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Abstract

In this thesis a number of macroscopic models and numerical methods are consid-

ered for simulating the flow of vehicular traffic on a single lane highway. The results

are compared with averaged real data obtained from the Highways Agency via TRL.

The original one-equation model requires a velocity-density function which was

obtained by fitting a curve through the data. The resulting model is a conservation of

mass equation with a non-convex flux function. Two test cases are considered which

resemble a simplified cluster of traffic in an otherwise free flowing highway. Analytic

solutions are found and compared to the numerical solutions obtained from applying

four state-of-the-art numerical shock capturing schemes. The second order scheme

with a flux limiter produced the best results.

Four two-equation models are also considered. A Riemann test problem is used

to test three of the models and to compare with the numerical solutions obtained

using the same second order scheme with a flux limiter. For each of these models

a Roe decomposition is constructed which gives approximate wave descriptions of

the models. Special procedures, using real data, are proposed for overcoming the

difficulties encountered when dealing with the boundaries. The effects of adding non

homogeneous terms to these models are also investigated.

The real data provides initial conditions and boundary data which are used for

numerical simulations with the five models. These are compared to the real data at

a later time. No clear winner is found but the models provide useful insights into the

mechanisms at work.
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Chapter 1

Introduction

Interest in modelling traffic flow has been around since the appearance of traffic jams.

The idea of modelling is that, if you can correctly predict the behaviour of vehicular

flow given an initial set of data then in theory by adjusting the flow in crucial areas

the overall throughput of traffic along a stretch of road can be maximised. This is

of particular interest in regions of high density, which may be caused by high volume

peak time traffic or even as a result of an accident or blockage of one or more lanes

of the carriageway. It is one of the aims of the variable speed limit signs on the M25

motorway. These are mounted on regularly spaced posts that measure certain features

of the traffic, so that the overhead speed limit signs may be adjusted to improve

conditions. However, in order to achieve these goals we first need a good model of

traffic flow and reliable numerical methods for solving the equations. This thesis aims

to survey existing models and apply state-of-the-art numerical techniques for their

solution.

Chapter 2 is an introduction to some of the different models that have been sug-

gested. There are two main approaches to modelling. One way is to consider each

individual vehicle and express its behaviour by a set of rules or an equation involving

adjacent vehicles. These are referred to as microscopic models. Another approach (the

one considered in this thesis) is to consider the overall average behaviour of traffic and

treat the road as a series of sections (small compared to the total length of the road)

within each of which the density and average velocity of traffic can be measured for a

given time. The changes in these variables (for example) may then be described using
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partial differential equations. These models are referred to as macroscopic models and

form the basis of this study.

In Chapter 3 we look at data from the M25 motorway which was made available

to us from the Highways Agency via TRL. We describe how the raw data is averaged

into a format suitable for use with the models (since the models we consider describe

only single lane carriageways with no on or off ramps). In this chapter we also look

at the relationship between the velocity and density of the flow, and also between the

flux and density which are crucial functions present in many of the models studied

here. The latter is often called the fundamental diagram as it appears in many models

and much effort has been given into fitting functions to obtain this diagram. Five

such functions have been chosen for comparison. A significant feature of the fitted

functions is that the flux function is non-convex. This has considerable significance in

its effect on the evolution of the density.

In Chapter 4 we consider the classical Lighthill-Whitham-Richards model (LWR),

which consists of a single conservation of mass equation with a prescribed velocity-

density relationship. We derive analytic solutions obtained from this model for two test

problems when a generic non-convex flux function is used. The test cases were chosen

as simplifications of real flows where a platoon, or high density region of vehicles, is

travelling within otherwise free flowing traffic. The aim of this chapter is to give insight

into the behaviour of traffic using this model, which is still surprisingly competitive.

Since the appearance of the LWR model several other models have appeared in-

volving two equations in which the velocity is now independent of the density. In

Chapter 5 we discuss four models of this kind that have been proposed. Firstly the

Payne-Whitham model which is inspired by the similarities between traffic flow and

fluid dynamics. This is a much studied model, and many variations to it have been

suggested. One such variation is the recent Berg-Mason-Woods model, also investi-

gated here, which has been derived from a microscopic car-following model. A criticism

of these fluid-like models is the problem of anisotropic behaviour of drivers. Hence

the next model studied, by Aw and Rascle, has moved away completely from fluid

flow and they suggest a model which would be more traffic-like. Zhang, again moving

away from fluids, proposed a model derived from microscopic principles and is the final
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model in this study. Analytic solutions to a Riemann test problem are found to three

of the models and compared to analytic solutions in this section.

Chapter 6 describes four numerical schemes used with the one-equation model.

These are shock-capturing entropy satisfying finite difference schemes. The numerical

results of the schemes are compared for the test problems in Chapter 4 and the best

scheme chosen, which was the second order scheme with a flux limiter.

The treatment of systems of equations is a little more involved, hence Chapter 7

describes two different schemes. The first is Lax-Friedrichs which is cheap and easy

to implement and is therefore useful for giving a rough idea of the behaviour. It is

very diffusive however, hence for a more accurate solution more sophisticated schemes

are required. We therefore also construct a Roe decomposition for each model and

then apply the second order upwind scheme with a flux limiter. Characteristic Vari-

ables are required at the boundaries when the two component waves of any system

are travelling in opposite directions there, hence this chapter also presents the Char-

acteristic Variables for the models in Chapter 5. Due to the complex nature of the

Berg-Mason-Woods Characteristic Variables an alternative approach at the boundaries

is described.

In order to see how realistic these models are, we use in Chapter 8 the real data as

initial conditions and boundary data where required for each of the five models. Firstly

the results from the different velocity functions with the Lighthill-Whitham-Richards

model are compared and the best one chosen. This is then compared to the results

from the four other models. A second set of initial data is chosen for study from a

different day and time, and the results from all models compared to verify these are

typical results from the models.

In Chapter 9 we investigate the effects of the non-homogeneous terms of the two-

equation models. Some models suggest the inclusion of a relaxation term in order

to mimic the adjustment of drivers’ velocity towards a maximal desired safe velocity.

This term has the effect of speeding up vehicles that are currently driving slower

than they would like, and slowing down vehicles travelling faster than they should be.

Another type of source term suggested are viscosity terms in the form of second spatial

derivatives of either density or velocity. These terms have the effect of smoothing out
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sharp changes in the variables. We discuss the implementation of these source terms,

their benefits and their drawbacks.

Finally, in Chapter 10 we discuss the findings of this study and suggest further

work.
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Chapter 2

Background

This chapter contains a review of the existing state of mathematical and numerical

modelling of single lane traffic flow.

Interest in modelling traffic flow began around the 1950’s with one of the first

papers to discuss the problem being [23], written by Lighthill and Whitham. These

authors wrote two important papers at that time on Kinematic Waves, the first on

Flood Movement in Long Rivers and the second A Theory of Traffic Flow on Long

Crowded Roads, the papers drawing similarities between the two types of flow. A

similar discussion on traffic flow was published by Richards around the same time,

[29], independently of Lighthill and Whitham. The common mathematical model is

referred to as the LWR model. Its basic principle is the one-dimensional conservation

equation,

ρt + (ρv)x = 0, (2.1)

where ρ(x, t) is the density (in number of vehicles per km at time t for example), and v

is the velocity (in km per hour). This states that vehicles do not appear or disappear,

therefore the number of vehicles will depend only on the number already present in the

system and the flow of vehicles into and out of the system. The assumption was then

made that the velocity is a linearly decreasing function of the density of the traffic,

e.g.,

v = V (ρ) = vmax

(
1− ρ

ρmax

)
, (2.2)

where vmax is some maximal velocity of the road and ρmax is the maximal bumper to

bumper density. The flux diagram, or ρV (ρ) plotted against ρ, is often referred to as
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the Fundamental Diagram as it is an integral part of many traffic flow models.

The LWR model, consisting of (2.1) and (2.2), is an example of a non-linear first

order partial differential equation. More specifically it is a hyperbolic conservation law

where mass, in this case density of traffic, is conserved. This means that although the

distribution of vehicles will vary with time, the overall amount of traffic in the system

will depend on the flux, or flow, into and out of the domain. Here the flux function

is given by ρV (ρ) and can be considered as the momentum of the flow. One property

of this type of equation is that given smooth initial data there is the possibility of

spontaneous generation of shocks, i.e. a discontinuity in the density (and velocity) in

space. This is an example of a weak solution since the partial differential equation only

holds for continuous solutions. Another type of wave possible from a discontinuity is

a contact discontinuity where again there is a jump in the density, but the velocity

is constant across it. A third type of wave is a rarefraction fan where, for example,

a discontinuity in the density spreads out in time giving a smooth transition between

the left and right states. Since the wavespeeds are real and finite for a well posed

problem, initial data is required, indeed the solution at a later time t depends on

this initial data. Boundary conditions are also required on a bounded spatial domain

when the waves are moving away from the boundaries and into the domain, as we

will see later (Chapter 4). We will also be considering systems of two equations of

hyperbolic conservation laws, which means that the eigenvalues of the flux jacobian

matrix, f ′(u), are real and there are two linearly independent eigenvectors, hence the

matrix is invertible.

In the case of shocks Zhang, [38], describes the behaviour of the LWR model for

Riemann initial conditions. When the traffic concentration is heavy downstream and

light upstream a shockwave forms and travels at speed given by the Rankine-Hugoniot

jump condition

s =
[f(ρ)]

[ρ]
=

f(ρL)− f(ρR)

ρL − ρR

,

where ρL and ρR are the traffic concentrations upstream and downstream of the shock

respectively, as would be experienced by drivers approaching a jam or region of high

density. When the concentration is light downstream and heavy upstream a rarefaction

wave arises and the heavy traffic disperses, just as would be observed in traffic queued
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at a traffic light when the light turns green.

This model does however have some drawbacks, as discussed in [5] and [13] for ex-

ample, due to the assumption that the traffic is in “equilibrium”, i.e. given a particular

density the velocity will be a fixed value. The model is therefore unable to describe

observed behaviour at ramps and bottlenecks or the self organisation of stop-and-go

waves, nor does it recognise a spread of acceptable velocities for a given density by

drivers, [13]. The model also doesn’t allow a platoon of vehicles (a cluster of vehicles

in otherwise low density traffic) to disperse from the front and the rear in a manner

observed in reality, [5]. Nevertheless the LWR model agrees fairly well with predictions

from car-following models (discussed in the section below on microscopic models) and

with some adjustment to the velocity function this turns out to be a robust model.

The LWR model is an example of a macroscopic model. This type of model is

concerned only with average behaviour on a large scale. A second class of models also

exists based on individual vehicle behaviour and are thus referred to as microscopic

models.

In this thesis we are concerned with macroscopic models. The LWR model is

discussed in more detail in Chapters 4, 6 and 8. However, for completeness we begin

with a discussion of microscopic models.

2.1 Microscopic Models

This type of model concentrates on the behaviour of each individual vehicle. The

driver will adjust his or her velocity and acceleration according to the conditions

ahead. These models are often called Car-Following models. Holland [15] describes

this approach as providing a natural way to model traffic. In these models each

vehicle is influenced directly by the one in front, as often happens in real traffic flow.

Thus, vehicle position is treated as a continuous function and each vehicle moves

according to an ordinary differential equation normally dependent on its speed and

the distance to the next vehicle. The vehicle’s progress can be calculated by solving

these ordinary differential equations simultaneously. Usually the number of vehicles

to be modelled has to be small enough for the approach to be useful. This situation
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sets traffic modelling apart from other fields, for example fluid mechanics and granular

flow, because in these subjects the number of particles to be considered is typically

too great for microscopic modelling. We can therefore consider car-following models as

an alternative to a continuum approach. There are a number of different assumptions

made for the various models of this type about what factors affect drivers’ decisions to

change their behaviour, such as the headway, which is defined as the distance in front

of a vehicle before the next vehicle, (see e.g. [26]). To make the model more realistic

[26] also incorporates a time lag of the drivers’ responses. Bando, in [2] made the

alternative assumption that drivers wish to drive at a legal velocity which is a function

of the headway, therefore their acceleration will be governed by the difference between

the vehicle’s velocity and this maximal safe velocity.

Chandler et al. [4] suggested the first important model of this type. This took the

form

ẍn(t + T ) = λ(ẋn+1 − ẋn),

where xn represents the position of the nth vehicle, which follows vehicle n + 1, and ẍ

is the second time derivative, i.e. acceleration. They then incorporated into the model

the California Code that states that a good rule for following another vehicle at a safe

distance is to allow one length of a car (about 15 feet) for every ten miles per hour

you are travelling. They therefore suggested an alternative law stating

ẍn(t + T ) = λ(xn+1 − xn − c− T1ẋn),

where T is the time delay, λ a sensitivity parameter, c the average length of a vehicle

and T1 the time headway given by the California Code.

Numerous alternative models have since been proposed, e.g. Newell [26] used the

velocity-headway function alone to describe the dynamics of the flow. He proposed

the law

ẋn(t + T ) = V

(
1− exp

(
− λ

V
(xn+1 − xn)− d

))
,

where again T is a time delay, V is a maximal velocity and λ, d are constants. More

recently Bando et al., [2] has suggested the law

ẍn = a(V (xn+1 − xn)− ẋn), (2.3)
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where a is an acceleration constant and V (b) a velocity-headway function given by

V (b) = tanh(b− 2) + tanh(2),

b = xn+1 − xn representing the headway.

Nagel, [25], summarised car-following models by noting that many such models are

of the form

a(t + T ) ∝ v(t)m

[∆x(t)]l
∆v(t),

where a and v are the acceleration and velocity, respectively of the car under consid-

eration, ∆x is the distance to the car ahead, ∆v is the velocity difference to that car,

and m and l are constants. T is a delay time between stimulus and response, which

summarises all delay effects such as human reaction time.

Nagel, [25], then described a new model that he referred to as Particle Hopping,

which differs from car-following in that it is a fully discrete model. It considers the

road as being represented as a string of cells which are either empty or occupied by

exactly one particle. Movement takes place by hopping between cells, and can only

take place in one direction. These cells are then updated simultaneously. The number

N of particles in the system is conserved, except at the boundaries. This type of

model belongs to a group of models known as Cellular Automata, or CA. An example

is the Stochastic Traffic Cellular Automaton, or STCA model, as quoted in [25], which

is defined as follows. Each particle (car) can have an integer velocity between 0 and

vmax. The complete configuration at time step t is stored and the configuration at

time step t + 1 is computed from that, using a parallel or synchronous update. All

cars execute the following steps.

(i). Let g (gap) equal the number of empty sites ahead.

(ii). If v > g (too fast), then slow down to v := g (rule 1); otherwise if (v < g)

(enough headway) and v < vmax, then accelerate by one: v := v + 1 (rule 2).

(iii). Randomization: If after the above steps the velocity is larger than zero (v > 0),

then, with probability p, reduce v by one (rule 3).

(iv). Particle propagation: Each particle moves v sites ahead (rule 4).

9



Nagel also notes that the randomization incorporates three different properties of

human driving into one computational operation: fluctuations at maximum speed,

overreactions at breaking, and retarded (noisy) acceleration.

A Cruise Control limit version was then suggested by Nagel, [24], whereby fluctu-

ations at free driving, i.e., at maximum speed and undisturbed by other drivers, are

set to zero. Algorithmically, the velocity update (rules 1-3) of the STCA are replaced

by the following. For all cars, do the following simultaneously:

(i). A vehicle travelling at maximum velocity vmax with free headway g > vmax just

maintains its velocity.

(ii). Otherwise the standard rules 1-3 of the STCA are applied.

Nagel noted that both acceleration and braking still have a stochastic component in

this STCA-CC model.

By setting the randomization probability p equal to zero, which just amounts to

skipping the randomization step, the deterministic limit of the STCA is taken, and

is referred to as the CA-184 model when vmax = 1. Various authors have considered

this model, and also with vmax > 1, with much work in this field being based on this

approach. Two dimensional CA models for traffic also incorporate these ideas.

According to Nagel, the most-investigated particle hopping model is the asymmet-

ric stochastic exclusion process (ASEP). Its behaviour is defined as follows:

(i). Pick one particle randomly (rule 1).

(ii). If the site to the right is free, move the particle to that site (rule 2).

On average, therefore, each particle is updated once after N single-particle updates,

and a time step is completed after N attempted hops.

As demonstrated in [19], Nagel states that it can be shown that the classic ASEP

corresponds to the noisy Burgers’ equation. This means that by taking the limit of

the particle process a continuous model is obtained which is given by

ρt + (ρ(1− ρ))x = Dρxx + η,

where D is the diffusion coefficient and η is a Gaussian noise term. This is equvalent

to the LWR model with noise and diffusion. Hence LWR (with noise and diffusion)
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and ASEP particle hopping process describe the same behaviour. The CA-184 model,

however, corresponds to the nondiffusive, non-noisy equation of continuity

ρt + j′ρx = 0,

with the linear flow (except at ρ = ρjmax)

j′ =
dj

dρ
=





vmax for ρ < ρjmax

−1 for ρ > ρjmax .
(2.4)

The intersection point of the fundamental diagram obtained from (2.4) divides two

phenomenological regimes: light traffic (ρ < ρjmax) and dense traffic (ρ > ρjmax).

However, microscopic methods are computationally expensive, as each vehicle has

a differential equation to be solved at each time step governing its behaviour, so as

the number of vehicles increases so does the size of the (coupled) system. Macroscopic

models are therefore preferable if a suitable equation or system which satisfactorily

describes the flow can be found. In this thesis we concentrate solely on macroscopic

models.

2.2 Macroscopic Models

Due to the simplistic nature of the LWR model ((2.1),(2.2)) it is unable to capture all

of the complex interactions desirable for a realistic traffic flow model. For this reason

modifications to the LWR model have been suggested. The conservation equation

itself (2.1) is the basis for all subsequent models,

ρt + (ρv)x = 0, (2.5)

with velocity v now independent of ρ, i.e. the flow is no longer in equilibrium. Modifi-

cations attempting to improve on the failings of the LWR model haven’t always been

successful. Most adaptations involve coupling the conservation equation with a second

equation that attempts to mimic traffic more convincingly. Payne and Whitham [36]

continued the discussion on the basis that traffic was rather like a fluid and coupled

the continuity equation with a variation to the Navier-Stokes equation of motion for
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an incompressible flow, with the addition of a traffic-like relaxation term V (ρ)−v
τ

. This

PW model is given (in non-conservative) form by (2.5) and

vt + vvx =
V (ρ)− v

τ
− C(ρ)

ρ
ρx, (2.6)

where τ is the relaxation time and V (ρ) is a velocity function, e.g. (2.2). C(ρ) is an

anticipation term, which Payne [27] suggested should be of the form C(ρ) = ∂
∂ρ

(ρΘ(ρ)).

Later Kühne [20] proposed Θ(ρ) = C2
o and included a viscosity term µvxx to smooth

out sudden density and velocity changes deemed unrealistic. The PW momentum

equation is typical of higher-order models in that it has a relaxation term that contains

the equilibrium speed-concentration relation and an anticipation term that contains

the space gradient of the vehicle concentration. This model has been studied at length,

see e.g. [12, 40], and variations to it made in an attempt to tune it to traffic flow.

Kerner and Konhäuser (KK) for example, [16, 17, 18], used Kühne’s variations but

altered the viscosity term to make it compatible with the Navier-Stokes equations to

give

vt + vvx =
V (ρ)− v

τ
− C2

o

ρ
ρx + µ

vxx

ρ
, (2.7)

with µ the viscosity or dissipative constant. They demonstrated the spontaneous

appearance of clusters forming in densities above a critical value.

One criticism of the PW model is that under certain conditions it allows vehicles

to move with negative velocity, i.e. against the flow of the traffic. Numerous choices

of C(ρ) have been proposed to alleviate this but these PW-type models have been

heavily criticised for sticking too closely to fluid flow, and for not allowing for the

major differences between the two types of medium, see e.g. [1, 5]. The main difference

is identified as the anisotropic nature of traffic compared to fluids. Aw and Rascle [1]

describe this as follows:

“A fluid particle responds to stimuli from the front and from behind, but

a car is an anisotropic particle that mostly responds to frontal stimuli.”

In fact the motion of fluids is governed by the motion of particles all around a given

particle, whereas traffic particles or vehicles are affected mainly by the vehicles in

front, and how much headway there is when considering single lane traffic. The PW
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and PW-type models, however, contain wave propagation speeds given by

λ1 = v + C(ρ), λ2 = v − C(ρ),

one of which will always be greater than v the velocity of the traffic, therefore the

model allows information to travel faster than the flow of traffic. Thus the behaviour

of vehicles is too strongly dictated by the behaviour behind it, therefore contradicting

the anisotropic nature observed in traffic flow. It is interesting to note that the LWR

model is itself anisotropic, even though it has only one eigenvalue, since the wavespeed,

given by f ′(ρ) = ρV ′(ρ) + V (ρ), satisfies 0 < f ′(ρ) < V (ρ) (since V (ρ) is a decreasing

function).

The PW model has also been criticised for allowing unphysical flow by allowing

densities greater than the bumper to bumper maximum density. Some of the major

differences between vehicular flow and fluid flow that have been highlighted are (a)

that the width of a shock only encompasses a few vehicles, (b) that vehicles have

personalities that remain unchanged by motion and (c) that the models don’t allow for

the vehicles not being particles, [5]. The PW-like models are also unable to completely

remove the inconsistencies with observed physical behaviour. Helbing [12] attempted

to improve the model by adding a third equation analogous to the equation for thermal

conduction where heat is represented by velocity variance. To further tackle some of

the criticisms he then continued by incorporating various terms to allow for “finite

space requirements of vehicles” and not allowing unphysical densities greater than the

maximum capacity of the road. The model claims to be anisotropic and allows for the

different driver styles. It does however allow waves to travel faster than the velocity v

of the traffic, claiming that v is only an average value and that in reality some vehicles

are travelling faster than this average velocity.

For a hyperbolic system, the eigenvalues of the Jacobian matrix are the speeds of

the waves of the system. For a realistic anisotropic model therefore the fastest wave

should be, at most, equal to the velocity of the flow. If it is not then the wave is moving

faster than the vehicles, therefore drivers are being affected by conditions behind and

the anisotropic nature of single lane motorway driving is lost.

Daganzo, [5], argued that the PW approximation to the difference-differential equa-

tions of car-following is poor since it is based on the assumption that velocity and
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density are smooth. At discontinuities and sharp variations, however, the second and

higher derivatives previously ignored are significant. This, Daganzo states, is one

reason why the car-following model doesn’t violate the physical restrictions that the

density must not exceed some maximum bumper to bumper density, and that the

velocity of the vehicles should always be positive.

Berg et al [3] discuss a model (BMW) that includes higher order terms derived

from the Bando model, (2.3), and attempts to further bridge the gap between car-

following theory and continuum models. They start by distinguishing between the

quantities headway and density, commonly used in car-following and continuum models

respectively. First the density ρ is usually given in car-following models by

ρ =
1

b
, (2.8)

where b is the headway, i.e., the density ρ is usually defined as the inverse of headway.

Berg et al state that there is a problem with this definition. For instance, suppose a

set of cars are positioned at x = 1, 2, 4, 8, .... The headway of the car at position x

is given by b = x. Using formula (2.8), we obtain ρ = 1
x
, which is extended into the

continuum domain by permitting x to take any positive, real value. According to this,

the number of cars on the open interval (1, y) is
∫ y

1
1
x

= logey. However according to

Berg et al this is consistently a factor of loge2 wrong as the actual answer is log2y (the

density between 1 and y is given by 2n, therefore there are n = log2y vehicles).

In the BMW model they then proceed to set up a consistent mapping between

vehicle positions and the density, where {xi} represents the positions of the vehicles

at a given instant in time, and ρ(x) is the associated density function from which the

positions of the vehicles can be found. To do this they require that

∫ xi+1

xi

ρ(x)dx = 1, (2.9)

for all i. In addition to their density function, they require the position of car 1. The

mapping is not unique, given condition (2.9) only. The inverse mapping however is

unique, and it is the inverse map that is used in constructing a continuum equation

of motion from a car-following law. They use the definition of headway b = xi+1 − xi

to arrive at an equation involving the continuum variable ρ by extending (2.9) to all
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points along the road
∫ x+b(x,t)

x

ρ(x′, t)dx′ =
∫ b(x,t)

0

ρ(x + y, t)dy ≡ 1.

The second integral can be expanded in powers of y and integrated to obtain the

asymptotic series

bρ +
1

2!
b2ρx +

1

3!
b3ρxx + . . . = 1.

The first term corresponds to the usual definition of the density (2.8). Berg et al

expanded the series to this order for two reasons. First, they wanted to obtain a

continuum model that is capable of describing certain characteristic traffic parameters

mentioned by Kerner and Konhäuser [17], who showed that a diffusive term has to be

incorporated in the equation to do so. Second, these higher order terms are needed to

maintain the same stability criterion for equilibrium flow for the continuum model as

for the car-following model (see [3]).

Berg et al assume that each term is of smaller magnitude than the one preceding

it, which amounts to saying that changes in the flow occur over a length scale of many

vehicles.

By considering the cubic term to be much smaller than the linear and quadratic

terms, the quadratic equation is solved for b obtaining

b ≈ 1

ρ
− ρx

2ρ3
.

Regarding the cubic term as a perturbation, b is expanded in a perturbation series

and the solution is approximated as

b ∼ 1

ρ
− ρx

2ρ3
− ρxx

6ρ4
+

ρ2
x

2ρ5
+ . . . . (2.10)

The first term represents the classic transformation for relating the headway and the

density. The second term is similar to a pressure term in gas kinetics and acts to

destabilize the traffic flow. If only this term is retained, then the continuum model

is always unstable unlike real traffic flow. The diffusive term ρxx smoothes variations

in traffic density and has a stabilizing effect on traffic flow, which counteracts the

pressure term. They therefore retain terms up to this order.

Berg continues by establishing that the definition of v is consistent in both con-

tinuum and car-following models using the conservation of mass equation (2.5). With
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this assumed true, equation (2.10) can then be substituted into car-following models

to yield equations for ρ instead of b. The Bando model (2.3) thus gives

vt + vvx = a
[
V̄ (ρ)− v

]
+ aV̄ ′(ρ)

[
ρx

2ρ
+

ρxx

6ρ2
− ρ2

x

2ρ3

]
(2.11)

and is coupled with (2.5), where

V̄ (ρ) = VB(1/ρ),

0 <
∂VB(b)

∂b
|b=1/ρ = −ρ2∂V̄ (ρ)

∂ρ
= −ρ2V̄ ′(ρ).

Equation (2.11) is analogous to the Kerner-Konhäuser model (2.7) where a = 1
τ
.

However an important difference between that model and the new model (2.11) lies in

the coefficients of the higher order terms. Expression (2.11) reveals that the coefficients

depend on ρ, whereas the Kerner-Konhäuser model assumes them to be constant. C2
o

is now analogous to the term
[−aV̄ ′(ρ)/2

]
. By comparison with the discrete Bando

model numerical simulations show that the dependence of these coefficients on the

density ρ is necessary to match the length scale and qualitative behaviour of shock

wave solutions. With further terms of the asymptotic series the accuracy increases.

Nagel [25] argues that the diffusion term can be regarded as a stochasticity added

high-frequency correction to density, which is supposed to be slowly varying in space

and time. However, the analysis by Berg revealed that the transformation from a car-

following to a continuum model also produces a diffusive or smoothing effect, without

the need to introduce stochasticity.

Wilson and Berg, [37] attempt to develop a universal mathematical theory explain-

ing the qualitative types of wave solution exhibited by optimal velocity highway traffic

models. They concentrate on models using the conservation of mass equation (2.1),

coupled with a second equation describing momentum, of the form

vt + vvx = α (V (ρ)− v) + N (ρ, ρx, ρxx, v, vx, vxx) , (2.12)

where the sensitivity parameter α > 0 and N represents anticipation and dispersive

effects, and includes nontrivial dependence on at least one of the second derivatives

ρxx or vxx. In the paper they consider only models and parameter choices for which

uniform flows are linearly stable, hence they focus on the KK version of the PW model,
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(2.7) and the Berg, Mason and Woods model, (2.11), where

N =





−β ρx

ρ
+ µvxx

ρ
, for KK,

αV ′(ρ)
(

ρx

2ρ
− ρ2

x

2ρ3 + ρxx

6ρ2

)
for BMW.

(2.13)

They seek travelling wave solutions of speed c and their classification, where

v = W (z), ρ = X(z) z = x− ct, (2.14)

on an infinite road, with uniform flow conditions

X(±∞) = ρ±, W (±∞) = V (ρ±), (2.15)

at its ends. Equation (2.1) thus becomes −cdX
dz

+ d(WX)
dz

= 0, which is integrated

directly to obtain X(W − c) = q, where q is a constant of integration. Thus they show

that

W =
q

X
+ c. (2.16)

The application of the boundary conditions at z = ±∞ gives V (ρ±) = q/ρ± + c,

and eliminations yields

c =
ρ+V (ρ+)− ρ−V (ρ−)

ρ+ − ρ−
, (2.17)

and

q = ρ−V (ρ−)− cρ−. (2.18)

Hence, if a wave exists, then its speed c is the gradient of the chord cutting the

fundamental diagram Q(ρ) = ρV (ρ) at (ρ−, Q(ρ−)) and (ρ+, Q(ρ+)). Also q is the

intercept on the ρ = 0 axis.

The paper then applies (2.14) to (2.12), and eliminates the velocity variable W

using (2.16). The systems therefore reduce to a pair of first order ODE’s, where

dX

dz
= Y, (2.19)

dY

dz
= h1(X)

(
q2Y

X3
+

α

X
(Q(X)− (q + cX))

)
+ Y h2(X, Y ), (2.20)

with the pressure and diffusion terms h1 and h2 being given by

h1(X) =





X3

µq

− 6X2

αV ′(X)

and h2(X,Y ) =




−βX2

µq
+ 2Y

X

−3X + 3Y
X

, (2.21)
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for KK and BMW respectively. By analysing the geometrical structure of the fun-

damental diagram and its chords they then build up phase diagrams describing wave

types.

More recently, in an attempt to incorporate the anisotropic property and move away

from the fluid-type inconsistencies of previous models, Aw and Rascle [1] suggested

an alternative second equation to couple with the continuity equation, referred to

here as the AR model. The PW and PW-type models are based on the momentum

being conserved in the system, as with fluids, but they argue this is an unreasonable

assumption for traffic and that simply replacing the pressure term with an anticipation

factor describing how the average driver behaves is not a suffient fix for the differences

between the two types of flow. They observe that intermediate states with negative

velocities can be produced when solving the Riemann Problem:

U(x, 0) =





U− if x < 0,

U+ if x > 0,

where U := (ρ, v), which represents a jump in the traffic conditions. With these models

they also point out that, with the same kind of initial data, adding a diffusion term in

the acceleration equation would make things still worse, whereas adding a relaxation

term would be harmless. However this would not prevent the same kind of paradox, at

least for a short time, where at times the vehicles travel with negative velocities. They

explain that the reason for the “unacceptable drawback” of the models that allow

information to travel faster than the flow is due to the incorrect anticipation factor,

1
ρ
p′(ρ)ρx, involving the derivative of the pressure with respect to x. They further argue:

“Assume that in front of a driver travelling with speed v the density is increasing with

respect to x, but decreasing with respect to (x − vt). Then the PW type of models

predict that this driver would slow down, since the density ahead is increasing with

respect to x! On the contrary, any reasonable driver would accelerate, since this denser

traffic travels faster than him.” They therefore conclude that the correct dependence

must involve the convective derivative

∂t + v∂x

of the pressure P, which they still take as an increasing function of the density. They
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consider p of the form

p = p(ρ) = ργ, γ > 0

where, in their words, the only qualitatively important conditions are the behaviour of

this function p near a vacuum and the (strict) convexity of the function ρp(ρ). They

therefore make the following assumptions:

p(ρ) ∼ ργ, near ρ = 0,

γ > 0 and

∀ρ, ρp′′(ρ) + 2p′(ρ) > 0.

Finally they arrive at their model by assuming no diffusion and relaxation, which

is given by the following system:

ρt + (ρv)x = 0,

(v + p(ρ))t + v(v + p(ρ))x = 0.

They comment that the above class of models (with a suitable choice of function p)

satisfies the following Principles, that any reasonable model should satisfy:

Principles:

A. The system must be hyperbolic

B. When solving the Riemann Problem with arbitrary bounded nonnegative Rie-

mann data (ρ, v) in a suitable region R of the plane, the density and velocity

must remain nonnegative, and bounded from above.

C. In solving the same Riemann Problem with arbitrary data U± := (ρ±, v±), all

waves connecting any state U := (ρ, v) to its left (i.e. behind it) must have a

propagation speed (eigenvalue or shock speed), at most equal to the velocity v.

D. The solution to the Riemann Problem must agree with the qualitative properties

that each driver practically observes every day. In particular, braking produces

shock waves, whose propagation speed can be either negative or nonnegative,

whereas accelerating produces rarefaction waves which in any case satisfy Prin-

ciple C.
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E. Near a vacuum, the solution to the Riemann Problem must be very sensitive to

the data. In other words, there must be no continuous dependence with respect

to the initial data at ρ = 0.

They point out that Principle C is equivalent to their earlier point that a car travelling

at a velocity v receives no information from the rear.

Their paper then demonstrates that the AR model does satisfy these principles.

The eigenvalues, for example, are real and distinct, namely

λ1 = v − ρp′(ρ), λ2 = v,

thus the system is strictly hyperbolic, except when ρ = 0. Principle A is therefore

satisfied. The fact that p(ρ) is an increasing function means that λ1 < λ2, thus

Principle C is satisfied since the faster wave will move at speed equal to the velocity

of the vehicles, no faster.

They also point out that the spirit of their model is perfectly consistent with

discrete car following models, see e.g. [7, 26], since, assuming a reaction of each driver

to the distance to the previous car means (at the macroscopic level) that the correct

modelling involves the convective derivative of the density, and not its derivative with

respect to x.

Aw and Rascle claim their model might explain instabilities in car traffic flow,

especially near a vacuum, in other words for very light traffic with few slow drivers.

The maximum wave speed equals the flow of the traffic, hence giving it its anisotropic

property. It also has an “anticipatory nature” as pointed out by Greenberg, [9], in

that v and ρ behind a contact are determined by v and ρ ahead of it.

In a recent paper, Zhang, [40], has suggested another variation to the PW model to

remove some of the failings of the original version. He concentrated on the wavespeeds

and used these to suggest a suitable fix to the model, making it anisotropic as required,

with its maximum wavespeed also equalling the velocity of the flow. Along with its

ability to correctly describe “queue-end behaviour”, the Zhang model claims to have

eliminated the fluid-like properties that have made previous models unsuitable for

describing traffic behaviour. His model is given by the conservation of mass equation
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(2.5) coupled with the equation

vt + vvx = −C(ρ)vx, (2.22)

(using a convective derivative) and can be derived from a car-following model of the

form

τ(sn(t))ẍn(t) = ẋn−1(t)− ẋn(t), sn(t) = xn−1(t)− xn(t). (2.23)

Here C(ρ) = ρV ′(ρ) is the traffic sound speed at which small traffic disturbances are

propagated relative to a moving traffic stream, ẍn(t) and ẋn(t) are the acceleration

and speed of the nth car respectively, and τ(sn(t)) is the driver response time, which

is a function of local spacing sn(t). This model is studied in greater detail later, (see

Chapters 5 and 7).

The derivation of (2.22) starts from the introduction of a velocity field v(x, t) :

ẋn(t) = v(xn(t), t) and a vehicle spacing function s(x, t) : sn(t) = s(xn(t), t); both are

assumed sufficiently smooth. Next (2.23) is expressed in the new field variables

τ(s(x(t), t))
dv(x(t), t)

dt
=

ds(x(t), t)

dt
,

and further expanded to obtain

τ(s)(vt + vvx) = st + vsx, (2.24)

where, for ease of notation v(x(t), t) ≡ v etc.. Moreover, the conservation of vehicles

implies that

st + vsx = svx. (2.25)

Substituting (2.25) into (2.24) one obtains

τ(s)(vt + vvx) = svx,

which becomes (2.22) through the introduction of a traffic sound speed

s

τ(s)
= −ρV ′(ρ) ≡ −C(ρ) ≥ 0,

as in Zhang [38].

Alternatively, (2.22) can be obtained by first expressing the right-hand side of

(2.23) as v(x(t) + s(x(t), t), t) − v(x(t), t) and then expanding v(x(t) + s(x(t), t), t)
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about (x, t) up to first order. This derivation, however, is not exact because higher-

order terms in the expansion are neglected, cf. Berg [3]. The benefit of taking this

approach is that it can lead to a viscosity term vxx if the second-order approximation

is kept. The properties of the resulting newly derived viscous model are discussed in

Zhang [39]. Why one derivation leads to (2.22) exactly and the other approximately is

at present not fully understood. Although expressions ẋn−1(t)− ẋn(t), ṡn(t), vn−1(t)−
vn(t) are fully equivalent in the microscopic description, their counterparts in the

macroscopic description, ṡ(x(t), t) and v(x(t) + s(x, t), t)− v(x(t), t) appear not to be

so. Zhang believed that the definition and physical interpretation of the macroscopic

field variables plays a subtle role in this discrepancy.

The PW, BMW, AR and Zhang macroscopic models are discussed in more detail

in Chapter 5, as they form the basis of the study in this thesis along with the LWR

model. We next describe the data to which we shall later apply the models.
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Chapter 3

The Data

This chapter discusses the type of traffic data made available for this study and the

procedures used to transfer it to a format suitable for use with the models discussed

in Chapters 4 to 8. This is necessary since the models are for a single lane carriageway

rather than a three or four lane motorway. Unfortunately no data is available from

a stretch of a single carriageway. The velocity function and fundamental diagram

obtained from the data and various functions fitted to these are then discussed.

3.1 Formatting The Data

The data available was collected (by the Highways Agency) from a stretch of the M25

Motorway during July 1999. There are a number of loops (posts) at approximately

500m intervals that record the number of vehicles passing, the average velocity and

the occupancy at 1 minute intervals for each lane. The number of lanes varies between

three and four depending on the position of the post relative to the on/off ramps. The

innermost lane (lane 1 in Figure 3.1) serves as a slip lane close to on/off ramps (regions

(a) and (c)), hence the road is reduced to three lanes in between the off and on ramp

at a junction (region (b)).

The data supplied is the number of vehicles that passed each post per minute,

or count data, the average velocity per lane over that minute and the occupancy or

the percentage of time a vehicle was present at the loop over the minute, again for

each lane. The count data can be thought of as a flux measurement. The density (in
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Lane 1
Lane 2
Lane 3
Lane 4

Junction

(b) (c)(a)

Figure 3.1: Displaying the road layout at a typical junction in the section of the M25 being

considered.

vehicles per km) can then be calculated by multiplying the count by 60 and dividing

by velocity. Count data doesn’t take into account the size of the vehicles however,

and so will not give a true representation of the headway available to vehicles which

will ultimately affect the velocity at which the vehicle will choose to travel. A more

representative choice for density is from the occupancy data. The data is given as

temporal averages, so certain approximations have to be made. We know that the

distance covered by the average vehicle in 1 min=velocity/60=D (Figure 3.2) and that

the flux=length in km of vehicles passing the post per minute. Now, the amount of

D taken up by vehicles can be approximated by occupancy ∗ D (an approximation

since velocity is an average over the minute). This is therefore the flux, or kilometer

of vehicles (× 100 since occupancy is a percentage) passing the post per minute.

D

Loop j Loop j+1

Figure 3.2: Diagram showing the approximation of vehicular flux between loops.

Similarly, occupancy is the percentage of time a vehicle is at the loop, and we can

approximate the percentage taken up by vehicles per km by

density =
flux

velocity
≈ occupancy.

Occupancy is left as a percentage to keep the variables, density and flux, of the

same order of magnitude as required by the models. The models were based on density
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Figure 3.3: Plot of occupancy data versus count density data for Lane 2 from all posts. Data is

taken at one minute intervals for a period of one week.

from the count data, i.e. number of vehicles per km. This however doesn’t allow for the

difference in vehicle length, and makes a further assumption that vehicle composition is

constant. In reality vehicle lengths vary dramatically from the average car length (4m

approx.) to lorries of length 11m+, with the proportions varying not only according

to time of day, but minute by minute due to the relative speeds of the different types

of vehicles.

Figure 3.3 is a plot of the occupancy data against the count density. It demonstrates

the different occupancies for a given count density. This shows the varying vehicle

composition. For a given count density, if those vehicles are small cars then the

occupancy will be low: if, however, they are large lorries then the same number of

vehicles will take up a larger proportion of the road, hence the occupancy will be

much higher, and hence the traffic will behave differently, e.g. vehicles will drive more

slowly due to the reduced space available.

To see if the two quantities, occupancy and count density, are interchangeable in

the models, we now consider

occupancy =
time vehicle present

total time
× 100.

Multiplying this by velocity/velocity gives an approximation to

distance with vehicles present

total distance
× 100,
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whereas

count density =
number of vehicles

total distance
,

therefore, dividing by 100

occupancy/100

count density
=

distance with vehicles

number of vehicles
= typical vehicle length.

Taking an average of these typical vehicle lengths gave a value ≈ 10m, demonstrating

that occupancy as a percentage is the correct order of magnitude as count density. We

therefore use occupancy henceforth to represent density, believing it to be a more accu-

rate representation of available space, or headway, that will affect drivers’ behaviour.

There is also an issue here about averaged data. The average of the quotient of two

quantities is not equal to the quotient of the average of the two quantities. For this

reason the spread of Figure 3.3 cannot be completely explained by the difference in

occupancy and count density. Part of the spread will be due to the difference between

the two average quotients. Individual vehicle data would eliminate the discrepancy

between the two and show categorically the importance of taking into account the

vehicle lengths. The feature which is present most prominently at count density of 60

veh/km remains unexplained but may be due to the measurements at the posts being

integer values. Adding noise in the form of small rounding errors would most likely

eliminate the gaps in the graph.

Two important features of the data can be observed from Figure 3.4, which is a

plot of data from a typical lane (in this case lane 2). The left hand plot is occupancy

against velocity of data collected from 1st-7th July 1999 at every post (1-61) at 1

minute intervals. The right hand plot is the corresponding Fundamental Diagram

which is a plot of occupancy against flux. Both demonstrate a general shape, but also

a wide spread. However, if we take thin strips in the vertical direction, then for each

strip we take an average occupancy and corresponding average velocity (or flux), we

obtain an average velocity and flux plot for each lane (Figure 3.5).

We now discuss the issue of the data being for a multi-lane carriageway, whereas

the models we are considering are for single lane roads. The conservation of mass

equation (see Chapter 4) for a single lane, common to all models, is given by

ρt + (ρv)x = 0.
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Figure 3.4: An example of the total data for one lane (in this case lane 2)
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Figure 3.5: Average velocities and fluxes for given occupancies, for each lane.
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Figure 3.6: Average velocity and flux diagrams

Now consider multiple lanes and apply a conservation equation to each lane. To allow

for lane changing between adjoining lanes i and i+1 there is an added transfer function

Ti,i+1 which is a function of ρi, ρi+1 in the simplest case. Therefore for lane i we have

ρi,t + (ρv)i,x − Ti−1,i(ρi−1, ρi) + Ti,i+1(ρi, ρi+1) = 0, (3.1)

for i = 1, 4 where T0,1 = T4,5 ≡ 0. Adding the equations (3.1) we have

(
4∑

i=1

ρi

)

t

+

(
4∑

i=1

ρivi

)

x

= 0. (3.2)

Dividing (3.2) by 4 and hence taking an average mean value we have

ρt + (ρv)x = 0,

where ρ is the average density over all lanes and ρv is the average flux. From Figure

3.5 we see that the flux and velocity diagrams are qualitatively the same, so the flux

and velocity diagram we will be using for our models from the data will be taken to be

the average of these velocities and fluxes. Figure 3.6 is a representation of the Velocity

Function from the real data together with the Fundamental Diagram.
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3.2 Fitting Functions and the Fundamental Dia-

gram

The Velocity Function and Fundamental Diagram in Figure 3.6 are key functions used

in many different types of models, see discussions in Chapter 2. The shape of the

functions will affect the behaviour of the models, therefore much effort has been spent

finding accurate representations of these. There are many options for the choice of

V (ρ). The original choice in [36] was of the form

V1 (ρ) = vmax

(
1− ρ

100

)
(3.3)

(see (2.2)) where vmax is a given maximum speed on the road (typically 117km/h,

chosen here as it is an average velocity in near zero density).

By considering the averaged real data in Figure 3.6 the velocity function,

V2 (ρ) = ae−bρ (3.4)

captures many of the properties observed, although not all, (see fR in Figure 3.8

(right), where a = 195 and b = 0.05263).

Another velocity function, similar to the one used by Kerner and Konhäuser in

[16], [17] and [18], is

V3 (ρ) =

(
a

b + e
ρ−c

d

+ f

)
, (3.5)

where a = 100, b = 0.8142, c = 23.35, d = 7.789 and f = 0.4972 are found to be good

choices for approximating the observed data.

In an attempt to approximate the flux function even more accurately the following

two velocity functions were also considered. Firstly

V4 = ae−bρ +
c

d + e
ρ−f

g

(3.6)

where a = 13, b = 0.007, c = 280, d = 0.8, f = 1.0 and g = 13.5, which is a

combination of V2 and V3. Secondly we considered

V5 = a− b

(
ec(ρ−d)/f − eg(ρ−d)/f

e(ρ−d)/f + e−(ρ−d)/f

)
(3.7)

where good choices of the coefficients are a = 99.203, b = 83.872, c = 1.0137, d =

11.826, f = 13.395 and g = −0.011513. Tha values of the constants in V4 and V5 were
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Figure 3.7: VR is the real averaged data, V1, V2, V3, V4 and V5 are velocity functions (note the

different scales on the velocity axis for clarity).

found using Mathematica, fitting the functions to the key desirable features of the real

data.

Figure 3.7 (left) shows the first three velocity functions (V1, V2 and V3), and (right)

shows V4 and V5, plotted against ρ, compared to the real velocity data VR. Figure

3.8 shows the corresponding flux functions (f1, f2, f3, f4 and f5) plotted against ρ,

compared to the real flux data fR.

It can be seen that f4 and f5 mimic the real data most closely. Chapter 4 uses f2

to find the analytic solution to two test cases for the LWR model due to its simple

form. Chapter 6 compares the analytic solution to the numerical solution. In Chapter

8 the five different flux functions described here are compared against the real data,

and the best one chosen.
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Chapter 4

One-Equation Model

Traffic flow can be modelled either by using microscopic car-following theory, macro-

scopic fluid dynamic based models, or a combination of both (see e.g. Daganzo [5],

Nagel [25] and Helbing [13]). This chapter considers the application of the early

Lighthill-Whitham-Richards (LWR) model of traffic flow, proposed in the 1950’s [23,

29], using functions fitted to averaged actual data gathered from the M25 motorway

(supplied by TRL/Highways Agency), as discussed in Chapter 3. Analytic solutions

to two particular test cases are then derived and compared to the numerical solu-

tions from four different numerical schemes. The model studied is based on a single

carriageway with no on or off ramps, and data is averaged over all available lanes.

4.1 The LWR Model

The LWR model,
∂ρ

∂t
+

∂ (ρV (ρ))

∂x
= 0, (4.1)

is a single equation model, in effect a conservation of mass equation, where ρ is used

to represent the traffic density (given as a percentage occupancy-see discussion in

Chapter 3) and V (ρ) is the velocity associated with that density. One of the basic

assumptions about this model is that the velocity is a function of density alone, and

that consequently any changes in density are immediately reflected in changes in the

velocity. Obviously this argument has some flaws: for example, in practice reactions

to changes in density do not happen instantaneously.
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The velocity V (ρ) and flux f(ρ) = ρV (ρ) for a given density are crucial in modelling

the flow. The overall shape of the graph of V (ρ) is still under debate, particularly for

congested traffic flow. We have used velocity function V2 here due to its simplistic form,

however it is still a reasonable fit to the real data curve and the resulting flux function

has lots of desirable features such as a maximum value and a point of inflection.

4.2 Method of Characteristics

The exact solutions are obtained using the method of characteristics. Using equation

(4.1) with the normalised velocity function (3.4), i.e.

V (ρ) = e−9ρ, (4.2)

so that

f(ρ) = ρe−9ρ (4.3)

(see Figure 4.3). We have from

∂ρ

∂t
+

∂f (ρ)

∂x
=

∂ρ

∂t
+ a(ρ)

∂ρ

∂x
= 0 (4.4)

that

a(ρ) =
df

dρ
= (1− 9ρ)e−9ρ. (4.5)

Now, using the chain rule, we know that

dρ

dt
=

∂ρ

∂x

dx

dt
+

∂ρ

∂t
,

so that substituting ∂ρ
∂t

in (4.4), we obtain

dρ

dt
− ∂ρ

∂x

dx

dt
+ a(ρ)

∂ρ

∂x
= 0,

giving
dρ

dt
− ∂ρ

∂x

(
dx

dt
− a(ρ)

)
= 0.

Therefore, dρ
dt

= 0 on the lines
dx

dt
= a(ρ), (4.6)
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which implies that ρ and hence a(ρ) is constant along these lines. These are the

characteristics, which are straight lines in this case given by

x = at + x0, (4.7)

or

t =
x− x0

a
, (4.8)

where x0 is the value of x at t = 0, and

a = (1− 9ρ(x0, 0))e−9ρ(x0,0) (4.9)

from (4.5).

To obtain the exact solution, we trace the characteristic that passes through the

point (x, t) back to the initial density profile, where ρ has the same value on that

characteristic, i.e.

ρ(x, t) = ρ(x0, 0) = ρ0.

When characteristics cross, however, the solution becomes multiply defined and the

continuous theory breaks down. This is encountered immediately when considering

for example the square wave (4.13) (see Figure 4.3) at x = 10, where the two discon-

tinuities need to be categorised into shocks, fans or combinations of both. To do this

consider the flux function between the points to the left and right of the discontinuity,

ρL and ρR. The shock speed s is given by the Rankine-Hugoniot jump condition, [21],

s =
[f ]

[ρ]
=

f(ρL)− f(ρR)

ρL − ρR

. (4.10)

If, for all ρ ∈ [ρL, ρR], the entropy condition due to Oleinik is satisfied [21], i.e.,

R ≡ f(ρR)− f(ρ)

ρR − ρ
≤ s ≤ f(ρL)− f(ρ)

ρL − ρ
≡ L, (4.11)

then a discontinuity is a shock. Figure (4.1) is a pictorial representation of this con-

dition. However, the generic flux function (4.3) is non convex and we therefore need

to check where ρL and ρR are situated relative to the point of inflection. The point of

inflection of the flux function is at ρ = ρI , where

f ′′(ρI) = (81ρI − 18)e−9ρI = 0,
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Figure 4.1: Pictorial representation of Oleinik’s entropy condition. The slope between ρR and ρ is

labelled R, between ρL and ρ is labelled L, while the shock speed given by the slope between ρL and

ρR is labelled S. This condition must be satisfied for all ρ ∈ [ρL, ρR] for the discontinuity to be a

true shock.

hence

ρI =
2

9
. (4.12)

Since for both discontinuities ρL and ρR lie on opposite sides of the point of inflection

the entropy condition is not satisfied for either discontinuity in the square wave.

4.3 Application to Two Test Problems

To test the different numerical schemes derived later, exact solutions are derived for

two test problems. Here the densities and velocity functions have been normalised to

simplify the calculations: velocity has been divided by the maximal velocity vmax and

density divided by some maximal bumper to bumper density ρmax.

4.3.1 Square Wave

The first test problem is a square wave of height 1/2 with a density of 1/10 outside of

the wave, Figure 4.2. The left side of the wave was positioned at a distance of 10 unit

lengths from the left hand end of the road, and the right side of the wave positioned

at 20 unit lengths. Hence

ρ(x, 0) =





1
2

10 ≤ x ≤ 20

1
10

otherwise .
(4.13)
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Figure 4.2: Test problem 1: Square wave.

We discuss the evaluation of this initial data. First consider the left hand dis-

continuity (at x = 10). The densities to the left and right of the discontinuity, ρL

and ρR, are on opposite sides of the point of inflection in Figure 4.3. More precisely,

ρL < ρI < ρR. The discontinuity must therefore be split into sections, each of which

must be checked against the entropy condition (4.11). The sections are determined by

drawing a line from ρL towards ρR, but making a tangent to the flux function rather

than cutting through it. This tangential point is called T1 (see Figure 4.3). The po-

sitions of ρL and ρR are not drawn to scale on the top diagram in order to exaggerate

the following points. The arrows in the top and bottom left diagram demonstrate the

application of the entropy condition (4.11) which is satisfied for all ρ ∈ [ρL, T1], since

R < s < L, the shock speed s always lying between L and R due to T1 being the tan-

gential point. The discontinuity between ρL and T1 is therefore a shock. The bottom

right diagram of Figure 4.3 shows the actual position of T1 in the discontinuity. This

construction ensures that we have the correct entropy-satisfying weak solution for the

shock [21].

The discontinuity from T1 to ρR is now checked against the entropy condition.

Figure 4.4 demonstrates how (4.11) is not satisfied. The arrows show how R > s > L

for all ρ ∈ [T1, ρR]. The top part of the discontinuity, i.e. from T1 to ρR is therefore

an expansion fan.

The right hand discontinuity (at x = 20) is treated similarly. Figure 4.5 demon-

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Flux function

ρ
 e

(−
9

ρ
)

Density

0 10 20 30
0

0.2

0.4

0.6

Road x

D
e
n
s
it
y

 

T1 

ρ
R

 

ρ
L
 

ρ
L
 

ρ
R

 

T1 

ρ 

shock 

shock 

L 

S 
R 

Figure 4.3: Diagram showing the tangent to the flux function, T1, from ρL and demonstrating ρL

to T1 is a shock.

trates the position of the tangential point T2 from ρL towards ρR. The arrows again

show how (4.11) is satisfied for ρ ∈ [T2, ρL] and hence the discontinuity from T2 to ρL

is a shock. Figure 4.6 demonstrates how the bottom section of the discontinuity, ρR to

T2, fails to satisfy the entropy condition and is therefore an expansion fan. The right

hand discontinuity is therefore also split into a shock and fan, but inverted compared

to the left hand discontinuity.

Both shocks have fixed height and base initially, shock 1 on the left hand side, shock

2 on the right, and hence travel at constant speed according to the Rankine-Hugoniot

jump condition (4.10). Initially shock 1 is moving with greater negative velocity than

shock 2.

The rarefraction fan from T2 to ρ = 0.1 on the right discontinuity will expand as

expected to the right of the discontinuity, each point travelling according to the slope

of the flux function f ′(ρ) = (1 − 9ρ)exp(−9ρ), which, from Figure 4.3, is negative,

with decreasing speed as you move along the fan towards the base, giving a curve

in the density profile that is concave upwards. The rarefraction fan from T1 to ρ =

0.5 also expands with each point moving with negative velocity, decreasing as you

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Flux function

ρ
 e

(−
9

ρ
)

Density

0 10 20 30
0

0.2

0.4

0.6

Road x

D
e
n
s
it
y

 

T1 

ρ
R

 

ρ
L
 

ρ
L
 

ρ
R

 

T1 

ρ 

shock 

X  not a shock 
L S 

R 

Figure 4.4: Diagram showing the tangent to the flux function, T1, from ρL and demonstrating T1

to ρR is not a shock.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Density

ρ
 e

(−
9

ρ
)

Flux function

0 10 20 30
0

0.2

0.4

0.6

Road x

D
e
n
s
it
y

T2 

ρ
L
 

T2 
ρ

R
 

ρ
L
 

ρ
R

 

L 

S R shock 

ρ 

Shock 

Figure 4.5: Diagram showing the tangent to the flux function, T2, from ρL and demonstrating ρL

to T2 is a shock.

38



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Density

ρ
 e

(−
9

ρ
)

Flux function

0 10 20 30
0

0.2

0.4

0.6

Road x

D
e
n
s
it
y

T2 

ρ
L
 

T2 
ρ

R
 

ρ
L
 

ρ
R

 

L 

S R 

not a shock 

ρ 

Shock 

X 

Figure 4.6: Diagram showing the tangent to the flux function, T2, from ρL and demonstrating T2

to ρR is not a shock.

approach ρR, again giving a concave density profile. The right of the fan, however,

is moving more slowly in the negative direction than the second shock. The result is

that whereas initially shock 2 is moving with constant velocity, once it catches up to

the first expansion fan its height will no longer be fixed at ρ = 0.5. This height will

be given by the point in the expansion fan it has caught up with. The base of the

shock will therefore no longer be fixed, but is still given by the tangent from the height

to the flux function, thus T2 increases. This has the effect of increasing the negative

velocity of this shock, shock 3, giving it very different properties to shocks 1 and 2.

This is demonstrated by Figure 4.7. Shocks 1 and 2 are straight lines with shock 1

moving faster, therefore having a more shallow slope than shock 2, also a straight line.

Shock 3 has increasing negative speed also given by (4.10), therefore curves from shock

2 towards shock 1. This has the effect of creating two sections of fan to the right of

the shock. The first as before, but as T2 increases the base of the shock fans out also.

Eventually shock 3 crosses shock 2 with the overall effect of the discontinuity

collapsing into one smaller shock with base ρ = 0.1 from shock 1 and height ρ = T2

(current) from the base of shock 3. The speed of this shock is also negative but moves
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Figure 4.7: Characteristic diagram for square wave test problem.

slower in the negative direction than points in the top expansion fan. These points

therefore move into this shock, thus decreasing its height until such a time as all the

points from the top fan are absorbed into the shock. The resulting fifth shock is also

moving faster than the points in the original fan and therefore the fan gets absorbed

into the shock, also decreasing its height and varying its velocity. The velocity of this

final shock gradually decreases and eventually moves with positive velocity, all the

while catching up with the original fan. The movement of the shocks is demonstrated

by Figure 4.8. Figure 4.9 shows the analytic solution of the density profile progressing

with time for the square wave test problem.

Calculating the movement of the shocks requires the use of a numerical technique

to solve the ordinary differential equations involved. The first two shocks are moving

with constant velocity given by (4.10), (see Figure 4.9 at times 50 and 100), but when

shock 2 reaches the top of the right hand fan the new shock 3 moves with varying

velocity, dependent on the height of the fan reached (see Figure 4.9 at times 200 and

700). This will in turn affect the tangential point, T2, thus giving a smaller shock

with greater negative velocity. Finding the point of the fan reached depends on the
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speed of the shock, which is not known for all time. Thus, given the initial ρL, T2 and

shock speed we can use the R-H shock equation, (4.10),

dx

dt
=

f(ρL)− f(T2)

ρL − T2
= g(t, x), (4.14)

to find the evolution of the shock. In general this equation needs a numerical method

for its solution. We use the fourth order Runge-Kutta method, for which

x(t + ∆t) = x(t) +
1

6
(K1 + 2K2 + 2K3 + K4),

with

K1 = ∆t g(t, x)

K2 = ∆t g

(
t +

1

2
∆t, x +

1

2
K1

)

K3 = ∆t g

(
t +

1

2
∆t, x +

1

2
K2

)

K4 = ∆t g (t + ∆t, x + K3) , (4.15)

where, for each K2 −K4, the function g and therefore ρL and corresponding T2 need

to be calculated. The new height, ρL, is calculated by the speed of the points in the
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Figure 4.9: Analytic solution of the square wave test problem.
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fan. Given the position (t, x), the point in the fan reached must be travelling at speed

x−10
t

. Equating this to the derivative of the flux function we can use Newton-Raphson

iterations to determine ρL. Since

f ′(ρL) = (1− 9ρL)e−9ρL =
x− 10

t
, (4.16)

we set

F = (1− 9ρL)e−9ρL − x− 10

t
.

We have
dF

dρL

= (81ρL − 18)e−9ρL ,

so that using Newton-Raphson iterations we calculate

ρnew
L = ρold

L −
(

dF

dρL

(ρold
L )

)−1

F (ρold
L ), (4.17)

until |ρnew − ρold| < a given tolerance, or until |F | is sufficiently small. Once the new

height of the shock is known, the new base must be calculated from the tangent to the

flux function by equating the derivative of the flux function at T2 to the slope of the

line between (T2, fT2) and (ρL, fL). This gives

f ′(T2) =
fT2 − fL

T2− ρL

. (4.18)

Multiplying through by T2− ρL, we have

F = fT2 − fL − (T2− ρL)f ′(T2) = 0.

Substituting for the flux function (4.3), we obtain

F =
(
9 T22 − 9 T2ρL + ρL

)
e−9 T2 − ρLe−9ρL = 0

dF

d T2
=

(−81 T22 + T2(81ρL + 18)− 18ρL

)
e−9 T2, (4.19)

and using the Newton-Raphson method again we can calculate T2 by (4.17). Once ρL

and T2 are found, the new speed of the shock is calculated from (4.10) and the whole

process is repeated until shock 3 crosses shock 1. When this happens the two shocks

collapse and leave a smaller shock with base ρ− 0.1 and height of the final tangential

point T2 from shock 3, with fans to the right (see Figure 4.9).
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The movement of the fourth shock also requires some numerical evaluation. It has

a base ρL = 0.1 and initially its height is given by the last tangent T2. Its initial speed

is therefore
f(ρL)− f(T2)

ρL − T2
.

This is only an instantaneous height however. The points of the fan immediately to

the right of the shock move with a more negative velocity than the shock itself, and

therefore move into the shock, thereby decreasing its height, thus changing its speed.

Initially the points of the fan are from the base of the third shock fanning out due

to its decreasing height. The characteristics are therefore tangents from the third

shock going into shock 4 (see Figure 4.7). To calculate the movement of shock 4 we

require the movement of shock 3, and more specifically the slope of the tangent at

each iteration. We then work backwards along shock 3. Starting with the initial speed

of shock 4 we find where the shock moving with this speed crosses the last tangent to

shock 3. The density corresponding to the speed given by the slope of this tangent is

calculated from (4.18) to (4.19). This is then the new height ρR of the shock, with a

new speed given by (4.10). This process is repeated until the final tangent from shock

3 crosses shock 4, (see Figure 4.9 at time 1301).

The final stage is just a fifth shock followed by a fan created from the initial right

hand discontinuity that was split into a shock and a fan (see Figure 4.9 time 100).

Again the points in the fan have a greater negative velocity than the shock, and so

move into it thus decreasing its height further and altering its velocity. The height of

the shock ρR can easily be found using the fourth order Runge-Kutta method on

dx

dt
=

f(ρL)− f(ρR)

ρL − ρR

,

where ρL = 0.1 and ρR can be found using Newton-Raphson iterations, (4.16) to (4.17),

given

f ′(ρR) =
x− 20

t
.

Figure 4.9 at time 2000 is an example of the final shock fan left after all interactions

have occurred. As demonstrated in Figure 4.8, shock 5 moves with increasing velocity

due to its decreasing height and eventually moves off in the positive x− direction while

the base of the fan continues to spread. The full evolution is shown in Figure 4.9.

44



Helbing, [13], discussed how the LWR model with a linear flux function was unable

to correctly predict the dispersion of a platoon of traffic, but here we see that with a

non convex choice of flux function, the platoon can be dispersed from the front and

the rear which is more like observed behaviour.

There is however a possible objection to this test problem in that traffic will perhaps

never find itself in the initial state (4.13). For this reason we consider a possibly more

realistic starting profile.

4.3.2 Half-Cosine Wave

The second test problem is a half cosine wave joined to a discontinuity, Figure 4.10.

The density outside of the perturbation is again 1
10

. Hence

ρ(x, 0) =





1
2
cos2

(
πx
20

)
10 ≤ x ≤ 20

0 otherwise

(4.20)
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Figure 4.10: Test problem 2: Half cosine wave.

The second test problem, (4.20), can be treated similarly to the first. The discon-

tinuity is of the same form as the right discontinuity of the square wave in that it also

splits into a shock and a fan at the tangent point T2 from ρL to the flux function,

see Figures 4.5 and 4.6. This shock has negative speed greater than the points on the
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curve to its left, therefore the shock will start losing height immediately. The tangen-

tial point T2 therefore also changes immediately, unlike the square wave test problem

that only changes height after the right hand shock catches up with the left hand fan.

The movement of this shock is calculated in the same way as for the square wave test

problem after the shock has caught the fan, i.e. in (4.14) and (4.15). Here, however,

the points in the curve are travelling according to

x = f ′(ρo)t + xo, (4.21)

where the velocity is given by

f ′(ρ(xo, 0)) ≡ f ′(ρo) = (1− 9ρo)e
−9ρo , (4.22)

and the density, constant along characteristics, is

ρ(xo, 0) ≡ ρo =
2

5
cos2 πxo

20
+

1

10
.

ρL is therefore found by determining what point in the curve has been reached, and

its corresponding initial position xo.

Again, this is a non-linear problem so Newton iterations are used where, from

(4.21),

F = f ′(ρo)t + xo − x,

with
dF

dxo

= f ′′(ρo)
dρo

dxo

t + 1,

where

f ′′(ρo) = (81ρo − 18)e−9ρo ,

and
dρo

dxo

= − π

50
sin

πxo

10
.

So, from an initial guess xold
o , xnew

o is calculated in a similar way to (4.17). Once we

know xo we can calculate the corresponding ρo from (4.20), i.e.,

ρo = ρ(xo, 0) =
1

2
cos2

(πxo

20

)
,

and this is ρL. The tangential point T2 is then calculated as before, (4.18, 4.19). We

can then apply Runge-Kutta (4.15) to the movement of the shock where again dx
dt

is

given by (4.14).
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Figure 4.11: Characteristic diagram for half cosine wave test problem.
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Figure 4.12: Close up of the characteristic diagram for half cosine wave test problem, TC being

one of the characteristics tangent to shock 2.
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Figure 4.13: Positions of shocks only for half cosine wave test problem.

Each point in the curved section of the test problem will move with velocity given

by (4.22). Due to the nature of the flux function however, these points will be moving

at different speeds, some greater than others, and will therefore start to form a shock.

This corresponds to where the characteristics, given by (4.7) to (4.9), first cross. This

is found by using the characteristic envelope to determine when two neighbouring

characteristics have the same value x at a given time t, i.e. where a small change in

the initial position xo produces no change in x, thus

dx

dx0

= 0. (4.23)

Since x is given by (4.7), i.e.

x = at + x0,

a is as in (4.9), i.e.

a = (1− 9ρ(x0, 0))e−9ρ(x0,0)

and

ρ0 = ρ(x0, 0) =
1

2
cos2

(πx0

20

)
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Figure 4.14: Analytic solution of the half cosine wave test problem.
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for 10 ≤ x0 ≤ 20, then differentiating x w.r.t. x0 gives

dx

dx0

=
da

dx0

t + 1, (4.24)

where
da

dx0

=
da

dρ0

dρ0

dx0

=
(
(81ρ0 − 18)e−9ρ0

) (
− π

40
sin

(πx0

10

))
.

Hence, dx
dx0

= 0 when

t = −
(

da

dx0

)−1

.

To find the time that the characteristics first cross, we seek the minimum value

of t for which (4.23) holds, i.e. where dt
dx0

= 0 (and d2t
dx2

0
> 0). Using Mathematica,

this minimum value of t is found to be = 12.86 which corresponds to x = 11.09 with

ρo = 0.1243, where xo = 11.59.

This shock, shock 1, then moves off with speed s, (4.10), which is more negative

(i.e. faster) than points to the left and less negative (i.e. slower) than points to the

right, therefore it grows in size with decreasing base ρL and increasing height ρR.

Again fourth-order Runge-Kutta is used to determine the movement of the shock with

g(t, x) given by an equivalent version of (4.14) with ρL and ρR where ρL and ρR are

two solutions to the same Newton iterations (4.16) to (4.17), hence care with initial

values for ρold
o is required.

The movement of both shocks is repeated simultaneously until they cross. At

this point the two test problems are very similar, although this similarity occurs at

different values of t. After the collision of shocks we are left with a single discontinuity,

shock 3, with base ρL = 1
10

originating from ρL of shock 1 and height from the final

value of ρR of shock 2. This is connected to the fan that was to the right of shock

2. The movement of this shock-fan is then the same as for the previous test problem,

where initially ρR is determined by the section of shock 2 that gradually fanned out

due to the decreasing height of the discontinuity. This corresponds to characteristics

originating from and tangent to shock 2 going into shock 3, (see Figure 4.12 where

the characteristic labelled TC is one such tangent). Eventually ρR will decrease and

change the shock speed so that the shock 4 moves into the original fan at the base of

shock 1. Figure 4.11 is the full characteristic diagram for the movement of the half

curve test problem. Figure 4.12 is a small section of (4.11) magnified to highlight the
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formation of the shock and all the characteristics in the curved section. Figure 4.13 is

the position of the shocks without the characteristics and demonstrates the movement

of shock 4 after a long time and Figure 4.14 is a series of cross-sections of the density

at various times.

4.3.3 Discussion

The first test problem is an idealised representation of a platoon of vehicles, i.e. a

region of high density or a local cluster of traffic where ρ = 1
2

surrounded by regions of

low density, where ρ = 1
10

. The second test problem is perhaps slightly more realistic,

in the sense that behind the shock the traffic is more spread out and varies smoothly

between the low and high densities. Traffic approaching a jam ahead might slow

down before reaching it in anticipation. This second test problem might therefore

be representative of the removal of a partial blockage of a motorway in the presence

of low density traffic and we might want to know how the traffic will evolve. As we

have seen, after a sufficient amount of time the behaviour of the two test problems is

qualitatively the same. A test problem combining the two, i.e. low density followed

by a curve and plateau, joined to a region of low density by a discontinuity would

model a partial blockage that has been present for a while before being removed. In

this scenario the behaviour would be a combination of both test problems.

Consider the trajectories of the vehicles. Traffic flowing through these test profiles

would experience what most drivers have experienced in motorway driving, that is the

phantom traffic jam. While driving along in low density, suddenly a vehicle encounters

a jam, or a region of slow moving high density traffic, then after a while the jam appears

to clear without any apparent reason for the jam.

A vehicle approaching a platoon in test problem 1 would be travelling at V (ρlow),

i.e. high velocity, then reach the discontinuity and suddenly enter a region of high

density. Figure 4.15 is a plot of the vehicle trajectory in the characteristic plane.

That vehicle would adjust its velocity according to V (ρhigh), thereby travelling at a

much reduced speed. The shock, however, is moving with negative velocity, therefore

the slow moving car will pass through the shock and, assuming the platoon had been

allowed to evolve before the vehicle had reached it, the car will then move into the
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Figure 4.15: Characteristic diagram for square wave test problem with a vehicle trajectory.

fan region of increasing density. Again the points of the fan are moving with differing

negative velocities, therefore the car will observe a smoother increase in density up

to the maximum of ρ = 1
2

(the green section of the trajectory in Figure 4.15). This

seems reasonable since the shock might represent the traffic slowing down in advance

of a jam ahead at the same time and propagating backwards, followed by a more

gradual increase up to the maximum. This maximum is then experienced while the

car moves through the plateau. Then, since the shock at the front of the platoon also

has negative velocity, the vehicle will experience a sudden drop in density followed by

a more gradual dispersion of the traffic ahead, i.e. the shock-fan in Figure 4.16.

Since the shocks propagate with negative speed, after some time the cluster will

have moved against the flow of traffic down the road therefore a vehicle could feasibly

clear the jam well before it reaches the original position of the partial blockage, thereby

experiencing the jam for no apparent reason.

The second test problem would have similar observations with transitions being a

little smoother initially, until the system is allowed to evolve to where the left shock

is sufficiently large, in which case the driver would have much the same experience.
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Figure 4.16: The conditions experienced by a vehicle, in space and in time .

There is also a second issue about the behaviour of the test profiles. An external

person, e.g. from a helicopter or bridge, would observe the platoon moving slowly

against the flow of traffic, then after sufficient time, the front shock would reach the

shock at the rear of the platoon and the cluster would collapse to a much smaller

discontinuity followed by a fan. This would represent the jam clearing itself and

drivers present would also experience the disappearance of the jam, but for a different

reason. Here it has actually cleared, whereas in the previous experience the car has

simply moved through it and the platoon has propagated backwards against the flow.

The test problems are also an approximation to vehicles at a traffic light, (assuming

no side roads), with a slight modification of having zero density to the right of the right

hand discontinuity, being the position of the red light. The resulting characteristic

diagram would be the same as for the test problems above, apart from the right hand

fan would fan out from T2 as before down to zero, rather than ρ = 1
10

. The positions of

the shocks etc. would be the same. According to Strang [32] and Haberman [10], the

timings of the traffic lights must be such that they remain green to allow the shock at

the rear of the queue (shock 1) to pass through the lights before they change back to
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red, otherwise the traffic would crawl along and back up. In the above test problems

this corresponds to allowing enough time for shock 5, (shock 4 in the half curve case),

to change direction and move forwards of the lights, i.e. at x = 20.

As we will see later (in Chapter 8), the LWR model is unable to capture interactions

between waves. To do this a system of equations is required. The next Chapter

therefore discusses the systems we are going to consider in this thesis.
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Chapter 5

Two-Equation Models

In this chapter we consider the application of Higher Order Models, or more accurately

systems of equations, namely the PW model, BMW, AR and Zhang. All models

consist of the conservation of mass equation (2.5) coupled with a second traffic-like

equation to capture the complex interactions observed in traffic flow. Here we write

the systems first in conservative form then in quasi-linear form and find the eigenvalue

and eigenvectors for each. These are then used to create a test problem for the two-

equation models and, in Chapter 7, to implement the numerical schemes.

5.1 Payne-Whitham Model

A two-equation model was proposed in the 1970’s independently by Payne [27] and

by Whitham [36], we shall refer to this as the PW model. The first equation is the

conservation of mass equation as discussed earlier, i.e.

∂ρ

∂t
+

∂f (ρ)

∂x
= 0 (5.1)

with ρ representing the density of vehicles and the flux function f (ρ) = ρv where v is

the velocity. In the one-equation model a particular form of v(ρ) is assumed. In the

two-equation models v and ρ are assumed to be independent and a second equation

formed connecting them, as in a fluid model.

In the PW model the second equation is derived from the Navier-Stokes equation

of motion for a one-dimensional compressible flow, but with a pressure p = C2
oρ and a
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relaxation term. This gives

∂v

∂t
+ v

∂v

∂x
= −C2

o

ρ

∂ρ

∂x
+

(
V (ρ)− v

τ

)
+

µ

ρ
vxx (5.2)

where Co and τ are constants, and the velocity V (ρ) is the ‘maximal and out of danger’

velocity meant to mimic drivers’ behaviour. Kerner and Konhäuser [16], KK, describe

V (ρ) as being ‘determined by the average balance between safety requirements and

risk readiness of the driver as well as legal traffic regulations and road conditions’.

There are many possible choices for the velocity function V (ρ), as discussed earlier

(3.3) to (3.7).

In order to rewrite the left hand side of (5.2) in conservative form, first we use the

product rule

(ρv)t = ρvt + vρt

and, substituting in for vρt after multiplying (5.1) by v, we have that

v (ρv)x + (ρv)t − ρvt = 0. (5.3)

Substituting (5.3) into (5.2) multiplied by ρ gives

ρvt + ρvvx = −C2
oρx + ρ

(V (ρ)− v)

τ
+ µvxx

while substituting for ρvt from (5.3) gives

v (ρv)x + (ρv)t + ρvvx = −C2
oρx + ρ

(V (ρ)− v)

τ
+ µvxx. (5.4)

Again using the product rule on (ρvv)x, i.e.

(ρvv)x = (ρv)xv + (ρv)vx

and substituting in (5.4) for (ρv)xv + (ρv)vx we obtain

(
(ρv)2

ρ

)

x

+ (ρv)t = −C2
oρx + ρ

(V (ρ)− v)

τ
+ µvxx.

Hence we obtain the second equation (5.2) with the left hand side in conservative form

(ρv)t +

(
(ρv)2

ρ
+ C2

oρ

)

x

= ρ
(V (ρ)− v)

τ
+ µvxx, (5.5)
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where ρ and ρv are the conserved variables. The source terms on the right hand side

consist of a relaxation term and a viscosity term.

The two-equation conservative model, (5.1) and (5.5), can conveniently be written

in the vector form

ut + f (u)x = R (5.6)

where

u =


 ρ

ρv


 , f (u) =




ρv

(ρv)2

ρ
+ C2

oρ


 (5.7)

and

R =


 0

ρ
(V (ρ)− v)

τ
+ µvxx


 .

Initially we shall consider the situation where there is no viscosity or relaxation,

i.e. R = 0, hence the problem reduces to that of isothermal flow [21].

Referring to (5.6), with u, f(u) given by (5.7), we can write the system in quasi-

linear form as
∂u

∂t
+ A(u)

∂u

∂x
= 0, (5.8)

where the matrix A(u) is given by

A(u) =
∂f

∂u
=




0 1

C2
o −

(ρv)2

ρ2

2ρv

ρ


 . (5.9)

We can then find the eigenvalues λ and corresponding eigenvectors e of A in order to

diagonalise it. From

|A− λI| = 0

(−λ) (2v − λ)− (
C2

o − v2
)

= 0

λ2 − 2vλ− (
C2

o − v2
)

= 0

giving

λ1 = v + Co, λ2 = v − Co. (5.10)

Since there are two real distinct eigenvalues the system is hyperbolic, as for all the

two-equation models considered.
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To obtain the corresponding eigenvectors e1 and e2 we seek a vector x that satisfies

(A− λI)x = 0.

So for λ1 we have 
 −v − Co 1

C2
o − v2 v − Co


x = 0.

Choosing x1 to be 1, we get x2 = v + Co, giving the eigenvector

e1 =


 1

v + Co


 . (5.11)

Similarly for λ2 we get

e2 =


 1

v − Co


 . (5.12)

It is necessary to calculate the eigenvalues and corresponding eigenvectors in order

to apply state-of-the-art upwind numerical schemes. The solution consists of two

waves each moving with speed given by the eigenvalues, and strength derived from the

corresponding eigenvectors. The flux functions are nonlinear, therefore it is difficult

to derive exact solutions to the system for general initial data. However, the system

is locally diagonalisable due to the linearly independent eigenvectors, and therefore

some of the schemes applied are chosen to exploit this property.

5.2 Berg-Mason-Woods Model

Recently Berg, Mason and Woods (BMW), revisited the PW model in the form above,

as used by Kerner and Konhäuser [16], and attempted to improve on it by deriving

the model from car-following models, but without assuming the coefficient of the ρx

term is constant, and including more higher order terms, arguing their significance is

greater than previously thought [3]. Their model is given by (5.1) coupled with

vt + vvx =
(V (ρ)− v)

τ
+

V ′(ρ)

τ

(
ρx

2ρ
+

ρxx

6ρ2
− ρ2

x

2ρ3

)
(5.13)

where τ is the relaxation time and V (ρ) is taken to be the velocity function (3.7). Again

we wish to write the left hand side in conservation form, therefore if we multiply (5.1)
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by v and add it to ρ×(5.13) we obtain

vρt + ρvt + v(ρv)x + ρvvx − V ′(ρ)

2τ
ρx = ρ

(V (ρ)− v)

τ
+

V ′(ρ)

τ

(
ρxx

6ρ
− (ρx)

2

2ρ2

)
, (5.14)

which can be rewritten as

(ρv)t +

(
(ρv)2

ρ
− 1

2τ
V (ρ)

)

x

= ρ
(V (ρ)− v)

τ
+

V ′(ρ)

τ

(
ρxx

6ρ
− (ρx)

2

2ρ2

)
. (5.15)

The BMW model, like PW, also contains a relaxation term but the viscosity includes

higher order terms. The coefficient of the ρx term on the left hand side of (5.15) is

given by V ′(ρ)
2τ

, a function of ρ, whereas in the PW model it is just Co, a constant.

Other than this they have a similar form.

The conserved variables and flux function are given by

u =


 ρ

ρv


 , f (u) =




ρv

(ρv)2

ρ
− V (ρ)

2τ


 , (5.16)

and the vector of right hand side terms R is

R =




0

ρ
(V (ρ)− v)

τ
+

V ′(ρ)

τ

(
ρxx

6ρ
− (ρx)

2

2ρ2

)

 . (5.17)

The system can then be written in the form of (5.8), with

A (u) =


 0 1

−V ′(ρ)

2τ
− v2 2v


 (5.18)

whose eigenvalues and corresponding eigenvectors are

λ1 = v +

√
−V ′(ρ)

2τ
, λ2 = v −

√
−V ′(ρ)

2τ
(5.19)

and

e1 =




1

v +

√
−V ′(ρ)

2τ


 , e2 =




1

v −
√
−V ′(ρ)

2τ


 . (5.20)

Since V (ρ) is a monotonically decreasing function, V ′(ρ) ≤ 0, ensuring the eigenvalues

and eigenvectors are real.
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5.3 Aw-Rascle Model

A model by Aw and Rascle [1] that claims to be an improvement on the PW model has

recently been proposed. They argue that other researchers have stuck too closely to

fluid flow models and not allowed for significant differences between traffic and fluids,

e.g. traffic is more concerned with the flow in front, rather than behind (see Chapter

2).

The model proposed by Aw and Rascle, henceforth known as AR, is

∂ρ

∂t
+

∂ (ρv)

∂x
= 0

as in (5.1), together with a Lagrangian equation

∂ (v + P (ρ))

∂t
+ v

∂ (v + P (ρ))

∂x
= 0 (5.21)

where P (ρ) is a smooth increasing pressure function. They suggest

P (ρ) = C2
0ρ

γ (5.22)

for the pressure where γ > 0, and C0 = 1.

Multiplying (5.21) by ρ and using the product rule

(ρ (v + P ))t = ρ (v + P )t + (v + P ) ρt,

(ρv (v + P ))x = ρv (v + P )x + (v + P ) (ρv)x ,

we get

(ρ (v + P ))t − (v + P ) ρt + (ρv (v + P ))x − (v + P ) (ρv)x = 0. (5.23)

Now, using (5.1), we can reduce the left hand side of (5.23) to

(ρ (v + P ))t + (ρv (v + P ))x = 0. (5.24)

This is now in conservative form, where the second conserved variable is ρ (v + P ) = y,

say. Hence, rewriting the AR system using the conserved variables ρ and y, equations

(5.1) and (5.23) become

(ρ)t + (y − ρP ) x = 0,
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(y)t +

(
y2

ρ
− yP

)

x

= 0. (5.25)

In the vector notation of (5.6) this is

u =


 ρ

y


 , f (u) =




y − ρP

y2

ρ
− yP


 , R = 0, (5.26)

which can then be written in the form of (5.8), with

A (u) =




−(γ + 1)P 1

−y2

ρ2
− γPy

ρ

2y

ρ
− P


 (5.27)

whose eigenvalues and corresponding eigenvectors are

λ1 = v, λ2 = v − γP (5.28)

and

e1 =


 1

v + (γ + 1)P


 , e2 =


 1

v + P


 . (5.29)

5.4 Zhang Model

Another model has recently been proposed, by Zhang [40], that claims to be devoid of

gas-like behaviour that plagues other higher-order models.

Again, it is a system consisting of the conservation of mass equation

ρt + (ρv)x = 0 (5.30)

but here coupled with

vt + (v + ρV ′(ρ)) vx = 0, (5.31)

which is based on car-following models (see Chapter 2). This can be written in con-

servative form if we first expand out equation (5.30) to get

ρt + ρvx + vρx = 0. (5.32)

We then substitute for ρvx from (5.32) into (5.31) to obtain

vt + vvx + V ′(ρ) (−ρt − vρx) = 0,
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which can be rewritten as

vt + vvx − (V (ρ))t − v((V (ρ))x = 0,

or in Langrangian form as

(v − V (ρ))t + v (v − V (ρ))x = 0. (5.33)

If we consider the products

(ρ(v − V (ρ)))t = ρ (v − V (ρ))t + (v − V (ρ)) ρt

(ρv(v − V (ρ)))x = ρv (v − V (ρ))x + (v − V (ρ))(ρv)x,

we can make substitutions into ρ× (5.33) giving

(ρ(v − V (ρ)))t − (v − V (ρ))ρt + (ρv(v − V (ρ)))x − (v − V (ρ))(ρv)x = 0,

and using (5.30) we obtain, in conservative form,

(ρ(v − V (ρ)))t + (ρv(v − V (ρ)))x = 0. (5.34)

Letting w = ρ(v − V (ρ)) the system can be written as

u =


 ρ

w


 , f(u) =




w + ρV (ρ)

w2

ρ
+ wV (ρ)


 , (5.35)

whose Jacobian matrix is given by

A(u) =




ρV ′(ρ) + V (ρ) 1

−w2

ρ2
+ wV ′(ρ) 2

w

ρ
+ V (ρ)


 . (5.36)

The eigenvalues and eigenvectors of this matrix are found to be

λ1 = v, λ2 = v + ρV ′(ρ)

e1 =


 1

v − V (ρ)− ρV ′(ρ)


 , e2 =


 1

v − V (ρ)


 . (5.37)
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5.5 Discussion on Wavespeeds

It is worth noting here the difference between the wavespeeds of the different models.

The one-equation LWR model consists of a single wave whose velocity is given by

the derivative of the flux function. For the generic test problems this lies in the

range [−25.73, vmax], which is not unreasonable, as information travels forward at a

maximum no faster than the speed of the traffic. This is in keeping with the assumption

that traffic is anisotropic, i.e. only reacts to conditions ahead. The PW model, however

has two waves travelling at speeds given by v±C0, one of which will always be travelling

faster than the speed if the traffic, v. This is one of the reasons this model has been

criticised. The same applies to the BMW model. The AR model has wavespeeds given

by v and v − γP . This seems reasonable since, as in the LWR model, the faster wave

will move at the same speed as the traffic, no faster. This is also true of Zhang, whose

wavespeeds are given by v and v + ρV ′(ρ) with V ′(ρ) < 0. This demonstrates the

desirable anisotropic nature of the LWR, AR and Zhang models, and the isotropic

nature of the PW and BMW models, for which PW-type models have been severely

criticised. See Chapter 2 for further discussion.

63



Chapter 6

Numerical Methods for the LWR

Model

In this chapter several numerical schemes to approximate the LWR model are de-

scribed. Since equation (4.1) is in conservation form, where ρ is the conserved variable,

a number of conservative numerical schemes are ideally suited to be applied to it. By

choosing the velocity function V2 of (3.4) and taking initial conditions (4.13), numerical

results from various schemes can be compared to the analytic solution (Figure(6.2))

for the purpose of validation. The numerical schemes considered here are

• First Order Upwind with an Entropy Fix ([21])

• Engquist-Osher

• Lax-Friedrichs

• Second Order with a Flux Limiter (Minmod)

In order to implement these schemes first we need to set up the notation. The

solution space (x, t) is split up into a uniform computational grid where the grid

spacing in the x directon is given by ∆x, and the spacing in the time direction is given

by ∆t. Where the grid lines cross is a node. The position of the jth node in the x

direction and nth node in the time direction (xj, t
n), is given by (j∆x, n∆t). It is at

these nodes that we wish to approximate the solution, i.e.

ρ(j∆x, n∆t) ≈ ρn
j ,

64



where ρn
j is our approximate value to the true solution ρ(j∆x, n∆t).

There are many ways of approximating the partial differential equation we are

trying to solve,

ρt + (ρV (ρ))x = 0. (6.1)

Here we are concentrating on shock capturing finite difference methods because these

methods are capable of automatically choosing the correct weak solutions, including

shocks and shock speeds. These involve various ways of approximating the spatial

and temporal derivatives. Here we will concentrate on schemes that approximate the

temporal derivative ρt by a one-sided approximation given by

ρt ≈
ρn+1

j − ρn
j

∆t
.

In doing this the schemes that follow can all be written in the general form

ρn+1
j = ρn

j −
∆t

∆x

(
hj+ 1

2
− hj− 1

2

)
, (6.2)

where h is the numerical flux, the difference in the schemes being how the flux deriva-

tive (ρV (ρ))x, is discretised, hence different definitions of h.

6.1 First Order Upwind

This scheme takes a one-sided difference of the space derivative, the direction de-

pending on the wave direction. This can be determined by calculating the Courant

number,

νj+ 1
2

=
∆t

∆x

[
f

(
ρn

j+1

)− f
(
ρn

j

)

ρn
j+1 − ρn

j

]
, (6.3)

which is an approximation to ∆t
∆x
× wave speed (f ′(ρ)). For numerical stability this

number should be less than one to ensure waves do not travel through more than one

cell in any given time step. If the wave speed νj+ 1
2

is positive then for this scheme

hj+ 1
2

in (6.2) is given by hj+ 1
2

= fj, otherwise hj+ 1
2

= fj+1.

As suggested by its name this scheme is first order accurate. This means the error

generated by approximating the derivatives is of the order ∆x in space and ∆t in time.

This can be found by considering the Taylor series expansion on the derivatives. For
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example, for the time derivative expanding ρn+1
j about (j∆x, n∆t) gives

ρn+1
j − ρn

j

∆t
=

1

∆t
(ρ(j∆x, n∆t) + ∆tρt(j∆x, n∆t)

+
∆t2

2
ρtt(j∆x, n∆t) + O(∆t3)− ρ(j∆x, n∆t)),

= ρt(j∆x, n∆t) +
∆t

2
ρtt(j∆x, n∆t) + O(∆t2),

i.e. first order accuracy in time. A similar treatment of the spatial derivative yields

the same result for the order of accuracy in space for this scheme.

First Order Upwind is equivalent to subtracting νj− 1
2
∆ρj− 1

2
from the value of ρ

at either the left or right node (j − 1 or j), depending on the wave direction, where

∆ρj− 1
2

= ρj − ρj−1, unless ρn
j+1 = ρn

j , in which case νj+ 1
2

= ∆t
∆x

f ′(ρn
j ).

The algorithm may be summarised as follows.

• Initially, set ρn+1
j = ρn

j ∀j.

• If νj− 1
2

> 0 then

ρn+1
j → ρn+1

j − νj− 1
2
∆ρj− 1

2

else νj− 1
2

< 0 and

ρn+1
j−1 → ρn+1

j−1 − νj− 1
2
∆ρj− 1

2
,

noting here that if νj− 1
2

= 0, then the wave speed is zero, and the density does

not change.

6.2 First Order Upwind with an Entropy Fix

A problem with applying the First Order Upwind scheme to an entropy violating

discontinuity across the sonic point ρs is that, with a non-linear flux function the

scheme may calculate the overall flux in the cell to be zero, hence the numerical solution

does not disperse the jump which should disperse as an expansion fan (see Chapter

4). To overcome this a sonic entropy fix is required. For a fully convex/concave flux

function, an intermediate non-physical point (ρm, fm) which is the intersection of the

tangents at ρR and ρL can be constructed in order to artificially split the discontinuity

up into two smaller shocks that move with speeds given by the tangents, hence enabling

the points of the fan to move off with the correct velocity.
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Figure 6.1: The flux function f2 (normalised), the tangent to the curve at ρR, the tangent at ρT

that passes through ρL, and their intersection ρm.

For a non-convex flux function, however, the intermediate point is the intersection

of the tangent at ρR and the tangent that forms the convex hull of f(ρ) from ρL (see

Figure 6.1), where ρT is found as before (4.18)-(4.17). The point (ρm, fm) is then

found by equating the derivative of f to the equation of the slope of a line for the two

tangents, i.e.

f ′(ρR) =
fR − fm

ρR − ρm

, (6.4)

and

f ′(ρT ) =
fm − fT

ρm − ρT

. (6.5)

Eliminating ρm from (6.4) and (6.5) we have that

fm = fT + f ′(ρT )

(
f ′(ρR)− â

f ′(ρR)− f ′(ρT )

)
(ρR − ρT ), (6.6)

where

â =
fR − fT

ρR − ρT

.

The First Order Upwind with the Entropy Fix is then implemented by updating

the affected nodes, i.e. all points that satisfy ρR < ρs < ρL in this case, by

ρn+1
L = ρn

L −
∆t

∆x
(fm − fL)

ρn+1
R = ρn

R −
∆t

∆x
(fR − fm) .
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We can find ρm by substituting fm back into (6.4) or (6.5). Once (ρm, fm) is found,

the single discontinuity is treated as two separate discontinuities where (ρR, ρT ) is a

rarefaction wave and (ρT , ρL) is a shock moving with a speed s, which, as in (4.10), is

s =
fT − fL

ρT − ρL

.

6.3 Engquist-Osher Scheme

From the discretisation given by (6.2), for the Engquist-Osher scheme h is defined by

hj+ 1
2

= f+
j + f−j+1 + f (ρs) (6.7)

and ρs is the sonic point of f (ρ). We define f+
j and f−j in integral form as

f+
j =

∫ ρj

ρs

χ(u)f ′(u)du,

f−j =

∫ ρj

ρs

(1− χ(u)) f ′(u)du,

where

χ(u) =





1 if f ′(u) > 0

0 otherwise

In regions where the flux function is convex these reduce to

f+
j = [f(u)]max(ρs,ρj)

ρs
= f (max (ρs, ρj))− f (ρs)

f−j = [f(u)]min(ρs,ρj)
ρs

= f (min (ρs, ρj))− f (ρs) .

In regions where the flux function f (ρ) is concave (i.e.
d2f

dρ2
< 0), f+

j and f−j are

redefined by swapping max and min to give

f+
j = f (min (ρs, ρj))− f (ρs)

f−j = f (max (ρs, ρj))− f (ρs) . (6.8)

6.4 Lax-Friedrichs Scheme

Starting from the central difference scheme,

ρn+1
j = ρn

j −
∆t

2∆x

(
fn

j+1 − fn
j−1

)
,
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(which is linearly unconditionally unstable), the first order Lax-Friedrichs scheme re-

places ρn
j with

ρn
j+1 + ρn

j−1

2
giving

ρn+1
j =

ρn
j+1 + ρn

j−1

2
− ∆t

2∆x

(
fn

j+1 − fn
j−1

)
, (6.9)

which makes it conditionally stable.

6.5 Second Order Schemes

Alternative schemes can be constructed so that the truncation error is of the order ∆x2

or higher. The greater the order of accuracy the faster the truncation error reduces

as you refine the mesh size. Higher order schemes, although they have this reduced

truncation error, are prone to oscillations, particularly at discontinuities. Applying

Flux Limiters is one way of reducing and in many cases eliminating these oscillations,

at the expense of locally reducing the order of accuracy of the scheme. Flux Limiters

are dealt with in the next section.

The second order scheme being considered here is best dealt with in two stages.

The first stage is applying First Order Upwind (Section 6.1). The second stage is

designed to take part of the value of ρ from one node and transfer it to the value of ρ

at the next node, again the direction depending on the wave direction. With the right

choice this gives the scheme second order accuracy.

Second order scheme is achieved, if νj− 1
2

> 0, by adding the extra step

ρn+1
j → ρn+1

j +
1

2

∆t

∆x

(
1− νj− 1

2

)
∆fj− 1

2

ρn+1
j−1 → ρn+1

j−1 −
1

2

∆t

∆x

(
1− νj− 1

2

)
∆fj− 1

2
,

else if νj− 1
2

< 0,

ρn+1
j → ρn+1

j − 1

2

∆t

∆x

(
1 + νj− 1

2

)
∆fj− 1

2

ρn+1
j−1 → ρn+1

j−1 +
1

2

∆t

∆x

(
1 + νj− 1

2

)
∆fj− 1

2
. (6.10)

This is the Lax-Wendroff scheme.
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6.6 Second Order Schemes with a Flux Limiter (Min-

mod)

Second order schemes normally give oscillations near shocks but these can be sup-

pressed by the use of flux limiters in the second stage above [34]. The first stage is

applying First Order Upwind as before (Section 6.1).

The second stage (6.10) is rearranged to introduce a ratio r of flux differences which

is then monitored to check for over or undershoots. A limiter function φ(r) kicks in

only in the event of these over or undershoots, supresses them and reduces the order

of accuracy locally.

The second order stage with the limiter is, if νj− 1
2

> 0,

ρn+1
j → ρn+1

j +
1

2
φ

(
r+
j−1

)
νj− 1

2

(
1− νj− 1

2

)
∆ρj− 1

2

ρn+1
j−1 → ρn+1

j−1 −
1

2
φ

(
r+
j−1

)
νj− 1

2

(
1− νj− 1

2

)
∆ρj− 1

2
,

else νj− 1
2

< 0

ρn+1
j → ρn+1

j − 1

2
φ

(
r−j

)
νj− 1

2

(
1 + νj− 1

2

)
∆ρj− 1

2

ρn+1
j−1 → ρn+1

j−1 +
1

2
φ

(
r−j

)
νj− 1

2

(
1 + νj− 1

2

)
∆ρj− 1

2
,

where r±j are defined as

r+
j =

(
1− νj− 1

2

)
∆fj− 1

2(
1− νj+ 1

2

)
∆fj+ 1

2

, r−j =

(
1 + νj+ 1

2

)
∆fj+ 1

2(
1 + νj− 1

2

)
∆fj− 1

2

. (6.11)

Here r+
j is r for a positive wave speed and r−j is r for a negative wave speed, where

νj+ 1
2

is as in (6.3) and φ (r) is the limiter.

There are various flux limiters φ (r) available, one being Roe’s Minmod limiter [34].

This is defined as

φ (r) = max (0,min (r, 1))

which gives the output 1 if r > 1, 0 if r < 0, and r if 0 < r < 1.

Since r is defined by (6.11), then when programming the limiter it is worth noting

that if r is the output then its denominator will cancel with a term multiplying it, so r

need not necessarily be calculated explicitly. Merely comparing the relative magnitudes
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of the numerator and denominator will decide the output. For example, if a is the

numerator of r, where

a = αk− 1
2
(∆fk− 1

2
),

and b is the denominator of r, where

b = αk+ 1
2
(∆fk+ 1

2
),

then

ab < 0 ⇒ a

b
< 0 ⇒ φ = 0.

If ab > 0 where either

abs(a) > abs(b) ⇒ a

b
> 1 ⇒ φ = 1

or

abs(a) < abs(b) ⇒ a

b
< 1 ⇒ φ =

a

b
= r

we can implement the limiter using ψ = φb, hence eliminating the need to calculate r,

as this causes problems when ∆f → 0.

By substituting 1 for φ(r) and simplifying, we return to the Second Order scheme

without flux limiter, which is the same as the Lax-Wendroff scheme (6.10).

6.7 Comparison of Schemes on the Test Problems

Figure 6.2 shows the analytic solution after time t = 201 for the test problem of the

square wave compared to the four schemes above, and Figure 6.3 shows the analytic

solution compared to Second Order with Minmod at different times.

As expected, the second order scheme with flux limiter produced the best results.

First Order Upwind with Entropy Fix and Engquist-Osher both gave the correct be-

haviour, but Lax-Friedrichs displayed too much diffusion, causing it to lose much of

the shape definition.

Figure 6.4 shows the analytic solution compared to Second Order with Minmod for

the half curve test case, as again the second order scheme produced the best results.

This gives confidence that we can apply the second order scheme to real data, which we

do in Chapter 8. First however, we look at the implementation of numerical schemes

to systems in the next chapter.
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Figure 6.2: Comparison of 4 different schemes at a given time for square wave test problem.
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Figure 6.3: Analytic solution compared to numerical solution using Second Order with Minmod for

the square wave test problem, using a coarse grid where ∆x = 1.2552 and ∆t = 4.002.
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Figure 6.4: Analytic solution compared to numerical solution using Second Order with Minmod for

the half curve test problem. ∆x = 0.1669 and ∆t = 1.1443.
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Chapter 7

Numerical Methods for Systems

For systems of equations such as the two equation models, we shall implement the first

order Lax-Friedrichs scheme as well as upwind schemes based on decomposition. In

the latter (Roe) schemes the models are decomposed into component scalar problems

and a second order TVD scheme with flux limiters is applied to each. These are a class

of schemes for scalar homogeneous equations that ensure spurious oscillations cannot

be formed, [11]. Due to the systems considered here not being scalar however, the

TVD property is not guaranteed, although oscillations are significantly reduced.

7.1 The Lax-Friedrichs Scheme

For systems such as (5.26), the Lax-Friedrichs scheme is given by

un+1
j =

1

2

(
un

j+1 + un
j−1

)− ∆t

2∆x

(
fn
j+1 − fn

j−1

)
, (7.1)

where j, n are the space and time step indices respectively (c.f. Section 6.4).

The scheme is first order accurate. It is known to smooth out solutions excessively

and have a step feature, but it is nonetheless useful for getting a rough idea of the

behaviour of the system very cheaply. It is conservative and easy to apply.

7.2 Roe’s Upwind Scheme

The idea behind Roe’s scheme is to take a non-linear system of the form (5.8) and to

linearise it locally by approximating the Jacobian matrix A(u) in an interval using Roe
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averages [30]. The resulting system can then be decomposed within each interval into

its two component waves travelling at approximate speeds given by the eigenvalues

of the averaged Jacobian matrix Ã(ũ). Subsequently standard scalar upwind schemes

can be applied to each component.

7.2.1 Roe Decomposition

Given an interval (xL, xR) and any data u = uR − uL we can form differences ∆u,

where uR is u to the right of the cell, and uL is u to the left of the cell . We can then

find values for α1 and α2 such that

∆u =
2∑

k=1

αkek, (7.2)

where ek are the eigenvectors of A(u), i.e. project ∆u onto the eigenvectors.

For an infinitesimally small difference ∆u and a corresponding small ∆f , using

(5.27),

∆f = A(u)∆u =
2∑

k=1

λkαkek, (7.3)

where ∆f = A(u)∆u is referred to as the conservation or shock capturing property.

Equation (7.3) contains A (u) and infinitesimally small differences ∆u and ∆f .

As a numerical approximation Roe considers finite differences over discrete intervals

(cells) and constructs average values, α̃, λ̃, ẽ, ρ̃ and ṽ, which satisfy discrete versions

of (7.2) and (7.3), at least to first order. The details will become clear in the examples

below.

Each component (wave) problem (k = 1, 2) can then be solved by one of the

schemes in Chapter 6 and the results combined to give the full solution.

7.2.2 The Payne-Whitham Model

For the PW model, (7.2) gives

 ∆ρ

∆ρv


 = α1


 1

ρv

ρ
+ Co


 + α2


 1

ρv

ρ
− Co


 , (7.4)

where ∆ now refers to finite differences. Solving for α1 and α2, we get

α1 =
1

2
∆ρ +

1

2Co

(
∆ (ρv)− ρv

ρ
∆ρ

)
(7.5)
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and

α2 =
1

2
∆ρ− 1

2Co

(
∆ (ρv)− ρv

ρ
∆ρ

)
. (7.6)

The discrete averages are therefore

λ̃k = ṽ ± Co, (7.7)

α̃k =
1

2
∆ρ± 1

2C0

(∆ (ρv)− ṽ∆ρ) , (7.8)

where the tilde refers to averages yet to be defined, and

ẽk =


 1

ṽ ± Co


 , k = 1, 2. (7.9)

We now seek Roe averages to the variables ρ and v from (7.3). The first equation of

∆f = Ã∆u (7.10)

for the PW model simply gives ∆(ρv) = ∆(ρv). Roe averages are not unique, Roe

[30], therefore chose

ρ̃ =
√

ρRρL, (7.11)

as a convenient definition for ρ̃, where ρR is the value of ρ at the right end of the cell,

and ρL is the value of ρ at the left end of the cell. ṽ is then found from the second

equation of (7.3), which requires

∆f2 = ∆

(
(ρv)2

ρ

)
+ ∆

(
C2

oρ
)

=
(
ṽ2 + C2

o

)
(α̃1 + α̃2) + 2ṽCo (α̃1 − α̃2)

=
(
ṽ2 + C2

o

)
∆ρ + 2ṽ (∆ (ρv)− ṽ∆ρ)

to hold. This gives a quadratic equation in terms of ṽ

ṽ2∆ρ− 2ṽ∆(ρv) + ∆(ρv2) = 0,

and expanding out ∆(.) = (.)R − (.)L gives

(ρRvR − ρLvL)±
√

(ρRvR − ρLvL)2 − (ρR − ρL)(ρRv2
R − ρLv2

L)

(ρR − ρL)
.

Taking the positive root then leads to

ṽ =

(√
ρRvR +

√
ρLvL

)
(√

ρR +
√

ρL

) (7.12)

(see [8] for details).
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7.2.3 The Berg-Mason-Woods Model

To find α1,2 we use (7.2). This gives


 ∆ρ

∆ρv


 = α1




1

v +

√
−V ′(ρ)

2τ


 + α2




1

v −
√
−V ′(ρ)

2τ


 ,

and the Roe averages of α̃1,2, are found in the same way as for PW. This gives

α̃1 =
∆ρv − ṽ∆ρ + ∆ρ

√
− gV ′(ρ)

2τ

2

√
− gV ′(ρ)

2τ

,

α̃2 =
∆ρ

√
− gV ′(ρ)

2τ
−∆ρv + ṽ∆ρ

2

√
− gV ′(ρ)

2τ

. (7.13)

To find the Roe averages ṽ and Ṽ ′(ρ), using (7.10) we have that ∆(ρv) = ∆(ρv)

as with the PW model. The second equation however, gives

∆

(
(ρv)2

ρ

)
− 1

2τ
∆(V (ρ)) = −ṽ2∆ρ− 1

2τ
Ṽ ′(ρ)∆ρ + 2ṽ∆(ρv), (7.14)

which can be separated into two equations, namely

ṽ2∆ρ− 2ṽ∆(ρv) + ∆(ρv2) = 0 (7.15)

and
1

2τ
Ṽ ′(ρ)∆ρ− 1

2τ
∆V (ρ) = 0. (7.16)

It is easily seen from (7.16) that

Ṽ ′(ρ) =
∆V (ρ)

∆ρ
, (7.17)

and that (7.15) is the same as the quadratic obtained for ṽ for the PW model, ṽ for

the BMW is therefore

ṽ =

(√
ρRvR +

√
ρLvL

)
(√

ρR +
√

ρL

)

.
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7.2.4 The Aw-Rascle Model

We use (7.2) to find α1,2, where

 ∆ρ

∆y


 = α1


 1

v + (γ + 1)P


 + α2


 1

v + P


 ,

and the Roe averages α̃1,2, for the Aw-Rascle model are found in the same way as

before. This gives

α̃1 =
∆y − (ṽ + P̃ )∆ρ

γP̃
,

α̃2 =

(
ṽ + (γ + 1)P̃

)
∆ρ−∆y

γP̃
. (7.18)

Now we need to find the Roe averages ṽ and P̃ . Using (7.10) we have that

∆ (y − ρP ) = −(γ + 1)P̃∆ρ + ∆y, (7.19)

and

∆

(
y2

ρ
− Py

)
= −

(
ṽ2 + (γ + 2)P̃ ṽ + (γ + 1)P̃ 2

)
∆ρ + (2ṽ + P̃ )∆y. (7.20)

It is easily seen from (7.19) that

P̃ =
∆ρP

(γ + 1)∆ρ
(7.21)

satisfies (7.10). Finding Roe averages for ṽ from (7.20) involves rewriting (7.20) as

aṽ2 + bṽ + c = 0 (7.22)

where

a = ∆ρ,

b = (γ + 2)P̃∆ρ− 2∆y,

c = ∆

(
y2

ρ
− Py

)
+ (γ + 1)P̃ 2∆ρ− P̃∆y.

ṽ can then be found using the quatratic formula

ṽ =
2c

−b∓√b2 − 4ac
. (7.23)

The Roe averages in each cell must lie between the values at the nodes at either end

of the cell. This decides which root to take for (7.23).
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7.2.5 The Zhang Model

For the Zhang model, (7.2) gives

 ∆ρ

∆w


 = α1


 1

v − V (ρ)− ρV ′(ρ)


 + α2


 1

v − V (ρ)


 . (7.24)

Solving for α1 and α2, we get

α̃1 =

(
ṽ − Ṽ (ρ)

)
∆ρ−∆w

ρ̃Ṽ ′(ρ)
,

α̃2 =

(
ρ̃Ṽ ′(ρ)− ṽ + Ṽ (ρ)

)
∆ρ + ∆w

ρ̃Ṽ ′(ρ)
. (7.25)

Roe averages are obtained from (7.10) as before. The first component gives

ρ̃Ṽ ′(ρ) + Ṽ (ρ) =
∆(ρV (ρ))

∆ρ
, (7.26)

which is purely in terms of functions of ρ. We can therefore use Newton iteration on

(7.26) to obtain a Roe average for ρ̃, where

F = ρV ′(ρ) + V (ρ)− ∆(ρV (ρ))

∆ρ
,

and
dF

dρ
= ρV ′′(ρ) + 2V ′(ρ),

ρ̃ is then calculated from (4.17). Ṽ (ρ) and Ṽ ′(ρ) are taken to be V (ρ̃) and V ′(ρ̃)

respectively.

The second component gives

∆

(
w2

ρ
+ wV (ρ)

)
=

(
−w̃2

ρ̃2
+ w̃V ′(ρ̃)

)
∆ρ +

(
2w̃

ρ̃
+ V (ρ̃)

)
∆w,

where w = ρ(v − V (ρ)). Hence writing this as a quadratic in terms of v first we have

∆

(
w2

ρ
+ wV (ρ)

)
=

w̃

ρ̃

(
−w̃

ρ̃
+ ρ̃V ′(ρ̃)

)
∆ρ + (2(ṽ − V (ρ̃)) + V (ρ̃)) ∆w,

= (ṽ − V (ρ̃))

(
−ṽ +

∆(ρV (ρ))

∆ρ

)
∆ρ + (2ṽ − V (ρ̃))∆w,

using (7.26), giving

ṽ2∆ρ+ṽ (−∆(ρV (ρ))− V (ρ̃)∆ρ− 2∆w)+V (ρ̃)∆(ρV (ρ))+V (ρ̃)∆w−∆

(
w2

ρ
+ wV (ρ)

)
.
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Hence,

a = ∆ρ,

b = −∆(ρV (ρ))− V (ρ̃)∆ρ− 2∆w,

c = V (ρ̃)∆(ρV (ρ)) + V (ρ̃)∆w −∆

(
w2

ρ
+ wV (ρ)

)
,

as in (7.22), with solution (7.23).

However, solving for ṽ in this way doesn’t always give real solutions. Fortunately,

we are able to take advantage of the structure of the flux function f(u) to give an

alternative method for finding Roe averages.

7.2.6 Alternative Way of Finding Averages

Roe averages need not be unique. It is possible to take advantage of the special

structure of both the Aw-Rascle and Zhang models in order to find alternative averages.

The flux functions can both be written as

f = vu = v


 u1

u2


 , (7.27)

then

A =
∂f

∂u
=

∂(vu)

∂u

=




∂
∂u1

(vu1)
∂

∂u2
(vu1)

∂
∂u1

(vu2)
∂

∂u2
(vu2)


 ,

=




∂v
∂u1

u1 + v u1
∂v
∂u2

u2
∂v
∂u1

∂v
∂u2

u2 + v


 . (7.28)

Now, (7.10) may be written as

Ã∆u = ∆f = ∆(vu) = v̄∆u + ū∆v, (7.29)

where v̄ is the mean value of v etc. We also note that

Ã∆u =


 ũ1

∂̃v
∂u1

ũ1
∂̃v
∂u2

ũ2
∂̃v
∂u1

ũ2
∂̃v
∂u2


 ∆u + ṽ∆u. (7.30)
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If we now set ṽ = v̄, ũ1 = ū1 and ũ2 = ū2, then from (7.29)


 ū1

∂̃v
∂u1

ū1
∂̃v
∂u2

ū2
∂̃v
∂u1

ū2
∂̃v
∂u2


 ∆u = ū∆v,

and provided ū1, ū2 6= 0,

∂̃v

∂u1

∆u1 +
∂̃v

∂u2

∆u2 = ∆v. (7.31)

Making the observation that the element A1,2 = 1 for both models (see (5.27),

(5.36)), we can deduce

ū1
∂̃v

∂u2

= 1

and therefore
∂̃v

∂u2

=
1

ū1

, (7.32)

and hence from (7.31)

∂̃v

∂u1

=
∆v

∆u1

− ∆u2

ū1∆u1

. (7.33)

If we now write v explicitly as a function of u, find ∂̃v
∂u1

and compare the elements Ã2,1,

we can obtain one average. The final average is then determined by comparing the

Ã1,1 elements.

Aw-Rascle Model

Starting with y = ρ(v + P (ρ)) and hence v = y
ρ
−P (ρ), the first derivative is given by

∂v

∂ρ
= − y

ρ2
− P ′(ρ),

therefore,

− ȳ

ρ̄2
− P̃ ′(ρ) =

∆v

∆ρ
− ∆y

ρ̄∆ρ
,

i.e.

P̃ ′(ρ) =
∆y

ρ̄∆ρ
− ∆v

∆ρ
− ȳ

ρ̄2
. (7.34)

Now,

A(1, 1) = ρ
∂v

∂ρ
+

y

ρ
− P (ρ)

therefore, comparing the elements Ã1,1 yields

ȳ

ρ̄
− P̃ (ρ) = v̄
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i.e.

P̃ (ρ) =
ȳ

ρ̄
− v̄. (7.35)

The eigenvalues, eigenvectors and α̃’s are written in terms of P ′(ρ) and P (ρ) (rather

than letting P ′(ρ) = γρP (ρ)), hence

λ̃1 = ṽ, λ̃2 = ṽ − ρ̃P̃ ′(ρ),

e1 =


 1

ṽ + P̃ (ρ) + ρ̃P̃ ′(ρ)


 , e2 =


 1

ṽ + P̃


 ,

and

α̃1 =
∆y − (ṽ + P̃ )∆ρ

ρ̃ ˜P ′(ρ)
,

α̃2 =

(
ṽ + P̃ + ρ̃P̃ ′(ρ)

)
∆ρ−∆y

ρ̃ ˜P ′(ρ)
.

Roe’s Decomposition can then be applied.

Zhang Model

Similarly, for the Zhang model, w = ρ(v − V (ρ)), hence v = w
ρ

+ V (ρ), therefore

∂v

∂ρ
= −w

ρ2
+ V ′(ρ).

Comparing elements Ã2,1 gives

− w̄

ρ̄2
+ Ṽ ′(ρ) =

∆v

∆ρ
− ∆w

ρ̄∆ρ
,

and hence

Ṽ ′(ρ) =
∆v

∆ρ
− ∆w

ρ̄∆ρ
+

w̄

ρ̄2
. (7.36)

Finally, by comparing elements Ã1,1 we have

ρ̄
∂̃v

∂ρ
+

w̄

ρ̄
+ Ṽ (ρ) = ρ̄

∂̃v

∂ρ
+ v̄,

i.e.

Ṽ (ρ) = v̄ − w̄

ρ̄
. (7.37)

We are now ready to apply Roe’s scheme.
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7.2.7 Roe Decomposition with First Order Upwind Scheme

Once we have found the Roe averages we can implement the scheme component by

component, in the same way as the First Order Upwind scheme (see Chapter 6). The

values of u at the new time step are equal to the old ones plus the addition of

ψ̃k = −∆t

∆x
λ̃kα̃kẽk





to uj+1 if λ̃k > 0, or

to uj if λ̃k < 0,
(7.38)

for k =1, 2 (Compare to Section 6.1).

7.2.8 Roe Decomposition with Second Order Schemes

A second step may be applied after First Order Upwind to give the scheme second

order accuracy, as in Section 6.5.

If λ̃k > 0

un
j → un∗

j +
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

ψ̃k,

un
j+1 → un∗

j+1 −
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

ψ̃k,





(7.39)

else if λ̃k < 0

un
j → un∗

j − 1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

ψ̃k,

un
j+1 → un∗

j+1 +
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

ψ̃k,





(7.40)

where un∗
j is the solution un

j after First Order Upwind has been applied. For each

separate k this is equivalent to the Lax-Wendroff scheme.

7.2.9 Use of Flux Limiters

As for scalar equations, one of the drawbacks of second order schemes is the appearance

of oscillations near shocks. The second order step of a scheme overcompensates for

the diffusive nature of a first order step. We therefore add an extra feature which is

designed to prevent these oscillations, namely a Flux Limiter φj. As in Section 6.6,

the Minmod Flux Limiter replaces ψ̃k in the second step above. If the first components

of

1
2

(
1−

∣∣∣λ̃k
∆t
∆x

∣∣∣
)

ψ̃k,
1
2

(
1−

∣∣∣λ̃upwind
∆t
∆x

∣∣∣
)

ψ̃upwind
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Figure 7.1: The left diagram shows the intersection point used to determine the fluxes when using

the sonic entropy fix for a one-equation model. The right diagram shows the intersection point used

when applying the equivalent sonic entropy fix method for systems.

are of opposite signs, then φ̃k = 0. If not, consider the absolute values. If the first

components satisfy

∣∣∣∣
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

ψ̃k

∣∣∣∣ <

∣∣∣∣
1

2

(
1−

∣∣∣∣λ̃upwind
∆t

∆x

∣∣∣∣
)

ψ̃upwind

∣∣∣∣

then φ̃k = ψ̃k, otherwise φ̃k = ψ̃upwind.

The second stage is then applied as with (7.39) and (7.40), but with φ̃k replacing

ψ̃k.

So if λ̃k > 0

un
j → un∗

j +
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

φ̃k,

un
j+1 → un∗

j+1 −
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

φ̃k,





(7.41)

else if λ̃k < 0

un
j → un∗

j − 1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

φ̃k,

un
j+1 → un∗

j+1 +
1

2

(
1−

∣∣∣∣λ̃k
∆t

∆x

∣∣∣∣
)

φ̃k.





(7.42)

7.2.10 Sonic Entropy Fix for Systems

As with the one-equation model, systems may also require a sonic entropy fix when

applying a first order upwind scheme. Here, however, after decomposing the system
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into its component waves we no longer have a flux function in terms of one variable

only as with the one-equation case, since it is a system that has been linearised for the

calculation of Roe averages. We cannot therefore, as in the one-equation case, simply

check if ρL and ρR are on opposite sides of the sonic point. Before, if this was the

case, we used the intersection of the two tangents from ρL and ρR as the split point,

see Figure 7.1 (left). With systems we check if the wavespeeds are such that λL > λR.

If so then the entropy condition (4.11) tells us this is a shock as before, but if it is not

satisfied then we apply a sonic entropy fix regardless of where ρL and ρR are relative

to any sonic points. This is to ensure that fans disperse correctly. It is applied to each

cell for each wave as follows:

The wavespeeds are calculated at the left and right nodes of the cell using the eigen-

values of the system, λ. These λL and λR are then compared to the cell average

wavespeed λ̃. Set

νL = min(λ̃, λL)

νR = max(λ̃, λR).

Then, if λL ≥ λ̃ ≥ λR, i.e. (4.11) is satisfied, there is a shock and

νL = λ̃
∆t

∆x
, νR = λ̃

∆t

∆x
, (7.43)

i.e.

νL = νR,

and the sonic entropy fix is not required.

If, however, the entropy condition is not satisfied, i.e. λL ≤ λ̃ ≤ λR, then

νL = λL
∆t

∆x
, νR = λR

∆t

∆x
and νc = λ̃

∆t

∆x
, (7.44)

and a sonic entropy fix is required.

The flux from the cell is then shared between the left and right nodes. This is

implemented using

pos(z) =
z + |z|

2
,

i.e.,

pos(z) =





z if z ≥ 0

0 if z < 0.
(7.45)
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The left and right fluxes are then calculated using

φL = [pos(−νR)(νC − νL) + pos(−νL)(νR − νC)]
α̃

(νR − νL)
,

φR = − [pos(νR)(νC − νL) + pos(νL)(νR − νC)]
α̃

(νR − νL)
, (7.46)

where α̃ is as calculated previously, (7.8), (7.18) and (7.25). These fluxes are then

used in place of ψ̃, (7.38), when applying first order upwind schemes, [33].

What this method doesn’t take into account is that if there is a non convex flux

function. It is equivalent in the one-equation case to finding the intersection of the

two tangents from ρL and ρR, (see Figure 7.1 right) rather than the intersection of

the tangent from ρR and the line from ρL that makes a tangent to the flux function,

(see Figure 7.1 left). The method is, however, equivalent if the flux function is con-

vex/concave. Because decomposition is a local linearisation, although this is only an

approximation it is adequate for these purposes.

7.3 Boundary Conditions and Characteristic Vari-

ables

ŝ

r̂
r̂

ŝ

r̂

a) b) c)

λ2 < 0

λ1 < 0

λ2 > 0

λ1 > 0

λ2 > 0

λ1 < 0
ŝ

B
ou

nd
ar

y

Figure 7.2: When to use boundary data.

The question remains of what to do at the boundaries. As discussed in Chapter 2,

for a well posed problem along with initial data, boundary data is required only when

the waves are moving into the domain from the boundary. If both wave speeds λ1,2

are of the same sign at the boundary, then the waves are either both going into, or

both coming out of the boundary. If they are both going into the boundary then there
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is no need for boundary data (Figure 7.2a). Indeed, if boundary data was supplied

the problem would be over prescribed as the conditions are determined from inside

the domain, by the waves moving into the boundary. If both of the waves are coming

out of the boundary, then we must impose two boundary conditions, say both density

and velocity (from the M25 data supplied) (Figure 7.2b). If the wave speeds are of

opposite signs, however, then we should only supply the data for the wave coming

into the region (see Figure 7.2c). This can be done by splitting the system up into its

component waves using diagonalisation.

Taking the system in the form of (5.8), having found the eigenvalues λ1,2, and

eigenvectors e1,2, we construct a matrix X whose columns are the eigenvectors of A

together with a diagonal matrix Λ whose entries are the corresponding eigenvalues.

Premultiplying (5.8) by X−1 and using XX−1 = I, we get

X−1ut + X−1AXX−1ux = 0. (7.47)

Substituting for X−1AX = Λ and defining

r̂t = X−1ut, r̂x = X−1ux, (7.48)

where

r̂ =


 r̂

ŝ


 ,

we are able to integrate (7.48) and hence express r̂ and ŝ explicitly in terms of the con-

served variables u. Using this transformation, the system can therefore be expressed

as

r̂t + Λr̂x = 0 (7.49)

which has separated the system into two non-linear scalar advection equations in r̂

and ŝ. These are called the characteristic variables as they are constant along the

characteristics dx/dt = λ1,2 respectively.

Consider the case when λ1 < 0 and λ2 > 0 (Figure 7.3) at the left hand boundary,

where the direction of flow is from left to right. r̂ is coming into the boundary at P ,

so is found by tracing back the characteristic to time n, into the cell between nodes

1 and 2. ŝ is coming out of the boundary at P , so is calculated from the collected

M25 data un+1
B . Once r̂ and ŝ are known we can calculate un+1 at the point P by
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Figure 7.3: Deciding what data to use to calculate Characteristic Variables, depending on direction

of flow of the two component waves.

rearranging the solution found by integrating (7.48). Alternatively when λ1 > 0 and

λ2 < 0, r̂ is calculated from the boundary data un+1
B and ŝ is found by tracing back

the characteristic into the cell.

7.3.1 Characteristic Variables for the Payne-Whitham Model

Applying (7.48) and (7.49) to the Payne-Whitham model, we have that

X =


 1 1

v + C0 v − C0


 , X−1 =

−1

2C0


 v − C0 −1

−(v + C0) 1


 , (7.50)

and

Λ =


 λ1 0

0 λ2


 =


 v + C0 0

0 v − C0


 .

From (7.48) we have that

r̂t = − 1

2C0

(v − C0)ρt +
1

2C0

(ρv)t

=
1

2C0

(C0ρt + ρvt)

=
ρ

2C0

(vt + C0(lnρ)t) , (7.51)

and similarly for r̂x. The partial differential equation for ŝ is found to be

ŝt = − ρ

2C0

(vt − C0(lnρ)t) . (7.52)
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Equations (7.51) and (7.52) cannot be solved explicitly. However we are looking

for Characteristic Variables that satisfy (7.49). If we rewrite (7.51) and (7.52) as

r̂t = Mrt (7.53)

where

M =
ρ

2C0


 1 0

0 −1




and

r =


 r

s


 =


 v + C0ln(ρ)

v − C0ln(ρ)


 , (7.54)

then substituting (7.53) into (7.49) we have that

M (rt + Λrx) = 0,

since M is diagonal, and provided ρ 6= 0 M is invertible, hence

rt + Λrx = 0,

and the components of r in (7.54) are the Characteristic Variables with wavespeeds

λ1,2 respectively.

Considering the case when λ1 < 0 and λ2 > 0 (Figure 7.3) we calculate r by tracing

back the characteristic to the previous time step into the cell between nodes 1 and 2,

and take a linear interpolation between u1 and u2 to find the corresponding uI . r is

then calculated using uI and s is calculated from the M25 data at time n + 1, un+1
M25,

using (7.54). un+1 is then calculated by rearranging (7.54), i.e.

v =
1

2
(r + s),

ρ = exp

(
r − s

2C0

)
.

7.3.2 Characteristic Variables for the Berg-Mason-Woods Model

For the BMW model we have

X =




1 1

v +

√
−V ′(ρ)

2τ
v −

√
−V ′(ρ)

2τ


 , X−1 = −

√
τ

−2V ′(ρ)




v −
√
−V ′(ρ)

2τ
−1

−v −
√
−V ′(ρ)

2τ
1




(7.55)
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and

Λ =




v +

√
−V ′(ρ)

2τ
0

0 v −
√
−V ′(ρ)

2τ


 ,

constructed from the eigenvalues and eigenvectors of A.

From (7.48), we have that

r̂t = −
√

τ

−2V ′(ρ)

(
vρt −

√
−V ′(ρ)

2τ
ρt − (ρv)t

)

= −
√

τ

−2V ′(ρ)

(
−ρvt −

√
−V ′(ρ)

2τ
ρt

)

= ρ

√
τ

−2V ′(ρ)

(
vt +

1

ρ

√
−V ′(ρ)

2τ
ρt

)
, (7.56)

and similarly for r̂x. The partial differential equation for ŝ is found to be

ŝt = −
√

τ

−2V ′(ρ)

(
−vρt −

√
−V ′(ρ)

2τ
ρt + (ρv)t

)
,

= −ρ

√
τ

−2V ′(ρ)

(
vt − 1

ρ

√
−V ′(ρ)

2τ
ρt

)
. (7.57)

Again, (7.56) and (7.57) cannot be solved explicitly, so we rewrite them as (7.53)

where

M = ρ

√
τ

−2V ′(ρ)


 1 0

0 −1




and

r =


 r

s


 =




v +

∫ ρ

a

1

ρ̄

√
−V ′(ρ̄)

2τ
dρ̄

v −
∫ ρ

b

1

ρ̄

√
−V ′(ρ̄)

2τ
dρ̄


 , (7.58)

where a and b are arbitrary constants. The integral

∫ ρ

a

1

ρ

√
−V ′(ρ̄)

2τ
dρ̄ =

∫ ρ

a

g(ρ̄)dρ̄

for example, can be approximated using Simpson’s Rule,
∫ ρ

a

g(ρ̄)dρ̄ ≈ 1

6
(ρ− a) (g(a) + 4g(a + ρ) + g(ρ)) , (7.59)

where ρ and v are the cell Roe averages when the Characteristic Variable is being

calculated from inside the cell and ρ = ρB, v = vB when calculating the Characteristic

Variable from the boundary.
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Substituting (7.53) into (7.49) we have that

M (rt + Λrx) = 0,

since M is diagonal, and provided ρ

√
τ

−2V ′(ρ)
6= 0, and hence ρ 6= 0, M is invertible,

therefore the Characteristic Variables are the components of

rt + Λrx = 0,

given by (7.58) with wavespeeds λ1,2 respectively.

When λ1 < 0 and λ2 > 0 for example, (Figure 7.3) we calculate r by tracing back

the characteristic to the previous time step into the cell between nodes 1 and 2, and

take a linear interpolation between u1 and u2 to find the corresponding uI . r is then

calculated using uI and s is calculated from the M25 data at time n + 1, un+1
M25, using

(7.58). Again, un+1 is calculated by rearranging (7.58) to get

v =
r + s

2
+

∫ b

a

1

ρ̄

√
−V ′(ρ̄)

2τ
dρ̄,

∫ ρ

a

1

ρ̄

√
−V ′(ρ̄)

2τ
dρ̄ +

∫ ρ

b

1

ρ̄

√
−V ′(ρ̄)

2τ
dρ̄ =

r − s

2
,

where ρ could be calculated using Newton-Raphson iterations.

This approach is rather involved and uses many approximations. A simpler ap-

proach is to eliminate the need to find Characteristic Variables by adding a ghost

cell either side of the boundary nodes containing real data. This is discussed later in

Section 7.4.1

7.3.3 Characteristic Variables for the Aw-Rascle Model

For the Aw-Rascle model we have

X =


 1 1

v + (γ + 1)P v + P


 , X−1 =

−1

γP


 v + P −1

−v − (γ + 1)P 1


 (7.60)

and

Λ =


 v 0

0 v − γP


 ,

constructed from the eigenvalues and eigenvectors of A.
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From (7.48), we have that

r̂t =
−1

γP
((v + P )ρt − yt)

=
−1

γP
((v + P )ρt − (ρ(v + P ))t)

=
ρ

γP
(vt + Pt) , (7.61)

and similarly for r̂x. The partial differential equation for ŝ is found to be

ŝt =
−1

γP
((−v − (γ + 1)P ) ρt + yt) ,

=
−ρ

γP
vt. (7.62)

Again, (7.61) and (7.62) cannot be solved explicitly, so we rewrite them as (7.53)

where

M =
ρ

γP


 1 0

0 −1




and

r =


 r

s


 =


 v + P

v


 . (7.63)

Then substituting (7.53) into (7.49) we have that

M (rt + Λrx) = 0,

since M is diagonal, and provided
ρ

γP
6= 0, and hence ρ 6= 0, M is invertible, therefore

rt + Λrx = 0,

and the components of r in (7.63) are the Characteristic Variables with wavespeeds

λ1,2 respectively.

Again, if we consider the case when λ1 < 0 and λ2 > 0 (Figure 7.3) we calculate r

by tracing back the characteristic to the previous time step into the cell between nodes

1 and 2, and take a linear interpolation between u1 and u2 to find the corresponding

uI . r is then calculated using uI and s is calculated from the M25 data at time n + 1,

un+1
M25, using (7.63). Again, un+1 is calculated by rearranging (7.63) to get

ρ = (r − s)
1
γ ,

v = s.
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7.3.4 Characteristic Variables for the Zhang Model

The matrix X of eigenvectors used to find the Characteristic Variables is

X =


 1 1

v − V (ρ)− ρV ′(ρ) v − V (ρ)


 , (7.64)

and its inverse is

X−1 =
1

ρV ′(ρ)


 v − V (ρ) −1

−v + V (ρ) + ρV ′(ρ) 1


 . (7.65)

The diagonal matrix of corresponding eigenvalues is

Λ =


 v 0

0 v + ρV ′(ρ)


 . (7.66)

Multiplying the system by X−1 gives

X−1ut + X−1AXX−1ux = 0

and hence

r̂t + Λr̂x = 0

therefore giving the partial derivatives of the Characteristic Variables

r̂t,x = X−1ut,x (7.67)

i.e.

r̂t =
1

ρV ′(ρ)
((v − V (ρ))ρt − wt)

=
1

ρV ′(ρ)

(
w

ρ
ρt − wt

)

=
−1

V ′(ρ)

(
1

ρ
wt − w

ρ2
ρt

)

giving

r̂t =
−1

V ′(ρ)

(
w

ρ

)

t

. (7.68)

Similarly for the second Characteristic Variable s, from (7.67) we have

ŝt =
1

ρV ′(ρ)
((−v + V (ρ) + ρV ′(ρ))ρt + wt)

=
1

ρV ′(ρ)

(
−

(
w

ρ
+ ρV ′(ρ)

)
ρt + wt

)

=
1

V ′(ρ)

(
−

(
w

ρ2
+ V ′(ρ)

)
ρt +

1

ρ
wt

)
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giving

ŝt =
1

V ′(ρ)

(
w

ρ
+ V (ρ)

)

x

. (7.69)

This gives us a diagonal matrix M , where

M =
1

V ′(ρ)


 −1 0

0 1


 , (7.70)

and provided V ′(ρ) 6= 0, i.e. ρ 6= 0, then M−1 exists and r, s given by

r =
w

ρ
, s =

w

ρ
+ V (ρ) (7.71)

are the Characteristic Variables of the system. The original conservative variables can

be recovered from these from

V (ρ) = s− r, w = ρr (7.72)

7.4 Boundary Data Fix

At the boundary, because we are using explicit schemes, the boundary approach taken

so far using Characteristic Variables does not allow movement of waves into the do-

main. There is a potential problem if the wavespeeds just inside are such that waves

inside are moving out of the domain. This is a result of truncating the computational

region. The onset of a large wave entering the region can therefore be missed. For

this reason real data is incorporated into the averaged wavespeeds at the boundary

cells and the boundary nodes are updated from fluxes for each wave calculated using

these averages. This provides the information that the method requires for the onset

of an incoming wave. We are unable to use traditional methods here as they require

the assumption that the data is smooth at the boundary in which case the wavespeeds

would be consistent in a boundary cell with the adjacent real data. In this kind of

problem, however, the data is far from smooth hence we cannot ignore the possibility

of wavespeeds suddenly changing sign, thereby causing the numerical methods and

indeed the theory to break down.

Consider the LWR model (that has only one wavespeed). Figure 7.4 gives the

derivative of the flux function, hence the wavespeeds for different values of density, ρ.
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Figure 7.4: Derivative of flux function (f5).

If ρ < ρ̄, the sonic point of the flux function (where ρ̄ = 19%), then λ > 0. Conversely,

if ρ > ρ̄ then λ < 0. Now consider the right hand boundary. If λ > 0, i.e. low density,

but there is an approaching wave just outside the solution space with high density, i.e.

λ < 0, then the scheme does not allow that wave to enter the domain. To allow for

this type of movement, a fix is required.

The cell averaged wavespeed λ̃ at the end cells, rather than being calculated using

the nodal values ρn
1 and ρn

2 at the left hand boundary (ρn
m−1, ρn

m at the right hand

boundary), are therefore instead calculated using real data at the boundary, i.e. using

ρn
BL (real data at the left hand boundary) and ρn

2 , or ρn
m−1 and ρn

BR at the right hand

boundary. The result is that if for example at the left hand boundary the wavespeed

λ̃(ρ1, ρ2) < 0, but outside the domain a wave is approaching with positive speed, then

this wave is prevented from entering the domain. If, however, λ̃ is calculated using

λ̃(ρBL, ρ2) then this averaged wavespeed would allow the wave to enter. This approach

is applied at both boundaries.

This argument can be extended to systems, applied to each individual wave at the

boundaries. Again, a problem occurs when there is a switch in the direction of the wave

across the boundary node. The averaged wavespeeds λ̃1,2(u
n
BL,un

2 ), λ̃1,2(u
n
m−1,u

n
BR)

are calculated at the left and right hand boundaries respectively. The Characteristic

Variables are then calculated using these wavespeeds that are now influenced by the

real data and hence allow the movement of waves into and out of the boundaries as
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required.

7.4.1 BMW boundary fix

As mentioned in Section 7.3.2, calculating the Characteristic Variables for the BMW

model is rather involved with many approximations made. It is therefore simpler to

avoid having to find the Characteristic Variables altogether and add an extra ghost

cell adjacent to each of the end nodes. This extra cell is made up of real data. The

schemes are then applied as normal, with these two extra cells, thus the end nodes

are treated like any other internal cell, with the ghost cells now being updated only

receiving information from one side. This however is not a concern as the ghost cell

is simply overwritten at the end of a time step by the real data. This is only an

approximation as it is overprescribing the problem, but the ghost cells are outside of

the domain and it also allows the movement of waves into and out of the boundaries

as described above.

7.5 Riemann Test Problem

To check the Second Order scheme with Sonic Entropy Fix and Flux Limiter is giving

the correct results for the PW, AR and Zhang models the results of a Riemann Problem

were compared to its analytic solution. The initial densities and velocities were of the

form

U =





UL if x < 15,

UR if x ≥ 15,
(7.73)

where U := (ρ, v).

For the comparison ρL and ρR were chosen to be 20% and 60% occupancy respec-

tively. For the PW and AR models the initial velocities vL, vR were taken to be V (ρL),

V (ρR) respectively. As noted in Zhang however, if v = V (ρ) the single LWR equation

is recovered and the solution to the Riemann problem for the two-system is not valid.

For this reason the initial velocities were chosen as 60 and 15 km/h respectively.

The analytic Riemann problem solution was obtained from standard work on

isothermal equations for the PW model, [21], and the expressions given in the AR
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Figure 7.5: Riemann test problem for the PW model. The progression of density through time.
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Figure 7.6: Riemann test problem for the PW model. The progression of velocity through time.
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Figure 7.7: Riemann test problem for the AR model. The progression of density through time.
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Figure 7.8: Riemann test problem for the AR model. The progression of velocity through time.
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Figure 7.9: Riemann test problem for the Zhang model. The progression of density through time.
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Figure 7.10: Riemann test problem for the Zhang model. The progression of velocity through time.
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and Zhang papers, [1] and [40] respectively. Corresponding expressions were derived

for the BMW model but unfortunately due to the complexity of these expressions it

was not feasible to encode them for graphical representation.

It is worth noting that the PW and BMW Riemann solutions both consist of

combinations of shocks and fans, whereas AR and Zhang are always of the form of

either a shock or fan followed by a contact discontinuity.

As can be seen from Figures 7.5 to 7.10, the numerical scheme is able to capture the

behaviour and movement of the features for all three models with reasonable accuracy.

We have now described the schemes and the boundary procedure and verified the

schemes against the Riemann test problem. These are then used in the next Chapter

where the models are applied to real data.
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Chapter 8

Application to Real Data

8.1 One-Equation Model

After considering the behaviour of the schemes on the test problem with artificial

initial conditions in Chapter 4, we now see how the LWR model with the different

flux functions copes with reality, and how it compares to the PW, BMW, AR and

Zhang models. The real data we are using was collected, courtesy of the Highways

Agency through TRL, from a section of the M25 motorway during July 1999, between

junctions 10 and 15. For further discussion see Chapter 3. Here we concentrate on the

data between junctions 10 and 11 as it is the longest stretch available with no on/off

ramps, as the models in their current form do not allow for these.

For the boundary data, when required, the real data averages were used and inter-

polated between the one minute intervals using a cubic spline interpolant to give the

data needed for intermediate time steps.

The Second Order upwind scheme with the Minmod flux limiter was chosen, be-

cause it worked best on the one equation test problems, using the five different flux

functions (f1− f5), of Section 4.1, and the results are plotted in Figure 8.1 and Figure

8.2 against the real averaged data after 5 minutes. The functions f1 and f3 are unable

to capture the movement of any of the waves, either peaks or troughs, with any kind of

accuracy. f2 captures the troughs to a reasonable degree, but the position of the peaks

are captured most accurately by f4 and f5 with f5 capturing the spread a little more.

Figure 8.3 shows the progression from the initial conditions through to the five minute
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Figure 8.1: LWR Model. Comparison of flux functions f1 to f3 at a given time, using real data

from the M25 08:30 on the 15/07/99. Simulation was run using Second Order scheme with Minmod,

and snapshots were taken after 5 mins.
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Figure 8.2: LWR Model. Comparison of flux functions f4 and f5 at a given time, using real data

from the M25 08:30 on the 15/07/99. Simulation was run using Second Order scheme with Minmod,

and snapshots were taken after 5 mins.
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Figure 8.3: LWR Model. Second Order scheme with Minmod using f5 with M25 data from 08:30

15/07/99 for 5 mins.
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plots of Figures 8.1 and 8.2. The shapes of the density profile are not sufficiently

similar to the real density profiles, however. It is possible therefore that a system of

equations, i.e. a two equation model may be required to model the interactions of

vehicles more accurately.

It is a good idea to take a step back and look at the bigger picture. The LWR model

with a suitable choice of flux function f is able to capture the movement of peaks and

troughs along the road with some success. Figure 8.4 shows a view of the movement

of waves both with and against the flow in the real data. There are high density waves

moving slowly backwards and low density troughs moving with the traffic with similar

velocity. These are perhaps more visible in the contour plot in Figure 8.5. If we now

compare the corresponding 3D and contour plots of the LWR model using f5, Figures

8.6 and 8.7, we can see that f5 is able to capture slow backward moving waves of

high density, fast forward moving troughs of low density, but where it breaks down

and fails to model accurately is when these waves interact. The real data suggests

that these two types of waves exist and when they cross they have some effect on

each other during interaction, but then move off as two separate waves again. This

type of interaction can only be modelled by a system. The one equation LWR model

only predicts one type of wave for a given density. High density gives slow backward

waves, low density gives fast forward waves and when they cross they then move off

as one wave with speed determined by the combined density, rather than interacting

but separate waves.

8.2 Two-Equation Models

We therefore move onto the PW, BMW, AR and Zhang models in the hope that they

capture the two types of waves, and also their interaction. Again the Second Order

upwind scheme is chosen. Figures 8.8 and 8.9 are the 3D and contour plots for the

PW model. They demonstrate that with a suitable choice of Co, here taken to be 57,

the model captures the speeds of the low density troughs and high density peaks. It

has even captured the later peaks that have interacted with the troughs that the LWR

model was unable to reproduce. It fails, however, to model the deterioration of the
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Figure 8.4: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99.

10

20

30

40

50

60

70

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Distance along Road (km)

T
im

e
 (

m
in

s
)

Contour Plot for Real Data 15/07/99 08:30

Figure 8.5: Contour plot of occupancy for a period of 90 mins from 08:30 15/07/99
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Figure 8.6: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Lighthill-Whitham-

Richards Model. f5 is the flux function used.

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Distance along Road (km)

T
im

e
 (

m
in

s
)

Contour Plot for LWR Model 15/07/99 08:30

Figure 8.7: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Lighthill-Whitham-

Richards Model. f5 is the flux function used.
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Figure 8.8: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Payne-Whitham.

Co=57.
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Figure 8.9: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Payne-Whitham.

Co=57.
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Figure 8.10: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for BMW Model,

τ = 1.4 seconds.
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Figure 8.11: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for BMW Model,

τ = 1.4 seconds.
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Figure 8.12: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Aw-Rascle

Model. γ = 1.4.
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Figure 8.13: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Aw-Rascle

Model. γ = 1.4.
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Figure 8.14: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Zhang Model.
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Figure 8.15: 3D plot of occupancy for a period of 90 mins from 08:30 15/07/99 for Zhang Model

(note the scale).
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high density ridge that starts at the right hand side of the region at approximately

t = 50 minutes. Also the contrast between peaks and troughs is not as distinct as

in the real data, or as modelled by the LWR model. The model also allows negative

velocities of the vehicles, i.e. against the flow of traffic. The greatest negative velocity

in this simulation was v = −1.69km/h. This is one major drawback of the model.

The BMW model, Figures 8.10 and 8.11, being a variation to PW but with variable

coefficient of the ρx term in the flux function produces similar results, but with better

definition. The peaks and troughs are more clearly defined with the variations in

the ridges of high density showing the interactions between waves, as seen in the

real data. Having the variable coefficient does improve the model. As with the PW

model however, the ridge that starts after approximately 50 minutes on the right hand

side doesn’t deteriorate as in the real data. This suggests that the two models, PW

and BMW, haven’t quite captured the interactions between different types of waves

correctly. This model didn’t have any negative velocities in this simulation however,

which is another improvement to the PW model.

The AR model with γ = 1.4 does appear to allow for the deterioration of the high

density wave when low density waves move into it, but it has the major drawback of

modelling very high density waves incorrectly, Figures 8.12 and 8.13. For these waves

their speeds are predicted to travel with high positive velocity, i.e. with the flow of

traffic. This contradicts the real data. It fares much more favourably with much lower

densities. Low density troughs appear to move with the flow at the correct speed and

medium density waves travel against the flow correctly (see wave at x=6.5 km at time

50 mins), but at slightly too fast a speed (see wave at t=70 mins x=6.5 km). It also

allowed negative velocities of the vehicles, the most negative being v = −2.24km/h in

this simulation.

Moving on to the Zhang model the results are much more encouraging, Figures 8.14

and 8.15. It appears to capture the correct movement of waves at approximately the

correct speeds given high, medium or low densities. It models the interaction of the

medium and low density waves (e.g the wave starting at x=6.5 km time=50 mins) and

its deterioration. It also models the high density waves and their interactions with

low density troughs starting from x=6.5 km time=70 mins. The backward moving
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peaks are travelling at too slow a speed however, and it is not clear if this is due to

the speed of high density waves being predicted incorrectly, if it is allowing too much

interaction between the peaks and troughs, or a combination of both. Looking at the

finer detail of the density distribution, the method tends to smooth out the density in

some regions and clump together in others. In places where the density has clumped,

at times the values exceed the maximum allowed, reaching a peak of ∼ 16% over the

maximum. This could be partly due to the second order scheme since for systems the

limiter is not guaranteed to maintain the TVD property at peaks. Overall, however, it

captures most of the features better than any of the other models discussed here and no

negative velocities were observed in this simulation. Chapter 9 includes the addition

of a viscosity term to the model that overcomes the problem of allowing greater than

maximal densities.

Figures 8.16 and 8.17 are included for completeness, and to compare how the

models capture individual features of the wave movements in the real data. At this

stage however, as discussed, this is perhaps a little premature and efforts should be

concentrated on capturing the overall movement and interactions of waves rather than

the fine detail, although to capture both would be the ultimate aim.

A second set of results were obtained in order to see if the above observations

were typical of the type of behaviour exhibited by these models. The same parameter

values were used and the initial data was taken from 06/07/99 starting from 07:00

for a period of 90 minutes. Figures 8.18 and 8.19 are the real data. In this example

there are many high density ridges running almost parallel moving slowly backwards

against the flow of traffic. This is after an initial period of relatively low density with

only one smaller ridge.

As before the LWR model is able to capture individual wave movements accurately,

but is unable to capture interactions between waves, Figures 8.20 and 8.21. This results

in the deterioration of the high density peak at the start of the run by the model that

should persist. The ridges are also very smooth compared to the real data.

The PW model is less able to capture the speeds of the backward moving ridges

of high density, Figures 8.22 and 8.23. The model predicts a slower velocity. It also

incorrectly predicts the deterioration of many of the ridges due to interactions with low
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Figure 8.16: Comparison of the LWR, PW and BMW models to the real data. Second order with

flux limiter. LWR with flux function f5, PW model with Co = 57, BMW model with τ = 1.4. Time

is in minutes.
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Figure 8.17: Comparison of the AR and Zhang models to the real data, using Second order with

flux limiter. γ = 1.4 for the AR model. Time is in minutes.
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density high speed troughs moving into them. Again it also allows unphysical backward

moving vehicles, with a greatest maximum negative velocity of v = −0.92km/h.

The BMW model also fares less well with this example, with it also predicting the

deterioration of some of the earlier ridges. It does, however, give a better prediction

of wave speeds and better definition of the ridges and the troughs as before, Figures

8.24 and 8.25.

The AR model again fails in modelling the flow. It allows negative velocities of

vehicles up to a maximum of v = −7.94km/h as well as predicting the wrong direction

of flow fo the high density ridges, Figures 8.26 and 8.27.

The best results were obtained from the Zhang model, Figures 8.28 and 8.29.

This model predicted the correct wave speeds, it allowed the higher density ridges to

persist and showed interactions in the ridges with low density fast forward moving

waves. Again it allowed densities greater than the maximal, reaching values of up to

ρ = 124.6% but again with the introduction of a viscosity these peaks were smoothed

out and only physical values remained. Some of the densities of the ridges were a little

lower than observed in the real data and the first ridge was allowed to deteriorate

whereas in reality it persisted. Overall however, this model gave the best results in

this particular example, with LWR a close second.

So far we have only considered the homogeneous systems. However, PW and

BMW have relaxation and viscosity terms on the right hand side, AR recommends

the addition of a relaxation term to overcome the deficiency of the maximal speed

reached by vehicles on an empty road being dependent on the initial data, and the

Zhang model has a viscosity term by taking a different approach in the derivation of

the model. In the next Chapter we consider the effects of these terms on all four of

these models.
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Figure 8.18: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99.
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Figure 8.19: Contour plot of occupancy for a period of 90 mins from 07:00 06/07/99
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Figure 8.20: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Lighthill-

Whitham-Richards Model. f5 is the flux function used.
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Figure 8.21: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Lighthill-

Whitham-Richards Model. f5 is the flux function used.
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Figure 8.22: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Payne-Whitham.

Co=57.
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Figure 8.23: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Payne-Whitham.

Co=57.
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Figure 8.24: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for BMW Model,

τ = 1.4 seconds.
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Figure 8.25: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for BMW Model,

τ = 1.4 seconds.
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Figure 8.26: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Aw-Rascle

Model. γ = 1.4.
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Figure 8.27: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Aw-Rascle

Model. γ = 1.4.
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Figure 8.28: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Zhang Model.

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Distance along Road (km)

T
im

e
 (

m
in

s
)

Contour Plot for Zhang Model 06/07/99 07:00

Figure 8.29: 3D plot of occupancy for a period of 90 mins from 07:00 06/07/99 for Zhang Model.
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Chapter 9

Relaxation and Viscosity

9.1 Relaxation

As discussed in Chapters 2 and 5, the original PW model contains a relaxation term

that is designed to make the model more traffic like. This term, given by V (ρ)−v
τ

,

contains the velocity function V (ρ) (see Chapter 4) which represents the ideal driving

speed of vehicles for a given density. If a vehicle’s speed is greater than this optimal

velocity then the relaxation term has the effect of slowing the vehicle down. Conversely

if the vehicle has velocity less than this optimal velocity then the relaxation term

has the effect of speeding the vehicle up. Unlike the LWR model this change is not

instantaneous, therefore a relaxation time, or the time it takes the vehicle to adjust its

speed, is introduced by τ . Helbing and Treiber [14] take this time τ to be 32 seconds,

Payne suggested a relaxation time of 10 seconds [27], whereas follow-the-leader models

use values of between 1 and 2 seconds. The value of τ is therefore still under debate.

If the relaxation term is added to the right hand side of the second equation of the

PW model (5.2), then in the form of the system using conservative variables this term

becomes

ρ
V (ρ)− v

τ
. (9.1)

In fact, the relaxation term can be added to the second equation of each of the models

PW, BMW, AR and Zhang and takes the form (9.1) in each of the systems using

conservative variables.

The relaxation term on the right hand side makes the system non-homogeneous
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and is more generally referred to as a source term. The right hand side for each system

in each case is therefore given by

R =


 0

ρV (ρ)−v
τ


 . (9.2)

9.2 Projection onto the Eigenvalues

In order to implement this updated model using our second order upwind flux limited

scheme we project the source term onto the eigenvalues of the system and update

each wave component accordingly. This is a splitting approach and superimposes the

source term on to the original implementation of the scheme on the homogeneous

system,([31]).

Firstly we find values β1 and β2 such that

2∑
i=1

βiẽi =


 0

ρ̃V (ρ̃)−ṽ
τ


 (9.3)

where the variables in the relaxation term and the eigenvectors ei are evaluated using

the averages (Roe or alternative) for each cell. Then we update componentwise, i.e. if

λi,j+1/2 > 0 then

un+1
j+1 = u

(n+1)∗
j+1 + ∆tβiẽi, (9.4)

otherwise

un+1
j = u

(n+1)∗
j + ∆tβiẽi, (9.5)

for each component i = 1, 2 where u
(n+1)∗
j is u evaluated for the homogeneous system

as before at the jth node and (n + 1)th time step.

The values of β for the PW Model are found to be

β1 =
ρ̃ (V (ρ̃)− ṽ)

2Coτ
, β2 = − ρ̃ (V (ρ̃)− ṽ)

2Coτ
. (9.6)

Similarly, for the BMW model, β are found to be

β1 =
ρ̃ (V (ρ̃)− ṽ)√
−2τV ′(ρ)

, β2 = −−ρ̃ (V (ρ̃)− ṽ)√
−2τV ′(ρ)

. (9.7)

Again, using the same method the values of β for the AR Model are found to be

β1 =
ρ̃ (V (ρ̃)− ṽ)

γP̃ τ
, β2 = − ρ̃ (V (ρ̃)− ṽ)

γP̃ τ
. (9.8)
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And finally for Zhang, the values of β are found to be

β1 =
w̃

ρ̃Ṽ ′(ρ)τ
, β2 = − w̃

ρ̃Ṽ ′(ρ)τ
. (9.9)

9.3 Boundaries

The question also arises as to how to implement the addition of the relaxation term

at the boundaries (except for the BMW model-see Section 7.4.1). For the homoge-

neous system we have determined the strengths and origins of the two Characteristic

Variables r and s with cell average wavespeeds. With the addition of the source term

however these variables still move with speed given by the eigenvalues λi but are no

longer constant along the characteristics. This is due to the equation now being

∂r

∂t
+ λ1

∂r

∂x
= {X−1R}1, (9.10)

where {X−1R}i is the ith element of X−1R. This equation is rewritten using the chain

rule as
dr

dt
+

∂r

∂x

(
λ1 − dx

dt

)
= {X−1R}1, (9.11)

where X is the matrix of eigenvectors (see (7.47, 7.50, 7.60, 7.65)), and R is the

vector of source terms (9.2). Therefore along the characteristic given by dx
dt

= λ1, now

dr
dt

= {X−1R}1, i.e. r is no longer contant along the characteristic.

To approximate the change in r along the characteristic in a time step ∆t we use

a forward difference. rn+1 is therefore given by

rn+1 = rn + ∆t{X−1R}1. (9.12)

Similarly for the second characteristic variable s. Along the characteristic given

by dx
dt

= λ2, now ds
dt

= {X−1R}2, i.e. s is also no longer contant. The change in s is

therefore given by

sn+1 = sn + ∆t{X−1R}2, (9.13)

where X−1R is evaluated using Roe averages (or alternative averages) for the cell.

The boundary cell wavespeeds (using the average from the real boundary node

and the adjacent internal node) determine the origins of r and s as previously. The

changes in r and s are then calculated from (9.12) and (9.13). These new characteristic
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Figure 9.1: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99 from the real data.

variables are then recombined to determine un+1 at the boundary node as required

(see Chapter 7.3).

The right hand sides of the characteristic variable equations (9.12, and 9.13) are

found to be

X−1R =




ρ̃(V (ρ̃)−ṽ)
2Coτ

− ρ̃(V (ρ̃)−ṽ)
2Coτ


 , (9.14)

X−1R =




ρ̃(V (ρ̃)−ṽ)

γP̃ τ

− ρ̃(V (ρ̃)−ṽ)

γP̃ τ


 , (9.15)

X−1R =


 − (V (ρ̃)−ṽ)

V ′(ρ̃)τ

(V (ρ̃)−ṽ)
V ′(ρ̃)τ


 , (9.16)

for the PW, AR and Zhang models respectively.

9.3.1 Comparison of Models with Relaxation

Figure 9.1 is a plot of the real occupancy data from 08:30 15/07/99 for 30 mins.

The features we would like to capture are the backward moving high density peaks,
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Figure 9.2: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. PW model with

τ = 32 seconds.

Figure 9.3: 3D plot of occupancy for a period of 2 mins from 08:30 15/07/99. BMW model with

τ = 32 seconds.
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Figure 9.4: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. AR model with

τ = 32 seconds.

Figure 9.5: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. Zhang model with

τ = 32 seconds.
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Figure 9.6: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. Zhang model with

no relaxation term (τ →∞)

the forward moving low density troughs and the interactions between the two. For

example in the high density backward moving waves they are not a solid block as they

move backwards, but frequently they dip briefly before resuming at a similar height

and speed. Without relaxation, as discussed in Chapter 8, the Zhang models captures

most of the desired features most accurately.

Figure 9.2 is a plot of the PW model with relaxation, where τ is 32 seconds.

the effect of adding the relaxation term is it appears to smooth out the features.

Particularly with the later high density waves (e.g. ones that start at the right hand

side, x = 6.5, after time=20 seconds) the speeds and hence positions of the waves seem

to be improved and die away as in the real data.

Figure 9.3 is a plot of the BMW model with τ = 32 seconds. The results obtained

are unstable and peaks form that grow to values way above the maximal density of

100%. These peaks are not removed by refining the grid. This demonstrates that for

the BMW model τ = 32 is a completely unrealistic value. It is not surprising that

increasing τ to this value in this model has such a dramatic effect as τ also appears in
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Figure 9.7: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. LWR model.

the flux function. In Section 8 we saw that τ ≈ 1.4 gave the best results for the wave

speeds. We will see later what effect adding relaxation has for τ = 1.4 (Figure 9.9).

Figure 9.4 is an equivalent plot for the AR model, again with τ = 32 seconds.

The smoothing effects of adding the relaxation term are also observed, but the waves

observed using the AR model are significantly different from those observed in the real

data, hence adding the relaxation term alone with τ = 32 is not a sufficient addition

to give satisfactory results.

The Zhang model with no relaxation displays desirable features as discussed above

such as the high density peaks that dip frequently due to the interactions between peaks

and troughs, Figure 9.6. By adding the relaxation term these interactions appear to

have been smoothed out completely, Figure 9.5. One positive effect is the removal of

the greater than maximal density values reached at times in some of the larger peaks

without relaxation. This does not outweigh the undesirable effects of removing the

peaks completely however. Relaxation therefore appears to be an undesirable term to

add to models if you want to capture this feature. (In any case V appears in the flux

term for this model).
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Figure 9.8: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. PW model with

τ = 1.4 seconds.

Figure 9.9: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. Berg model with

τ = 1.4 seconds.
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Figure 9.10: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. AR model with

τ = 1.4 seconds.

Figure 9.11: 3D plot of occupancy for a period of 30 mins from 08:30 15/07/99. Zhang model with

τ = 2 seconds.
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Aw and Rascle, [1] suggested that by lowering the τ the relaxation term would

dominate the system in their model. This argument could be applied to each of the

models. By doing this the results from each model would become more and more

alike until τ is sufficiently small that the results tend towards those obtained from the

LWR model. This is reasoned as the limit as τ → 0, v = V (ρ) which can then be

substituted into the conservation equation, thereby reducing the system to the LWR

model. Figure 9.7 is the equivalent LWR model plot for comparison with the other

models to test this theory.

Figure 9.8 is the PW model plot with τ = 1.4. The waves do indeed appear to

be more like the LWR model as predicted. However there are also peaks that have

spontaneously appeared in the lower density regions. These are not present in the

real data. The reason for their appearance has not been investigated here, but they

resemble the spontaneous jams discussed by Kerner and Konhäuser [16].

For the BMW model using the value of τ = 1.4 that previously gave the best wave

speeds, by now adding relaxation as with the Zhang model for τ = 32, all desirable

features of peaks interacting with troughs are completely smoothed out. There also

appears to be large spikes at the boundaries when peaks are entering and leaving the

region. This could be due to the crude method of using ghost cells of fixed boundary

data, but should be investigated further.

When τ = 1.4 in the AR model the waves now have completely changed direction

and are moving with speeds comparable to the LWR model as expected, Figure 9.10.

Finally the Zhang model, as expected, resembles the LWR model with much

smoothing of features, Figure 9.11. Here however τ = 2 as adding this term seems to

make the model unstable for lower values of τ . Again, refining the grid does not elim-

inate this problem, hence it is a feature of the model. The reason for the appearance

of a spike at the right hand boundary is unknown at this time. The question arises

if adding relaxation to the Zhang model is a suitable step at all since the model is

derived from forming the wavespeeds using the optimal velocity finction V (ρ) in the

first place. The model certainly produces better results without relaxation.
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9.4 Viscosity

In this section we look at the effects of adding viscosity terms, in this case second

derivatives of velocity or density. These are also source terms that appear on the

right hand side of the equations. They generally have the effect of smoothing out

discontinuities and extreme values. Berg et al [3] claim the diffusion terms are crucial

in correctly predicting the flow.

Figure 9.12 is an example of the smoothing effect of adding the viscosity term µvxx

to the Zhang model, where µ is taken to be 27 (the effects of smaller values were not

clearly visible). The viscosity was applied by discretising the second derivative term

vxx using a central difference then adding

µ
∆t

∆x2
(vj+1 − 2vj + vj−1)

to the second conserved variable at each node. As expected the addition of the second

derivative term smooths out sharp changes in density. The full plots for each model

have been omitted as they produce similar results, but with smoothing effects. Even

with the BMW model, the difference observed when adding all the terms suggested

by their model (5.17), merely produces a smoothing effect. This is however beneficial

as the peaks observed that were greater than the maximal bumper to bumper density

were eliminated! For this reason adding viscosity source terms to BMW, and indeed

Zhang are advantageous. The viscosity terms for BMW are

V ′(ρ)

τ

(
ρxx

6ρ
− (ρx)

2

2ρ2

)
,

and were applied by adding

V ′(ρj)∆t

τ∆x2

(
ρj+1 − 2ρj + ρj−1

6ρj

− (ρj+1 − ρj)(ρj − ρj−1)

2ρ2
j

)
,

to each node.
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Figure 9.12: Comparison of Zhang model with and without viscosity. Data from 15/07/99 08:30

over a period of 10 minutes and µ = 27.
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Chapter 10

Conclusions

First we summarise the main points of the thesis. We have averaged the real data from

a stretch of the M25 motorway and fitted a suitable flux function to the fundamental

diagram. This flux function was then used with the LWR model and analytic solu-

tions found to two test cases. Due to the non-convex nature of the flux function the

development of the simple initial conditions gave several complicated features such as

discontinuities splitting into combinations of shocks and fans. Four numerical schemes

were described and compared against the exact solutions and the best one selected.

This was the second order scheme with flux limiter, where a sonic entropy fix was

required to ensure the correct expansion of fans.

Next we considered systems of equations. We described numerical schemes, con-

centrating on the construction and implementation of a Roe decomposition for each

model and then applying the second order scheme with a flux limiter. Again a sonic

entropy fix was required. The treatment of boundaries was described in detail in or-

der to ensure the correct movement of waves into and out of the domain. This was

implemented using Characteristic Variables for the PW, AR and Zhang models but

an alternative approach was suggested for BMW due to the complicated nature of its

Characteristic Variables.

We tested all five models against two different sets of real data to see how realistic

they are. For the LWR model the best choice of flux function was f5, which was also

the best fit to the fundamental diagram. LWR was able to model individual types of

waves with reasonable accuracy but, not surprisingly, failed to model the flow when
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waves interacted and gave very smooth results, unlike the real data.

Solutions of systems of two equations consist of superimposing two waves and so are

able to model waves interactions. In the PW model, although it was able to capture the

speed of the waves successfully in the first simulation, the definition of the waves and

interactions were poor. It also allowed negative velocities of the traffic. The AR model

was least able to predict the flow. The two best two-equation models were BMW and

Zhang. They both had better definition of the high density ridges but Zhang allowed

densities greater than the maximum bumper to bumper density. Both models didn’t

capture the correct balance of interactions between the waves. In the first simulation

Zhang allowed too much interaction between the peaks and troughs whereas BMW

didn’t always allow enough interaction. In the second simulation BMW allowed too

much deterioration of the high density ridges and Zhang, although didn’t allow as

much deterioration, did predict lower densities for the slow backward moving waves.

LWR, although produced very smooth results, was still comparable at predicting wave

speeds to BMW and Zhang.

The addition of a relaxation term removed desirable features of the high density

ridges, whereas viscosity terms improved the Zhang model by smoothing out the higher

unphysical densities.

In summary, LWR is a robust model with a suitable choice of flux function. To

capture the complex interactions between different types of waves observed in reality

however, a system is required. From the simulations presented here AR was least able

to capture the movement of the waves, PW gave the correct directions and speeds at

times but Zhang with a relaxation term produced the best results with BMW a close

second, although there is room for improvement.

As a possible extension to this work, the addition of source terms to include on/off

ramps might be considered to make the models more applicable to real situations.

There is also the issue that we are using data from a multilane carriageway and

averaging. There is a justification for this in that we take the mean density and fluxes

over the lanes and the transfer functions between adjacent lanes cancel out. This

doesn’t however take into account the changes in drivers’ behaviour before and after

137



changing lanes. Neither do the models account for changes in behaviour entering and

leaving the carriageway and there isn’t a stretch of road sufficiently long enough that

these effects are completely removed in the simulations. The best models seem to have

been derived from microscopic principles, so perhaps a set of rules to describe changes

in behaviour in a multilane situation and approaching junctions could be investigated.

138



Bibliography

[1] A.Aw and M.Rascle. Resurrection of ‘second order’ models of traffic flow? SIAM

J. Appl. Math., 60, pp 916-938 (2000).

[2] M.Bando et al. Dynamical model of traffic congestion and numerical simulation.

Phy Rev E, 51, pp 1035-1042 (1995).

[3] P.Berg, A.Mason and A.Woods. Continuum approach to car-following models.

Phys Rev E, 61, pp 1056-1066 (2000).

[4] R.E.Chandler, R.Herman and E.W.Montroll. Traffic dynamics; studies in car fol-

lowing. Operations Research, 6, pp 165-184 (1958).

[5] C.Daganzo. Requiem for second-order fluid approximations of traffic flow.

Transpn. Res.-B 29B, pp 277-286 (1995).

[6] C.M.Dafermos. Polygonal approximations of solutions of the initial-value problem

for a conservation law. J. Math. Anal. Appl., 38, pp 33-41 (1972).

[7] H.T.Fritsche. A model for traffic simulation. Traffic Engineering and Control, 35

vol. 5, pp 317-321 (1994).

[8] P.Glaister. Difference Schemes For The Shallow Water Equations. Numerical

Analysis Report 9/87, Dept. of Mathematics, University of Reading (1987).

[9] J.M.Greenberg. Extensions and Amplifications of a Traffic Model of Aw and Ras-

cle. SIAM J. Appl. Math., 62, pp 729-745 (2001).

[10] R.Haberman. Mathematical Models. Mechanical Vibrations, Population Dynam-

ics, and Traffic Flow. SIAM (1998) A republication of the work first published by

Prentice-Hall, Inc., Engelwood Cliffs, New Jersey (1977).

139



[11] A.Harten, P.D.Lax and B.van Leer. On upstream diffrenecing and Godunov-type

schemes for hyperbolic conservation laws. SIAM Review, 25, pp35-61, (1983).

[12] D.Helbing. Improved fluid-dynamic model for vehicular traffic. Phys Rev E, 51,

pp 3164-3169 (1995).

[13] D.Helbing. Gas-kinetic derivation of Navier-Stokes-like traffic equations. Phys

Rev E, 53, pp 2366-2381 (1996).

[14] D.Helbing and M.Treiber. Numerical Simulation of Macroscopic Traffic Equa-

tions. Computing in Science and Engineering, 1, pp89-99 (1999)

[15] E.N.Holland. A Generalised Stability Criterion for Motorway Traffic. Tranpn.

Res. -B 32B, pp 141-154 (1998).
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