
The University of Reading

Four Dimensional Variational Data

Assimilation for Hamiltonian Problems

Laura Watkinson

This thesis is submitted for the degree of

Doctor of Philosophy

Department of Mathematics

September 2006



Declaration

I confirm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

Laura Watkinson

i



Abstract

In this thesis we bring together two areas of mathematics; Hamiltonian dynamics

and data assimilation. We construct a four dimensional variational (4d Var) data

assimilation scheme for two Hamiltonian systems. This is to reflect the Hamilto-

nian behaviour observed in the atmosphere. We know, for example, that potential

vorticity is conserved in atmospheric models. However, current data assimilation

schemes do not explicitly include such physical relationships.

In this thesis, by considering the two and three body problems, we demon-

strate how such characteristic behaviour can be included in the data assimilation

schemes. In our 4d Var schemes we add a weak constraint that imposes the conser-

vation of the Hamiltonian, the total energy, at the initial time. This is effectively

imposing an energy constraint from one data assimilation window to the next.

Our results imply that these weak constraints affect the underlying geom-

etry of the resulting data assimilation solution. We also demonstrate that this

constraint reduces the error on this solution and the forecast. By imposing this

constraint we are including additional information to the system. Due to the ad-

ditional term in the cost function gradient, the analysis can only change in such a

way as to satisfy this weak constraint.

This thesis therefore demonstrates that the inclusion of similar weak con-

straints, perhaps using the conservation of potential vorticity, could improve the

analysis and forecast for atmospheric models.
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Chapter 1

Introduction

In this thesis we consider the development of data assimilation schemes for two

Hamiltonian problems. This is to reflect the Hamiltonian behaviour observed in

the atmosphere. We intend to demonstrate that the inherent characteristics of

such systems can be used explicitly within the data assimilation algorithms. We

begin by considering the motivation both for the use of data assimilation schemes

in general and for our investigation into Hamiltonian problems.

1.1 Motivation

The atmosphere is a large and chaotic system [33] and therefore its evolution can

be difficult to predict. A range of model equations and numerical schemes have

been developed to try and solve this problem. In all cases however, there exists the

difficulty of choosing initial data. We consider a global model such as the Unified

Model at the Met Office, which has a horizontal resolution of 0.83̇◦ longitude by 0.5̇◦

latitude and 38 vertical levels. This results in a three dimensional grid consisting

of approximately 5x106 points [38]. In addition the model evolves several different
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variables (of order 10), thus the size of the state vector is of order 107. However

it is not possible to obtain observations occurring at the same time with sufficient

accuracy, density and spatial resolution to initialise such a large model [31]. We

now consider techniques that can be used to overcome this problem.

If we consider the atmosphere over all spatial resolutions it is indeed chaotic

in nature. However the large scale behaviour is typically slowly varying. This

implies that the forces involved are approximately balanced. It is thus possible to

reduce the size of the model state by making use of these relationships to constrain

the model state vector [31]. These are known as balanced models. Examples

of these can be found in [11, 37]. Such models eliminate the fast oscillations

that can be spuriously generated by unbalanced models. These small scale, fast

oscillations are often referred to as gravity waves. As approximations have been

made, these balanced models have limited accuracy. However they often have

useful mathematical properties. Semigeostrophic theory, a well known example,

has amongst other properties, a Hamiltonian structure. Such characteristics allow

for robust numerical methods and in addition give a more complete picture of the

mathematical properties of the system [37].

Although these balanced models reduce the size of the state vector, the prob-

lem still remains underdetermined. The number of observations is still insufficient

to describe the problem and may have limited accuracy. This lack of completeness

in the initial conditions will result in a poor description of the large scale struc-

tures and will thus provide a poor forecast of the low frequency, synoptic waves

[31]. Thus it is necessary to find a technique to provide initial conditions for the

model in such a way that compensates for this missing information. In addition,

if a balanced model is not used, the inaccuracies in the observations may produce

2



spurious gravity waves.

Data assimilation methods attempt to account for this by incorporating ob-

servational data into a numerical model in order to provide a best estimate of

the initial conditions [5, 13]. However as there are insufficient observations, infor-

mation from previous forecasts can also be included. This then provides initial

conditions for the full state vector thus helping to solve the completeness problem.

It may not however completely remove difficulties associated with lack of accuracy

and, if the model allows, spurious gravity waves may still be generated.

Techniques have been developed to try and reduce this problem. One such

method involves the decomposition of the initial conditions into the fast and slow

parts of the motion and then initialising the model using only the slow motion. A

second method involves the inclusion of additional constraints in the data assimi-

lation scheme which have the effect of filtering out the spurious fast waves.

In this thesis we consider the technique of variational data assimilation. This

involves the minimisation of a cost function that measures the distance between

a ‘first guess’ trajectory and the observations and background. In this way we

find a complete set of initial conditions to describe the evolution of the system.

This assimilation technique can be extended to include further constraints, such

as those mentioned above.

As we have discussed, the semigeostrophic model has a Hamiltonian struc-

ture. It has also been shown that higher order balanced models for the atmosphere

are also Hamiltonian [37]. It is observed that the atmosphere can be considered

Hamiltonian over the period of one to three or four days as the external forcings

acting over this timescale are negligible. Such systems have mathematical charac-

teristics, for example conservation properties, that may be exploited in their nu-
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merical integration. In this thesis we investigate whether we can also exploit these

conservation properties within a data assimilation scheme by adding an additional

constraint that imposes these conservation properties. In order to consider this we

construct variational data assimilation schemes for two Hamiltonian systems, the

two and three-body problems.

1.2 Thesis Summary

We begin in Chapter 2 by introducing the mathematics of Hamiltonian systems

and discussing the inherent conservation properties of such problems. We will

then discuss the numerical methods that can be implemented when modelling

Hamiltonian problems, with specific mention of symplectic methods. We end this

chapter by demonstrating that the atmosphere can be described as a Hamiltonian

system.

In Chapter 3 we will briefly discuss the development of data assimilation and

describe in detail the mathematics of four dimensional variational (4D Var) data

assimilation, the technique we will be using in this investigation. We also include

a discussion of the stages required in the construction of the 4D Var scheme and

the tests that are required to validate the algorithm. We will then introduce the

addition of weak constraints to the system and discuss current research using this

formulation of the 4d Var problem.

Following on from this in Chapter 4 we describe the development, verifica-

tion and investigation of the 4d Var scheme for the two-body problem. We will

begin by deriving both the continuous and discrete systems. We will then test

the model, with particular attention to the conservation properties of the discrete

4



system. We also detail the stages required in the construction of the 4d Var algo-

rithm, including the development and testing of the linear model. We will finally

discuss the experiments we have carried out for this two-body data assimilation

scheme. This includes considering the effect of our choice of observations and

the addition of weak constraints. These are imposed at the initial time only and

include constraints that make use of the conservation properties of the system.

In Chapter 5 we introduce the second of our Hamiltonian models. We will

discuss both the continuous and discrete equations for the three-body problem

before carrying out a series of experiments with the numerical model in order to

find the most appropriate configuration of the three-body problem. We will then

consider the sensitivity and stability of the resulting system. We provide details

relating to the construction of the data assimilation scheme and repeat the valida-

tion tests we carried out for the two-body case. We will describe the experiments

we carried out using this scheme, again considering the effect of having an incom-

plete set of observations. We also consider implementing weak constraints at the

initial time, again using the conservation property of the system. We investigate

whether these additional constraints can improve the solution where observations

alone have failed.

Finally in Chapter 6 we summarise the work we have done and discuss any

conclusions that can be drawn from the work. We also give suggestions for further

work on this problem.
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Chapter 2

Hamiltonian Systems

Recent developments in atmospheric dynamics have led to the construction of a

Hamiltonian formulation of the equations governing the evolution of the atmo-

sphere [4]. We review this in more detail in section 2.3 of this chapter. This work

provides the motivation for this thesis in which we consider whether the intrin-

sic characteristics of such a Hamiltonian system are important when creating a

data assimilation scheme. In this chapter we discuss the mathematics of a gen-

eral Hamiltonian system and review the numerical methods that are suitable for

constructing models for Hamiltonian problems.

2.1 Mathematical Formulation of Hamiltonian Sys-

tems

In this section we provide the derivation of the Hamiltonian equations of motion.

These are a set of coupled equations that govern the position, q, and momentum,

p, of a particle or body using a generalised co-ordinate system. This differs from

the Newtonian formulation which uses Cartesian coordinates, x, and their time
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derivatives, ẋ, in the equations of motion.

We consider an example for which two important assumptions have been

made; the system is conservative and the co-ordinate transformation is time in-

dependent, i.e. the axes are fixed. Although we do not derive the most general

formulation of Hamiltonian mechanics, this description is sufficient for the Hamil-

tonian systems considered here. Details of the derivation of the general problem

can be found in [19, 25].

We begin by considering Newton’s equations of motion for a general system

of N particles [26],

Fi =
d

dt
(miẋi) Fi, ẋi ∈ <d (i = 1, 2, . . . N) (2.1)

where Fi denotes the vector of forces acting on the ith particle, mi is the mass

of the ith particle and ẋi is the time derivative of the position vector for the ith

particle, xi. Each vector is of length d, the space dimension of the problem.

For this system the kinetic energy, T , is defined as

T =
∑

i

1

2
miẋi · ẋi ẋi ∈ <d (i = 1, 2, . . . N). (2.2)

From equations (2.1) and (2.2) we can see that

Fi =
d

dt

(
∂T

∂ẋi

)
Fi, ẋi ∈ <d (i = 1, 2, . . . N), (2.3)

where the system has potential energy V = V (x1,x2, . . . xN). In this thesis we

consider conservative systems, where by definition [26] the forces, Fi, are given by

Fi = − ∂V

∂xi

Fi, xi ∈ <d (i = 1, 2, . . . N). (2.4)

We thus have the following relationship between the kinetic energy and potential

energy of the particles,

d

dt

(
∂T

∂ẋi

)
= − ∂V

∂xi

xi, ẋi ∈ <d (i = 1, 2, . . . N). (2.5)
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We now introduce the generalised coordinates q. If we were to consider the most

general form then position, q, would depend explicitly on time, thus allowing for

a moving co-ordinate system. However, we are considering a transformation from

one stationary coordinate system to another, therefore q ≡ q(xT
1 ,xT

2 , . . . xT
N)T ,

where q ∈ <Nd.

As demonstrated in [26], we can reformulate (2.3) in this generalised coordi-

nate system. We thus have

d

dt

(
∂T

∂q̇

)
=

∂T

∂q
− ∂V

∂q
, (2.6)

where q̇ is the time derivative of q. Such conservative systems, i.e. those with no

external forcings, can be described using the Lagrangian function, L = L(q, q̇),

defined as

L = T − V (2.7)

where T = T (q, q̇) and V = V (q). Therefore equation (2.6) is now

d

dt

(
∂L
∂q̇

)
=

∂L
∂q

. (2.8)

We can arrive at the same result by starting from Hamilton’s Principle and using a

calculus of variations approach to investigate the dynamics. Hamilton’s Principle

states that:

The motion of the system from time t1 to time t2 is such that the line integral

I =

∫ t2

t1

L(q, q̇) dt (2.9)

is an extremum following the path of motion [19].

We now consider the first variation of I for fixed t1 and t2, with boundary

conditions imposed such that δq = 0 and δq̇ = 0 at t1 and t2. If Hamilton’s
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Principle holds then δI is zero [19] and we have

δI = δ

∫ t2

t1

L(q, q̇) dt =

∫ t2

t1

δL(q, q̇) dt = 0. (2.10)

From [15] we have

δL =
∂L
∂q

· δq +
∂L
∂q̇

· δq̇, (2.11)

and thus (2.10) becomes

δI =

∫ t2

t1

(
∂L
∂q

· δq +
∂L
∂q̇

· δq̇
)

dt = 0. (2.12)

But δq̇ = d
dt

(δq), and integrating by parts gives us,

δI =

∫ t2

t1

(
∂L
∂q

− d

dt

(
∂L
∂q̇

))
· δq dt = 0, (2.13)

since the variation is zero at the boundaries. As the variation in q is arbitrary it

must follow that,

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0. (2.14)

These are the Euler-Lagrange equations - second-order equations in time describing

the evolution of the system.

We arrive at the Hamiltonian formulation of (2.14) by defining generalised

momenta,

p =
∂L
∂q̇

. (2.15)

We now use this to relate the concept of a Hamiltonian to the Lagrangian. We

consider,

dL
dt

=
∂L
∂q

· dq

dt
+

∂L
∂q̇

· dq̇

dt
. (2.16)

Using (2.14) and rearranging, this can be written as

d

dt

(
∂L
∂q̇

· q̇ − L
)

= 0. (2.17)
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Using the definition for generalised momenta from (2.15) we thus have,

d

dt
(p · q̇ − L) = 0. (2.18)

Since L, q and p do not depend explicitly on time, t, then it follows that

p · q̇ − L = constant. (2.19)

We can therefore define

H(p, q) = p · q̇ − L(q, q̇). (2.20)

This is known as the Hamiltonian and is a constant following the evolution of the

system.

We can use (2.20) to derive a set of first order equations which are equivalent

to the second order Euler-Lagrange equations (2.14) [26]. From (2.20) it follows

that

dH = q̇ · dp + p · dq̇ − dL. (2.21)

Using the definition of the generalised momenta given in equation (2.15), (2.21)

becomes,

dH = q̇ · dp− ∂L
∂q

· dq. (2.22)

Substituting (2.15) into the Euler-Lagrange equation (2.14) gives ṗ = ∂L
∂q

. If we

substitute this into (2.22) we have,

dH = −ṗ · dq + q̇ · dp. (2.23)

In addition we also have that

dH =
∂H

∂q
· dq +

∂H

∂p
· dp. (2.24)
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Comparison of the coefficients of equations (2.23) and (2.24) gives the following

equations,

q̇ =
∂H

∂p
, (2.25)

ṗ = −∂H

∂q
. (2.26)

This set of first order equations is sufficient to describe the evolution of the system,

and is known as the canonical form for a Hamiltonian system. The Hamiltonian

formulation of a problem can prove to be a useful description since the equations

are first order and it is independent of the coordinate system used.

As illustrated in [6], by defining vector u = (qT ,pT )T where q,p ∈ RNd, we

can rewrite these equations as

u̇ = J−1∇uH, (2.27)

where ∇u = ( ∂
∂p1

, . . . , ∂
∂pd

, ∂
∂q1

, . . . , ∂
∂qd

) and J is the so-called symplectic operator

[34] defined by

J =




0 Id

−Id 0


 . (2.28)

We can say that the system

u̇ = f(u) (2.29)

is Hamiltonian if

f(u) = J−1∇uH. (2.30)

For the conservative system we have considered, L = T (q̇) − V (q), thus

(2.20) becomes

H = p · q̇ − (T − V ). (2.31)
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Using the definition of p from (2.15) we have

p =
∂T

∂q̇
, (2.32)

since V = V (q) and therefore does not depend on q̇. Using this definition of the

momentum with (2.31) we find that the Hamiltonian, H, is given by

H = T + V. (2.33)

Thus where we have a conservative system with a generalised co-ordinate system

that is fixed, the Hamiltonian is the total energy, and this property is conserved

following the motion.

2.2 Numerical Methods for Hamiltonian Prob-

lems

When considering which numerical scheme to use to model a given problem, we are

usually concerned with finding one that is not only stable, but also minimises the

local truncation error arising from the discretisation, i.e. one that is more accurate.

However such methods, although locally accurate, do not always account for the

global features of the system. Consider the problem of two bodies in mutual

orbit. As we will see in Chapter 4, intrinsic to this problem is the fact that

energy is conserved. It is therefore essential that the numerical model captures

this property. This can be illustrated by considering the effect of energy loss in a

numerical model of the solar system [6]. The orbiting bodies would spiral inwards,

which is physically incorrect - planets do not spiral into the sun. Hence for such a

system local accuracy is less important than capturing the conservation properties.
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2.2.1 Geometric Methods

Geometric methods have been developed specifically to preserve the qualitative

features of a system. These may include geometrical structure, conservation laws,

symmetries and asymptotic behaviour. Considering these properties when design-

ing numerical schemes has proved successful in many fields including astronomy

and molecular dynamics [27, 44]. For Hamiltonian problems symplectic methods

have proved particularly effective at preserving the conservation properties of the

system.

As in Section 2.1 we define the vector u such that u = (qT ,pT )T and q,p ∈
RNd, q and p are position and momentum as before. The evolution is given by

u̇ = f(u), (2.34)

where f(u) satisfies (2.30).

An additional feature of a Hamiltonian system is that the flow is symplectic.

We can consider that the solution of (2.34) at a given time, T , induces a transfor-

mation, φ, of u from the initial time, t = 0 to t = T . This mapping is symplectic

if

φ′T Jφ′ = J, (2.35)

where φ′ is the Jacobian of φ, and J is the skew-symmetric matrix defined in

(2.28). The proof for this is given in [6]. We will see that the symplectic nature of

the flow of a Hamiltonian system will prove useful in the development of numerical

schemes.

We now consider a numerical approximation for the system given in (2.34).

We consider a discrete scheme that induces a mapping Φh of our discrete vector

U , where U = (QT ,P T )T , from the initial to the final time. This is symplectic if
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it satisfies (2.35). Such schemes are known as symplectic numerical methods and

prove to be excellent for modelling Hamiltonian systems as they preserve many of

the qualitative features. In fact we observe that

“a symplectic discretisation of a Hamiltonian problem is a Hamiltonian

perturbation of the original” [6]

We can thus say that whereas non-geometric methods produce an approximation

to the solution, symplectic methods exactly solve an approximate Hamiltonian

system.

2.2.2 The Störmer-Verlet Method

The Störmer-Verlet is a second-order accurate, symplectic scheme. This method

makes use of Lemma 3.1 in [6], which states that if maps ω and ψ are symplectic,

then the composition of the two, ω◦ψ is also symplectic [6]. Thus we can decompose

our discrete map Φh into a composition of simpler, symplectic flows,

Φh = Φ1,h ◦ Φ2,h ◦ Φ3,h . . . . (2.36)

Each of these simpler flows can be chosen to reflect a simpler integration of the

original problem. We can use this property to define various splittings of the

problem. For a more complete discussion of splitting methods see [6].

We consider a separable Hamiltonian problem such that H(p, q) = H1(p) +

H2(q). For such systems the continous equations become,

q̇ =
∂H1(p)

∂p
(2.37)

ṗ = −∂H2(q)

∂q
(2.38)
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Applying a Strang splitting [6] to this system results in the Störmer-Verlet method

[20] given by the following equations,

P n+ 1
2 = P n − h

2

∂H2(Q
n)

∂Qn
(2.39)

Qn+1 = Qn + h
∂H1(P

n+ 1
2 )

∂P n+ 1
2

(2.40)

P n+1 = P n+ 1
2 − h

2

∂H2(Q
n+1)

∂Qn+1
, (2.41)

where the use of upper case letters indicates a discrete system. P n is the momen-

tum at the nth timestep, Qn the position, h the length of the timestep.

We can see that this splitting is symplectic by considering each of these dis-

crete equations. In (2.39) we change momentum P only, and Q remains constant.

The change in P is given by (2.38). We can write this as a Hamiltonian system in

the following way

ṗ = −∂H2(q)

∂q
(2.42)

q̇ =
∂H2(p)

∂p
. (2.43)

Since H2 is independent of p then ∂H2(p)
∂p

= 0. Thus, as the discrete equations

illustrate, the position is not changed by the Hamiltonian system given by (2.42)

and (2.43).

Similarly, we consider the step produced by (2.40). Here we change position,

Q, and the momentum remains constant. This is given by (2.37. Again this can

be written as a Hamiltonian system

q̇ =
∂H2(p)

∂p
(2.44)

ṗ = −∂H2(q)

∂q
. (2.45)

As H1 is independent of q then ∂H2(q)
∂q

= 0 and the momentum remains constant.
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We can follow a similar argument for the final discrete equation. We can

thus see that each of the discrete equations forms a Hamiltonian system, and thus

the flow for each is symplectic. Thus the mapping for each of the variables, from

one timestep to the next, is symplectic. Using the result given in (2.36), we can

thus conclude that the method is symplectic.

2.3 The Atmosphere as a Hamiltonian System

Hamiltonian methods are tried and tested in the field of classical mechanics, how-

ever their extension to fluid mechanics is a relatively recent development [43]. We

begin by considering the Lagrangian description of a fluid. Here each fluid particle

is labelled a = (a, b, c) which can be defined by the initial positions. This label is

fixed and travels with the flow of the fluid. We introduce a further independent

variable τ that denotes time such that (a, b, c) remain fixed by ∂
∂τ

.

By convention, the canonical variables for Hamiltonian fluid dynamics are

given by x and u for position and momentum respectively. We recall that the

Lagrangian for a system of N discrete particles is given by,

L = T − V, (2.46)

where the kinetic energy, T , is defined by (2.2), and V is the potential energy.

By allowing N to increase without limit and the distances between particles to

become arbitrarily small we can find a Lagrangian to represent a continuous fluid

[34]. The kinetic energy becomes

T =

∫ ∫ ∫ (
1

2

∂x

∂τ
.
∂x

∂τ

)
dadbdc (2.47)
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and the potential energy is

V =

∫ ∫ ∫
(E(α, S) + Φ(x)) dadbdc, (2.48)

where E is the internal energy and Φ represents the external energy from, say,

gravity or other external forces. The internal energy is a function of the specific

volume, α = ∂x
∂a

, and S is the specific entropy.

As we have seen in Section 2.1 Hamilton’s principle requires that δI = 0

where

I =

∫
Ldt. (2.49)

Following a similar argument we obtain the Lagrangian equations for a fluid

d

dt

∂L
∂ẋ

− ∂L
∂x

= 0, (2.50)

where

L =

∫ ∫ ∫ (
1

2

∂x

∂τ
.
∂x

∂τ
− (E(α, S) + Φ(x))

)
dadbdc. (2.51)

We introduce generalised momentum

u =
∂L
∂ẋ

(2.52)

By analogy with (2.20) the Hamiltonian is defined by

H =

∫ ∫ ∫
u · ẋda− L, (2.53)

and the canonical equations are given by (2.25) and (2.26).

2.3.1 Example: Shallow Water Equations

We have demonstrated that Hamiltonian methods can be extended to fluids. We

now show that they can be used for equations that govern the evolution of the

17



atmosphere. One such model is given by the shallow water equations. These

describe the motion of a shallow layer of incompressible fluid, in two dimensions,

in a rotating coordinate system with a flat topology. The height of the free surface

is h. The equations of motion for the shallow water system are [34]

∂2x

∂τ 2
− f

∂y

∂τ
+ g

∂h

∂x
= 0 (2.54)

∂2y

∂τ 2
+ f

∂x

∂τ
+ g

∂h

∂y
= 0, (2.55)

where g is the gravitational potential and f is the planetary vorticity.

For a rotating frame we introduce W = Ω×x - the velocity of an atmosphere

rotating with the Earth - where Ω is the angular velocity of the rotating frame.

The Lagrangian is thus [34]

L =

∫ ∫
1

2

(
∂x

∂τ
.
∂x

∂τ
+ 2W .

∂x

∂τ
+ W .W − gh

)
dadb, (2.56)

since we are considering a two dimensional system.

Using (2.15) we derive our generalised momentum,

u = ẋ + W . (2.57)

Thus, using the definition of the Hamiltonian from (2.53), we find

H =

∫ ∫ (
1

2
u.u− u.W +

1

2
gh

)
dadb. (2.58)

Therefore, using (2.44) and (2.45), we can derive the canonical equations for (2.54)

and (2.55)

ẋ = u−W (2.59)

u̇ = −(Ω× u + g∇h). (2.60)

These, along with the continuity equation

∂h

∂τ
+ h∇ · v = 0 (2.61)
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where v = (∂x
∂τ

, ∂y
∂τ

, form the shallow water system.

This example demonstrates that it is possible to rewrite the equations of

motion for a model of the atmosphere in Hamiltonian form. It can also be shown

[37] that Hamiltonian balanced models can be constructed from more complicated

unbalanced models. As we have discussed in the previous section certain geomet-

ric methods are very successful for such models. Therefore if we can construct a

Hamiltonian model for a given problem we can take advantage not only of these

numerical methods but also of the inherent conservation and symmetry character-

istics of Hamiltonian systems.

2.4 Summary

In Chapter 2 we have considered the mathematics of Hamiltonian systems. By

beginning with Newton’s equations of motion we have shown that a first order,

Hamiltonian system can be derived. This system has notable geometrical features

and conserves the Hamiltonian following the evolution of the system. For conser-

vative problems in a fixed co-ordinate system, this Hamiltonian is the total energy

of the system.

We have discussed the choice of numerical method that is appropriate for

such problems. We have seen that symplectic schemes, which are a type of geomet-

ric method, are conserving models and as such are a good choice for Hamiltonian

problems.

Finally we have provided the motivation for this research by demonstrat-

ing that equations that model the evolution of the atmosphere can be written in

Hamiltonian form.
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In this thesis we use a simple Hamiltonian system and consider whether

the characteristics of this problem can be exploited within the data assimilation

algorithm. Therefore, in the following chapter, we consider the theory and prac-

tical details of data assimilation with specific reference to the four-dimensional

variational approach. This is necessary in order that we can construct a data

assimilation system for our Hamiltonian models later in the thesis.
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Chapter 3

Data Assimilation

In this thesis we consider whether conservation properties of a given system can

be exploited when constructing a data assimilation algorithm. Data assimilation

is a method that provides a best estimate of the state of a system by incorporating

observational data into a numerical model. Several different data assimilation

techniques have been developed to solve this problem, varying in computational

cost, optimality and speed.

The aim of this thesis is to investigate data assimilation techniques for a

simple system with the intention that the results may have implications for real

world meteorological problems. We therefore consider the methods commonly

used in this field of study. In this chapter we introduce the basic ideas of data

assimilation and briefly discuss the various methods that can be used. We then

give a more detailed account of the assimilation technique we have chosen to use

for this research - four-dimensional variational data assimilation (4d Var).
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3.1 An Introduction to Data Assimilation

To achieve the best possible estimate of the state of a system we can use data as-

similation methods to make use of the information that we have. This information

includes any observations that are available, equations governing the dynamics of

the system, information from previous forecasts, and statistical information relat-

ing to errors in the observations and previous forecasts. In addition we may wish

to exploit any physical relationships between variables and physical constraints on

the evolution of the system.

For atmospheric models we have many observations available. However they

are insufficient in number to fully describe its state and this data can prove difficult

to use. For example satellite measurements give the integrated sum of the radiation

emitted over the entire vertical profile whereas the numerical model includes many

vertical levels. In addition, observations are often of different variables to those

that we want to use in the model. A further obstacle with all observations is

the error associated with these measurements. A good assimilation scheme will

attempt to include these complexities [13].

For most systems we have a set of differential equations that govern the

evolution of the state of the system. A data assimilation scheme will integrate the

observations into an appropriate numerical model for these equations. With some

data assimilation techniques it is also possible to add a physical constraint, for

example it might be advantageous to constrain the motion to lie on, or close to, a

particular surface in phase space.

A further feature of data assimilation schemes is that we can make use of

previous information. This is known as the background, and in most cases this

is the forecast given by an earlier cycle. The addition of this term means that
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information from observations assimilated in the past is not lost. Again there are

errors associated with this that must be considered.

As we have discussed we can obtain a large amount of detail relating to a

system, but it is important that this is used appropriately. A very simple data

assimilation scheme would directly replace the value predicted by the model equa-

tions with the observation at that point. This, however, may be inconsistent with

the model values at neighbouring points. Better data assimilation schemes provide

a solution that is consistent with both the model predictions and the observations.

A successful data assimilation scheme should include the following [5]

1. A good background field, typically a forecast from a previous data assimial-

tion cycle.

2. A method that provides a compromise between the background and the

observations. We want the scheme to produce a solution that is close to the

data that is the most reliable.

3. A smooth solution as we know that the real field is smooth.

4. A solution that respects known physical properties and dynamics.

In addition we also want to include any errors associated with the observations

and the background field.

3.1.1 Basic Concepts

We now define several terms that are frequently used when describing data assim-

ilation methods and their solutions [5].

The analysis is the best estimate of the state of the system at a given time.

23



The state vector, x, describes the column vector of variables that represent

the state of the system and defines our model space. In addition we define xt to

be the true state at the analysis time, xb the background estimate of the true state

before the assimilation is carried out, and xa is the analysis.

We also have a vector of observations, y, which defines our observation space.

In general we have fewer observations than model variables and as we have already

stated the variables are often different. Thus we cannot compare the two directly

and we must use an observation operator, H. This operator is applied to the state

vector to produce model equivalents for the observations.

The vector of departures measures the difference between the observations

and the state vector, y − H(x). This is sometimes referred to as the innovation

vector.

In addition we have error covariance matrices B and R, describing the statis-

tics relating to the errors of the background state and the observations respectively.

In general we can classify different data assimilation techniques as sequential

or non-sequential, intermittent or continuous. Sequential assimilation considers

only observations taken before the time of the analysis whereas non-sequential

techniques include observations taken after the analysis time. Intermittent meth-

ods treat all observations as if they occurred at the same time and assimilate them

at that point. In contrast continuous techniques assimilate the observation at the

time that it was measured.

3.1.2 Variational Data Assimilation

Current operational numerical weather prediction methods have generally moved

towards variational tecniques. Such methods involve the definition of a cost func-
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tion, J , that is some measure of the distance between the observations and the

model state and between the background and the model state. This is then min-

imised in order to find a solution that lies close to both - this solution is the

analysis.

One such method is three dimensional variational data assimilation (3d Var)

which was used operationally at the Met Office UK between 1999 and 2004 [32].

This uses observations that are distributed in space, but are assumed to be valid

at the same point in time. This approximation is computationally less expensive

than other techniques. However there is a loss of some information provided by

the observations.

An extension of this is four-dimensional data assimilation (4d Var), where

observations are distributed in both space and time [5]. The addition of the time

dimension treats the observations more realistically. A variation of this technique

is currently operational at both the European Centre for Medium Range Weather

Forecasting (ECMWF) and the UK Met Office. In both cases it is the incremental

form of 4d Var that is employed. Details of this approach to the 4d Var method

can be found in [10]. In this thesis we will we use the full 4d Var method, which

we now consider in more detail.

3.2 The Mathematical Formulation of 4d Var

The mathematics of the 4d Var problem can be considered using linear algebra,

or by using the technique of calculus of variations. In most practical applications,

the linear algebra approach is used. However it can also be useful to look at the

variational formulation.
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3.2.1 The Continuous Problem

In order to illustrate how the cost function, model equations and adjoint equations

are related, we initially consider the continuous problem.

We have a general system with a cost functional given by

J =

∫ t1

t0

F (t, x, ẋ). (3.1)

We wish to minimise J subject to the constraint that

ẋ = f(x), (3.2)

where · ≡ d
dt

, t is an independent variable and x is dependent on t. The value of

J depends on the path between the two end points.

For 4d Var, F (t, x, ẋ) is a function that measures the difference between

the observations and the model state and between the background and the model

state. The constraint is given by the equations of motion for the system under

consideration.

We can rewrite this problem by defining the Lagrangian functional, L, which

takes into account the additional information provided by the constraint.

L =

∫ t1

t0

(F (t, x, ẋ) + λ(t)(ẋ− f(x))) dt, (3.3)

where λ(t) is a vector of Lagrange multipliers. We set

G(x,λ, ẋ, λ̇) = F (t, x, ẋ) + λ(t)(ẋ− f(x)). (3.4)

Thus our Lagrangian becomes

L =

∫ t1

t0

G(x, λ, ẋ, λ̇)dt. (3.5)
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It is this functional that we now want to minimise as it is not only a measure of

the original function, but it also imposes the constraint required by the original

problem.

To find the minimum we require the first variation of the functional to be

zero, i.e.

δL = δ

∫ t1

t0

G(x, λ, ẋ, λ̇) =

∫ t1

t0

δG(x, λ, ẋ, λ̇) = 0. (3.6)

From (3.6) we have

δL =

∫ t

0

(δxGx + δẋGẋ + δλGλ + δλ̇Gλ̇)dt = 0, (3.7)

where Gx is the differential of G with respect to x, Gẋ is the diffferential with re-

spect to ẋ and Gλ and Gλ̇ are similarly defined. Integrating by parts and applying

boundary conditions, leads to

δL =

∫ t

0

((
Gx − d

dt
Gẋ

)
δx +

(
Gλ +

d

dt
Gλ̇

)
δλ

)
dt = 0. (3.8)

Since x and λ are independent, we can thus deduce the following equations that

are necessary to ensure δL = 0,

Gx − d

dt
Gẋ = 0 (3.9)

Gλ − d

dt
Gλ̇ = 0. (3.10)

These are known as the Euler-Lagrange equations. The second of these gives the

continuous model equations describing the evolution of the system. The first gives

a set of equations that are referred to as the adjoint equations. As we will see

in the following section, the discrete equivalent of these are required to minimise

the discrete cost function. Here, satisfying both (3.9) and (3.10) will result in

finding the minimum of the Lagrangian, and therefore the minimum of the original

objective function, J , subject to the original constraint that ẋ = f(x).
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3.2.2 The Discrete Problem

We now consider the discrete 4d Var problem.

We want to minimise the cost functional

J(x0) = (x0 − xb)
T B−1(x0 − xb) +

N∑
n=0

(yn −Hn[xn])T R−1
n (yn −Hn[xn]), (3.11)

subject to the strong constraint that

xn = f(xn−1), (3.12)

where the subscript n denotes quantities at observation time n from n = 0 to n = N

and f is a nonlinear function. Here (3.12) describes the dynamics of the discrete

system.

Here it is assumed that f(xn) is a perfect representation of the equations

of motion given by (3.12). This assumption is also made in current operational

systems. The inclusion of an additional term in the cost function to account for

model error is being considered [39].

To understand how we minimise the discrete cost function, we can follow a

similar argument as for the continuous problem. We define a discrete Lagrangian

which includes the additional information provided by the constraint.

Ln =
N∑

n=0

(Fn(xn, ẋn) + λn(ẋn − fn(xn))) , (3.13)

where λn is the vector of the discrete adjoint variables. We set

Gn(xn,λn, ẋn, λ̇n) = Fn(xn, ẋn) + λn(ẋn − fn(xn)). (3.14)

Thus our Lagrangian becomes

Ln =
N∑

n=0

Gn(xn,λn, ẋn, λ̇n). (3.15)
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It is this discrete functional that we now want to minimise.

As for the continuous case, we require the first variation of the functional to

be zero, i.e.

δLn = δ

N∑
n=0

Gn(xn, λn, ẋn, λ̇n) =
N∑

n=0

δGn(xn,λn, ẋn, λ̇n) = 0. (3.16)

From (3.16) we have

δLn =
N∑

n=0

(
δxn

∂Gn

∂xn

+ δẋn
∂Gn

∂ẋn

+ δλn
∂Gn

∂λn

+ δλ̇n
∂Gn

∂λ̇n

)
= 0, (3.17)

By implementing summation by parts and applying boundary conditions, leads to

δLn =
N∑

n=0

((
∂Gn

∂xn

− d

dt

(
∂Gn

∂ẋn

))
δxn +

(
∂Gn

∂λn

− d

dt

(
∂Gn

∂λ̇n

))
δλn

)
= 0.

(3.18)

Since xn and λn are independent, we can thus deduce the following equations that

are necessary to ensure δLn = 0,

∂Gn

∂xn

− d

dt

(
∂Gn

∂ẋn

)
= 0 (3.19)

∂Gn

∂λn

− d

dt

(
∂Gn

∂λ̇n

)
= 0. (3.20)

The discrete forward model equations, as given by (3.12), are found using (3.20),

whereas (3.19) provides the discrete adjoint equations. For our problem we have,

Gn =
N∑

n=0

(yn −Hn[xn])T R−1
n (yn −Hn[xn]) + λn(ẋn − fn(xn). (3.21)

We can thus derive the discrete adjoint equations for this problem,

λN = 0 (3.22)

λn = FT
n (λn+1)−HT

nR−1
n (Hn(xn)− yn) (n = N − 1, . . . 0), (3.23)

where Fn is the Jacobian of f(xn), H the Jacobian of Hn, both with respect

to xn [40]. In practice, however, the adjoint model is derived directly from the
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linearisation of the forward, nonlinear model. These discrete adjoint equations

are necessary to find the gradient of the observation term and, consequently, the

gradient of our cost function. The minimisation problem is solved using an iterative

method that requires the calculation of the cost function and its gradient with each

iteration.

Figure 3.1 gives an illustration of the 4d Var process. We run a model

trajectory from a first guess. We then measure the distance, Jb, between the

background and this trajectory at the initial time only, i.e. the first guess, and

the distances, Jon , between observations and the trajectory at t = tn. Our cost

function, J , given by (3.11), can therefore be summarised as

J = Jb +
∑

n

Jon . (3.24)

With each iteration we measure Jb at the initial time and the Jon across the

trajectory. Our aim is to reduce these distances using a minimisation algorithm,

with each iteration providing a new set of initial conditions until we arrive at

the minimum. The initial conditions at the minimum give us the analysis, as

illustrated in the second of the two diagrams in figure 3.1. The analysis therefore

initialises a solution that is close to the background field and fits with the observed

field.

3.3 Practical Implementation of 4d Var

We now consider the practical details of implementing the 4d Var system. In

Section 3.2.2 we defined our discrete cost function in (3.11). We must minimise

this in order to find our analysis.
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Figure 3.1: Diagrammatic representation of the 4d Var approach; (a) illustrates

the trajectory given by the first guess, (b) the trajectory from the analysis.
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3.3.1 Minimisation of the Cost Functional, J

The minimisation of the cost functional requires a minimisation algorithm, such

as conjugate gradient or quasi-Newton methods, that can be obtained from many

different sources, and so this will not be investigated here [46]. However the algo-

rithm will require both J and its gradient ∇J and we need to consider how these

can be evaluated.

The evaluation of the cost functional, J , is relatively straightforward. We

need just evaluate equation (3.11) as shown. To do this we need only to run the

forward non-linear model. Jb is calculated at the initial time, Jo is the sum of the

Jon calculated at each time step, where

Jon = (yn −Hn[xn])T dn (3.25)

and dn are the normalised departures given by dn = R−1(yn − Hn[xn]) which

should be stored at each time step, as they are required in the calculation of ∇J .

We also require the gradient of the cost function given by (3.11). We find the

gradient of the background term by simply finding ∇Jb. However the evaluation

of ∇Jo = ∇(
∑

n Jon) is less obvious. We can write this in the following way,

−1

2
∇J = −1

2

N∑
n=0

∇Jon (3.26)

=
N∑

n=0

MT
1 . . . MT

n HT
n dn

= HT
0 d0 + MT

1 [HT
1 d1 + MT

2 [HT
2 d2 + . . . + MT

NHT
NdN ] . . .],

where M is the linearisation of the forward, nonlinear model and H is the lin-

earised observation operator [5].

This can be evaluated from n = N to n = 0, i.e. from right to left, that is we

use an adjoint model where the adjoint is defined as the transpose of the tangent
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linear model. So ∇Jo is found by running the adjoint model backwards, initialising

it by setting the adjoint variable λN = 0 at the final time. At each backwards

timestep we add the forcing term HT
n dn to λn, before applying the adjoint model

to give λn−1. Hence equation (3.26) becomes,

−1

2
∇Jo = λ0 (3.27)

3.3.2 The Tangent Linear Model

In order to derive our adjoint equations we require the tangent linear model. We

must therefore develop and test the linearisation of our forward, nonlinear model.

It is important that the model is tested as we must have the correct linearisation

in order to find the correct adjoint. We must also show that the tangent linear

hypothesis holds, otherwise the gradient will not be accurate. The tangent linear

hypothesis states that the linearisation of a nonlinear model and the model itself

must exhibit similar behaviour for a period of time known as the validity time.

To linearise our model we consider the Taylor expansion of a nonlinear model,

M , around state x, we thus have

M(x + δx) = M(x) + M ′(x)δx +
1

2
M ′′(x)δx2 + . . . (3.28)

The linear model is thus given by considering only the first order terms, thus

M(x + δx)−M(x) = M ′(x)δx, (3.29)

and therefore our linear model is found by differentiating the nonlinear, discrete

model equations with respect to the state vector. Note that we linearise the dis-

crete equations, rather than discretise the linearised equations. The two may not

necessarily produce the same set of discrete linear equations [24].
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The tangent linear hypothesis says that the model can be approximated

by retaining only the linear terms, neglecting terms of second order and above.

Therefore if the linearisation is valid we have,

M(x + δx) ≈ M(x) + M (x)δx, (3.30)

where M (x) is the linear model, defined by M (x) = M ′(x).

Thus we can see that it is vital that the assumption is shown to be valid.

If the linearisation of the model does not retain the original features of the non-

linear system, then the tangent linear hypothesis is not a good assumption, and

therefore the gradient will not be accurate. The final linear model can be tested

in two ways.

A. Correctness Test

The first test test checks whether the linear model is the correct linearisation of

the original problem in the vicinity of a given trajectory. Consider a general state

variable x, and perturbation δx. From equation (3.30) we have,

M(x + δx)i −M(x)i

[M(x)δx]i
= 1 + higher order terms, (3.31)

where M is the nonlinear model for two different initial conditions, M is the

tangent-linear model describing the evolution of the perturbation, and the sub-

script i denotes the ith vector component. As we have seen the tangent linear

model is valid only if higher order terms are negligible. Therefore if we take the

limit as δx tends to zero of the right-hand side and subtract one then the answer

should tend to zero, as shown in the following equation.

lim
x→0

M(x + δx)i −M(x)i

[M(x)δx]i
− 1 = 0. (3.32)
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In addition, this limit should be reached linearly, proving that the linear part of the

Taylor series is explained by the tangent linear model. This is known as testing the

correctness of the model [50]. This test is illustrated by Figure 4.7 in Chapter 4.

B. Validity Test

The second test looks at the validity of the linear model. Here we compare the

trajectory of the linear model with inital conditions δx0, and the difference between

two nonlinear model trajectories with initial condition x and x+ δx. The validity

time for the linear model is the period over which these exhibit similar behaviour.

This is demonstrated by Figures 4.8 to 4.9 in Chapter 4, amongst others.

These tests are necessary to validate the linear and adjoint equations and

are carried out for both of the data assimilation schemes in this thesis.

3.3.3 The Adjoint

There are two methods to construct an adjoint model.

• Constructing the discrete adjoint equations from the discrete linearised equa-

tions.

• Constructing the continuous adjoint equations then discretising.

The continous equations are those given by (3.10) and in general will not produce

the same discrete model equations as the first techniques. The first of these meth-

ods can be implemented in two ways. We can use the matrix form of the discrete

tangent linear equations to find the transpose or we can derive the adjoint directly

from the tangent linear model code, following a set procedure for each line of code.

Operationally the second of these methods is used, and that is the method we

35



implement here. For a description of how this second method is applied see [17, 9].

Once the adjoint is constructed it can be tested in two ways.

A. Adjoint Test

We test whether the adjoint code gives the true adjoint of the tangent linear model

by making use of the adjoint operator. In general we have

< Ax,y >=< x,A∗y >, (3.33)

where A is a linear operator, and A∗ is its adjoint; the brackets < ..., ... > denote

an inner product. For our model we have the tangent linear operator M , and its

adjoint MT . We can use this equation to test our model, by first applying the

forward linear model to the initial conditions to produce a final state. We then

apply the adjoint to this final state. By rearranging (3.33), if the adjoint is correct

then we should find,

< Mδx0, Mδx0 > − < δx0,M
T Mδx0 >= 0. (3.34)

B. Gradient Test

We must also test that the adjoint produces the correct gradient of the cost func-

tion. We use a Taylor expansion of the cost function [29],

J(x + δx) = J(x) + δxT∇J + . . . . (3.35)

Rearranging (3.35) we have

J(x + δx)− J(x)

δxT∇J
= 1 + . . . . (3.36)

We should therefore find that the quantity on the left hand side of (3.36) ap-

proaches 1 as δx approaches zero. We define δx by

δx = α
∇J

‖∇J‖ , (3.37)
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so that δx is a vector in the gradient direction and thus the variation of the

variables gives a consistent scaling [29], ∇J is the gradient found using the adjoint.

Using our definition of δx in (3.36) gives

φ(α) =
J(x + α ∇J

‖∇J‖)− J(x)

α
(

∇J
‖∇J‖

)T

· ∇J
= 1 + O(α). (3.38)

Thus if the gradient is correct, for small values of α, φ should linearly approach 1

as α decreases, and the residual given by




J(x + α ∇J
‖∇J‖)− J(x)

α
(

∇J
‖∇J‖

)T

· ∇J


− 1, (3.39)

should linearly approach zero [29].

3.3.4 The Minimisation Algorithm

There are many different minimisation algorithms that can be used for these prob-

lems. We use the Conmin routine [46]. This provides a choice of two minimisation

algorithms, a conjugate gradient method and the BFGS, quasi-Newton technique.

For a more complete discussion and a comparison of possible minimisation tech-

niques see [22]. Based on work cited in [22], we will use the quasi-Newton minimi-

sation algorithm for all our experiments.

The algorithm requires stopping criteria, these are given by

|Jk−1 − Jk|
1 + |Jk| < ε (3.40)

‖xk−1 − xk‖
1 + ‖xk‖ <

√
ε (3.41)

‖∇Jk‖
1 + |Jk| ≤

3
√

ε. (3.42)

All three must be satisfied in order to terminate the minimisation [18].
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3.4 Weak Constraints in 4d Var

The formulation of 4d Var we have illustrated above contains a strong constraint.

We can include further constraints on the problem by adding additional terms to

the cost function. These are known as weak constraints and are so-called due to

the fact that they do not have to be exactly satisfied by the solution.

3.4.1 The Continuous Problem

In (3.3) we observed that the strong constraint, given by (3.2), was multiplied by a

vector of Lagrange multipliers. A weak constraint is not treated in this way. Here

we add a term to the cost function in the following way [45]

J =

∫ t1

t0

(F (t, x, ẋ) + Jc(t,x, ẋ))dt. (3.43)

We note that Jc is an additional term, therefore the original strong constraint is

also imposed. The weak constraint, Jc is formulated as required for the specific

problem. When constructing our Euler-Lagrange equations, corresponding to (3.9)

and (3.10), we must include this weak constraint. Function G becomes

G(x, λ, ẋ, λ̇) = F (t, x, ẋ) + λ(t)C(x, ẋ) + Jc(t, x, ẋ), (3.44)

and thus our Euler-Lagrange equations are altered accordingly.

3.4.2 The Discrete Problem

The discrete form of the cost function given by (3.43) becomes

J(x0) = (x0−xb)
T B−1(x0−xb)+

N∑
n=0

(
(yn −Hn[xn])T R−1

n (yn −Hn[xn])
)
+Jc(xn,xb).

(3.45)
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The weak constraint may be imposed over the length of the data assimilation

window if required. When minimising the cost function the gradient of this term

must be calculated and included in the cost function gradient. The gradient must

then be tested as described in Section 3.3.3.

3.4.3 Current Research

The weak constraint has been implemented for several different purposes. A

method of including a term to account for the model error has been considered

[39, 52]. In [39] the evolution of the forward model is given by

xn+1 = f(xn) + εn, (3.46)

where εn denotes the model error at time tn. The weak constraint that is added

to the cost function to account for this is

Jc =
N∑

n=0

εT
nQ−1

n εn, (3.47)

where Qn is the model error covariance matrix. The minimisation of the cost

function will therefore attempt to produce an analysis with small values of the

model error, εn. In [39] the addition of a weak constraint of this form was found

to be effective and produced improved forecasts.

Weak constraints have also been implemented as digital filters [16, 51]. They

are used to filter out the high frequency oscillations - gravity waves - that can be

spuriously generated by the assimilation algorithm. In [51] this has the form

Jc = β(x(tN
2
)− x̄(tN

2
))T W (x(tN

2
)− x̄(tN

2
)), (3.48)

where β is a parameter that determines how strongly the constraint will be en-

forced, W is a diagonal matrix that determines the weighting of each variable
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and

x̄(tN
2
) =

N∑
n=0

αnx(tn). (3.49)

The latter variable, x̄, is the filtered model state which is defined at the middle of

the time window and αn is a weighting function. Thus the constraint term measures

the distance between the unfiltered and filtered states and the minimisation of the

cost function seeks to reduce this. The analysis is therefore constrained to be close

to this filtered state. In both [16] and [51] the addition of such a term is found to

be effective in reducing these spurious high frequency waves and produces a better

forecast.

A further example of a weak constraint also aims to reduce the spurious

high frequency waves but not by the use of a digital filter. In [14], Dixon and

Roulstone consider using such a constraint to include more information about the

system. Here they incorporate a balance condition that could potentially allow

some realistic high frequency oscillations to exist in the solution. They consider

the balanced equation system that is constructed from the shallow water equations

[35]. The constraint has the form

Jc = wJc

1

2

1∑
i ai

∑
i

ai

(
∂δ′(0)

∂t

)2

, (3.50)

where wJc is the weighting of the constraint, the summation is over all the grid

points in the model space and δ′(0) is the incremental divergence field at the initial

time. They define

ai = (cos(φ) ∗∆p)|i, (3.51)

to be the mass and area weighting of the ith grid point, where p is the pressure

and φ is the latitude. This constraint aims to reduce the spurious gravity waves

by imposing incremental non linear balance on the system. This constraint was
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found to be unsuccessful in that the incremental nonlinear balance was not im-

posed correctly. However further formulations discussed in the paper proved more

successful and further work in this direction is in progress.

The last of the three weak constraints discussed here is the closest to the

formulation that we will consider in this thesis. We aim to make use of the inherent

characteristics of the dynamical system when imposing a further constraint.

3.5 Summary

In Chapter 3 we have introduced the idea of data assimilation. We have discussed

the important features and basic concepts of a successful data assimilation scheme.

Starting with the variational approach we have detailed the mathematical back-

ground of 4d Var. The linear algebra formulation has also been described since it

is this approach that is used in the practical implementation of this assimilation

technique.

In Section 3.3 we considered the construction of a 4d Var algorithm. We

have seen that it is necessary to derive the linear model and corresponding adjoint

for the problem. These must both be tested. The linear model should be a good

approximation to the nonlinear model for the length of the assimilation window

and the adjoint must give the correct gradient of the cost function at the optimal

solution.

In the final section we discussed the addition of weak constraints to the

cost function. We briefly illustrated the form these take before discussing current

research that has made use of this formulation of 4d Var.

In the next chapter we make use of the theory discussed both here and in
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Chapter 2. We consider the construction of a 4d Var algorithm for a simple Hamil-

tonian system. We use this to carry out a series of experiments and investigate

the effect of adding a weak constraint to the scheme.
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Chapter 4

System I: The Two-Body Problem

In Chapter 2 we derived the canonical equations for Hamiltonian systems and

considered the special mathematical characteristics of such problems. In particular

we highlighted the conservation properties of these systems and discussed how in

many cases the conserved quantity, the Hamiltonian, is the total energy of the

system. We also described the numerical methods that are best suited to these

systems, with specific reference to symplectic schemes.

In Chapter 3 we introduced the concept of data assimilation and discussed

in detail the method of 4d Var. This involves the minimisation of a cost function

measuring the distance between the solution and a first guess and the solution and

the observations. Also in Chapter 3 we considered the addition of weak constraints

to the 4d Var cost function and looked at how and why these might be used.

In this chapter we use the information from these introductory chapters in

order to construct a 4D Var algorithm for the two-body problem. We begin by

deriving the canonical equations for the two-body problem. We then consider the

construction of a nonlinear, forward model for this simple Hamiltonian system

and investigate both its accuracy and conservation properties. We follow this by
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detailing the stages required to create a 4d Var algorithm using this numerical

model, including the construction and testing of the corresponding linear and

adjoint models. Finally we carry out a series of identical-twin experiments using

a variety of observations and including additional weak constraints making use of

the characteristics inherent within a Hamiltonian system. We want to demonstrate

that the addition of these extra constraints will improve the analysis and provide

a better forecast.

4.1 The Two-Body Problem

In this section we discuss the two-body problem, a simple example of a Hamiltonian

system. We consider its conservation properties and derive the Hamiltonian form

of the equations of motion.

The two-body problem describes the motion of two bodies, with masses m1

and m2, in mutual orbit. In its most general form this gives the trajectories of

the two bodies as they move through space. This can be simplified by introducing

the idea of the reduced two-body problem. By restating the problem in terms of

the position of the centre of mass of the two bodies and the separation between

them, we can manipulate Newton’s equations of motion such that the full two-

body problem becomes an equivalent one body problem [23]. If we consider the

system in a centre of mass frame we have a body of reduced mass µ = m1m2

m1+m2
,

orbiting a fixed body of mass M = m1 + m2, and thus we have motion restricted

to a plane.

This system is much simpler to solve, and in addition obeys a series of rules

known as Kepler’s Laws. In the early seventeenth century Kepler developed these

44



to describe the motion of the planets in the solar system. This is clearly not a

reduced system. However if we consider two bodies, such as the sun and Earth,

with masses m1 and m2 where m1 À m2, the reduced system has a reduced mass

µ ≈ m2 orbiting total mass M ≈ m1. Thus, in this case, the reduced problem and

the full system are very similar and therefore Kepler’s qualitative laws apply to

the reduced problem.

Kepler’s laws give a useful insight into the behaviour of the reduced two-body

system and will help our understanding of later results. These laws are

• The planets follow an elliptical orbit, with the sun at one focus.

• A line from the planet to the sun will sweep out equal areas in equal times.

• The square of the period of the orbit is proportional to the cube of its semi-

major axis.

These laws arose from observation and trial and error. They are, however, simply

a result of Newton’s three laws of motion and his law of universal gravitation.

They can be restated for any two-body system as [42]

• The shape of an orbit is a conic section with the centre of mass at one focus.

• Orbital motions conserve angular momentum.

• T 2
o = 4π2

G(M1+M2)
a3, where To is the orbital period, a the semi-major axis,

G the universal gravitational constant and M1, M2 the masses of the two

bodies.

We can thus see that, in addition to being a Hamiltonian system, the two-body

problem has further important qualitative characteristics such as conservation of

angular momentum.
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Figure 4.1: Properties of an ellipse

In this chapter we consider a reduced mass problem with a closed orbit and

thus the conic section described by the first law is an ellipse. This elliptical orbit

can be described using a quantity known as the eccentricity, e. If e = 0 then the

resulting trajectory is a circular orbit. For 0 < e < 1 we have an ellipse, and e gives

a measure of the elongation of the resulting ellipse. The eccentricity is defined as

e =

(
1− b2

a2

) 1
2

, (4.1)

where a and b are the length of the semi-major and semi-minor axes of the ellipse

respectively, as illustrated in Figure 4.1. The focus lies at a distance ae from the

centre of the ellipse.

The reduced problem we are considering can be further simplified by in-

troducing non-dimensional variables. Say we have initial conditions, q0, for the
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postion of the reduced body given by

q0 = (d, 0), (4.2)

where d is the initial distance between the reduced mass and the centre of mass.

We weight the position variables by distance, d, to give our new variables

q̃ =
q

d
, (4.3)

which is equivalent to measuring distance in units of d. In addition time is mea-

sured in units of
(

d3

GM

) 1
2

and the transformation to the non-dimensional time is

thus given by

t̃ =

(
GM

d3

) 1
2

t, (4.4)

where M = m1+m2 is the total mass and G is the universal gravitational constant.

The non-dimensional masses are given by

m̃i =
mi

M
. (4.5)

In addition we have the non-dimensional momentum, p̃, measured in units of

(
G

Md

) 1
2 . For clarity, as we will only be using this non-dimensional system in the

thesis, we will drop the ∼ from these variables.

4.1.1 The Continuous Problem

As we have discussed the system is confined to a plane. We therefore describe the

system using coordinates q = (q1, q2) and p = (p1, p2), which give the position and

momentum, respectively, of the orbiting body. To derive the Hamiltonian form

of the continuous equations of motion we need to know the Hamiltonian. As the

two-body problem is a conservative system we know that this is given by the sum
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of the kinetic and potential energy of the system [2, 26]. The kinetic energy is

given by

T (p) =
1

2

(
p2

1 + p2
2

)
, (4.6)

while the potential energy is

V (q) = − 1

(q2
1 + q2

2)
1
2

, (4.7)

since we are working in the non-dimensional system. We know from (2.18) that if

the Lagrangian does not depend explicitly on t then the Hamiltonian is conserved.

Since for this problem

L = T − V =
1

2

(
p2

1 + p2
2

)
+

1

(q2
1 + q2

2)
1
2

(4.8)

we can see that this is true and thus the Hamiltonian is conserved for this problem.

The Hamiltonian is therefore

H(q, p) =
1

2

(
p2

1 + p2
2

)− 1

(q2
1 + q2

2)
1
2

. (4.9)

Using equations (2.25) and (2.26), we can thus deduce the canonical form

for this system is given by

dq

dt
= p (4.10)

dp

dt
= − q

‖q‖3
, (4.11)

where ‖q‖ = (q · q)
1
2 .

These equations describe the motion of the reduced mass as it follows an

elliptical orbit around the fixed centre of mass. It is these equations that we shall

later discretise to provide our numerical model.
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4.1.2 Conservation Properties

As we have discussed in the previous section this two-body system conserves the

Hamiltonian. For this reduced, non-dimensional problem this is the total energy,

E, of the system, given by

H(q,p) = E(q,p) =
1

2

(
p2

1 + p2
2

)− 1

(q2
1 + q2

2)
1
2

. (4.12)

In addition we recall that the second of Kepler’s laws stated that a line joining the

orbiting body with a focus of the ellipse will sweep out equal areas in equal times.

This is a result of the conservation of angular momentum by the system and thus

we have a second conservation law. For our system this is given by

L = q1p2 − p1q2. (4.13)

4.1.3 The Discrete Problem

As we have discussed in section 2.2.1, geometric methods are the most suitable

approach for modelling Hamiltonian problems. We will implement the Störmer-

Verlet method discussed in section 2.2.2. This symplectic scheme is given by

equations (2.39) to (2.41).

If we consider the Hamiltonian for this problem given by (4.9), we can see

that is separable, i.e. has the form

H(p, q) = H1(p) + H2(q). (4.14)

where,

H1(p) =
1

2

(
p2

1 + p2
2

)
(4.15)

H2(q) = − 1

(q2
1 + q2

2)
1
2

. (4.16)
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Using equations (2.39) to (2.41) we can derive our discrete model equations for

the two-body system,

P n+ 1
2 = P n − h

2

Qn

(Qn2

1 + Qn2

2 )
3
2

(4.17)

Qn+1 = Qn + hP n+ 1
2 (4.18)

P n+1 = P n+ 1
2 − h

2

Qn+1

(Qn+12

1 + Qn+12

2 )
3
2

, (4.19)

where the discrete variables are given by the upper case letters. As we have

discussed in section 2.2.2, each of the three steps given by (4.17) to (4.19) forms

a distinct Hamiltonian system. Thus each one forms a symplectic mapping from

one time step to the next, and the whole system is therefore symplectic. As we

know from section 2.2.1, this method, instead of approximating the solution of the

continuous system, will exactly solve an approximate Hamiltonian system.

4.2 Modelling the Two-Body Problem

In this section we will discuss the implementation of the discrete model and demon-

strate that the method we have chosen is an appropriate choice for this problem.

In section 4.1 we showed that the problem of two bodies in mutual orbit can be

reduced to that of one body of reduced mass, µ, orbiting a fixed centre with total

mass M = m1 + m2, and that in addition we can further simplify the problem by

introducing non-dimensional variables. We begin here by considering the trajectory

of the orbiting body given by the numerical model, defined solely by the initial

conditions. We use the following initial conditions [8] for position, Q, and mo-

mentum, P , which correspond to the body starting from the perihelion, the point

of closest approach. The resulting orbit then has a period of 2π, with semi-major

axis, a = 1.
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The initial conditions are

Q1 = 1− e (4.20)

Q2 = 0 (4.21)

P1 = 0 (4.22)

P2 =

√
1 + e

1− e
, (4.23)

where e is the eccentricity of the resulting ellipse. Note that the period, To, and

semi-major axis, a are independent of the value of e we select. In addition the

initial conditions are such that our choice of e is sufficient to describe the trajectory

for all time. For all our experiments with the two-body problem, we run the model

with a timestep of h = 0.001 unless stated otherwise.

The analytic solution to this problem would result in a trajectory that follows

the same path on each orbit. We therefore consider the trajectories produced by

our numerical model for three different values of the eccentricity, e = 0, e =

0.5, and e = 0.9. In each case we run the model for t ≈ 20π corresponding to

approximately ten orbits. Figure 4.2 shows the evolution of the orbiting body for

each value of e. We see that in all three cases the trajectory does not deviate

from the initial orbital path. This suggests that our numerical model, using the

Störmer-Verlet symplectic method, is a good choice for this problem.

We can further test the model by looking at the behaviour of the total energy

of the system. As we have discussed the two-body problem is Hamiltonian and

therefore has inherent conservation properties. From section 4.1.2 we know that

the Hamiltonian for this system is equivalent to the total energy and ideally this

should be conserved by our choice of numerical scheme. In section 2.2.1 we stated

that symplectic schemes preserved the conservation properties of a system. We
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Figure 4.2: Trajectories given by the Störmer-Verlet method for e = 0, e = 0.5,

e = 0.9. Timestep, h = 0.001.

therefore expect our scheme will conserve the total energy of the system and will

thus be a good choice for our investigations into the two-body problem.

To illustrate this we first calculate the true value of the energy for our set

of initial conditions. From (4.12) we know the total energy, equivalent to the

Hamiltonian, is

E =
1

2

(
p2

1 + p2
2

)− 1

(q2
1 + q2

2)
1
2

. (4.24)

Substituting the initial conditions given by (4.20) to (4.23) into (4.24), the energy

of this system is

E =
1

2

(√
1 + e

1− e

)2

− 1√
(1− e)2

= −1

2
(4.25)

and is therefore independent of our choice of eccentricity. If energy is conserved by

the numerical scheme then our model should produce a trajectory for the orbiting
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body with energy, E = −0.5 for the full length of the model run. Thus the

difference between this value and that given by the model should be zero.

Again we run our model for three different values of the eccentricity, e = 0,

e = 0.5, and e = 0.9. Figure 4.3 shows, for three values of e, the difference between

the true energy, calculated analytically from the initial conditions, and the energy

given by the model at each timestep. From the plots, we can see that the error in

the numerical solution for the case e = 0, while not constant, is at least only a very

small deviation, of order 10−13, from the zero value that the exact solution would

give. As the eccentricity increases, so does this deviation. For e = 0.5 we can see

that the vertical scale is 10−6 and for e = 0.9 the deviation is of order 10−3.

We can also observe that this energy difference for the last two cases includes

some sharp troughs. These begin at t = 0 and repeat at intervals of 2π. This

corresponds with the body passing the point of closest approach - the perihelion.

Note there are no sharp deviations in the case of a circular orbit where e = 0 as

all points on the orbit are equidistant from the focus. We can explain these sharp

troughs in the model error by considering the second of Kepler’s Laws dicussed in

section 4.1. This states that a line between the focus and the orbiting body will

sweep out equal areas in equal times. Thus when the body is close to the focus

it must travel faster than when it is further away. As we are using a fixed step

scheme for our numerical model this implies that the area near the perihelion is

modelled by fewer steps, and we would thus expect it to be less accurate in this

region.

This is confirmed if we observe what happens to the model error in the

energy in this region if we reduce the stepsize, as shown in figure 4.4. Again

the eccentricity is 0.9 and here we compare the stepsizes, h=0.001 and h=0.0005.
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Figure 4.3: Difference between the true energy (calculated analytically) and that

given by the Störmer-Verlet model for (a) e = 0, (b) e = 0.5 and (c) e = 0.9,

timestep, h=0.001
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Figure 4.4: Difference between the true energy and the model energy for two

different values of h, h = 0.0001 and h = 0.001, eccentricity e = 0.9

We can see that the difference between the model energy and the true value is

considerably smaller for the reduced stepsize, and the size of the troughs is reduced

at the perihelion. Figure 4.4 can also be used to demonstrate that our model has

been coded correctly. If we consider the error in the energy in this figure, we can

see that when the step size is halved, this error is reduced to approximately a

quarter of the original value. This is as expected for a second order model such as

the method we use here.

We again consider Figure 4.3(c). Here we observe that the energy given by

the model in the sharp troughs is actually closer to the true value than at other

55



points in the orbit. This is because we are using initial conditions that correspond

to the perihelion. In this case we are therefore imposing the true value of the

energy at the point of closest approach. We can change the initial conditions so

that they correspond to another point on the orbit. For example for the aphelion,

the furthest point, the initial conditions are

Q(t0) = (−(1 + e), 0) (4.26)

P (t0) =

(
0,−

√
1− e

1 + e

)
(4.27)

Figure 4.5 illustrates the difference in energy between the model and the

truth when we use these new initial conditions. Here we see that again the sharp

troughs correspond to the points of closest approach, but this time the energy

difference is greater at this point.

Our results show that where we have low values of the eccentricity our model

produces excellent results both in terms of the trajectory and the conservation of

energy. However we have seen that where the eccentricity is higher the model,

while still producing a good trajectory, does not do quite so well with modelling

the energy due to the fixed timestep.

To compensate for this inaccuracy at the perihelion it is possible to apply a

variable step method. Often this adaptivity can be produced by placing a bound

on some specified estimation of local accuracy [47]. However this is not appropriate

when using geometric integration methods, as it does not consider the underlying

structure of the system. The adaptive Verlet method [21, 28] uses a different

approach. Here we introduce a time-regularisation, such that the evolution evolves

in fictive time τ [7]. In this way regions which have a faster variation with time,

such as we see at the perihelion, vary more slowly with τ and thus the errors

we previously observed should be reduced. This fictive time is introduced via a
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Figure 4.5: Difference between the true energy and the model energy for a trajec-

tory starting at the aphelion, eccentricity e = 0.9, stepsize h=0.001

Sundman transformation,

dt

dτ
= g(q,p), (4.28)

where g is a scalar function, such that g is small when the system is more rapidly

evolving, and is chosen to suit the problem in question. Thus our system becomes,

dp

dτ
= −g

(
q

(q2
1 + q2

2)
3
2

)
(4.29)

dq

dτ
= gp. (4.30)

For this two-body problem a suitable choice for g, given by [6], is

g = r
3
2 , (4.31)
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where r = (q2
1 + q2

2)
1
2 .

Our discrete equations are

Qn+ 1
2 = Qn +

∆τ

2ρn
P n (4.32)

ρn+1 =
2

g(Qn+ 1
2 )
− ρn (4.33)

P n+1 = P n − ∆τ

2
{ 1

ρn
+

1

ρn+1
} Qn+ 1

2

(Q
n+ 1

2

2

1 + Q
n+ 1

2

2

2 )
3
2

(4.34)

Qn+1 = Qn+ 1
2 +

∆τ

2ρn+1
P n+1 (4.35)

tn+1 = tn +
∆τ

2
{ 1

ρn
+

1

ρn+1
}. (4.36)

The initial conditions are

Q = (−e,
√

1− e2) (4.37)

P = (−1, 0) (4.38)

ρ =
1

g(t0)
(4.39)

We now consider whether this method models the energy more effectively at

high eccentricities. Figure 4.6 shows the results for e = 0.9. We see that there has

been an improvement to the solution. The difference between the model energy

and the true energy is now of order 10−6. This is three orders of magnitude smaller

than the results given using the Störmer-Verlet scheme.

However the changes made to introduce this adaptivity mean that the system

modelled is no longer Hamiltonian. While it is possible to make changes to the

scheme to return to a Hamiltonian regime [3], this results in a complex numerical

method. As we are looking for a simple model for our data assimilation scheme

we will use the Störmer-Verlet method for all further work. We believe that the

problems encountered with the energy at the point of closest approach will not
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Figure 4.6: Difference between the true energy and the model energy given by the

adaptive Verlet method, eccentricity e = 0.9, variable stepsize

prove to be significant. The energy difference always returns to the same value

after the trough due to the symmetry of the problem, thus there is no loss or gain

of energy from the system.

4.3 Developing 4d Var for the Two-Body System

As we explained in Chapter 3, in order to construct our data assimilation scheme

for the two-body problem we need several ingredients; a forward nonlinear model

and its linearisation in order to derive the adjoint, along with a suitable minimisa-

tion algorithm. In the previous section we discussed the first of these - a nonlinear

model for the two-body problem - we will now consider the remaining three.
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4.3.1 The Linear Model

To produce the linear model of the two-body problem we must linearise the discrete

nonlinear equations given by (4.17) to (4.19). Following the procedure outlined

in Chapter 3 our linear equations are given by (4.40) to (4.42). Here δQn and

δP n are the position and momentum perturbations respectively at time step n.

The vectors Qn and P n are the linearisation states, found using the unperturbed

nonlinear model.

δP n+ 1
2 = δP n − h

2

δQn

(Qn2

1 + Qn2

2 )
3
2

+
h

2

3Qn(Qn
1δQ

n
1 + Qn

2δQ
n
2 )

(Qn2

1 + Qn2

2 )
5
2

(4.40)

δQn+1 = δQn + hδP n+ 1
2 (4.41)

δP n+1 = δP n+ 1
2 − h

2

δQn+1

(Qn+12

1 + Qn+12

2 )
3
2

+
3Qn+1(Qn+1

1 δQn+1
1 + Qn+1

2 δQn+1
2 )

(Qn+12

1 + Qn+12

2 )
5
2

. (4.42)

The linearisation needs to be tested in two different ways as described pre-

viously in Chapter 3.

A. Correctness Test

In order to test this linear code, we need to check that the tangent-linear model is

the correct linearisation of the non-linear model in the vicinity of a given trajectory.

From (3.32) we know that we need to calculate

ψ(δx) =
M(x + δx)−M(x)

Lδx
− 1, (4.43)

where x = (Q,P ), δx = (γQ, γP ), M is the nonlinear model and L is the linear

model. We find ψ for a range of γ.

We then plot ||ψ(δx)|| using the L2 norm, versus γ, as shown in Figure 4.7.

From this test we can see that as γ → 0 and therefore δx → 0, ||ψ(δx)|| → 0, and
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Figure 4.7: Graph to illustrate the correctness of the two-body linear model, e = 0,

final time= 2π.

this limit is reached linearly. As discussed in Section 3.30 we can thus conclude

that the tangent linear model code is correct.

B. Validity Test

The test for correctness implies that the linear code is correct; however, this does

not necessarily mean that the tangent linear hypothesis holds for this problem. To

test this we must consider the validity of the linear model. As we have discussed in

Section 3.30B the validity is the length of time for which the linear model is a good

approximation to the non-linear problem. There are of course errors associated

with linearisation, and these will increase as time progresses. The model is valid

only where the linear model mirrors the behaviour of the original problem to a

reasonable degree of accuracy. To do this, we need to track the evolution of a

61



perturbation in both of our models.

We run the non-linear model with two sets of initial conditions, (Q0,P0) and

((1 + γ)Q0, (1 + γ)P0), where vectors Q0 and P0 are the same initial conditions

as listed in equations (4.20) and (4.23), and the value of γ can be varied as re-

quired. The tangent linear model uses the data from the unperturbed run of the

non-linear model as the linearisation state, and is initialised using initial condi-

tions (γQ0, γP0). We then compare the result of the tangent linear model, which

returns values for δQ and δP at each time step, with the difference in position and

momenta at each step produced by the two model runs of the non-linear scheme.

The validity time is thus the point at which the non-linear and linear model results

begin to separate greatly.

This test has been done for various sizes of γ and eccentricity. Figures

4.8 and 4.9 show for each case the L2 norm of the perturbation, ||δx||2, where

δx = (δQ, δP ).

Figure 4.8 illustrates the effect of changing the size of the perturbation, γ,

whilst keeping the eccentricity fixed at e = 0. We show the results for γ = 10−3,

γ = 10−2 and γ = 10−1 respectively. These graphs confirm that the validity time

is longer for smaller perturbations. This is as we would expect since the smaller

the size of the perturbation, the smaller the size of the non-linear components that

have been neglected in the linear model.

Figure 4.9 shows how changing the eccentricity affects the validity, whilst

fixing γ = 10−3. From these we see that the validity time is shorter for larger ec-

centricities. For e = 0, the two models exhibit similar behaviour, and the validity

time is long. However for e = 0.5, the behaviour of the linear model gradually

becomes less consistent with the behaviour of the nonlinear model. This difference
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Figure 4.8: Evolution of the perturbations given by the nonlinear and linear mod-

els, for (a) γ = 10−3, (b) γ = 10−2 and (c) γ = 10−1; h = 0.001, e = 0
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Figure 4.9: Evolution of the perturbations given by the nonlinear and linear mod-

els, for (a) e = 0, (b) e = 0.5 and (c) e = 0.9; (h = 0.001, γ = 10−3)
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becomes much more extreme as we increase the eccentricity further to e = 0.9.

Here the linear model departs from the non-linear almost immediately. This qual-

itative relationship between validity time and eccentricity backs up the results

found earlier, giving further evidence that more eccentric ellipses exhibit more

non-linear behaviour.

4.3.2 Conservation Properties of the Linear Model

As we have seen, the nonlinear problem conserves the total energy of the sys-

tem. We now want to consider whether the corresponding linear equations have

an analogous conservation property. We consider the linearised equations of the

continuous problem, not the discrete system.

dδq1

dt
= δp1 (4.44)

dδq2

dt
= δp2 (4.45)

dδp1

dt
= − δq1

(q2
1 + q2

2)
3
2

+
3q1(q1δq1 + q2δq2)

(q2
1 + q2

2)
5
2

(4.46)

dδp2

dt
= − δq2

(q2
1 + q2

2)
3
2

+
3q2(q1δq1 + q2δq2)

(q2
1 + q2

2)
5
2

. (4.47)

These can be rewritten to give second order equations of the form,

d2δq1

dt2
+

δq1

(q2
1 + q2

2)
3
2

− 3q1(q1δq1 + q2δq2)

(q2
1 + q2

2)
5
2

= 0 (4.48)

d2δq2

dt2
+

δq2

(q2
1 + q2

2)
3
2

− 3q2(q1δq1 + q2δq2)

(q2
1 + q2

2)
5
2

= 0. (4.49)

To proceed further, we need to also consider the second order non-linear

equations,

d2q1

dt
+

q1

(q2
1 + q2

2)
3
2

= 0 (4.50)

d2q2

dt
+

q2

(q2
1 + q2

2)
3
2

= 0. (4.51)
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We then multiply (4.48) by dq1

dt
, (4.49) by dq2

dt
, (4.50) by dδq1

dt
and (4.51) by dδq2

dt
.

We then integrate each with respect to time, and add them together to give

∫
d2δq1

dt2
dq1

dt
dt +

∫
d2q1

dt2
dδq1

dt
dt +

∫
d2δq2

dt2
dq2

dt
dt +

∫
d2q2

dt2
dq2

dt
dt

+
∫

δq1

(q2
1+q2

2)
3
2

dq1

dt
dt +

∫
q1

(q2
1+q2

2)
3
2

dδq1

dt
dt +

∫
δq2

(q2
1+q2

2)
3
2

dq2

dt
dt +

∫
q2

(q2
1+q2

2)
3
2

dδq2

dt
dt

− ∫ 3q1(q1δq1+q2δq2)

(q2
1+q2

2)
5
2

dq1

dt
dt− ∫ 3q2(q1δq1+q2δq2)

(q2
1+q2

2)
5
2

dq2

dt
dt = constant (4.52)

We consider the first two terms together, and we can see that they can be

written as

∫
d2δq1

dt2
dq1

dt
dt +

∫
d2q1

dt2
dδq1

dt
dt =

∫
d

dt

(
dq1

dt

dδq1

dt

)
dt. (4.53)

Evaluating the final integral on the right hand side of (4.53) we have

∫
d2δq1

dt2
dq1

dt
dt +

∫
d2q1

dt2
dδq1

dt
dt =

dq1

dt

dδq1

dt
+ constant. (4.54)

We follow the same argument for the next two terms in equation (4.52) to

give ∫
d2δq2

dt2
dq2

dt
dt +

∫
d2q2

dt2
dδq2

dt
dt =

dq2

dt

dδq2

dt
+ constant. (4.55)

We must then consider the next four terms of equation (4.52) together. These

can be rewritten as

∫
1

(q2
1 + q2

2)
3
2

(
δq1

dq1

dt
+ q1

dδq1

dt
+ δq2

dq2

dt
+ q2

dδq2

dt

)
dt, (4.56)

which in turn can be simplified to

∫
1

(q2
1 + q2

2)
3
2

d

dt
(q1δq1 + q2δq2) dt. (4.57)

We then evaluate this integral to give

∫
1

(q2
1+q2

2)
3
2

d
dt

(q1δq1 + q2δq2) dt

= (q1δq1+q2δq2)

(q2
1+q2

2)
3
2

+ 3
∫

q1δq1+q2δq2

(q2
1+q2

2)
5
2

(
q1

dq1

dt
+ q2

dq2

dt

)
dt. (4.58)
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By using the results found in (4.54), (4.55) and (4.58), we can rewrite (4.52)

as

dq1

dt
dδq1

dt
+ dq2

dt
dδq2

dt
+ (q1δq1+q2δq2)

(q2
1+q2

2)
3
2

+ 3
∫

q1δq1+q2δq2

(q2
1+q2

2)
5
2

(
q1

dq1

dt
+ q2

dq2

dt

)
dt

− ∫ 3q1(q1δq1+q2δq2)

(q2
1+q2

2)
5
2

dq1

dt
dt− ∫ 3q2(q1δq1+q2δq2)

(q2
1+q2

2)
5
2

dq2

dt
dt = constant. (4.59)

We can see that in the equation above the fourth term cancels with the final two

terms, and so we have our conserved quantity

dq1

dt

dδq1

dt
+

dq2

dt

dδq2

dt
+

(q1δq1 + q2δq2)

(q2
1 + q2

2)
3
2

= constant. (4.60)

In terms of our canonical coordinates we thus have

p1δp1 + p2δp2 +
(q1δq1 + q2δq2)

(q2
1 + q2

2)
3
2

= constant. (4.61)

As we have discussed, the full, nonlinear model conserves the total energy of

the system. Considering the conserved quantity given by (4.61) we can see that

this is in fact the linearisation of the total energy of the reduced two-body system.

Thus the nonlinear model conserves the nonlinear energy and the linearised model

conserves the linearised energy. In fact, the linearised model is itself a Hamiltonian

system, with the Hamiltonian given by (4.61).

We now test whether this property is conserved by our discrete linear model,

found by linearising the discrete nonlinear equations. Figure 4.10 illustrates the

evolution of the difference between this quantity given by the model and the truth,

using initial conditions given by (4.20) to (4.23). We can see that although the

behaviour is periodic, there is no divergence, and the amplitude of the deviation

from a constant value is very small, of order 10−9.
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Figure 4.10: Error in the quantity conserved by the linearised two-body model;

e = 0, h = 0.001

4.3.3 The Adjoint Model

In Chapter 3 we discussed the practicalities of the construction of the adjoint

model. We have followed the procedure detailed in [17] to create an adjoint for

the two-body problem.

A. Adjoint Test

Once the adjoint model is set up, it is useful to show that it is a true adjoint of

the cost function. From Section 3.3.3 we have that satisfying

< Mx0,Mx0 > − < x0,M
T Mx0 >= 0, (4.62)

where M is the linear model and MT the adjoint, shows that the code is the

true adjoint of the linear model. When this test was carried out for the adjoint
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model of the two-body system we found that the above was satisfied to machine

levels of accuracy, and so we can conclude that the correct adjoint model has been

constructed.

B. Gradient Test

We can also test that the adjoint produces the true gradient of the linear model.

As described in Section 3.3.3 we must calculate

φ(α) =
J(x + α ∇J

‖∇J‖)− J(x)

α
(

∇J
‖∇J‖

)T

,∇J
(4.63)

for various values of α. Figure 4.11(a) shows the results of plotting φ(α) versus α,

Figure 4.11(b) plots log(|φ(α)−1|) versus α. Figure 4.11(a) should show that for a

range of α, φ(α) = 1. These figures compare almost exactly with those illustrated

in [30] and thus we can see that our adjoint model does provide the true gradient

for the tangent linear model.

4.3.4 The Minimisation Algorithm

To minimise our cost function we use the Conmin minimisation algorithm [46].

As discussed in section 3.3.4 we use the quasi-Newton method for all experiments,

with ε = 10−6. Using this value of ε gives the following stopping criteria

|Jk−1 − Jk|
1 + |Jk| < 10−6 (4.64)

‖xk−1 − xk‖
1 + ‖xk‖ < 10−3 (4.65)

‖∇Jk‖
1 + |Jk| ≤ 10−2, (4.66)

and all three must be satisfied to stop the minimisation algorithm.
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Figure 4.11: Illustration of the gradient tests (a) φ(α) v α and (b) log(|φ(α)− 1|)
v alpha
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4.4 Numerical Experiments

We now carry out a series of experiments using our 4D Var algorithm. For all ex-

periments we consider initial conditions for the true solution to be given by (4.20)

to (4.23), with e = 0. This choice will avoid any of the difficulties we observed in

previous sections relating to highly eccentric orbits and in addition provides a bet-

ter comparison with the following chapter. As we will see in Chapter 5 the regime

we will use for the three-body problem concerns orbits with low eccentricities. In

the first instance we include only the observation term in the cost function. For

much larger problems we would not be able to do this as the observations alone

would not provide enough information and a background term would be needed in

order that the problem be well posed. Thus, in the first instance, the cost function

we minimise is

J(x0) =
N∑

n=0

(yn −Hn[xn])T R−1
n (yn −Hn[xn]), (4.67)

where xn = (Qn, Pn), Hn is the observation operator, yn is the vector of obser-

vations and Rn is the observation error covariance matrix. This is subject to the

strong constraints that

Qn = Qn−1 + h

(
P n−1 +

h

2

Qn−1

(Qn−12

1 + Qn−12

2 )
3
2

)
(4.68)

P n = P n−1 +
h

2

Qn−1

(Qn−12

1 + Qn−12

2 )
3
2

+
h

2

Qn

(Qn2

1 + Qn2

2 )
3
2

, (4.69)

which must be satisfied exactly. These strong constraints are derived from our

discrete model equations given by (4.17) to (4.19).

To test our 4D Var scheme we set up an identical-twin experiment. These

experiments use the non-linear forward model to provide both the ’true’ solution

and our observations. Observations that are taken directly from the truth in this
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way are known as perfect observations. We run the 4D Var scheme using the

generated observations at every timestep (where h = 0.001) to get our optimal

initial state. We then run the non-linear model forward from this initial state and

compare this trajectory with the truth, using a least squares error. Figure 4.12

illustrates this for the case e = 0 and a data assimilation time window TDA = 12.56

(approximately two orbits). We can see that the error is very small, of order 10−9,

suggesting that our 4D Var scheme is working correctly.

In the last example we used observations taken directly from the true solu-

tion. However in general observations have some error associated with them. To

account for this error in our system we add noise to the perfect observations. This

is done using a random number generator - the resulting noise that is added has a

Gaussian distribution and no bias and has a variance of 10−4. We repeat the same
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Figure 4.12: Graph to illustrate the error between the optimal solution and the

truth using perfect observations at every timestep; e = 0, TDA = 12.56, h = 0.001

72



0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Time

E
rr

or

Figure 4.13: Graph to illustrate the error between the optimal solution and the

truth using noisy observations at every timestep; e = 0, TDA = 12.56, h = 0.001

identical-twin experiment as before, again using observations in all four variables

at each timestep. Figure 4.13 shows the error between the optimal solution and the

truth when using these noisy observations. We can see that compared with figure

4.12 the error is much larger, however it is of the same order of magnitude (10−4)

as the variance of the observational noise. This is as we would expect, confirming

that our scheme is working correctly. From now on all experiments will use noisy

observations.

4.4.1 The Effect of Observations

We now consider the effect that our choice of observations has on the analysis

of the data assimilation system. For all our future experiments we use a data

assmilation window that is half a full orbit. Thus our data assimilation window
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has length TDA = π. This is chosen to reflect the system currently in use at the

Met Office. There the data assimilation window is six hours corresponding to half

an inertial period [12]. This is the approximate period of the gravity waves in the

atmosphere.

We consider the effect of using only observations of position or momentum.

We compare the results using the same number of observations in each case. In

our first example we use a dense distribution of observations. In Figure 4.14 we

consider the effect of having observations at every timestep of position, (q1, q2),

only and momentum, (p1, p2), only. We compare these with having a full set of

observations at every other timestep. Thus the same number of observations are

assimilated in each case. Figure 4.14 compares the error in the trajectories of the

three cases over the data assimilation window, and a subsequent forecast. We can

see that over the data assimilation window the error for each of the three cases

is of a similar magnitude. However when we consider the forecast we see that,

where we have used only observations of position in the 4D Var scheme, the error

is increasing more rapidly with time.

A further example that produces this increase in the forecast error is seen

when we have sparse observations. In Figure 4.15 we use only eight observations in

each case. Where all four components of the state vector are observed these are at

t = To

4
and at t = To

2
, where To = 2π is the orbital period. Where we assimilate just

position or momentum these are included at t = To

8
, To

4
, 3To

8
, To

2
. Thus for the case

where we use observations of all variables the observation times are more widely

spaced. As a result we again observe an increase in the error with time.

In Figures 4.14 and 4.15 we see that within the data assimilation window

the analysis has an error that is comparable with the noise on the observations.

74



0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

TIme

E
rr

or

All observations
 
Position observations only
 
Momentum observations only
 

Figure 4.14: Graph to illustrate the error between the optimal solution and the

truth using different sets of dense observations; eccentricity e = 0, assimilation

window TDA = 3.142, timestep h = 0.001

As we have discussed, this implies that the assimilation algorithm is working.

However despite this the errors on the forecasts produced from these analyses are

increasing with time. Thus, although we have a good energy conserving model and

the data assimilation algorithm is working correctly, the resulting forecasts could

be improved. To do this we consider the addition of weak constraints to the cost

function.

4.5 Addition of Weak Constraints

In Section 3.4 we have seen that it is possible to impose a constraint that does not

have to be exactly satisfied. These are known as weak constraints. In this section
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Figure 4.15: Graph to illustrate the error between the optimal solution and the

truth using different types of sparse observation, 8 observations only; e = 0, as-

similation window TDA = 3.142

we investigate the addition of different weak constraints, and we test the effect of

these on one of the solutions shown in Figure 4.15 where only eight observations

were used. We use the example where all of the observations were used at t = To

4

and at t = To

2
. In these experiments we consider how different constraints can be

to used weakly impose that the solutions lie close to a background state.

4.5.1 Perfect Background

In the first instance, in order to compare the types of constraint and understand

their effects, we use a perfect background. By this we mean that the background

field is equal to the truth. Although this is unrealistic it does allow us to make
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observations regarding the geometry of the solutions in each case.

The first weak constraint we introduce is equivalent to a typical background

term but since there are no background errors the background covariance matrix

is equal to the identity matrix. This constraint measures the distance between the

model state at the initial time and the background field at the same time. It has

the form

JB = α1(xb(t0)− x(t0))
T (xb(t0)− x(t0)), (4.70)

where xb = (Qb,Pb)
T is the background state. Here the optimal solution must

fit the observations and remain close to the background state vector. Figure 4.16

shows the effect of including this background constraint with α1 = 2 × 103, 2 ×
104, 2 × 105, where α1 is the weighting given to the constraint. We can see that

the forecast is considerably better than without any additional constraint.

The second weak constraint makes use of the energy conservation property

of the system. Here we measure the distance between the energy of the model

state at the initial time and the energy of the background at the same time. It

has the form

JE = α2 (E(xb(t0))− E(x(t0)))
2 (4.71)

In Figure 4.17 we see the effect of including this constraint on the background

energy on the same case as for the background constraint. Here we use weightings

α2 = 2 × 104, 2 × 105, 2 × 106. These are different values to those assigned to α1

in Figure 4.16. This is because the magnitude of this term, JE, is an order of

magnitude smaller than JB and thus we aim to compare terms with an equivalent

weight within the cost function. Figure 4.17 shows that the forecast is considerably

improved with the inclusion of this term.

We also investigate imposing a weak constraint such that the angular momen-
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Figure 4.16: The effect of the background constraint on the error in trajectory

between optimal solution and truth using sparse observations and a perfect back-

ground.

tum of the analysis is close to the angular momentum of the background. This

reflects the angular momentum conservation property of the two-body problem

discussed in section 4.1.2. This has the form

JL = α3 (L(xb(t0))− L(x(t0)))
2 (4.72)

Figure 4.18 illustrates the effect of this constraint on the analysis. Again the

background is the true solution and we use values of α3 equivalent to those of

α2. The results are very similar to those produced using the energy constraint

illustrated by Figure 4.17.

We can see that in all cases the constraints improve the forecast. However

the behaviour of the solutions is different. In Figure 4.16 we see that the error
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Figure 4.17: The effect of the energy constraint on the error in trajectory between

optimal solution and truth using sparse observations and a perfect background.

in the forecast is reduced but it is still increasing and that the amplitude of the

oscillations are reduced. By contrast in Figure 4.17 there is also a reduction in the

error, however in this case for large values of α2 the error appears to have stopped

increasing. This behaviour is repeated when imposing the angular momentum

constraint.

We can explain the difference in the effectiveness of the two constraints by

considering the inherent characteristics of the two-body problem. We first consider

the effect of the energy constraint. Returning to Figure 4.17 we can see that the

error of the unconstrained case is increasing. This behaviour can be caused by

comparing two solutions that are out of phase with each other, implying that the

orbital periods of the two solutions are different. From Kepler’s third law we know
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Figure 4.18: The effect of the angular momentum constraint on the error in trajec-

tory between optimal solution and truth using sparse observations and a perfect

background.

that a change in the orbital period means a change in the semi-major axis of

the orbit. Thus we are comparing two solutions, the analysis and the truth, with

different semi-major axes. In addition the energy of a given orbit is only dependent

on the semi-major axis [36]. Thus two solutions with different semi-major axes will

have different orbital energies.

Thus we can summise that a phase error in the anaysis is due to the analysis

having a different energy to the truth. Where we have constrained the energy of

the analysis to be close to the energy of the background (which in this example is

the truth), this phase error seems to have been eliminated.

We can demonstrate that this increase in error is indeed due to a difference
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Figure 4.19: Error in trajectory between optimal solution and truth, approx 32

orbits.

in phase by running a long forecast for the unconstrained case. If this is increase

is due to a phase difference then the error will increase to a maximum as the two

solutions move completely out of phase. This should then begin to decrease as

the two orbits move back into phase. Figure 4.19 shows that this is indeed what

happens and thus we can conclude that putting a constraint on the energy results

in constraining the semi-major axis and period.

We now consider the effect of the background constraint illustrated by Fig-

ure 4.16. We recall that in this case the error in the constrained case carried on

increasing, however the amplitude of the oscillations was reduced. We can qual-

itatively explain this by considering the effect of comparing two solutions with

different eccentricities but the same semi-major axes. As we have discussed these

will have the same period therefore they will always be at the same point on the
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Figure 4.20: Illustration of the effect of comparing two orbits with different eccen-

tricities

orbit, i.e passing the perihelion and aphelion at the same time. This is illustrated

by Figure 4.20. Here when the two solutions are compared at the aphelion and

perihelion they are closer together than at other points on the orbit. Thus we can

see how the oscillations in the error arise.

From this we can see that if the size of the oscillations is reduced then the

eccentricities of the two solutions must be closer to the same value. Therefore

we can surmise that the background constraint has the effect of constraining the

eccentricity of the analysis to be close to the eccentricity of the background.

Finally, as we observed in Figure 4.18, the angular momentum constraint

had a very similar effect to the energy constraint. We can thus surmise that this

constraint also prevents phase error by constraining the semi-major axis in some

way. We recall that, for the two-body problem with closed orbits, Kepler’s second

law is a consequence of the conservation of angular momentum. This states that

a line joining the orbiting body with the focus of the ellipse will sweep out equal
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areas in equal times. We can therefore infer that a change in a, the semi-major

axis, would change this area. Thus by constraining the angular momentum we are

constraining the area that is swept out in a given time and thus the semi-major

axis.

These experiments illustrate that additional constraints can change the anal-

ysis in different ways. The form of the constraint can have a noticeable effect on

the geometry of the resulting solution. We have however used an unrealistic set up

for these experiments. In reality the background would not be the truth and would

have some associated error. In the next section we carry out similar experiments

where we will add noise to the background.

4.5.2 Noisy Background

In this section we add the same form of constraints to the cost function as in the

previous section. However we now add noise to the background. Again we use

the unconstrained example illustrated by figure 4.15 where we assimilate two sets

of complete observations at t = To

4
, To

2
. We then add weak constraints as in the

previous section. This time however the background state is no longer perfect.

This is achieved by adding random noise with a Gaussian distribution to the truth

at the initial time.

The background constraint thus becomes,

JB = (xb(t0)− x(t0))B
−1(xb(t0)− x(t0))

T , (4.73)
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where

B =




σ2
q1

0 0 0

0 σ2
q2

0 0

0 0 σ2
p1

0

0 0 0 σ2
p2

.




Since the values of each of the four variables are of the same magnitude we set the

variances, σ2
q1

= σ2
q2

= σ2
p1

= σ2
p2

= 10−4.

The energy constraint now has the form

JE =
1

σ2
E

(E(xb(t0))− E(x(t0)))
2 , (4.74)

where the variance σ2
E is defined by

σ2
E = ∇xb

E(xb(t0)) · σ2
xb

(4.75)

and σ2
xb

= (σ2
q1

, σ2
q2

, σ2
p1

, σ2
p2

).

The angular momentum constraint has a similar form to the energy con-

straint. We add a term to the cost function of the form

JL =
1

σ2
L

(L(xb(t0))− L(x(t0)))
2 , (4.76)

where the variance σ2
L is defined by

σ2
L = ∇xb

L(xb(t0)) · σ2
xb

(4.77)

and σ2
xb

= (σ2
q1

, σ2
q2

, σ2
p1

, σ2
p2

).

We now consider the effect of the addition of these more realistic weak con-

straints to the original cost function. In Figure 4.21 we illustrate and compare the
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effect of four different cases,

J = Jo

J = Jo + JB

J = Jo + JE

J = Jo + JB + JE.

We can see that for this more realistic example the background constraint

is considerably more effective than the energy constraint. However when we add

both constraints to the cost function this improves the solution even further than

with just the background constraint alone.

In Figure 4.22 we consider the angular momentum constraint. We compare

the following examples

J = Jo

J = Jo + JB

J = Jo + JL

J = Jo + JB + JL.

This shows that the angular momentum constraint has almost exactly the

same effect as the energy constraint. This backs up the results illustrated by the

perfect constraint case. This is demonstrated more clearly in the Figure 4.23. Here
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Figure 4.21: The effect of the background and energy constraint on the error in

trajectory between optimal solution and truth using sparse observations and a

noisy background
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Figure 4.22: The effect of the background and angular momentum constraint on the

error in trajectory between optimal solution and truth using sparse observations

and a noisy background
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we show the effect of the following cases

J = Jo

J = Jo + JB

J = Jo + JB + JE

J = Jo + JB + JL

J = Jo + JB + JE + JL.

In figure 4.23 we can see more clearly how the angular momentum and energy

constraints affect the solution in a very similar manner. However we can also see

that if we implement all three of the constraints then the solution is improved even

further.

As we have discussed in the previous sections these improvements are a result

of constraints being imposed on the geometry of the solution. We have observed

that the angular momentum constraint has the same effect as the energy constraint

in that it reduces the phase error by constraining the semi-major axis. By adding

this constraint to the other two we are not gaining any further information about

the structure of the solution. Instead this is equivalent to having twice the weight-

ing on the energy constraint. This is confirmed by Figure 4.24 which compares the

results of having all three constraints with the background constraint plus twice

the weight of the energy constraint. The results are almost identical.

4.6 Summary and Conclusions

In this chapter we have considered the simple Hamiltonian two-body problem.

We derived the continuous canonical equations and explicitly stated the conser-

vation properties of the system. We then derived the discrete model equations
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Figure 4.23: The effect of the background, energy and angular momentum con-

straint on the error in trajectory between optimal solution and truth using sparse

observations and a noisy background
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Figure 4.24: The effect of the background, energy and angular momentum con-

straint on the error in trajectory between optimal solution and truth using sparse

observations and a noisy background
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using the Störmer-Verlet method and tested the resulting model. We showed that

it preserved the inherent characteristics of the original system, specifically the

conservation of the Hamiltonian - the total energy of the system.

In Section 4.3 we detailed the steps that were taken in order to construct

and test the data assimilation algorithm for this problem. We then went on to

describe the numerical experiments that were carried out with the completed 4d

Var scheme. We investigated the effect of including additional weak constraints to

the system and used these to impose the conservation properties of the system.

We know that our energy conserving nonlinear forward model conserves en-

ergy from the initial time. However we wished to impose this as a further con-

straint such that the analysis would be constrained to lie close to the energy of the

background. In practical terms this implies that the constraint would impose this

energy conservation property from each data assimilation window to the next. Our

results showed that the addition of this energy constraint affected the geometry of

the solution. Due to the relationship between energy and the semi-major axis and

therefore the period of the orbit we found that the energy constraint reduced the

phase error of the solution.

We found this to be true even when the background was noisy. The addition

of an energy constraint to a cost function that included an observation term and

a background term was shown to give an improved result. We can thus see that

the extra term provides further information to the system. In terms of the data

assimilation scheme we can explain this by considering the effect of the constraint

on the minimisation algorithm. This attempts to find a solution that minimises the

observation term and any additional constraint. The gradient of the cost function

determines the descent direction of the minimisation algorithm and this must
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include the gradient of the additional terms. Thus we can infer that the gradient of

the cost function will only allow changes to the analysis that satisfy these additional

constraints. That is that the analysis must lie close to the background but the

change can only be made such that the energy constraint is also satisfied.

In the following chapter we implement a 4d Var scheme for a more compli-

cated Haniltonian system. We will show that the results we have found here can

be applied to a more general problem.
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Chapter 5

System II: The Three-Body

Problem

In Chapter 4 we made use of the information provided in previous chapters to

construct a 4d Var assimilation algorithm for the two-body problem. We showed

that adding constraints to the cost function that reflected the conservation prop-

erties of the system could improve the solution. However the two-body problem

is a very simple system and we wish to consider whether these results apply to a

more complex Hamiltonian problem.

The full three-body problem has more degrees of freedom than the reduced

two-body problem and is a more general system. It can also be set up so that

there are two time scales within the problem. This reflects the real problem of

the atmosphere where the synoptic flow and the inertial waves have a distinct

separation of timescales. As for the two-body system we begin by deriving the

canonical equations for the continuous problem and we discuss the conservation

properties inherent to this Hamiltonian system. We then must consider our choice

of numerical method. Like the two-body system, the three-body problem is an
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initial value problem and thus the initial conditions will determine the evolution

of the system. However the choice of initial conditions is not obvious and thus

we will consider several different cases. We then construct and test our 4d Var

algorithm in the same way we did in Chapter 4. We finally consider the effect of

adding additional constraints to the data assimilation model.

5.1 The Three-Body Problem

In this section we describe the three-body problem and derive both its continuous

equations of motion and the discrete equations that will be used in the numerical

model. The three-body system describes the evolution of three bodies moving

under their mutual gravitational attraction. Each body is therefore affected by

the presence of both the other bodies. Unlike the two-body problem, this system

cannot be solved analytically and it can be shown to exhibit chaotic behaviour.

5.1.1 The Continuous Problem

The three-body system we are using here is that of three bodies with masses

m1, m2 and m3, where the motion is confined to a plane. The resulting tra-

jectories of the three bodies are therefore described using vectors of position,

q = (q1, q2, q3, q4, q5, q6) and momentum, p = (p1, p2, p3, p4, p5, p6). Thus the vec-

tors q and p contain the position and momentum respectively of all three bodies.

The coordinates (q1, q2) and (p1, p2) refer to the position and momentum of the

first body, (q3, q4) and (p3, p4) to body two and (q5, q6) and (p5, p6) to the third

body.
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We simplify the system by using non-dimensional quantities defined by,

m̃i =
mi

M
, (5.1)

q̃ =
q

d
, (5.2)

t̃ =

(
GM

d3

) 1
2

t, (5.3)

where m̃i are the non-dimensional masses, q̃ the non-dimensional position, and

t̃ the non-dimensional time. We also have the non-dimensional momentum, p̃

measured in units of
(

G
Md

) 1
2 . Here G is the universal Gravitational constant and

M and d are constants that can be chosen to scale the problem in a suitable

manner. Here we set M = m1 and d = r12 where r12 is the initial distance between

the first and second body. For clarity we will drop the ∼ from all future notation,

although we will always be referring to the non-dimensional problem.

We recall that the first order canonical equations for a system can be derived

if we know its Hamiltonian. For this problem, as for the two-body problem, this

is defined by,

H = T + V, (5.4)

where T is the kinetic energy and V the potential energy of the system. In our

non-dimensional system the kinetic energy is given by

T =
1

2

(
1

m1

(
p2

1 + p2
2

)
+

1

m2

(
p2

3 + p2
4

)
+

1

m3

(
p2

5 + p2
6

))
. (5.5)

The potential energy is the sum of the potential energy between each pair of bodies.

Thus

V = − m1m2

((q3 − q1)2 + (q4 − q2)2)
1
2

− m2m3

((q5 − q3)2 + (q6 − q4)2)
1
2

− m3m1

((q1 − q5)2 + (q2 − q6)2)
1
2

.

(5.6)
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Our Hamiltonian is thus

H =
1

2m1

(
p2

1 + p2
2

)
+

1

2m2

(
p2

3 + p2
4

)
+

1

2m3

(
p2

5 + p2
6

)
(5.7)

− m1m2

((q3 − q1)2 + (q4 − q2)2)
1
2

− m2m3

((q5 − q3)2 + (q6 − q4)2)
1
2

− m3m1

((q1 − q5)2 + (q2 − q6)2)
1
2

Using (2.25) and (2.26) we can derive the first order, canonical equations for the

full three-body problem in a plane

q̇1 =
p1

m1

(5.8)

q̇2 =
p2

m1

(5.9)

q̇3 =
p3

m2

(5.10)

q̇4 =
p4

m2

(5.11)

q̇5 =
p5

m3

(5.12)

q̇6 =
p6

m3

(5.13)

ṗ1 =
m1m2(q3 − q1)

((q3 − q1)2 + (q4 − q2)2)
3
2

− m3m1(q1 − q5)

((q1 − q5)2 + (q2 − q6)2)
3
2

(5.14)

ṗ2 =
m1m2(q4 − q2)

((q3 − q1)2 + (q4 − q2)2)
3
2

− m3m1(q2 − q6)

((q1 − q5)2 + (q2 − q6)2)
3
2

(5.15)

ṗ3 = − m1m2(q3 − q1)

((q3 − q1)2 + (q4 − q2)2)
3
2

+
m2m3(q5 − q3)

((q5 − q3)2 + (q6 − q4)2)
3
2

(5.16)

ṗ4 = − m1m2(q4 − q2)

((q3 − q1)2 + (q4 − q2)2)
3
2

+
m2m3(q6 − q4)

((q5 − q3)2 + (q6 − q4)2)
3
2

(5.17)

ṗ5 = − m2m3(q5 − q3)

((q5 − q3)2 + (q6 − q4)2)
3
2

+
m3m1(q1 − q5)

((q1 − q5)2 + (q2 − q6)2)
3
2

(5.18)

ṗ6 = − m2m3(q6 − q4)

((q5 − q3)2 + (q6 − q4)2)
3
2

+
m3m1(q2 − q6)

((q1 − q5)2 + (q2 − q6)2)
3
2

. (5.19)

These equations need to be solved numerically to find the trajectory of each body

in the system.
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5.1.2 Conservation Properties

We have seen that the three-body problem differs from the two-body system in

several ways. For our purposes there is however an important similarity; both

models conserve the Hamiltonian of the system and in both cases this is given by

the total energy of the system. Thus the three-body system conserves H(q, p) =

E(q, p), which is defined by (5.7).

5.1.3 The Discrete Problem

As for the two-body problem, we use the Störmer-Verlet scheme to provide our

discrete model. We can see from (5.7) that our Hamiltonian, H, is separable such

that

H(p, q) = H1(p) + H2(q). (5.20)

where,

H1(p) =
1

2m1

(
p2

1 + p2
2

)
+

1

2m2

(
p2

3 + p2
4

)
+

1

2m3

(
p2

5 + p2
6

)
(5.21)

H2(q) = − m1m2

((q3 − q1)2 + (q4 − q2)2)
1
2

− m2m3

((q5 − q3)2 + (q6 − q4)2)
1
2

(5.22)

− m3m1

((q1 − q5)2 + (q2 − q6)2)
1
2

.

Using (2.39) to (2.41) we can therefore derive our numerical equations

P
n+ 1

2
1 = P n

1 + h
2

(
m1m2(Qn

3−Qn
1 )

((Qn
3−Qn

1 )2+(Qn
4−Qn

2 )2)
3
2
− m3m1(Qn

1−Qn
5 )

((Qn
1−Qn

5 )2+(Qn
2−Qn

6 )2)
3
2

)
(5.23)

P
n+ 1

2
2 = P n

2 + h
2

(
m1m2(Qn

4−Qn
2 )

((Qn
3−Qn

1 )2+(Qn
4−Qn

2 )2)
3
2
− m3m1(Qn

2−Qn
6 )

((Qn
1−Qn

5 )2+(Qn
2−Qn

6 )2)
3
2

)
(5.24)

P
n+ 1

2
3 = P n

3 + h
2

(
− m1m2(Qn

3−Qn
1 )

((Qn
3−Qn

1 )2+(Qn
4−Qn

2 )2)
3
2

+
m2m3(Qn

5−Qn
3 )

((Qn
5−Qn

3 )2+(Qn
6−Qn

4 )2)
3
2

)
(5.25)

P
n+ 1

2
4 = P n

4 + h
2

(
− m1m2(Qn

4−Qn
2 )

((Qn
3−Qn

1 )2+(Qn
4−Qn

2 )2)
3
2

+
m2m3(Qn

6−Qn
4 )

((Qn
5−Qn

3 )2+(Qn
6−Qn

4 )2)
3
2

)
(5.26)
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P
n+ 1

2
5 = P n

5 + h
2

(
− m2m3(Qn

5−Qn
3 )

((Qn
5−Qn

3 )2+(Qn
6−Qn

4 )2)
3
2

+
m3m1(Qn

1−Qn
5 )

((Qn
1−Qn

5 )2+(Qn
2−Qn

6 )2)
3
2

)
(5.27)

P
n+ 1

2
6 = P n

6 + h
2

(
− m2m3(Qn

6−Qn
4 )

((Qn
5−Qn

3 )2+(Qn
6−Qn

4 )2)
3
2

+
m3m1(Qn

2−Qn
6 )

((Qn
1−Qn

5 )2+(Qn
2−Qn

6 )2)
3
2

)
(5.28)

Qn+1
1 = Qn

1 + h
m1

P
n+ 1

2
1 (5.29)

Qn+1
2 = Qn

2 + h
m1

P
n+ 1

2
2 (5.30)

Qn+1
3 = Qn

3 + h
m2

P
n+ 1

2
3 (5.31)

Qn+1
4 = Qn

4 + h
m2

P
n+ 1

2
4 (5.32)

Qn+1
5 = Qn

5 + h
m3

P
n+ 1

2
5 (5.33)

Qn+1
6 = Qn

6 + h
m3

P
n+ 1

2
6 (5.34)

P n+1
1 = P

n+ 1
2

1 +
h

2
(

m1m2(Q
n+1
3 −Qn+1

1 )
(
(Qn+1

3 −Qn+1
1 )2 + (Qn+1

4 −Qn+1
2 )2

) 3
2

− m3m1(Q
n+1
1 −Qn+1

5 )
(
(Qn+1

1 −Qn+1
5 )2 + (Qn+1

2 −Qn+1
6 )2

) 3
2

) (5.35)

P n+1
2 = P

n+ 1
2

2 +
h

2
(

m1m2(Q
n+1
4 −Qn+1

2 )
(
(Qn+1

3 −Qn+1
1 )2 + (Qn+1

4 −Qn+1
2 )2

) 3
2

− m3m1(Q
n+1
2 −Qn+1

6 )
(
(Qn+1

1 −Qn+1
5 )2 + (Qn+1

2 −Qn+1
6 )2

) 3
2

) (5.36)

P n+1
3 = P

n+ 1
2

3 +
h

2
(− m1m2(Q

n+1
3 −Qn+1

1 )
(
(Qn+1

3 −Qn+1
1 )2 + (Qn+1

4 −Qn+1
2 )2

) 3
2

+
m2m3(Q

n+1
5 −Qn+1

3 )
(
(Qn+1

5 −Qn+1
3 )2 + (Qn+1

6 −Qn+1
4 )2

) 3
2

) (5.37)

P n+1
4 = P

n+ 1
2

4 +
h

2
(− m1m2(Q

n+1
4 −Qn+1

2 )
(
(Qn+1

3 −Qn+1
1 )2 + (Qn+1

4 −Qn+1
2 )2

) 3
2

+
m2m3(Q

n+1
6 −Qn+1

4 )
(
(Qn+1

5 −Qn+1
3 )2 + (Qn+1

6 −Qn+1
4 )2

) 3
2

) (5.38)
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P n+1
5 = P

n+ 1
2

5 +
h

2
(− m2m3(Q

n+1
5 −Qn+1

3 )
(
(Qn+1

5 −Qn+1
3 )2 + (Qn+1

6 −Qn+1
4 )2

) 3
2

+
m3m1(Q

n+1
1 −Qn+1

5 )
(
(Qn+1

1 −Qn+1
5 )2 + (Qn+1

2 −Qn+1
6 )2

) 3
2

) (5.39)

P n+1
6 = P

n+ 1
2

6 +
h

2
(− m2m3(Q

n+1
6 −Qn+1

4 )
(
(Qn+1

5 −Qn+1
3 )2 + (Qn+1

6 −Qn+1
4 )2

) 3
2

+
m3m1(Q

n+1
2 −Qn+1

6 )
(
(Qn+1

1 −Qn+1
5 )2 + (Qn+1

2 −Qn+1
6 )2

) 3
2

), (5.40)

where Qn = (Qn
1 , Q

n
2 , Q

n
3 , Q

n
4 , Q

n
5 , Q

n
6 ) and P n = (P n

1 , P n
2 , P n

3 , P n
4 , P n

5 , P n
6 ) are the

discrete position and momentum at timestep n.

5.2 Modelling the Three-Body Problem

In this section we discuss the difficulties encountered when modelling the three-

body problem with particular reference to our choice of initial conditions, and we

test whether the numerical scheme is an appropriate choice for our research.

5.2.1 The Initial Conditions

Once the model is constructed we must make a choice of initial conditions. For the

simple, reduced two-body problem an analytic solution can be found. Therefore

we know that using initial conditions given by (4.20) to (4.23) will result in the

body following an elliptical trajectory with eccentricity, e, semi-major axis, a = 1

and orbital period, T = 2π.

The three-body problem cannot be solved analytically and therefore we can

only determine numerically the trajectory produced by a given set of initial con-

ditions. For an initial test of the model we use the initial conditions given in [1].

Here however we use momentum, not velocity as Acheson does, and therefore our
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Figure 5.1: Trajectories given by the Störmer-Verlet method with initial positions

(−0.5, 0), (0.5, 0), (−0.1, 0.75) and initial momenta (0, −0.15), (0, 0.15), (0,

−0.15), t = 4.85, timestep h = 0.001.

initial conditions have been changed accordingly. The initial conditions are

(Q1, Q2) = (−0.5, 0) (5.41)

(Q3, Q4) = (0.5, 0) (5.42)

(Q5, Q6) = (−0.1, 0.75) (5.43)

(P1, P2) = (0,−0.15) (5.44)

(P3, P4) = (0, 0.15) (5.45)

(P5, P6) = (0,−0.15), (5.46)

and the non-dimensional masses are m1 = m2 = m3 = 0.5.
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Figure 5.1 shows the trajectories of the three bodies using these initial con-

ditions. Comparing this with Figure 6.15(d) in [1], we can see that the results

produced are virtually identical - any small differences are due to a different choice

of numerical scheme [1]. From this we can infer our model is working correctly.

This figure also illustrates how the three-body problem can behave in an irregular

manner. However due to the fact that m1 = m2 = m3 we do not have two distinct

timescales.

For our research we wish to investigate a three-body system that is pre-

dictable and also has two distinct timescales. As we have discussed in Chapter 2

this is to provide an analogy with the atmosphere which also exhibits two different

timescales. The initial conditions we took from [1] do not produce a system that

behaves in the desired manner. The three-body system that we aim to emulate

is that of the Sun, Earth and Moon. We can therefore use real data to try and

reproduce such a system. From [41] we have the following

rSE = 1.50× 1011m (5.47)

rEM = 3.84× 108m (5.48)

vE = 2.98× 104ms−1 (5.49)

vM = 1.02× 103ms−1 (5.50)

mS = 1.99× 1030kg (5.51)

mE = 5.97× 1024kg (5.52)

mM = 7.35× 1022kg (5.53)

where rSE is the mean Earth-Sun distance, rEM the mean Earth-Moon distance,

vE an approximation for the orbital velocity of the Earth (using a circular orbit

assumption), vM an approximation for the Moon’s orbital velocity and mS, mE,
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mM are the masses of the Sun, Earth and Moon respectively. We must first non-

dimensionalise these data using (5.1) to (5.3), choosing M = ms and d = rSE. We

then convert the velocities to momenta, taking into account that the unit of time

is no longer seconds. Our initial conditions based on these data are

(Q1, Q2) = (0, 0) (5.54)

(Q3, Q4) = (1, 0) (5.55)

(Q5, Q6) = (1, 2.56× 10−3) (5.56)

(P1, P2) = (0, 0) (5.57)

(P3, P4) = (0, 3.00× 10−6) (5.58)

(P5, P6) = (−1.27× 10−9, 3.70× 10−8) (5.59)

where the masses are m1 = 1, m2 = 3 × 10−6 and m3 = 3.69 × 10−8. We have

assumed here that the Sun is at the origin and has zero momentum initially. The

momentum of the Earth is such that it only has a component in the q4 direction,

the momentum of the Moon in the above initial conditions correponds with zero

velocity with respect to the Earth in the q5 component.

Figure 5.2 shows the trajectory resulting from these initial values. We can

see that the system does not behave unpredictably. We also know that it exhibits

two separate time scales, the Earth’s orbit around the Sun and the Moon’s orbit

of the Earth. However the trajectories of the Moon and the Earth are very close

together compared with the size of the system and we would prefer an example

that more obviously illustrates the different paths the bodies follow.

After further investigation we found that the following set of initial conditions

provided both different timescales and trajectories that were different enough for
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Figure 5.2: Trajectories given by the Störmer-Verlet method with initial positions

(0, 0), (1, 0), (1, 2.56×10−3) and initial momenta (0, 0), (0, 3×10−6), (−1.27×10−9,

3.7× 10−8), t = 7.25, timestep h = 0.001.

our purposes.

(Q1, Q2) = (0, 0) (5.60)

(Q3, Q4) = (1, 0) (5.61)

(Q5, Q6) = (1, 0.1) (5.62)

(P1, P2) = (0, 0) (5.63)

(P3, P4) = (0, 0.1) (5.64)

(P5, P6) = (−0.01, 0.01) (5.65)
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Figure 5.3: Trajectories given by the Störmer-Verlet method with initial positions

(0, 0), (1, 0), (1, 0.1) and initial momenta (0.01, −0.11), (0, 0.1), (−0.01, 0.01),

t = 7.25, timestep h = 0.001.

and the masses are m1 = 1, m2 = 0.1 and m3 = 0.01. These can be further

improved by choosing the initial momentum for m1 such that the total linear

momentum of the system is zero. This involves changing the initial momentum of

m1; this is now

(P1, P2) = (0.01,−0.11). (5.66)

In Figure 5.3 we see the trajectories of the three bodies from these initial values.
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5.2.2 Testing the Model

In the previous section we showed that our model produced the same trajectory

as shown in [1] when using the same initial conditions. A further test of the

numerical scheme is to consider the total energy of the system. We know that

the three-body system is Hamiltonian and thus the total energy of the system is

conserved. We therefore look at the energy conserving properties of our model as

we did for the two-body problem. Figures 5.4 to 5.6 show the difference between

the model energy and the true value for the three different cases shown above.

In the first example, illustrated by Figure 5.4, we have troughs similar to

those observed for the two-body problem with a high eccentricity. These corre-
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Figure 5.4: Difference between the true energy and the model energy given by the

Störmer-Verlet method, initial conditions given by (5.41) to (5.46), h = 0.001
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Figure 5.5: Difference between the true energy and the model energy given by the

Störmer-Verlet method, initial conditions given by (5.54) to (5.59), h = 0.001
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Figure 5.6: Difference between the true energy and the model energy given by the

Störmer-Verlet method, initial conditions given by (5.60) to (5.65), h = 0.001
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spond to the points on the trajectory where a body has a rapid change in direction

and thus a large change in velocity due to a close approach with another body.

We again see that, although the fixed step method does not do as well in these

regions, the energy returns back to its original value after the close approach. For

the next two examples, illustrated by Figures 5.5 and 5.6, the difference between

the true energy and that given by the model is small - of order 10−16 for the first,

10−7 for the next. In these two examples the orbits are approximately circular and

therefore there are no large changes in orbital velocity that would cause problems

with a fixed step scheme.

5.2.3 The Stability of the Three-Body Model

In [49] the stability of the Sun-Earth-Moon system is investigated by considering

zero-velocity surfaces. If the orbit of a body lies completely inside a surface of

zero velocity then it cannot escape from that orbit and the characteristics of the

motion cannot change. This is considered to be a stable system. The measure for

stability for the general three-body problem is defined in [49] as

S =
sac − scr

scr

. (5.67)

If S has a positive value for a particular system then the body’s trajectory lies

within a zero-velocity surface and thus cannot escape the orbit. In (5.67), s is the

stability parameter given by

s = − L2H

G2m̄5
, (5.68)

where L is the angular momentum of the system, H is the total energy of the

system and m̄ is the average mass. The stability parameter sac is the calculated

value for the given problem, scr is the critical value. For our problem, given
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by (5.60) to (5.62), (5.66), (5.64) and (5.65), we find that scr = 9.057 × 10−2.

The calculation of Scr is shown in Appendix B. Our problem is non-dimensional

therefore the stability parameter becomes

s = −L2H

m̄5
. (5.69)

Total energy, H, and angular momentum, L, are defined [49] as

H = −m2m1

2a2

[
1 +

m3

m2

(
1 +

m2

m1

a2

a3

)]
(5.70)

L =
m2m1√

M

√
a2

((
1 +

m1

m2

) √
1− e2

2 +
m3

m1

(
a3

a2

(1− e2
3)

) 1
2
(

M

m2 + m3

) 1
2

)
,

(5.71)

where a2, a3 and e2, e3 are the semi-major axes and eccentricities of the orbits of

m2 and m3, and M = m1 + m2 + m3 is the total mass of the system.

In [49] stability is defined by S > 0. If S is a large positive number then

the actual system is not near the critical condition and is thus more stable than a

system with a smaller value of S. A system with a negative S is considered to be

unstable with an open zero-velocity surface and thus m3 can escape or enter the

orbit of m2.

We consider the system given by initial conditions (5.60) to (5.62), (5.66),

(5.64) and (5.65). We need to estimate the values of the semi-major axes and the

eccentricities of the orbit from our numerical trajectories. We find that

a2 = 1.135

a3 = 0.09400

e2 = 0.09376

e3 = 0.1779
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Using these values to calculate H and L we thus find that the stability parameter

for this system is sac = 8.699× 10−2. Therefore we have that

S =
sac − scr

scr

= −3.952× 10−2. (5.72)

We can thus see that by this measure the system we are considering is slightly

unstable and we can infer that while it may continue to exhibit the same charcter-

istics of motion, it is possible that m3 may escape the orbit of m2 at some point

during the evolution.

In Section 5.2 we have investigated a series of different initial conditions

for our three-body model. We have shown that the Störmer-Verlet method can

reproduce results obtained using other numerical models. We have demonstrated

that our numerical scheme provides good conservation of energy and is therefore

an appropriate choice for this Hamiltonian problem. We have also shown that

our choice of initial conditions produces a slightly unstable configuration. We now

consider how sensitive the system is to perturbations of these initial conditions.

5.3 The Sensitivity of the Three-Body Model

The three-body problem differs from the simpler two-body problem in that chaotic

behaviour is possible. We have seen in the previous section that the system we

are investigating is slightly unstable, but our numerical results, illustrated by Fig-

ure 5.3, suggest that the system is stable for the length of the model run. We

now wish to consider how sensitive this system is to changes in these initial condi-

tions. We consider how much they can be perturbed without changing the overall

behaviour of this system. This is important as, if our data assimilation scheme

cannot produce an analysis that is close enough to the truth, then our solution

107



may exhibit completely different behaviour.

We perturb the inital conditions in the following way

Q̃T = QT + CQT (5.73)

P̃ T = P T + DQT (5.74)

where Q = (Q1, . . . , Q6), P = (P1, . . . , P6) and C and D are diagonal matrices

with random perturbations of variance σ2 on the diagonal.

We considered a number of values for σ2 and found that for values up to

σ2 ≈ 0.007 the behaviour of the three bodies had the same characteristics as the

unperturbed problem in that m3 stayed in orbit around m2 which itself stayed in

orbit around m1. This is illustrated in figure 5.7.

When the variance is above this value the characteristics of the system

change. In Figure 5.8 we show the trajectories for σ2 = 0.0075. Here we can

see that m3 is no longer in orbit around m2, it has switched so that it is in orbit

solely around m1.

In section 5.2.3 we demonstrated that for the unperturbed case the behaviour

of the system is slightly unstable. However, in Figure 5.3 we saw that for one large

orbit the behaviour given by the numerical model was stable. This can be further

illustrated in Figure 5.9 where we run the unperturbed case for 20 orbits. This

shows that m3 will stay in orbit around m2 which in turn remains in a steady orbit

around m1 for a long model run. Here the orbit of m3 remains within a bounded

region.

However if we run the perturbed case where σ2 = 0.0075 for the same period

we see that the orbit is less predictable. In Figure 5.10. we see that m3 mainly

orbits m1 however at one point it is captured by m2 which it orbits approximately

six times before escaping and returning to an orbit around m1. This corresponds
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Figure 5.7: Trajectories given by the Störmer-Verlet method with perturbed initial

conditions, σ2 = 0.007, t = 7.25, timestep h = 0.001.
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Figure 5.8: Trajectories given by the Störmer-Verlet method with perturbed initial

conditions, σ2 = 0.0075, t = 7.25, timestep h = 0.001.
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Figure 5.9: Trajectories given by the Störmer-Verlet method with initial positions

(0, 0), (1, 0), (1, 0.1) and initial momenta (0.01, −0.11), (0, 0.1), (−0.01, 0.01),

t = 362.5, timestep h = 0.001.
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Figure 5.10: Trajectories given by the Störmer-Verlet method with perturbed ini-

tial conditions, σ2 = 0.0075, t = 362.5, timestep h = 0.001.
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with “very unstable” behaviour as described in [49].

In this section we have demonstrated that, although our system has been

shown to be “slightly unstable”, the model behaviour is stable for at least twenty

orbits, the length of the model run. This is considerably longer than the time pe-

riods we will use in our experiments. We have also shown that small perturbations

to these initial conditions can produce completely different behaviour.

5.4 Development of 4D Var for the Three-Body

Problem

In Chapter 3 we outlined the stages required for the construction of a 4D Var

data assimilation algorithm. In this section we implement each of these for the

three-body problem.

5.4.1 The Linear Model

As we did in Section 4.3.1, we follow the procedure outlined in Section 3.2.2 to

find our linear model of the three-body problem. By linearising equations (5.23)

to (5.40) we create our linearised three-body model equtions. These are listed in

Appendix A.

The linear model for the three-body problem must be tested in the same

way as the linear two-body problem. As we discussed in Chapter 3 there are two

necessary tests.
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A. Correctness Test

The first tests the correctness of the linear code. Figure 5.11 plots ||ψ(δx)|| versus

γ where ψ is defined in (4.43). Again, as for the two-body problem, we see that

as γ → 0 and therefore δx → 0, ||ψ(δx)|| → 0, and thus we can conclude that the

linear model is the correct linearisation of our nonlinear three-body problem.

B. Validity Test

We also test the validity of the linear model by following the same procedure as

outlined in section 3.3. We run the nonlinear model twice with initial conditions

(Q0,P0) and then with perturbed initial conditions ((1 + γ)Q0, (1 + γ)P0). We

compare the difference between these two non-linear trajectories and the linear

model with initial conditions (γQ0, γP0). We consider different values of γ and
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Figure 5.11: Graph to illustrate the correctness of the three-body linear model,

initial conditions given by (5.60) to (5.62), (5.66), (5.64) and (5.65), h = 0.001.
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look at the evolution of the perturbations given by the nonlinear and linear models.

Figure 5.12 illustrates the validity times for γ = 10−2 for each of the three bodies

and Figure 5.13 the validity times for γ = 10−3. Here Q0 and P0 are our final

choice of initial conditions given by (5.60) to (5.62), (5.66), (5.64) and (5.65). The

red lines represent the nonlinear evolution, the blue lines the linear evolution.

The length of the model run in Figures 5.12 to 5.14 is t = 7, corresponding

to approximately one orbit of m2 around m1. We can see from these plots that for

each of the three bodies when γ = 10−3 the linear model mirrors very closely the

behaviour of the nonlinear model. Thus the validity time in this case is relatively

long. Where γ = 10−2 the linear model behaviour is somewhat different to the

nonlinear model and this is particularly noticeable for m3. There is, however, no

extreme change in behaviour.

We consider a different choice of initial conditions where Q0 and P0 are given

by (5.41) to (5.46) and again look at the validity time. We recall for this case the

three masses are equal. Figure 5.14 shows the linear and nonlinear model behaviour

for the three bodies where γ = 10−3. Here we can see that from approximately

t = 6 the behaviour of the linear model becomes increasingly different to that

of the nonlinear model. In Figure 5.15(a) we illustrate the distances between

each body, in Figure 5.15(b) we show the momentum of the three bodies for this

case. We can see that just before t = 6 the distance between m1 and m2 is

virtually zero. This close approach between the two bodies results in a rapid

change in direction for each body. This implies that both will have a rapid change

in velocity and therefore momentum, which is illustrated by Figure 5.15(b). As we

saw in the two-body problem where there is a close approach, as in the example

where eccentricity, e = 0.9, the velocity increases as a result of Kepler’s second
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Figure 5.12: Evolution of the position perturbation for the nonlinear and linear

models for γ = 10−2, IC given by (5.60) to (5.62), (5.66), (5.64) and (5.65), (a)

body 1, (b) body 2, (c) body 3
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Figure 5.13: Evolution of the position perturbation for the nonlinear and linear

models for γ = 10−3, IC given by (5.60) to (5.62), (5.66), (5.64) and (5.65), (a)

body 1, (b) body 2, (c) body 3
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Figure 5.14: Evolution of a perturbation given by the nonlinear and linear models

for γ = 10−3, IC given by (5.41) to (5.46), (a) body 1, (b) body 2, (c) body 3
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Figure 5.15: Behaviour of (a) the position and (b) the momentum of the system

with IC given by (5.41) to (5.46)
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law. When such changes occur the linear model is not a valid approximation of

the nonlinear model and thus the tangent linear hypothesis does not hold.

From the cases illustrated above we can say that while the three-body prob-

lem is in a stable configuration, such as that where m3 is in orbit around m2 and

they both orbit m1, the validity time is long and the linear model provides a good

approximation for the nonlinear model. In this case the tangent linear hypothesis

is valid. Where the bodies become too close the linear model cannot mirror the

true behaviour and the tangent linear hypothesis no longer holds.

5.4.2 The Adjoint Model

Again we follow the procedure detailed in [17] to construct our adjoint model

directly from the linear model code. We then carry out the two tests required for

the adjoint model.

A. Adjoint Test

As discussed in section 3.3.3 the adjoint code is correct if it satisfies

< Mx0,Mx0 > − < x0,M
T Mx0 >= 0, (5.75)

where M is the linear model, MT the adjoint. We find that for the adjoint of the

three-body model this is satisfied to machine levels of accuracy.

B. Gradient Test

The previous test shows we have coded the correct adjoint of the tangent linear

model but not whether this is the true gradient of the cost function. To do this we

plot, in Figure 5.16, φ(α) versus α and log(|φ(α)−1|) versus α where φ is defined by

118



(3.39). We can see that in both cases the figures illustrate the behaviour consistent

with the adjoint model being the true gradient [30].

5.4.3 The Minimisation Algorithm

To minimise our cost function we use the Conmin minimisation algorithm [46].

As discussed in section 3.3.4 we use the quasi-Newton method for all experiments

with ε = 10−6. Using this value of ε gives the following stopping criteria

|Jk−1 − Jk|
1 + |Jk| < 10−6 (5.76)

‖xk−1 − xk‖
1 + ‖xk‖ < 10−3 (5.77)

‖∇Jk‖
1 + |Jk| ≤ 10−2, (5.78)

and all three must be satisfied to stop the minimisation.

5.5 Numerical Experiments

For all our experiments the initial conditions for the true solution will be given by

(5.60) to (5.62), (5.66), (5.64) and (5.65). In addition we will use data assimilation

window, TDA = 0.3. This corresponds to approximately half the period of the small

scale motion. This again reflects the window length used by the Met Office where

the window is six hours, half the period of the inertial gravity waves - the small scale

features of the numerical model for the atmosphere. As for the two-body problem

our initial experiments include only the observation term of the cost function. We

begin our experiments by testing our 4d Var algorithm for the three-body problem.

If our scheme is working correctly then the analysis produced when using perfect

observations, taken from the true solution at every timestep, should be very close
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Figure 5.16: Illustration of the gradient tests (a) φ(α) v α and (b) log(|φ(α)− 1|)
v alpha
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to the true solution. Figure 5.17 shows the error in the analysis produced by our

scheme for the case of perfect observations.

We can see that the error is of order 10−6. Thus our solution does not

lie quite as close to the truth as when we carried this experiment out for the

two-body problem. This could be due to the fact that far fewer observations are

assimilated here. For the two-body problem we assimilated perfect observations

at each timestep with a window of TDA = 4π corresponding to two orbital pe-

riods. This therefore covers the full trajectory for the orbiting body. Here we

are assimilating over a period corresponding to half the period of the small body

which is approximately 1
24

th of the large scale orbit. We are therefore assimilating

considerably less information relating to the trajectories of the three bodies. We
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Figure 5.17: Error on the analysis produced by the three-body 4d Var scheme using

perfect observations; observations used at every timestep, TDA = 0.3, h = 0.001,

IC given by (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.18: Error on the analysis produced by the three-body 4d Var scheme using

noisy observations; observations used at every timestep, TDA = 0.3, h = 0.001, IC

given by (5.60) to (5.62), (5.66), (5.64) and (5.65)

cannot however test this hypothesis since the minimisation of the 4d Var scheme

does not converge for the three-body problem for TDA > 0.4. However the error

in the analysis is still small and this suggests that our 4d Var scheme is working

correctly.

In the next experiment we add noise to our observations to create a more re-

alistic problem. This random noise has a Gaussian distribution with variance that

depends on the typical magnitude of the variable. Thus we have σ2
Q1,Q2,P1,P2,P3,P4

=

10−4, σ2
Q3,Q4,Q5,Q6

= 10−3 and σ2
P5,P6

= 10−5. Figure 5.18 shows the error in the

analysis for this case. Here we can see that the error is of order 10−3. This con-

firms that our scheme is working correctly as we would expect the error to be of

the order of the largest variance used. For all our remaining experiments we will
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use noisy observations.

5.5.1 Effect of Observations

In this section we will consider what effect our choice of observations has on the

analysis and forecast produced by the data assimilation scheme. In the first of these

experiments we use all observations at all timesteps. Figure 5.19 shows the analysis

error and the resulting error in the forecast for this case. For all our examples we

run the forecast forward for TFC = 28.8 which corresponds to approximately four

of the large scale orbits. It is necessary to show such a long forecast in order that

we can observe both the large scale and the small scale effects of the assimilation.

Here we can see that the error in the smallest body m3 is the largest. This

is as we might expect given that, as we demonstrated in Section 5.3, the smallest

body is the most sensitive to changes in the initial conditions.

We now compare this with analyses found using different observation sets.

In all cases we use observations at every timestep but we do not use a full set of

observations. In the first three examples, illustrated by Figures 5.20 to 5.25, we

exclude observations from each of the three bodies in turn. For each case we plot

both the error in the forecast and the resulting trajectory.

We can see that in all cases the characteristics of the motion have not changed

drastically. The small body, m3, is still in orbit around m2 and they are both

orbiting m1. However in Figure 5.20 where we have not assimilated observations

for m1 the magnitude of the error is larger than for the other two cases. In

addition we can see from Figure 5.21, we have eleven small orbits for every large

orbit compared with twelve in the true solution and the linear momentum is no

longer zero.
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Figure 5.19: Error in the forecast produced by the three-body 4d Var scheme using

all observations; observations used at every timestep, TDA = 0.3, h = 0.001, IC

given by (5.60) to (5.62), (5.66), (5.64) and (5.65)

In Figures 5.22 and 5.24, where we have no observations of m2 and m3

respectively, the magnitude of the error is virtually the same. In Figure 5.23

we have eleven small orbits to one large and there is less transverse motion. In

Figure 5.25 we see there are only six small orbits for every large orbit.

From these figures we can conclude that the best solution is found where we

have no observations for the the middle body, m2. We might expect this due to

the fact that the observations from m3 will help to reconstruct both the large and

small motion since this has motion on both the scales. In addition observations of

m1 will prevent the entire system from drifting.

In the next examples we use observations from one body only. We note

that where we have observations of only the largest body, m1, or the middle body,
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Figure 5.20: Error in the forecast - no observations of m1; observations at every

timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.21: Trajectory of the forecast - no observations of m1; observations at

every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.22: Error in the forecast - no observations of m2; observations at every

timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.23: Trajectory of the forecast - no observations of m2; observations at

every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.24: Error in the forecast - no observations of m3; observations at every

timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.25: Trajectory of the forecast - no observations of m3; observations at

every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.26: Error in the forecast -observations of m1 only; observations at every

timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.27: Trajectory of the forecast - observations of m1 only; observations at

every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.28: Error in the forecast - observations of m2 only; observations at every

timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.29: Trajectory of the forecast - observations of m2 only; observations at

every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.30: Error in the forecast - observations of m3 only; observations at every

timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.31: Trajectory of the forecast - observations of m3 only; observations at

every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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m2, the characteristic motion of the true solution is not reflected by the analysis.

In Figures 5.26 and 5.27 we see that, where we have observations of m1 only,

the analysis has no interaction between the three bodies other than at the initial

point. There is not enough information about either the slow or fast motion to

reconstruct the solution. In Figures 5.28 and 5.29 we see that the analysis has

m2 in orbit around m1 but m3 is not part of the system. Observations of m2

are thus sufficient to retain the large scale motion. In the final example, shown

in Figures 5.30 and 5.31, all three bodies are interacting and the characteristic

motion of the true solution is retained. We can therefore conclude that we need

observations that give information relating to both scales of motion in order to

reconstruct the solution.

5.6 Addition of Weak Constraints

In Chapter 4 we discussed in detail several different additional constraints for the

two-body problem. Here we consider the inclusion of similar weak constraints for

the three-body problem. We again consider both a perfect background field and a

more realistic noisy background field.

5.6.1 Perfect Background

For our first experiments we consider the case where the background is the truth

at the initial time. We test these on the example illustrated by Figure 5.19 with a

full set of observations at every timestep across the data assimilation window. The

observations are created by adding noise to the truth. This has initial condions

given by (5.60) to (5.62), (5.66), (5.64) and (5.65).
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Our first constraint has the form of a typical background constraint but

again, since there are no errors associated with the background the background

error covariance matrix is the identity matrix. The constraint has the form

JB = β1(xb(t0)− x(t0))
T (xb(t0)− x(t0)), (5.79)

where xb = (QT
b , P T

b )T and β1 is the weighting of the term. As for the two-

body problem this constrains the analysis to be close to the background state.

Figure 5.32 illustrates the results for several different values of β1. We can see that

for smaller values of β1 the large scale oscillations are reduced but the small scale

oscillations are not. As β1 increases the amplitude of both the large and small scale

oscillations are reduced but the error in the overall solution is still increasing.

The second constraint is the energy constraint, which constrains the energy

of the analysis to be close to the energy of the background. This has the form

JE = β2 (E(xb(t0))− E(x(t0)))
2 , (5.80)

where E(x) is the total energy defined by (5.7). The effect of JE is demonstrated

in Figure 5.33. From this figure we can conclude that the energy constraint does

not reduce the amplitude of either the small or large scale oscillations but for larger

values of β2 the overall error is no longer increasing.

We can see that in all cases the constraints improve the forecast. However

the behaviour of the solutions is somewhat different. In Figure 5.32 we see that

the error in the forecast is reduced but, for all β1, the error is still increasing for

the length of the forecast. We can also see that both the large scale and small scale

oscillations are considerably smaller than the unconstrained case. By contrast in

Figure 4.17 there is also a reduction in the error, however in this case for large

values of β2 the error begins to decrease. We also observe that amplitude of the
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small scale oscillations is not reduced.

In order to better understand these results we need to try and consider the

two scales of motion separately. This configuration of the three-body problem can

be approximated as two two-body problems, that of the centre of mass of m2 and

m3 orbiting m1, and m2 and m3 in orbit with each other. If we could separate

the error trajectory into these two components then we can use the results from

Chapter 4 to help interpret the results we have in this chapter.

5.6.2 Separation of Timescales

As we have discussed, one feature of the three-body system we have considered is

the distinct timescales within the motion. We have the large scale, slow motion

of the two bodies, m2 and m3, in orbit around m1 and the fast motion of the two

smaller bodies in mutual orbit. It is difficult to completely separate these two

scales of motion. We attempt to do this by considering the evolution of the centre

of mass of m1 and m2 as they orbit m1.

The position, qCM , and momentum, pCM of the centre of mass are given by

qCM =
m2q2 + m3p3

m2 + m3

(5.81)

pCM = p2 + p3, (5.82)

where q2 = (q3, q4), q3 = (q5, q6), p2 = (p3, p4) and p3 = (p5, p6).

We calculate the evolution of the position and momentum of the centre of

mass, QCM and PCM , given by the discrete model. We split the total error of

the original system into its fast and slow components by defining the slow scale

component in the following way,

ErSLOW = ||∆XSLOW || (5.83)
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where

∆XSLOW =




2(Qtr
CM1

−QCM1)

2(Qtr
CM2

−QCM2)

P trr
CM1

− PCM1

P t
CM2

− PCM2

Qtr
1 −Q1

Qtr
2 −Q2

P tr
1 − P1

P tr
2 − P2




,

and Qtr
CM , P tr

CM give the evolution of the centre of mass of the true solution. In

this measure of the error we include the error on m1 in addition to the error on the

centre of mass. We multiply the centre of mass position components of ∆XSLOW

by two. This is to account for the fact that when we calculate the total error, we

have two large scale motions, m2 and m3, whereas the centre of mass has only

one. The momentum components are not multiplied by two since the momentum

of the centre of mass is given by the sum of the momentum of the two bodies. The

small scale motion is simply the difference between our original total error and

ErSLOW . We can see in Figure 5.34 that this splits the original error trajectory

into the different scales.

We now use these measures to try and gain a greater understanding of the

effect of our constraints. We begin by considering the slow component of the error

for each of our two constraints. In Figure 5.35 we show the effect of the background

term. We see that as we increase β1 the error in the slow component decreases.

For very large β1 we see there is virtually no error in the slow component. By

contrast, in Figure 5.36, where we illustrate the effect of the energy constraint, we
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see that while there is a significant reduction in the slow component of the error,

even for large values of β2 this is still growing. Additionally by comparing the

two constraints, we can see that while the magnitude of the large scale oscilla-

tions is reduced where we have imposed the background constraint, it has actually

increased where we have applied the energy constraint.

We now consider the small scale, fast component of the error. We consider

only the effect of the largest value of β. In Figure 5.37 we can see that where we

have β1 = 109, the fast component of the error is increasing with time but the

amplitude of the observations has been significantly reduced. In Figure 5.38 we

show the corresponding figure for the energy constraint. Here we see that size of

the oscillations has reduced somewhat but there is a periodic nature to this, with

the period being equivalent ot the length of one large orbit. We also see that there

is initially an overall growth of this error component but this begins to decrease

towards the end of the forecast.

We can understand what effects these constraints have on the structure of

the data assimilation solution by considering the analogous results in the two-

body problem. We recall that where we observed a phase error this was a result of

comparing two trajectories with a different period, where we observed oscillations

in the error this was due to comparing different eccentricities.

We begin by considering the background constraint. We first consider the

effect on the slow component. Here we see that the background constraint has a

very significant effect on this part of the solution. We observe that there is no

growth in the error, and the oscillations are no longer evident. From this we can

summise that this constraint is having an effect on the phase error and thus the

data assimilation solution has the same large scale period as the truth. We can
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also infer that the eccentricities of the two are the same. We now consider the

effect on the fast motion. We can see that while the magnitude of the oscillations

has decreased, there is a phase error between the data assimilation solution and

the truth. Thus we can say that the background constraint is not imposing a

constraint on the period of the small scale orbit, but is imposing a constraint on

its eccentricity.

We now consider the effect of the energy constraint, initially on the large

scale orbit. We do not repeat the results that we observed with the two-body

problem. Here we see that there is still a phase error, thus we are not constraining

the period of the data assimilation solution. With the small scale component we

see that the size of the oscillations is somewhat reduced and the overall error begins

to decrease. We also observe that the small scale oscillations exhibit a periodic

behaviour.

These experiments illustrate that additional constraints can change the anal-

ysis in different ways. However, in reality the background would not be the truth

and would have some associated error. In the next section we impose constraints

on a noisy background field.

5.6.3 Noisy Background

In this section we add the same form of constraints to the cost function as in

the previous section, however we now add noise to the background. We now

use an example with sparser observations than in the previous example. The

observations set is the same as for the case illustrated by Figure 5.19 however we

only assimilate observations every ten timesteps. We add weak constraints as in

the previous section, however the background state is no longer perfect. This is
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achieved by adding random noise with a Gaussian distribution to the truth at

the initial time. Due to the fact that the magnitude of the variables is somewhat

different we use different values of the variance for each one as we did to create

the noisy observations. Again we have σ2
Q1,Q2,P1,P2,P3,P4

= 10−4, σ2
Q3,Q4,Q5,Q6

= 10−3

and σ2
P5,P6

= 10−5.

The background constraint thus becomes,

JB = (xb(t0)− x(t0))
T B−1(xb(t0)− x(t0)), (5.84)

where

B =




σ2
Q1

0 0 0 0 0 0 0 0 0 0 0

0 σ2
Q2

0 0 0 0 0 0 0 0 0 0

0 0 σ2
Q3

0 0 0 0 0 0 0 0 0

0 0 0 σ2
Q4

0 0 0 0 0 0 0 0

0 0 0 0 σ2
Q5

0 0 0 0 0 0 0

0 0 0 0 0 σ2
Q6

0 0 0 0 0 0

0 0 0 0 0 0 σ2
P1

0 0 0 0 0

0 0 0 0 0 0 0 σ2
P2

0 0 0 0

0 0 0 0 0 0 0 0 σ2
P3

0 0 0

0 0 0 0 0 0 0 0 0 σ2
P4

0 0

0 0 0 0 0 0 0 0 0 0 σ2
P5

0

0 0 0 0 0 0 0 0 0 0 0 σ2
P6




The energy constraint now has the form

JE =
1

σ2
E

(E(xb(t0))− E(x(t0)))
2 , (5.85)

where the variance σ2
E is defined by

σ2
E = ∇xb

E(xb(t0)) · σ2
xb

(5.86)
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and σ2
xb

= (σ2
Q1

, . . . , σ2
Q6

, σ2
P1

, . . . , σ2
P6

)T ).

The effect of these two different constraints are illustrated by Figure 5.39.

This illustrates that both constraints imposed alone have a positive effect on the

results, but the addition of both constraints together significantly reduces the

error in the forecast. This is due to the fact that we are providing the assimilation

algorithm with additional information. The resulting analysis must lie close to the

background field but can only do this where it also conserves the energy.

5.6.4 Separation of Timescales

We again consider the separation of the two timescales for the error trajectories

given in the previous examples where a noisy background was used. We use the

same method of splitting the error into the fast and slow components as demon-

strated in Section 5.6.2.

In Figure 5.40 we illustrate the effect on the slow scale of the three different

configurations; the background constraint only, the energy constraint only and

both imposed together. The overall results are similar to those illustrated by the

total error. We find that the energy constraint gives a slightly better result than

the background, but imposing both together significantly reduces the error.

In Figure 5.41 we show separately the effect on the small scale for the three

different cases. We can see clearly that the background constraint produces small

oscillations that are constantly growing in size. By contrast, the energy constraint

again produces periodic behaviour in these oscillations. We can also see that for

the third case, where we have observed a significant reduction in the overall error,

by the end of the window the oscillations are larger than in the other two cases.
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5.6.5 Example: Incomplete observations

In this section we apply our two different constraints to the cases in Section 5.5.1

where the characteristic behaviour of the true solution was not exhibited by the

analysis. We consider whether our constraints can provide sufficient additional

information to construct an analysis that has the same properties as the truth.

We begin by considering the case where we assimilated only observations of the

largest body, m1. We now add our weak constraints to the cost function for

this example. Therefore the effect of these constraints, shown in Figures 5.42 to

5.44, can be observed by comparison with the unconstrained case illustrated by

Figure 5.26. In Figure 5.42 we illustrate the effect of including JB. Here we can see

that the error is considerably smaller than for the unconstrained case. The overall

behaviour demonstrated by the forecast has not changed significantly, however the

three bodies interact for longer before moving away from each other.

We now consider the addition of the energy constraint, JE, to the cost func-

tion. The effect of this is illustrated by Figure 5.43. The constraint has a much

more significant impact than JB. The error is an order of magnitude smaller than

in the previous example. We also observe that there is now interaction between

m1 and m2 for the duration of the forecast. However the third body is ejected

from the system and we do not observe the stable behaviour inherent in the true

solution.

We finally consider the addition of both our constraints to the system. In

Figure 5.44 we see that the error is almost ten times smaller than in the previous

case, where we included the energy constraint only. We also observe, by considering

the trajectories shown in Figure 5.44(b), that the three bodies interact with each

other for the duration of the forecast. They do not, however, reproduce similar
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behaviour to the true solution, where m3 orbits m2 and they both orbit m1.

We now consider the case where only observations of m2 were assimilated.

Thus we are comparing Figures 5.45 to 5.47 with the unconstrained example il-

lustrated by Figure 5.28. In Figure 5.45 we show the effect of the background

constraint on this example. We see that this constraint has provided enough in-

formation such that the analysis exhibits behaviour characteristic of the truth.

We now consider the addition of the energy constraint only. We can see in

Figure 5.46 that this constraint is not as effective as the background constraint.

The error is almost four times as large as in the previous case. We can also see

that while the three bodies are interacting for the full length of the forecast, this

interaction does not reflect the truth. Here we observe that while m2 and m3 are

both in orbit around m1, m3 is not orbiting m2.

In the final example we include both the energy and the background con-

straints. As we might expect, Figure 5.47 shows that we again produce the be-

haviour that is observed in the true solution. The addition of the energy constraint,

however, acts to reduce the overall error.

We saw in Section 5.6.3 that the addition of our weak constraint had the

effect of reducing the error in the solution. In this section we note that, where

observations prove insufficient, the constraints can have a significant and positive

effect. We cannot say which of the constraints is more effective. In the first

example the energy constraint had a greater effect on the error, however, where we

had observations of m2 only, the background constraint was able to reconstruct the

correct behaviour. We can conclude, however, that the inclusion of both constraints

significantly improves the analysis and forecast where the observations alone have

failed to produce the desired behaviour.
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5.7 Summary and Conclusions

In this chapter we have discussed the three-body system, a more general problem

than that considered in Chapter 4. As in this previous chapter we derived the con-

tinuous canonical equations and stated the conservation properties of the system.

We then derived the discrete model equations using the Störmer-Verlet method

and tested the resulting model. We showed that it preserved the inherent charac-

teristics of the original system, specifically the conservation of the Hamiltonian -

the total energy of the system.

We also considered the implication of our choice of initial conditions. We

showed that for this system the behaviour of the three bodies was not always

predictable. However we were able to find a configuration that provided an analogy

with the atmosphere by exhibiting a separation of timescales. We demonstrated

that for this choice of initial conditions the system would remain in its stable orbits

but that perturbations to these initial conditions could alter the characteristic

behaviour.

In Section 5.4 we discussed the construction and subsequent testing of the

the data assimilation algorithm for this problem. We then went on to describe the

numerical experiments that were carried out with the completed 4d Var scheme.

We initially considered the effect of having an incomplete set of observations. We

showed that if observations from only one of the bodies were assimilated, the 4d

Var scheme could not reconstruct the two-timescale behaviour of the true solution.

Thus the data assimilation scheme, which included only the observation term in

the cost function, could not provide enough information. We therefore considered

the addition of weak constraints that provide information from a previous forecast.

We thus impose them at the initial time only.
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The first of these constraints is the background term typical of most 4d Var

schemes. For all the examples considered here we showed that this improved the

forecast in all cases. The second constraint made use of the conservation property

of this system. As we have discussed the three-body system is energy conserving

and our numerical model reflects this. We can say, therefore, that the energy con-

servation is imposed as a strong constraint across the data assimilation window.

However we wished to impose this as a further constraint such that the analysis

would be weakly constrained to lie close to the energy of the background. In prac-

tical terms this implies that the constraint would impose the energy conservation

property from one assimilation window to the next.

For the two-body problem we were able to fully understand the implica-

tions of the different constraints on the geometry of the resulting solutions. For

the three-body problem, due to its more complex nature, this was more difficult.

However, we were able to separate the error into a fast and slow component. We

found that, in terms of the large, slow motion the background constraint had the

effect of constraining both the period and the eccentricity. The energy constraint,

however, did not repeat the behaviour observed in the two-body problem. The

term did not constrain the period. We saw in the two-body chapter that the pe-

riod of an orbit was related to its energy and thus an energy constraint affects

the period. This behaviour was not repeated here. In this three-body problem we

effectively have two two-body problems, but we are only imposing a constraint on

the total energy. The system therefore cannot infer how much of the total energy

is associated with the large orbit or the small orbit. Thus we find that the large

orbit has a different energy and therefore different period to the truth.

When considering the small scale motion, we found that the background
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constraint did not impose a constraint on the period of the small orbit, although

the magnitude of the oscillations was significantly reduced, implying that there

was some constraint on the eccentricity. In all cases we found that there was a

significant reduction in the error

This proved to be true even with a noisy background field. We observed

that the addition of a background term improved the analysis and forecast as

expected, since this is the typical formulation of 4d Var assimilation. The addition

of the energy constraint alone also improved our results. However the largest

reduction in the overall error was found when both constraints were used. As we

discussed, the energy contraint does not prevent phase error as it did for the two-

body problem as the energy is associated with two different orbits. However in

the case of the noisy observation we saw that the addtion of both constraints had

a beneficial effect. In this case we are getting information in two different ways,

the background constraint may be providing additional information such that the

energy constraint is able to provide a more accurate balance between the energies

of the two orbits, thus reducing the phase error of both.

We can explain this by considering the minimisation algorithm. As we dis-

cussed in Chapter 4, the cost function gradient provides the descent direction for

the minimisation algorithm and this must include the gradient of the additional

terms. Therefore, the gradient of the cost function will only allow an analysis that

not only lies close to the background field but also weakly conserves the energy of

the system.
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Figure 5.32: Error in the forecast with a perfect background constraint; all obser-

vations at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64)

and (5.65), β1 = 0, 107, 108, 109
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Figure 5.33: Error in the forecast with a perfect energy constraint; all observations

at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and

(5.65), β2 = 0, 107, 108, 109
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Figure 5.34: Illustration of scale separation of the error trajectory, no constraints,

observations at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66),

(5.64) and (5.65)
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Figure 5.35: Slow scale component of the error in the forecast using a perfect

background constraint; all observations at every timestep, TDA = 0.3, h = 0.001,

IC: (5.60) to (5.62), (5.66), (5.64) and (5.65), β1 = 0, 107, 108, 109
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Figure 5.36: Slow scale component of the error in the forecast using a perfect

energy constraint; all observations at every timestep, TDA = 0.3, h = 0.001, IC:

(5.60) to (5.62), (5.66), (5.64) and (5.65), β2 = 0, 107, 108, 109
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Figure 5.37: Fast component of the error in the forecast using a perfect background

constraint; all observations at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to

(5.62), (5.66), (5.64) and (5.65), β1 = 0, 109
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Figure 5.38: Fast component of the error in the forecast using a perfect energy

constraint; all observations at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to

(5.62), (5.66), (5.64) and (5.65), β2 = 0, 109
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Figure 5.39: Error in the forecast produced by the three-body 4d Var scheme with

noisy constraints; observations at every 10 timesteps, TDA = 0.3, h = 0.001, IC:

(5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.40: Slow component of the error in the forecast using realistic constraints;

all observations at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62),

(5.66), (5.64) and (5.65)
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Figure 5.41: Fast component of the error in the forecast using (a) a realistic

background constraint, (b) a realistic energy constraint and (c) both constraints;

all observations at every timestep, TDA = 0.3, h = 0.001, IC: (5.60) to (5.62),

(5.66), (5.64) and (5.65)
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Figure 5.42: (a) Error and (b) Trajectory of the forecast with observations of m1

only, background constraint included; observations at every timestep, TDA = 0.3,

h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.43: (a) Error and (b) Trajectory of the forecast with observations of

m1 only, energy constraint included; observations at every timestep, TDA = 0.3,

h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.44: (a) Error and (b) Trajectory of the forecast with observations of m1

only, background and energy constraints included; observations at every timestep,

TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.45: (a) Error and (b) Trajectory of the forecast with observations of m2

only, background constraint included; observations at every timestep, TDA = 0.3,

h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.46: (a) Error and (b) Trajectory of the forecast with observations of

m2 only, energy constraint included; observations at every timestep, TDA = 0.3,

h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Figure 5.47: (a) Error and (b) Trajectory of the forecast with observations of m2

only, background and energy constraints included; observations at every timestep,

TDA = 0.3, h = 0.001, IC: (5.60) to (5.62), (5.66), (5.64) and (5.65)
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

This thesis has been concerned with the construction of data assimilation schemes

for Hamiltonian systems. We have demonstrated that the addition of weak con-

straints to the cost function produces an improved analysis and subsequent fore-

cast. Specifically we have illustrated the effect of including a constraint that weakly

imposes the conservation properties of the system at the initial time. We have

seen that the addition of such constraints to the typical 4d Var system, where

J = Jb + Jo, results in a significant reduction to the error in the analysis and

forecast.

We began in Chapter 2 by introducing Hamiltonian problems and giving

details of the mathematics for such systems. We demonstrated the significance

of the conservation properties which are intrinsic to Hamiltonian systems. We

showed that symplectic techniques are particularly successful for modelling such

problems as they prove to be excellent at conserving the inherent properties of the

system.
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In Chapter 3 we introduced the concept of data assimilation. We discussed

both the typical formulation of 4d Var and the addition of weak constraints to the

system.

Chapters 2 and 3 provided the information necessary to construct a 4d Var

scheme for a Hamiltonian problem. In Chaper 4 we made use of this to construct a

data assimilation algorithm for the two-body problem. We introduced the reduced

two-body problem that describes the system as one body of reduced mass orbiting

a fixed body of total mass. This formulation results in a system that can be

qualitatively described using Kepler’s Laws. These relate to the symmetry and

geometry of the problem and thus enhanced our understanding of our later results.

Having described the problem qualitatively we then derived the continuous

canonical equations and the resulting numerical model for the two-body problem.

This model was used to construct the 4d Var scheme for the system. We initially

considered a cost function containing the observation term only. We began by

considering the effect of assimilating different observation sets. We compared the

assimilation of a full state vector, observations of position only and observations

of momenta only. We then assessed the effect of using sparse observations, assim-

ilating eight observations in each case. We found that where we assimilated fewer

observations at more frequent intervals, the analysis and forecast were improved.

From these we selected an example where the error in the forecast was in-

creasing with time to provide a test case for our future experiments. Our aim was

to reduce this error by adding various extra terms to the cost function. The first

of these was a typical background term. This constrains the state vector of the

analysis to lie close to the background state vector. The remaining constraints

exploited the conservation properties of the system. The first of these weakly con-
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strained the energy of the analysis to be close to the energy of the background.

Thus we effectively, weakly impose energy conservation from window to window.

Similarly we considered a constraint on the angular momentum.

When adding our constraints, we looked at two different scenarios. Initially

we used a perfect background field. While unrealistic, this set up allowed us to

gain an insight into the effect of the different constraints on the geometry of the

solution. We found that all constraints provided an improved analysis and forecast

but the results were somewhat different. The energy and angular momentum

constraints reduced the phase error and thus we could infer that they imposed

a constraint on the semi-major axis and period of the orbit. This is due to the

fact that any orbits with the same semi-major axes will also have the same energy

and angular momentum. We also found that the effect of these constraints was

virtually identical. The background constraint, however, reduced the amplitude of

the oscillations in the error but not the phase error. From this we could deduce

that this term has the effect of constraining the eccentricity of the analysis.

We finally considered the addition of noise to the background field. We

found again that all three constraints provided an improvement to the analysis and

forecast. Here the typcial formulation of the background constraint produced the

best results. However when we added the energy constraint to the observation term

and the background term this further reduced the error. Similar results were found

when considering the angular momentum constraint. We also considered the effect

of adding all the additional constraints. While this improved the solution further,

the additional angular momentum term had the same effect as if we had doubled

the weighting on the energy constraint. This implies that we gain no different

information about the background field from the angular momentum constraint.
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The next stage of this thesis was to consider a more general problem. In

Chapter 5 we again use the information from Chapters 2 and 3 to construct a

4d Var scheme for the three-body problem. As for the two-body problem we

derived the continous equations for this energy conserving, Hamiltonian problem

and constructed the numerical model. For the three-body problem the choice

of initial conditions was important. The nature of the system means that the

behaviour of the three bodies is not always predictable. Our final choice of initial

conditions produced a Sun-Earth-Moon type system with the large scale motion

of the second and third bodies orbiting the first and the small scale of the third

body in orbit around the second.

We also tested the stability and sensitivity of this configuration. We showed

that while the system can be considered stable for the length of our model run, per-

turbations to the initial conditions could result in completely different behaviour.

Thus our assimilation scheme could produce an analysis that does not resemble

the true solution.

For our numerical experiments using the three-body 4d Var scheme, we ini-

tially looked at the effect of assimilating different observation sets. We found

that if we only assimilated observations from one body, the resulting assimilation

solution exhibited the behaviour that was significantly different to the truth.

As we found scenarios where the data assimilation scheme failed, we needed

to again consider the addition of further constraints. For the three-body problem

we investigated the effects of the background constraint and an energy constraint,

both applied at the initial time. We began by finding an example where, without

any constraints, the characteristic behaviour of the analysis is similar to the truth

but has an error that is increasing with time. This is similar to the case we used in
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the two-body problem and thus were able to infer certain effects of the constraints

by analogy with the two-body problem.

The first experiments used a perfect background field. We found that both

constraints improved the analysis and forecast in different ways. The background

constraint reduced the size of both the small and large scale oscillations. By com-

paring this with the two-body results we thus deduced that we were constraining

the eccentricities of all the orbits. With the energy constraint we observed that

the amplitude of the oscillations was not reduced therefore the orbits of the anal-

ysis have different eccentricities to those of the true solution. We noted that the

large scale behaviour did not mirror that of a two-body problem and phase error

was observed. This is because there are two orbits each with an associated energy

associated. Since the constraint is on the total energy, the assimilation scheme

cannot determine how much energy each orbit has alone. Thus our solution does

not have the same large scale period as the truth.

We next looked at the addition of noise to this background field. Both

constraints alone reduced the overall error, imposing both produced an even better

analysis. Here the background term provides further information to the system

and thus may positively affect the balance of the energy between the two scales,

producing orbits that have energies and thus periods that are closer to the truth.

We applied these constraints to the cases discussed previously, where the ob-

servation term alone could not reproduce the characteristic behaviour of the true

solution. We demonstrated that the additional constraints significantly increased

the interaction of the three bodies. We thus deduced that our additional con-

straints can not only reduce the error in our analyses and forecasts, in some cases

they can also provide enough additional information to produce the appropriate
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behaviour when the observation term alone cannot.

In our work on the two-body and three-body problems we have shown that

the addition of a weak constraint conserving the energy can improve our results

further than imposing the background term alone. By imposing this constraint

we are providing the data assimilation scheme with further information. We are

saying that we want the analysis to lie close to the background but only in such

a way that the energy is weakly conserved between the background field and the

anaysis. The gradient of the cost function includes the gradient of this energy term.

This gradient provides the descent direction for the minimisation algorithm. The

gradient will therefore only allow an analysis that satisfies both weak constraints.

In this thesis we have found that adding to the cost function a weak con-

straint that reflects the conservation property of the system, provides an improved

data assimilation solution and forecast. We have seen that this term provides

additional information about the structure of the solution. This may have an

implication for numerical weather prediction (NWP) models, since these exhibit

conservation of potential vorticity. Similar constraints could be investigated in

NWP data assimilation schemes to see if the results demonstrated in this work

can be extended to more complex systems.

6.2 Further Work

The 4d Var data assimilation algorithm for the three-body problem will provide a

useful testbed for many research questions regarding data assimilation for Hamil-

tonian problems. As an extension to this work, we could consider the effect of

adding a weak constraint on the angular momentum to the three-body problem.
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When we included this term for the two-body problem, it did not provide any

further information than the energy constraint. However, the three-body problem

has more degrees of freedom, and so the addition of such a constraint may have a

greater effect on the analysis and forecast. It might also prove useful to transform

this system so that the origin lies at the centre of mass. This would therefore

remove from consideration any error that is associated with the transverse motion

of the entire system. We would thus be able to see more clearly the effect of the

assimilation scheme on the two scales of motion that are of interest.

In addition, as we have discussed throughout this thesis, the three-body

problem has some useful features that reflect behaviour in the atmosphere. Over

certain timescales the atmosphere exhibits behaviour that is Hamiltonian in nature.

In addition we have two distinct scales of motion, the small scale gravity waves

and the large scale synoptic systems. Both of these properties can be observed in

the three-body problem if a suitable configuration is used.

In this section we will discuss several different areas of research where such

an assimilation scheme could be of use.

6.2.1 Fraternal-Twin Experiments

Fraternal-twin experiments use different models to provide the observations. These

can often provide a more realistic problem. For example, within data assimilation

schemes spurious gravity waves can be spuriously created by the model. These are

not features of the real atmosphere which is dominated by the larger scale, smooth,

synoptic features. We can consider using models that cannot produce these grav-

ity waves. However, although this would provide a reasonable approximation, it

does not allow for the fact that gravity waves are sometimes produced naturally
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in the atmosphere. We may thus want to use a full model for our data assimila-

tion algorithm to allow for these natural small scale motions. However since the

atmosphere is typically smooth we want to assimilate such observations. We can

use our three-body model to investigate this. Instead of assimilating observations

from the full three-body system we take observations from the corresponding two-

body problem that reflects the three-body large scale motion. This would allow

us to consider how the model deals with the small scale motion when there are no

observations at this scale.

Conversely we could consider the effect of using a two-body data assimilation

scheme and taking observations from the three-body system. This would allow us

to consider the situation where the model does not allow small scale motion but

the observations contain small scale features. Our model may help us understand

how these small scale features are interpreted by a data assimilation scheme which

cannot produce any small features. We can investigate how this might affect the

large scale behaviour in this case.

6.2.2 Imposing Constraints Across the Data Assimilation

Window

In this thesis we have considered constraints that are only explicitly imposed at

the initial time. Our three-body model would be an appropriate choice when

considering the effect of imposing the constraints across the whole of the data

assimilation window. In this thesis, we might consider that the energy constraint

acts across the entire window since the numerical model is energy conserving,

and we are imposing the property at the initial time. However we may consider

explicitly imposing this constraint across the assimilation window. This would
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have the effect of altering the adjoint of the system. The data assimilation scheme,

consisting of the forward nonlinear equations and the adjoint equations, is itself

Hamiltonian. We could therefore use the model to consider the effect of this

energy constraint, an additional Hamiltonian term, might have on the structure of

the overall data assimilation scheme.
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Appendix A

The Linear Three Body Equations

The linearisation of the nonlinear three body model equations is given by
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where δQn is the vector of position at the nth timestep, δP n the vector of momenta

of the three bodies.

The coefficients in the above equations are given by
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where the vectors Qn and P n are the linearisation states.
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Appendix B

Calculation of Scr

From [48] we have that

Scr =
f 2g

6m̄6
(B.1)

where

f(x) = m1m3 +
m2m3

1 + x
+

m1m2

x
(B.2)

g(x) = m1m3 + m2m3(1 + x)2 + m1m2x
2, (B.3)

and m̄ is the mean mass of the three bodies.

The value of x is such that it satisfies

(m3+m1)x
5+(3m3+m1)x

4+(3m3+m1)x
3−(3m2+m1)x

2−(3m2+2m1)x−(m2+m1) = 0.

(B.4)

The values of the masses for our problem are m1 = 1, m2 = 0.1 and m3 = 0.01. By

substituting these values into (B.4) and using the Newton method to iteratively

solve the resulting polynomial, we find that, for this problem, x = 1.1546. Using

this we can evaluate f(x) and g(x). We therefore calculate that the critical value

to be

Scr = 9.0567× 10−2 (B.5)
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