃ ′′ = S = B−1 + ĤT R̂−1Ĥ. (2.12)

A comparison with (2.5) shows that the inverse of the Hessian is equal to

the analysis error covariance matrix when the observation and model opera-

tors are exactly linear. More generally, the inverse of the Hessian is a close

approximation to the analysis error covariance matrix when the observation

and model operators are weakly non-linear [52].

2.3.2 The Inner-Loop Minimisation

In this section we discuss further details of the minimisation of the linearised

cost function (2.7). Various methods can be used to minimise (2.7) including

steepest descent, Newton’s method, quasi-Newton and conjugate gradient

methods [12]. Methods employed at the Met Office include the limited mem-

ory BFGS algorithm and the conjugate gradient method [5], [54]. In this

thesis we use the conjugate gradient method due to its wide use in NWP and

since it is the best compromise in terms of convergence rate and computer

memory [12]. This scheme requires the calculation of the gradient of the cost

function (2.7) given by

∇J̃ [δx0] = B−1[δx0−(xb
0−x0)]+

n
∑

i=0

MT
1 . . .MT

i HT
i R−1

i (HiMi . . .M1δx0−di),

(2.13)

where MT
i is the adjoint model of the linear operator Mi and propagates the

input backwards in time from ti to ti−1. To calculate the gradient requires

one forward run of the full non-linear model to calculate the innovations di

i = 0, . . . , n and then a backward run of the adjoint model from time tn to

t0 [46].

It should be noted that in practice the matrices B,Hi,Mi and the adjoints,
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HT
i ,MT

i , are too large to be stored and their action in matrix calculations,

for instance, calculating the matrix-vector product Bx, is not practical so

other methods must be used. For instance a computationally cheaper alter-

native to calculating the adjoint via transposing the full matrix, Mi, can be

achieved directly from the forward model programming code statements [12].

Similarly, the storage and application of the matrix B in computations can

be simplified by forming a control variable transform which we describe in

the next section.

2.4 The Control Variable Transform

In this section we consider the control variable transform (CVT). In Var, since

the background statistics are unknown the background covariance matrix B

is also unknown. Additionally, due to the large dimension of the state vector

the matrix B is too large (approximately 108 × 108) to implement or store

explicitly [10]. To account for these difficulties many major NWP centres

around the world implement a CVT in order to model the matrix B in

practice [13], [43], [20], [11], [53], [54], [19] and [26].

In order to define the CVT we require the definition of the square root of a

matrix.

Definition 2.4.1 [39, Sec. 9.1] A matrix U is called the square-root of a

symmetric matrix B ∈ R
N×N if

B = UUT , (2.14)

We write U = B1/2. If U = UT then U is the unique symmetric square root

of B.

The standard CVT uses a square root [39, Sec. 9.1], [10] of the background
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covariance matrix to transform to new variables δz0

δx0 = B1/2δz0. (2.15)

Substituting (2.15) into the linearised cost function (2.9) gives a new cost

function

Ĵ [δz0] =
1

2
[δz0−(zb

0−z0)]
T [δz0−(zb

0−z0)]+
1

2
(ĤB1/2δz0−d̂)T R̂−1(ĤB1/2δz0−d̂),

(2.16)

where z0 = B−1/2x0 and zb
0 = B−1/2xb

0. The application of the CVT results

in a simplification of the background term. From the first term in (2.16) it

is apparent that the errors of the new control variables are now uncorrelated

with unit error variances, i.e. the error covariance matrix is now simply the

identity matrix in terms of the new variables. Hence, the application of B−1/2

maps the original state vector to new variables with uncorrelated errors. We

describe how the CVT can be constructed in practice in Chapter 8 where we

consider the transform as it is implemented in the Met Office.

Most NWP centres include a form of the CVT based on the square root of the

background error covariance matrix [13], [43], [20], [11], [53], [54], [19] and

[26]. In this section we reformulate the incremental algorithm as introduced

in Section 2.3 to incorporate the CVT.

Let k denote the kth outer-loop of the minimisation. The incremental 4DVar

procedure that includes the CVT can be summarised as the following

1. Take a current guess of the atmosphere x
(k)
0 with x

(0)
0 = xb

0.

2. Run the full non-linear model to calculate the evolved solution x
(k)
i at

each time ti and use these to calculate the innovations d
(k)
i = yi −

Hi[x
(k)
i ].

3. Define the increment δx
(k)
0 = xb

0 − x
(k)
0 .
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4. Apply the CVT to find

zb
0 − z

(k)
0 = B−1/2(xb

0 − x
(k)
0 ) (2.17)

5. Find the inner loop solution δz
(k)
a by minimising (2.16).

6. Transform the inner loop solution δz
(k)
a back to the original variables

using the CVT

δx(k)
a = B1/2δz(k)

a . (2.18)

7. Update the current estimate x
(k+1)
0 = x

(k)
0 + δx

(k)
0 .

8. Repeat the above steps until the desired stopping criteria has been

obtained.

As in the original algorithm, the gradient must be calculated for each itera-

tion of the minimisation. With the CVT the gradient now has the following

slightly altered form

∇Ĵ [δz0] = [δz0−(zb
0−z0)]+BT/2

n
∑

i=0

M̂T
i HT

i R−1
i (HiM̂iB

1/2δz0−di). (2.19)

where M̂i is given by (2.10). As before adjoint models MT
i are required to

calculate the gradient.

2.5 Summary

In this chapter we gave a brief introduction to data assimilation with the

main focus on the variational method and its application to NWP. In prac-

tice, due to computational expense, an incremental form of Var is employed

instead in which a series of reduced, linearised cost functions approximating

the full problem are solved. We described another form of the incremental

cost function which incorporates a control variable transform using a square
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root of the background error covariance matrix. We showed that the CVT

simplifies the background term in the incremental cost function and how the

CVT is implemented in the Var minimisation scheme. We described some

of the practical issues of the incremental implementation, in particular, the

minimisation methods used and how the gradients are calculated for use in

the algorithms. The main objective of this chapter has been to introduce

the context of the thesis. The next chapter introduces the condition number

which provides the necessary measure of the sensitivity of the analysis xa to

perturbations in the system.
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Chapter 3

Condition Number

The condition number is a concept used in many different contexts to measure

the sensitivity of a problem with respect to changes in certain quantities

used in the problem [62], [23]. The condition number is a particularly useful

quantity in numerical methods, where computational round off errors can

accumulate and be magnified to produce inaccurate results [21, sec 4.8].

Problems with large condition numbers are called ill-conditioned. They can

be highly sensitive to perturbations in the system and iterative methods used

to solve them can be extremely slow to converge.

In this chapter we aim to introduce and highlight key properties of the con-

ditioning associated to the problem of minimising quadratic functionals. Ad-

ditionally, by the end of this chapter we aim to have the necessary tools for

defining and estimating the condition number of the incremental Var cost

function. We begin by stating some definitions and key properties of matrix

and vector norms that are needed to define the condition number. Next,

we define the condition number for our problem and show how this value

indicates the sensitivity of the solution to small perturbations in the system.

We then describe how ill-conditioning can be alleviated by preconditioning

the problem. We introduce the conjugate gradient (CG) method and show

how the condition number can impact the convergence rate of this iterative
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scheme. Finally we introduce results for eigenvalues which are useful for

estimating the conditioning of the Var minimisation in the later chapters.

3.1 Matrix and Vector Norms

Before we can define the condition number for a matrix we require some

basic theory on matrix and vector norms. In this section we introduce normed

vector spaces, in particular norms over the spaces of vectors R
N and matrices

R
N×N with real entries. In this thesis we are only concerned with square

matrices. For further information of norms of vectors and matrices see [23,

Chap 2].

Definition 3.1.1 [70, Chap 2], [23, Chap 2] A normed vector space is a

pair (X, ||.||) consisting of a vector space, X, and a mapping, ||.|| : X −→ R,

satisfying the following conditions,

1. ||x|| ≥ 0, ∀x ∈ X and ||x|| = 0 ⇔ x = 0.

2. ||λx|| = |λ|||x|| for all λ ∈ C and x ∈ X.

3. ||x + y|| ≤ ||x|| + ||y|| for all x,y ∈ X.

In this section X is either the space of real-valued vectors or real-valued

matrices, R
N and R

N×N respectively. A commonly used class of vector norms

are the p-norms on R
N .

Definition 3.1.2 The p-norm, ||.||p (for p ≥ 1), defined on R
N , is a norm

defined by

||x||p = (|x1|p + |x2|p + . . . + |xN |p)
1

p , (3.1)

where x = (x1, . . . , xN)T ∈ R
N , where T represents the transpose operator.
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In this thesis we study the important class of positive-definite, symmetric

matrices.

Definition 3.1.3 Let S ∈ R
N×N with (i, j)th entry si,j. Then S is symmetric

if si,j = sj,i for all i, j = 1, 2, . . . , N .

Definition 3.1.4 A matrix S ∈ R
N×N is positive-definite if xTSx > 0 for

all nonzero vectors x ∈ R
N .

We also use the eigenvalues and eigenvectors of a matrix in subsequent chap-

ters.

Definition 3.1.5 An eigenvalue of a matrix S ∈ R
N×N is a scalar λ ∈ R

satisfying

Sv = λv, (3.2)

for some non-zero vector v ∈ R
N which is the associated eigenvector.

In the special case where S is symmetric and positive definite all eigenvalues

are real and strictly positive [23, Sec. 8.1.1].

An important class of norms can be induced on R
N using symmetric positive-

definite matrices.

Definition 3.1.6 Let S ∈ R
N×N be a symmetric positive definite matrix

then the S-norm, ||.||S, on R
N is defined by

||x||2S = xTSx (3.3)

for any x ∈ R
N .

We also require norms for matrices. Of particular interest in this thesis are

the matrix norms induced from the vector p-norms (3.1).
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Definition 3.1.7 The matrix p-norm on R
N×N , ||.||p (p ≥ 1), is a norm

defined by,

||S||p = sup
x6=0

||Sx||p
||x||p

, (3.4)

for S ∈ R
N×N and x ∈ R

N .

Explicit representations can be found for certain p. In this thesis we will

concentrate on the matrix 2-norm applied to symmetric, square matrices. In

this case, for a matrix S ∈ R
N×N , we have [47, Appendix A]

||S||2 = |λmax(S)|, (3.5)

where λmax(S) is the eigenvalue of the matrix S with largest magnitude.

We will also make use of the ∞-norm defined by [47, Appendix A]

||S||∞ = max
1≤i≤N

N
∑

j=1

|si,j|, (3.6)

where si,j is the (i, j)th element of the matrix S ∈ R
N×N .

Having developed the necessary background we now use the definition of

matrix norms to define the condition number.

3.2 Condition Number of the Hessian

In this thesis we are concerned with minimising the function (2.9) with re-

spect to vector δx0 ∈ R
N . This is clearly a quadratic function of the form,

J̃(w) =
1

2
wTSw − wTb + c, (3.7)
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where

w =δx0 ∈ R
N , (3.8)

S =(B−1 + ĤT R̂Ĥ) ∈ R
N×N , (3.9)

b =B−1(xb − x0) − ĤT R̂−1d̂ ∈ R
N , (3.10)

c =
1

2
((xb − x0)

TB−1(xb − x0) + d̂T R̂−1d̂) ∈ R. (3.11)

We note that the Hessian, S, is a symmetric and positive-definite matrix and

therefore there exists a unique minimum to (3.7).

Minimising (3.7) is therefore equivalent to finding the solution to the gradient

equation ∇J̃ = 0, that is, solving the linear system

Sw = b. (3.12)

When computing the solution to (3.7) or equivalently (3.12) we would like

to know how sensitive the solution w is to small changes in the system

components S and b. The condition number is one way to measure the

sensitivity of the solution and we consider this in the next section.

3.2.1 The Condition Number of a Linear System

Definition 3.2.1 The condition number, κp(S), of a matrix S ∈ R
N×N with

respect to any p-norm ||.|| is defined to be

κp(S) = ||S||p||S−1||p. (3.13)

Consider how changes in the linear system (3.12) produce changes in the

solution w. More precisely, suppose that small perturbations ∆S ∈ R
N×N

and ∆b ∈ R
N are applied to S and b respectively where ||∆S||p and ||∆b||p
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have order ǫ. The new linear system is now

(S + ∆S)wǫ = (b + ∆b), (3.14)

with new solution wǫ.

The following bound on the relative change in the solution applies with re-

spect to any matrix p-norm.

Theorem 3.2.2 [23, sec 2.7]

||w − wǫ
0||p

||w||p
≤ κp(S)

( ||∆S||p
||S||p

+
||∆b||p
||b||p

)

+ O(ǫ2). (3.15)

Proof See [23, sec 2.7]

Theorem 3.2.2 shows that even if the relative perturbations, ||∆S||p
||S||p , ||∆b||p

||b||p in

S and b respectively, are small, the relative perturbation in the solution can

be large if the condition number is large. The condition number therefore

gives an indication of the sensitivity of the solution of (3.12) to small changes

in the components S, b. If the condition number is large then we say that

S is ill-conditioned which implies that the solution to (3.12) can be highly

sensitive to small perturbations in the system.

The condition number is a norm dependent quantity. However, since matrix

norms on R
N×N are equivalent, if S ∈ R

N×N is ill-conditioned in one norm

it is ill-conditioned in any norm [23, Sec 2.7.2]. In this thesis we will be

restricting our attention to the 2-norm definition of the condition number.

This is also known as the spectral condition number

Definition 3.2.3 The spectral condition number of a matrix S ∈ R
N×N is

defined to be

κ2(S) = ||S||2||S−1||2. (3.16)
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For symmetric positive-definite matrices we have a useful representation of

the spectral condition number.

Theorem 3.2.4 If S ∈ R
N×N is a symmetric and positive-definite matrix

then we can write

κ2(S) =
λmax(S)

λmin(S)
, (3.17)

where λmax(S) and λmin(S) represent the largest and smallest eigenvalue of

S.

Proof See [7, Appendix A.2] or [39, Appendix B.7]

From now on we assume that κ(S) means the spectral condition number.

The sensitivity of the solution to the linear system can be measured by the

condition number of the matrix S. Due to the equivalence of minimsing the

quadratic function (3.7) and solving the linear system (3.12), the sensitivity of

the solution that minimises (3.7) can therefore be measured by the condition

number of the Hessian of the cost function.

When trying to solve a linear system such as (3.12) numerical round off errors

can cause small perturbations in the components, S,b. As we have shown

in this section, for an ill-conditioned problem small changes in the system

can lead to a very different, and hence very inaccurate, solution. In the next

section we consider one method for dealing with an ill-conditioned problem.

3.2.2 Preconditioning

In the numerical methods applied to solving systems such as (3.12), perfect

arithmetic is not possible and rounding errors naturally arise into the com-

putations. These errors can accumulate in the components and ultimately

lead to an inaccurate solution. In the case of an ill-conditioned linear system
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of the form (3.12) we showed in the previous section that even small changes

in S and b can cause very different solutions. In practice this means that

when applying numerical methods to an ill-conditioned problem the solution

is unreliable. Additionally, as we shall see in the next section, ill-conditioning

can also lead to slow convergence of the iterative methods used to solve the

linear system (3.12).

One common solution to issues related to ill-conditioning is to change the sys-

tem to one with a lower condition number and solve this equivalent problem.

This is called preconditioning. In this thesis we symmetrically precondition

the system (3.12) with a symmetric positive definite matrix P to give the

following system [23, Sec 10.3],

Ŝv = b̂, (3.18)

where Ŝ = P1/2SP1/2 is the new preconditioned matrix, v = P−1/2w, b̂ =

P1/2b and P1/2 is the symmetric positive-definite square root of the matrix

P [39, Sec. 9.1].

If the preconditioner is correctly chosen the new system (3.18) has a reduced

condition number

κ(Ŝ) < κ(S) (3.19)

causing the solution to (3.18) to be less sensitive to perturbations. Once

the solution v is found, the preconditioner can be applied again to find the

solution to the original problem

w = P1/2v. (3.20)

Choosing P = S−1 gives the best reduction in the condition number since

κ(Ŝ) = κ(S−1/2SS−1/2) = κ(I) = 1. (3.21)

However in this case constructing the preconditioner requires inverting S,
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which is equivalent to solving the original ill-conditioned problem (3.12). The

goal in preconditioning is to construct a cost effective preconditioner which

approximates the inverse of the original matrix S. A compromise must be

found between the cost of constructing the preconditioner and the reduction

in cost of solving the preconditioned problem.

For the quadratic function (3.7), preconditioning is equivalent to performing

a variable transform v = P−1/2w. The new cost function is now

˜̂
J(v) = vTP1/2SP1/2v − vTP1/2b + c, (3.22)

and is minimised with respect to the new variable v. It is easy to see by

differentiation of the new cost function that minimising (3.22) is equivalent

to solving (3.18).

In this section we have introduced the condition number for the minimisa-

tion of a quadratic cost function, or equivalently a linear matrix system, in

the case of a symmetric, positive definite Hessian S. We also showed how

preconditioning can be used to alleviate the ill-conditioning of the system.

We now introduce one of the minimisation algorithms that we use in this

thesis for solving problems of the form (3.7) or (3.12).

3.3 Conjugate Gradient

3.3.1 The Conjugate Gradient Method

In this section we introduce the conjugate gradient (CG) method and show

how the condition number relates to the convergence properties. The CG

method is an iterative scheme which is widely used to solve linear problems

such as (3.12), or equivalently (3.7), where S is a positive-definite symmetric

matrix. We use the CG method to solve the inner-loop minimisation in
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the incremental Var scheme (see Section 2.3.1), including for the Met Office

operational experiments in Chapter 8.

The CG algorithm is theoretically a direct solver of (3.12). However due

to round-off errors it is more commonly used as an iterative method. The

following is a common form of the CG algorithm for minimising a function

of the form (3.7), [23, Sec 10.2].

1. First initialize the system

w(0) =0, (3.23)

r(0) =b − Sw(0) (3.24)

p(0) =r(0), (3.25)

2. With k representing the kth iteration, iterate over the following loop

until the convergence criteria has been achieved

α(k) =
(r(k))T r(k)

(p(k))TSp(k)
, (3.26)

w(k+1) =w(k) + α(k)p(k), (3.27)

r(k+1) =r(k) − α(k)Sp(k), (3.28)

β(k) =
(r(k+1))T r(k+1)

(r(k))T r(k)
, (3.29)

p(k+1) =r(k+1) + β(k)p(k). (3.30)

Here r(k) = b − Sw(k) is called the residual at w(k). At each iteration k,

the conjugate gradient method finds the minimum of (3.7) over the subspace

spanned by the search directions p(1), . . . ,p(k) ∈ R
N which are S-conjugate

i.e.

(p(i))TSp(j) = 0 i 6= j. (3.31)

In particular this implies, for calculations using perfect arithmetic, that the

CG method should converge in at most N iterations [21, Sec. 4.8].
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Unfortunately rounding errors can lead to a loss of orthogonality, so the

number of iterations may be larger in practice [62], [23, Sec. 10.2]. Addi-

tionally, in cases where N is very large, for instance in NWP applications,

it is computationally impractical to run CG to the full N iterations. For

these reasons suitable convergence criteria are required to terminate the CG

iteration at the appropriate iterate or by stopping at a prescribed maximum

number of iterations. The following theorem provides a useful indicator for

the stopping criteria.

Theorem 3.3.1 Suppose that w(k) is the estimate to the true solution, w,

of (3.12) at the kth iteration of CG then the relative error satisfies,

||w − w(k)||2
||w||2

≤ κ(S)
||r(k)||2
||b||2

. (3.32)

Proof See [33, Sec. 1.1]

Therefore a reduction in the relative residual ||rk||2/||b||2 is sufficient to

guarantee a reduction in the relative error of the solution. The presence of

the condition number in (3.32) implies that an ill-conditioned system may

require much greater reduction in the relative residual compared to that of a

well conditioned system in order to guarantee the same level of accuracy. In

particular it means a more ill-conditioned system could have a less accurate

solution if the iterative scheme is prematurely stopped.

The relevance of the condition number to the rate of convergence of CG can

be further shown by the following error bound [23, Sec. 10.2], [47],

||w(k) − w||S ≤ 2||w(0) − w||S
(

√

κ(S) − 1
√

κ(S) + 1

)k

, (3.33)

where w(0) is the initial guess. This bound tends to be an overestimate but

for small condition numbers (κ(S) ≈ 1) the right hand side of (3.33) will

be approximately zero for very small k implying that the conjugate gradient
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method will converge quickly to the truth. Other factors also affect the

convergence rate of CG, in particular, the distribution of eigenvalues of S,

but this will not be investigated in this thesis [29].

One final note must be made about the conjugate gradient method as pre-

sented here with regard to the operational implementation in NWP. The

number of elements in the Hessian of the incremental Var cost function (2.9)

tends to be of the order of above 108 × 108. Hence, storing and applying

the Hessian in CG is impossible. In practice explicit multiplication with

the Hessian can be avoided when minimising a quadratic function (see [7,

Sec 11.2.4, 11.2.5]). Define a trial point ŵ(k) = w(k) + τ (k)p(k), where w(k)

is the current approximation at iteration k. Letting ĝ(k) = Sŵ(k) − b and

g(k) = Sw(k)−b represent the gradient of (3.7) at ŵ(k) and w(k) respectively

then the multiplication by the Hessian in (3.26) and (3.28) can be calculated

using
ĝ(k) − g(k)

τ (k)
=

S(w(k) + τ (k)p(k)) − Sw(k)

τ (k)
= Sp(k). (3.34)

Thus the product Sp(k) can be found from two runs of the adjoint model

(2.13) to calculate the gradients ĝ(k) and g(k). This procedure is used within

the Met Office inner-loop minimisation [5]. We now present a preconditioned

version of CG.

3.3.2 Preconditioned CG

As seen from (3.33) the condition number can influence the convergence rate

of the CG method. Therefore the CG algorithm should converge in fewer

iterations when applied to (3.18) than to (3.12) if the preconditioning has

reduced the condition number. An adjustment can be made to the CG algo-

rithm so that the matrix Ŝ does not need to be formed. Below is a modified

conjugate gradient method which is equivalent to solving the preconditioned

system (3.18) [23, Sec 10.3], [21]
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1. First initialize the system

w(0) =0, (3.35)

r(0) =b − Sw(0), (3.36)

2. For the first iteration solve

P−1z(0) = r(0), (3.37)

and set p(0) = z(0)

3. Then iterate over the following loop until the convergence criteria has

been achieved

α(k) =
(r(k))Tz(k)

(p(k))TSp(k)
, (3.38)

w(k+1) =w(k) + α(k)p(k), (3.39)

r(k+1) =r(k) − α(k)Sp(k), (3.40)

Solve P−1z(k+1) =r(k+1) (3.41)

β(k) =
(r(k+1))Tz(k+1)

(r(k))Tz(k)
, (3.42)

p(k+1) =z(k+1) + β(k)p(k). (3.43)

The choice of P−1 is important in the effectiveness of the preconditioned

conjugate gradient (PCG) method. In particular, each iteration of the PCG

method requires solving P−1z(k+1) = r(k+1). However, if the preconditioner

is an ill-conditioned matrix, then the solution to this equation is potentially

inaccurate.

In the next section we outline some results which we will use in calculating

and estimating the eigenvalues in the later chapters.
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3.4 Useful Results for Eigenvalues

In this thesis we aim to find estimates of the spectral condition number of

the Hessian of the Var cost functions (2.9) and (2.16). This requires putting

estimates on the eigenvalues of the Hessian. In this section we present useful

results for estimating the eigenvalues of a matrix. We also introduce a useful

group of matrices called circulant matrices which are used in this thesis and

which have special eigenvalue properties.

3.4.1 Simple Bounds on Eigenvalues

In this section we give a couple of simple bounds that can be placed on the

eigenvalues of a matrix. These are used to construct bounds on the condition

number. Throughout this section we will assume that λk(C) denotes the kth

largest eigenvalue of the symmetric matrix C.

Theorem 3.4.1 [23, Sec. 8.1] Consider two symmetric matrices S1,S2 ∈ R
N×N .

The kth largest eigenvalue of the matrix sum S1 + S2 satisfies the following

λk(S1) + λn(S2) ≤ λk(S1 + S2) ≤ λk(S1) + λ1(S2). (3.44)

Proof See [67].

We can show another simple result for the upper bound on the eigenvalues

of a matrix A

Theorem 3.4.2 Consider a matrix S ∈ R
N×N , then the following holds,

|λk(S)| ≤ ||S||p (3.45)

for any p ≥ 1.
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Proof See [7, Sec. A.1].

3.4.2 The Rayleigh Quotient

The Rayleigh quotient is an important function for estimating the eigenvalues

of a matrix.

Definition 3.4.3 [7, Sec. 4.4] The Rayleigh quotient for a symmetric matrix

S ∈ R
N×N is defined to be

RS(x) =
xHSx

xHx
, (3.46)

for a vector x ∈ C
N .

Here, xH means the complex-conjugate transpose of x. Note that if v is an

eigenvector of the matrix S then RS(v) will be the corresponding eigenvalue.

Let S ∈ R
N×N be a symmetric and positive definite matrix and vmax and vmin

be the eigenvectors corresponding to the largest and smallest eigenvalues of

S respectively. Then RS(vmax) = λmax(S) and RS(vmin) = λmin(S). We can

also see that the Rayleigh quotient is bounded by these eigenvalues.

Theorem 3.4.4 Let S ∈ R
N×N be a symmetric matrix. Then the following

bounds hold on the Rayleigh quotient (3.46)

λmin(S) ≤ RS(x) ≤ λmax(S). (3.47)

Proof See [57, Sec 5.9]

In the definition (3.46) we have allowed complex valued vectors, but the

eigenvalues of a symmetric matrix are always real.
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3.4.3 A Special System

In this section we introduce two matrix systems that have the same non-zero

eigenvalues. In subsequent chapters this will allow us to write the eigenvalues

of the Hessian of the Var cost function (2.16) in a simpler form.

Theorem 3.4.5 Consider a matrix E ∈ R
N×M with M < N . Then the

eigenvalues of EET and ETE are equal. In addition EET has N − M extra

eigenvalues equal to zero.

Proof See [23, Sec 8.6]

3.4.4 Circulant Matrices

In this final section we introduce circulant matrices and some of their special

properties. We find that a circulant matrix will be the natural structure for

our one-dimensional covariance matrices when periodic boundary conditions

are imposed. In this section one of the main advantages of circulant matrices

is the simple form of the eigenvectors and eigenvalues.

Definition 3.4.6 [24, Chap 3] A circulant matrix C ∈ R
N×N is a matrix of

the form

C =



































c0 c1 c2 c3 . . . cN−2 cN−1

cN−1 c0 c1 c2 . . . cN−3 cN−2

cN−2 cN−1 c0
...

. . . . . .
...

. . . c2

c2
. . . c0 c1

c1 c2 . . . cN−2 cN−1 c0



































. (3.48)
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Hence each row of a circulant matrix is a cyclic perturbation of the row above

and knowledge of the entire matrix can be determined by specifying the top

row alone. One special property of circulant matrices is that their eigenvalues

can be written explicitly as a discrete Fourier transform of the top row.

Theorem 3.4.7 [24] Let C be the matrix (3.48). Then the eigenvalues of

C can be written

νm =
N−1
∑

k=0

cke
−2πimk/N , (3.49)

with corresponding eigenvectors

vm =
1√
N

(1, e−2πim/N , . . . , e−2πim(N−1)/N )T (3.50)

for m = 0, . . . , N − 1.

Proof [24, Sec 3.1] Let v = (v0, . . . , vN−1)
T be an eigenvector of C with

corresponding eigenvalue ν then we have

Cv = νv, (3.51)

which can be written as the series of equations of the form

m−1
∑

k=0

cN−m+kvk +
N−1
∑

k=m

ck−mvk = νvm, with m = 0, . . . N − 1. (3.52)

Changing the summation variable this is equivalent to

N−1
∑

k=N−m

ckvk−(N−m) +
N−1−m
∑

k=0

ckvk+m = νvm, with m = 0, . . . N −1. (3.53)

Now, let vk = ρk, substitute into (3.53) and cancel the common factor of ρm

to give

ρ−N

N−1
∑

k=N−m

ckρ
k +

N−1−m
∑

k=0

ckρ
k = ν, with m = 0, . . . N − 1. (3.54)
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Therefore if we choose ρ as one of the N distinct N th roots of unity (ρ−N = 1)

then we obtain the eigenvalue

ν =
N−1
∑

k=0

ckρ
k, (3.55)

with corresponding eigenvector v = N−1/2(1, ρ1, ρ2, . . . , ρN−1)T . Since ρ is of

the form e−2πimk/N this finalises the proof.

Circulant matrices have a convenient eigendecomposition. Let Λ be the

diagonal matrix whose entries are the eigenvalues (3.49). Then a circulant

matrix C can be written as

C = FΛFH , (3.56)

where FH is the complex conjugate transpose of F and F is the Fourier

matrix whose columns are the eigenvectors (3.50),

F =
1√
N



































1 1 1 1 . . . 1

1 ω ω2 ω3 . . . ω(N−1)

1 ω2 ω4 ω6 ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)2



































, (3.57)

where ω = exp(−2πi/N). The Fourier matrix is unitary, that is it satisfies

FHF = FFH = IN . (3.58)

where IN is the N × N identity matrix. Conversely, any matrix which has

the eigendecomposition (3.56) is circulant [24]. The following theorem gives

some other useful properties of a circulant matrix.
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Theorem 3.4.8 [24] Let C be a circulant matrix with eigendecomposition

C = FΛFH . Then the inverse of the matrix C is also circulant with

C−1 = FΛ−1FH . (3.59)

Additionally, the product of any two circulant matrices C1 = FΛ1F
H and

C2 = FΛ2F
H is also circulant with

C1C2 = FΛ1Λ2F
H . (3.60)

Proof The results follow directly from (3.58).

Using (3.56) we can find the symmetric square root of a circulant matrix

C = FΛFH with

C1/2 = FΛ1/2FH . (3.61)

We now summarise this chapter.

3.5 Summary

In this chapter we have introduced the concept of condition number of a

matrix and shown how it can be used to indicate the sensitivity of the so-

lution to a linear system (3.12) to perturbations in S and b. We showed

the equivalence between solving the linear system (3.12) and minimising the

quadratic cost function (3.7). We showed that an ill-conditioned problem

can have a detrimental effect on both the accuracy of the solution of the

linear system (3.12) (or equivalently the solution of (3.7)) and on the conver-

gence rate of the CG method used to solve (3.12). We then introduced the

concept of preconditioning which is one method of alleviating the difficulties

associated with an ill-conditioned problem. Specifically, we showed that if

an appropriate preconditioner is chosen, an equivalent system can be formed
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which has a smaller condition number. The type of norm used to define the

condition number was shown to be arbitary due to the equivalence of the

real vector norms considered and so for the rest of the thesis we focus on

the spectral condition number. To calculate the spectral condition number

requires the eigenvalues of the Hessian and so in the final section of this

chapter we considered important methods and results which enables us to

analyse the eigenvalues and hence the conditioning of the Var Hessian in the

later chapters. In the next section we show how the concept of conditioning

applies to Var and how preconditioning is currently applied in operational

centres.
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Chapter 4

Conditioning and

Preconditioning of Var

In Chapter 2 we showed that the Var method applied to NWP approximates

the initial state of the atmosphere by minimising a nonlinear quadratic cost

function. The initial state, called the analysis, is then used to predict the

future weather states. Due to the inherently chaotic nature of the atmosphere

the accuracy of the analysis is vital for creating an accurate forecast of the

weather. In practice, most NWP centres solve a series of linearised cost

functions approximating the full nonlinear cost function using an incremental

form of Var. In Chapter 3 we showed that the condition number of the

Hessian of a quadratic function (3.7) is an important quantity for estimating

the sensitivity of the solution to perturbations in the system. We also showed

that a large condition number can mean that the iterative methods used to

minimise (3.7) can converge very slowly to the solution. In this chapter

we present existing literature on the conditioning and preconditioning of

variational data assimilation.

We begin by showing that early implementations of the full and incremental

Var minimisation schemes as presented in Sections 2.2 and 2.3 were compu-

tationally expensive. This indicates that Var is an ill-conditioned problem.
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We present existing literature which provide possible reasons for this ill-

conditioning. We then consider early attempts at preconditioning the Var

Hessian and show the benefits that this has on the convergence rate of the

iterative methods used to solve Var. Finally, we consider the incremental

version of Var which includes the control variable transform (CVT) as intro-

duced in Section 2.4. We show how the CVT effectively preconditions Var

and present research from the literature that shows the improvements in the

convergence rate of the Var minimisation scheme.

The aim of this chapter is to highlight the importance of detailed knowledge

of the conditioning of the Var problem. This chapter motivates our research

in the subsequent chapters in which we derive theoretical bounds on the

condition number of the Var Hessian.

4.1 Computational Cost of Var

As shown by equation (3.33) in Section 3.3 the condition number of the

Hessian of the quadratic cost function (3.7) can be a useful indicator of the

performance of the iterative methods used to solve the system. Conversely,

the performance of the iterative method can be an indicator of the condi-

tioning of the system. In this section we consider the computational cost and

performance of the iterative solvers used in the 4DVar minimisation.

In most early implementations of 4DVar, the background term was excluded

from the cost function (2.1) [50], [59]. Experiments were performed using

a variety of models including the shallow water model, lower dimensional

primitive equation models and vorticity equation models [50], [59], [51], [49].

The computational expense of these experiments tended to be large; for in-

stance, using a shallow water model, with a state vector of size 2793, required

about 10-15 iterations for convergence yet this was described as ‘absolutely

prohibitive in todays practice of weather prediction’. In this experiment,
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described in [50], the system was overdetermined having a larger number

of observations than state variables. Many other early 4DVar implementa-

tions tended to use around 30 iterations, for instance see [59] and references

within [51]. In 1994 Courtier et al. reported that the cost of a 4DVar data

assimilation with this number of iterations was computationally prohibitive.

They also stated that to be able to implement 4DVar operationally required

a ‘significantly faster computer or a substantial algorithmic improvement or

both’ [51].

One step toward an algorithmic improvement was the introduction of the

incremental version of Var that we described in Section 2.3. Incremental

Var splits the 4DVar minimisation into a lower resolution inner loop and

a full resolution outer-loop, reducing the overall cost of the algorithm [51].

Incremental Var also suffers from convergence issues as shown by Lorenc in

[42]. In a single variable experiment on a 2D domain the Var algorithm failed

to converge even after several thousand iterations.

We showed in Chapter 3 that one potential reason for slow convergence may

be the ill-conditioning of the Hessian of the cost function (2.7). A variety

of explanations have been given in the literature for the ill-conditioning of

the minimisation problem in incremental 4DVar. Lorenc suggests that the

background covariance matrix, B, tends to be ill-conditioned since the back-

ground errors contain rough and smooth modes. These modes correspond to

small and large eigenvalues of the background error covariance matrix and if

the range of the eigenvalues is large enough B will have a large spectral con-

dition number. If the background matrix dominates the conditioning of the

Hessian, then this system will be ill-conditioned [42]. Another explanation is

provided by Thacker in [58]. The inverse of the Hessian is the analysis error

covariance matrix and hence explains the expected errors in the analysis.

The eigenvalues of the analysis error covariance matrix describe the error

variances in the directions of the corresponding eigenvectors. The recipro-

cals of these eigenvalues are the eigenvalues of the Hessian. Thus a poorly
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determined state in the analysis corresponds to a small Hessian eigenvalue

and a potentially ill-conditioned system.

As described in Chapter 3, one way of improving the convergence rates is

by preconditioning the system. In the next section we briefly describe early

attempts which were made at preconditioning Var.

4.2 Preconditioning Var

4.2.1 Early Preconditioning

As shown in the previous section, the cost of minimising the variational cost

functions (2.1) and (2.7) are substantial and methods are required for reduc-

ing this expense. One such method is preconditioning. In this section we

consider some of the early attempts to precondition the 4DVar minimisation

scheme.

In Section 3.2.2 we showed that preconditioning can be considered as either

a matrix multiplication or as a change of variables. Most early attempts

considered using diagonal matrices as preconditioners, i.e. scaling the vari-

ables. Thepaut and Moll considered a 1DVar scheme to invert radiance data

[60] with a state vector of size N = 31. In this paper, convergence results

were given for different preconditioning matrices P equal either to the full

Hessian, the diagonal of the Hessian, a diagonal matrix using climatological

variances or the identity (i.e. no preconditioning). The methods which per-

formed the best used the full or diagonal of the Hessian as preconditioner

with less than 5 and 7 iterations required respectively. A disadvantage to

these methods is the computational cost associated with forming the Hes-

sian. The climatological preconditioner also performed reasonably well with

less then 10 iterations for convergence. An advantage of this preconditioner

is that it can be stored and computed separately from the minimisation. All
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the preconditioners produced faster convergence than the system without

preconditioning which took 15 iterations to converge.

Courtier et al. also used a diagonal preconditioner which was formed from

the diagonal entries of an approximation to the Hessian [51]. Applying this

preconditioning to 4DVar using the primitive model equations increased the

convergence rate from 30 to 24 iterations compared to the unpreconditioned

system. However, similar to the experiments in [60], the computational cost

of approximating the Hessian was noted as a potential pitfall for the tech-

nique.

Zupanski attempted to improve the speed of convergence of the minimisation

by rescaling the variables without computing the Hessian [71]. The rescaling

was chosen so that the reduction in the cost function evaluated at consecutive

iterations of the minimisation was as close as possible to the decrease found

by preconditioning with the diagonal of the Hessian. In 4DVar experiments,

without background terms, this technique produced quicker convergence of

the minimisation compared to a control case without preconditioning. These

improvements in convergence gave corresponding reductions in the condition

number. Zupanski found similar improvements using this preconditioner in

a full 4DVar cost function compared to simply preconditioning with the di-

agonal of the background matrix [72].

In this section we have seen that preconditioning techniques can have a pos-

itive impact on the convergence rates and condition number of the minimi-

sation in 4DVar. In the next section we consider how the control variable

transform alters the conditioning of the Var Hessian.

4.2.2 The CVT as a Preconditioner

In Section 3.2.2 we showed that a quadratic cost function could be precondi-

tioned by transforming to new variables. In this section we present previous
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literature which shows the effect of the CVT on the conditioning of the in-

cremental Var problem (2.9).

The Var cost function with the CVT (2.16) has Hessian

Ŝ = I + BT/2ĤT R̂−1ĤB1/2 = I + BT/2

n
∑

i=0

MT
1 . . .MT

i HT
i R−1

i HiMiM1B
1/2.

(4.1)

Hence, the control variable transform is equivalent to symmetrically precon-

ditioning the Hessian of the linear least squares cost function (2.9) with the

square root of the background covariance matrix B. One of the main ad-

vantages of the CVT is its potential effect on the conditioning of the Var

scheme. Since there are generally fewer observations than elements in the

state vector x0 the matrix BT/2ĤT R̂−1ĤB1/2 is not full rank and thus has

smallest eigenvalue equal to zero. Thus the smallest eigenvalue of (4.1) is

equal to one. Since Ŝ is symmetric and positive definite, by Theorem 3.2.4

the spectral condition number of the matrix (4.1) is

κ(Ŝ) =
λmax(Ŝ)

λmin(Ŝ)
= λmax(Ŝ) = 1 + λmax(B

T/2ĤT R̂−1ĤB1/2). (4.2)

The absence of small eigenvalues (< 1) implies that the new Hessian (4.1)

has a potentially lower condition number than the original system (2.12). A

reduction in the condition number of (4.1) compared to (2.12) is supported

by experimental evidence in [42] and [18], which show substantial accelera-

tions in the convergence rate for the preconditioned system compared to the

unpreconditioned system.

How the CVT affects the condition number of the Var cost function has only

been partially examined. In [6] the following expression was derived for the

condition number of the Hessian of the preconditioned system for a simple 2

grid point domain with n observations at each grid point

κ(Ŝ) = 2n
σ2

b

σ2
o

+ 1, (4.3)
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where σ2
b and σ2

o are the background and observation error variances respec-

tively. The expression (4.3) holds in the case of dense observations. Thus, for

dense observations, an ill-conditioned system could be the result of accurate

observations (small σ2
o), an inaccurate background state (large σ2

b ) or exces-

sive observations (large n). In the ECMWF Var system it was found that the

surface pressure observations dominated the conditioning of the problem. In

an experiment where the observation error variance on the pressure observa-

tions was doubled, the condition number of the Hessian decreased from 5474

to 1502 in rough agreement with the estimate (4.3) [63].

Further preconditioning strategies can be applied to the preconditioned Hes-

sian (4.1). The most prominent is Hessian eigenvector preconditioning [64].

These methods are an extra level of preconditioning on top of the CVT.

They use information from a previous outer-loop in order to eliminate larger

eigenvalues from a later outer-loop. We do not consider this preconditioning

in this thesis. We now finish by summarising the contents of this chapter.

4.3 Summary

We began this chapter by presenting research from existing literature that

highlight the computational difficulties associated with the minimisation of

both the standard (2.1) and incremental forms (2.7) of Var. Early Var

schemes showed that an operational minimisation was impractical unless

a sufficient reduction in the iteration count could be produced. The ill-

conditioning of the Hessian of the Var cost function is one possible reason

for the poor convergence. Earlier research suggested that an ill-conditioned

Hessian could be the result of an ill-conditioned background error covari-

ance matrix. One method for avoiding ill-conditioning is to find a way of

preconditioning the problem.

We gave a brief review of early preconditioning techniques which focused
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on rescaling the control variables. These examples showed the benefits of

preconditioning by producing modest reductions in the computational cost.

Finally, we considered the effect of the CVT on the conditioning of the sys-

tem. We presented research from other literature that suggested that this

preconditioned system was much better conditioned than the cost function

without preconditioning. We also presented evidence from the literature,

based on a 2 grid point system, that suggested that the conditioning of the

preconditioned system with dense observations was largely affected by the

number and accuracy of observations. The effect of the observation accuracy

was confirmed in an operational experiment at the ECMWF.

Except for these simplified examples there is very little theory that explains

what drives the conditioning of both the unpreconditioned and precondi-

tioned Var schemes. The aim of this thesis is to provide solid theory de-

scribing the condition number of the Hessians of the incremental Var cost

function, both with and without the CVT. In this thesis we confirm some of

the experimental results on the conditioning of Var which was presented in

this chapter. We confirm that the conditioning of the background covariance

matrix does have a large affect on the conditioning of Var. We also show both

theoretically and experimentally how the conditioning of Var is improved by

including a CVT. Additionally, we identify what are the important factors

which can affect the condition number of the preconditioned Var Hessian.

In the next chapter we begin our exploration by considering the condition

number of covariance matrices commonly used to model the auto-covariances

of the background errors.
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Chapter 5

Conditioning of Background

Covariance Matrices

In major NWP centres it is common for the size of the state vector to be

greater then the number of available observations. As computer processing

power increases these centres have generally chosen to increase their model

resolution. Hence, for the foreseeable future, despite the increases in obser-

vation data from satellites, Var will continue to solve an under-determined

system. As mentioned in Chapter 2 this lack of information is accounted

for in 4DVar by including an a priori guess of the initial state called the

background. In Section 4.1 it was suggested that the background term may

play an important role in the conditioning of the Var minimisation. The

purpose of this chapter is to consider the condition number of some common

background error covariance matrices. We use these results in later chapters

to show how the background covariance matrix can influence the condition

number of the Var Hessian.

We begin by introducing some basic properties of covariance functions and

describe some common functions for modelling the background error auto-

correlations on both the real line and the circle. The correlation functions

are used to construct the background error correlation matrices. Finally we
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analyse the condition number of the background error covariance matrices

associated with the correlation functions introduced in this chapter before

summarising the chapter.

5.1 Background Covariance Matrices

In this section we give a brief overview of background error covariance func-

tions, some basic properties and how they are used to construct the back-

ground error covariance matrix, B, used in Var. In Var, the first guess

background state, xb, is usually found from a short forecast [32, Sec 5.1], [9].

The corresponding background error covariance matrix has an important in-

fluence on the final analysis [10]. For example, the background covariance

matrix spreads information from the observations when forming the analysis

xa [10]. Therefore, to obtain an accurate forecast it is essential that the back-

ground errors are specified correctly. In this chapter we refer to parameters

within the state vector, x0. In the context of meteorology and in this thesis

a parameter means a physical quantity of the atmosphere such as pressure

or wind velocity.

The covariance is a measure of how two variables change together and can

be described by a covariance function. More formally, a function f(x, y) is

the covariance function of a random field X on R
n if

f(x, y) =< X(x)− < X(x) >,X(y)− < X(y) >> (5.1)

for x, y ∈ R
n and where <> represents the expected value of a random field

[17]. A direct consequence of the definition (5.1) is that the function is sym-

metric with f(x, y) = f(y, x). Random variables that have a covariance equal

to zero are said to be uncorrelated. The value of f(x, x) is called the variance

of the random variable at x and (f(x, x))1/2 is called the standard devia-

tion. By normalising the covariance function with the standard deviations
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we obtain a correlation function

ρ(x, y) =
f(x, y)

(f(x, x)f(y, y))1/2
. (5.2)

Notice that a correlation function is a particular type of covariance function

which has unit variances. In this chapter we assume that the variance of

the variables are non-zero so that ρ is well defined. A correlation function

is a dimensionless function whereas a covariance function has the units of

X(x) times X(y). In this chapter and in Chapters 6 and 7 we primarily

consider the errors in a single parameter (e.g. pressure) on a one-dimensional

domain (n = 1) so X(x) represents the random field of errors at a position

x ∈ R. With no correlations between different parameters f is called an

auto-covariance function and ρ a auto-correlation function. We also assume

that the errors of our parameter are homogeneous. That is, the covariance,

or correlation, function will only depend on the distance between errors and

not on the position. In this case we may write the correlation function

ρ(x, y) = ρ̂(|x − y|). (5.3)

The following theorem is useful for showing whether a function is a correlation

function.

Theorem 5.1.1 [17] Let ρ̂ be an even continuous function on R with ρ̂(0) =

1 and
∫

R

|ρ̂(x)|dx < ∞, (5.4)

then ρ(x, y) = ρ̂(|x − y|) is a homogeneous correlation function on R if and

only if the Fourier transform of ρ̂ is everywhere non-negative.

Proof See [17], [55, Sec. IX.2].

For a choice of points s1, s2, . . . , sN ∈ R an auto-correlation function ρ(x, y)

defines a positive-definite symmetric auto-correlation matrix C ∈ R
N×N with
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entries [17]

Ci,j = ρ(si, sj), (5.5)

for i, j = 1, . . . , N . We can use the error auto-correlation matrix (5.5) to

define the background error auto-covariance matrix

B = ΣCΣ, (5.6)

where C represents the background error correlation matrix and the diagonal

matrix Σ contains the positive background error standard deviations [32, Sec

5.4]. From (5.6) the background covariance matrix is clearly symmetric and

positive definite. In particular, since B is positive definite it automatically

implies that all the eigenvalues of (5.6) are positive. We now describe some

error auto-correlations functions which are commonly used for constructing

the background auto-covariance matrices on the real line and the circle.

5.2 Auto-Correlation Functions and Matri-

ces

In this thesis we consider a single, periodic, parameter on a one-dimensional

domain and therefore require a error auto-covariance matrix to define the

errors in the background. In this section we introduce some common auto-

correlation functions and an auto-correlation matrix used to construct the

background auto-covariance matrix. As shown in Section 5.1 the auto-

correlation matrix can be combined with the error standard deviations to

produce the background error covariance matrix (5.6).

We assume that errors are homogeneous, that is the correlations depend

only on the distance between the errors and not on the position of the errors

[10]. Since we use a periodic parameter we are concerned with modelling

correlations on the circle. However, many well-defined correlation models
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already exist on the real line and so we begin first by considering correlation

functions on R. We use these correlation functions to create valid correlation

functions on the circle.

The Gaussian correlation function for points on the real line separated by a

distance |r| is defined by [14], [32],

ρG(r) = exp

(

− |r|2
2L2

)

, (5.7)

where L > 0 is the correlation lengthscale and r ∈ R. The Gaussian correla-

tion function is commonly used in many applications including meteorology

and remote sensing [35].

Another common model is the second-order auto-regressive correlation (SOAR)

function [14], defined by

ρS(r) =

(

1 +
|r|
L

)

exp

(

−|r|
L

)

. (5.8)

The SOAR function is used in the Met Office system to model the horizontal

error correlations and can be estimated using a spectral filter [41], [43], [27],

[2].

Suppose we identify the values of our parameter at two points −D and D. We

have a periodic parameter on the real line and so the domain can be viewed as

a circle. Although both the SOAR and Gaussian functions define correlation

functions on the real line, they are not necessarily valid correlation functions

on the circle since the Fourier transforms of (5.7) and (5.8) may no longer be

positive and by Theorem 5.1.1 they are no longer correlation functions [68],

[22], [66]. One alternative is to compactly support the correlation model (for

instance see [13] and [2]); however, the approach we take is to transform to

a valid correlation model on the circle by replacing the great circle distance

r in (5.7) and (5.8) for the chordal distance

d = 2a sin(θ/2) (5.9)
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where θ is the angle between two points on the circle and a is the radius

[66], [65]. This substitution guarantees that any valid correlation model on

the real line is now a valid correlation model on the circle [69, Sec. 22.5]. In

particular the Gaussian and SOAR functions (5.7) and (5.8) are now valid

correlation functions on the circle [66], [17].

In this, and later, chapters we assume that the parameter is positioned at N

equally spaced grid points on the circle s1, s2, . . . , sN . Hence, the angle ∆θ

between adjacent grid points on the circle is constant. We define a positive

definite correlation matrix on the circle by sampling the correlation functions

(5.7) and (5.8) at the points s1, s2, . . . , sN [17]. The Gaussian correlation

matrix CG has components

(CG)i,j = exp

(

−|2a sin(θi,j/2)|2
2L2

)

, (5.10)

where i, j = 1, . . . , N and θi,j is the angle between the points si and sj on the

circle. Similarly the SOAR error correlation matrix CS has elements given

by

(CS)i,j =

(

1 +
|2a sin(θi,j/2)|

L

)

exp

(

−|2a sin(θi,j/2)|
L

)

(5.11)

where i, j = 1, . . . , N and θi,j is the angle between the points si and sj on

the circle.

The third periodic correlation matrix we consider we refer to as the Laplacian

correlation matrix, CLap. This is an explicit equation for the inverse of a

correlation matrix of a periodic parameter [30, Chap. 2], [31], [37, Chap. 5]

C−1
Lap = γ−1

(

I +
L4

2∆x4
(Lxx)

2

)

. (5.12)

Here L is again the lengthscale, ∆x is the great circle distance between grid

points and γ > 0 is a constant that ensures that the maximum element of C

is equal to one. The matrix Lxx is the second order derivative matrix given
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by

Lxx =





























−2 1 0 0 . . . 0 1

1 −2 1 0 . . . 0 0
. . . . . .

...
. . . . . . 0

0
. . . . . . 1

1 0 . . . 1 −2





























. (5.13)

Theorem 5.2.1 For N > 5 the matrix (5.12) is positive definite.

Proof To prove (5.12) is positive definite it is enough to show that all the

eigenvalues are positive. Since Lxx is circulant then the matrix C−1
Lap is also

circulant. Assuming N > 5, the inverse of the Laplacian correlation model

is therefore described by its top row

ĉ = γ−1[1 + 6q,−4q, q, 0, . . . , 0, q,−4q]. (5.14)

where q = L4

2∆x4 . As shown in Section 3.4.4 the eigenvalues of the circulant

matrix, C−1
Lap, are simply the Fourier transform of ĉ (5.14). The eigenvalues

of C−1
Lap are

νm = γ−1(1+6q−4q(e−2πim/N +e−2πim(N−1)/N )+q(e−4πim/N +e−2πim(N−2)/N )),

(5.15)

where m = 0, 1, . . . , N − 1. Using the identity

cos(x) =
eix + e−ix

2
, (5.16)

and the fact that e2πim = 1 for m ∈ Z, equation (5.15) simplifies to

νm = γ−1

(

1 + 6q − 8q cos

(

2πm

N

)

+ 2q cos

(

4πm

N

))

. (5.17)

Treating equation (5.17) as a continuous function with respect to m we can
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differentiate to give

dνm

dm
= γ−1

(

16qπ

N

)

sin

(

2πm

N

)(

1 − cos

(

2πm

N

))

. (5.18)

For m ∈ [0, N) the only extrema occur at m = 0 and m = N/2. Since

νm ≤ γ−1(1 + 6q + 8q + 2q) = γ−1(1 + 16q) = νN/2, (5.19)

νN/2 is a global maximum of the function νm. For m ∈ (0, N/2), sin(2πm/N) >

0 and −1 < cos(x) < 1 therefore by (5.18)

dνm

dm
> 0, (5.20)

and νm is therefore strictly increasing for m ∈ (0, N/2). Since νm is symmetric

about the point m = N/2 then the minimum of νm for m ∈ [0, N) must occur

at m = 0,

ν0 = γ−1(1 + 6q − 8q + 2q) = γ−1 > 0. (5.21)

The eigenvalues occur at the discrete points m = 0, 1, . . . , N − 1. Since the

smallest eigenvalue ν0 is positive all eigenvalues must be positive. Hence, we

have shown C−1
Lap is positive definite.

If we assume that the background error variances are equal to σ2
b at every

grid point then by equation (5.6) the background covariance matrix is

B = σ2
bC, (5.22)

where C is one of auto-covariance matrices (5.10) (5.11) or (5.12). The

background error covariance matrix (5.22), B, is circulant. In particular,

it means we can explicitly find the eigenvalues, and therefore, the spectral

condition number of the background error covariance matrix. When the

system is not periodic the background covariance matrix will be Toeplitz

(i.e. each diagonal of the matrix is constant). The circulant matrices can be

used to approximate the Toeplitz matrices used to model the non-periodic
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forms of the Gaussian and SOAR correlation matrices (see [25] for more

details).
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Figure 5.1: Plot showing the Gaussian correlation function (Solid line), the SOAR corre-
lation function (dash line) and the Laplacian correlation function (dot-dash line) L = 2.

We now briefly compare the correlation matrices. Figure 5.1 shows the 250th

row of the correlation matrices (5.10), (5.11) and (5.12) for N = 500 grid

points on the circle with ∆x = 0.1 (great circle distance between grid points)

for lengthscale L = 2. The plot shows the close approximation of the positive

components of the Laplacian correlation matrix and the Gaussian correlation

matrix. The Laplacian has often been used instead of the Gaussian when

the inverse is required since the inverse is explicitly known [30, Chap. 2],

[37, Chap. 5]. Unlike the Gaussian and SOAR correlation matrices the

Laplacian exhibits negative correlations. For the same lengthscale L, the

SOAR function appears to have longer tails then the Gaussian function.

In the next section we consider the condition number of the B matrices of the

form (5.22) using the Gaussian, SOAR and Laplacian correlation matrices

defined in this section.
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5.3 Conditioning of the Background Error Co-

variance Matrix

Since the background covariance matrix is considered to play a major role in

the conditioning of the Hessian (2.12), we begin by examining the condition

number of the B ∈ R
N×N matrix. Assuming that the background error states

all have the same variance, σ2
b > 0, then we can write our covariance matrix

in the simpler form

B = σ2
bC, (5.23)

where C is a symmetric, positive definite, circulant matrix. Since B is sym-

metric and positive-definite, by Theorem 3.2.4 the condition number is

κ(B) =
λmax(σ

2
bC)

λmin(σ2
bC)

=
σ2

bλmax(C)

σ2
bλmin(C)

= κ(C), (5.24)

and hence is independent of the background error variance and is equal to

the condition number of the correlation matrix C. Since the correlation

matrices we consider are circulant, the eigenvalues can be explicitly found

via the discrete Fourier transform of the top row of C. We denote this

top row [c0, c1, . . . , cN−1]. The symmetry of C implies that ci = cN−i for

i = 1, ..., N − 1, and hence combining with (3.49) we have

νm = c0 + 2

N/2−1
∑

k=0

ck cos

(

2πmk

N

)

+ cN/2 cos (mπ) , (5.25)

for N even and

νm = c0 + 2

(N−1)/2
∑

k=0

ck cos

(

2πmk

N

)

, (5.26)

for N odd. An upper bound can be placed on the eigenvalues of C using

Theorem 3.4.2 with p = ∞,

|νm| ≤ ||C||∞ =
N−1
∑

k=0

|ck|, (5.27)
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for m = 0, 1, . . . N − 1. Since ck ∈ [−1, 1] then the eigenvalues are bounded

above by N , the number of grid points (although this may be a large over-

estimate of the largest eigenvalue). We now consider the conditioning of the

three correlation models we introduced in the previous section, the Gaussian

(5.10), the SOAR (5.11) and the Laplacian (5.12).

5.3.1 Gaussian Correlation Matrix
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Figure 5.2: Condition number of the periodic Gaussian correlation matrix as a function
of lengthscale.

In this section we consider the condition number of the Gaussian covariance

matrix (5.10). Let s1, s2, . . . sN be the positions on the circle with uniform

spacing between grid points of great circle length ∆x. Since all the coefficients

of the Gaussian correlation matrix are positive, from (5.25) and (5.26) we

can see that the largest eigenvalue of C is equal to

ν0 =
N−1
∑

k=0

ck = ||C||∞, (5.28)
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Figure 5.3: Largest (left) and smallest (right) eigenvalue of the periodic Gaussian corre-
lation matrix as a function of lengthscale.

where ck = exp
(

− |2a sin(θ0,k/2)|2
2L2

)

and θ0,k is the angle between points s1 and

sk+1.

In order to examine the condition number we design a simple experiment.

We define a grid of N = 500 grid points with ∆x = 0.1. Figure 5.2 shows

the condition number of the Gaussian covariance matrix as a function of the

correlation lengthscale L on a logarithmic plot. The figure shows that the

correlation matrix is extremely sensitive to lengthscale and when L = 2∆x

the condition number is of the order 107 and the matrix is very ill-conditioned.

This confirms previous studies of the Gaussian correlation model in the non-

periodic case [34], [35]. The ill-conditioning of the Gaussian auto-correlation

model has been referred to as the Gaussian anomaly [34]. One possible

explanation for this ill-conditioning is given by Kostinski in [35]. Consider a

parametric family of functions of the form

exp(−να), (5.29)

These are valid auto-correlation functions if 0 < α ≤ 2 and give therefore

non-negative Fourier coefficients. Since the Gaussian case α = 2 lies on the

boundary of the parameters which create a valid correlation model this has

been suggested as the cause of the Gaussian anomaly [35]. By equation (5.28)

the largest eigenvalue remains reasonably small as the lengthscale increases
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thus the large increase in the condition number must be due to the rapid de-

crease in the smallest eigenvalue. This is confirmed by Figure 5.3. From the

Figures 5.2 and 5.3 we also observe a sharp kink in the condition number and

smallest eigenvalue plots when the lengthscale is approximately 0.28. This

most likely occurs due to the computation of the smallest eigenvalue being

around 10−17 which is beyond the machine precision of the Matlab program

employed (Given as 2.2204e − 016 for our version).

5.3.2 SOAR Correlation Matrix
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Figure 5.4: Condition number of the periodic SOAR correlation matrix as a function of
lengthscale.

We now consider the SOAR correlation matrix (5.11). Like the Gaussian cor-

relation matrix, each row of the SOAR correlation matrix is bell-shaped and

contains only positive correlations as shown in Figure 5.1. Hence, assuming

the grid is at equally spaced points s1, . . . sN on the circle, our maximum
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Figure 5.5: Largest (left) and smallest (right) eigenvalue of the periodic SOAR correlation
matrix as a function of lengthscale.

eigenvalue is simply the sum of the top row as given by (5.28) but with

ck =

(

1 +
|2a sin(θ0,k/2)|

L

)

exp

(

−|2a sin(θ0,k/2)|
L

)

, (5.30)

where θ0,k is the angle between point s1 and sk+1. We therefore expect the

largest eigenvalue of (5.11) to increase slowly as the lengthscale increases.

The SOAR correlation function is commonly used to model the horizontal

correlations in the Met Office operational system [42] [43]. Figure 5.4 shows

a plot of the condition number of the SOAR background correlation matrix

as a function of lengthscale with the same experimental design as in the

Gaussian experiment shown in Figure 5.2 (N = 500, ∆x = 0.1). As with the

Gaussian correlation matrix the SOAR matrix is also sensitive to changes

in the lengthscale. However, it is clearly not as sensitive and a comparison

shows at lengthscale, L = 0.2, the condition number of the SOAR matrix

is of order 103 compared to order 107 for the conditioning of the Gaussian

matrix. Again the large reduction in the smallest eigenvalue as the length-

scale increases appears to be the main cause of the ill-conditioning, as shown

in Figure 5.5. However in this case note that the smallest eigenvalue of the

SOAR matrix has not reached machine precision here and at L = 0.3 is

around 10−4.

61



5.3.3 Laplacian Correlation Matrix
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Figure 5.6: Condition number of the Laplacian correlation matrix as a function of length-
scale.
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Figure 5.7: Largest (left) and smallest (right) eigenvalue of the Laplacian correlation
matrix as a function of lengthscale.

The final matrix we consider is the Laplacian correlation matrix CLap (5.12).

Theorem 5.3.1 The condition number of CLap ∈ R
N×N is

κ(CLap) =

(

1 + 16
L4

2∆x4

)

, (5.31)
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if N is even or

κ(CLap) =

(

1 +
L4

2∆x4

(

6 − 8 cos

(

π(N − 1)

N

)

+ 2 cos

(

2π(N − 1)

N

)))

,

(5.32)

if N is odd.

Proof In the proof to Theorem 5.2.1 we see that the eigenvalues of the

Laplacian were given by

νm = γ−1

(

1 + 6q − 8q cos

(

2πm

N

)

+ 2q cos

(

4πm

N

))

, (5.33)

for m = 0, 1, . . . , N−1, where q = L4

2∆x4 . Considered as a continuous function

with respect to m ∈ [0, N) it was shown in the proof of Theorem 5.2.1 that

the minimum value of (5.33) is at m = 0 giving ν0 = γ−1 and the maximum

is at m = N/2 giving

νN/2 = γ−1

(

1 + 16
L4

2∆x4

)

. (5.34)

Thus, if N is even then νN/2 is an eigenvalue of (5.33) giving the maximum

possible value of νm for m ∈ [0, N). Therefore, since CLap is symmetric and

positive definite, then by Theorem 3.2.4 we have

κ(CLap) =
νN/2

ν0

=
γ−1

(

1 + 16 L4

2∆x4

)

γ−1
=

(

1 + 16
L4

2∆x4

)

. (5.35)

As shown in the proof of Theorem 5.2.1 the function (5.33) is monotonically

increasing between m = 0 and m = N/2. Hence if N is odd the maximum

eigenvalue must occur at m = (N − 1)/2 giving

νN−1/2 = γ−1

(

1 +
L4

2∆x4

(

6 − 8 cos

(

π(N − 1)

N

)

+ 2 cos

(

2π(N − 1)

N

)))

.

(5.36)
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Therefore, the condition number of CLap is

κ(CLap) =

(

1 +
L4

2∆x4

(

6 − 8 cos

(

π(N − 1)

N

)

+ 2 cos

(

2π(N − 1)

N

)))

.

(5.37)

This completes the proof.

If N is large then (N − 1)/N ≈ 1 and in the case for N odd

cos

(

π(N − 1)

N

)

≈ cos (π) = −1, (5.38)

and

cos

(

2π(N − 1)

N

)

≈ cos (2π) = 1. (5.39)

Hence, by equation (5.37) the condition number of CLap is

κ(CLap) ≈
(

1 +
L4

2∆x4
(6 − 8(−1) + 2(1))

)

= 1 + 16
L4

2∆x4
. (5.40)

Thus for large N the expression of the condition number of CLap is approxi-

mately the same for N odd or even.

Consider the same grid with N = 500 and ∆x = 0.1 as in the Gaussian

and SOAR examples in Sections 5.3.1 and 5.3.2 respectively. By Theorem

5.3.1 we would expect the condition number of the Laplacian to be sensitive

to the lengthscale L, since the conditioning is approximately proportional

to L4. A plot of the condition number of CLap is shown in Figure 5.6.

Indeed, the condition number becomes larger as the lengthscale increases

as expected. The Laplacian appears to be the most well-conditioned of the

three correlation matrices considered. For instance, the condition number of

CLap is an order of magnitude 10 lower than the SOAR matrix at L = 0.3.

As in the previous examples Figure 5.7 shows that the large reduction in the

smallest eigenvalue as the lengthscale increases causes the ill-conditioning of

the correlation matrix as the lengthscale increases. Comparisons of Figures

5.3, 5.5 and 5.7 show that the increase in the largest eigenvalue is approx-
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imately linear and relatively slow for all three correlation matrices, this is

expected by considering the bound on the eigenvalues (5.27). As the length-

scale increases the correlations slowly increase, as seen from the forms of the

components of the correlation matrices (5.10) and (5.11). It is the rate of

reduction in the smallest eigenvalue as the lengthscale increases that deter-

mines the conditioning of all three of the covariance matrices considered in

this section. As the lengthscale increases the Gaussian correlation matrix

(5.10), the SOAR correlation matrix (5.11) and the Laplacian correlation

matrix (5.12) all become very ill conditioned with the condition number of

the Gaussian increasing the most dramatically. Of the correlation matrices

considered in this chapter the Gaussian is the most sensitive to the increase

in the lengthscale and the Laplacian is the least sensitive. We now summarise

the results of this chapter.

5.4 Summary

In this chapter we considered background covariance functions and matri-

ces. In particular, we studied the condition number of some auto-correlation

matrices which are commonly used to describe the horizontal error correla-

tions in NWP. We began by introducing some basic definitions and results

of covariance functions before introducing some commonly used correlation

functions on the real line. Since in this thesis we are interested in correlation

functions on the circle we showed how a change of variables could be applied

to a correlation function on the real line to produce a valid correlation model

on the circle. The correlation functions could then be used to produce co-

variance matrices for periodic parameters on a finite domain on the real line.

Finally, we considered the conditioning of three commonly used covariance

matrices. It was found that all three matrices are sensitive to the correlation

lengthscale and become more ill-conditioned as the lengthscales increases. In

particular, it was found that the increase in the condition number of the ma-

trices is caused by the rapid reduction in the size of the smallest eigenvalue
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as the lengthscale increased. A comparison of the three covariance matrices

showed a large variability in the conditioning of such matrices. Depending

on the correlation matrix considered the condition number of the background

covariance matrix is potentially several magnitudes larger or smaller. In par-

ticular, we generally found the Gaussian matrix to have a larger condition

number than the Laplacian with the same lengthscale.

In the next chapter we consider the conditioning of the unpreconditioned and

preconditioned 3DVar problems (2.11) and (2.16). In addition we show how

the condition number of the background covariance matrix can influence the

conditioning of the unpreconditioned Var problem (2.11).
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Chapter 6

Conditioning of 3DVar

In this chapter we present new theoretical bounds which quantify the con-

dition number of both the unpreconditioned and preconditioned Hessians of

the 3DVar objective function (2.11). Using these bounds we show

• The conditioning of the Var Hessian is dependent on the condition-

ing of the background error covariance matrix. Hence, for an ill-

conditioned background error covariance matrix the Var Hessian is also

ill-conditioned.

• In a one parameter, periodic system, preconditioning with the con-

trol variable transform (CVT), as described in Section 2.4, reduces the

condition number of Var.

• The condition number of the preconditioned Var system is reduced

by three main factors: reducing the number of observations, using less

accurate observations and increasing the spacing between observations.

• The convergence rate of the conjugate gradient (CG) method applied

to Var is increased when we precondition with the CVT.

• The convergence rate of the CG method applied to the preconditioned
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3DVar system increases when we increase the spacing between obser-

vations and decrease the observation accuracy.

We begin by deriving new bounds on the condition number of the 3DVar Hes-

sian. These bounds show the dependency of the conditioning of 3DVar to

the conditioning of the background error covariance matrix and we illustrate

this with numerical experiments. Next we derive new theoretical bounds on

the condition number of the Hessian of the 3DVar system which has been

preconditioned via the CVT. We illustrate the benefits of preconditioning

using numerical experiments and compare these results to the conditioning

of the unpreconditioned system. We consider the conditioning of the pre-

conditioned 3DVar scheme in more detail. In particular, we consider the

effect of changing the observation accuracy and distribution on the condition

number. Finally we emphasise the importance of the condition number in de-

termining the convergence rate of gradient methods by performing numerical

experiments using the conjugate gradient method.

We begin by investigating the conditioning of the unpreconditioned 3DVar

system.

6.1 Conditioning of 3DVar

In this chapter we investigate the conditioning of 3DVar. Observations, y0 ∈
R

p, are only taken at the beginning of the time window, t0. Therefore,

instead of minimising the full incremental 4DVar problem (2.9) we minimise

the incremental 3DVar cost function

J̃ [δx0] =
1

2
[δx0−(xb

0−x0)]
TB−1[δx0−(xb

0−x0)]+
1

2
(Hδx0−d0)

TR−1(Hδx0−d0),

(6.1)

with respect to the initial increment δx0 ∈ R
N . In this chapter, subsequent

reference to 3DVar will mean the incremental form (6.1). In the next section
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we derive theoretical bounds on the condition number of the Hessian of the

3DVar cost function.

6.1.1 Theory

In this section we consider the condition number of the Hessian of the 3DVar

cost function (6.1)

S = B−1 + HTR−1H. (6.2)

We derive theoretical bounds to analyse the condition number of (6.2). To

begin we consider the general problem with minimal assumptions on the

observations and the errors. The main result is contained in the following

theorem.

Theorem 6.1.1 Let B ∈ R
N×N and R ∈ R

p×p, with p < N , be the back-

ground and observation error covariance matrices respectively. Additionally,

let H ∈ R
p×N be the observation operator. Then the following bounds are

satisfied by the condition number of the Hessian (6.2),

κ(B)

(1 + λmax(B)λmax(HTR−1H))
≤ κ(S) ≤ (1 + λmin(B)λmax(H

TR−1H))κ(B).

(6.3)

Proof By bounding the largest and smallest eigenvalues of S we can bound

the condition number. By Theorem 3.4.1 we can put preliminary bounds on

the eigenvalues

λk(B
−1) + λmin(H

TR−1H) ≤ λk(S) ≤ λk(B
−1) + λmax(H

TR−1H). (6.4)

However since HTR−1H is not full rank its smallest eigenvalue is equal to

zero. This means that

λmax(B
−1) ≤ λmax(S) ≤ λmax(B

−1) + λmax(H
TR−1H), (6.5)
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and

λmin(B
−1) ≤ λmin(S) ≤ λmin(B

−1) + λmax(H
TR−1H). (6.6)

Taking the upper bound on the largest eigenvalue in (6.5) and the lower

bound on the smallest eigenvalue in (6.6) gives the following upper bound on

the condition number of (6.2)

κ(S) ≤
(

1 + (λmax(B
−1))−1λmax(H

TR−1H)
)

κ(B). (6.7)

Since (λmax(B
−1))−1 = λmin(B) we obtain the upper bound

κ(S) ≤
(

1 + λmin(B)λmax(H
TR−1H)

)

κ(B). (6.8)

Similarly taking the lower bound on the largest eigenvalue in (6.5) and the

upper bound on the smallest eigenvalue in (6.6) gives the following lower

bound on the condition number

κ(S) ≥ κ(B)
(

1 + (λmin(B
−1))−1λmax(H

TR−1H)
)−1

. (6.9)

Using λmin(B
−1) = (λmax(B))−1 we obtain the lower bound

κ(S) ≥ κ(B)
(

1 + λmax(B)λmax(H
TR−1H)

)−1
. (6.10)

This completes the proof.

The main assumption of Theorem 6.1.1 is that the 3DVar cost function is

underdetermined (p < N) with fewer observations then components in the

increment δx0. Currently in NWP centres there are only 106 observations

compared to the 107 − 108 components in the state variable. Theorem 6.1.1

shows that the bounds on the condition number of (6.2) are related to the

condition number of the background covariance matrix. A direct result of

this theorem is that if the background covariance matrix is ill-conditioned

then we can expect the Hessian (6.2) to be ill-conditioned.
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We can produce tighter bounds on the condition number by restricting the

forms of the components of the Hessian (6.2). We assume that our back-

ground covariance matrix is a circulant matrix of the form B = σ2
bC, where

σ2
b is the background error variance. It is common practice in NWP cen-

tres to assume that the observation errors are uncorrelated [15]. Here we

assume that the observation error covariance matrix is just a scalar multiple

of the identitiy matrix R = σ2
oI, where σ2

o is the observation error variance.

Additionally, we assume that the observations are made at grid points. In

particular, this implies that HTH is diagonal with only ones on the diagonal

if that position is observed and zeros otherwise. The bounds on this more

specific system are derived in the following theorem.

Theorem 6.1.2 Let B = σ2
bC ∈ R

N×N and R = σ2
oIp where C is a symmet-

ric positive-definite circulant matrix, Ip ∈ R
p×p is the identity matrix and σ2

b

and σ2
o are positive scalars. In addition let HTH be a diagonal matrix with

p < N units on the diagonal and the remaining elements zero. Defining

S = B−1 + HTR−1H, the following bounds on the condition number hold





1 + p
N

σ2

b

σ2
o
λmin(C)

1 + p
N

σ2

b

σ2
o
λmax(C)



κ(C) ≤ κ(S) ≤
(

1 +

(

σ2
b

σ2
o

)

λmin(C)

)

κ(C), (6.11)

where λmax(C) and λmin(C) are the largest and smallest eigenvalues respec-

tively of the matrix C.

Proof By the assumptions on the matrices in the theorem we can write

HTR−1H = σ−2
o HTH and therefore λmax(H

TR−1H) = σ−2
o . Additionally,

we have λmin(B) = σ2
bλmin(C). If we substitute these into the upper bound

of (6.3) we obtain

κ(S) ≤
(

1 +
σ2

b

σ2
o

λmin(C)

)

κ(C), (6.12)

which establishes the upper bound. Rather then repeat this procedure with

the lower bound we produce an improved estimate by applying the Rayleigh
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quotient (3.46). Let vmax ∈ R
N be the eigenvector corresponding to the

largest eigenvalue of C−1. Since C−1 is circulant then all the components of

the eigenvectors of C−1 lie on the unit circle in C (see (3.50)). In particular

this implies that for any eigenvector, vm, of C−1

vH
mHTHvm =

1

N

∑

k∈K

(e−2πikm/N)He−2πikm/N =
1

N

∑

k∈K

e2πikm/Ne−2πikm/N =
p

N
,

(6.13)

where K are the positions of the non-zero diagonal elements of HTH. By

Theorem 3.4.4, the maximum value obtained by the Rayleigh quotient of S

occurs at the eigenvector corresponding to the largest eigenvalue of S. Hence,

λmax(S) = max
v∈RN

(RS(v)) ≥ vH
max(B

−1+σ−2
o HTH)vmax = σ−2

b λmax(C
−1)+σ−2

o

p

N
.

(6.14)

Similarly the minimum value of the Rayleigh quotient occurs at the eigen-

vector corresponding to the smallest eigenvalue of S. Let vmin be the eigen-

vector corresponding to the smallest eigenvalue of C−1. Then again using

the Rayleigh quotient we find

λmin(S) = min
v∈RN

(RS(v)) ≤ vH
min(B

−1+σ−2
o HTH)vmin = σ−2

b λmin(C
−1)+σ−2

o

p

N
.

(6.15)

Combining (6.14) and (6.15) we find

κ(S) ≥ σ−2
b λmax(C

−1) + σ−2
o

p
N

σ−2
b λmin(C−1) + σ−2

o
p
N

= κ(C)





1 +
σ2

b

σ2
o

p
N

λmin(C)

1 +
σ2

b

σ2
o

p
N

λmax(C)



 , (6.16)

giving the lower bound on the condition number. This completes the proof.

As with the more general theorem the bounds show that the condition num-

ber of the Hessian is related to the condition number of the background

error covariance matrix. In Chapter 5 we introduced some common circulant

background covariance matrices of the form B = σ2
bC whose conditioning

were sensitive to changes in the error correlation lengthscale. In particular,

the correlation models considered were ill-conditioned. The theory presented
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in this section implies that the 3DVar cost function (6.1) constructed using

these background covariance matrices would also be sensitive to changes in

the lengthscale. Hence, as the lengthscale increases we expect the condition

number of 3DVar Hessian, S, to be more ill-conditioned. In the next section

we perform numerical experiments to illustrate the ill-conditioning of the

3DVar Hessian (6.2).

6.1.2 Numerical Experiments

In this section we confirm numerically the dominance of the conditioning of

the background covariance matrix on the conditioning of the Hessian (6.2)

as indicated by the theoretical bounds from Section 6.1.1. We consider a

one-parameter periodic system defined on an equally spaced grid on the real

line. For simplicity we assume that observations of the parameter are only

made at grid points and have uncorrelated errors all with the same variance

σ2
o . Additionally, we assume that the background error covariance matrix

is of the form σ2
bC with background error variance σ2

b and C is a circulant

correlation matrix. With these assumptions the hypotheses of Theorem 6.1.2

are satisfied and the bounds (6.11) apply to the condition number of the

Hessian (6.2).

For the remainder of this section we define a background covariance matrices

on the circle using the Gaussian, SOAR and Laplacian correlation matrices

defined in Section 5.2. We consider a domain consisting of N = 500 grid

points with equal grid spacing ∆x = 0.1 between adjacent nodes. We fix

the observation and background error variances at σ2
o = 1 and σ2

b = 1 re-

spectively. In this section we use two different configurations of observations.

The first uses a set of 250 randomly distributed observations, we refer to this

as observation configuration 1. The second, uses 250 observations positioned

on the first 250 grid points of the domain. We call this observation configu-

ration 2. We note that since both configurations contain the same number of

73



observations then the lower bound in (6.11) will be identical in both cases.

In these experiments we consider the conditioning of the Hessian (6.2) as we

vary the background error correlation lengthscale.
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Figure 6.1: Condition number of the Hessian (solid line) and bounds (dashed line) as
function of lengthscale with Gaussian background covariance matrix and observation con-
figuration 1.

To begin with we consider the Gaussian background correlation matrix (5.10)

introduced in Section 5.2 using observation configuration 1. Figure 6.1 is

a log plot of the change in the conditioning of the Hessian as a function

of background error correlation lengthscale (black solid line) together with

the bounds derived in Theorem 6.1.2 (red dashed lines). Firstly, we note

the close agreement between the condition number and the derived bounds.

Although the difference between upper and lower bounds appears constant,

since the y-axis is on a logarithmic scale the separation clearly increases

with the lengthscale and the bounds are less tight. The important feature

of this graph is the large increase in the condition number as a function of

lengthscale. In particular, if we compare Figure 6.1 with Figure 5.2, showing

the conditioning of the Gaussian covariance matrix, we see a close agreement

in both the shape and magnitude of the curves. For instance when the
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lengthscale is twice the grid length spacing L = 0.2 then the conditioning of

both are of the order 107. This confirms Theorem 6.1.2 which predicts that

the conditioning of the Hessian (6.2) is dependent on the conditioning of the

background covariance matrix.
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Figure 6.2: Condition number of the Hessian (solid line) and bounds (dashed line) as
function of lengthscale with SOAR background covariance matrix and observation config-
uration 1.

We repeat the experiment, using the SOAR correlation matrix (5.11) intro-

duced in Section 5.2 using observation configuration 1. As seen from the

results in Figure 6.2 there is an increase in the condition number and bounds

as the lengthscale increases. In this case the Hessian is ill-conditioned but

much better conditioned than the Hessian using the Gaussian covariance ma-

trix (we note that in this plot the x-axis has been extended due to the lower

rate of growth of the condition number compared to the Gaussian.). Com-

parison with the conditioning of the background covariance matrix, shown

in Figure 5.4, shows that in this case the Hessian has a lower condition num-

ber than the background matrix. If we look at lengthscale L = 0.3 we see

that the condition number of the Hessian is around 500 compared to that of

the background covariance matrix which is around 4000. We also note that
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Figure 6.3: Condition number of the Hessian (solid line) and bounds (dashed line) as
function of lengthscale with SOAR background covariance matrix and observation config-
uration 2.

the size of the upper bound in Figure 6.2 is similar to that of the condition

number of background error covariance matrix. The condition number of S

in this case has followed the lower bound but in other cases can follow the

upper bound. We repeated the experiment using observation configuration

2. The condition number of the Hessian is of the same magnitude as the

condition number of the SOAR background covariance matrix. In this case

the condition number follows the upper bound as shown in Figure 6.3. The

experiments show that the condition number of S can achieve both the lower

and upper bounds presented in Theorem 6.1.2 depending on the choice of

observations.

Finally we consider the conditioning of the Hessian constructed using the

Laplacian background covariance matrix (5.12) introduced in Section 5.2.

Figure 6.4 shows the condition number against lengthscale for observation

configuration 1. Like the SOAR case the increase in the condition number

with increase in correlation lengthscale is not as dramatic as for the Gaussian

case. This is evident from the use of a linear y-axis used in Figure 6.4 com-
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Figure 6.4: Condition number of the Hessian (solid line) and bounds (dashed line) as
function of lengthscale with Laplacian background covariance matrix and observation con-
figuration 1.

pared to the logarithmic y-axis used for Figure 6.1. As with the SOAR case,

with this observation distribution, the condition number follows the lower

bound. However, using observation configuration 2, the condition number of

the Hessian using the Laplacian follows the upper bound as shown in Figure

6.5. As with the SOAR case, depending on the observations chosen, both

the upper and lower bounds can be achieved by the condition number of the

Hessian. Hence, the bounds (6.11) are a close approximation to the possible

values of the condition number of the Hessian.

In these examples we have seen that for large lengthscales the Hessian (6.2)

is ill-conditioned and this appears to be driven by the conditioning of the

background error covariance matrices. In contrast, C −→ IN as L −→ 0 and

therefore

(B−1 + σ−2
o HTH) −→ (σ−2

b IN + σ−2
o HTH), (6.17)

as L −→ 0 and the condition number of the Hessian becomes 1 +
σ2

b

σ2
o
. This is

confirmed by the lower and upper bounds (6.11) which are 1 and 1 +
σ2

b

σ2
o

for
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Figure 6.5: Condition number of the Hessian (solid line) and bounds (dashed line) as
function of lengthscale with Laplacian background covariance matrix and observation con-
figuration 2.

B = σ2
b IN respectively. As long as the ratio of the background and observa-

tion error variances is not excessively large we would expect the conditioning

to be reasonably small when the lengthscale L is small. Hence from a condi-

tioning perspective a small error correlation lengthscale is desirable. This is

confirmed in the experiments presented here. In the next section we consider

the effect of the control variable transform (CVT) on the conditioning of the

problem.

6.2 Conditioning of Preconditioned 3DVar

In this section we consider the effect of the control variable transform (CVT),

as described in Section 2.4, on the condition number of 3DVar cost function.

As mentioned in Chapter 4 Lorenc showed in a simplified case that including

the CVT in Var improved the convergence rate of the 3DVar minimisation

scheme [42], indicating that the CVT improves the condition number of the
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3DVar Hessian (6.2). In the next Section we consider the conditioning of

the preconditioned 3DVar (which we refer to as P3DVar from here onwards)

system in more detail by developing new theoretical bounds on the condition

number of the P3DVar Hessian.

6.2.1 Theory

As shown in Chapter 4, including the CVT in Var is equivalent to symmet-

rically preconditioning the Hessian by the square root of the background

covariance matrix B1/2. In this chapter we assume that we are using the

uniquely defined, symmetric square root and hence BT/2 = B1/2. The pre-

conditioned 3DVar Hessian has the form

Ŝ = IN + BT/2HTR−1HB1/2 = IN + B1/2HTR−1HB1/2. (6.18)

In this section we derive new theoretical bounds on the condition number of

Ŝ. As in Section 6.1.1 we first provide bounds on a general Hessian (6.18)

before developing more informative bounds on a more restrictive Hessian

with tighter assumptions. We begin with the general problem.

Theorem 6.2.1 Let B ∈ R
N×N be the background error covariance matrix

and R =∈ R
p×p be the observation error covariance matrix with p < N . Then

the following bounds are satisfied by the condition number of the Hessian

Ŝ = IN + B1/2HTR−1HB1/2

1 +
1

p

p
∑

i,j=1

(R−1/2HBHTR−1/2)i,j ≤ κ(Ŝ) ≤ 1 + ||R−1/2HBHTR−1/2||∞,

(6.19)

where Ai,j represents the (i, j)th entry of matrix A and A1/2 is the symmetric

square root of A.

Proof By Theorem 3.4.5 we know that a matrix of the form ETE has the

same non-zero eigenvalues as EET . If we let E = R−1/2HB1/2 then by
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Theorem 3.4.5 the Hessian (6.18) has the same eigenvalues (with the addition

of N − p unit eigenvalues) as the matrix,

Ip + R−1/2HB1/2B1/2HTR−1/2 = Ip + R−1/2HBHTR−1/2. (6.20)

Since p < N then λmin(Ŝ) = 1 and using Theorem 3.4.2 with the ∞-norm

we obtain the upper bound

κ(Ŝ) = λmax(Ip +R−1/2HBHTR−1/2) ≤ 1+ ||R−1/2HBHTR−1/2||∞. (6.21)

A lower bound is established by application of the Rayleigh quotient given

in Definition 3.4.3. Let v = 1√
p
(1, 1, . . . , 1)T ∈ R

p then we have

κ(Ŝ) = λmax(Ip + R−1/2HBHTR−1/2) ≥vT (Ip + R−1/2HBHTR−1/2)v

(6.22)

=1 +
1

p

p
∑

i,j=1

(R−1/2HBHTR−1/2)i,j,

(6.23)

which completes the proof.

Theorem 6.2.1 shows that the conditioning of the Hessian (6.18) is now de-

pendent on sums of the elements of the matrix R−1/2HBHTR−1/2. Since

the matrices H,B and R are general we cannot make specific comments

on how they affect the conditioning of the P3DVar Hessian. However, the

bounds can indicate factors which may cause ill-conditioning. If we as-

sume that R−1/2 = D = diag(d1, d2, . . . , dp), then the (i, j)th element of

R−1/2HBHTR−1/2 is

(R−1/2HBHTR−1/2)i,j = di(HBHT )i,jdj. (6.24)
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The more accurate the observations, the larger the di are and by equation

(6.24) the larger the components of R−1/2HBHTR−1/2 and hence the larger

the bound in Theorem 6.2.1. Hence, with more accurate observations the

Hessian Ŝ is potentially more ill-conditioned.

We now make additional simplifying assumptions on the observations and

errors to derive more explicit, descriptive bounds on the condition number

of (6.25). We assume that the background and observation error covariance

matrices can now be written B = σ2
bC and R = σ2

oIp respectively. We also

assume that observations are made only at grid points.

Theorem 6.2.2 Let B = σ2
bC ∈ R

N×N and R = σ2
oIp ∈ R

p×p be the error

covariance matrices of the background and observations respectively with p <

N and scalars σ2
b , σ

2
o > 0. Also suppose that observations are made at grid

points only. Then the following bounds on the condition number of Ŝ =

IN + B1/2HTR−1HB1/2 hold

1 +
1

p

σ2
b

σ2
o

∑

i,j∈K

ci,j ≤ κ(Ŝ) ≤ 1 +
σ2

b

σ2
o

||HCHT ||∞, (6.25)

where K are indices of the state variables which are observed and B1/2 is the

symmetric square root of B.

Proof From (6.21) in Theorem 6.2.1 we know that

κ(Ŝ) ≤ 1 + ||R−1/2HBHTR−1/2||∞ = 1 +
σ2

b

σ2
o

||HCHT ||∞, (6.26)

which proves the upper bound.

Similarly using (6.23) from Theorem 6.2.1 we know

κ(Ŝ) ≥ 1 +
1

p

p
∑

i,j=1

(R−1/2HBHTR−1/2)i,j = 1 +
1

p

σ2
b

σ2
o

p
∑

i,j=1

(HCHT )i,j. (6.27)
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Since observations are only made at grid points, HCHT is the matrix C with

N − p rows and columns removed at the positions which are not observed.

This completes the proof.

We refer to HCHT as the reduced error correlation matrix since it is the

matrix C but containing only the row and columns that are observed. Since

C is a correlation matrix, the entries have maximum value equal to unity

and therefore from (6.25) we have an absolute upper bound on the condition

number of the Hessian Ŝ equal to

κ(Ŝ) ≤ 1 + p
σ2

b

σ2
o

. (6.28)

Now suppose that C is an auto-correlation matrix, for example, the SOAR

correlation matrix (5.11). As we increase the correlation lengthscale the size

of the entries of C increases and so do the terms of HCHT and the bounds

in (6.25). Therefore increasing the lengthscale increases the bounds (6.25)

and potentially increases the condition number of the Hessian Ŝ.

From the bounds (6.25) other factors clearly effect the condition number of

the Hessian of P3DVar. The condition number of Ŝ is linearly related to the

inverse of the observation variance. Hence, we expect more accurate obser-

vations to produce a more ill-conditioned system. In addition, the presence

of the reduced error correlation matrix indicates that the number and distri-

bution of the observations also plays an important role in determining the

conditioning of P3DVar. We discuss the effect of the number of observations

and the accuracy and positions of the observations in more detail in Section

6.3.

In the next section we investigate the conditioning of P3DVar using simple

numerical experiments. We concentrate on the conditioning of Ŝ as a function

of lengthscale in order to illustrate the reduction achieved in the condition

number of Var by preconditioning with the CVT.
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6.2.2 Numerical Experiments
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Figure 6.6: Condition number of the preconditioned Hessian (Solid line) and bounds
(dashed line) as function of lengthscale with Gaussian background covariance matrix and
observation configuration 1.

In this section we consider the condition of the P3DVar system numerically.

As in Section 6.1.2 we consider a one-parameter, periodic system defined on

an equally spaced grid. In this section we use a domain of N = 500 grid

points with grid spacing ∆x = 0.1. We observe 250 grid points and assume

that the observations all have error variance σ2
o = 1. As in Section 6.1.2

the observations are distributed with observation configuration 1. We let

B = σ2
bC, where σ2

b = 1 is the background error variance and C is either the

Gaussian, SOAR or Laplacian correlation matrices defined on the circle as

introduced in section 5.2. Hence, with this model design, the assumptions

of Theorem 6.2.2 apply and the Hessian Ŝ satisfies the bounds (6.25). By

equation (6.28) the absolute maximum condition number of the Hessian is

1 + p
σ2

b

σ2
o

= 251. (6.29)

A comparison with any of the numerical experiments in Section 6.1.2 shows
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that P3DVar is likely to be better conditioned then the 3DVar system. For

instance, consider the Hessian which uses the Laplacian correlation matrix

(5.12) (This Hessian has the smallest condition number of the three con-

sidered: the Gaussian, SOAR and Laplacian). Comparison with Figure 6.4

shows that with lengthscale L = 4∆x = 0.4 the condition number of the Hes-

sian, S, of the unpreconditioned system has already exceeded the maximum

possible condition number of the P3DVar system.

We begin our P3DVar experiments by considering the condition number of

the Hessian Ŝ with the Gaussian correlation matrix (5.10) as the correlation

matrix C. Figure 6.6 shows the condition number of P3DVar as a function

of lengthscale. Firstly, as expected, the condition number of the Hessian

(6.18) increases as we increase the error correlation lengthscale. This is clear

from the bounds (6.25) since we are summing terms from the reduced error

correlation matrix HCHT . As we increase the correlation lengthscale we

increase the size of the elements of the reduced correlation matrix. Compar-

ison of Figures 6.1 and 6.6 shows the clear benefits of preconditioning with

the CVT. For instance, if we consider the condition number at lengthscale

L = 2∆x = 0.2 then we can see a dramatic reduction in the size of the

condition number of P3DVar compared to 3DVar from 107 to 3.7.

Figure 6.7 shows the condition number of the P3DVar system against length-

scale using the SOAR background error correlation matrix (5.11). As in the

Gaussian case there is a slow linear increase in the condition number as we

increase the correlation lengthscale as expected. Comparison with the un-

preconditioned system in Figure 6.2 again shows a reduction in the condition

number of the P3DVar Hessian compared to the 3DVar Hessian. For instance

at lengthscale L = 3∆x = 0.3 we observe that the condition number has re-

duced from over 500 to approximately 7. Although less dramatic than the

Gaussian case this amounts to a reduction of about 2 orders of magnitude.

Finally, we consider the P3DVar system using the Laplacian correlation ma-

trix (5.12). Figure 6.8 shows the condition number of the P3DVar Hessian as
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Figure 6.7: Condition number of the preconditioned Hessian (solid line) and bounds
(dashed line) as function of lengthscale with SOAR background covariance matrix with
observation configuration 1.
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Figure 6.8: Condition number of the preconditioned Hessian (solid line) and bounds
(dashed line) as function of lengthscale with Laplacian background covariance matrix
with observation configuration 1.
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a function of lengthscale. Again there is an increase in the condition number

and bounds as the lengthscale increases.

In all cases the condition number increases in a linear fashion. Comparison of

the unpreconditioned system in Figure 6.4 with the preconditioned in Figure

6.8 again shows an improvement in the condition number by applying the

CVT. However, the Laplacian 3DVar Hessian has smaller reduction in the

conditioning compared to the Gaussian and SOAR cases considered above.

We note that in all cases the unpreconditioned system only matches the

conditioning of the preconditioned system when the lengthscales are very

small. By considering the upper bound on the condition number of Ŝ in the

experiments in this section we could predict that the conditioning of P3DVar

was likely to be better than 3DVar. In fact, the upper bound (6.28) turned

out to be a large overestimate of the conditioning of P3DVar in the numerical

examples considered.

The bounds in Theorem 6.2.2 show that the position, number and accuracy of

the observations are important factors in determining the condition number

of the P3DVar Hessian. We investigate these factors in more detail in the

next section.

6.3 Observations and Condition Number

In the previous section we found theoretical bounds on the condition number

of the P3DVar Hessian (6.18) and showed that applying the CVT improves

the conditioning of the 3DVar Hessian. In this section we consider some of

the major factors that affect the conditioning of the P3DVar cost function

as indicated by the theoretical bounds derived in Section 6.2.1. We begin by

considering the effect of the observation accuracy on the condition number

of (6.18).
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6.3.1 Observation Accuracy

Condition Number
Obs Variance Gaussian SOAR Laplacian

0.01 264.39 403.64 255.31
0.05 53.68 81.53 51.86
0.10 27.34 41.26 26.43
0.50 6.27 9.05 6.09
1.00 3.63 5.03 3.54
2.00 2.32 3.01 2.27
5.00 1.53 1.81 1.51
10.00 1.26 1.40 1.25

Table 6.1: Change in the condition number of the preconditioned Hessian with change in
the observation error variance using observation configuration 1.

Here we focus on the effect of observation accuracy on the conditioning of

the preconditioned 3DVar Hessian. Under the assumptions of Theorem 6.2.2

the bounds show that the conditioning of P3DVar is linearly related to the

inverse of the observation error variance σ2
o . In particular, assuming the

Hessian satisfies the assumptions of Theorem 6.2.2, the condition number of

the Hessian can be written explicitly as

κ(Ŝ) = λmax(Ŝ) = 1 +
σ2

b

σ2
o

λmax(HCHT ). (6.30)

If σ2
b is fixed then (6.30) implies that the preconditioned system will become

more ill-conditioned as the accuracy of the observations increases (i.e. σ2
o

decreases). We now perform a simple experiment to illustrate the relationship

between the observation error variance and the condition number of Ŝ. A

one parameter periodic system is defined on a domain of N = 500 grid

points with ∆x = 0.1 grid spacing. The correlation lengthscale is now fixed

at L = 2∆x = 0.2 and the background variance is fixed at σ2
b = 1. The

background covariance matrix is equal to B = σ2
bC = C, where C is one

of the Gaussian, SOAR or Laplacian correlation matrices defined in Section

5.2. As in the previous section 250 observations are made at grid points with

the same distribution as observation configuration 1 as introduced in Section

6.1.2. With these assumptions Theorem 6.2.2 applies and the Hessian Ŝ
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satisfies the bounds (6.25).

The effect of the observation accuracy on the condition number can be seen

in Table 6.1. The table shows the condition number is linearly related to

the inverse of the observation error variance. For instance, the effect of in-

creasing the observation variance from 0.01 to 0.1, using each of the different

background covariance matrices, roughly decreases the condition number by

a factor of 10. Next we look at the impact of the observation distribution.

6.3.2 Observation Spacing and Thinning

The bounds on the condition number of the P3DVar Hessian also depend on

the sum of elements of the reduced correlation matrix HCHT . In this section

we examine this matrix more closely. As we saw in Theorem 6.2.2 the lower

bound on the condition depends on the average row sum 1
p

∑

i,j∈K ci,j of the

reduced correlation matrix and the upper bound depends on the maximum

absolute row sum, ||HCHT ||∞, of the reduced correlation matrix. Thus the

position of the observations, the size of the correlations between errors and

the number of observations all play a part in the conditioning of P3DVar.

We discuss each of these scenarios in turn.

Firstly, we consider the positioning of observations and correlation length-

scale. In this section we assume that our Hessian Ŝ satisfies the assumptions

of Theorem 6.2.2. With many correlation matrices we would expect the error

correlation ci,j between two points at position i and j to reduce the larger

the distance |i− j| between the errors. In contrast, the closer the points are

the more correlated the errors are. In particular, we saw in chapter 5 three

examples of matrices which have this property, namely the Gaussian, the

SOAR and the Laplacian correlation matrices. To begin with we analyse the

Gaussian and SOAR correlation matrices, (5.7) and (5.8) respectively, intro-

duced in Section 5.2. Both these matrices only contain positive components.

Since we are observing only at grid points, HCHT is the original correla-
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tion matrix except with rows and columns deleted at the positions which

are unobserved. Since the correlation decreases the farther two points are

positioned from each other then the components of HCHT will be smaller

the farther the observations are separated. Hence from the bounds (6.25)

this implies that the sum of the elements in HCHT and therefore, the condi-

tion number of the P3DVar Hessian, will be smaller as the distance between

observations is increased.

We now consider the Laplacian correlation matrix (5.12). The correlation

structure of this matrix is similar to the Gaussian except, unlike the Gaussian

and SOAR correlation matrices, the Laplacian correlation matrix contains

negative components as shown in Figure 5.1. Due to the negative correlations

the magnitude of the components ci,j of the Laplacian correlation matrix are

not monotonically decreasing with distance |i − j| and therefore are not as

simple to analyse as the SOAR and Gaussian correlation matrices. However

if the observations are within a distance before ci,j become negative then

the components of HCHT will decrease monotonically. Hence, the farther

the observations are the larger the reduction in the size of the bounds in

(6.25). Hence an increase in the separation of the observations may result in

a reduction in the condition number of Ŝ.

We also consider the effect of correlation lengthscale. As we increase the

lengthscale the size of the elements of C increase. Hence with a fixed ob-

servation distribution increasing the lengthscale will increase the size of the

elements in HCHT . We would then expect a larger condition number of Ŝ

the larger the correlation lengthscale.

We illustrate the effect of the spacing between observation and the error

correlation of the background errors experimentally using a one-parameter

one-dimensional, periodic system defined on an equally space grid of N = 500

grid points and a grid spacing of ∆x = 0.1. We fix the observation and

background error variances at σ1
o = σ2

b = 1. We choose a background error

covariance matrix of the form B = σ2
bC where C is the Gaussian, SOAR or
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Figure 6.9: Condition Number of the preconditioned Hessian of single paramter system
with observation spacing using the Gaussian background covariance matrix for different
lengthscales. The solid line represents lengthscale L = 0.2, the dashed line represents a
lengthscale L = 0.3 and a dotted line represents a lengthscale of L = 0.5.

Laplacian correlation matrices described in Section 5.2. We begin with p = 20

observations positioned on the first 20 grid points and calculate the condition

number of the Ŝ as the spacing between the observations is increased. The

experiment was repeated for lengthscales L = 0.2, 0.3 and 0.5.

Figures 6.9, 6.10 and 6.11 show the condition number of Ŝ constructed using

the Gaussian, SOAR and Laplacian background covariance matrices respec-

tively. In all three versions the results are as expected. The larger the spacing

between observations the smaller the condition number. Additionally, the

larger the error correlation lengthscale the larger the condition number for

each fixed observation distribution. Both the Gaussian and Laplacian pro-

duce Hessians whose condition numbers have similar magnitude. This can

be explained by the close approximation of the Laplacian correlation model

with the Gaussian as seen in Figure 5.1. The comparison with the SOAR

and Gaussian condition numbers in Figures 6.9 and 6.10 show that Hessian

constructed using the SOAR has a larger condition number then the Gaus-
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Figure 6.10: Condition Number of the preconditioned Hessian of single parameter sys-
tem with observation spacing using the SOAR background covariance matrix for different
lengthscales. The solid line represents lengthscale L = 0.2, the dashed line represents a
lengthscale L = 0.3 and a dotted line represents a lengthscale of L = 0.5.

sian for the same lengthscale and observation spacing. However, both have

a condition number of the same order of magnitude. This can be explained

by Figure 5.1 which shows, for a fixed lengthscale, all components of the

different C matrices are of similar size.

For the Laplacian case in Figure 6.11 there is a small increase in the condition

number as the separation between the observations increases to 7 grid points.

This could be explained by the bounds. Figure 5.1 shows that the Laplacian

correlation function has negative correlations in the tails and therefore the

magnitude of the coefficients |ci,j| of the Laplacian increase as the separation

increases. This will result in an increase in the upper bound as negative

coefficients are summed as the spacing increases. This could explain the

small increase in the condition number of the Hessian shown in Figure 6.11.

Finally we consider the effect of removing observations on the condition num-

ber of Ŝ. As explained in Section 6.2.2 the reduced correlation matrix is the
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Figure 6.11: Condition Number of the preconditioned Hessian of single parameter system
with observation spacing using the Laplacian background covariance matrix for different
lengthscales. The solid line represents lengthscale L = 0.2, the dashed line represents a
lengthscale L = 0.3 and a dotted line represents a lengthscale of L = 0.5.

original correlation matrix except with rows and columns deleted at the posi-

tions no observations are made. The bounds on the condition number of the

P3DVar Hessian (6.25) will be smaller the fewer the observations since fewer

correlation terms are summed. We can illustrate this using a one-parameter,

one-dimensional periodic experiment. Still using the N = 500 grid point

domain with ∆x = 0.1 grid spacing and observation and background error

variances fixed at σ2
o = σ2

b = 1 we remove the observations and analyse the

effect on the condition number. We begin by observing every 2nd grid point

and then every 10th, 50th and 250th hence we are observing 250, 50, 10 and 2

observations in each case respectively. The condition number of the Hessians

using all three choices of the background covariance matrix, Gaussian, SOAR

and Laplacian, with thinning of the observations are shown in Table 6.2 for

a fixed lengthscale of L = 0.5.

The table confirms our hypothesis. As the thinning is increased the condition

number reduces. In the next section we consider the impact of the condition
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Gaussian SOAR Laplacian
No. Observations Cond No. Cond No. Cond No.

250 7.27 11.02 6.91
50 2.72 3.04 2.24
10 2.00 2.00 2.00
2 2.00 2.00 2.00

Table 6.2: Effect of thinning the observation on the condition number of the precondi-
tioned Hessian using a correlation lengthscale L = 0.5.

number on the convergence rate of an iterative solver.

6.4 Convergence results

In Chapter 3 we showed that the condition number is an important criterion

for determining the convergence rate of some iterative solvers. The conver-

gence rate of the iterative solvers applied to a linear system may be slower the

more ill-conditioned the matrix is. For the majority of this chapter we have

been analysing the condition number of the preconditioned and unprecondi-

tioned Var schemes. In this section we now compare this to the convergence

rate of the conjugate gradient (CG) method applied to solving the linear sys-

tem (3.12) associated to the 3DVar cost function. We begin by considering

the unpreconditioned 3DVar system.

6.4.1 Convergence Rate of 3DVar

In this section we consider the convergence rate of the CG method, introduced

in Section 3.3.1, to find the solution, w, of a linear system

Sw = b, (6.31)

where S is the Hessian (6.2) of the 3DVar cost function. The linear system

is solved using the Matlab CG method pcg.m and is equivalent to the CG
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Figure 6.12: Function used to define the true solution for the CG experiments.

algorithm given in Section 3.3.1. In the experiments in this section the CG

algorithm stops when either a pre-defined number of iterations have been

computed (in our case 2000) or by a sufficient reduction in the relative resid-

ual
||b − Swk||

||b|| =
||rk||
||b|| , (6.32)

where wk is the estimate to the true solution to (6.31) found from the kth

iteration of CG. In this section we require the relative residual to reduce

below 10−6 for the CG method to stop.

To perform the CG experiments we consider a single parameter, periodic

system on the real line. We choose N = 500, equally spaced grid points

with spacing ∆x = 0.1. The background error covariance matrix is of the

form B = σ2
bC where we choose the background error variance σ2

b = 1 and

C is either the Gaussian, SOAR or Laplacian correlation matrices on the

circle introduced in Section 5.2. We choose observations with error variances

σ2
o = 1. In this section we use observation configuration 1, used in Section

6.1.2, which consists of 250 randomly distributed observations made at grid
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points. With these assumptions the Hessian, S, satisfies the bounds given in

Theorem 6.1.2.

For the true solution we choose

w∗(s) = 2 sin(qs) + cos(3qs) − 0.3 sin(125qs), (6.33)

defined at the grid points s = k∆x for k = 0, 1, . . . , (N − 1) where q = 2π
N∆x

.

The true solution is displayed in Figure 6.12 and clearly shows (6.33) is a

mixture of large and small scales.

We will also compute the relative error in the solution to test that our system

has converged. This is simply the ratio of the magnitudes of the error and

the truth
||w∗ − wa||

||w∗|| , (6.34)

where wa represents the approximate solution found by the CG solver. We

will refer to this relative error as the accuracy throughout the remainder of

this chapter.

In Section 6.1.2 we considered the condition number of the unpreconditioned

3DVar system. In the numerical experiments in Section 6.1.2 we constructed

three different Hessians using different background covariance matrices and

showed that in all cases the condition number of 3DVar was sensitive to the

lengthscales. The larger the correlation lengthscale on the background errors

the larger the condition number of the 3DVar Hessian. According to the dis-

cussion in Section 3.3.1 we would expect the CG method to converge more

slowly for an ill-conditioned system than one with a smaller condition num-

ber. Therefore we would expect the rate of convergence of the CG method

to be slower the larger the correlation lengthscale of the background errors.

To begin with we consider the Hessian constructed using the Gaussian cor-

relation matrix (5.10). Table 6.3 shows the number of iterations required for

the CG method to converge for several different lengthscales. As expected
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Lengthscale Cond No. Iterations Accuracy

0.02 2.00 2 6.4041e-007
0.04 2.18 6 5.9725e-007
0.06 3.60 11 3.3604e-007
0.08 1.05e+001 20 3.2377e-007
0.10 5.15e+001 45 2.9223e-007
0.12 3.92e+002 118 2.1064e-007
0.14 4.44e+003 340 1.7969e-007
0.16 7.48e+004 1123 1.5188e-007

Table 6.3: Convergence rates of CG against lengthscale using the Unpreconditioned Hes-
sian with the Gaussian correlation matrix

with smaller lengthscales the number of iterations is relatively small and the

relative accuracy of the final solution is good being an order of 10−7 this can

be explained by the small condition number when the lengthscales is small.

However, as the lengthscales increase the number of iterations required to

solve the system increases rapidly due to the rapid increase in condition

number (See Figure 6.1). For lengthscales larger than L = 0.16 the CG

method reached the maximum number of 2000 iterations without converg-

ing. This can be explained by the ill-conditioning of the Hessian. Since S

is very ill-conditioned for lengthscales above L = 0.16 (greater then 105) the

system is very sensitive to round-off errors and results in the CG method not

converging.

We repeated the same experiments using the Hessians constructed using the

SOAR (5.11) and Laplacian (5.12) background error covariance matrix. In

these cases and for all lengthscales considered the CG method fully converged

to the solution giving an accuracy of order 10−7. The convergence rates for

both Hessians are shown in Figure 6.13. The figure shows that the conver-

gence becomes slower as the lengthscale increases. This is as expected since

the condition numbers of the Hessian increases as the lengthscale increases

as shown in Figures 6.2 and 6.4. Additionally, the conditioning of the Hes-

sians was, in general, better when the SOAR and the Laplacian were used in

comparison to the Gaussian and this is shown by the faster convergence rates

of the solver for the SOAR and Laplacian cases. For instance at lengthscale
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Figure 6.13: The effects of different lengthscales on the convergence of CG for unprecon-
ditioned 3DVar for the SOAR correlation matrix (solid line) and the Laplacian correlation
matrix (dashed line).

L = 0.12 the CG method takes 118 iterations to converge to the solution in

the Gaussian case compared to the SOAR and Laplacian cases which take

under 50 iterations as shown by comparing Table 6.3 with Figure 6.13. We

now turn our attention to the convergence rate of the CG method applied to

the preconditioned system.

6.4.2 Convergence Rate of P3DVar

In this section we consider the convergence rate of the CG method, applied

to the preconditioned Var system. Minimising the preconditioned 3DVar

scheme is equivalent to solving the linear system

Ŝv = b̂, (6.35)

for v where Ŝ = I + B1/2ĤT R̂−1ĤB1/2 is the Hessian of the preconditioned

3DVar cost function (2.16) introduced in Section 2.4, v = B−1/2w and b̂ =
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B1/2b. Once the estimate to the solution, va, of (6.35) is found the estimate

of the original linear system (6.31) can be found by transforming back to the

original variables, wa = B1/2va.

We solve (6.35) using the Matlab CG routine pcg.m which uses a precondi-

tioned CG method equivalent to the algorithm given in Section 3.3.2. The

CG algorithm stops when either the maximum number of iterations of the

method have been completed (2000 in this Section) or when the relative

residual (6.32) has been reduced below 10−6. We note that the residual of

the unpreconditioned system is used as the stopping criteria instead of the

residuals of the preconditioned system (6.35). This is because of the form of

the preconditioned CG algorithm. Instead of solving (6.35) with the stan-

dard CG method as given in Section 3.3.1 an equivalent form is used (given

in Section 3.3.2) which is in terms of the solution to the unpreconditioned

system (6.31).

To test the performance of CG on the preconditioned Var scheme we consider

a single parameter, periodic system on the real line. We choose N = 500,

equally spaced grid points with spacing ∆x = 0.1. The background error

covariance matrix B = σ2
bC where σ2

b = 1 and C is one of either the Gaussian,

SOAR or Laplacian correlation matrices on the circle introduced in Section

5.2. We choose observations with error variances σ2
o . As in the previous

Section, we use observation configuration 1, which consists of 250 randomly

distributed observations made at grid points. With these criteria the Hessian

Ŝ, satisfies the bounds given in Theorem 6.2.2.

The true solution for the preconditioned system is v∗ = B−1/2w∗ where w∗

is (6.33) defined at the grid points. We measure the accuracy of the final

estimate, wa = B1/2va, using the relative error (6.34).

In Section 6.2 we showed preconditioning 3DVar via the CVT produces a

large reduction in the condition number of Ŝ compared to the condition

number of S. We therefore expect the convergence rate of the CG method
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applied to the preconditioned system (6.35) to be much quicker than solving

the original problem (6.31).

Lengthscale Cond No. Iterations Accuracy
0.02 2.000 2 4.5063e-007
0.04 2.044 4 2.1813e-010
0.06 2.249 5 1.4359e-008
0.08 2.462 6 2.4823e-007
0.10 2.641 8 1.1140e-007
0.12 2.819 9 1.9990e-007
0.14 3.010 10 1.5867e-007
0.16 3.213 11 1.3690e-007
0.18 3.421 11 3.0299e-007
0.20 3.634 11 5.5338e-007
0.22 3.852 11 7.0100e-007

Table 6.4: Convergence rate of CG against lengthscale to solve the preconditioned Hessian
using the Gaussian correlation matrix.

We begin by considering the preconditioned Gaussian Hessian. The results

for selected lengthscales are shown in Table 6.4. It is apparent from the Ta-

ble 6.4 that the convergence rate has been substantially reduced by using the

preconditioning. For small lengthscales (≤ 0.1) both the unpreconditioned

and preconditioned systems have small condition numbers and therefore a

small iteration count. As the lengthscale is increased the number of itera-

tions required for convergence of P3DVar only gradually increases compared

to that of 3DVar. The accuracy of the solution for the P3DVar system re-

mains good with an order of 10−7 for larger lengthscales. Hence, a reduction

in the condition number via the CVT has resulted in a faster convergence of

the CG algorithm. However, for lengthscales above L = 0.25 the CG method

began to stagnate (two consecutive iterates were the same) without achieving

the desired reduction in the relative residual. Additionally, for lengthscales

above L = 0.28 it was found that the CG method failed to converge within

2000 iterations. Even though the condition number of Ŝ is small, at approx-

imately 4, the CG method is failing to converge. This poor performance of

the algorithm can be explained by the fact that in each iteration of the pre-

conditioned CG method a vector z must be found using the preconditioner

as seen in equation (3.41). In our case the preconditioner is P = B so we
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must solve the equation

B−1zk+1 = rk+1 (6.36)

in terms of zk+1. In Chapter 5 we have seen that for large lengthscales

the Gaussian background covariance matrix is extremely ill-conditioned. For

instance at L = 0.25 the condition number of the Gaussian correlation matrix

is an order of magnitude of 1012 as seen in Figure 5.2. This implies the

solution to (6.36) is likely to be solved inaccurately for large lengthscales

and therefore the CG method will not converge.
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Figure 6.14: The convergence of CG for preconditioned 3DVar as a function of lengthscale
for the SOAR correlation matrix (Solid line) and the Laplacian correlation matrix (dashed
line).

We repeat the CG experiments on the P3DVar Hessian for the SOAR and

Laplacian case. As in the unpreconditioned case the accuracy of the solu-

tions all are of the order 10−7. The convergence results are given in Figure

6.14 as a function of lengthscale. Since the condition number in both cases is

proportional to the lengthscale we expect the convergence rate to decrease as

the lengthscale increases. The figure shows an increase in the number of iter-

ations required for the CG method to converge as the lengthscale increases.

Preconditioning with the CVT reduces the condition number of the Hessian
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in both the SOAR and Laplacian case and this explains the increase in the

convergence rate compared to the unpreconditioned case (Figure 6.13). In

fact there is a reduction in the number of iterations by a factor of 10.

The last two section have shown the benefit of a small condition number

in order to quickly solve a linear system using the CG method. We have

also seen the importance of the condition number of the preconditioner it-

self. Using the Gaussian background error covariance we showed that even

though the Hessian, Ŝ, has a small condition number the CG method fails to

converge. We now consider the effect of observation position and accuracy

on the convergence rate.

6.4.3 Convergence Rate and Observations
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Figure 6.15: The effects of Variance on the convergence of CG for preconditioned 3DVar
for the Gaussian correlation matrix (solid line), the SOAR correlation matrix (dashed line)
and the Laplacian correlation matrix (dotted).

In Section 6.3 we saw that two of the main factors influencing the conditioning

of the P3DVar system were the observation position and the observation
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accuracy. In this section we briefly consider the impact of these elements

on the convergence rate of the CG method used to solve (6.35). We test

the Matlab preconditioned conjugate gradient routine, pcg.m, on a periodic

one-parameter system on a one dimensional domain consisting of N = 500

grid points with ∆x = 0.1. The observations are made at 250 grid points

distributed according to observation configuration 1 used in the previous

section. The background covariance matrix is of the form B = σ2
bC with

variances on the background errors are σ2
b = 1 and we use the Gaussian,

SOAR and Laplacian correlation matrices, as defined in Section 5.2, to define

C. We consider the convergence performance of the CG method to solve the

preconditioned system (6.35) as we change the observation error variance. As

in the previous section the CG method stops after 2000 iterations or when

the relative residual is reduced to below 10−6.

Fixing the background error correlation at L = 0.2 we show the convergence

rates as a function of σ2
o in Figure 6.15. All solutions had an accuracy of 10−7.

The solid black line shows the Hessian for the Gaussian background matrix,

the blue dashed line is the SOAR and the red dotted line is the Laplacian

case. As the graph shows, in all cases, the less accurate the observations the

faster the convergence. This is unsurprising as this corresponds to the fact

that the condition number is lower in all cases as σ2
o increases.

Next we consider the effect of observation spacing on the convergence rate

of the CG method to solve (6.35). We now fix the observation error variance

at σ2
o = 1 and the background error variance at σ2

b . We take 20 observations

on the first 20 grid points. We change the spacing between observations

keeping the same separation between adjacent observations. The results

are shown in Figures 6.16, 6.17 and 6.18 for the P3DVar Hessians using the

Gaussian, SOAR and Laplacian background covariance matrices respectively.

The experiments where repeated with the lengthscales L = 0.2, 0.3 and 0.5,

except in the Gaussian case since the CG method failed to converge for

L = 0.3, 0.5. As explained in the previous section this may be a result of the
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Figure 6.16: The effects of spacing on the convergence rate of CG for the preconditioned
3DVar using the Gaussian background covariance matrix for different lengthscales. The
solid line represents lengthscale L = 0.2.

ill-conditioning of the preconditioner B. In all cases where the CG method

converged the figures show that as the spacing between the observations

increases the convergence rate increases. This is as expected since as the

spacing increases the condition number of Ŝ decreases. Additionally, since

for a larger lengthscale the condition number of all the Hessians increases

then, there is a general increase in the number of iterations required for the

CG solver to converge as the lengthscale increases.

6.5 Summary

In this chapter we have presented a first analysis of the conditioning of 3DVar.

We have derived new theoretical bounds on the condition number of both the

unpreconditioned and preconditioned Hessians of the 3DVar cost function.

Using these bounds we have been able to identify key features that determine

the conditioning of the system and have tested these factors in an experimen-
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Figure 6.17: The effects of spacing on the convergence rate of CG for the preconditioned
3DVar using the SOAR background covariance matrix for different lengthscales. The solid
line represents lengthscale L = 0.2, the dashed line represents a lengthscale L = 0.3 and a
dotted line represents a lengthscale of L = 0.5.

tal setting. In the unpreconditioned system we found that the background

covariance matrix can make a significant contribution to the condition num-

ber. This hypothesis was tested experimentally and it was confirmed that

if the background matrix is ill-conditioned then so is the 3DVar Hessian.

These results confirm previous experimental results, summarised in Section

4.1, which suggested that 3DVar is ill-conditioned due to the presence of

an ill-conditioned background error covariance matrix [42]. Additionally, we

found that the Hessian using the Gaussian background matrix was in general

significantly more ill-conditioned then the Hessians using the Laplacian or

SOAR background matrices.

In the preconditioned Var system we found that the condition number was de-

pendent on the observation error variances and on the sum of the coefficients

of a reduced background error correlation matrix. We showed experimentally

that the preconditioning can reduce the condition number by several orders

of magnitude. In addition, we identified that the closer the observations were
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Figure 6.18: The effects of spacing on the convergence of CG for preconditioned 3DVar
with the Laplacian background covariance matrix for different lengthscales. The solid line
represents lengthscale L = 0.2, the dashed line represents a lengthscale L = 0.3 and a
dotted line represents a lengthscale of L = 0.5.

positioned, the more observations we made and the more accurate the obser-

vations were, the larger the condition number of the P3DVar Hessian. These

results seem counter-intuitive. According to these results, by having more

accurate observations and more observations, we solve the P3DVar problem

less accurately (as indicated by the larger condition number). This can be

explained by the fact that a larger number of observations and more accu-

rate observations put tighter restrictions on the optimization problem and it

becomes more difficult to solve the problem.

Finally, we examined the convergence rate of the conjugate gradient method

applied to our preconditioned and unpreconditioned Var systems. We found

that the results were as expected with a larger condition number leading

to a more slowly converging CG method. In particular, we found that the

preconditioned system outperformed the unpreconditioned system in terms of

number of iterations. In addition, we found that by increasing the observation

error variance and increasing the spacing between the observations that a
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faster convergence of the CG method was obtained when applied to P3DVar.

We also found that preconditioning should be applied with some caution.

In CG experiments for solving the P3DVar system we found the algorithm

failed to converge for large lengthscales. The preconditioned version of the

CG method requires solving an equation of the form P−1z = r at each

iteration where P is the preconditioner. In our case the preconditioner is

the very ill-conditioned Gaussian background error covariance matrix and

hence we expect z to found inaccuarately. This could account for the lack

of convergence in our experiments. In the next chapter we consider the

conditioning of a theoretical 4DVar model.
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Chapter 7

Conditioning of 4DVar

In Chapter 6 we considered the conditioning of 3DVar in a theoretical set-

ting. The theory highlighted key factors which affect the condition number of

both the unpreconditioned (6.2) and preconditioned (6.18) 3DVar Hessians.

We illustrated the theory experimentally using a one-parameter 1D periodic

system. In this chapter we extend these results to the 4DVar Hessian (2.12)

by incorporating a forecast model into our system. We derive new theoretical

bounds on the condition number of both the unpreconditioned and precon-

ditioned Hessians of the 4DVar cost function (2.9). Using the bounds we

show

• The conditioning of the 4DVar Hessian is dependent on the condi-

tioning of the background error covariance matrix. Hence, for an ill-

conditioned background error covariance matrix the Var Hessian is also

ill-conditioned.

• In a one parameter, periodic system that preconditioning with the con-

trol variable transform (CVT), as described in Section 2.4, reduces the

condition number of Var.

• The condition number of the preconditioned Var system is reduced

by three main factors: reducing the number of observations, using less
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accurate observations and increasing the spacing between observations.

• The convergence rate of the conjugate gradient (CG) method applied

to Var is increased when we precondition with the CVT.

• The convergence rate of the CG method applied to the preconditioned

4DVar system increases when we increase the spacing between obser-

vations and decrease the observation accuracy.

We begin by deriving new theoretical bounds on the condition number of

the 4DVar Hessian. In 4DVar we require a forecast model. In this chapter

we use the 1D linear-advection model. We derive theoretical bounds on the

condition number in the specific case when the forecast model is the linear-

advection model. We show that the bounds on the condition number of the

4DVar Hessian are dependent on the condition number of the background

error covariance matrix and we illustrate this using numerical experiments

on a periodic, single parameter on a one dimensional domain.

We derive new theoretical bounds on the condition number of the precondi-

tioned system and examine the condition number with numerical experiments

on our 1D periodic system. Our new bounds on the preconditioned system

show that the condition number of the 4DVar Hessian is dependent on the

4D background error covariance matrix. We briefly introduce this matrix and

consider its structure in the case of the linear advection equation. Next we

consider the effect of the observation error variances and distribution on the

condition number of the preconditioned Hessian. As with the preconditioned

3DVar scheme we show, using numerical experiments on a one-parameter

periodic system, that reducing the accuracy of the observations and thin-

ning and spacing the observations of the parameter can reduce the condition

number of the preconditioned 4DVar Hessian. Finally we show the impor-

tance of the condition number in terms of the convergence rate of gradient

methods used to solve the 4DVar systems with numerical experiments using

the conjugate gradient method. We begin by considering the conditioning of
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4DVar without any preconditioning.

7.1 Conditioning of 4DVar

7.1.1 Theory

In this section we investigate the conditioning of 4DVar theoretically. Recall

from Section 2.3.1 that we can write the incremental 4DVar Hessian in the

compact form

S = J̃ ′′ = B−1 + ĤT R̂−1Ĥ, (7.1)

where

Ĥ =
[

HT
0 , (H1M1)

T , . . . , (HnMn . . .M1)
T
]T

, (7.2)

and R̂ is the block diagonal matrix with the error covariance matrices of the

observations at time tk, Rk ∈ R
qk×qk , down the diagonal for k = 0, . . . n.

In the following theorem we extend the theoretical bounds on the condition

number of the 3DVar Hessian derived in Theorem 6.1.1 to the 4DVar Hessian

(7.1).

Theorem 7.1.1 Let B ∈ R
N×N be the background error covariance matrix

and Rj ∈ R
qj×qj be the observation error covariance matrix at time tj for

j = 0, 1 . . . n. Let R̂ ∈ R
Q×Q be the block diagonal matrix consisting of the

blocks Rj down the diagonal where Q =
∑n

j=0 qj and Q < N . In addition,

define Ĥ ∈ R
Q×N to be the generalised observation operator (7.2). Then the

following bounds hold on the condition number of S = B−1 + ĤT R̂−1Ĥ

κ(B)

(1 + λmax(B)λmax(ĤT R̂−1Ĥ))
≤ κ(S) ≤ κ(B)(1 + λmin(B)λmax(Ĥ

T R̂−1Ĥ)),

(7.3)

where, λmax(A) and λmin(A) represent the largest and smallest eigenvalue of

the matrix A ∈ R
N×N respectively.
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Proof We put basic bounds on the spectral condition number of (7.1) by

putting bounds on the maximum and minimum eigenvalues of S. Since Q <

N , ĤT R̂−1Ĥ ∈ R
N×N has a minimum eigenvalue equal to zero. Thus using

Theorem 3.4.1 we have the following bounds on the maximum eigenvalue

λmax(B
−1) ≤ λmax(S) ≤ λmax(B

−1) + λmax(Ĥ
T R̂−1Ĥ), (7.4)

and the minimum eigenvalue

λmin(B
−1) ≤ λmin(S) ≤ λmin(B

−1) + λmax(Ĥ
T R̂−1Ĥ). (7.5)

Combining (7.4) and (7.5) we obtain the following bounds on the condition

number of S

λmax(B
−1)

λmin(B−1) + λmax(ĤT R̂−1Ĥ)
≤ κ(S) ≤ λmax(B

−1) + λmax(Ĥ
T R̂−1Ĥ)

λmin(B−1)
.

(7.6)

First, consider the lower bound

κ(S) ≥ λmax(B
−1)

λmin(B−1)
(1 + (λmin(B

−1))−1λmax(Ĥ
T R̂−1Ĥ))−1. (7.7)

Since κ(B) = κ(B−1) = λmax(B−1)
λmin(B−1)

and (λmin(B
−1))−1 = λmax(B) we obtain

κ(S) ≥ κ(B)(1 + λmax(B)λmax(Ĥ
T R̂−1Ĥ))−1. (7.8)

Next consider the upper bound in (7.6)

κ(S) ≤ λmax(B
−1)

λmin(B−1)
(1 + (λmax(B

−1))−1λmax(Ĥ
T R̂−1Ĥ)). (7.9)

Since (λmax(B
−1))−1 = λmin(B) we obtain

κ(S) ≤ κ(B)(1 + λmin(B)λmax(Ĥ
T R̂−1Ĥ)), (7.10)

as required, which completes the proof.
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The bounds presented in Theorem 7.1.1 are very general. However, in com-

mon with most NWP centres, we assume that we have fewer observations

than variables in the state space (Q < N). Although the bounds are very

general we can infer from the presence of the κ(B) term in both the upper

and lower bounds that the conditioning of the background covariance matrix

plays an important role in the conditioning of the Hessian. Theorem 7.1.1

shows, like Theorem 6.1.1 found for the 3DVar case, that the bounds on the

condition number of the 4DVar Hessian are related to the background error

covariance matrix B. Therefore if the background error covariance matrix

is ill-conditioned then we expect the 4DVar Hessian to be ill-conditioned.

The effect of κ(B) on κ(S) was demonstrated in Section 6.1.2 in the 3DVar

case with numerical experiments on a one parameter periodic system. It

was confirmed that the ill-conditioned background error covariance matrix

determined an ill-conditioned Hessian.

In the next theorem we extend Theorem 6.1.2 to the 4DVar case by putting

tighter restrictions on the components of the Hessian to produce more precise

bounds on the condition number of the 4DVar Hessian.

Theorem 7.1.2 Let B = σ2
bC ∈ R

N×N be the background error covariance

matrix where C a symmetric, positive definite, circulant, correlation matrix

and σ2
b > 0 is the background error variance. We assume that q observations

are taken with the same error variance at each time step tj and therefore Rj =

σ2
oIq ∈ R

q×q for j = 0, 1, . . . n where Iq is the q-by-q identity matrix, σ2
o > 0

is the observation error variance and q(n + 1) < N . Let R̂ ∈ R
q(n+1)×q(n+1)

be the block diagonal matrix consisting of the matrices Rj down the diagonal.

Assume that observations of the parameter are made only at grid points at

the same positions at each time step tj; then HT
j Hj = HTH ∈ R

N×N where

HTH is a diagonal matrix with ones on the diagonal if the point is observed

and zeros otherwise. Finally, assume Mj = M ∈ R
N×N for j = 1, . . . , n and

M0 = IN where M is a circulant matrix. Then the following bounds hold on
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the condition number of the Hessian S = B−1 + ĤT R̂−1Ĥ





1 + q
N

σ2

b

σ2
o
λmin(C)γmin

1 + q
N

σ2

b

σ2
o
λmax(C)γmax



κ(C) ≤ κ(S) ≤ κ(C)

(

1 +
σ2

b

σ2
o

λmin(C)λmax(Ĥ
T Ĥ)

)

,

(7.11)

where, given that λmax(M) and λmin(M) are the eigenvalues of M with largest

and smallest magnitude respectively, we have γmax =
∑n

j=0 |λmax(M)|2j and

γmin =
∑n

j=0 |λmin(M)|2j.

Proof Since Rj = σ2
oIq for j = 0, . . . n then in particular R̂ = σ2

oIq(n+1)

and λmax(Ĥ
T R̂−1Ĥ) = σ−2

o λmax(Ĥ
T Ĥ). If we substitute this into the up-

per bound found in Theorem 7.1.1 in equation (7.3) then using λmin(B) =

λmin(σ
2
bC) = σ2

bλmin(C) we obtain the upper bound

κ(S) ≤ κ(C)

(

1 +
σ2

b

σ2
o

λmin(C)λmax(Ĥ
T Ĥ)

)

. (7.12)

To find the lower bound requires application of the Rayleigh quotient. Let

vk be an eigenvector of B (hence it is of the form (3.50)) and consider the

Rayleigh quotient of ĤT Ĥ at vk. Since M1 . . .Mj = Mj and HT
j Hj = HTH

for j = 0, 1, . . . n we have

vH
k (ĤT Ĥ)vk = vH

k (
n
∑

j=0

(Mj)THTHMj)vk, (7.13)

where the superscript H denotes the complex conjugate transpose. Since

we have assumed that M is circulant then Mj is also circulant by Theorem

3.4.8. All circulant matrices share the same eigenvectors and since C and B

are also circulant it follows that

Mjvk = (λk(M))jvk, (7.14)

and

vH
k (Mj) = vH

k (λ̄k(M))j, (7.15)
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where λ̄k(M) represents the complex conjugate of λk(M). We note that

HTH ∈ R
N×N is a diagonal matrix with ones on the diagonal if the point is

observed or a zero otherwise and so by (6.13)

vH
k HTHvk =

q

N
, (7.16)

since we make observations of the parameter at q grid points at each timestep.

Substituting (7.14) and (7.15) into (7.13) and using (7.16) gives

vH
k

n
∑

j=0

(Mj)THTHMjvk =
n
∑

j=0

(λ̄k)
j(λk)

jvH
k HTHvk (7.17)

=
q

N

n
∑

j=0

|λk|2j. (7.18)

Let vmax denote the eigenvector associated with λmax(B
−1) and λα(M). Ap-

plying the Rayleigh quotient to S and using Theorem 3.4.4 we obtain

λmax(S) ≥ vH
maxSvmax = vH

maxB
−1vmax + σ−2

o vH
max(Ĥ

T Ĥ)vmax (7.19)

=σ−2
b λmax(C

−1) +
q

N
σ−2

o

n
∑

j=0

|λα(M)|2j (7.20)

≥ σ−2
b λmax(C

−1) +
q

N
σ−2

o

n
∑

j=0

|λmin(M)|2j, (7.21)

where λmin(M) is the eigenvalue of M with the smallest magnitude. Similarly,

let vmin be the eigenvector corresponding to λmin(B
−1) and λβ(M). Then

applying the Rayleigh quotient and using Theorem 3.4.4 gives

λmin(S) ≤ σ−2
b λmin(C

−1) +
q

N
σ−2

o

n
∑

j=0

|λmax(M)|2j, (7.22)

where λmax(M) is the eigenvalue of M with the largest magnitude. Now
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define

γmax =
n
∑

j=0

|λmax(M)|2j (7.23)

γmin =
n
∑

j=0

|λmin(M)|2j (7.24)

We can combine the bounds (7.21) and (7.22) to give

κ(S) ≥





1 + q
N

σ2

b

σ2
o
λmin(C)γmin

1 + q
N

σ2

b

σ2
o
λmax(C)γmax



κ(C), (7.25)

as required which completes the proof.

In Theorem 7.1.2 we assume that the same observations positions are used

at each time step. In NWP centres this can be interpreted as fixing the

observation stations. For satellite data however this may be a less realistic

assumption. In Theorem 7.1.2 we have observation errors uncorrelated with

each other. This is a common practice in current NWP centres [15]. Another

important comment is that the model is assumed to be circulant in order to

simplify the bounds (7.11). For periodic models discretised on a uniform

grid, examples can be formulated which obey this assumption, for instance

the advection model discretised using the upwind scheme which we introduce

in the next section and its extension the diffusion advection equation using

the central difference method. However we note that this will not be true

when the grid spacing is not uniform or when the system is not periodic.

As with the more general bounds (7.3), the tighter bounds (7.11) in Theorem

7.1.2 are dependent on the condition number of the background error covari-

ance matrix. As shown in Chapter 6 this resulted in the ill-conditioning of the

3DVar scheme since our background error covariance matrices (see Chapter

5) was ill-conditioned. In order to test the influence of the condition number

of the background error covariance matrix on the condition number of the

Hessian S we require a forecast model in order to construct M. In the next
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section we introduce the 1D linear advection equation which we use as our

forecast model in this chapter.

7.1.2 Advection Equation

In this section we construct a simplified model M which is used to construct

the 4DVar Hessian (7.1) used in the numerical experiments later in this chap-

ter. We consider a single periodic parameter on a one-dimensional domain.

To construct the Hessian (7.1) we require a forecast model which evolves

our state vector from ti−1 to ti. The model we use is the one-dimensional

linear advection equation. This differential equation describes the motion of

a scalar quantity u(x, t) advected in a velocity field, where x and t repre-

sent the spatial and temporal domains respectively. Formally, the advection

equation is a partial differential equation of the form

∂u

∂t
+ a

∂u

∂x
= 0, (7.26)

where the scalar quantity is transported within a vector field traveling with

velocity a(x, t). In our case we restrict ourselves to the case where we have

a constant speed a > 0. The solutions of (7.26) are of the form u(x, t) =

u(x−at). We must specify boundary conditions in order to have a well-posed

(or unique) solution that depends continuously on the boundary data [32,

Chap 3.1]. Since our model is periodic we use periodic boundary conditions,

hence

u(x) = u(x + x0), (7.27)

for some x0 ∈ R. Within the context of the atmosphere the advection equa-

tion can be viewed as a simple model describing the transportation of a

passive tracer in the atmosphere.

In general, dynamical systems that describe the atmosphere are highly non-

linear and cannot be solved directly. The model variables are approximated
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on a discrete domain and evolved forward from one time step to the next

using a discretised model. We define a uniform grid on the real line consisting

of N grid points with an equal spacing of ∆x between adjacent points. In

addition, we define n+1 time steps t0, t1, . . . tn with step length ∆t, between

adjacent time-steps. Let U j
k = U(k∆x, j∆t) be the numerical approximation

to u(x, t) at the point (k∆x, j∆t) for k = 0, . . . N − 1, j = 0, . . . n. Since the

system is periodic we have U j
N = U j

0 for j = 0, . . . n. The derivatives ∂u
∂t

and

∂u
∂x

can be approximated using finite difference methods. We use the upwind

scheme to approximate (7.26) [45, Chap. 4] giving

U j+1
k = U j

k − a
∆t

∆x
(U j

k − U j
k−1) (7.28)

for k = 0, . . . N − 1 and j = 0, . . . n − 1.

We can write the finite difference system (7.28) as the matrix-vector system

Uj = MjU
j−1 (7.29)

where Uj = (U j
0 , U

j
1 , . . . , U

j
N−1)

T and we have the matrix

Mj =



































1 − ν 0 0 0 . . . 0 ν

ν 1 − ν 0 0 . . . 0 0

0 ν 1 − ν 0 0
...

. . . . . .
...

. . . 0

0
. . . 1 − ν 0

0 0 . . . 0 ν 1 − ν



































, (7.30)

where ν = a ∆t
∆x

. Since the evolution between any time steps is the same we

can write Mj = M for j = 1, . . . n. Due to the periodic boundary conditions

M is circulant. With ν ∈ (0, 1) the finite difference system (7.28) is a one-

step finite difference scheme which is consistent, stable and convergent [45,

Sec. 5.4]. Since the matrix M is circulant it satisfies the assumptions of
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Theorem 7.1.2. Before we can calculate the bounds (7.11) in terms of the

advection model (7.28) we require a result on the maximum and minimum

magnitudes of the eigenvalues of the linear model M.

Theorem 7.1.3 Let M be the discretised model of the advection equation

discretised using the upwind scheme defined by (7.30). Then for ν ∈ (0, 1)

|λmax(M)|2 = 1, (7.31)

and

|λmin(M)|2 ≥ (1 − 2ν)2, (7.32)

where λmax(M) and λmin(M) represent the eigenvalues of M with the largest

and smallest magnitude respectively. We have equality in (7.32) if N is even.

Proof Since M is a circulant matrix then the eigenvalues are the discrete

Fourier transform of the top row of M (see Section 3.4.4 for more details).

Hence, the eigenvalues are of the form

λm = (1 − ν) + νe−2πim(N−1)/N = 1 − ν + νe2πim/N , (7.33)

for m = 0, 1, . . . , N − 1. Thus

|λm|2 = (λ̄m)(λm) =(1 − ν + νe(−2πim/N))(1 − ν + νe(2πim/N)) (7.34)

=(1 − ν)2 + 2ν(1 − ν) cos(2πm/N) + ν2. (7.35)

If we treat |λm|2 as a continuous function in m ∈ [0, N) we can differentiate

(7.35) to give

d|λm|2
dm

= −2ν(1 − ν)(2π/N) sin(2πm/N), (7.36)

which implies the extrema of |λm|2 occur at m = 0 and m = N/2. A second
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differentiation gives

d2|λm|2
dm2

= −2ν(1 − ν)(2π/N)2 cos(2πm/N). (7.37)

Evaluating (7.37) at m = 0 and m = N/2 give a negative and a positive value

respectively. This implies that |λ0(M)|2 is the largest value, and therefore

eigenvalue, of |λm|2 giving

|λ0(M)|2 = (1 − ν)2 + 2ν(1 − ν) + ν2 = 1. (7.38)

The minimum value of |λm|2 occurs at m = N/2 giving

|λN/2(M)|2 = (1 − ν)2 − 2ν(1 − ν) + ν2 = 1 − 4ν + 4ν2 = (1 − 2ν)2. (7.39)

Therefore we have |λm|2 ≥ (1 − 2ν)2 for any eigenvalue λm of M. If N is

even then λN/2(M) is an eigenvalue of M. This completes the proof.

We notice from (7.35), that |λm|2 is symmetric around m = N/2 and by (7.36)

d|λm|2
dm

< 0 for m ∈ (0, N
2
), ν ∈ (0, 1) and so the function is monotonically

decreasing between m = 0 and m = N/2. This means if N is odd then the

minimum eigenvalue will be at m = (N − 1)/2 giving

|λmin(M)|2 = (1 − ν)2 + 2ν(1 − ν) cos(π(N − 1)/N) + ν2. (7.40)

We can now calculate the bounds given in Theorem 7.1.2 in the case were

M is the matrix (7.30).

Theorem 7.1.4 Suppose we have the same assumptions as given in Theorem

7.1.2 but now M is the matrix (7.30). Then we have the following lower

bound on the condition number of (7.1),

κ(S) ≥





1 + q
N

σ2

b

σ2
o
λmin(C)γadj

1 + q(n+1)
N

σ2

b

σ2
o
λmax(C)



κ(C) (7.41)
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where

γadj =
(1 − |1 − 2ν|2(n+1))

1 − |1 − 2ν|2 . (7.42)

Proof From Theorem 7.1.2 it remains to find γmax and γmin. In Theorem

7.1.3 we showed |λmax| = 1 hence

γmax =
n
∑

j=0

|λmax(M)|2j = (n + 1), (7.43)

Similarly we showed that |λmin(M)|2 ≥ (1 − 2ν)2 and therefore

γmin =
n
∑

j=0

|λmin(M)|2j ≥
n
∑

j=0

|1 − 2ν|2j, (7.44)

which is a geometric sum giving

γmin ≥
n
∑

j=0

|1 − 2ν|2j =
(1 − |1 − 2ν|2(n+1))

1 − |1 − 2ν|2 , (7.45)

as required.

Notice that if N is even then we have equality in (7.45). In the next section

we investigate the condition number of the Hessian using the bounds derived

in this section together with numerical experiments on a periodic system.

7.1.3 Numerical Experiments

In Section 7.1.2 we derived bounds on the condition number of a 4DVar

Hessian using a simple 1D discretised advection model (7.28) as the forecast

model M. We found that the lower and upper bounds are dependent on

the condition number of the background error covariance matrices. As we

saw in Chapter 6 the sensitivity of the condition number of the background

error covariance matrices to the correlation lengthscale of the background

errors gave rise to a corresponding sensitivity in the condition number of
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the Hessian. From the bounds derived in Sections 7.1.1 and 7.1.2 we expect

the same behaviour in the 4DVar system. In this section we present a small

experiment to test this hypothesis.

We consider a single periodic parameter defined on a one-dimensional do-

main with N = 500 grid points and ∆x = 0.1 grid spacing. Let M be the

discrete linear advection forecast model defined by (7.30). We use a time-

step ∆t = 0.1 and a = 0.3, giving ν = a ∆t
∆x

= a ∈ (0, 1) and therefore the

numerical model (7.28) is stable. Observations are made at three time steps

at intervals of length 3∆t so we observe at t0 = 0, t1 = 3∆t and t2 = 6∆t.

A random distribution of q = 20 observations of the parameter are made at

grid points at each time step giving a total of q(n + 1) = 60 observations.

Our observation operators are given by Hj = H for j = 0, 1, 2. Observa-

tion errors are assumed to be spatially and temporally uncorrelated with

observation variance σ2
o = 1 and therefore Rj = σ2

oIq for j = 0, 1, 2. In this

section we consider the background error covariance matrix B = σ2
bC where

C is the SOAR correlation matrix (5.11) introduced in Section 5.2 and the

background error variance σ2
b = 1. We concentrate on the SOAR case in

this chapter; similar results apply to the Gaussian and Laplacian forms of

the Hessian. The SOAR correlation matrix is used to model the horizontal

background error correlations of the Met Office operational system which we

study in the next chapter.

With the above assumptions, the hypothesis of Theorems 7.1.2 and 7.1.4 are

satisfied and the bounds (7.11) and (7.41) hold on the Hessian S. Figure 7.1

shows the condition number of the 4DVar Hessian together with the bounds

as a function of background error correlation lengthscale. As predicted by the

bounds derived in the previous section the conditioning of the background er-

ror covariance matrix appears to drive the conditioning of the Hessian matrix

(7.1). This is apparent from the similarity in the magnitudes of the condition

numbers of the Hessian and the SOAR background error covariance matrix
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Figure 7.1: The condition number of the unpreconditioned 4DVar Hessian (solid line)
and the bounds (dashed line) as a function of lengthscale using the SOAR background
correlation matrix.

at fixed lengthscales. For instance, at lengthscale L = 0.2 the condition

number of the Hessian (Figure 7.1) and the condition number of the SOAR

background matrix (Figure 5.4) are both around 800. Comparison between

the 3DVar Hessian in Figures 6.2 and 6.3 and the 4DVar Hessian shows that

both systems have very similar condition numbers despite the differences in

the 4DVar and 3DVar systems. At lengthscale L = 0.25 the 3DVar Hessian

in Figure 6.3 has the same condition number as the 4DVar Hessian in Figure

7.1 of about 2000. This is further evidence that the background covariance

matrix is driving the condition number. Similarly it is possible to show that

the condition number of the 4DVar Hessians using the Gaussian and the

Laplacian background error covariance matrices are determined by the con-

dition number of the respective background error covariance matrices and

have similar plots with respect to lengthscale as their 3DVar counterparts

shown in Figures 6.1 and 6.5 respectively. We now consider the conditioning

of the preconditioned 4DVar Hessian.
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7.2 Preconditioned 4DVar

Having considered the preconditioned 3DVar Hessian in Chapter 6 we now

consider the condition number of the 4DVar Hessian, preconditioned using

the control variable transform (CVT) described in Section 2.4. From here

onwards we refer to this preconditioned 4DVar system as P4DVar. In Chapter

6 we showed that preconditioning with the CVT significantly reduced the

condition number of the 3DVar Hessian. In this section we aim to show that

the same advantages can be achieved in the condition number of the 4DVar

Hessian by including the control variable transform.

7.2.1 Theory

In this subsection we derive new theoretical bounds on the conditioning of

P4DVar. As shown in Chapter 4 the Hessian of P4DVar can be written

Ŝ = I + BT/2ĤT R̂−1ĤB1/2, (7.46)

where Ĥ is defined by (7.2) and R̂ is the block matrix with the error covari-

ances Ri down the diagonal. We use the symmetric square root of the back-

ground covariance matrix, hence throughout the remainder of this chapter

we assume BT/2 = B1/2. In the following theorem we extend the theoreti-

cal bounds on the condition number of the P3DVar Hessian (6.18) found in

Section 6.2.1 to the P4DVar Hessian (7.46).

Theorem 7.2.1 Let B = σ2
bC ∈ R

N×N be the background error covariance

matrix where σ2
b > 0 is the background error variance and C is the error

correlation matrix. We assume that q observations are taken with the same

error variance at each time step tj and therefore Rj = σ2
oIq ∈ R

q×q for

j = 0, . . . n where Iq is the q-by-q identity matrix, σ2
o > 0 is the observation

error variance and q(n+1) < N . Let R̂ ∈ R
q(n+1)×q(n+1) be the block diagonal
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matrix with the matrices Rj down the diagonal. Let Hj ∈ R
q×N and Mj ∈

R
N×N be the observation and the linear model operators respectively at time

tj for j = 0, 1 . . . n with M0 := IN . Additionally, let Ĥ ∈ R
(n+1)q×N be the

generalised observation operator defined by (7.2). Then the following bounds

hold on the condition number of the Hessian Ŝ = I + B1/2ĤT R̂−1ĤB1/2

1 +
1

q(n + 1)

σ2
b

σ2
o

q(n+1)
∑

k,l=1

(ĤCĤT )k,l ≤ κ(Ŝ) ≤ 1 +
σ2

b

σ2
o

||ĤCĤT ||∞, (7.47)

where (A)i,j represents the (i, j)th entry of the matrix A.

Proof Since there are fewer observations than variables in the state space

(q(n + 1) < N) then the smallest eigenvalue of (7.46) is simply unity and

the condition number of the Hessian is simply the largest eigenvalue of

Ŝ. By Theorem 3.4.5 with (E = R̂−1/2ĤB1/2) we know that ETE =

B1/2ĤT R̂−1ĤB1/2 and EET = R̂−1/2ĤBĤT R̂−1/2 have the same non-zero

eigenvalues. Hence the Hessian (7.46) has the same non-unit eigenvalues as

S̃ = Iq(n+1) + R̂−1/2ĤBĤT R̂−1/2 = Iq(n+1) +
σ2

b

σ2
o

ĤCĤT . (7.48)

By Theorem 3.4.2 applied to (7.48) with the ∞-norm (3.6) we find

κ(Ŝ) = λmax(S̃) ≤ 1 +
σ2

b

σ2
o

||ĤCĤT ||∞, (7.49)

which establishes the upper bound.

The lower bound can be established by the calculating the Rayleigh quotient

of S̃ with the unit vector y = 1√
q(n+1)

(1, 1, . . . , 1)T ∈ R
q(n+1),

R
S̃
(y) = yT S̃y = 1 +

1

q(n + 1)

σ2
b

σ2
o

q(n+1)
∑

k,l=1

(ĤCĤT )k,l. (7.50)

By Theorem 3.4.4 we have λmax(S̃) ≥ R
S̃
(y) for any y ∈ R

q(n+1)×q(n+1),

which completes the proof.
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The bounds (7.47) are dependent on the sum of what we call the reduced

4D background error covariance matrix ĤCĤT , this can be compared to the

reduced background error correlation matrix HCHT introduced in Section

6.2.1. We can write the reduced 4D background error covariance matrix in

the form

ĤCĤT = H̃C̃H̃T , (7.51)

where H̃ is the block diagonal matrix

H̃ =

















H0 0 . . . 0

0 H1 0

. . .

0 Hn

















, (7.52)

and C̃ is the 4D-background covariance matrix

C̃ =



































C CM̂T
1 . . . CM̂T

n

M̂1C M̂1CM̂T
1 . . . M̂1CM̂T

n

M̂2C M̂2CM̂T
1 M̂2CM̂T

n

. . . . . .
...

. . .

. . .

M̂nC M̂nCM̂T
1 M̂nCM̂T

n



































, (7.53)

where M̂j = MjMj−1 . . .M1. Suppose that ǫb
0 describes the background

errors at time t0, with covariance matrix C, and ǫb
k describes the background

errors evolved to time tk, i.e. ǫb
k = MkMk−1 . . .M1ǫ

b
0. We can write the error

covariance matrix describing the covariance between the errors evolved to
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times tk and tl as

< ǫb
k(ǫ

b
l )

T >=MkMk−1 . . .M1 < ǫb
0(ǫ

b
0)

T > MT
1 . . .MT

l−1M
T
l (7.54)

=MkMk−1 . . .M1CMT
1 . . .MT

l−1M
T
l , (7.55)

=M̂kCM̂l, (7.56)

where <> represents expected value over the random variables. Hence each

block of the 4DVar covariance matrix C̃ can be viewed as the covariance of

the 4D background errors vector (ǫb
0
T , ǫb

1
T , . . . , ǫb

n
T )T . If observations of the

parameter are only made at grid points then the (k, l)th block of H̃C̃H̃T is the

matrix M̂kCM̂l but minus those rows and columns at the positions which are

not observed. From the form of the 4D background error covariance matrix

(7.53) the model Mk clearly has an influence on the conditioning of the

P4DVar system. Due to the wide variety of possible models this is difficult

to analyse in a general way and so in this chapter we concentrate on a simple

linear advection equation for the model Mk for k = 1, . . . n, introduced in

the Section 7.1.2.

Theorem 7.2.1 shows that the bounds (7.47) are linearly related to the in-

verse of the observation error variance σ2
o . We therefore expect the condition

number of the Hessian Ŝ to increase as the observations become more accu-

rate (σ2
o decrease). In Chapter 6 we showed that changing the number and

spacing of the observations changes the condition number of the precondi-

tioned 3DVar Hessian (6.18). We found that an increase in the spacing of

the observations and the reduction in the number of observations, produced a

reduction in the condition number of the Hessian Ŝ. From the bounds (7.47)

given in Theorem 7.2.1 clearly the observation operators Hk (k = 0, 1, . . . , n)

is an important influence on the condition number of the Hessian.

If we assume that observations of the parameter are only made at grid points,

H̃C̃H̃T is the matrix formed by deleting rows and columns of the 4D covari-

ance matrix corresponding to the positions at which the parameters are not
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observed. Let us assume that the background error correlation matrix C has

positive coefficients ci,j which monotonically decrease with increased separa-

tion |i − j|. If the action of the model on the background error covariance

matrix preserves the positivity of the coefficients and ensures that the coef-

ficients remain a monotonically decreasing function of separation, then we

expect that the condition number of the Hessian to decreases as the spacing

between observations increases and as observations are removed. We analyse

the effect of the observation accuracy and distribution in more detail in a

later section. In the next section we perform some numerical experiments

to analyse the conditioning of P4DVar in a simple one-parameter, periodic

system.

7.2.2 Numerical Experiments

In this section we examine the P4DVar system for single parameter, one-

dimensional, periodic system. We define N = 500 grid points on the real

line with uniform spacing ∆x = 0.1. In our experiments we use the linear

advection model discretised using the upwind scheme (7.28), introduced in

Section 7.1.2, as our model M and use the SOAR correlation matrix C

given by equation (5.11) to construct our background error covariance matrix

B = σ2
bC. Here we fix the background error variance as σ2

b = 1 and so B = C.

To describe the coefficients of the 4D-background error covariance matrix

(7.53) we require knowledge of the coefficients of the matrices M̂kCM̂T
k and

M̂kC. In the advection equation case this is simplified since M̂k = Mk where

M is the matrix (7.30). We consider a time step of ∆t = 0.1 and a = 0.3;

hence ν = a ∆t
∆x

= 0.3 and the finite difference system (7.28) is stable. We

consider observations at 3 time steps t0 = 0, t1 = 3∆t and t2 = 6∆t. We can
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write the 4D background error covariance matrix for our system as

C̃ =











C C(MT )3 C(MT )6

M3C M3C(MT )3 M3C(MT )6

M6C M6C(MT )3 M6C(MT )6











. (7.57)

Since M and C are circulant, each block of the matrix (7.57) is circulant

by Theorem 3.4.8. Since the blocks are circulant to describe the coefficents

of each matrix MkC(MT )l k, l = 0, 3, 6 we can consider a single row. We
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Figure 7.2: The 250th row of the B matrix (solid line), M
3
B(MT )3 (dashed line) and

M
6
B(MT )6 (dotted line) where M is the discretised advection model.

first consider the diagonal blocks of (7.57). These are matrices of the form

MkC(MT )k for k = 0, 3, 6. Figure 7.2 shows the 250th rows of these matrices.

The plot shows that the coefficients (MkC(MT )k)i,j for i, j = 1, . . . N are all

positive and are monotonically decreasing as a function of distance |i−j|. The

matrix M applied to C results in a reduction of the maximum components

(MkC(MT )k)i,i compared to the components of the matrix C. This indicates

that there is a reduction in the variance of the errors ǫb
k = Mkǫb

0 by evolving

the background error ǫb
0 at time t = 0 with the model M. The reduction in

127



the error variance is accompanied by an increase in the size of the coefficients

(MkB(MT )k)i,j at larger distances |i−j|. For instance, Figure 7.2 shows that

the matrix M6B(MT )6 has slightly larger coefficients than the matrix C at

column number 245. This reduction in the variance can be explained by the

damping effect of the upwind scheme [45, Sec. 4.2].

We now consider the off diagonal blocks of (7.57). Figure 7.3 shows the

components of the columns for the 250th row of the MkC matrices for k =

0, 3, 6. Evolution of the background error covariance matrix with M shows

that the coefficients of the matrices (MkC)i,j remain positive and the ‘bell-

shape’ of the SOAR correlation matrix is preserved but with the components

with the largest magnitude below the diagonal of the matrix. This can be

explained by the dynamics of the advection model. With a constant positive

velocity a, the finite difference scheme (7.28) approximates the advection

model (7.26) and therefore the matrix Mk transports a scalar quantity by a

distance of approximately ak∆t or by ak∆t/∆x grid points. For the matrix

(MkC), M transports the coefficients of each column of C by a distance ak∆t

and this corresponds to a shift of ak∆t of the components of the rows as seen

in Figure 7.3. The figure shows that the largest component of the matrix

(MkC) have been advected by approximately ak∆t/∆x ≈ 0.9, 1.8 grid points

distance for k = 3, 6 respectively, from the position of the largest component

of the matrix C at column number 250. We now consider the conditioning of

the P4DVar Hessian using the 4D background error covariance matrix (7.57).

We consider a periodic parameter on a one-dimensional domain. We use

the model M and the background error covariance matrix B defined in this

section. We fix the observation error variance at σ2
o = 1 and assume that

observations are only made at grid points. We use the same observation

configuration of 20 random observations made at the same points of each

time step 0, 3∆t, 6∆t as used in the experiments for the 4DVar system in

Section 7.1.3. Hence, in total we use 60 observations. With this system

design we satisfy the assumptions of Theorem 7.2.1 and therefore the bounds
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Figure 7.3: The 250th row of the B matrix (solid line), M
3
B (dashed line) and M

6
B

(dotted line) where M is the discretised advection model.

(7.47) hold for our P4DVar Hessian Ŝ.

Figure 7.4 shows the conditioning of the preconditioned 4DVar Hessian as a

function of lengthscale. The plot also shows the theoretical bounds derived in

Theorem 7.2.1 with the change in background error correlation lengthscale.

As the lengthscale increases so does the condition number of Ŝ. This can

be explained by the theoretical bounds (7.47). The bounds on the condition

number of Ŝ are dependent on the sums of the reduced 4D background error

covariance matrix. As the lengthscale increases the size of the components

of the matrix (7.57) also increase because the components of the C increase

with lengthscale. Therefore the condition number also increases.

As seen by Figures 7.3 and 7.2, the size of the components of the 4D back-

ground error covariance matrix are no bigger then the maximum component

of the matrix C. In this case the largest component of C is one. Therefore,

since we use 60 observations in total, the maximum row sum of the reduced
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Figure 7.4: The condition number of the preconditioned Hessian (solid line) and the
bounds (dotted) as a function of lengthscale using the SOAR background correlation
matrix

4D background error covariance matrix satisfies

||ĤCĤT ||∞ = ||H̃C̃H̃T ||∞ ≤ 60, (7.58)

and the by equation (7.47) the condition number of the Hessian satisfies

κ(Ŝ) ≤ 1 + σ−2
o ||ĤCĤT ||∞ ≤ 1 + 60 = 61. (7.59)

For the unpreconditioned system given in Section 7.1.3, the condition number

of the 4DVar Hessian exceeded 61 after L = 0.15 = 1.5∆x as shown by Figure

7.1. Therefore we expect the P4DVar system to be much better conditioned

then the unpreconditioned system. Comparing Figures 7.1 and 7.4 shows that

preconditioning produces a significant reduction in the condition number of

4DVar Hessian. For example, at lengthscale L = 0.25 the condition number

has been reduced from approximately 1800 for the 4DVar Hessian to about

6 for the P4DVar Hessian. Repeating the numerical experiments using the

P4DVar Hessians derived using the Laplacian and Gaussian matrices give
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similar results with a significant reduction in the condition number when

4DVar is preconditioned with the background covariance matrix, we do not

present these results here.

The bounds indicate that the condition number of the P4DVar Hessian (7.46)

depends on other factors in the system: the observation accuracy, the ob-

servation distribution and the number of observations. We consider these

factors in more detail in the next section.

7.3 Observation Accuracy

In this section we consider the role of observation accuracy on the condition-

ing of P4DVar. The bounds (7.47) in Theorem 7.2.1 show that the condi-

tioning of P4DVar is linearly related to the inverse of the observation error

variance σ2
o . Assuming that the Hessian satisfies the assumptions of Theo-

rem 7.2.1 then the condition number of the P4DVar Hessian can be written

explicitly as

κ(Ŝ) = λmax(S̃) = 1 +
σ2

b

σ2
o

λmax(ĤBĤT ), (7.60)

where S̃ is the matrix defined by equation (7.48). The equation (7.60) indi-

cates that increasing the accuracy of the observations (reducing σ2
o) will cause

the condition number of P4DVar to increase. We illustrate this with a simple

numerical experiment. We consider a single periodic parameter defined on

the real line. We choose N = 500 uniformly spaced grid points with spacing

of length ∆x = 0.1. Observations of the parameters are taken at three time

points t0 = 0, t1 = 3∆t and t2 = 6∆t where ∆t = 0.1 and is the time step for

the discretised advection model defined by (7.28) with a = 0.3. Observations

are taken only at grid points with 20 observations at each time step using

the same observation configuration as used in Section 7.2.2. We assume that

the observation errors are uncorrelated with error variance σ2
o and therefore

the condition number of the P4DVar Hessian is of the form given in (7.60).
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We choose the background error covariance matrix to be B = σ2
bC where C

is the SOAR correlation matrix (5.11) and σ2
b = 1 is the background error

variance. We fix the correlation lengthscale as L = 0.2 and consider the con-

dition number of Ŝ as we vary the observation error variance. The change

in condition number as the observation accuracy changes is shown in Table

7.1.

Obs Variance Condition Number
0.01 506.53
0.05 102.11
0.10 51.55
0.50 11.11
1.00 6.06
2.00 3.53
5.00 2.01
10.00 1.51

Table 7.1: Change in the condition of the preconditioned Hessian with change observation
error variance using the SOAR correlation matrix.

The table confirms that the condition number is linearly related to the in-

verse of the observation error variance. For instance, halving the variance

from 0.1 to 0.05 roughly doubles the condition number from 51.55 to 102.11.

As in the P3DVar case considered in Section 6.3.1, the more accurate the

observations the more ill-conditioned the Hessian is. The same results apply

for the preconditioned Hessian using the Gaussian and Laplacian correlation

matrices but we do not present these results here. We now turn our attention

to the observation distribution and its influence on the conditioning.

7.4 Observation Distribution

The other main factor affecting the condition number of P4DVar are sums of

the elements of the reduced 4D background error covariance matrix ĤBĤT

derived in the bounds (7.47) in Theorem 7.2.1. As shown in Section 7.2.2,
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each block of the reduced covariance matrix is a matrix of the form HiM̂iBM̂T
j HT

j .

We consider the change in the condition number of the preconditioned Hes-

sian (7.46) as a function of the change in observation distribution in two

ways

• Keeping the number of observations constant but changing the spacing

of the observations.

• Changing the number of observations.

In this section we consider the advection equation M discretised using the

upwind scheme (7.28) as our forecast model. We consider a periodic pa-

rameter on the real line and fix N = 500 grid points with uniform spacing

∆x = 0.1. We let the background B = σ2
bC where σ2

b = 1 and C is the SOAR

correlation matrix (5.11). We use a time step of ∆t = 0.1 for the advection

model and let a = 0.3. Therefore, ν = a ∆t
∆x

= 0.3 and the upwind scheme is

numerically stable. Additionally, we choose observations only at grid points

and choose the same spatial positions for the observations for each time step,

therefore Hi = H for i = 0, . . . n.

7.4.1 Observation Spacing

We begin by considering the effect of observation spacing on the condition

number of the P4DVar Hessian. Since observations of the parameter are only

made at grid points then the reduced 4D background error covariance matrix

ĤCĤT is simply the 4D background error covariance matrix (7.53) but with

rows and columns removed at the positions where no observations are made.

We assume that observations are made at time steps t0 = 0, t1 = 3∆t, t2 =

6∆t and we initially take 20 observations of the parameter on the first 20 grid

points on the domain. We consider the effect of increasing the spacing of the

observations on the condition number of Ŝ. Using this experimental design
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we satisfy the criteria of Theorem 7.2.1 and therefore the bounds (7.47) hold

on the Hessian Ŝ.

In order to understand the effect of the observation spacing on the condition

number of Ŝ we need to understand the shape of the coefficients of the 4D

background error covariance matrix, which for our experimental design is

given by the matrix

C̃ =











C C(MT )3 C(MT )6

M3C M3C(MT )3 M3C(MT )6

M6C M6C(MT )3 M6C(MT )6











. (7.61)

In Section 7.2.2 we showed that since the matrices M and C are circulant

then the coefficients of the matrices in each block of (7.61) can be described

by considering just a single row. The 250th row of the diagonal matrices and

the off diagonal matrices of (7.61) are shown in Figures 7.3 and 7.2. Figure 7.2

shows that all the coefficients gi,j of the matrices of the form G = MkC(MT )k

for k = 0, 3, 6 are positive and monotonically decrease as the separation |i−j|
increases. Hence, as the observations of the parameter become more spaced

out, we would expect the coefficients of HMkC(MT )kHT to become smaller.

For the off-diagonal matrices of (7.61), F = MkC k = 3, 6, the coefficients

fi,j are monotonically decreasing as the separation, |i − j|, increases with

|i − j| > d where

d =
ak∆t

∆x
. (7.62)

In our experiment d = ak∆t/∆x = 0.3× 6 = 1.8 grid points. Hence, as long

as the separation between observations is larger than 2 grid points, increas-

ing the spacing between observations decreases the size of the coefficients of

HMkC(MT )lHT k, l = 0, 3, 6. Since the coefficients of the reduced 4D back-

ground error covariance matrix ĤCĤT decrease with increasing separation

of the observations, by the bounds (7.47) in Theorem 7.2.1, we expect the

condition number of Ŝ to decrease as the observation spacing increases. We

illustrate this numerically.
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Figure 7.5: Condition number of preconditioned Hessian with changing observation spac-
ing using the SOAR background correlation matrix with different spacing. The solid line
represents lengthscale L = 0.2, the dashed line represents lengthscale L = 0.3 and the
dotted line represents the lengthscale L = 0.5.

The effect of changing the spacing between these observations is shown in

Figure 7.5 for three different lengthscales L = 0.2, 0.3, 0.5. As expected the

condition number of the P4DVar Hessian decreases as the spacing between

the 20 observation increases. The same was also found for the P4DVar Hes-

sian using the Gaussian (5.10) and Laplacian (5.12) correlation matrices but

we do not show these results here. We now consider the effect of changing

the number of observations on the conditioning of P4DVar.

7.4.2 Number of Observations

There are two main ways of changing the number of observations. We can

change the number of grid points we observe or we change the number of time

steps we observe. First consider changing the number of grid points that we

observe at. Let us assume that we take p observations of the parameter at

grid points only and that we observe the parameter at the same grid points
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for each time step t0, t1, . . . , tn. Therefore Hj = H for j = 0, 1, . . . n. Now

if we remove r observations at each time step (at the same positions at each

time step) then each p × p matrix HMkC(MT )lHT will be reduced to a

(p− r)× (p− r) matrix and the reduced background error covariance matrix

ĤCĤT will be reduced from a p(n + 1) × p(n + 1) matrix to a ((p − r)(n +

1))× ((p− r)(n + 1)). If the entries of the 4D background covariance matrix

are positive this will result in a reduction in the sums of the components of

the reduced background covariance matrix and therefore a reduction in the

bounds (7.47) on the condition number of the P4DVar Hessian Ŝ.

Now consider the effect of changing the number of time steps that we observe.

If we stop taking observations at a certain time tm then any matrix block of

the form HMkC(MT )lHT , where either k or l is equal to m, is removed from

the reduced 4D background error covariance matrix. If we assume that the

entries of the 4D background covariance matrix are positive then reducing

the number of times that we observe results in a reduction in the sums of

the components of the reduced background covariance matrix and therefore

a reduction in the bounds (7.47) on the condition number of the P4DVar

Hessian Ŝ. Conversely by observing at more time steps will produce a increase

in the condition number of the bounds on Ŝ. We therefore expect that the

condition number of Ŝ to decrease when fewer observations, are made, either

temporally or spatially. We now test these hypothesis experimentally.

We consider a single periodic parameter on the real line. We use the same

experimental design as in the previous section except we fix the lengthscale as

L = 0.2 and we change the observation configuration. For our discrete model,

M, we see that the 4D background error covariance matrix only has positive

components as shown by Figures 7.3 and 7.2 in Section 7.2.2. We begin by

testing the effect of removing observations at grid points. We observe the

same observation distribution at each time step t0 = 0, t1 = 3∆t, 6∆t. We

begin by observing 160 (giving a total of 480 observations) of the 500 grid

points with 2 grid points between the observations. We then observe every
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other of these grid points (Giving a total of 320 = 80× 3 observations), then

every other of the remainder (120 = 40 × 3 observations) and so on. Table

7.2 shows the results. As we expected, the fewer grid points we observed the

smaller the condition number. The same result was found when the Gaussian

(5.10) and Laplacian (5.12) correlation matrices were used to construct the

matrix B but we do not present the results here.

Number of Observations Condition number
480 13.00
320 7.01
120 4.26
60 3.61
30 3.59

Table 7.2: Change in the condition number of the preconditioned Hessian using the SOAR
correlation matrix as a function of the number of observations.

We now consider the effect of changing the number of time steps that we

observe. We observe at 20 random grid points using the same observation

configuration as the numerical experiments performed in Section 7.2.2. We

either observe at three time steps 0, 3∆t, 6∆t giving a total of 60 observations

or at seven time steps, 0, ∆t, 2∆t, 3∆t, 4∆t, 5∆t, 6∆t giving a total of 140

observations. With a lengthscale of L = 0.2 the condition number increased

from 6.06 for observations at three time steps to 12.97 with observations at

seven time steps. Similarly, for lengthscale L = 0.5 the condition number

increased from 6.87 to 14.71. This confirms that thinning the observations

in both time and space reduces the condition number of the P4DVar Hessian

(7.46) as expected. In the next section we briefly consider the implications

of the condition number on the convergence rate of the conjugate gradient

method applied to the unpreconditioned and preconditioned Var schemes.
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7.5 Convergence Rates

In Chapter 6 we showed that the condition number was a reasonable indica-

tor of the convergence rate of the conjugate gradient (CG) method applied to

solve the unpreconditioned and preconditioned 3DVar systems. In this sec-

tion consider the convergence rate of CG applied to the 4DVar and P4DVar

systems.

As shown in Section 3.2, minimising a quadratic cost function is equivalent

to solving a linear system. Minimising the 4DVar cost function (2.11) is

equivalent to finding the solution, w, of the linear system

Sw = b, (7.63)

where S = B−1 + ĤT R̂−1Ĥ is the Hessian of the 4DVar cost function. Sim-

ilarly minimising the preconditioned 4DVar scheme is equivalent to solving

the linear system

Ŝv = b̂, (7.64)

for v = B−1/2w where Ŝ = I + B1/2ĤT R̂−1ĤB1/2 is the Hessian of the

preconditioned 4DVar cost function (2.16) introduced in Section 2.4, v =

B−1/2w and b̂ = B1/2b. We solve (7.63) using the Matlab CG method pcg.m

which is equivalent to the CG algorithm given in Section 3.3.1. We also solve

(7.64) using the Matlab CG method pcg.m but using a preconditioned version

of the CG method for (7.63) similar to that given in Section 3.3.2. This is

equivalent to solving (7.64) directly using the normal CG algorithm given in

Section 3.3.1.

The stopping criteria for both algorithms is when either the maximum num-

ber of iterations of the CG method have been used (in our case 2000) or

when the relative residual

||b − Swk||
||b|| =

||rk||
||b|| , (7.65)
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has reduced to less then 10−6. Here wk is the estimate of the true solution

to (7.63) at the kth iteration of the CG method. We will also compute the

relative error in the solution w∗ to test that our system has converged. This

is simply the ratio of the magnitudes of the error and the truth

||w∗ − wa||
||w∗|| , (7.66)

where wa is the final solution found by the CG method.We refer to the

relative error as the accuracy throughout this section.

We consider a single periodic parameter defined on a 1D domain for the

remainder of this section. Consider N = 500 uniformly spaced grid points

on the real line with spacing ∆x = 0.1. For the true solution we choose

w∗(s) = 2 sin(qs) + cos(3qs) − 0.3 sin(125qs), (7.67)

defined at the grid points s = k∆x for k = 0, 1, . . . , (N − 1) where q =

2π
N∆x

. The true solution is the same as used in the 3DVar experiments in

Section 6.4.1 and is displayed in Figure 6.12. We begin by comparing the

convergence rates of the CG to solve 4DVar with and without the control

variable transform (CVT).

7.5.1 Convergence 4DVar vs P4DVar

In this section we compare the convergence rates of the CG methods applied

to solve the unpreconditioned and preconditioned systems (7.63) and (7.64)

respectively. We choose the background error covariance B = σ2
bC where

C is the SOAR correlation matrix (5.11) and σ2
b = 1 is the background

error variance. For our numerical forecast model we use the advection model

M defined by (7.30) using a time step ∆t = 0.1 and a = 0.3, therefore

ν = a ∆t
∆x

∈ (0, 1) and as mentioned in Section 7.1.2, this means the numerical

scheme is stable. We take observations at 20 grid points and at the same
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positions at the time steps 0, 3∆t, 6∆t. We use the same configuration of

observations as in Sections 7.1.3 and 7.2.2 and choose an observation error

variance of σ2
o = 1. We showed in Sections 7.1.3 and 7.2.2 that with this

configuration the preconditioned system was much better conditioned then

the unpreconditioned system. We also found that the condition number of

both of the 4DVar and P4DVar Hessians, S and Ŝ respectively, increased as

the lengthscale increased. We therefore expect the CG method to converge

much faster for the preconditioned system than for the unpreconditioned. We

also expect that the CG method converges slower as the lengthscale increases.
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Figure 7.6: The effects of different lengthscales on the convergence of CG for unprecon-
ditioned 4DVar for the SOAR correlation matrix.

We tested this hypothesis on our simple periodic system. In the experiments

the final solutions had relative errors of 10−6 − 10−7 and have therefore suf-

ficiently converged. Comparing, Figures 7.6 and 7.7 confirm that the unpre-

conditioned system converges slower then the unpreconditioned system. For

instance, at lengthscale L = 0.2, the CG method takes around 150 iterations

when applied to converge for the unpreconditioned system but 12 iterations

for the preconditioned system. Additionally, in both systems, increasing the

lengthscale increases the condition number and corresponds with the gen-
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Figure 7.7: The effects of different lengthscales on the convergence of CG for precondi-
tioned 4DVar for the SOAR correlation matrix.

eral increasing in the number of iterations required for CG to converge. We

now consider how the convergence rate of the CG method varies for solv-

ing the preconditioned system when we change the accuracy and spacing of

observations.

7.5.2 Observation Variance

In Section 7.3 we showed that the condition number of the Hessian Ŝ de-

creased as the error variance increased. In this section we briefly consider

the effect of the error variance on the convergence rate of the CG method

applied to solve (7.64). We use the same design as the previous section ex-

cept now we fix the lengthscale at L = 0.2 and allow the observation error

variance to vary. As before the relative error in the final solution was of

the magnitude of 10−6 − 10−7. Figure 7.8 shows that the convergence rate

increases as we reduce the accuracy of the observations. This is as expected

since a decrease in accuracy resulted in a increase in the condition number.
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Figure 7.8: The effects of the observation error variance on the convergence rate of the
CG method for preconditioned 4DVar using the SOAR correlation matrix.

We now consider the effect of the observation spacing on the convergence

rate of the CG method applied to solve the P4DVar system.

7.5.3 Observation Distribution

In Section 7.4 we showed that the observation distribution, both spatially

and temporally, is a major factor in determining the condition number of the

P4DVar Hessian Ŝ. In particular, we showed as we increased the spacing of

the observations the condition number of Ŝ decreased. Additionally we found

that by reducing the number of time steps that we observe we also reduce

the condition number of Ŝ. We therefore expect that the convergence rate

of the CG method used to solve the linear system (7.64) will increase as we

increase the spacing of the observations and observe at fewer time steps. To

test this hypothesis we perform a simple experiment using a single periodic

parameter on a 1D domain. We fix N = 500 grid points with equal spacing

∆x = 0.1. We use the advection model discretised using the upwind scheme

142



as the forecast model M with a time step of ∆t = 0.1 and a = 0.3. We

choose the background error covariance B = σ2
bC, where C is the SOAR

correlation matrix (5.11) and σ2
b = 1 is the background error variance. We

assume that our observation errors are uncorrelated with observation error

variance σ2
o = 1. First we make observations of the parameter at three times

steps 0, 3∆t, 6∆t and take 20 observations on the initial 20 grid points of the

domain. We consider the effect on the convergence rate of the CG method

as we increase the spacing between the observations. Figure 7.9 shows the
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Figure 7.9: The effects of the observation spacing on the convergence rate of the CG
method for preconditioned 4DVar using the SOAR correlation matrix.

effect on the convergence rate of the CG method applied to solving the linear

system (7.64) as we change the spacing between these observations using a

lengthscale L = 0.2. For other lengthscales the pattern is similar. As the

spacing increases the convergence rate initially decreases but then begins

to increase as the spacing becomes larger then 3∆x. The initial decrease

in the convergence rates of CG as the spacing increases from ∆x to 3∆x

is contrary to what we would expect since from ∆x to 3∆x the condition

number decreases as seen from Figure 7.5. We have not been able to explain

this behaviour.
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We also consider the effect of changing the number of time steps that we

observe. We use the same experimental design as for the spacing exper-

iment used in this section but now use a random distribution of 20 ob-

servations as used in Section 7.5.1. We consider either observing at three

time steps 0, 3∆x, 6∆x giving a total of 60 observation or at 7 time steps

0, ∆x, 2∆x, 3∆x, 4∆x, 6∆x, 6∆x, giving a total of 140 observations. For a

lengthscale L = 0.2 the condition number increased from 6.06 to 12.97 when

we observed more frequently. We found the number of iterations of the CG

method required for convergence increased from 12 to 15 when we increased

the number of observations. Similarly, for L = 0.5 the number of iterations

required for the CG method to converge increased from 12 to 16 when we

observed more frequently with the corresponding change in the condition

number of 6.87 to 14.71. Hence, in general increasing the spacing of the ob-

servations and reducing the number of observations increases the convergence

rate of the CG method. We now summarise this chapter.

7.6 Summary

In this chapter we investigated the condition number of the 4DVar system.

We have sought to analyse the effect of the forecast model on the condi-

tioning. In particular, we derived new theoretical bounds on preconditioned

and unpreconditioned 4DVar. In the unpreconditioned systems we confirmed

that, just like the 3DVar system, the conditioning is related to the condition-

ing of the background covariance matrix. We confirmed this experimentally

using a linear advection equation as our forecast model. We showed that the

as the lengthscale increased, the conditioning of the background error covari-

ance matrix dominated the conditioning of the 4DVar Hessian. Therefore for

large lengthscales the 4DVar Hessian is ill-conditioned.

We derived theoretical bounds on the preconditioned 4DVar system, precon-

ditioned using the control variable transform. We showed that the condition
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number of the P4DVar Hessian was dependent on the sum of components of

a reduced 4D background error covariance matrix. This matrix is very de-

pendent on the forecast model employed and therefore is difficult to analyse

in general. We considered the matrix using a discretised advection model as

our forecast equation. In order to understand the conditioning of the P4DVar

Hessian we experimented using a single parameter periodic system. In our

numerical experiments we found that preconditioning with the background

error covariance matrix produced a large reduction in the condition number

of the 4DVar Hessian.

By analysing the action of the advection model on the background error co-

variance matrix we could also predict the behaviour of the conditioning of

P4DVar as we changed the observation errors and positions. Using numerical

experiments on a periodic one-parameter 1D domain we found that the con-

dition number of the P4DVar Hessian was reduced by reducing the number

of observations, increasing the observation error variance and increasing the

spacing between observations. These results appear to be counter-intuitive

since we have shown that by increasing the accuracy of the observations,

and having more observations, the solution to the 4DVar problem is less ac-

curate (indicated by the increase in the condition number). This may be

explained by the fact that highly accurate observations and more observa-

tions put tighter restrictions on the optimisation problem and so the problem

becomes more difficult to solve and accurately satisfy the constraints. It is

difficult to predict the effect of the observation accuracy and distribution on

the condition number of the Hessian for a general forecast model, this will

depend on the form of the coeffiecients of the 4D background error covariance

matrix.

Finally we analysed the convergence rate of the CG method as applied to lin-

ear problems associated with solving the 4DVar and P4DVar minimisations.

In general, the convergence rate results coincided with the condition number

results. That is, a reduction in the condition number caused a increase in
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the convergence rate of the CG method. A large improvement was found

in the convergence rate of the CG method applied to the 4DVar when the

system was preconditioned with the CVT. In the preconditioned system the

most significant changes in the convergence rates are a result of changing the

accuracy of the observations.

Now we have analysed the system theoretically and in simple numerical ex-

periments for both 3DVar and 4DVar we now consider the conditioning of

the Met Office operational Var scheme.
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Chapter 8

Operational results

Many operational numerical weather prediction (NWP) centres utilise a vari-

ational data assimilation scheme in order to find the analysis. The Var scheme

is usually implemented with a control variable transform (CVT) in order to

model the background error covariance matrix. As shown in Chapters 6 and 7

the CVT has the added beneficial effect of improving the conditioning of the

Var problem. The CVT has been shown to produce a significant reduction

in the computational cost of the minimisation [42]. In Chapters 6 and 7 we

derived new algebraic bounds on the condition number of the preconditioned

Var Hessian. These bounds, together with simple numerical experiments,

showed that the condition number of the preconditioned Hessian is reduced

by

1. Using less accurate observations.

2. Increasing the spacing between observations.

3. Using less observations.

In this chapter we show that these results also apply in an operational setting

in the Met Office global Var scheme. We show this with experiments using

both real and pseudo observations.

147



In the ECMWF operational system it was found that doubling the error in

the surface observations halved the condition number of the Var Hessian [63].

This is in rough agreement with the approximation to the condition number

given in [6] for a simple system and with our theoretical results in Chapters

6 and 7 which showed that the conditioning of preconditioned Var problem is

linearly related to the accuracy of the observations. Tremolet showed that the

surface observations dominated the conditioning of the ECMWF Var scheme.

It was suggested that this was caused by the large number of dense accurate

surface observations around Europe [63]. This hypothesis was supported

by a plot of the components of the leading eigenvector which showed that

the components with largest magnitude were centred over Europe. This

conclusion is also supported by the theory in Chapters 6 and 7 were we

showed that reducing the spacing between observations produced a larger

condition number of the preconditioned Var Hessian. In this chapter we

also consider the condition of the Var Hessian when different observations

types are assimilated in the Met Office scheme and show that the surface

observations dominate the conditioning of the scheme. We begin this chapter

with an overview of the Met Office (MO) system including the minimisation

schemes, the observations and the covariance matrices. We then consider the

condition number of the system using pseudo observations. Next we look at

real observations. We begin by considering how different observations types

affect the condition number and then we consider how thinning observations

can improve the Var conditioning.

8.1 The Met Office Variational Data Assimi-

lation Scheme

In this section we give an overview of the Met Office variational data assim-

ilation scheme.
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8.1.1 Constructing the Cost Function

The UK Met Office currently implements an incremental form of the vari-

ational data assimilation scheme using a control variable transform (CVT)

(see Section 2.4) [54], [43]. The background state, xb is used as an initial

guess and is usually found from an earlier 6 hour forecast [54]. The CVT

transforms the increment δx0, with background error covariance matrix B, to

new variables, δz0, which have uncorrelated errors. This provides a method

for modelling the background error covariance matrix without forming it ex-

plicitly. The Met Office CVT, denoted U, can be described by a series of

transforms [10], [43]

U = UpUvUh, (8.1)

where the subscript p represents a parameter transform, and v and h rep-

resent vertical and horizontal spatial transformations respectively. In order

to understand the CVT it is useful to consider the inverse of the CVT (8.1),

which describes the transformation from the increment δx0 to the new control

variables δz0

δz0 = U−1δx0 = U−1
h U−1

v U−1
p δx0. (8.2)

We briefly describe each of the transforms used to construct the CVT. In the

Met Office CVT, the parameter transform U−1
p transforms from parameters

of vertical and horizontal wind velocity, potential temperature, moisture den-

sity, pressure and specific humidity to new control variables of stream func-

tion, velocity potential, unbalanced pressure and relative humidity which are

considered to have uncorrelated errors between parameters (see [10] and [3]).

With respect to these new parameters the background error covariance ma-

trix can be written in block diagonal form since there exist no inter-parameter

correlations between the errors. For each of the new parameters a vertical

transform, U−1
v , is applied and removes spatial correlations in the vertical

for each fixed horizontal (latitude-longitude) position on the globe. This is

achieved by projecting onto the orthogonal, uncorrelated modes of the ver-

tical error covariance matrix of each parameter. Similarly, the horizontal
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transform U−1
h projects the errors in the horizontal directions at each con-

stant vertical mode onto the orthogonal, uncorrelated modes of the horizon-

tal error covariance matrix. These spatial transforms are essentially spectral

transforms onto the eigenvectors of the error covariance matrix and must be

calibrated so as to fit with the assumed errors within the background state

(see [10] for further details). In the Met Office system a 2D version of the

SOAR background correlation model described in Chapter 5 is used to model

the horizontal correlations [1], [4] [28], [8]. Since the transforms are approx-

imations to the actual error correlations then they provide only an estimate

of the true background error covariance matrix

B = B1/2BT/2 ≈ UUT = UpUvUhU
T
hUT

v UT
p . (8.3)

This estimate UUT is called the implied background error covariance matrix.

Observations are collected from a variety of sources including surface observa-

tions, aircraft, sondes and satellites with various instruments (E.g. ATOVS,

SSMI, IASI etc.) and are assimilated over a 6 hour data window [54]. The

errors are almost all considered to be uncorrelated and therefore the ob-

servation error covariance matrices Ri are diagonal with observation error

variances as the diagonal elements.

8.1.2 Minimising the Cost Function

In this section we outline the minimisation scheme used within the Met Of-

fice. Currently the Met Office performs only one outer loop update and

therefore the operational cost of Var is associated with the inner-loop min-

imisation (see Section 2.4). There are two iterative methods available for the

Var minimisation: the limited Memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) or the conjugate gradient (CG) method [5]. In this chapter all

minimisation experiments will involve the CG method equivalent to the al-

gorithm described in Section 3.3. An advantage of this method is that we
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can obtain estimates of the leading eigenvector and eigenvalue of the Hessian

for little extra cost via the Lanczos method [23, Sec. 10.2]. Since there are

fewer observations than the number of elements in the state vector the small-

est eigenvalue of the Hessian is unity and therefore the condition number is

simply the largest eigenvalue of the Hessian. Thus the Lanczos method can

be used to calculate the condition number of the Hessian.

The stopping criteria for the minimisation is determined either by achieving

a sufficient reduction in the cost function gradient

|∇(k)J |
|∇(0)J | < ǫ, (8.4)

for some tolerance ǫ > 0 at the kth iteration as suggested in [36] or after a

prescribed maximum number of iterations of the gradient solver have been

applied. The experiments are performed on the NEC SX6 supercomputer and

some on the more recent IBM POWER6. We now consider the conditioning

of the operational Var scheme in the case of assimilating pseudo observations.

8.2 Pseudo Observation Results

In Chapters 6 and 7 we showed that the condition number of the Hessian of

P3DVar and P4DVar is linearly related to the accuracy of the observations

and the spacing of the observations. In this section we show that the results of

the theory of Sections 6.3, 7.3 and 7.4 also apply in the Met Office operational

system in the case of pseudo observations. The Met Office variational schemes

allow the inclusion of a maximum of 20 pseudo observations whose position,

values and errors can be defined by the user. Hence unlike real observations

we have the ability to adjust key properties of the observations assimilated.

Pseudo observations can be positioned at any point of the global grid and

at any 40 minute interval throughout a 6 hour time window together with

their observation error variances σ2
o . In our experiments we use the Met
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Condition Number
Error Variance 3DVar 4DVar

0.01 15242150 18078035
0.1 1524483 1808122
1.0 152422 180781
10 15243 18078
25 6098 7232
50 3050 3618
75 2033 2412
100 1525 1809

Table 8.1: Change in condition number of the preconditioned Var Hessian with change
in the error variance of pseudo observations in 3DVar and 4DVar, see text for observation
distributions.

Office N108L38 grid which means we consider L = 38 vertical levels, 2N

latitudinal points and 3
2
N − 1 longitudinal points where N = 108. This

equates to about 5/3 degrees between grid points in the East-West direction

and 10/9 degrees in the North-South direction.

The value of the innovation vectors di = yi −Hi(M(t0, ti,xb)) at each time

observed can also be specified, where M(t0, ti,xb) is the full non-linear model

which evolves the background state from time t0 to ti as introduced in Sec-

tion 2.2. By specifying the innovations explicitly the background state xb

is not necessary. We begin our investigation of the operational system by

considering how the observation errors can affect the condition number of

the preconditioned 3D and 4DVar Hessians.

8.2.1 Observation Error Variance

In Sections 6.3.1 and 7.3 we showed that the Hessians of the preconditioned

3DVar and 4DVar systems are linearly related to the inverse of the observa-

tion error variances. In this section we show that these results also apply to

the Met Office Var Hessian. In the 3DVar case we define a set of 16 surface

pressure observations arranged in a 4-by-4 grid with one grid spacing between

each row and column. The observations are positioned to be approximately
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over the U.K.

In the 4DVar case, 6 surface pressure observations are observed at the start,

middle and end of a 160 minute time window with the observations in a

2-by-3 grid with one grid spacing between each row and column. These are

similarly placed close to the U.K. In both 3D and 4DVar the innovation vec-

tors are fixed at 100 Pa but are not part of the Hessian and thus have no

affect on the condition number. In our experiments the observation positions

are kept fixed and the observation error variance is varied in the range 1 Pa2

to 100 Pa2. Table 8.1 shows the change in the condition number of the pre-

conditioned Hessian of 3D and 4DVar as the observation error varies. The

table confirms that the condition number is approximately inversely propor-

tional to the observation accuracy. For example, increasing the observation

variance by a factor of 10 from 1 Pa2 to 10 Pa2 reduces the 3DVar condition

number by a factor of 10 from 152422 to 15243 and in 4DVar reduces the

condition number from 180781 to 18078.

Since the inverse of the Hessian is the analysis covariance matrix, the recipro-

cal of the eigenvalues of the Hessian are eigenvalues of the covariance matrix.

The eigenvalues of the covariance matrix correspond to the error variances in

the direction of the corresponding eigenvector. Hence the most accurate data

(smallest error variance) is in the direction of the eigenvector corresponding

to the largest eigenvalue of the Hessian. This is illustrated by a plot of the

surface pressure components of the leading eigenvector of the Hessian for the

above 3DVar observations distribution and observation error variance σ2
o = 1

Pa2. Figure 8.1 shows that the components around the observations have

the largest magnitude and correspond to the most accurate (and in this case

only) observations. We now consider the effect of observation spacing on the

condition number.
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Unified Model Output (Vn 7.1): PRESSURE AT RHO LEVELS AFTER TS (Pa)

x: longitude  (degrees_east)

y: latitude  (degrees_north)

z: hybrid_ht 9.9977731704711914 (level)

t: date / t 2008/10/27:09.00 / 0.000000 (days since 2008−10−27 09:00:00)

    −90.000 

    −54.000 

    −18.000 

     18.000 

     54.000 

     90.000 

y

     0.0000      71.667      143.33      215.00      286.67      358.33 
x

    −103.12 

    −92.537 

    −81.957 

    −71.376 

    −60.796 

    −50.216 

    −39.635 

    −29.055 

    −18.475 

    −7.8946 

     2.6857 

Figure 8.1: Surface pressure components of the leading eigenvector of the 3DVar Hessian
using pseudo observations in a 16-by-16 grid over Europe with error variance 1 Pa

2.
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Condition Number
Obs Config. σ2

o = 25 σ2
o = 100

1 6098 1525
2 4615 1155
3 2756 690
4 1285 322
5 825 207
6 652 163

Table 8.2: Condition number of the P3DVar Hessian as function of the change in spacing
of pseudo observations. The details of the observation configuration are given in the main
text.

Condition Number
Obs Config. σ2

o = 25 σ2
o = 100

1 7232 1809
2 6218 1555
3 4240 1061
4 2260 566
5 1607 402
6 1376 344

Table 8.3: Condition number of P4DVar Hessian as a function of the change in spacing of
pseudo observations. Details of the observation configuration are given in the main text.

8.2.2 Observation Spacing

In Chapters 6 and 7 we showed that increasing the spacing of observations

reduced the condition number of the P3DVar and P4DVar Hessians. We now

show that the same results apply to the operational system in the case of

assimilating pseudo observations.

Consider the same 4-by-4 3DVar and 2-by-3 4DVar pseudo surface pressure

observation distribution as described in Section 8.2.1 and consider experi-

ments using two fixed observation error variances σ2
o = 25 Pa2 or σ2

o = 100

Pa2 but varying the observation spacing. Keeping one observation fixed

roughly above the U.K. we then increase spacing between observations in

adjacent rows and columns. We refer to the original position of the observa-

tions as observation configuration 1. We then consider spacings of 2, 4, 8, 12

and 16 grid lengths which we label Configuration 2,3,4,5 and 6 respectively.
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Figure 8.2: Condition number of the Hessian of the Met Office 3DVar scheme as a function
of spacing of 8 equatorial pseudo observations.

Tables 8.2 and 8.3 shows the impact of the changing the observation spacing

for 3D and 4DVar respectively for two different observation error variances.

In agreement with the results in sections 6.3.2 and 7.4 an increase in the

spacing gives a reduction in the condition number. For instance, with σ2
o = 25

Pa2, increasing the spacing from 4 to 12 gridlengths (configuration 3 to 5)

results in the condition number reducing from 2756 to 825 in the 3DVar case

and from 4240 to 1607 in the 4DVar case.

A further 3DVar experiment was performed but this time using eight equally

spaced pseudo surface pressure observations positioned along the equator.

The observation error variance was fixed at 1 Pa2 and the spacing was in-

creased. Figure 8.2 shows the change in the condition number of the Hessian

as a function of lengthscale. Comparison with Figure 5.1 shows the similar-

ity of the reduction in condition number with spacing and the reduction in

the error correlations of the SOAR correlation matrix (5.11) with distance

between errors. The reduction in the condition number is rapid but tails off

as the spacing increases further. Once again the increase in the spacing of

the observations coincides with the decrease in the condition number of the

Hessian. We now consider the conditioning of the Met Office operational

system using real observations.
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8.3 Real Observation Results

In this section we consider the condition number of the Hessian of the Met

Office variational assimilation scheme using real observations. We begin by

considering the conditioning of the Met Office scheme with respect to indi-

vidual observation types and then we investigate the effect of observation

thinning.

8.3.1 Conditioning and Observation Types

In the Met Office 4DVar minimisation scheme observational data is assim-

ilated during a six hour time window from a variety of different sources

including aircraft, satellite, sondes and surface data [54]. In [63] it was sug-

gested that the conditioning of the ECMWF Var scheme was dominated by

the accurate surface observations which are densely distributed around Eu-

rope. In this section we show that the conditioning of the Met Office Var

scheme is also dominated by surface observations. We also link this result to

the theory in Sections 6.3 and 7.4.

In the experiments in this section the model time steps are at 40min intervals

in a 6 hour time window. The minimisation is performed on the Met Office

N108L38 global grid. We began by considering observational data from two

different dates, 12Z on 27th October 2008 and 12Z on 14th July 2009. Different

assimilations were performed in 3DVar and 4DVar using all the observations

and then single observation types only.

Figures 8.3 and 8.4 show, for the 3DVar and 4DVar respectively, the condi-

tion numbers of the Hessian when all the observations or when only single

observation types are assimilated. Some of the data types, such as GPSRO

and SSMI are not shown. When assimilated on their own these observation

types gave a Hessian with a condition number of less then 50 and are thus not
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27th October 2008
14th July 2009

Figure 8.3: Condition number of the Met Office 3DVar scheme when assimilating different
observation types.

considered to be major contributors to the conditioning. For the 4DVar case

observations are assimilated around the six hour time window centred around

12Z and therefore the analysis is given at the start of the time window at 9Z.

We first notice that in both the 3DVar and 4DVar cases the magnitudes of

the condition numbers are similar for both days for each observations type.

The similarity for the different days indicates that we can expect consistent

results regardless of the days we consider.

From both Figures 8.3 and 8.4 it is evident that when assimilating single

observation types it is the surface observations that give a Hessian with the

largest condition number and that the magnitude of this condition number

is similar to the condition number of the Hessian when all the observational

data is assimilated. This suggests that, like the ECMWF system, it is the

surface observations which dominate the condition number of the Hessian

of the Met Office operational Var scheme. To further test this hypothesis

further experiments were performed with observation types removed. Tables

8.4 and 8.5 show the conditioning of 3DVar and 4DVar respectively and the

effect of removing the surface observations. We also performed experiments

with all the observation data assimilated except the ATOVS data, which

when assimilated alone, produces a Hessian which is the second most ill-
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Figure 8.4: Condition number of the Met Office 4DVar scheme when assimilating different
observation types.

Condition Number
Observation 27/10/2008 14/07/2009

All 3658 3673
Only Surface 3345 3355
Only ATOVS 1372 960
No Surface 1431 1215
No ATOVS 3667 3624

Table 8.4: Conditioning of the Met Office 3DVar Scheme when assimilating different
observation types.

conditioned when only single observation types are used. As seen in the

tables the removal of the surface observations from the assimilation results

in a reduction of around 70% and 60 % in the condition number for the

3D and 4DVar cases respectively compared to when all the observations are

assimilated. The condition number of the Hessian is now similar in magnitude

to the condition number of the Hessian when only ATOVS data is assimilated.

However, in both the 3DVar and 4DVar cases the change caused by removing

the ATOVS data is minimal producing no significant effect on the condition

number.

According to the theory presented in Chapters 6 and 7, poor conditioning

in the preconditioned system can be caused by the inclusion of accurate ob-

servations and dense observations (small spacing between the positions of
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Condition Number
Observation 27/10/2008 14/07/2009

All 3197 3163
Only Surface 2869 2827
Only ATOVS 905 809
No Surface 972 976
No ATOVS 3146 -

Table 8.5: Conditioning of the Met Office 4DVar Scheme when assimilating different
observation types.

Unified Model Output (Vn 7.1): PRESSURE AT RHO LEVELS AFTER TS (Pa)

x: longitude  (degrees_east)

y: latitude  (degrees_north)

z: hybrid_ht 9.9977731704711914 (level)

t: date / t 2009/07/14:09.00 / 0.000000 (days since 2009−07−14 09:00:00)

    −90.000 

    −54.000 

    −18.000 

     18.000 

     54.000 

     90.000 

y

     0.0000      71.667      143.33      215.00      286.67      358.33 
x

    −4.2211 

     4.5562 

     13.334 

     22.111 

     30.888 

     39.665 

     48.443 

     57.220 

     65.997 

     74.775 

     83.552 

Figure 8.6: Surface pressure components of the leading eigenvector of the 4DVar Hessian
produced from assimilating observation data from 14th July 2009.
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Time Condition Number
00Z 2662
06Z 2737
12Z 2770

Table 8.6: Conditioning of the Met Office 4DVar Scheme when assimilating surface obser-
vations at different times of 16/07/2009

the observations) in the assimilation. Figure 8.5 shows the distribution of

surface pressure observations for the date 14th July 2009. We notice that

a high concentration of observations are centred over Europe. Plotting the

components of the leading eigenvector of the Hessian (corresponding to the

direction with the smallest analysis error variance) shows that the most ac-

curately analysed data coincides with the dense surface data over Europe.

For instance, Figure 8.6 shows the distribution of the pressure components

of the leading eigenvector of the 4DVar Hessian at the surface of the Earth.

The plot clearly shows the components with largest magnitude are centred

at approximately 0 degree Latitude and 50 degree Longitude and are con-

centrated around Europe. A comparison with the leading eigenvector of the

Hessian where only the surface observations are assimilated shows the same

pattern as Figure 8.6 giving further evidence that the surface observations

dominate the condition number of the Hessian.

Finally it is worth mentioning that the magnitude of the condition numbers

are consistent when assimilating data from different times of the same day.

Table 8.6 shows the condition number of the 4DVar Hessian produced from

assimilating surface pressure observational data from the 16th of July 2009.

As can be seen from the table the condition number varies very little between

the three assimilation times used.

8.3.2 Thinning Observations

In the previous section we concluded that the surface observations dominate

the conditioning of the Met Office operational Var scheme. In this section
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Experiment Condition Number
Scheme Observations No Thinning Thinning
3DVar Surface 3395 501
3DVar All 3590 1406
3DVar No Surface 1406 -
4DVar Surface 2778 456
4DVar All 2975 928

Table 8.7: Condition number of Hessian of the Met Office Var scheme with and without
thinning for data from 11/03/2009.

we consider the effect of thinning the observations on the condition number

of the Hessian. In this section thinning will refer to the process of remov-

ing observations so that there is increased spacing around the observation.

According to the theory and simple experiments of Sections 6.3.2 and 7.4

the conditioning of the system should improve if observations are thinned.

Thinning observations is common practice in NWP centres to ensure that

no observation error correlations remain which are not accounted for in the

assimilation scheme [15]. In this section we show that thinning the surface

observations produces a reduction in the condition number of the Met Office

Var scheme.

We assimilate observational data from 12Z on 11th March 2009. The surface

pressure data is shown in Figure 8.7 on the Met Office N108L38 global grid.

We reduce the density of the surface observations by applying a thinning of

300km. Hence, observations are removed so that there is a spacing of 300km

between the remaining observations. The thinned data in Figure 8.8 shows

the large reduction in land observations. The 3DVar and 4DVar Met Office

minimisation schemes are applied using all the observations with both the

original and then the thinned surface data. We also calculated the condition

number for Var experiments where we only assimilated the unthinned and

thinned surface data and an additional experiment in 3DVar where all but

the surface data was assimilated. The results are shown in Table 8.7.

The table shows the condition number of the Hessians for both the 3DVar
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and 4DVar assimilations. When only the surface observations are assimilated

the thinning of the data shows a dramatic reduction in the condition number

of the Hessian. The condition number of the thinned Hessian is reduced by

over 80% of the condition number of the unthinned Hessian, from 3395 to

501 in the 3DVar case and 2778 to 456 in the 4DVar case.

Now consider the case where all the observations are assimilated. In the

3DVar case, the condition number of the Hessian which assimilated the

thinned surface observations is 60% of the size of the condition number of the

Hessian which assimilated the unthinned surface observations. Similarly in

4DVar, the condition number of the Hessian which assimilated the thinned

data is 70% the size of the condition number of the Hessian for the un-

thinned. In the 3DVar case, the Table 8.7 shows that the condition number

of the Hessian that assimilated all the observations including the thinned

surface observations is exactly the same magnitude as the condition number

of the Hessian that assimilated all the observations minus the surface obser-

vations. Hence we conclude that the thinned surface observations now have

no affect on the condition number of the system. As predicted by the theory,

in Sections 6.3.2 and 7.4 we have shown that by thinning the observations

we improve the conditioning of the Met Office Var scheme.

We remark that although thinning the data gives an improved condition

number it also implies we must remove information from the assimilation.

This may result in a less accurate analysis. In reality, in order to obtain

an accurate analysis, a balance is necessary between the numerical accuracy

of the problem (provided by the measure of the condition number) and the

information content. We now summarise this chapter.
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8.4 Summary

The Met Office implement a preconditioned Var scheme, preconditioned via

the control variable transform. A well-conditioned system is necessary for an

accurate forecast. In Sections 6.3 and 7.4 we showed that as the observations

become less accurate, the spacing between observations increases, and the

number of observations are reduced the condition number of the precondi-

tioned Hessian decreases. In this chapter we showed that these results also

apply in the Met Office operational Var scheme.

We began by giving an overview of the Met Office operational system includ-

ing outlines of how the Var cost function is constructed and minimised. Next

we considered the conditioning of the Met Office system when only assimi-

lating pseudo observations. This gave us the ability to define the errors and

positions of observations which is not possible with real observations. We

showed in both 3DVar and 4DVar experiments that the condition number

of the Met Office Var scheme was improved by assimilating more inaccurate

pseudo observations with greater spacing between them. We then looked at

the conditioning of the Met Office scheme using real observations. First we

looked at individual observation types. We found that surface observations

dominated the conditioning of the Met Office Var minimisation. We then

considered the effect of thinning the surface observations. We found that by

sufficiently thinning the observations we reduced the overall condition num-

ber of the system and removed the dominance of the surface observations on

the conditioning of the Met Office Var scheme. Hence we showed that the

results predicted by the theory and experiments in Chapters 6 and 7 also

apply in an operational system. We now finish by summarising this thesis

and considering possible future work.
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Chapter 9

Conclusions

In numerical weather prediction (NWP), data assimilation techniques are

applied which combine observation data, a prior estimate and a numerical

forecast model in order to generate a best guess of the initial state of the

atmosphere, called the analysis. The accuracy of this analysis is vital in order

to ensure an accurate future weather forecast. Variational data assimilation

(Var) techniques are currently employed in many major NWP centres around

the world. In practice, Var is implemented in an incremental form (see

Section 2.3) and commonly in conjunction with a control variable transform

(CVT) in order to model the background error covariance matrix (see Section

2.4). The incremental formulation requires minimising a linear least-squares

cost function linearised around the current best estimate in a so-called inner-

loop and then an update of the current best estimate in an outer-loop step

(see Section 2.3). In many NWP centres, few if any, outer-loop updates

are performed and so the main computational cost is associated with the

inner-loop minimisation.

The condition number of the Hessian of the incremental cost function gives

a measure of the sensitivity of the analysis to perturbations in the system.

Additionally the condition number can give an indication of the rate of con-

vergence of the iterative schemes used to solve the inner-loop step. Thus, in
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an NWP context, a small condition number is desirable in order to obtain an

accurate analysis in real-time. In this thesis we have considered the condi-

tioning of the linearised cost functions associated to the incremental version

of Var without the CVT (2.9) denoted Var and with the CVT (2.16) denoted

PVar.

There exists very little theoretical research in the literature explaining the

conditioning of Var or PVar. Most results come from either simple models

or experimental evidence [6], [18], [42], [63]. Without proper information on

the conditioning of the Var and PVar problems it can be difficult to,

• Identify sources of ill-conditioning in Var or PVar.

• Explain why PVar seems to have better conditioning than Var.

• Predict what effect future modifications may have on the condition

number of Var and PVar.

In this thesis we expanded on the current existing body of research in the

conditioning of variational data assimilation by deriving theoretical bounds

on the condition number of the Var and PVar Hessians. In Chapter 2 we

introduced data assimilation with the main focus on variational data assim-

ilation. We also described an incremental version of Var which included the

CVT based on a square root of the background error covariance matrix. We

also gave an overview of how the CVT is implemented within the Met Office

operational Var scheme.

In Chapter 3 we introduced the concept of condition number of a matrix.

We showed how the sensitivity of the analysis to perturbations is related

to the condition number of the Hessian of the Var/PVar cost functions. A

larger condition number implies a sensitive solution and we call the system

ill-conditioned. We also introduced the concept of preconditioning which

changes the condition number of a matrix. We showed that the CVT ef-

fectively acts as a preconditioner. We then showed how an ill-conditioned
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system can imply a slow convergence rate of the gradient methods used to

minimise a linear least-squares cost function. Finally, we presented theoreti-

cal results for bounds on the eigenvalues of square matrices which we used to

put theoretical bounds on the condition number of the Var/PVar Hessians

in Chapters 6 and 7.

In Chapter 4 we presented previous results which indicated that the conver-

gence of the Var minimisation was slow. This suggested that Var may be an

ill-conditioned system. In [42], it was suggested that if the background error

covariance matrix was ill-conditioned then this may cause ill-conditioning if

the Var scheme. Comparison with previous experimental work indicated that

the preconditioned system performed much better than the Var scheme with-

out the CVT [42]. We also presented prior research from the literature on

the conditioning of the PVar scheme in a simple 2-grid system that showed

that the conditioning of the preconditioned scheme deteriorated in the case

of dense observations when the accuracy and number of observations was

increased [6].

In Chapter 5 we considered the conditioning of three common auto-covariance

matrices defined for a periodic system on a 1D domain. In each of the cases

we showed that there is a large increase in the condition number of the

background error covariance matrix as the error correlation lengthscale was

increased.

In Chapters 6 and 7 we derived new theoretical bounds on the condition

number of the 3DVar and 4DVar Hessians respectively which showed the

conditioning of Var was related to the conditioning of the background error

covariance matrix. Using the results from Chapter 5 we illustrated this re-

lationship using numerical experiments for a one-parameter, periodic system

on a 1D domain. We showed that if the background covariance matrix was

ill-conditioned then so was the Var scheme.

In Chapters 6 and 7 we also derived new theoretical bounds on the condi-
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tion number of the 3DVar and 4DVar Hessians preconditioned via the control

variable transform. We showed that the CVT significantly reduced the condi-

tion number of Var scheme and we illustrated it using numerical experiments

on a periodic system define on a 1D domain using the background covari-

ance matrices defined in Chapter 5 to construct the Hessians. The bounds

also indicated that the observation distribution and accuracy played an im-

portant role in the condition number of the Hessian. We showed that the

condition number was reduced by thinning the observations, reducing the

spacing between observations and by increasing the observation error vari-

ance. In Chapter 8 we showed that the same results also applied to the Met

Office operational Var scheme with experiments using both real and pseudo

observations.

Results for the convergence rate of the conjugate gradient method were pre-

sented in Chapters 6 and 7. We found that the convergence rate was sig-

nifcantly increased by preconditioning using the CVT. Additionally in the

preconditioned system an increase in the convergence rate of the conjugate

gradient method was found by reducing the number of observations, increas-

ing the spacing between the observations or by reducing the accuracy of the

observations. We now summarise our main conclusions.

9.1 Conclusions

In this thesis we have developed new algebraic bounds on the condition num-

ber on the Var and PVar Hessians. The aim is to provide a more theoretical

understanding of the conditioning of the Var system. More specifically, in

this thesis

1. We showed that common auto-correlation models, used to model the

background error covariance matrices in Var, have condition numbers
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which are sensitive to correlation lengthscale and hence, for highly cor-

related background errors, will be ill-conditioned (see Chapter 5).

2. We derived new theoretical bounds on the condition number of the Var

Hessian and showed that the conditioning of Var is dependent on the

conditioning of the background error covariance matrix. Using results

from Chapter 5, we showed that for highly correlated background errors

the Hessian of the unpreconditioned system is generally ill-conditioned

(see Sections 6.1.1 and 7.1.2). We illustrated this with experiments

using a periodic system on a one-dimensional domain.

3. We derived new theoretical bounds on the condition number of the

Hessian of the preconditioned Var system. We showed using a periodic

system on a one-dimensional domain that the system is less sensitive

to the lengthscale and better conditioned than the Hessian of the un-

preconditioned Var system (see Sections 6.2 and 7.2.1).

4. Using the bounds on the conditioning of the preconditioned system

we showed in experiments on a periodic system on a one-dimensional

domain that the conditioning is affected by the accuracy, number and

positioning of the observations (see Sections 6.3, 7.3 and 7.4).

5. We showed using experiments on a one-parameter, periodic system that

our preconditioned system produces a large increase in the convergence

rate of the conjugate gradient method compared to the unprecondi-

tioned system. In addition, increasing the spacing and making the

observations less accurate also increases the convergence rate in the

preconditioned system (see Sections 6.4 and 7.5).

6. We showed that the effect of the observation accuracy and distribution

found in Sections 6.3 7.3 and 7.4 on the PVar system also apply to

the Met Office operational Var scheme. We showed that the condition

number of the Met Office Var scheme could be reduced by thinning the

observations, increasing the spacing between observations and making

the observations less accurate (see Chapter 8).
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9.2 Further Work

In the derivation of the theoretical bounds on both the preconditioned and

unpreconditioned Hessian clearly many assumptions were made. The bounds

on the unpreconditioned case for 3DVar given in (6.3) and for the 4DVar

case in (7.3) are very general with minimimal assumptions made on the

observations and errors compared to the more specific bounds given in (6.11)

for 3DVar and (7.11) for 4DVar. The results shown in the Chapters 6 and

7 indicate that it is the conditioning of the background error covariance

matrix that determines the conditioning of the unpreconditioned system.

However, the bounds show that the condition number is also dependent on a

number of other factors which we have not fully explored in this thesis. For

instance, it was shown in numerical experiments on a 1D periodic system

that for the SOAR version of the 3DVar Hessian the conditioning of Var

could either follow the upper bound (Figure 6.3) or the lower bound (Figure

6.2) depending on the distribution of the observations. Hence a difference of

an order of magnitude of 10 can result in the condition number by choosing

different observation distributions. A similar result is found for the 3DVar

Hessian constructed using the Laplacian background error covariance matrix

(Figures 6.5 and 6.4). The reason for this change has not been explained

in this thesis. Similarly, the bounds on the unpreconditioned Hessians also

depend on the background and observation error variances but their affect

on the condition number has not been explored in this research.

For both the unpreconditioned and the preconditioned systems the theory of

Chapters 6 and 7 used observations at grid points only in order to simplify

the theory. In practice this is an unrealisitic assumption and the observa-

tion operator may be a combination of interpolations and transformations to

different variables. In order to understand the full operational system, more

realistic obervations operators must be investigated where the observations

are not assumed to be at grid points. A first step towards this would be

to consider incorporating a simple linear interpolation from grid points to
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observation locations into the observation operator.

In Chapter 7 the condition number of the P4DVar Hessian was shown to

be dependent on the 4D background error covariance matrix introduced in

Section 7.2.2. We described this matrix in the case of a simple discretised

advection model which provided a convenient form for analysis. In general,

this matrix will be much more complicated but further analysis has been

beyond the scope of this thesis. Investigating more realistic models of the

atmosphere and their action on the background error covariance matrix will

be particularly useful for grasping a more complete understanding of the

conditioning of operational Var schemes that use a CVT.

In this thesis we saw that the conditioning of PVar was in general, signifi-

cantly better than that of Var in the experiments considered. However, for

small correlation lengthscales we can see, for example in, Figures 6.4 and

6.8, that both systems have Hessians with similar magnitude of condition

number. Thus it is feasible that in some circumstances PVar may be more

ill-conditioned than Var. The question of when this may occur has not been

fully investigated.

Throughout this thesis correlation in the observation errors has been ignored.

However, currently research has begun to investigate the effect of incorporat-

ing observations error correlations [56], [25]. The impact of correlations on

the conditioning of the Var problem, and hence the accuracy of analysis, is

unknown. The background error covariance matrix includes correlations and

has been shown to be very ill-conditioned hence incorporating correlations

in the observation covariance matrix may imply that the Hessian becomes

more ill-conditioned. Understanding the effect of observation error correla-

tions may be important for understanding the accuracy of the analysis in the

future.

In this thesis we have concentrated on the CVT as a preconditioner. A useful

and natural extension is to consider additional preconditioners. A common
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extra level of preconditioning that can be applied on top of preconditioning

the Hessian with the CVT is eigenvector preconditioning. If the Hessian does

not vary much from one assimilation cycle to the next then we can generate

eigenvectors of the Hessian from a previous cycle to precondition the Hessian

of a later assimilation cycle [64]. In Chapter 8 we showed that the surface

observations consistently dominated the conditioning of the Hessian of the

preconditioned system. Furthermore the leading eigenvector appears to be

have a consistent structure regardless of the different assimilation cycles. If

this is the case then the leading eigenvectors may be calculated before the

minimisation and used to precondition the Hessian. Some preliminary tests

using eigenvector preconditioning has already been attempted using the Met

Office operational system resulting in a reduction in the conditioning of the

system [61].

In Chapter 8 we found that thinning the surface observations produced a

better condition system. However this came at the price of removing infor-

mation from the assimilation. An important question remains in what is

the optimal compromise between having a more ill-conditioned system, and

hence a more inaccurate numerical solution, and removing observations and

having an unrealistic solution? If this optimal thinning can be found then the

most accurate analysis for predicting future weather states can be realised.
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