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Abstract

In many computational simulations there are identifiable quantities of physical interest

which are weighted integrals of the solution of a boundary or initial value problem.

Examples include lift and drag in aerodynamics and well productions in reservoir simu-

lations. Methods that can bound these quantities sharply are therefore of considerable

practical importance.

Although existing theory can sometimes be used to construct theoretical bounds on these

quantities, for example those governed by a self-adjoint operator, it has not hitherto been

exploited in a practical context. In this thesis, novel applications of these bounds have

been devised and implemented for a number of model problems. In particular, the

upscaling problem experienced in the oil industry, which is governed by the steady state

diffusion equation, is addressed by finding bounds on the well outflow.

Extensions to the theory for problems involving non-self-adjoint operators, which en-

able computable bounds to be determined for quantities of physical interest, are devel-

oped using two approaches. Firstly, semi-discrete approximations are considered for the

time-dependent diffusion equations and the advection-diffusion equation, although this

approach does not lead to direct bounds on the analytic quantity of interest. However,

such bounds are found by effectively squaring the operator, and this second method is

successfully applied to the advection equation.

Finally, the construction of a grid refinement procedure to optimise the accuracy of

the bounds and efficient numerical techniques for the determination of these physical

quantities are considered.
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Chapter 1

Introduction

1.1 Background

Concentrating on the evaluation of physical quantities expressed as weighted integrals

of the solutions of partial differential equations, such as lift and drag, is a growing field

in mathematical modelling and often generates numerical methods with an increased

degree of accuracy for a given computational cost. In addition, identifying these quanti-

ties focuses the efforts of any approximation methods, effectively specifying the norm in

which the error in the numerical computations will be judged. The quantities of inter-

est also have a unifying effect since all the procedures involved in the solution method

can be focused on a common objective. An example of such a procedure is grid refine-

ment, based on increasing the accuracy of the quantity sought rather than unselectively

resolving every feature of the solution.

A natural vehicle for this approach is optimisation. In an optimisation problem the

solution is often judged on a low number of key criteria, for example the design of an

airfoil section with improved lift and drag performance, as considered in [16]. Optimi-

sation problems of this nature are often non-linear and an iterative solution procedure

is adopted. During these iterations the flow around the airfoil is simulated many times,

however, from these simulations the only quantities required are the lift and drag forces

(and possibly the derivatives of these quantities with respect to variations in the geom-

etry). Therefore, solving the flow around the airfoil, in some sense, can be considered

a black-box procedure and in general the full flow fields generated may never actually

be required by the user. Methods which enable these desired quantities to be obtained
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more accurately and efficiently hold obvious attraction.

Finally, it might be expected that by concentrating analytical and numerical efforts on

resolving a low number of projections of the solution of a given problem, as opposed to

the complete solution, greater returns may be available.

This thesis aims to investigate the common ground between numerical methods focused

on resolving specific physical quantities and variational methods. In general these spe-

cific physical quantities, termed ‘quantities of interest’, are not derived from a variational

principle, although the solutions to the governing equations may have been. However,

a strong relationship exists between variational principles and the quantities of interest

sought. Variational principles are concerned with relating the solution of an equation to

the stationary point of an associated functional. Corresponding to the stationary point

of the functional there exists the (scalar) stationary value of the functional, found by

evaluating the functional at the stationary point. The stationary value of the functional

is frequently found to hold physical significance and is often directly related to the quan-

tity of interest discussed. Moreover, for a certain class of variational principles, bounds

can be constructed on the stationary value of the functional, raising the possibility of

bounding the related quantities of interest.

The focus of this research is to investigate under what circumstances such bounds can

be constructed. The applications of the methods discussed are to model problems from

the petroleum industry motivated by industrial contacts with Schlumberger, Abing-

don. Due to the position of the research between classical variational principles and

more specialised numerical methods the thesis rests on a broad foundation of literature

categorized in the following sections.

Additional material specific to the problems considered will be referenced within the

thesis.

1.2 Variational Methods

The relationship between variational principles and the solution of partial differential

equations has proved a powerful theoretical and numerical tool. The application to

2



models from fluid dynamics was initiated by Bateman [5], in which variational formula-

tion for the governing equations of incompressible inviscid flow are presented. Bateman

used the variational formulation of this problem to investigate the relationship between

the boundary conditions imposed on the flow and the transition of flow from elliptic to

hyperbolic form. Later, Luke [29] extended the variational formulation for an incom-

pressible inviscid flow to include the appropriate boundary conditions for a free surface,

enabling variational techniques to be applied to water wave problems.

The variational formulation of partial differential equations also enables consistent nu-

merical methods to be constructed by replicating the continuous stationary equations

at a discrete level. The best known of these techniques is the finite element family of

methods to which extensive analysis has been applied, including [8, 26].

The construction of dual variational principles or complementary extremum principles

for certain variational formulations, and the ability of such methods to obtain bounds

on the stationary value is considered by Courant and Hilbert [13]. Dual variational

principles are established by constraining the original ‘free’ principle and analysing the

convexity present in the constrained functional.

The physical significance of the stationary point in many variational functionals was

recognised by Synge [46]. Synge obtains bounds on the stationary value of physical

functionals by considering the analytic solution to lie on a hypercircle defined by the

approximate solutions, obtained from a pair of complementary variational principles,

and an orthogonality relationship between the two approximation spaces. The hyper-

circle of Synge provides a useful geometric interpretation of the relationship between

the pair of approximate solutions, the analytic solutions and the resulting bounds. A

second geometric interpretation of the dual extremum principles is obtained by consid-

ering the convexity of the free principle. The ability to constrain the free functional in

two different ways to obtain convex and concave functionals respectively, implies that

the free principle is saddle-shaped. The saddle-shaped interpretation of the extremum

principles is adopted and applied to a catalogue of examples by Sewell [44] and Arthurs

[3]. For the purposes of this thesis the saddle-shaped interpretation will be adopted and

the associated notation is introduced in section 1.2.1.
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Dual extremum principles frequently arise when the governing operator is self-adjoint

and positive. The positivity of the operator provides the required convexity in the

governing functional and the self-adjointness enables the problem to be naturally split

into two constrained variational principles. However, the desirability of dual variational

principles to provide bounds on quantities of physical significance motivates extension

of the methods to include non-self-adjoint problems. Gurtin [19] developed variational

principles for (non-self-adjoint) linear initial-value problems in which the Laplace trans-

form is applied to the governing equation in order to render the temporal derivatives

purely algebraic. The variational principle is then constructed in the transform space.

The method is considered with respect to the wave problem and the heat conduction

problem although the concept of a quantity of interest is absent.

A quantity of interest is presented in Collins’ [12] dual extremum formulation for the

heat equation, in which an adjoint equation compensates for the energy dissipated by the

primal and thus global conservation is retained in a particular sense. Although rigorous

extremum principles are derived by Collins, the applicability of the method is restricted

by the nature of the constraints required to generate the necessary saddle-shaped topol-

ogy. The constraints on the trial functions takes the form of a Poisson equation and

satisfying these exactly, as is required to guarantee valid bounds, is little easier than solv-

ing the original problem analytically. The applicability of these constraints associated

with dual extremum principles is an important factor in determining the practicality of

the method with respect to engineering applications. Considering methods in which the

required constraints can be satisfied efficiently will be a key emphasis of the thesis.

The aim of the research is then to consider novel applications for existing dual varia-

tional principles and extend existing theory to include non-self-adjoint problems in a

computationally efficient manner.

1.2.1 Saddle-Shaped Functionals

The existence of dual extremum principle relates directly to the saddle-shaped topology

of the governing functional [3, 44]. The crucial property of the saddle-shaped topology

is the existence of a pair of axes on which the functional is concave and convex respec-

tively. These axes correspond to the pair of constrained functionals which also have

4



opposing convexity properties. A representation of a saddle-shaped functional G(p, q) is

shown in figure 1.1. Upper and lower bounds on the stationary value G(p̂, q̂) are found

Figure 1.1: A saddle-shaped functional

by constraining the functional to lie on the axis for which the functional is either convex

or concave respectively. The hatted variables denote the stationary point of the func-

tional, or equivalently the analytic solution of the governing equation. The functional

is constrained by satisfy particular relationships between the functions p and q, termed

the constraints. For example, satisfying the constraint H− which defines q in terms of p

enables the dependence of the functional on p and q to be be replaced by dependence on

p only. Consequently, the resulting constrained functional G−(p) inherits the convexity

associated with the unconstrained functional along the axis H−. Moreover, the con-

struction is such that the maximum G−(p̂) of the constrained functional G−(p) coincides

with the stationary point of the unconstrained functional G−(p̂, q̂).

Approximations to the stationary point ph ≈ p̂ can therefore be made by maximising the

value of the functional G−(ph). Whether or not the stationary point of the constrained
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functional is attained by maximising G−(ph) depends on whether the analytic solution

p̂ is an element of the approximation space. If, as is more usual, p̂ is not an element of

the approximations space, maximising G−(ph) results in the selection of the element ph

that minimises the error G−(p̂) − G−(ph) = ε1. Crucially, due to the convex nature of

the functional G−(p), G−(p) ≤ G−(p̂) = G(p̂, q̂) for all p and hence G−(ph) is an optimal

lower bound on the stationary value of the functional. The bound is optimal in the

sense that the error ε1 is minimised. Similarly, an optimal upper bound is found by

constraining the functional G(p, q) by the constraint H+ to obtain the functional G+(q),

and minimisation of G+(qh), yields an optimal upper bound and the approximation

qh ≈ q̂ in an analogous manner.

Although, in practice satisfying the constraints H− and H+ may complicate implement-

ing the dual extremum principles described, the resulting bounds are rewardingly sharp,

due to their optimal nature. In particular, weak inequalities and approximations to the

spectrum of the operator are avoided. A method of obtaining sharp bounds is a necessity

if they are to be used in an engineering context.

The variational techniques cited provide a natural framework for bounding the station-

ary value of the governing functional, a quantity which is often of physical significance

and is expressed as a weighted integral of the analytic solution. The properties of the

stationary value have been known since before the work of Synge, but in contrast to clas-

sical variational methods, the development of numerical methods to efficiently resolve

linear functionals of the solution is a relatively recent advance.

The definition of the quantity of interest is introduced in the next section. Determination

of the bounds on this single quantity is the objective of the methods and techniques

discussed in the following chapters.

1.3 Quantities of Interest

The quantity of interest Θ, an integral of the solution, can be considered as the inner

product of a weighting function t with the solution φ̂ of the governing equation

Aφ̂ = s, (1.1)
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where A is a differential operator. Hence

Θ = (φ̂, t), (1.2)

for some general inner product (·, ·). In practice the inner product will depend on the

nature of the operator A and may include boundary terms. A specific inner product

will be considered in chapter 2. The dual problem governed by the adjoint equation is

found to be particularly useful in this context and is defined as

A∗σ̂ = t. (1.3)

The dual problem allows the inner product (1.2) to be expressed either in terms of the

primal or dual solutions through

Θ(φ̂) = (φ̂, t) = (φ̂, A∗σ̂) = (Aφ̂, σ̂) = (s, σ̂). (1.4)

An important application of the adjointness statement (1.4) is when the quantity of

interest is required to be evaluated for many different forcing functions si of the primal

equation, as outlined by Giles and Pierce [18]. In this context it is computationally

cheaper to solve the dual problem and obtain σ̂, or an approximation to it, and then

evaluate the quantity of interest using

Θi(φ̂) = (si, σ̂). (1.5)

This situation occurs in many optimisation problems in which a solution is found iter-

atively and the forcing function for the primal problem (1.1) varies from iteration to

iteration. Often however, the weight t in the quantity of interest (1.2) does not vary

over the iterations and therefore neither does the solution σ̂. The evaluation of (1.5)

is therefore considerably cheaper than (φ̂i, t) for multiple functions si since the cost of

obtaining multiple solutions of the primal equation (1.1) is substituted for the cost of

obtaining a single solution of the dual equation (1.3).

The relationship (1.4) illustrates the role that the dual equation plays in the relation-

ship between the primal equation and the quantity of interest. In general A is a partial

differential operator and the analytic solutions φ̂ and σ̂ are unavailable. Instead, ap-

proximations φh and σh are constructed using numerical methods and an approximation

to the quantity of interest Θ(φh) is found. Having obtained an approximation to the
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quantity of interest the error incurred in this quantity due to the approximate nature

of φh and σh can be estimated using the ‘error representation formula’ of [45].

The ‘error representation formula’ is derived by considering the adjointness statement

(1.4). Employing (1.4) the error in the quantity of interest when φ is approximated

by φh can be equated to the residual of the primal problem (1.1) weighted by the dual

solution, namely the error representation formula,

Θ(φ̂)−Θ(φh) = (φ̂− φh, t) = (φ̂− φh, A
∗σ̂) = (Aφ̂− Aφh, σ̂) = (s− Aφh, σ̂). (1.6)

Although this error representation formula is given in terms of σ̂, the analytic solution

of the dual problem, and is therefore not directly accessible, approximations to the

formula have formed the basis of much a posteriori error analysis concerning quantities

of interest [7, 17, 38, 41, 45].

In contrast to the route suggested by the error representation formula, this research

aims to bound the quantity of interest, and hence the error in the quantity of interest,

using dual variational methods. These methods enable bounds to be constructed from

a pair of numerical solutions and therefore the error bound is directly computable, as

opposed to the error representation formula (1.6).

Having obtained an estimate for the error in the quantity of interest this information

can be harnessed and used to improve the accuracy of the numerical simulation. Two

main applications of this philosophy are in grid adaption and error correction.

1.3.1 Grid Adaption

The aim of a grid adaption algorithm is to efficiently construct an approximation space

such that the error in the quantity of interest is less than a user defined tolerance

|Θ(φ̂)−Θ(φh)| ≤ tol. (1.7)

Grid adaption strategies arise naturally from a posteriori error estimation methods since

the local contribution to the error representation formula can be evaluated from each

element. Representing the error in the quantity of interest by the sum of the local error

indicators ηi, so that

|Θ(φ̂)−Θ(φh)| =
∑

i

ηi, (1.8)
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the grid can be refined in elements in which the local error indicator fails a local criteria.

Various methods have been proposed to calculate the local error indicators including

the Type I and II estimates of Suli and Houston [45].

The Type II a posteriori estimates are found by assuming that a finite element method

is used to obtain the solutions φh and σh, where both solutions lie in the same approxi-

mation space. The error representation formula can then be written as

Θ(φ̂)−Θ(φh) = (s− Aφh, σ̂), (1.9)

= (s− Aφh, σ̂ − σh), (1.10)

through the well-known Galerkin orthogonality property. The Type II a posteriori

estimates are then obtained by applying the Cauchy-Schwartz inequality to the error

representation formula (1.10), and effectively bounding the norm ‖σ̂−σh‖ by the product

of an interpolation constant and a strong stability constant. However, in applying the

Cauchy-Schwartz inequality and bounding the contribution from the adjoint equation

the interplay between the primal and dual solutions is lost. As a result the Type II

estimates prove poor at identifying regions in the solution to which the quantity of

interest is sensitive. In addition, the ability to obtain the pair of constants, and the

circumstances under which the bound is valid, in general is limited.

Instead, the Type I estimate is considered in which σ̂, or in practice a numerical ap-

proximation σd ≈ σ̂, is present. The approximate solution of the dual problem σd must

be found in a different space from that of the primal solution so that the error represen-

tation expression is non-zero. In addition, the error resulting from the substitution of σ̂

by σd must not adversely effect the accuracy of the error estimate. To ensure that σd is

sufficiently well resolved the dual grid is refined to a tolerance less than that of primal

grid. The Type I error estimate proves effective since local contributions to the inner

product (1.10) are only substantial if both the primal residual and the dual solution

are significant within the element. In this manner only regions in which the solution

affects the quantity of interest are highlighted. Type I error estimates have been suc-

cessfully implemented by Suli and Houston using the streamline-diffusion finite element

method to model the stationary transport equation, and the discontinuous Galerkin

finite element method to model the wave equation, Burger’s equation and an aerofoil

simulation.
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The Type I error estimates generate highly efficient grids on which to resolve quantities

of interest since solution details that are irrelevant to the quantity of interest are auto-

matically ignored. The efficiency of the method attracts engineering applications and

further extensions of the method including non-linear theory are discussed in [45] and

constructed in [21]. In particular, the validity of the error representation formula and

approximations to it in the proximity of shocks is considered.

The error representation formula is the basis of a family of a posteriori error estimation

techniques including the Dual Weighted Residual Method of Becker and Rannacher

[7, 41]. Becker and Rannacher advocate the use of a symmetrical form of the error

representation formula

Θ(φ̂)−Θ(φh) = (s− Aφh, σ̂), (1.11)

=
1

2
(s− Aφh, σ̂ − σh) +

1

2
(φ̂− φh, t− Aσh) (1.12)

in order to balance the contribution from the primal and dual residuals.

The mesh refinement procedure is naturally an iterative process in which the grid is

progressively refined and the solution re-calculated until the desired accuracy is achieved.

In contrast, error correction is a technique to recover additional accuracy in the quantity

of interest, and can be applied only once.

1.3.2 Error Correction

The error correction method enables additional accuracy to be obtained in the quantity

of interest by adding a term based on the weighted residual of the primal problem.

The technique has been developed by Giles and Pierce [17, 18, 38], and is based on the

expansion of the quantity of interest in the form

Θ(φ̂) = (φ̂, t), (1.13)

= (φh, t)− (φh − φ̂, A∗σh) + (φh − φ̂, A∗σh − A∗σ̂), (1.14)

= (φh, t)− (Aφh − Aφ̂, σh) + (φh − φ̂, A∗σh − A∗σ̂). (1.15)

The first term of the expansion is the value obtained for the quantity of interest when the

approximate solution φh is used. The second term represents a computable correction

to the first term. The correction is computable because Aφh −Aφ̂ is the residual of the
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primal problem and σh is the numerical solution of the dual problem. The third term is

the remaining error and is not computable due to the presence of the analytic solution

φ̂. Numerical results generated using the error correction method have demonstrated

that superconvergence can be obtained in the quantity of interest with respect to the

order of the schemes used to calculate the solutions φh and σh. Superconvergence of

the quantity of interest is an advantageous property reducing the computational cost

of obtaining accurate results. Interestingly, finite element methods in which the primal

and dual solutions are approximated in the same space already exhibit this convergence

rate as (Aφh − Aφ̂, σh) = 0 by the Galerkin orthogonality property. However, when a

non-optimal method is implemented, such as finite volumes, the error correction method

enables this advantageous convergence property to be recovered.

The stationary value of the functionals considered naturally exhibit super-convergent

characteristics due to the near stationary nature of the functional in the proximity of

the stationary point. This property is explored in section 2.3.1.

1.4 Contents of Thesis

The content of thesis is based on constructing upper and lower bounds on quantities of

interest. In general, the bounds are obtained by associating the quantity of interest with

the stationary points of two saddle-shaped functionals. The saddle-shaped topology

of these functionals enables bounds to be generated on the stationary values, which

translate to bounds on the quantity of interest.

In chapter 2 the saddle-shaped structure of the functional associated with a self-adjoint

problem is explored and an example governed by the diffusion equation is considered.

The variational principles governing the diffusion equation can be found in [3] and [44].

From the diffusion functional the dual extremum principles that enable the upper and

lower bounds to be found are demonstrated and the advantageous accuracy properties of

the stationary point are considered. Numerical results are generated from the diffusion

functional by considering the ‘upscaling’ problem encountered in the petroleum industry.

The ‘upscaling’ problem involves the averaging of physical properties of the oil reservoirs

in some sense to enable efficient numerical simulations to be implemented. The averaging
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is required because the original description is prohibitively large, but must be sensitive

enough to preserve important features of the model.

In chapter 3 a review of existing upscaling methods is presented and a new upscaling

philosophy generated. The new philosophy is based on preserving the bounds on the

quantity of interest whilst implementing an upscaling method. The quantity of interest

in these simulation is considered to be the flux out of the reservoir, equivalent to the well

productions. This new method enables the performance of various existing upscaling

methods to be contrasted. In addition, methods based on the new upscaling philosophy

are also constructed, tested numerically, and compared with conventional upscaling

methods. Extensions to permeability data with uncertainties and multiphase upscaling

are also discussed.

The second half of the thesis is concerned with obtaining bounds on quantities of in-

terest in which the problem is governed by a non-self-adjoint operator. The lack of

self-adjointness in the governing equations removes the saddle-shaped topology of the

associated functionals and upper and lower bounds of the nature sought are not imme-

diately available. Various methods to regain self-adjointness are proposed. In chapter

4 the non-self-adjoint advection-diffusion equation is considered with applications as

another prototype oil reservoir model. Motivated by this type of equation the time-

dependent diffusion equation is initially considered. Discretising the time-dependent

equation implicitly in time enables each time-step to be taken by solving a Helmholtz

equation. The Helmholtz equation has an associated saddle-shaped functional, [3] and

[44], and this presents the possibility of finding upper and lower bounds again. How-

ever, the discretisation of the equation in time is found to weaken these bounds to mere

approximations to the analytic quantity of interest. A similar approach is found to be

possible with the advection-diffusion equation, except that a Lagrangian discretisation is

required. Again, however, the bounds obtained are only approximations to the analytic

quantity of interest. For the advection-diffusion equation the approximations to the

quantity of interest are found to deteriorate when advection dominated flows are con-

sidered, and therefore methods to obtain bounds on the analytic value of the quantity

of interest are sought.

To obtain bounds on the analytic value of the quantity of interest the governing equa-
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tions require modifying in such a manner as to re-introduce the required convexity into

the associated functionals. Methods to achieve this modification are discussed in chap-

ter 5. The approach adopted is essentially to “square” the operator in the governing

equations and solve the new problem over the whole time-space domain. An example

based on the advection equation is considered, motivated by the difficulties the advection

terms caused the semi-discrete methods constructed in chapter 4. Solving the governing

equations over the complete time-space domain can be expensive and therefore a grid

refinement procedure based on improving the accuracy in the quantity of interest is

presented and also applied to the advection equation.

Up to this point the focus of the methods considered have been on obtaining bounds

on the quantity of interest. However, approximate solutions to the governing equations

are also obtained during the course of these method. In chapter 6 an investigation is

carried out into the possibility of obtaining the quantity of interest without having to

solve the governing equations. In addition, a comparison between the relative costs of

methods capable of calculating the quantity of interest is made.

The final chapter draws some general conclusions from the thesis and identifies areas

for further research.
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Chapter 2

The Self-Adjoint Operator Case

The aim of this chapter is to present a systematic method of obtaining upper and

lower bounds on the stationary value of a functional which involves the solution of an

equation containing a positive self-adjoint operator. The functional is found to be saddle-

shaped with the underlying convexity generated through the positivity associated with

the operator. Subsequently, it is found that the functional can be related to both the

Lagrangian and Hamiltonian formalisms through which the convexity can be attributed

to the concept of an ‘energy’ associated with the solution.

Initially we employ a general notation for clarity, assuming only that the functions

involved are real valued.

The problem is to solve the equation

Ap̂ = r, (2.1)

where A is a positive self-adjoint operator, and can therefore be written as A = T ∗T

for some operator T . The governing equation (2.1) does not explicitly include boundary

terms but they can be considered to be present in the definition of the operator.

Much of the theory which follows consists of obtaining weak solutions to (2.1) and

therefore appropriate inner products are required. The inner products are associated

with the two components, T and T ∗ of the operator A and satisfy the adjointness

statement

〈〈q, Tp〉〉 = 〈〈Tp, q〉〉 = 〈p, T ∗q〉 = 〈T ∗q, p〉. (2.2)
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As with the operator, the inner products may in part be defined over the boundary of

the domain.

In the following sections the saddle shaped structure of certain functionals will be illus-

trated. Then, having developed the theory in a general framework the method will be

applied to a simplified oil reservoir model. In the oil reservoir model the relationship

(2.2) will arise from the −div / grad adjointness statement embodied in the divergence

theorem.

2.1 Bounds via a Saddle-Shaped Functional

In this section the saddle-shaped functional G(p, q) is introduced. The functional is found

to be stationary at the solution of the governing equation (2.1) and the stationary value

is found to be closely related in structure to the quantities of physical interest being

pursued. Moreover, bounds can be established on the stationary value by applying

constraints to the functional G(p, q) in the manner described in section 1.2.1.

2.1.1 The Governing Functional

Writing the governing equation (2.1) as two equations involving an intermediate function

q̂ we obtain the pair

T ∗T p̂ = r





T p̂ = q̂,

T ∗q̂ = r.
(2.3)

The solution of the pair (2.3) is the stationary point of the functional

G(p, q) =
1

2
〈〈q, q〉〉 − 〈〈Tp, q〉〉+ 〈p, r〉 (2.4)

which is found by equating the first order variations of the functional with respect to p

and q, to zero. Hence,

0 = δG(p, q), (2.5)

= 〈〈δq, q − Tp〉〉 − 〈δp, T ∗q − r〉, (2.6)

for all variations δq and δp, which implies that the pair (2.3) are satisfied at the sta-

tionary point and the solution p = p̂, q = q̂ is attained there.
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2.1.2 The Stationary Value

The stationary value is obtained by substituting the natural conditions (2.3) into the

functional to obtain

G(p̂, q̂) =
1

2
〈〈q̂, q̂〉〉 − 〈〈T p̂, q̂〉〉+ 〈p̂, r〉, (2.7)

= −1

2
〈〈T p̂, q̂〉〉+ 〈p̂, r〉, (2.8)

= −1

2
〈p̂, T ∗q̂〉+ 〈p̂, r〉, (2.9)

=
1

2
〈p̂, r〉. (2.10)

The stationary value is therefore in the form of a particular quantity of interest Θ,

namely the inner product of the analytic solution p̂ of the governing equation with the

weight function r, (although the quantity of interest has an additional multiplicative

constant, 1
2
, in this case.) Upper and lower bounds on the stationary value and therefore

bounds on the quantity of interest, are available in this case.

2.1.3 Upper and Lower Bounds on the Stationary Value

Upper and lower bounds on the stationary value are found by constraining the functional

G(p, q) to obtain concave and convex functionals that are themselves stationary at the

point G(p̂, q̂).

Firstly, the functional G(p, q) is constrained to lie on the hyperline H− defined by the

equation

q = Tp. (2.11)

Substituting (2.11) into the functional G(p, q) ensures that for all functions p, q is defined

by the constraint. Making the substitution the functional G−(p) = G(p, Tp) is obtained,

G−(p) = 〈r, p〉 − 1

2
〈〈Tp, Tp〉〉. (2.12)

A one-sided bound can be established by showing that the difference between the gen-

eral value of the functional and its stationary value is non-negative. Considering the

difference in the value of the functional evaluated at the stationary point p̂ and the value

of the functional evaluated with any other suitable function p we obtain

G−(p̂)− G−(p) = 〈r, p̂〉 − 1

2
〈〈T p̂, T p̂〉〉 − 〈r, p〉+

1

2
〈〈Tp, Tp〉〉, (2.13)
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= 〈T ∗q̂, p̂− p〉 − 1

2
〈〈T p̂, T p̂〉〉+

1

2
〈〈Tp, Tp〉〉, (2.14)

= 〈〈 q̂, T (p̂− p) 〉〉 − 1

2
〈〈T p̂, T p̂〉〉, +1

2
〈〈Tp, Tp〉〉, (2.15)

=
1

2
〈〈T (p̂− p), T (p̂− p) 〉〉, (2.16)

≥ 0, (2.17)

and hence G−(p) is an underestimate of G−(p̂) and a lower bound for the stationary

value of the functional. The principle

δG−(p) = 0 p ∈ H− (2.18)

is referred to as a maximum principle since the maximum value of the functional occurs

at the solution of the governing equation (2.3).

Similarly, by defining the hyperline H+ by the equation

T ∗q = r (2.19)

and constraining the functional to lie on this line, an upper bound is found. In contrast

with the lower bound the constraint H+ cannot be directly substituted into the func-

tional due to the lack of an explicit relationship expressing the function p in terms of

q. Instead the approximation space is constrained and q is considered to belong to the

set of functions H+ satisfying (2.19). Under these assumptions we obtain the functional

G+(q),

G+(q) =
1

2
〈〈q, q〉〉. (2.20)

The functional G+(q) provides an upper bound on the stationary value, since for any

suitable q and φ

G+(q)− G+(q̂) =
1

2
〈〈q, q〉〉 − 1

2
〈〈q̂, q̂〉〉, (2.21)

=
1

2
〈〈q, q〉〉 − 1

2
〈〈q̂, q̂〉〉+ 〈φ, T ∗(q̂ − q) 〉, (2.22)

=
1

2
〈〈q, q〉〉 − 1

2
〈〈q̂, q̂〉〉+ 〈〈Tφ, q̂ − q〉〉, (2.23)

and in particular when φ = p̂

G+(q)− G+(q̂) =
1

2
〈〈q, q〉〉 − 1

2
〈〈q̂, q̂〉〉+ 〈〈T p̂, q̂ − q〉〉, (2.24)

=
1

2
〈〈q, q〉〉 − 1

2
〈〈q̂, q̂〉〉+ 〈〈q̂, q̂ − q〉〉, (2.25)

=
1

2
〈〈q − q̂, q − q̂〉〉, (2.26)

≥ 0. (2.27)
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The principle

δG+(q) = 0 q ∈ H+ (2.28)

is referred to as a minimum principle since the minimum of the functional occurs at the

solution of the governing equation (2.3).

The contrasting nature of the two constraints (2.11) and (2.19) results in the numerics

concerned with the upper and lower bounds having differing degrees of complexity.

Satisfying the first constraint by constructing a pair of functions (p, q) ∈ H− is trivially

achieved by applying the operator T to the function p. Satisfying the second constraint

is non-trivial and in general obtaining an upper bound on the stationary value is more

demanding. However, it is worth noting that in splitting the self-adjoint operator into

its components T and T ∗, it is not assumed that the constraint H+,

T ∗q = r (2.29)

uniquely determines q = q̂, but rather implies a set of functions containing q̂ over which

G+(q) can be minimised.

The saddle-shaped topology of the functional G(p, q) is demonstrated by the convex and

concave functionals, G−(p) and G+(q), existing along the “axes” H− and H+ respectively.

A sketch of the axes is shown in figure 2.1, with the solution of the governing equation

naturally occurs at the intersection of the two hyperlines H− and H+.

2.1.4 Finite Dimensional Approximations

The derivation of the upper and lower bounds holds for all q ∈ H+ and all p ∈ H−

respectively. To obtain numerical approximations the finite dimensional subspaces H+
h ⊆

H+ and H−
h ⊆ H− are introduced in which the approximations ph ≈ p̂ and qh ≈ q̂ can

be found. Defining µ± in terms of the optimum bounds for the given subspaces,

µ− = max
ph∈H−

h

G−(ph), (2.30)

µ+ = min
qh∈H+

h

G+(qh), (2.31)

the bounds on the quantity of interest

2µ− ≤ 〈p̂, r〉 ≤ 2µ+ (2.32)

18



H+

H−

p 

q 

Figure 2.1: The saddle shaped functional G(p, q)

are established.

The functionals G−(p) and G+(q) are quadratic and therefore have a unique maximiser

and minimiser respectively. Correspondingly, obtaining the bounds µ− and µ+ in the

finite-dimensional subspaces reduces to solving symmetric positive definite systems of

linear normal equations, for which standard matrix methods can be used. The self-

adjointness of the operator implies symmetry and positive definite properties in the

matrix and this allows efficient methods such as conjugate gradients (CG) to be applied.

To summarise, the variational principle δG(p, q) = 0 is found to deliver the required sta-

tionary conditions and in addition the stationary value has found to be directly related

to a particular quantity of interest. The saddle-shaped topology of the functional G(p, q)

is fundamental to obtaining the upper and lower bounds on the stationary value and is

due to a positive ‘energy’ term in the Lagrangian formalism. The Lagrangian in turn

enables the Hamiltonian formalism to be constructed which includes the introduction of

the intermediate variable q. As a means of illuminating the foundations of the functional

G(p, q) from this point of view, a derivation from classical mechanics is considered.
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2.2 A Derivation from Classical Mechanics

There is a large body of literature on Lagrangian and Hamiltonian Mechanics (see e.g.

the introductory text [30].) Examples of generating saddle-shaped functionals from

Hamilton’s equations can be found in [44].

Initially we consider the Lagrangian formalism. The Lagrangian is defined as a kinetic

energy term minus a potential energy term. The kinetic energy term is defined in terms

of the energy norm associated with the inner product 〈〈·, ·〉〉 in the standard manner,

‖φ‖2
〈〈〉〉 = 〈〈φ, φ〉〉. (2.33)

2.2.1 The Lagrangian Formalism

In the Lagrangian formalism we consider the concave Lagrangian functional L(p, Tp),

L(p, Tp) =
1

2
‖Tp‖2

〈〈〉〉 − 〈p, r〉,

=
1

2
〈〈Tp, Tp〉〉 − 〈p, r〉,

Kinetic term− Potential term. (2.34)

The first order variations of the functional are

δL = 〈〈Tp, δ(Tp)〉〉 − 〈r, δp〉,
= 〈T ∗Tp− r, δp〉. (2.35)

which vanish at the stationary point p = p̂ for all variations in p. The criterion

δL(p, Tp) = 0 is simply Hamilton’s principle and the governing equation (2.3) is the

corresponding Euler-Lagrange equation.

The Lagrangian functional automatically provides the required convexity to obtain a

one-sided bound on the stationary value L(p̂, T p̂). The functional L(p, Tp) has the

same form as the functional G−(p) and the bound is demonstrated in the same manner.

Considering the difference between the functional evaluated at the stationary point

(p̂, T p̂) and the functional evaluated at any point (p, Tp), then

L(p̂, T p̂)− L(p, Tp) =
1

2
〈〈T p̂, T p̂〉〉 − 〈p̂, r〉 − 1

2
〈〈Tp, Tp〉〉+ 〈p, r〉, (2.36)
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=
1

2
〈〈T p̂, T p̂〉〉 − 1

2
〈〈Tp, Tp〉〉+ 〈p− p̂, r〉, (2.37)

=
1

2
〈〈T p̂, T p̂〉〉 − 1

2
〈〈Tp, Tp〉〉+ 〈〈Tp− T p̂, T p̂〉〉, (2.38)

= −1

2
〈〈T p̂− Tp, T p̂− Tp〉〉, (2.39)

= −1

2
‖T p̂− Tp‖2

〈〈〉〉, (2.40)

≤ 0, (2.41)

and hence the value of the Lagrangian functional is never less than the analytic station-

ary value of the functional and forms an upper bound on it.

The complementary bound is obtained by increasing the scope of the functional by intro-

ducing a second independent (conjugate) function q, through a Legendre transformation

enabling the change of variables (p, Tp) 7→ (p, q). The change of variables introduces the

Hamiltonian formalism and an associated functional that is stationary at the solution

of Hamilton’s equations.

2.2.2 The Hamiltonian Formalism

The Hamiltonian functional H(p, q) is defined by the Legendre transformation

L(p, Tp) = 〈〈Tp, q〉〉 − H(p, q), (2.42)

between the pairs (p,Tp) and (p,q), where q is a conjugate variable. Equating the first

order variations we obtain

〈∂L
∂p

, δp〉+ 〈〈 ∂L
∂(Tp)

, δ(Tp)〉〉 = 〈〈Tp, δq〉〉+ 〈〈δ(Tp), q〉〉 − 〈∂H
∂p

, δp〉 − 〈〈∂H
∂q

, δq〉〉. (2.43)

Defining the conjugate function to be

q =
∂L

∂(Tp)
= Tp, (2.44)

the relationship

0 = 〈〈Tp− ∂H
∂q

, δq〉〉 − 〈∂H
∂p

+
∂L
∂p

, δp〉 (2.45)

is obtained from (2.43) and leads to Hamilton’s equations

∂H
∂q

= Tp, (2.46)

∂H
∂p

= −∂L
∂p

. (2.47)
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From Hamilton’s equations the Hamiltonian H(p, q) can be constructed,

H(p, q) =
1

2
〈〈q, q〉〉+ 〈p, r〉, (2.48)

and is found to be consistent with the definition

H = 〈〈Tp, q〉〉 − L(p, Tp), (2.49)

of (2.42) with

q = Tp. (2.50)

At the stationary point the solution (p̂, q̂) of the governing equation (2.3) satisfies Hamil-

ton’s equations

T p̂ =
∂H(p̂, q̂)

∂q̂
= q̂, (H−) (2.51)

T ∗q̂ =
∂H(p̂, q̂)

∂p̂
= r, (H+) (2.52)

which naturally splits the original governing equation into the two component system

considered in section (2.1.1). The functional that is stationary at the solution of Hamil-

ton’s equations is

G(p, q) = 〈〈Tp, q〉〉 − H(p, q), (2.53)

= 〈〈Tp, q〉〉 − 1

2
〈〈q, q〉〉 − 〈p, r〉, (2.54)

where p and q are considered independent variables. Hamilton’s equations can be shown

to be the natural conditions of the functional by equating the first variation of the

functional to zero, giving

0 = δG(p, q), (2.55)

= 〈〈Tp− q, δq〉〉+ 〈δp, T ∗q − r〉, ∀δp, δq (2.56)

implying p = p̂, q = q̂ at the stationary point.

The functional G(p, q) is found to be saddle-shaped. The saddle-shape is generated by

the Lagrangian functional introducing the required concavity in (2.42).
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2.2.3 A Saddle-Shaped Functional

A saddle-shaped functional has been generated by a quadratic functional of two functions

possessing two distinct axes, intersecting at the stationary point, and on which the

functional is convex and concave respectively. The axis on which the functional is

concave is generated by the Lagrangian functional L(p, Tp) along the hyperline given

by Hamilton’s equation Tp = q. Along this hyperline the functionals L(p, Tp) and

G(p, q) assume the same values. This is best demonstrated by separating the Lagrangian

component in the functional to obtain

G(p, q) = 〈〈Tp, q〉〉 − 1

2
〈〈q, q〉〉 − 〈p, r〉, (2.57)

=
1

2
〈〈Tp, Tp〉〉 − 〈p, r〉 − 1

2
〈〈Tp− q, Tp− q〉〉, (2.58)

= L(p, Tp)− 1

2
〈〈Tp− q, Tp− q〉〉, (2.59)

the first term of which is known to be concave and the second zero on the hyperline

Tp = q.

The axis on which the functional is found to be convex is along the hyperline given by

Hamilton’s equation T ∗q = r. This is demonstrated by writing the functional as

G(p, q) = 〈〈Tp, q〉〉 − 1

2
〈〈q, q〉〉 − 〈p, r〉, (2.60)

=
1

2
〈〈q, q〉〉+ 〈〈p, T ∗q − r〉〉, (2.61)

the first term of which is convex by inspection and the second zero on the hyperline

T ∗q = r. The axes given by the hyperlines Tp−q and T ∗q = r intersect at the stationary

point (p̂, q̂) as given by Hamilton’s equations (2.51) and (2.52) and we conclude that

the functional G(p, q) is endowed with a saddle-shaped topology. However, note that

the axes considered are not necessarily the axes of maximum curvature.

The functionals G(p, q) and G(p, q) of (2.4) and (2.54) differ only in sign and we choose

to work with G(p, q) so that the stationary value has the same sign as the quantity of

interest. The functional G(p, q) was created as a result of adhering to convention with

regard to the concavity of the Lagrangian. Contrary to convention the ‘configuration

coordinates’ are labelled p and the ‘conjugate momenta’ are labelled q. This labelling

is done for the benefit of the example in section (2.4.1) in which the function p will

represent a pressure field and q a fluid flux, for which the labels are naturally suited.
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Choosing to work with the functional G(p, q) rather than G(p, q) implies that the func-

tional switches convexity but retains the saddle-shaped topology.

2.3 Properties of the Stationary Value

The stationary value has already been associated with the quantity of physical interest

that we are seeking to bound. In addition to being able to bound the stationary value,

approximating the quantity of interest using functionals that are stationary at this point

also yields advantageous accuracy properties.

2.3.1 Second Order Accurate Stationary Values

The additional accuracy present in the approximations to the stationary value is due

to the stationary nature of the functional at the point (p̂, q̂). The approximation to the

stationary value is second order accurate with respect to first order errors in the approx-

imation of the stationary point. The extra order of accuracy achieved is demonstrated

by considering a Taylor series expansion around the analytic stationary value, utilising

the property that the first derivative of the functional vanishes at the stationary point.

Therefore writing ph = p̂ + ε, where ε is error incurred in the approximation ph ≈ p̂,

G−(ph) = G−(p̂ + ε) = G−(p̂) +
∂G−(p̂)

∂p
ε +

1

2

∂2G−(p̂)

∂p2
ε2 + h.o.t., (2.62)

= G−(p̂) + O(ε2) + h.o.t., (2.63)

and hence the bound exhibits superconvergent properties. The additional order of ac-

curacy obtained in approximating the stationary value is schematically illustrated in

figure 2.2. The upper bound based on the functional G+(q) displays identical behaviour

through a similar argument. In practice the accuracy of the quantity of interest will

depend on the numerical method employed. For a finite element solution the order

of accuracy will depend on the order of the polynomial. The error in the quantity of

interest was investigated by constructing approximate solutions of the Poisson equation

−d2p̂(x)

dx2
= 1 0 ≤ x ≤ 1, (2.64)

p̂(0) = p̂(1) = 0. (2.65)
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Figure 2.2: Superconvergence property of the lower bound

with the quantity of interest defined as the

Θ(p̂) =

∫ 1

0

p̂ dx. (2.66)

The approximate solution ph ≈ p̂ and lower bounds on the quantity of interest were

found using the maximum principle. The solutions ph were constructed with linear

finite elements and a Fourier sine expansion, the results obtained are plotted in figures

2.3 and 2.4 respectively.

From the result obtained using the linear finite element method, figure 2.3, the conver-

gence of the solution in the L2 norm is found to be O(h2), whilst the convergence of the

solution in the energy norm is found to be an order of h less, where h is the element size.

These results agree with the convergence theory for finite elements [8, 26]. However,

the order of accuracy of the approximation to the quantity of interest is equal to the

order of accuracy of the method in the energy norm, squared. This suggests that in

general a greater return on computational effort can be achieved by employing higher

order elements, and in models where this is practical quadratic elements will therefore

be favoured. Quadratic elements could not be employed in this example however, as

they are capable of representing the analytic solution. The convergence results using

the Fourier method, figure 2.4, alludes to the possiblity of obtaining increased accuracy

in the stationary value with the convergence rate of this quantity being greater than

that of the solution in the L2 norm.
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Figure 2.3: Convergence properties of the finite element method

2.3.2 The Twinning Method

In the preceding theory the quantity of interest has been considered to be of the form

Θ(p̂) = 〈p̂, r〉, (2.67)

= 〈〈T p̂, T p̂〉〉, (2.68)

where p̂ is the solution of the governing equation

T ∗T p̂ = r, (2.69)

and r is both the forcing of the governing equation and the weight in the quantity of

interest. This type of problem is referred to as self-dual. As a result of the self-duality,

the quantity of interest is a positive quantity by (2.68) and can be directly identified

with the stationary value of the functional G(p̂, q̂) and the bounds

2µ− ≤ Θ(p̂) ≤ 2µ+, (2.70)
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Figure 2.4: Convergence properties of the Fourier method

which have been found to be superconvergent.

In general however, the problem may not be self-dual and instead the quantity of interest

may be the projection of the analytic solution with a completely different function t,

(where t is not a constant multiple of r). In this situation the dual problem is required,

forced by the function t. Superconvergent bounds on the quantity of interest can then

be obtained using the ‘twinning’ method as described below.

2.3.3 The Dual Problem

The twinning method is implemented when the problem is not self-dual. The lack of

self-duality requires a separate dual problem to be formulated. The pair of primal and

dual problems is then

T ∗T û = s primal problem, (2.71)
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T ∗T v̂ = t dual problem, (2.72)

and the quantity of interest is

Θ(û) = 〈û, t〉, (2.73)

= 〈〈T û, T v̂〉〉. (2.74)

The quantity of interest (2.74) is now no longer a positive quantity but can be decoupled

into the difference of two positive quantities by ‘twinning’, in effect considering the

difference of two squares,

Θ(û) = 〈〈T û, T v̂〉〉, (2.75)

=
1

4
〈〈T (û + v̂), T (û + v̂) 〉〉 − 1

4
〈〈T (û− v̂), T (û− v̂) 〉〉. (2.76)

Bounds on the quantity of interest can then calculated by introducing the transforma-

tions

p̂1 = û + v̂ r1 = s + t, (2.77)

p̂2 = û− v̂ r2 = s− t, (2.78)

and applying the minimum and maximum principles to the pair of self-dual problems

T ∗T p̂1 = r1, (2.79)

T ∗T p̂2 = r2. (2.80)

From the pair of problems (2.79) and (2.80) we obtain the bounds

2µ−i ≤ 〈〈T p̂i, T p̂i〉〉 ≤ 2µ+
i , (2.81)

say, and an expression for the quantity of interest in terms of the self-dual solutions p1

and p2,

Θ(û) = 〈〈T û, T v̂〉〉, (2.82)

=
1

4
〈〈T p̂1, T p̂1〉〉 − 1

4
〈〈T p̂2, T p̂2〉〉. (2.83)

The quantity of interest is therefore bounded by

1

2
(µ−1 − µ+

2 ) ≤ Θ(û) ≤ 1

2
(µ+

1 − µ−2 ). (2.84)
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The bounds µ−i and µ+
i are both superconvergent in the sense described in section 2.3.1

and hence the order of accuracy extends to the upper and lower bounds on Θ(û).

Having constructed the theory in a general operator notation the attention is turned to

a particular application of the method in the context of oil reservoir simulation. The

model considered is governed by a self-adjoint operator and upper and lower bounds

on quantities of physical interest are available and computable. The combination of

the quantity of interest required and the boundary conditions considered renders the

problem effectively self-dual and the need to implement the twinning method is avoided.

2.4 Oil Reservoir Simulation

Oil reservoirs are complex systems involving multiple fluid phases and a broad range

of time and length scales. The combination of these attributes makes it prohibitively

complex to model the reservoirs in full. In order to obtain predictions to improve oil

recovery strategies many simplified models have been constructed. A typical model is

the black oil model in which the saturations of the oil, water and gas phase are modelled.

The three phases are assumed to be miscible at a macroscopic level, with the associated

velocities obeying Darcy’s law. Darcy’s law states that the fluid flux is proportional to

the pressure gradient of the phase with the constant of proportionality defined to be

the permeability of the medium. The black oil model is non-linear and one source of

the non-linearities is the dependence of the permeability on the phase saturations. The

permeability characteristics are obtained from physical testing and typical curves can

be found in Mayer-Gürr [33]. The formulation of the black oil model can be found in the

books of Muskat [35] and Amyx [1]. The reservoir model can be simplified by reducing

the number of phases.

The inherent complexity in the reservoir models forces numerical solutions. A finite

difference method is employed largely in the industry and its application to reservoir

simulations is introduced in Aziz [4]. More recently weak solutions have been investi-

gated, see e.g. the work of Ewing and Chen [10, 11], and in addition a growing number

of industrial simulations are being based on the streamline method. In the streamline

method the fluid paths are first approximated and then the phase components are ad-
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vected along the paths using 1-D approximations. Consequently, the majority of the

computations in the streamline method involve calculating the solution of many 1-D

local problems, which is relatively quick, and an overall reduction in the simulation cost

is achieved. The streamline method will not be considered in this research but an in-

troduction can be found in the Society of Petroleum Engineers reports including [6],[24]

and [39].

2.4.1 A Simple Oil Reservoir Model

The simplest model of an oil reservoir is found by reducing the number of fluid phases

to one and consider single phase incompressible flow obeying Darcy’s Law. The fluid

flux q(x) through the medium is then proportional to the pressure gradient ∇p(x) with

the permeability λ(x) being the constant of proportionality. As the flow is considered

to consist of a single phase the saturation is constant in the reservoir and the non-

linearities associated with the phase saturations are removed. The incompressibility

condition implies that the divergence of the flux q(x) is zero. In addition to the governing

equations within the reservoir, boundary conditions are also required. On the boundary

segment Γ− the pressure will be specified and on the remaining segment Γ+ the outward

normal flux will be specified. The governing equation is then the diffusion equation with

Dirichlet and Neumann boundary conditions, which can be written as

q̂(x) = −λ(x)∇p̂(x) in Ω, (2.85)

∇ · q̂(x) = 0 in Ω, (2.86)

p̂(x) = f(x) on Γ−, (2.87)

q̂(x) · n(x) = g(x) on Γ+, (2.88)

where n(x) denotes the outward unit normal vector on Γ+, and Γ−∪Γ+ is the complete

boundary of the given domain Ω. The permeability tensor λ is known to be symmetric,

see [15], and positive definite in order that the flux q̂ always has a positive component in

the direction −∇p̂. These property ensure that λ−1, λ−
1
2 and λ

1
2 also exist, are bounded,

and real valued. Initially we consider λ(x) to be a smooth C1 function and as a result

the pressure and flux components are also smooth and continuous, belonging to C2 and

C1 respectively, in the domain.
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In addition to a being a prototype oil reservoir model the diffusion equation is used

to model groundwater flow, which is generally considered to be a true single phase

problem. The solution can also be linked to an advection-diffusion equation in which

the concentration of a substance is advected by the flow field q, as well as diffusing

across the domain. This pair of equations can then be used to model pollutants and

tracers in fluid flows. The diffusion equation is of course also an appropriate model for

heat conduction, and therefore the equations in general have other application aside

from oil reservoir simulation.

Injection
well 

Production
well 

λ 

λ p=1 p=0 

 q ⋅  n =0 

 q ⋅  n=0 

Impermeable
rock 

Impermeable
rock 

Figure 2.5: Model A

Two 2D model problems will be considered to illustrate the ability of the method to

obtain upper and lower bounds on a quantity of physical interest. The physical problems

and model abstractions are shown in figures 2.5 and 2.6. Model A represents flow

along a porous seam sandwiched between impermeable layers. The flow is driven by

the horizontal pressure gradient and the flow passing through the inlet and outlet is

interpreted as flowing through the injection and production wells respectively. Model B

forms a quarter of the ‘5-spot’ problem in which a production well is located centrally

and four injection wells are located in a surrounding square to form the pattern for five

found on a die. The ‘5-spot’ problem models a reservoir response, in the horizontal plane,

to ‘water flooding’, in which water is pumped into the reservoir to displace the remaining

oil. The no-flow boundary conditions in Model B represents a symmetry assumption

on the solution and also tacitly assumes that the permeability field is symmetric. In
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Figure 2.6: Model B

both models the flow passing through the inlet and outlet is interpreted as flow through

the wells. The wells are modelled as segments of the boundary rather than as point

sources and sinks as in industrial simulations a dedicated well model would model the

flow in proximity to the well and be coupled to the rest of the reservoir simulation over a

portion of the boundary. The quantities of interest in these simulations are the outflows

from the production wells, since these represent the quantity of oil available for trading.

The reservoir model described fits into the framework of the previous chapters, since

the diffusion operator is known to be self-adjoint. The self-adjointness of the diffusion

operator is demonstrated by the divergence theorem

〈〈q, Tp〉〉 =

∫∫

Ω

q · (∇p) dΩ−
∫

Γ−
q · (np) dΓ (2.89)

= −
∫∫

Ω

(∇ · q)p dΩ +

∫

Γ+

(q · n)p dΓ (2.90)

= 〈T ∗q, p〉 (2.91)

(cf. (2.2)), where the inner products include contributions from the boundary. The

operators T and T ∗ can then be defined as

Tp =




∇p in Ω

−np on Γ−
T ∗q =




−∇ · q in Ω

q · n on Γ+
(2.92)

where we note that the Dirichlet boundary segment Γ− is associated with the operator

T and the Neumann boundary segment Γ+ is associated with the adjoint operator T ∗.
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2.4.2 The Diffusion Functional

The diffusion functional G(p,q; λ) is constructed in the same manner as in the general

framework, that is

G(p,q; λ) = H(p,q; λ)− 〈〈Tp,q〉〉, (2.93)

where the functions appearing after the semicolon are assumed known. The required

partial derivatives of the Hamiltonian H(p,q; λ) are then

∂H(p̂, q̂; λ)

∂q̂
=





λ−1q̂ in Ω

nf on Γ−
H− (2.94)

∂H(p̂, q̂; λ)

∂p̂
=





0 in Ω

−g on Γ+
H+ (2.95)

generating the Hamiltonian

H(p,q; λ) =
1

2

∫∫

Ω

λ−1q · q dΩ +

∫

Γ−
q · nf dΓ−

∫

Γ+

pg dΓ, (2.96)

(cf. (2.48)) and the functional

G(p,q; λ) =

∫∫

Ω

{
1

2
λ−1q · q + q · ∇p

}
dΩ−

∫

Γ−
(p− f)q · n dΓ−

∫

Γ+

pg dΓ. (2.97)

It can be shown that the functional is stationary at the solution of the diffusion equation

and boundary conditions, since the first variation of G(p,q; λ) is

δG(p,q; λ) =

∫∫

Ω

{
δp(−∇ · q) + δq · (λ−1q +∇p

)}
dΩ (2.98)

−
∫

Γ−
(p− f)δq · n dΓ +

∫

Γ+

δp(q · n− g) dΓ, (2.99)

and therefore the functional is stationary for any variations in p and q if and only

if the diffusion equation and boundary conditions are satisfied. Thus the problem of

determining the solution of (2.85) to (2.88) is equivalent to finding the functions p̂ and

q̂ which make G(p,q; λ) stationary.

The stationary value of the functional is found by substituting the stationary conditions

into the functional, to give

G(p̂, q̂; λ) =

∫∫

Ω

{
λ−1

2
q̂ · q̂ + q̂ · ∇p̂

}
dΩ−

∫

Γ−
(p̂− f)q̂ · n dΓ−

∫

Γ+

p̂g dΓ,

=
1

2

∫∫

Ω

q̂ · ∇p̂ dΩ−
∫

Γ+

p̂g dΓ,

=
1

2

∫

Γ−
f q̂ · n dΓ− 1

2

∫

Γ+

p̂g dΓ. (2.100)
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The stationary value is therefore a weighted integral of the flux over the boundary which

is an important physical quantity representing well production in a reservoir model.

From the boundary conditions specified in the model problems, namely

f =





1 at the inlet,

0 at the outlet,
(2.101)

g = 0, (2.102)

we obtain

G(p̂, q̂; λ) =
1

2

∫

Γ−
f q̂ · n dΓ− 1

2

∫

Γ+

p̂g dΓ, (2.103)

=
1

2

∫

In

q̂ · n dΓ, (2.104)

= −1

2

∫

Out

q̂ · n dΓ. (2.105)

The problem is therefore effectively self-dual with the factor of minus a half separating

the stationary value of the functional and the quantity of interest. For the benefits of

simplicity the dual problems is not introduced and bounds will be calculated on the

stationary value of the functional. Naturally, bounds on the quantity of interest, the

production well outflow, can be found by multiplying the results by minus two. If the

reservoir model had included multiple production wells the dual problem could have

been used to specify the flux out of a particular well or combination of wells, in which

case the method of twinning would have been need.

2.4.3 The Maximum and Minimum Principles

The upper and lower bounds on the stationary value of the functional are obtained via

maximum and minimum principles analogous to those derived in section 2.1.3. The

free principle is constrained to satisfy one of the pair of Hamilton’s equation and the

resulting functional is found to have the desired convexity. Constraining G(p,q; λ) to

satisfy Hamilton’s equation H− we require the subset of natural conditions

q = −λ∇p in Ω, (2.106)

p = f on Γ−, (2.107)
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to hold. Substituting the constraints (2.106) and (2.107) into G(p,q; λ) we obtain the

maximum principle

G−(p; λ) = −1

2

∫∫

Ω

λ∇p · ∇p dΩ−
∫

Γ+

pg dΓ (2.108)

which has (2.86) and (2.88) as natural conditions. The maximum principle retains the

same stationary value as the free principle, since the natural conditions of G−(p; λ)

along with the constraints imposed, (2.106) and (2.107), are equivalent to the natural

conditions of the free principle.

A lower bound on G(p̂, q̂; λ) is found by comparing the stationary value of G−(p̂; λ) and

G−(p; λ), where p̂ is the analytic solution satisfying the full set of stationary conditions,

and p is any function satisfying the constraint (2.107), since

G−(p̂; λ)− G−(p; λ) =
1

2

∫∫

Ω

{λ∇p · ∇p− λ∇p̂ · ∇p̂} dΩ +

∫

Γ+

g(p− p̂) dΓ,

=
1

2

∫∫

Ω

{λ∇p · ∇p− λ∇p̂ · ∇p̂} dΩ−
∫

Γ

λ∇p̂(p− p̂) · n dΓ,

=
1

2

∫∫

Ω

{λ∇p · ∇p− λ∇p̂ · ∇p̂− 2λ∇p̂ · ∇(p− p̂)} dΩ,

=
1

2

∫∫

Ω

(λ
1
2∇p− λ

1
2∇p̂)2dΩ,

≥ 0. (2.109)

(cf. (2.17)). Thus for any function p satisfying the constraints (2.106) and (2.107), the

value of the functional G−(p; λ) cannot exceed the exact stationary value G(p̂, q̂; λ).

Similarly the minimum principle is defined by constraining G(p,q; λ) strongly by the

subset of natural conditions, H+,

∇ · q = 0 in Ω, (2.110)

q · n = g on Γ+. (2.111)

Substituting the constraints (2.110) and (2.111) into G(p,q; λ) we obtain the functional

G+(q; λ) =
1

2

∫∫

Ω

λ−1q · q dΩ +

∫

Γ−
fq · n dΓ, (2.112)

which has (2.85) and (2.87) as natural conditions. An upper bound on G(p̂, q̂; λ) is found

by comparing the stationary value of G+(q̂; λ) and G+(q; λ), where q̂ is the analytic
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solution satisfying the full set of stationary conditions, and q is any function satisfying

(2.110) and (2.111), since

G+(q̂; λ)− G+(q; λ) =
1

2

∫∫

Ω

{
λ−1q̂ · q̂− λ−1q · q}

dΩ +

∫

Γ−
f(q̂− q) · n dΓ,

=
1

2

∫∫

Ω

{
λ−1q̂ · q̂− λ−1q · q}

dΩ +

∫

Γ

p̂(q̂− q) · n dΓ,

=
1

2

∫∫

Ω

{
λ−1q̂ · q̂− λ−1q · q + 2(q̂− q) · ∇p̂

}
dΩ,

= −1

2

∫∫

Ω

(λ−
1
2 q̂− λ−

1
2q)2dΩ,

≤ 0, (2.113)

(cf. (2.27)) which can be considered the dual of the inequality (2.109).

The finite dimensional subspaces in which approximations to the stationary value of the

functional are sought can then be defined. The space H−
h in which the stationary value

of the functional G−(ph; λ) is found is defined by the span of the basis functions φi which

must be capable of satisfying the constraints of H− namely:

• able to represent the Dirichlet boundary condition f

• once differentiable

Expanding the function in terms of the basis functions

ph =
N∑

j=1

pjφj (2.114)

where at least one of the coefficients pj is known from the necessary Dirichlet boundary

condition, the normal equations are then

∫∫

Ω

λ∇φi · ∇
N∑

j=1

pjφj dΩ +

∫

Γ+

g

N∑
j=1

pjφj dΓ = 0 i = 1, · · · ,M (2.115)

to be solved for the remaining M < N unknown coefficients. The set of equations

(2.115) form an M ×M positive definite matrix equation of the form

Kp + g = b, (2.116)

where K is the M ×M positive definite symmetric matrix

Kij =

∫∫

Ω

λ(x)∇φi · ∇φj dΩ, (2.117)
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p is the vector of unknown coefficients, g is the term arising from the Neumann boundary

condition

gi =

∫

Γ+

gφi dΓ, (2.118)

and b is the forcing resulting from overwriting the N −M known Dirichlet nodes.

The space H+
h in which the stationary value of the functional G+(qh; λ) is sought must

be capable of satisfying the remaining constraints:

• able to represent the Neumann boundary condition q · n = 0

• divergence free

For the 2D problems considered this is achieved using the stream function Ψh and

defining the flux as

q =
∂Ψh

∂y
i− ∂Ψh

∂x
j. (2.119)

The boundary condition on Ψh is then interpreted as setting the tangential derivative

of Ψh equal to zero, which again must be representable by the basis φi. The stream

function is uniquely defined by assigning Ψh = 0 at one node on the Neumann boundary

segment. The discrete matrix system arising is then of the form (2.116). To apply the

method in higher dimensions, divergence-free finite elements could be employed of the

type constructed by Raviart [42] or Gustafson [20].

2.4.4 Discontinuous Permeability Data

The description of the rock permeability by a piecewise constant function is a feature of

many current reservoir simulations [15]. The discontinuities in the permeability function

enable the simulation to be regarded as a multiple domain problem with appropriate

interfacial conditions. The required interfacial conditions for conservation are continuity

of the flux normal to the permeability discontinuity and continuity of the pressure over

the discontinuity. As a result of the permeability discontinuity, the solutions p̂ and q̂ are

no longer smooth functions but experience discontinuities along the surface on which

the permeability is discontinuous and where the governing equation in differential form

is no longer valid.

Consider a λ field with a single discontinuity along the line ΓI . The discontinuity splits

the domain into the components Ω1 and Ω2 and similarly decomposes the permeability
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data into two components λ1 and λ2. An illustration of the domain is shown in figure

2.7, where Γ−1 ∪ Γ+
1 ∪ ΓI = Γ1 is the boundary of the sub domain Ω1 and similarly

with the second sub domain. To obtain the required functional over the union of the

Γ
I

Γ
1
+ 

Γ
1
− 

Γ+
2
 

Γ
2
− 

Ω
2
 

Ω
1
 

Figure 2.7: A domain with a permeability discontinuity

sub-domains Ωm a sum of functionals of the form GM(pm,qm; λm) is considered with

additional terms defined at the interfaces to impose the required continuity conditions.

The required multiple domain functional is then GM(p,q; λ),

GM(p,q; λ) =

∫∫

Ω1

{
1

2
λ−1

1 q1 · q1 + q1 · ∇p1

}
dΩ +

∫∫

Ω2

{
1

2
λ−1

2 q2 · q2 + q2 · ∇p2

}
dΩ

−
∫

Γ−1

(p1 − f)q1 · n1 dΓ−
∫

Γ+
1

p1g dΓ−
∫

Γ−2

(p2 − f)q2 · n2 dΓ

−
∫

Γ+
2

p2g dΓ−
∫

ΓI

qI · (p1n1 + p2n2) dΓ (2.120)

which has first variation

δGM(p,q; λ) =

∫∫

Ω1

{
δp1(−∇ · q1) + δq1 ·

(
λ−1

1 q1 +∇p1

)}
dΩ

+

∫∫

Ω2

{
δp2(−∇ · q2) + δq2 ·

(
λ−1

2 q2 +∇p2

)}
dΩ

−
∫

Γ−1

(p1 − f)δq1 · n1 dΓ +

∫

Γ+
1

δp1(q1 · n1 − g) dΓ

−
∫

Γ−2

(p2 − f)δq2 · n2 dΓ +

∫

Γ+
2

δp2(q2 · n2 − g) dΓ

+

∫

ΓI

{δp1n1 · (q1 − qI) + δp2n2 · (q2 − qI)} dΓ

−
∫

ΓI

δqI · (p1n1 + p2n2) dΓ. (2.121)
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The natural conditions of the functional in the sub domains m = 1, 2 are therefore

q̂m = −λm∇p̂m in Ωm, (2.122)

∇ · q̂m = 0 in Ωm, (2.123)

p̂m = f on Γ−m, (2.124)

q̂m · nm = g on Γ+
m, (2.125)

and at the interface where n1 = −n2 = nI

q1 · nI = qI · nI on ΓI , (2.126)

q2 · nI = qI · nI on ΓI , (2.127)

p1 = p2 on ΓI , (2.128)

as required. The global solutions p̂ and q̂ are naturally composed of the solutions from

the individual subdomains such that

p̂(x) = p̂m(x) iff x ∈ Ωm, (2.129)

q̂(x) = q̂m(x) iff x ∈ Ωm. (2.130)

Crucially the maximum and minimum principles obtained in section (2.4.2) also survive

with the minimum of modifications. A maximum principle is established by constraining

the free principle to satisfy (2.106) and (2.107), and in addition constraining the pressure

to be continuous across the interface. The new set of constraints is then

qm = −λm∇pm in Ωm, (2.131)

pm = f on Γ−m, (2.132)

p1 = p2 on ΓI , (2.133)

which when substituted into the free principle produces the functional

G−M(p; λ) = −1

2

∫∫

Ω1

λ1∇p1 · ∇p1 dΩ−
∫

Γ+
1

p1g dΓ (2.134)

− 1

2

∫∫

Ω2

λ2∇p2 · ∇p2 dΩ−
∫

Γ+
2

p2g dΓ, (2.135)

= G−1 (p1; λ1) + G−2 (p2; λ2). (2.136)

The functional G−M(p; λ) is found to satisfy the maximum principle and this is established

by adding the term
∫

ΓI

{λ1∇p̂(p1 − p̂) · n1 + λ2∇p̂(p2 − p̂) · n2} dΓ = 0, (2.137)
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which is zero as a result of the continuity of pressure over the interface and the property

of the outward unit normals along ΓI , namely n1 = −n2. Adding the term (2.137)

permits the integral ∫

Γm

λm∇p̂(pm − p̂) · nm dΓ (2.138)

to be constructed for each m, from which positivity follows as in the derivation of (2.17).

Hence, considering the difference between the multiple domain functional evaluated at

the analytic solution p̂ and with any p satisfying the constraints (2.131) - (2.133) the

required result is obtained,

G−M(p̂; λ)− G−M(p; λ) =
1

2

∫∫

Ω1

{λ1∇p1 · ∇p1 − λ1∇p̂ · ∇p̂} dΩ

+
1

2

∫∫

Ω2

{λ2∇p2 · ∇p2 − λ2∇p̂ · ∇p̂} dΩ

+

∫

Γ+
1

g(p1 − p̂) dΓ +

∫

Γ+
2

g(p2 − p̂) dΓ,

=
1

2

∫∫

Ω1

{λ1∇p1 · ∇p1 − λ1∇p̂ · ∇p̂} dΩ

+
1

2

∫∫

Ω2

{λ2∇p2 · ∇p2 − λ2∇p̂ · ∇p̂} dΩ

−
∫

Γ+
1

λ1∇p̂(p1 − p̂) dΓ−
∫

Γ+
2

λ1∇p̂(p2 − p̂) dΓ

−
∫

ΓI

{λ1∇p̂(p1 − p̂) · n1 + λ2∇p̂(p2 − p̂) · n2} dΓ,

=
1

2

∫∫

Ω1

{λ1∇p1 · ∇p1 − λ1∇p̂ · ∇p̂} dΩ

+
1

2

∫∫

Ω2

{λ2∇p2 · ∇p2 − λ2∇p̂ · ∇p̂} dΩ

−
∫

Γ1

λ1∇p̂(p1 − p̂) · n1 dΓ−
∫

Γ2

λ2∇p̂(p2 − p̂) · n2 dΓ,

=
1

2

∫∫

Ω1

(λ1

1
2∇p1 − λ1

1
2∇p̂)2dΩ

+
1

2

∫∫

Ω2

(λ2

1
2∇p2 − λ2

1
2∇p̂)2dΩ,

≥ 0. (2.139)

Similarly enforcing flux continuity at the interface in addition to the constraints (2.110)

and (2.111) recovers a minimum principle. The complete set of constraints is then

∇ · qm = 0 in Ωm, (2.140)

qm · nm = g on Γ+
m, (2.141)
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q2 · nI = q2 · nI , (2.142)

which generates the functional G+
M(q; λ) when substituted into the free principle,

G+
M(q; λ) =

1

2

∫∫

Ω1

λ−1
1 q1 · q1 dΩ +

∫

Γ−1

fq1 · n1 dΓ (2.143)

+
1

2

∫∫

Ω2

λ−1
2 q2 · q2 dΩ +

∫

Γ−
fq2 · n2 dΓ, (2.144)

= G+
1 (q1; λ1) + G+

2 (q2; λ2). (2.145)

Again the functional G+
M(q; λ) is found to satisfy a minimum principle which is illustrated

by adding the term

∫

ΓI

{p̂(q̂− q1) · n1 + p̂(q̂− q2) · n2} dΓ = 0 (2.146)

along the internal boundary. This term is zero as a result of continuity of the normal

flux over the interface and enables the integrals

∫

Γm

p̂(q̂− qm) · nm dΓ (2.147)

to be constructed for each sub-domain m, and from which the bound can be asserted.

Considering the difference between the functional evaluated at the stationary point

q̂ and evaluated at any other point q satisfying the constraints (2.140) - (2.142) the

minimum principle is demonstrated,

G+
M(q̂; λ)− G+

M(q; λ) =
1

2

∫∫

Ω1

{
λ−1

1 q̂ · q̂− λ−1
1 q1 · q1

}
dΩ +

∫

Γ−1

f(q̂− q1) · n1 dΓ

+
1

2

∫∫

Ω2

{
λ−1q̂ · q̂− λ−1q2 · q2

}
dΩ +

∫

Γ−2

f(q̂− q2) · n2 dΓ,

=
1

2

∫∫

Ω1

{
λ−1

1 q̂ · q̂− λ−1
1 q1 · q1

}
dΩ +

∫

Γ−1

p̂(q̂− q1) · n1 dΓ

+
1

2

∫∫

Ω2

{
λ−1q̂ · q̂− λ−1q2 · q2

}
dΩ +

∫

Γ−2

p̂(q̂− q2) · n2 dΓ

+

∫

ΓI

{p̂(q̂− q1) · n1 + p̂(q̂− q2) · n2} dΓ,

=
1

2

∫∫

Ω1

{
λ−1

1 q̂ · q̂− λ−1
1 q1 · q1

}
dΩ +

∫

Γ1

p̂(q̂− q1) · n1 dΓ

+
1

2

∫∫

Ω2

{
λ−1q̂ · q̂− λ−1q2 · q2

}
dΩ +

∫

Γ2

p̂(q̂− q2) · n2 dΓ,

= −1

2

∫∫

Ω1

(λ
− 1

2
1 q̂− λ

− 1
2

1 q1)
2dΩ− 1

2

∫∫

Ω2

(λ
− 1

2
2 q̂− λ

− 1
2

2 q2)
2dΩ,

≤ 0. (2.148)
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In general there may be many permeability discontinuities. However, the functionals

G−M(p; λ) and G+
M(q; λ) retain the required convexity and this can be demonstrated by

adding terms of the form (2.137) and (2.146) for each discontinuity.

The similarities between the extremum principles constructed over smooth and discon-

tinuous permeability data enables the functional G−(p; λ) to be interpreted as the sum

of functionals

G−(p; λ) =
M∑

m=1

G−m(pm; λm) (2.149)

over the M sub domains Ωm with the associated constraints (2.131) - (2.133). The sum

naturally reduces to a single term in the case where the permeability data is continuous.

Similarly for the minimum principle.
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Chapter 3

Single-Phase Upscaling

3.1 Introduction to Upscaling

In the preceding chapter a simple reservoir model was constructed and variational meth-

ods described that enabled bounds to evaluated for the flux out of the domain. However

it is common practice in reservoir simulations to substitute the original geological model

for a lower resolution replacement in order to simplify the model. The process of deter-

mining this lower resolution replacement is termed upscaling. The motivation to upscale

is as follows. The permeability of the reservoir rock can vary over the length scale of

millimetres whilst the reservoir can extend over kilometres. As a result the permeability

data set is huge and constructing numerical methods using it directly is found to be

prohibitively uneconomical. Actually, the physical permeabilities are only known over

a very small fraction of the domain, by way of core samples, and the remaining perme-

ability data is constructed by seismic surveying and geo-statistical techniques. Here the

interest is in analysing the upscaling stage from the fine to a coarse representation of

the data.

In general it is preferable that the upscaled permeability field is regarded as a function of

the original permeability data rather than the flow solution, as this allows the upscaling

stage to be uniquely calculated in advance and a computational saving made. Methods

in which the upscaled permeability additionally depends on the flow solution introduce

non-linearities into the governing equations (2.85)-(2.88) of the reservoir model. These

non-linearities require an iterative solution procedure in general and the possibility arises

that the upscaled system of equations becomes more expensive to solve than the original
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linear system. Therefore, initially consideration is restricted to upscaling methods that

can be separated from the flow solution. In addition we will also assume the original

permeability data to be a scalar function, although the upscaled permeability field may

be a tensor. The anisotropy in the upscaled data is introduced as a result of patterns

in the original permeability data creating preferential directions of flow.

The aim of upscaling then is to construct an upscaled permeability field, Λ(λ(x)), over

which the associated pressure and flux functions P̂ (x) and Q̂(x) are solved. The upscaled

governing equations are therefore

Q̂(x) = −Λ(λ(x))∇P̂ (x) in Ω, (3.1)

∇ · Q̂(x) = 0 in Ω, (3.2)

P̂ (x) = f(x) on Γ−, (3.3)

Q̂(x) · n(x) = g(x) on Γ+, (3.4)

to which the variational formulation of chapter 2 can be applied. Practically, the orig-

inal permeability data λ can be regarded as a piecewise constant description which is

coarsened through the process of upscaling by local calculations over each grid cell Ωi,

as shown in figure 3.1.

Figure 3.1: Upscaling over the area Ωi
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3.1.1 Review of Conventional Upscaling Methods

Many upscaling methods of differing complexity have been constructed and suggested

[15]. This review contains references to material concerned with upscaling the perme-

ability data with respect to the single phase governing equations (2.85)-(2.88). Another

field of study related to upscaling is that of homogenisation, in which the properties of

heterogeneous materials are sought in the limit as the length scale associated with the

heterogeneity tends to zero. Homogenisation is not considered in this thesis since the

length scales associated with permeability data will be considered non-zero. The appli-

cation of homogenisation techniques to reservoir simulation can be found in Hornung

[22] and Panfilov [37].

The advent of computing and numerical modelling enabled reservoir simulation to de-

velop in importance. Early work by Warren and Price [49] investigated the possibility

of deducing the probable configuration of the permeability field for a known probability

distribution of the permeability values. Warren and Price considered steady state flow

between opposing faces as well as radial flow into a well. Time dependent solutions were

also calculated for a radial model around a well and the pressure ‘build-up’ curves, rep-

resenting the well pressures over time, were extracted. The effective permeability values

for the homogenous reservoirs were then calculated and Warren and Price concluded

that out of the arithmetic, harmonic and geometric means of the permeability data, the

geometric mean characterized the heterogeneous reservoir most closely for log-normal

and exponentially distributed permeability values.

With advances in computing power and numerical techniques, upscaling methods based

on solving local flow simulations (rather than simple averaging) were developed. These

methods are motivated by numerically conducting the type of physical experiment that

would be performed in the laboratory. This second category of methods attempt to

model the response of a flow over sections of the original permeability data but their

drawback is that they require assumptions to be made regarding the boundary conditions

for these local flow simulations. These local flow simulations are normally implemented

on a cuboidal subdomain with a pressure potential defined between opposing faces and

either no-flow boundary conditions, or a linear pressure gradient, specified along the

sides. These methods are therefore naturally able to produce a diagonal permeability
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tensor by solving local flow simulations in each coordinate direction. Upscaling methods

of this type have been developed by King et al [27], who calculate a coarse permeability

field of effective permeabilities in this way. The effective permeability is defined as the

permeability of subdomain if it were homogeneous, such that the net boundary flux is

equal to that of the solution over the fine scale permeability field in the subdomain,

with identical boundary conditions.

Methods to address the arbitrary nature in which the boundary conditions are chosen

for these local simulations have been constructed, including the work of Wallstrom et al

[48]. The general practice is to embed the local simulations in a slightly larger problem

so that the boundary conditions imposed do not act directly on the local domain. In

the work of Wallstrom et al so called Effective Flux Boundary Condition, (EFBCs),

are generated by drawing similarities with the classical problem of flow through an

infinite homogeneous domain containing an homogeneous inclusion. In this context the

coarse grid cell is approximated as an elliptical inclusion within a background medium

of appropriate effective permeability.

A pseudo-local flow method bridging the two categories is also common. The arithmetic-

harmonic method is implemented by taking the harmonic average along permeability

strips in the direction of the flow and then arithmetically averaging the strips across the

flow. This method also produces a diagonal tensor.

Numerical methods have also been developed that effectively achieve an upscaled flow

solution without necessarily explicitly defining an upscaled permeability field first. The

multiscale finite element method of Hou and Wu [23] is an example of such a numerical

method. The multiscale finite element method employs basis functions constructed

from local solutions of the governing equation over the original permeability data. This

method enables flow features generated by the fine permeability field to enter into a

coarse representation of the solution. However, the local flow solutions are not used to

calculate an effective coarse permeability value, but are used solely as the expansion

for the numerical solution. Solving the governing equations effectively over the original

permeability data, but with complex basis functions, enables convergence analysis from

the finite element literature to be applied to the method.
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Moulton et al [34] base the method of upscaling on the multigrid process. The multigrid

method automatically captures the many length scales associated with reservoir sim-

ulations, and in particular an effective permeability tensor can be extracted from the

coarse grid operator. The coarse grid discrete operator is obtained by operator-induced

coarsening of the fine-scale discretisation method. The effective permeability tensor can

then be computed directly from the node weightings of the stencil associated with the

coarse grid operator. In this manner the upscaled permeability field can be extracted

by initialising the multigrid method but without using it to actually solve the governing

equations (2.85)-(2.88).

A similar approach is taken by Arbogast et al [2] in which the fine scale solution is

decomposed into a coarse solution and a remainder. Approximations to the remainder

are then calculated on a fine grid locally and are found to modify the coarse grid operator,

and therefore the coarse solution. In contrast to the method of Moulton et al the

upscaled permeability field is not extracted but instead the modified coarse grid operator

is used directly to generate the coarse solution.

The upscaling methods reviewed so far have had very little quantifiable error analy-

sis associated with them. One method of introducing a measure of the quality of the

upscaling procedure is to minimize a ‘cost’ or ‘error’ function. This philosophy is de-

veloped by Nielsen and Tveito [36] who define upscaling as an optimisation problem in

which the error between the fine and coarse velocity fields is minimized with respect

to a defined norm. The choice of norm permits the optimal coarse velocity field to be

obtained without having to solve the fine scale problem.

The optimality of the upscaling may be reassuring but the error, or cost, of the upscaling

method may not be measured in a practical norm. Obtaining meaningful error estimates

in an upscaled solution is compounded by the drift between the solutions p̂, the exact

pressure solution obtained using the original permeability data λ, and P̂ , the exact

pressure solution obtained using the upscaled permeability data Λ. As a result an error

measure on the flux consists of a standard discretisation error ‖Λ∇Ph − Λ∇P̂‖, where

Ph is a numerical approximation to P̂ , and a consistency error ‖Λ∇P̂−λ∇p̂‖, due to the

difference between the exact upscaled and original solutions. The flux error therefore

satisfies the triangle inequality
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‖Λ∇Ph − λ∇p̂‖ ≤ ‖Λ∇Ph − Λ∇P̂‖+ ‖Λ∇P̂ − λ∇p̂‖. (3.5)

Discretisation Consistency

The discretisation error can be estimated to some degree by the numerical method

employed. Approximations to the consistency error are less obvious.

3.1.2 An Upscaling Philosophy

In contrast to existing methods we adopt a more abstract approach and define the aim

of upscaling to be the replacement of the original permeability field λ with a coarser

description Λ such that the quantity of interest is preserved, that is,

G(p̂, q̂; λ) = G(P̂ , Q̂; Λ). (3.6)

Recognising that we are unlikely to achieve the equality in (3.6) we introduce two

coarsely defined permeability fields Λ− and Λ+ and treat upscaling as a comparison

problem. The practical aim of this method is then to generate new upscaling methods

which enable upper and lower bounds to be calculated for the original problem, defined

in terms of λ the fine scale permeability description, using approximations defined over

the coarse upscaled permeability fields Λ− and Λ+ . Hence bounds of the form

G−(Ph; Λ
−) ≤ G(p̂, q̂; λ) ≤ G+(Qh; Λ

+). (3.7)

will be found where G(p̂, q̂; λ) denotes the exact value of the quantity of interest defined

over the fine scale permeability data.

The new method is called consistent upscaling since bounds are retained on the analytic

solution over the original permeability data. Comparing solutions calculated using con-

ventional upscaling methods with solutions obtained over the original permeability data

will also permit the consistency and discretisation errors associated with conventional

methods to be analysed. Schematically the bounds shown in figure 3.2 are obtained.

The analytic value of the quantity of interest is bounded by the dual extremum princi-

ples constructed using the original permeability data. The analytic value of the quantity

of interest is also bounded by the results obtained using the consistently upscaled per-

meability data Λ− and Λ+ in the maximum and minimum principles respectively. In
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addition, the approximations to the quantity of interest obtained using the convention-

ally upscaled permeability data Λeff in the maximum and minimum principles are also

plotted.
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Figure 3.2: Schematic convergence of upper and lower bounds

From the various approximations to the quantity of interest the discretisation and con-

sistency errors can be bounded. The discretisation error associated with a pair solutions

of the minimum and maximum principles is bounded by the difference in the value of

the quantity of interest. For example the discretisation error in the approximation to

the quantity of interest when solved at the coarsest resolution considered, and using the

original permeability data, is bounded by ε1. The consistency error of the conventional

upscaling method shown is bounded between ε2 and ε3.

Having discussed the motivation for a consistent upscaling method some examples are

now generated.
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3.2 Consistent Upscaling Methods

From the description of consistent upscaling it is possible to consider the method as the

pair of constrained optimisation problems,

min
Λ−

[G(p̂, q̂; λ)− G−(Ph; Λ
−)

]
s.t. G(p̂, q̂; λ)− G−(Ph; Λ

−) ≥ 0 ∀Ph ∈ H−
h ,

(3.8)

min
Λ+

[G+(Qh; Λ
+)− G(p̂, q̂; λ)

]
s.t. G+(Qh; Λ

+)− G(p̂, q̂; λ) ≥ 0 ∀Qh ∈ H+
h .

(3.9)

where Ph and Qh are approximations to the solutions P̂ and Q̂ respectively. The

minimum and maximum principles discussed in chapter 2 present possible forms for Λ−

and Λ+. Considering the maximum principle (2.109), but instead writing the difference

between the functionals constructed using the original and upscaled permeability data,

G−(p̂; λ)− G−(Ph; Λ
−) =

1

2

∫∫

Ω

{
Λ−∇Ph · ∇Ph − λ∇p̂ · ∇p̂

}
dΩ +

∫

Γ+

g(Ph − p̂) dΓ,

=
1

2

∫∫

Ω

{
Λ−∇Ph · ∇Ph − λ∇p̂ · ∇p̂− 2λ∇p̂ · ∇(Ph − p̂)

}
dΩ,

=
1

2

∫∫

Ω

{
(λ

1
2∇Ph − λ

1
2∇p̂)2 + (Λ− − λ)∇Ph · ∇Ph

}
dΩ.

(3.10)

is obtained. Minimisation and positivity of the right hand side of (3.10) can be ensured

by any of the following techniques.

3.2.1 Inf-Sup Upscaling

The inf-sup upscaling method, producing a scalar function Λ−, defines Λ− to be ev-

erywhere greater than or equal to λ on each coarse region Ωi. The method can be

implemented with various basis functions for Λ− such that, whilst retaining Λ− ≥ λ

everywhere, the difference is also minimised.

3.2.2 Piecewise-Constant Upscaling

A special upscaling procedure is possible when ∇Ph is modelled as a piecewise constant

function. In this case the upscaled permeability is simply the arithmetic average and the

second term in (3.10) does not contribute. This can be considered as a full decoupling
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of the upscaling procedure and the solution of the governing equations (3.1)-(3.4). In

this situation prior knowledge of the coarse solution Ph would not help to construct

the upscaled permeability field Λ−. In the case of a two-dimensional simulation the

method is implemented by discretising the pressure Ph with piecewise linear triangles.

The discretisation can then be constructed on a regular square grid, with two triangles

per square, so that the model still shares the same nodes as methods constructed with

quadrilateral elements. The piecewise-constant method also produces scalar upscaled

permeability data.

3.2.3 Spectral Upscaling

The spectral method is capable of producing upscaled permeability data as a symmetric

tensor. In the spectral upscaling method we construct a consistent upscaled permeability

field for all Ph belonging to the space spanned by a set of chosen basis functions {φi}.
To implement the method we expand Ph in terms of the set {φi}, which must satisfy

the constraints H− (2.131)-(2.133),

Ph =
N∑

i=1

Piφi, (3.11)

and expand Λ− in terms of a set of piecewise constant basis functions {θi} corresponding

to each coarse element Ωi

Λ− =
M∑
i=1

Λ−i θi, (3.12)

where

θi(x) =





1 x ∈ Ωi,

0 x ∈/ Ωi.
(3.13)

The second term in the equation (3.10) can now be written as a sum of local contributions

over the element Ωi

∫∫

Ω

(Λ− − λ)∇Ph · ∇Ph dΩ =
M∑
i=1

PT
i (γiRi − Si)Pi (3.14)

where Pi is the vector of node values Pi in the neighbourhood of θi, and Ri and Si

are the element stiffness matrices for the elements φi,j in the neighbourhood of θi. In

two-dimensions

(Ri)ij =

∫∫

Θi

{
∂φi

∂x
· ∂φj

∂x
+ αi

(
∂φi

∂x
· ∂φj

∂y
+

∂φi

∂y
· ∂φj

∂x

)
+ βi

∂φi

∂y
· ∂φj

∂y

}
dΩ,
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(3.15)

(Si)ij =

∫∫

Θi

λ∇φi · ∇φj dΩ, (3.16)

where αi, βi and γi are to be determined. Positivity of the second term in (3.10) is

achieved if the matrices γiRi − Si are all positive semi-definite in the sense that

PT
i (γiRi − Si)Pi ≥ 0 ∀Pi, i = 1, · · · ,M. (3.17)

This is accomplished by solving the generalised eigenvalue problem

Srx = νRrx, (3.18)

in each coarse element Ωi, where Sr and Rr are Si and Ri reduced by one row and column

to remove the zero eigenvalue present. The eigenvalue shift required for positivity of

(3.17) is achieved by choosing γi = max(ν) since

(γRr − Sr)x = (γ − ν)Rrx. (3.19)

The coefficients αi and βi of R are determined by clustering the eigenvalues η of R−1
r Sr

in order that the spread of the eigenvalues (γ − µ) is minimised. In constructing the

spectral upscaling method attempts are made to approximate the operator Sr by νRr and

therefore R−1
r Sr ≈ νI. This provides the motivation to cluster the eigenvalues of R−1

r Sr

in order to obtain an operator similar to a multiple of the identity. The clustering is

achieved through a simple numerical minimisation of max(ν)−min(ν) using a bracketing

technique. The upscaled permeability coefficient matrix Λ−i over the coarse element Ωi

is then

Λ−i =


 γi γiαi

γiαi γiβi


 . (3.20)

If, due to computational cost, Λ− is required only as a diagonal matrix then the eigen-

value clustering stage can be avoided by setting α = 0 and β = 1.

3.2.4 Tuned Basis Functions

In addition to ensuring that the second term of (3.10) is positive, the first term can

be minimised by selecting a set of basis functions that efficiently represent the pressure

solution. Due to the flux continuity condition across the permeability discontinuities, the
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exact pressure gradient∇p̂ also experiences discontinuities at these interfaces. Therefore

in order to minimise the integral

1

2

∫∫

Ω

(λ
1
2∇Ph − λ

1
2∇p̂)2 (3.21)

in (3.10), Ph should also exhibit similar pressure gradient discontinuities. Constructing

a set of basis functions that feature the correct interfacial conditions along the per-

meability discontinuities enables a more accurate approximation to the solution to be

formed. A set of tuned basis functions which satisfy the flux continuity condition more

accurately can be constructed from local solutions over the λ field. This is implemented

by expanding the tuned basis functions, φ̃i, in terms of a set of fine basis functions {σj}
through

φ̃i =
∑

j

aijσj, (3.22)

and then solving

∫∫

Ω

σk∇ · (λ∇
∑

j

aijσj −∇φi) dΩ = 0 ∀k, (3.23)

or ∫∫

Ω

σk∇ · (λ∇
∑

j

aijσj − λeff∇φi) dΩ = 0 ∀k, (3.24)

for the unknown coefficients of aij, for each i.

The use of any conventional upscaling method to produce a symmetric tensor Λeff allows

the anisotropy of the media to be further incorporated into the tuned basis functions.

Any upscaling method can be used to generate Λeff as (3.23) or (3.24) are only used to

determine the basis functions

φ̃i =
∑

j

aijσj, (3.25)

which will then be used in the expansion of the coarse solution Ph. Therefore com-

puting Λeff using a cheap method such as the arithmetic-harmonic upscaling technique

is recommended. We propose to solve the stationary equations using continuous finite

elements with compact support and hence enforce

φ̃i(x) = φi(x) if φi(x) = 0. (3.26)

Along the boundaries of the domain the fine permeability field is reflected so that the

same routine can be used to solve for both boundary and internal nodes. A zero Dirichlet
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boundary condition is inherited from the regular basis functions and is imposed around

the perimeter of the basis function. The compact support of φ̃i enables (3.23) and (3.24)

to be expressed as

∫∫

Ω

∇σk · (λ∇
∑

j

aijσj −∇φi) dΩ = 0 ∀k, (3.27)

or ∫∫

Ω

∇σk · (λ∇
∑

j

aijσj − λeff∇φi) dΩ = 0 ∀k, (3.28)

respectively, and implies that the flux generated by the tuned basis function should be

weakly equivalent to that generated by the coarse basis functions, but satisfy the fine

scale interfacial conditions. Having solved for the coefficients aij the basis functions

require normalising so that they sum to unity and are therefore able to represent the

boundary conditions. As a result of this adjustment they no longer satisfy (3.23) or

(3.24) exactly but still retain much of the required detail. A typical tuned basis function

obtained from this procedure is shown in figure 3.3.
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Figure 3.3: Underlying λ field, regular basis function φi and tuned basis function φ̃i

The coarse solution Ph is then loosely a linear sum of many local solutions over the

fine grid and this displays similarities with the upscaling methods of King. However,

computing local solutions with compact support removes the need to make predictions

on the best boundary condition for a particular simulation.

The method is also closely related to the multiscale finite element method of Hou and Wu

[23] which also involves basis functions constructed from local solutions. The method

described here differs from that of Hou and Wu in the treatment of the boundary condi-

tions with the tuned basis functions here effectively inheriting the boundary conditions

from the equivalent coarse element.
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Tuned basis functions are not directly applicable to the piecewise constant upscaling

method. Tuned basis functions could be constructed for the piecewise constant upscaling

method by expanding the basis functions in terms of fine linear triangles, but Λ− would

then no longer be determined by the simple arithmetic average of λ. Instead a weighted

arithmetic average stemming from the non-constant gradient of the basis function within

Ωi would be required. In general it may even be required to determine a separate Λ−

value corresponding to each pair of interacting nodes. This approach has not been

considered in this research.

3.2.5 Consistent Methods for the Minimum Principle

Consistent minimum principle upscaling methods may be constructed from the dual of

(3.10), written as

G+(Qh; Λ
+)− G+(q̂; λ) =

1

2

∫∫

Ω

{
(Λ+)−1Qh ·Qh − λ−1q̂ · q̂}

dΩ +

∫

Γ−
f(Qh − q̂) · n dΓ,

=
1

2

∫∫

Ω

{
(Λ+)−1Qh ·Qh − λ−1q̂ · q̂ + 2(Qh − q̂) · ∇p̂

}
dΩ,

=
1

2

∫∫

D

{
(λ−

1
2 q̂− λ−

1
2Qh)

2 +
(
(Λ+)−1 − λ−1

)
Qh ·Qh

}
dΩ

(3.29)

from which direct parallels with the methods above can be constructed in order to ensure

positivity and minimise the right hand side. If Λ+ is chosen to be a scalar along with λ

then the corresponding inf component of the inf-sup upscaling method is to construct

Λ+ to be everywhere less than λ.

The piecewise constant upscaling case is again an important method. Expanding the

flux Qh in terms of a piecewise constant set of basis functions results in the upscaled

permeability field Λ+ being defined simply as the harmonic mean.

The spectral method proceeds in the same manner as for the lower bound. The expansion

of the coarse flux solution is via a stream function Ψ, discretised using the basis functions

φi to give

Qh =
N∑

i=1

Qi

(
∂φi

∂y
i− ∂φi

∂x
j

)
. (3.30)
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The inverse of the upscaled permeability field is expanded over the coarse elements as

(Λ+)−1 =
M∑
i=1

(Λ+
i )−1θi (3.31)

and this enables the counterparts to the matrices Ri and Si to be constructed, and the

corresponding coefficients α, β and γ to be determined through the eigenvalue clustering

and shifting procedure. Finally the inverse is taken for each coarse element Ωi, on which

(Λ+
i )−1 is a constant, to obtain Λ+.

Tuned basis functions for the coarse flux Qh aim to minimise the integral

∫∫

D

(λ−
1
2 q̂− λ−

1
2Qh)

2dΩ. (3.32)

To introduce fine scale structure into the solution Qh we choose to weakly equate the

flux generated by the tuned basis function times the inverse permeability with the flux

generated by the regular basis function. This is a direct analogy of equating the fluxes

in (3.27) and (3.28). Similarly, the tuned basis functions are expanded in terms of the

finer basis functions by,

φ̃i =
∑

j

cijσj. (3.33)

Then for the unknown coefficients aij and each coarse node i, either

0 =

∫∫

Ω

(
∂σk

∂y
i− ∂σk

∂x
j

)
·
(

λ−1
∑

j

aij

(
∂σk

∂y
i− ∂σk

∂x
j

)
−

(
∂φi

∂y
i− ∂φi

∂x
j

))
dΩ ∀k

(3.34)

=

∫∫

Ω

∇σk · (λ−1∇
∑

j

aijσj −∇φi) dΩ ∀k (3.35)

or

0 =

∫∫

Ω

∇σk · (λ−1∇
∑

j

aijσj − λ−1
eff∇φi) dΩ ∀k (3.36)

is solved.

3.3 Results Obtained Using the Consistent Upscal-

ing Methods

Results have been obtained by solving the set of equations (3.1)-(3.4) for a range of

conventional upscaling methods and the consistent methods described in section 3.2.
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The solutions were constructed over a randomly generated permeability field. The

permeability field was constructed to include regions of high and low permeability values

and thereby includes larger scale features. The regions of high and low permeability were

generated using a random walk and the values in these regions where again generated

randomly from linear distributions around 1000± 10 and 200± 50 respectively. Finally

the data was smoothed using the five point Laplacian finite difference operator.

The boundary conditions considered are taken from the two model problems described

in chapter 2 and are shown in figure 3.4 along with the permeability field λ. The physical
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Figure 3.4: Boundary conditions and permeability data for Model A and Model B

interpretation of the stationary value is that it is equal to half the outward normal flux

integrated over the inlet x = 0. The stationary value is therefore directly related to the

flux out of the production well in these models.

The numerical methods were implemented on a mesh of N × N square elements. In

all but the piecewise constant upscaling method the pressure and stream function were

discretised using piecewise bilinear quadrilateral elements. The choice of basis functions

ensures that the boundary conditions can be satisfied exactly, and although greater ac-

curacy in the quantity of interest could have been expected if elements of a higher poly-

nomial degree were selected, linear elements were chosen for simplicity especially with

respect to the spectral upscaling and tuned basis functions procedures. The piecewise

constant upscaling method requires the pressure and stream function to be discretised

using piecewise linear triangles defined over the same grid. The pressure and stream
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function solutions obtained by solving Model A and Model B with a resolution of 16×16

elements are shown in figure 3.5.
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Figure 3.5: Solutions to Model A (above) and Model B (below)

3.3.1 Consistency Error

To investigate the degree of consistency error present in some of the conventional up-

scaling methods discussed in section 3.1.1 the permeability domain was upscaled using

various methods to a 2 × 2 coarse representation. The maximum and minimum prin-

ciples were then used to obtain bounds on the stationary value over progressively finer

grids. All the methods were implemented using regular basis functions. The results are

shown in figures 3.6. The consistency error can then be determined since the analytic

stationary value of the original problem lies between the bounds calculated without an

upscaling method applied, and the analytic stationary value of the upscaled problems lie

between the respective bounds. The boundary conditions imposed on Model B enforce
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Figure 3.6: Consistency Errors, Model A (above) and Model B (below)
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a regular grid of at least 4× 4 elements, as opposed to Model A which can be modelled

using 2× 2 elements and still satisfy the boundary conditions.

Figure 3.6 indicates the consistency errors incurred by the different conventional up-

scaling methods, illustrated by the different values that the bounds converge to. The

consistency error is naturally quantifiable by considering the maximum difference be-

tween the bounds of the upscaled solution and the non-upscaled solution. Similarly the

discretisation error is represented by the difference between the upper and lower bounds

of a particular method and is therefore also quantifiable. From figure 3.6 it can be seen

that in this example the conventional upscaling methods based on local flow solutions,

with no-flow boundary conditions, and the arithmetic-harmonic method, produce the

better approximations to the stationary value. The discretisation error of the upscaled

solutions in the Model A simulation is considerably less than that in the Model B simu-

lation. This suggests that the upscaling Model A to a 2× 2 coarse mesh is a justifiable

procedure.

In contrast the discretisation error associated with the upscaled Model B simulations

would suggest that the coarse mesh should be further refined. The ability to measure

the discretisation error is a useful aid in diagnosing how well the simulation has been

resolved and indicates that the required coarse mesh resolution depends not only on the

fine permeability data, but also the flow imposed by the boundary conditions. From

figure 3.6 it is also apparent that the solutions constructed over the original permeability

field have a relatively high degree of discretisation error. The higher errors associated

with the solution over the fine permeability data are due to the interfacial conditions

holding particularly weakly, due to the low number of degrees of freedom in the solution

relative to the high number of permeability discontinuities. On the other hand, a coarse

approximation constructed over a coarse permeability field can be made to coincide with

the permeability discontinuities and the errors associated with satisfying the interfacial

conditions will then be reduced. This observation may be viewed as a motivation to

upscale: construct a coarse permeability field such that the errors in coarse solutions

incurred at the interfaces are minimized. In consistent upscaling this is not a possibility

as the method can only ever be as accurate as solving over the fine permeability data

using the same basis functions. This limiting accuracy is due to the error, in the form
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of (3.10) and (3.29), being composed of the sum of two squares of the same sign. The

first square represents the discretisation error over the original permeability field and

the second square is due to the inconsistency between the numerical solution over the

original and upscaled permeability field. The limiting accuracy occurs when a perfectly

upscaled permeability field is found such that the second square is zero, leaving only the

discretisation error.

The composition of the second square term in (3.10) and (3.29) illuminates the general

non-linear nature of upscaling in which Λ+ is an arithmetic mean weighted by the

solution ∇Ph and Λ− is as a harmonic mean weighted by Qh. One exception is the

piecewise constant case in which upscaling is reduced to a linear problem. This should

therefore be considered a powerful method.

The consistency error is highlighted by keeping constant the upscaling resolution and

increasing the discretisation resolution. However, in general the error incurred by the

numerical solution over the upscaled permeability data is a combination of the consis-

tency error and discretisation error discussed in section 3.2. We term this combination

of errors the ‘net’ error.

3.3.2 Net Error

In the application of an upscaling method the mesh that defines the coarse solution

often also defines the upscaled permeability field, and therefore refining the numerical

simulation also refines the upscaled permeability field. The convergence of the methods

as the mesh that defines both the upscaling and discretisation is refined is shown in

figures 3.7 and 3.8, which illustrate the performance of the consistent upscaling methods

using both tuned and regular basis functions. The conventional upscaling methods were

implemented using regular basis functions.

The performance of the consistent upscaling methods is shown in Figures 3.7 and 3.8.

The convergence of the upper bounds to a single value is a result of the upscaling

methods being implemented at the same resolution as the fine permeability data. In this

situation all upscaling methods should return the fine permeability data and therefore

all the methods are equivalent. Similarly for the lower bound. The piecewise constant
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Figure 3.7: Comparison of upscaling methods, Model A
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Figure 3.8: Comparison of upscaling methods, Model B
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upscaling method converges to a different value since the approximation space spanned

by the linear triangular elements differs from that spanned by the bilinear quadrilateral

elements. The inf-sup upscaling method was implemented using a piecewise constant

expansion for the upscaled permeabilities and from the graphs it can be seen that the

method gives very weak bounds. Implementing the method using a piecewise constant

expansion is unlikely to achieve adequate performance unless the variations in λ are

small. The accuracy of the method would be improved if a higher order expansion ,

fitting the λ data more closely, were used. The spectral methods are more competitive,

with the extra degrees of freedom in the symmetric tensor case helping to tighten the

bounds. The restriction of Ph and Qh to a known space prior to upscaling enables

the spectral method to approach the non-linear cases Λ−(λ, Ph) and Λ+(λ,Qh) whilst

still enabling the upscaling stage to be calculated in advance. In contrast to the inf-sup

method the spectral method permits Λ− < max(λ) within each coarse element Ωi, which

helps to tighten the bounds. Again, higher order expansions for Λ− and Λ+ could also

be considered.

The use of the tuned basis functions with the consistent upscaling methods also helps

to tighten the bounds, and solving over the original permeability field with the tuned

basis functions is particularly effective. Doubling the mesh resolution of the tuned

basis functions however does not guarantee an improvement in the solution, as the

approximation spaces may not be nested. This may account for the stationary value

converging non-monotonically under refinement for the tensor spectral upscaling method

shown in figure 3.7. The piecewise constant upscaling method produces good results in

comparison with the other consistent methods and is also computationally cheap.

In comparison with the consistent methods the conventional methods obtain greater

accuracy in general. In the Model A simulation the methods which were found to have

a low consistency error were naturally the better methods. However the flow in the

domain is well aligned with x axis, due to the no flow boundary conditions, and in this

flow regime the assumptions made in the conventional upscaling methods are reason-

ably accurate. The consistent method that performed most favourably is the piecewise

constant upscaling method, although solving over the original problem with tuned ba-

sis functions was effective at producing tight bounds with a low number of degrees of
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freedom. The flow regime in the Model B simulation has greater complexity and the

consistent methods appear more competitive. Interestingly, the conventional methods

display ‘consistent’ characteristics under these flow conditions and retain bounds on the

original stationary value. Of the consistent methods the scalar and tensor spectral up-

scaling using tuned basis functions were the most effective, with the piecewise constant

upscaling method also performing well.

In both the Model A and B simulations the no-flow boundary condition q · n = 0,

by definition, aligns portions of the flow with the coordinate system and favours the

performance of conventional upscaling methods based on local flow calculations. To

remove this trait we chose to consider a domain with periodic boundary conditions

along the edges y = 0, 1. In addition the permeability range was increased to span a

factor of 1× 103 between the maximum and minimum values.

3.4 A Periodic Test Case

The permeability field and boundary conditions for the periodic test case are shown in

figure 3.9. The permeability configuration was constructed to encourage diagonal flow

across the domain. The large permeability jumps were intended to test the upscaling

methods. The pressure and stream function solutions obtained by solving the periodic
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Figure 3.9: The periodic test case
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test case with a resolution of 16 × 16 elements is shown in figure 3.10. The consistent
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Figure 3.10: Solutions obtained for the periodic test case

upscaling methods were applied to the periodic test case. However it was found that the

large jumps in the permeability data distorted the tuned basis functions to an extent

that rendered them unusable. Figure 3.11 illustrates the underlying permeability field

and a tuned basis function generated by the method described in section 3.2.4. To

reduce these distortions prescribed values were assigned along the lines ξ = 0 and η = 0.

The prescribed values were calculated as the 1−D solutions of the equations

d

dl

(
λ̄

dφ̃

dl

)
= 0 maximum principle, (3.37)

d

dl

(
(λ̄)−1dφ̃

dl

)
= 0 minimum principle, (3.38)

with boundary conditions 1 at the centre and zero on the perimeter. Prescribing the

boundary conditions in this manner is similar to the construction on the basis elements

employed by Hou and Wu [23]. As the permeability is discontinuous along these lines

the arithmetic average of the two values either side of the line was used and is denoted

by λ̄. The one dimensional solutions of (3.37) and (3.38) are monotonic and help to

regulate the shape of the basis functions. The one dimensional solutions then act as

boundary conditions over each quadrant and the solutions within the quadrants were

determined by solving
∫∫

Ω

∇σk · λ∇
∑

j

aijσj dΩ = 0 ∀k maximum principle, (3.39)

∫∫

Ω

∇σk · λ−1∇
∑

j

aijσj dΩ = 0 ∀k minimum principle, (3.40)
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for the remaining unknown coefficients j. As a result of the classical maximum principle

that states that solution extrema exist only on the boundary of the domain of the

homogeneous equations (3.39) and (3.40), the basis functions are regularised with the

maximum height occurring at (0,0).
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Figure 3.11: The underlying λ data, distorted basis functions and modified basis function

The consistency error and the comparative performance of the methods were again

analysed using the same methodology as before. Figure 3.12 illustrates the consistency

error incurred by the conventional methods when the fine scale permeability data was

upscaled to a 2×2 representation. The magnitude of the consistency error is much higher

than those generated by the Model A and Model B simulations. The higher consistency

errors reflect the large difference in the arithmetic and harmonic means calculated over

the permeability values. The harmonic average is particularly sensitive to any low values

which dramatically reduce the average value. Because of this the bounds are very weak

unless the upscaling resolves the features of the permeability field. This phenomenon

is also observed in the net error, figure 3.13, in which the upper bound is slower to

converge than the lower. The piecewise constant upscaling method is again the most

competitive consistent method although the lower bound on the no-flow conventional

method produces good results. The large discretisation error observed between the

bounds in all but the finest simulations indicates that the problem is not ideally suited

to upscaling. This is due to the presence of flow features critical to the stationary value

that cannot be resolved on a coarse grid. These features are visible in the solution plots,

figure 3.10, in the form of flow along the high permeability paths.
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Figure 3.12: Consistency errors, periodic test case

3.5 Conclusions

A consistent upscaling methodology has been constructed based on retaining bounds

on the quantity of interest associated with the simulation. The bounds obtained via

the method enable the discretisation and consistency errors in the upscaled solution

to be quantified and bounded. The availability of these bounds enable the degree of

success of an upscaling method to be evaluated. In contrast, error analysis associated

with conventional upscaling methods is intractable. The performance of the consistent

methods in comparison with the conventional method is not always favourable, but

the consistent methods do ensure the retention of the bounds whereas the predictions

from conventional methods may drift in complicated flow structures. In addition the

tightness of the bounds obtained indicates the degree to which the solution has been

resolved. This information is useful in determining the degree of upscaling that can

be justified and is not normally obtainable from conventional upscaling methods. In

terms of performance and computational cost the piecewise constant upscaling method
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is probably the most successful consistent method examined.

A similar description of the consistent upscaling method can be found in [47], published

as part of the proceedings of the ICFD 2001 conference held in Oxford.

3.6 Extensions

3.6.1 Permeability Uncertainties

The fine scale permeability is generated largely from statistical data, seismic surveying

and core samples. As a result there is a degree of uncertainty in the permeability data

which results in uncertainty in the flow predictions. If the uncertainties associated

with the finescale permeability data are bounded then the dual extremum principles

can be extended by defining λ− and λ+ as the lower and upper functions bounding λ

respectively. The minimum principle is then constructed using λ+ and the maximum

principle with λ−. Similarly if a consistent upscaling method is required Λ+ would be

generated using λ+ as the fine scale data, and correspondingly Λ− from λ−. Adopting

this approach the upper and lower bounds on the quantity of interest are retained.

Having extended the dual extremum principles to the include uncertainties in the per-

meability data, the effect of the magnitude and location of the uncertainty can then

be investigated. We consider the Model A problem with the area of the domain

0.25 ≤ (x, y) ≤ 0.75 subject to varying degrees of uncertainty.

The results obtained by solving directly over λ+ and λ− are shown in figure 3.14. For

the test case considered, doubling the uncertainty in the permeability data from 10% to

20% also relaxed the bounds by a factor of approximately two. It is expected that results

obtained from realisations of the permeability data would lie well within the respective

upper and lower bounds. This is due to the natural averaging process in which some

values of the realised permeability data would be greater and some less than the original

values.

Although the bounds on the quantity of interest are weakened by the degree of uncer-

tainty in the permeability data the variational approach still enables these bounds to
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Figure 3.14: Bounds obtained on uncertain permeability data

be found. Alternatively approximate upper and lower bounds on the quantity of inter-

est could be generate by averaging the bounds obtained from many realisations of the

permeability data.

3.6.2 Iterated Upscaling Methods

If the conventional sequence of

1. upscale the permeability data

2. solve the flow equations

can be broken, the possibility of iterating the upscaled permeability fields can be ad-

dressed. The aim of iterating is to drive the terms

∫∫

Ω

(Λ− − λ)∇Ph · ∇Ph dΩ (3.41)
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and ∫∫

D

(
(Λ+)−1 − λ−1

)
Qh ·Qh dΩ (3.42)

to zero. The strategy for the maximum principle is then:

1. Initialise (Λ−)n using a consistent method, inf-sup for simplicity, n = 0.

2. Solve the stationary equations using (Λ−)n to obtain P
(n+1)
h

3. Calculate (Λ−)(n+1) from
∫∫

Ω

((Λ−)(n+1) − λ)∇P
(n+1)
h · ∇P

(n+1)
h dΩ = 0 (3.43)

4. n = n + 1, Iterate around loop 2 to 4 until convergence.

A similar algorithm exists for the minimum principle. The results obtained using the

algorithm on the Model A problem using regular basis functions is shown in figure 3.15.

The convergence of the algorithm is fast and the upper and lower bounds converge,

within two iterations, to the results achieved by solving over the original fine permeabil-

ity data using regular basis functions. Although the method involves iterating, the cost

of the method could be efficiently distributed on a parallel machine since stage 3 of the

algorithm involves local calculations only and would be well suited to such computa-

tions. Solving the stationary equations at stage 2 of the algorithm is a coarse problem

and hence should not be excessively expensive.

The iterative method has no application in the piecewise constant upscaling method as

the respective terms are already zero. However over the regular grid the triangles can

be orientated in one of two ways as shown in figure 3.16. Edge swapping to reduce the

error in the solution is therefore a possibility. The aim of the maximum principle is to

maximise the functional

G−(Ph; Λ
−) = −1

2

∫∫

Ω

Λ−∇Ph · ∇Ph dΩ−
∫

Γ+

gPh dΓ (3.44)

from which we obtain a vector of basis coefficients Ph. Corresponding to the two triangle

configurations there are two 4× 4 stiffness matrices for the square. These matrices are

composed of the stiffness matrices for the individual triangles, namely

Kα
i = (Λ−)α1Kα1 + (Λ−)α2Kα2 , (3.45)

Kβ
i = (Λ−)β1Kβ1 + (Λ−)β2Kβ2 . (3.46)
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The procedure is then: solve for the vector Ph and select the configuration according

to the inequalities

(Ph)T
i Kα

i (Ph)i > (Ph)T
i Kβ

i (Ph)i Configuration α (3.47)

(Ph)T
i Kβ

i (Ph)i ≥ (Ph)T
i Kα

i (Ph)i Configuration β (3.48)

over each square i. Having re-orientated the triangles the stationary equations are

resolved to obtain the lower bound but further iterations were not found necessary.

The direct analogue for the minimum principle was also implemented and the results

obtained solving Model A are shown in figure 3.17.

3.6.3 Multiphase Upscaling

In industrial reservoir modelling the simulations often involve multiple fluid phases and

saturation dependent permeability data. In these circumstances it is unlikely that con-

sistent upscaling methods with upper and lower bounds will exist. However, the guiding

philosophy of defining upscaling methods that focus on the quantity of interest could

still be experimented with.
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Chapter 4

A Non-Self-Adjoint Case using

Time Discretisation

In the previous chapters bounds were obtained on quantities of interest in which the op-

erator involved is self-adjoint and, although many physical models involve a self adjoint

operator, this restriction is limiting. In the following two chapters techniques aimed at

obtaining upper and lower bounds on quantities of interest governed by non-self-adjoint

operators are explored. To achieve these bounds two approaches are considered.

• Careful discretisation of the non-self adjoint components of the governing equa-

tions so as to obtain a self-adjoint semi-discrete system for which dual-extremum

principles are applicable.

• Modification of the governing equations so as to introduce self-adjointness into the

continuous problem.

This chapter investigates the first method. During the course of this chapter semi-

discrete systems are generated for which variational principles provide bounds on inte-

grals of the semi-discrete solution. However, the translation of these bounds from the

semi-discrete system to bounds on the analytic solution of the continuous problem does

not occur naturally and, in general, the bounds obtained serve merely as approximations

to the analytic quantity of interest.

The motivation to consider non-self-adjoint problems is prompted by the advection-

diffusion equation, used as a prototype model to simulate the movement of oil in a

simplified reservoir model. The advection-diffusion equation governing the evolution of

76



a dissolved solute in a single phase incompressible flow, subject to boundary and initial

conditions, is

φ
∂ĉ

∂t
−∇ · [D(q̂)∇ĉ− q̂ĉ] = ec, (4.1)

where ĉ(x, t) is the concentration of the solute, q̂(x, t) is the velocity of the fluid

transporting the species, φ(x, t) is the porosity of the reservoir, D(q̂) is the diffusion-

dispersion tensor and ec(x, t) represents sources of the species. Again, the hatted func-

tions denote the analytic solutions of the equation.

For simplicity, the evolution of a single chemical species is considered and a value of

unity is assigned to the porosity function. Therefore, the full governing equations are,

∂ĉ(x, t)

∂t
−∇ · [D(q̂)∇ĉ(x, t)− q̂(x)ĉ(x, t)] = ec(x, t) x ∈ Ω, (4.2)

ĉ(x, 0) = c0(x) x ∈ Ω, (4.3)

ĉ(x, t) = fc(x, t) x ∈ Γ−, (4.4)

∇ĉ(x, t) · n(x, t) = gc(x, t) x ∈ Γ+, (4.5)

in the spatial domain Ω bounded by the union of the disjoint segments Γ+ and Γ−, and

where n is the unit outward normal on this curve. In the oil reservoir context the fluid

flux q̂ is a Darcy velocity obtained from the flow equations

q̂(x) = −λ(x)∇p̂(x) in Ω, (4.6)

∇ · q̂(x) = 0 in Ω, (4.7)

p̂(x) = f(x) on Γ−, (4.8)

q̂(x) · n(x) = g(x) on Γ+, (4.9)

considered in the previous chapter, where p̂ is the pressure field associated with the flux

q̂. Provided the permeability λ is independent of the solute concentration, then q̂ is

also independent of the concentration field and can be calculated in advance. Having

obtained the solution q̂, or a suitable approximation to it, the diffusion-dispersion tensor

can be calculated and the concentration field, effectively time dependent diffusion of the

species along the streamlines, found. If the solution of the flow equations is coupled

with the advection-diffusion equation then an iterative scheme may be required. This

situation would occur in a multiphase reservoir simulation in which the permeability

tensor λ would be dependent on the concentration of each phase. The relationship
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between the concentration of each species and the permeability function attempts to

model the physics governing the displacement of one fluid by another, at a macroscopic

level. An explicit alternative to iterating models of this nature is to lag the solution of

the advection-diffusion equation behind the solution of the flow equations. By either

lagging the advection-diffusion equation or by iterating between the flow and advection-

diffusion equation, the direct dependence between the two systems can be removed.

Therefore, the case with no interdependencies between the solutions q̂ and ĉ will be

explored.

Although the motivation to consider models governed by non-self-adjoint operators has

stemmed from the investigation of novel numerical methods applicable to oil reservoir

modelling, the set of equations (4.2)-(4.9) can also be used to simulate the distribution

and evolution of a contaminant in an aquifer. Equations of this nature are therefore

also of interest to the hydrology community.

The loss of self-adjointness in the equation set (4.2)-(4.5) is due to the presence of the

first derivative of the concentration with respect to time and space. A simple progression

towards a problem of this nature is to consider time-dependent diffusion in which a single

first (time) derivative features. Having developed methods based on the time-dependent

diffusion, extensions can be generated to include the advection term. Obtaining bounds

on integrals of the solution remains the focus of this chapter. The quantities of interest

associated with the prototype reservoir model are integrals of the concentrations over

the interior or boundary of the physical domain at a given time. These integrals are

sought as they relate directly to the quantity of oil present at these locations and in a

commercial context will influence decisions concerning extraction strategies.

4.1 Time Dependent Diffusion

The time-dependent diffusion equation is composed of the self-adjoint diffusion term

and the non-self-adjoint first-order time derivative. The strategy of the method will be

to retain the properties associated with the self-adjoint term whilst discretising the first-

order derivative. To enable comparisons with the previous chapters the same notation

will be employed, where p̂ is the analytic solution of the of the problem posed and q̂ is
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an intermediate function. The equation governing time-dependent diffusion is then

∂p̂(x, t)

∂t
−∇ ·D∇p̂(x, t) = ec (x, t) ∈ Ω, (4.10)

p̂(x, 0) = p0(x) x ∈ Ω, (4.11)

p̂(x, t) = fc(x, t) x ∈ Γ−, (4.12)

∇p̂(x, t) · n(x, t) = gc(x, t) x ∈ Γ+. (4.13)

Continuing the use of the notation introduced in chapter 2, the diffusion operator is again

denoted T ∗T , and the tensor D is required to be symmetric, positive and considered

independent of the solution p in order that this splitting can be found. Re-writing the

governing equations in the general notation in which the operator T ∗T and the function

s include boundary terms, the problem

∂p̂(x, t)

∂t
+ T ∗T p̂(x, t) = s(x, t), (4.14)

p̂(x, t) = p0(x), (4.15)

is obtained. The aim is to construct a numerical method to solve (4.14-4.15). However,

the operator T ∗T has been shown to have useful properties and discretising this com-

ponent is initially deferred. Instead, an implicit discretisation in time is made and a

theta method is applied to the continuous spatial terms. Applying this discretisation,

the Rothe method

p̂(x)t+∆t − p̂(x)t

∆t
= −θ T ∗T p̂(x)t+∆t − (1− θ) T ∗T p̂(x)t 0 ≤ θ ≤ 1 (4.16)

is obtained. The numerical method (4.16) can be implemented to advance the solution

forward in time from the initial condition p0. Rothe methods are the converse to the

Method of Lines. In the Method of Lines a spatial discretisation is initially applied

to the problem and the resulting discrete system is integrated in time. In the Rothe

Method a temporal discretisation is first implemented and the semi-discrete system is

then solved for each time step. A description and an application of the Rothe method

can be found in [43].

Interestingly (4.16) can be re-arranged to obtain the Helmholtz equation governing the

solution at the next time step, t + ∆t,

r = T ∗T p̂t+∆t + κp̂t+∆t, (4.17)

= (T ∗T + κI)p̂t+∆t, (4.18)
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by introducing the following substitutions,

κ =
1

θ ∆t
, (4.19)

r = κp̂t − 1− θ

θ
T ∗T p̂t. (4.20)

Crucially, the Helmholtz equation has a variational formulation and associated ex-

tremum principles. In addition, the appearance of the identity in the Helmholtz op-

erator will be found to greatly simplify the problem of obtaining an upper bound on the

stationary value of the functional.

4.1.1 The Helmholtz Operator in General Notation

To illuminate the mechanics of the Helmholtz functional, and contrast it with the dif-

fusion functional, the general operator notation of the previous chapters will again be

employed. In the general operator notation the solution p̂ of the Helmholtz equation,

T ∗T p̂ + κp̂ = r, (4.21)

is found to coincide with the stationary point of the functional

G(p, q) =
1

2
〈〈q, q〉〉 − 〈〈Tp, q〉〉 − κ

2
〈p, p〉+ 〈p, r〉. (4.22)

The coincidence of the solution p̂ and the stationary point of the G(p, q) is again demon-

strated by considering the first order variation of the functional. This is

δG(p, q) = 〈〈δq, q − Tp〉〉 − 〈δp, T ∗q + κp− r〉, (4.23)

and therefore the functional is stationary at the point (p, q) = (p̂, q̂), with the natural

conditions

T p̂ = q̂ (H−), (4.24)

T ∗q̂ + κp̂ = r (H+), (4.25)

equivalent to (4.21). The stationary value of the functional is found by substituting the

stationary conditions into the functional to obtain

G(p̂, q̂) =
1

2
〈〈q̂, q̂〉〉 − 〈〈T p̂, q̂〉〉 − κ

2
〈p̂, p̂〉+ 〈p̂, r〉, (4.26)

=
1

2
〈〈q̂, q̂〉〉 − 〈〈p̂, r − κp̂〉〉 − κ

2
〈p̂, p̂〉+ 〈p̂, r〉, (4.27)

=
1

2
〈〈q̂, q̂〉〉+

κ

2
〈p̂, p̂〉, (4.28)

=
1

2
〈p̂, r〉. (4.29)
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The stationary value of the functional, as expected, is the inner product of the solution

with the forcing function. Although the form of stationary value is similar to that of the

diffusion functional the appearance of the identity in the Helmholtz operator enables

both natural conditions, (4.24) and (4.25), to be used as constraints directly. Essentially

the occurrence of the identity enables

T ∗q + κp = r (4.30)

to be solved for p in terms of q through the rearrangement

p =
1

κ
(r − T ∗q) . (4.31)

Similarly the function q can be expressed in term of p through (4.24). The ability to

express p in terms of q, and vice versa, enables both natural conditions to be substituted

into the functional G(p, q) in turn. The two hyper-lines on which the constrained func-

tionals lie are shown in figure 4.1 and they are found to be sufficient to generate upper

and lower bounds on the stationary value. In contrast with the constraints required

H+

H−

p 

q 

Figure 4.1: The Helmholtz functional

for the diffusion functional, shown in figure 2.1, both of the Helmholtz constraints are

relatively easy to satisfy and the difficulties associated with inverting the comparatively

degenerate H+ constraint, T ∗q = r, are avoided.
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4.1.2 Dual Extremum Principles for the Helmholtz Equation

The dual extremum principles associated with obtaining bounds on the stationary value

of the Helmholtz functional G(p̂, q̂) can be found in the books of Arthurs [3] and Sewell

[44]. Generating the constrained functionals and demonstrating the required convexity

properties is achieved in a similar manner to those of the diffusion functional described

in section 2.1.3. In the general operator notation, substituting for q using the natu-

ral condition (4.24) the functional is constrained to lie on the hyperline H−, and the

functional G−(p), where

G−(p) = −1

2
〈〈Tp, Tp〉〉 − κ

2
〈p, p〉+ 〈p, r〉 (4.32)

is generated. G−(p) is a lower bound on the stationary value of the functional since

G−(p̂)− G−(p) = −1

2
〈〈T p̂, T p̂〉〉 − κ

2
〈p̂, p̂〉+ 〈p̂, r〉

+
1

2
〈〈Tp, Tp〉〉+

κ

2
〈p, p〉 − 〈p, r〉,

=
1

2
〈〈T p̂, T p̂〉〉+

κ

2
〈p̂, p̂〉+

1

2
〈〈Tp, Tp〉〉

κ

2
〈p, p〉 − 1

2
〈〈T p̂, Tp〉〉 − κ

2
〈p̂, p〉,

=
1

2
〈〈T (p̂− p), T (p̂− p) 〉〉+

κ

2
〈p̂− p, p̂− p〉,

=
1

2
‖T (p̂− p)‖2

〈〈〉〉 +
κ

2
‖p̂− p‖2

〈〉,

≥ 0. (4.33)

Similarly, substituting for p using the natural condition (4.31) the functional is con-

strained to lie on the hyperline H+ and the functional G+(p), where

G+(q) =
1

2
〈〈q, q〉〉+

1

2κ
〈T ∗q, T ∗q〉+

1

2κ
〈r, r〉 − 1

κ
〈r, T ∗q〉, (4.34)

is generated. G+(q) is an upper bound on the stationary value of the functional, since

G+(q)− G+(q̂) =
1

2
〈〈q, q〉〉+

1

2κ
〈T ∗q, T ∗q〉 − 1

κ
〈r, T ∗q〉,

− 1

2
〈〈q̂, q̂〉 − 1

2κ
〈T ∗q̂, T ∗q̂〉+

1

κ
〈r, T ∗q〉, (4.35)

=
1

2
〈〈q, q〉〉+

1

2κ
〈〈T ∗q, T ∗q〉〉 − 1

κ
〈T ∗q̂ + κp̂, T ∗q〉,

− 1

2
〈〈q̂, q̂〉〉 − 1

2κ
〈T ∗q̂, T ∗q̂〉+

1

κ
〈T ∗q̂ + κp̂, T ∗q̂〉, (4.36)

=
1

2
〈〈q, q〉〉+

1

2κ
〈T ∗q, T ∗q〉 − 〈〈q̂, q〉〉,
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− 1

κ
〈T ∗q̂, T ∗q〉+

1

2
〈〈q̂, q̂〉〉+

1

2κ
〈T ∗q̂, T ∗q̂〉, (4.37)

=
1

2κ
〈T ∗(q̂ − q), T ∗(q̂ − q)〉+

1

2
〈〈q̂ − q, q̂ − q〉〉, (4.38)

=
1

2κ
‖T ∗(q̂ − q)‖2

〈〉 +
1

2
‖q̂ − q‖2

〈〈〉〉, (4.39)

≥ 0. (4.40)

The beneficial nature of the upper bound associated with the Helmholtz operator, in

the sense that the constraint H+ is explicitly satisfied, encourages the limit κ → 0 to

be considered as a means of obtaining an alternative upper bound on the stationary

value of the diffusion functional. This limit κ → 0 is found by considering either

increasingly large time steps, or an increasingly explicit scheme. However, regardless of

how well these extremes resolve the solution of the time-dependent diffusion problem,

the constraint (4.31) and functional G+(q) become ill posed as κ diminishes. In contrast

the lower bound remains valid as κ → 0 due to the straightforward convergence of the

constrained Helmholtz functional G−(p)

G−(p) = −1

2
〈〈Tp, Tp〉〉 − κ

2
〈p, p〉+ 〈p, r〉 (4.41)

to that of the constrained diffusion functional

G−(p) = −1

2
〈〈Tp, Tp〉〉+ 〈p, r〉. (4.42)

The behaviour of the Helmholtz functional with decreasing κ is illustrated in the example

−d2p̂

dx2
+ κp̂ = 1, (4.43)

p̂(0) = 0, (4.44)

dp̂(1)

dx
= 0. (4.45)

The analytic solution p̂ of this example is

p̂ = c1e
√

kx + c2e
−
√

kx + κ−1x (4.46)

where

c1 = − κ−3/2

e
√

k + e−
√

k
, (4.47)

c2 =
κ−3/2

e
√

k + e−
√

k
, (4.48)

(4.49)
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and therefore the analytic stationary value of the functional, corresponding to 1
2
〈p̂, r〉,

is computable and expressed as

G(p̂, q̂) =
1

2

∫ 1

0

p̂x dx (4.50)

=
1

2

∫ 1

0

(c1e
√

kx + c2e
−
√

kx + κ−1x)x dx. (4.51)

The upper and lower bounds obtained by maximising and minimising G−(p) and G+(q)

respectively, using two linear elements, are shown in figure 4.2. The example and dis-

cretisation were chosen in order that neither p̂ or q̂ lie in the approximation space

and therefore upper and lower bounds sensitive to κ can be found. The predicted ill-

conditioning of the functional G+(q) as κ nears zero is apparent in the increasing error

observed in the upper bound in this region of the graph. Conversely, the lower bound

retains integrity as κ diminishes, as suggested by the convergence of the Helmholtz

functional to that of the diffusion functional.
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Figure 4.2: Behaviour of the bounds on the stationary value as κ → 0
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The example illustrates the impracticalities of obtaining an upper bound on the station-

ary value of the diffusion functional, κ = 0, by considering the Helmholtz functional in

the limit κ → 0.

Having demonstrated the Helmholtz functional in the general notation a description in

terms of the divergence and gradient operators is now given. The functional will enable

comparisons to be made between the bounds obtained by using the Helmholtz equation

to solve approximations to the governing equations at each time step and an analytic

solution of the time-dependent diffusion problem.

4.1.3 The Helmholtz Functional

In terms of the divergence and gradient operators, the functional that is stationary at

the solution of the Helmholtz equation,

q̂(x) = −D(x)∇p̂(x) in Ω, (4.52)

∇ · q̂(x) + κp̂(x) = e in Ω, (4.53)

p̂(x) = f(x) on Γ−, (4.54)

q̂(x) · n(x) = g(x) on Γ+, (4.55)

is

G(p,q) =

∫∫

D

{
D−1

2
q · q + q · ∇p− κ

2
p2 + pe

}
dΩ−

∫

Cp

(p− f)q · n dΣ−
∫

Cq

pg dΣ,

(4.56)

where D is a given symmetric positive definite tensor and κ is known. In this chapter a

comparison problem between differing diffusion-dispersion functions is not constructed

and therefore the semicolon notation of the previous chapter is omitted. The coincidence

of the stationary point of the functional G(p,q) and the set of equations (4.52)-(4.55),

is demonstrated by considering the first variation of G(p,q) which is found to be

δG(p,q) =

∫∫

D

{
δp(−∇ · q + e− κp) + δq · (D−1q +∇p

)}
dΩ

−
∫

Cp

(p− f)δq · n dΣ +

∫

Cq

δp(q · n− g) dΣ. (4.57)

The stationary value of the functional, as with the general notation, is found by substi-

tuting the stationary conditions into the functional to give the integral of the analytic
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solution weighted by the boundary and source terms, namely

G(p̂, q̂) =

∫∫

Ω

{
D−1

2
q̂ · q̂ + q̂ · ∇p̂− κ

2
p̂2 + p̂e

}
dΩ−

∫

Γ−
(p̂− f)q̂ · n dΓ−

∫

Γ+

p̂g dΓ,

=

∫∫

Ω

{
1

2
q̂ · ∇p̂− κ

2
p̂2 + p̂e

}
dΩ−

∫

Γ+

p̂g dΓ,

=

∫∫

Ω

{
1

2
p̂(−∇ · q̂− κp̂ + e) +

1

2
p̂e

}
dΩ−

∫

Γ+

p̂g dΓ +
1

2

∫

Γ

p̂q̂ · n dΓ,

=
1

2

∫∫

Ω

p̂e dΩ +
1

2

∫

Γ−
f q̂ · n dΓ− 1

2

∫

Γ+

p̂g dΓ. (4.58)

The upper and lower bounds are found by constraining the functional G(p,q) by the

corresponding H+ and H− natural conditions and, as illustrated by the derivation in the

general notation, both sets of constraints can be directly substituted into the functional.

To obtain a lower bound on the stationary value of the functional, the natural conditions

−D∇p = q in Ω

p = f on Γ−



H− (4.59)

are applied as constraints. This is achieved by making the substitution (4.59) for q, and

using an approximation space satisfying the Dirichlet boundary condition p = f . The

functional G(p,q) then reduces to G−(p), where

G−(p) =

∫∫

Ω

{
−1

2
D∇p · ∇p− κ

2
p2 + pe

}
dΩ−

∫

Γ+

pg dΓ, (4.60)

which is a lower bound on the stationary value of the functional, since

G−(p̂)− G−(p) =

∫∫

Ω

{
D

2
∇p · ∇p +

κ

2
p2 − ep− D

2
∇p̂ · ∇p̂− κ

2
p̂2 + ep̂

}
dΩ

+

∫

Γ+

g(p− p̂) dΓ,

=

∫∫

Ω

{
D

2
∇p · ∇p +

κ

2
p2 − (−∇ ·D∇p̂ + κp̂)p− D

2
∇p̂ · ∇p̂

−κ

2
p̂2 + (−∇ ·D∇p̂ + κp̂)p̂

}
dΩ−

∫

Γ

q(p− p̂) · n dΓ,

=

∫∫

Ω

{
D

2
∇p · ∇p +

κ

2
p2 −D∇p̂ · ∇p− κp̂p

+
D

2
∇p̂ · ∇p̂ +

κ

2
p̂2

}
dΩ

=
1

2

∫∫

Ω

{
(D

1
2∇p−D

1
2∇p̂)2, +κ(p− p̂)2

}
Ω,

≥ 0. (4.61)
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The upper bound is obtained by applying the natural conditions

p = 1
κ
(e−∇ · q) in Ω

q · n = g on Γ+



 H+ (4.62)

as constraints. Again, this is achieved by direct substitution of the relationship (4.62) for

p, and employing an approximation space satisfying the Neumann boundary condition

q · n = g. Enforcing the H+ constraints in this manner generates the functional G+(q)

given by

G+(q) =

∫∫

Ω

{
D−1

2
q · q− e

κ
∇ · q +

1

2κ
(∇ · q)2 +

1

2κ
e2

}
dΩ +

∫

Γ−
fq · n dΓ, (4.63)

which is an upper bound on the stationary value of the functional for

G+(q̂)− G+(q) =

∫∫

Ω

{
D−1

2
q̂ · q̂− e

κ
∇ · q̂ +

1

2κ
(∇ · q̂)2 − D−1

2
q · q

+
e

κ
∇ · q− 1

2κ
(∇ · q)2

}
dΩ +

∫

Γ−
f(q̂− q) · n dΓ, (4.64)

=

∫∫

Ω

{
D−1

2
q̂ · q̂− 1

κ
(∇ · q̂ + κp̂)∇ · q̂ +

1

2κ
(∇ · q̂)2

−D−1

2
q · q +

1

κ
(∇ · q̂ + κp̂)∇ · q− 1

2κ
(∇ · q)2

}
dΩ

+

∫

Γ−
f(q̂− q) · n dΓ, (4.65)

=

∫∫

Ω

{
−D−1

2
q̂ · q̂− 1

2κ
(∇ · q̂)2 − D−1

2
q · q

+
1

κ
(∇ · q̂)(∇ · q) + D−1q̂ · q− 1

2κ
(∇ · q)2

}
dΩ, (4.66)

= −1

2

∫∫

Ω

{
(D− 1

2 q̂−D− 1
2q) +

1

κ
(∇ · q̂−∇ · q)

}
dΩ, (4.67)

≤ 0. (4.68)

The maximum and minimum principles can be used in conjunction with the Rothe

method to estimate the required solution integrals of the time-dependent diffusion equa-

tion. However, the maximum and minimum principles do not construct upper and lower

bounds on the analytic value of these integrals as the time derivative in the Rothe

method is only approximate. The error in the estimates obtained from the upper and

lower bounds is investigated in the following example. In order that approximations

to the required quantity of interest can be made, the twinning technique described in

section 2.3.2 is employed.
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4.1.4 A Time-Dependent Diffusion Example Employing Twin-

ning

As a means of validating the method developed, the time dependent diffusion equation,

∂û

∂t
− ∂2û

∂x2
= 0, (4.69)

in the domain 0 ≤ x ≤ 1, 0 ≤ t ≤ ∞, with boundary and initial conditions

û(0, t) = 0, (4.70)

−ûx(1, t) · n = 0, (4.71)

û(x, 0) = x(2− x), (4.72)

is considered. The equation set (4.69)-(4.72) has the analytic solution

û(x, t) =
∞∑

n=1

16

n3π3
(1− (−1)n) sin

(nπx

2

)
e−

1
4
n2π2t, (4.73)

found as a Fourier sine series with symmetry assumed along the axis x = 1. For the

purposes of the example the quantity of interest is chosen to be the integral of the

solution over the spatial domain

Θ(t) =

∫ 1

0

û(x, t) dx, (4.74)

at a given time. The analytic value of Θ(t) can be calculated from solution (4.73) and

is found to be

Θ(t) =
∞∑

n=1

32

n4π4
(1− (−1)n) e−

1
4
n2π2t. (4.75)

The evolution of Θ(t) is shown in figure 4.3 with the exponential dependence of the

solution in time ensuring that the solution decays to zero as time tends to infinity.

To obtain approximations to the quantity of interest the Rothe method is implemented

by applying a Crank-Nicolson type discretisation, θ = 1
2
, to the time derivative. The

resulting semi-discrete system

−∂2û

∂x2

t+∆t

+ κût+∆t = e =

(
κût +

∂2ût

∂x2

)
, (4.76)

with boundary conditions

û(0)t+∆t = f = 0, (4.77)

−ûx(1)t+∆t = g = 0, (4.78)
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Figure 4.3: Evolution of the analytic quantity of interest

is obtained where

κ =
2

∆t
. (4.79)

Note, û(x)t+∆t is the analytic 1D solution of (4.76). In general whilst it may be a good

approximation,

û(x)t+∆t 6= û(x, t + ∆t) (4.80)

due to the discretisation made in time. The scheme is initialised using

u0 = û(x, 0) = x(2− x), (4.81)

and u(x)t+∆t, an approximation to û(x)t+∆t, is calculated at successive time-steps us-

ing the variational principles associated with the Helmholtz equation. Therefore the

approximation

u(x)t+∆t ≈ û(x)t+∆t ≈ û(x, t + ∆t) (4.82)

is found.

Similarly the quantity of interest associated with the semi-discrete system, Θh(û(x)t+∆t),

will only approximate the quantity of interest associated with the analytic solution,
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Θ(û(x, t + ∆t)), due again to the approximate time discretisations made in the Rothe

Method. As a consequence, bounds found on Θh(û(x)t+∆t) via the extremum principles

will not imply bounds on Θ(û(x, t)).

Bounds on Θh(û(x)t+∆t) are found from the stationary value of the Helmholtz func-

tional. However, specification of a dual problem is required in order that the stationary

value and the quantity of interest are linked. The dual solution is required because with

the quantity of interest chosen as the integral of the solution, the primal problem is not

self-dual. The lack of self-duality can be demonstrated by making the substitutions for

the forcing and the boundary conditions of the problem set (4.76)-(4.78), into the sta-

tionary value of the functional G(ût+∆t,−ût+∆t
x ). The stationary value of the Helmholtz

functional is then found to be equivalent to the integral

G(ût+∆t,−ût+∆t
x ) =

1

2

∫∫

Ω

ûe dΩ− 1

2

∫

Γ−
fût+∆t

x · n dΓ− 1

2

∫

Γ+

ût+∆tg dΓ,

=
1

2

∫ 1

0

ût+∆t
(
κût +∇ · ∇ût

)
dx (4.83)

as opposed to

Θh(û
t+∆t) =

∫ 1

0

ût+∆t dx (4.84)

as required. In order to obtain bounds on the correct approximation to the quantity of

interest (4.84), the dual problem

−∇ · ∇v̂ + κv̂ = a2 = 1, (4.85)

v̂(0) = b2 = 0, (4.86)

−∇v̂(1) · n = c2 = 0, (4.87)

is introduced. Then, using the twinning transformations

pt+∆t
1 = ut+∆t + v, ut+∆t = 1

2
(pt+∆t

1 + pt+∆t
2 ),

pt+∆t
2 = ut+∆t − v, v = 1

2
(pt+∆t

1 − pt+∆t
2 ),

(4.88)
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the forcing terms

e1 = a1 + a2, a1 = 1
2
(e1 + e2, )

e2 = a1 − a2, a2 = 1
2
(e1 − e2),

f1 = b1 + b2, b1 = 1
2
(f1 + f2),

f2 = b1 − b2, b2 = 1
2
(f1 − f2),

g1 = c1 + c2, c1 = 1
2
(g1 + g2),

g2 = c1 − c2, c2 = 1
2
(g1 − g2),

(4.89)

and pair of self-dual problems

−∇ · ∇p̂ t+∆t
1 + κp̂ t+∆t

1 = e1 =
(
κût +∇ · ∇ût + 1

)
, (4.90)

p̂1(0)t+∆t = f1 = 0, (4.91)

−∇p̂1(1)t+∆t · n = g1 = 0, (4.92)

and

−∇ · ∇p̂ t+∆t
2 + κp̂ t+∆t

2 = e2 =
(
κût +∇ · ∇ût − 1

)
, (4.93)

p̂2(0)t+∆t = f2 = 0, (4.94)

−∇p̂2(1)t+∆t · n = g2 = 0, (4.95)

are defined. Approximations to the solution p̂ t+∆t
1 and p̂ t+∆t

2 can then be found using

the minimum and maximum principles and importantly the bounds

µ−i ≤ G(p̂ t+∆t
i , q̂ t+∆t

i ) ≤ µ+
i (4.96)

are obtained, where

q̂t+∆t
i = −∇p̂ t+∆t

i . (4.97)

The approximate quantity of interest is then

Θh(û
t+∆t) =

1

2
G(p̂ t+∆t

1 , q̂ t+∆t
1 )− 1

2
G(p̂ t+∆t

2 , q̂ t+∆t
2 ),

=
1

4

∫∫

Ω

{
p̂ t+∆t

1 e1 − p̂ t+∆t
2 e2

}
dΩ +

1

4

∫

Γ−

{
f1q̂

t+∆t
1 · n− f2q̂

t+∆t
2 · n}

dΓ,

− 1

4

∫

Γ+

{
p̂ t+∆t

1 g1 − p̂ t+∆t
2 g2

}
dΓ
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=
1

4

∫∫

Ω

{
(p̂ t+∆t

1 + p̂ t+∆t
2 )(e1 − e2) + p̂ t+∆t

1 e2 − p̂ t+∆t
2 e1

}
dΩ,

+
1

4

∫

Γ−

{
f1q̂

t+∆t
1 · n− f2q̂

t+∆t
2 · n}

dΓ− 1

4

∫

Γ+

{
p̂ t+∆t

1 g1 − p̂ t+∆t
2 g2

}
dΓ,

=
1

4

∫∫

Ω

{
(p̂ t+∆t

1 + p̂ t+∆t
2 )(e1 − e2) + p̂1(∇ · q̂ t+∆t

2 + κp̂ t+∆t
2 )

− p̂ t+∆t
2 (∇ · q̂ t+∆t

1 + κp̂ t+∆t
1 )

}
dΩ +

1

4

∫

Γ−

{
f1q̂

t+∆t
1 · n− f2q̂

t+∆t
2 · n}

dΓ

− 1

4

∫

Γ+

{
p̂ t+∆t

1 g1 − p̂ t+∆t
2 g2

}
dΓ,

=
1

4

∫∫

Ω

(p̂ t+∆t
1 + p̂ t+∆t

2 )(e1 − e2)dΩ +
1

4

∫

Γ−

{
f1q̂

t+∆t
1 · n− f2q̂

t+∆t
2 · n}

dΓ

+
1

4

∫

Γ

{
p̂ t+∆t

1 q̂ t+∆t
2 · n− p̂ t+∆t

2 q̂ t+∆t
1 · n}

dΓ

− 1

4

∫

Γ+

{
p̂ t+∆t

1 g1 − p̂ t+∆t
2 g2

}
dΓ,

=
1

4

∫∫

Ω

(p̂ t+∆t
1 + p̂ t+∆t

2 )(e1 − e2)dΩ− 1

4

∫

Γ+

(p̂ t+∆t
1 + p̂ t+∆t

2 )(g1 − g2) dΓ

+
1

4

∫

Γ−
(f1 − f2)(q̂

t+∆t
1 + q̂ t+∆t

2 ) · n dΓ,

− 1

4

∫

Γ+

(p̂ t+∆t
1 + p̂ t+∆t

2 )(g1 − g2) dΓ,

=

∫∫

Ω

a2û
t+∆tdΩ−

∫

Γ−
b2∇û t+∆t · n dΓ−

∫

Γ+

c2û
t+∆t dΓ, (4.98)

which, with the choice of boundary and forcing functions, reduces to

Θh(û
t+∆t) =

∫∫

Ω

û t+∆tdΩ (4.99)

=

∫ 1

0

û t+∆tdx (4.100)

as required. Bounds on the approximate quantity of interest are then

1

2
(µ−1 − µ+

2 ) ≤ Θh(û
t+∆t) ≤ 1

2
(µ+

1 − µ−2 ). (4.101)

The computational cost of the method is dominated by the four matrix inversions as-

sociated with obtaining the solutions p1, p2, q1 and q2. However, provided the twinned

problems are solved on the same computational mesh the cost of assembling these prob-

lems is effectively split. Initially, the possibility of further computational saving of the

type discussed in section 1.3, in which the dual problem is inverted once as oppose to the

primal problem being inverted many times, may seem realisable. However the forcing

differs between the pair of problems (pt+∆t
1 ,qt+∆t

1 ) and (pt+∆t
2 ,qt+∆t

2 ) and therefore a

common dual solution, through which the saving would be made, does not exist.
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4.1.5 Results
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Figure 4.4: Solutions p(x)t+∆t
1 and q(x)t+∆t

1 obtained over a sequence of time steps

Examples of the numerical solutions obtained for the pair of problems (p(x)t+∆t
1 , q(x)t+∆t

1 )

and (p(x)t+∆t
2 , q(x)t+∆t

2 ) over a sequence of time steps are shown in figures 4.4 and 4.5.

The results were obtained using a timestep of 0.1 and 4 quadratic conforming elements.

The primal and dual solutions were found by inverting the twinning transformations,

effectively taking the sum and difference of the solutions p1 and p2, and are plotted

in figure 4.6. Although the dual solution is independent of time, as a consequence of

twinning method, it is found as the difference of two time dependent problems in order

that bounds on the approximate quantity of interest can be computed.

The approximations to the quantity of interest are plotted in figure 4.7. Figure 4.7

shows the error ε1, the difference between the approximate and the analytic quantity of

interest. The upper and lower bounds are generated from bounds on the stationary value

of the functional associated with the Helmholtz equation, using the twinning method.
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Figure 4.5: Solutions p(x)t+∆t
2 and q(x)t+∆t

2 obtained over a sequence of time steps

As a result, the bounds are generated by approximations to the semi-discrete system of

equations at each time step and not by the continuous governing equations and therefore

the bounds do not necessarily enclose the analytic quantity of interest. The deviation

of the bounds from the analytic value is indicated by the pairs of curves both lying

above ε1 = 0. The sensitivity of the method to the number of elements and the timestep

employed is summarised in figure 4.7. From figure 4.7, and over the range considered,

the method appears to be more sensitive to the fineness of the discretisation rather than

the size of the timestep. In particular increasing the number of elements both reduces

the error in the approximations and the difference between the bounds. The ability of

the method to correct initial increases in the error and perform well at large time values

is due to both the analytic and numerical solution decaying with time. The decay of

both solutions is governed by the following shared geometric property.
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Figure 4.6: Primal and dual solutions, u(x, t) and v(x)

4.1.6 A Geometric Property

The decay of the analytic solution û is demonstrated by multiplying the governing

equation

ût −∇ · ∇û = 0, (4.102)

with homogenous boundary conditions

û = 0 on Γ−, (4.103)

−∇û · n = 0 on Γ+, (4.104)

by the solution û(x, t) and integrating over the spatial coordinates x to obtain

0 =

∫∫

Ω

{ûût − û∇ · ∇û} dΩ, (4.105)

=

∫∫

Ω

{ûût +∇û · ∇û} dΩ. (4.106)

The positivity of the term ∇û · ∇û then implies

0 >

∫∫

Ω

ûût dΩ, (4.107)
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=
1

2

∂

∂t
‖û‖2

Ω, (4.108)

for non-trivial û, and therefore the integral of the solution is tending to a constant.

From the governing equation it is observed that in the steady-state limit the solution

satisfies Laplace’s equation with zero Dirichlet and Neumann boundary conditions and

therefore û(x, t) → 0 as t →∞, assuming sufficient smoothness of solution.

Similarly the semi-discrete system exhibits the same geometric property, where the

functions û(x)t and û(x)t+∆t are the analytic solutions of the semi-discrete equations

and therefore functions of the spatial coordinates only. Multiplying (4.16) by ût+∆t +ut

and integrating over the spatial coordinates the equation

0 =

∫∫

Ω

(ût+∆t + ût)
ût+∆t − ût

∆t
dΩ− 1

2

∫∫

Ω

(ût+∆t + ût)∇ · ∇(ût+∆t + ût) dΩ,

=

∫∫

Ω

{
(ût+∆t)2

∆t
− (ût)2

∆t

}
dΩ +

1

2

∫∫

Ω

∇(ût+∆t + ût) · ∇(ût+∆t + ût) dΩ,

(4.109)

is obtained. Similarly the positivity of the second integral in (4.109) implies that for

every time step ∫∫

Ω

(ût+∆t)2 dΩ−
∫∫

Ω

(ût)2 dΩ < 0, (4.110)

or equivalently

‖ût+∆t‖2
Ω < ‖ût‖2

Ω. (4.111)

for non-trivial functions ût+∆t and ût. Hence through a similar argument, but consider-

ing the uniqueness of solutions governed by the discrete version of the Laplace equation

ût → 0 as t →∞.

The geometric property ensures that the numerical approximations have the same char-

acteristics as the analytic solution. As a result of the decaying solution, obtaining

accurate relative error estimates at large time values is difficult. Figure (4.8) shows the

relative error ε2, defined as ε1 divided by the analytic value of the quantity of interest.

The graph also reinforces the findings, that over the range considered, the relative error

incurred by the method is more sensitive to the number of elements employed than the

size of the timestep.

97



0 0.5 1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

15

20

ε 2

t

1 Element

∆ t = 0.1 
∆ t = 0.05
∆ t = 0.01

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

ε 2

t

2 Elements

∆ t = 0.1 
∆ t = 0.05
∆ t = 0.01

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ε 2

t

4 Elements

∆ t = 0.1 
∆ t = 0.05
∆ t = 0.01

Figure 4.8: Relative error in the bounds on Θh

98



Having developed a numerical method for the time-dependent diffusion equation which

replicates the decaying property of the analytic solution, and as a result produces accu-

rate approximations to the quantity of interest, the advection-diffusion equation is now

considered.

4.2 The Advection-Diffusion Equation

The original motivation to consider the time dependent diffusion equation was as a

means of developing methods to model an advection-diffusion process governed by the

equations

∂û(x, t)

∂t
−∇ · [D∇û(x, t)− ŵû(x, t)] = 0 x ∈ Ω, (4.112)

û(x, t) = 0 x ∈ Γ−, (4.113)

−∇û(x, t) · n = 0 x ∈ Γ+, (4.114)

û(x, 0) = u0 x ∈ Ω, (4.115)

in a flow field ŵ where

∇ · ŵ = 0. (4.116)

Employing a similar philosophy to that used in the time-dependent diffusion model,

the discretisation of the diffusion term is deferred. Instead, the equation is considered

from a Lagrangian perspective and the remaining temporal and spatial derivatives are

combined to form the Lagrangian derivative of the concentration, so that

0 =
∂û

∂t
+∇ · (ŵû)−∇ ·D∇û, (4.117)

=
∂û

∂t
+ û∇ · ŵ + ŵ · ∇û−∇ ·D∇û, (4.118)

=
∂û

∂t
+ ŵ · ∇û−∇ ·D∇û, (4.119)

=
Dû

Dt
−∇ ·D∇û. (4.120)

A discretisation in time can then be made using the Crank-Nicolson method to obtain

the semi-discrete system

û(x)t+∆t − û(x)t
f

∆t
=

1

2
(∇ · λ∇û(x)t+∆t +∇ · λ∇û(x)t) x ∈ Ω, (4.121)

û(x)t+∆t = 0 x ∈ Γ−, (4.122)

−∇û(x)t+∆t · n = 0 x ∈ Γ+, (4.123)
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where ût
f is the value of the function û(x)t at the foot of the characteristic running

through the node at time t + ∆t. The method is therefore a semi-Lagrangian scheme as

at each time step a different set of characteristics is traced backwards in time from the

new node positions in (x, t) space. This concept is schematically shown in figure 4.9.

Crucially the semi-discrete equations now once more resemble the Helmholtz equation

x

t+∆ t 

t 

Characteristic 

Foot 

Figure 4.9: The semi-Lagrangian method

and re-arranging the set (4.121)-(4.123) we obtain

−∇ ·D∇û(x)t+∆t + κû(x)t+∆t = a1 = κut
f +∇ ·D∇ut x ∈ Ω, (4.124)

û(x)t+∆t = b1 = 0 x ∈ Γ−, (4.125)

−∇û(x)t+∆t · n = c1 = 0 x ∈ Γ+, (4.126)

where

κ =
2

∆t
. (4.127)

The solution of the equation set (4.124) - (4.126) coincides with the stationary point of

the Helmholtz functional (4.56), where p̂ = û(x)t+∆t, and therefore enables bounds on

weighted integral of the solutions û(x)t+∆t to be obtained.

In a similar manner to the time-dependent diffusion problem, the bounds obtained are

not on integrals of the analytic solution û(x, t) but rather bounds on a series of discrete
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problems and approximations to the quantity of interest. The ability of the numeri-

cal solution to accurately model the analytic solution of the time-dependent diffusion

equations was due in part to both solutions sharing a geometric property that ensures

the respective solutions decay in time. A similar property exists for the analytic solu-

tion of the advection-diffusion model under certain conditions, the easiest of which to

demonstrate is when the velocity field satisfies

∇ · ŵ = 0 in Ω. (4.128)

ŵ · n = 0 on Γ+, Γ−. (4.129)

Enforcing the condition (4.129) ensures that data is not advected over the boundary

whilst the condition (4.128) prevents data being generated or destroyed by sources and

sinks in the velocity field.

4.2.1 The Advection-Diffusion Geometric Property

For a velocity field satisfying (4.129) and (4.128) the following property is observed,

∫∫

Ω

ρ∇ · (ŵρ) =
1

2

∫∫

Ω

{ρ∇ · (ŵρ) + ρ(ρ∇ · ŵ) + ρ(ŵ · ∇ρ)} dΩ

=
1

2

∫∫

Ω

ρ(ρ∇ · ŵ) dΩ +
1

2

∫

Γ+∪Γ−
ρ2ŵ · n̂dΓ

= 0 (4.130)

for a sufficiently smooth functions ρ(x). Therefore the solution u is ever decreasing

since by multiplying the governing equation by the solution û(x, t), integrating over the

spatial domain, employing the boundary conditions on û and making use of (4.130)

0 =

∫∫

Ω

{ûût + û∇ · (ŵû)− û∇ · ∇û} dΩ, (4.131)

=

∫∫

Ω

{ûût +∇û · ∇û} dΩ. (4.132)

Again, positivity of the term ∇û · ∇û then implies

0 >

∫∫

Ω

ûût dΩ, (4.133)

=
1

2

∂

∂t
‖û‖2

Ω, (4.134)

for non-trivial û.
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However, a corresponding geometric property for the semi-discrete solution is not self-

evident due to the occurrence of the term ût
f . The behaviour of this solution will partly

depend on how accurately the foot of the characteristic is found and in turn how well the

Lagrangian derivative is approximated. The semi-discrete solution will be investigated

with numerical solutions.

4.2.2 An Advection-Diffusion Example Employing Twinning

The approximations to the quantity of interest obtained using the Helmholtz functional

have been found to be accurate for the time dependent diffusion problem. However, the

addition of an advection term can add considerable complexity to the flow structure

and introduces the notion of diffusion or advection dominated flows. In order to investi-

gate the performance of the semi-Lagrangian method described we consider solving the

equation set

∂û(x, t)

∂t
−∇ · [D∇û(x, t)− ŵû(x, t)] = 0, (4.135)

û(x, t) = 0 x = 0, 1, (4.136)

−∇û(x, t) · n = 0 y = 0, 1, (4.137)

û(x, 0) = 4x(1− x), (4.138)

in the domain 0 ≤ (x, y) ≤ 1, 0 ≤ t ≤ 4. The flow field was chosen to be

ŵ = απ sin(πx) cos(πy)i− απ cos(πx) sin(πy)j, (4.139)

satisfying the conditions (4.128) and (4.129) and introducing a rotational structure into

the solution from which the ability of the method to retain symmetries can be observed.

The value of the constant α governing the magnitude of the velocity was varied and

numerical results obtained. The structure of the flow field is shown in figure 4.10.

For simplicity the quantity of interest is again chosen to be

Θ( û(x, t) ) =

∫∫

Ω

û(x, t)dΩ. (4.140)

Once again, bounds on the analytic continuous quantity of interest are not available and

instead the approximation

Θh(û(x)t+∆t) =

∫∫

Ω

ût+∆tdΩ, (4.141)

=

∫ 1

0

∫ 1

0

ût+∆tdx dy, (4.142)
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is bounded where û(x)t+∆t is the analytic solution of the semi-discrete problem. The use

of the same quantity of interest enables the definitions of the primal and dual problems

from section 4.1.4 to be recycled. Explicitly the primal problem is governed by the

equations

−∇ ·D∇û(x)t+∆t + κû(x)t+∆t = a1 = κut
f +∇ ·D∇ut x ∈ Ω, (4.143)

û(x)t+∆t = b1 = 0 x ∈ Γ−, (4.144)

−∇û(x)t+∆t · n = c1 = 0, x ∈ Γ+, (4.145)

and the dual problem is the solution of the set

−∇ ·D∇v̂(x)t+∆t + κv̂(x)t+∆t = a2 = 1 x ∈ Ω, (4.146)

v̂(x)t+∆t = b2 = 0 x ∈ Γ−, (4.147)

−∇v̂(x)t+∆t · n = c2 = 0 x ∈ Γ+, (4.148)
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where

κ =
2

∆t
. (4.149)

In parallel with the time-dependent diffusion example the primal and dual problems are

twinned to obtain the pair of self-dual problems

−∇ · ∇p̂1 + κp̂1 = e1 =
(
κut

f +∇ · ∇ut + 1
)

(4.150)

p̂1 = f1 = 0 x = 0, 1, (4.151)

−∇p̂1 · n = g1 = 0 y = 0, 1, (4.152)

and

−∇ · ∇p̂2 + κp̂2 = e2 =
(
κut

f +∇ · ∇ut − 1
)

(4.153)

p̂2 = f2 = 0 x = 0, 1, (4.154)

−∇p̂2 · n = g2 = 0 y = 0, 1, (4.155)

which are used to generate the upper and lower bounds on Θh(û(x)t+∆t) using the

inequality (4.101). Again, due to the errors introduced by the discretisation of the first

order derivatives, the semi-discrete system only approximates the continuous governing

equations. Correspondingly the bounds obtained from the semi-discrete system, by way

of the Helmholtz functional, are only approximations to the quantity of interest Θ(û).

4.2.3 Results

Approximations to the analytic quantity of interest were generated by solving the ex-

tremum principles associated with the pair of self-dual problems, (4.150)-(4.152) and

(4.153)-(4.155), for a range of values of α. The numerical approximations to the solu-

tions of the self-dual problems (p1,q1) and (p2,q2) were constructed using 8×8 quadratic

quadrilateral finite elements, and a four-stage Runge-Kutta method was used to inte-

grate the velocity backwards in time and obtain the position of the foot of the charac-

teristic.

The bounds on Θh obtained for varying values of α, and a time step of 0.0002, are

shown in figure 4.11. From figure 4.11 it is observed that the bounds on the approximate

quantity of interest are tight when the advection term is small, inseparable on the graph,

but start to weaken when α = 1000. A time series of the solutions u(x)t+∆t obtained in
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an advection dominated flow, with α = 1000 is shown in figure 4.12. From this series

of plots it can be seen that the rotational structure in the solution emerges after an

initial period of time. This initial period coincides with that in which the bounds on

the approximate quantity of interest are further apart, figure 4.11. During this initial

period the solution is aligning itself with the flow ŵ, and therefore in the following phase

the solution evolves mainly through diffusion. During the diffusion driven phase of the

solution the bounds tend to converge again as the solution decays.

In contrast the time series of the solutions u(x)t+∆t obtained in the diffusion dominated

flow, α = 10, shown in figure 4.13 indicates that the rotational structure never develops

in this regime and the solution behaviour more closely resembles a perturbation of the

time-dependent diffusion equation.

From the time series the ability of the method to retain symmetries in the solution

can be evaluated. The symmetry present in these solution is rotational, 180o about

(0.5, 0.5), and from the contour plots in figures 4.12 and 4.13 it can be seen that this

behaviour is largely apparent in the solution, even after considerable time. The retention

of these symmetries in the numerical solution may be in part due to the regular grid

employed, and the coincidence of a mesh node with the point around which the solution

is symmetrical. A more stringent test of the numerical method would be to implement

the method on an irregular grid and monitor the same symmetries.

From figure 4.11 the evolution of Θh(û(x)t+∆t) indicates that the integral of the numer-

ical solutions are ever decreasing. Although Θh is not the same measure as ‖û(x)t+∆t‖Ω

the decay of the numerical approximations to the quantity of interest, without oscil-

lations, indicates that the numerical solutions are replicating the geometric property

of the continuous problem described in section 4.2.1. Although the numerical method

appears to effectively capture the solution attributes in advection dominated flows, the

approximations to the quantity of interest appears significantly more accurate in dif-

fusion dominant flows. The accuracy of the approximations to the quantity of interest

is indicated by how tight the two bounds are, a natural indication of how well the

semi-discrete solution has been resolved at each time step.
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Figure 4.11: Bounds on Θh(û(x)t+∆t) with increasing α
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Figure 4.12: Time series of the numerical solution u(x)t+∆t, α = 1000
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Figure 4.13: Time series of the numerical solution u(x)t+∆t, α = 10
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4.3 Conclusions and Extensions

In this chapter semi-discrete methods have been constructed for which existing dual

extremum principles can be used to obtain numerical solutions. The crux of the method

is choosing appropriate discretisations in order that the semi-discrete problem is defined

appropriately. In the examples considered a discretisation in time was required to reduce

the continuous problem to a series of semi-discrete problems governed by the Helmholtz

operator. Discretising the continuous problem is also the weakness of the method, as

contact with the analytic solution is then lost. As a result of the initial discretisations

the bounds obtained on the semi-discrete problem serve purely as approximations to

the analytic quantity of interest. The approximations to the quantity of interest were

found to be reasonably accurate, especially in the diffusion dominated solutions, but the

confidence associated with the bounds obtained in previous chapters is absent. It may

be possible to increase the accuracy of the approximations by employing a high order

discretisation for the time and space derivatives, but bounds on the analytic quantity of

interest can only be obtained if the error incurred in the approximations to the quantity

of interest can be bounded at each time step. One such method of bounding the error

introduced by the discretisation of the continuous problem is illustrated in figure 4.14.

In essence bounds are obtained on the analytic quantity of interest by attempting to

construct discretisations that result in over and under approximations to the derivatives,

and from which an envelope containing the quantity of interest of the continuous problem

can be constructed. The obvious manner to achieve this is to attempt to simulate the

gradient of the analytic quantity of interest at either the start or end point of the

time step and apply forward or backward discretisations appropriately. This technique

corresponds to the bounds constructed in figure 4.14 and the effectiveness of methods

based on this theme are explored in the following example.

4.3.1 Bounds Constructed from Forward and Backward Dis-

cretisations

An investigation into the practicalities of generating a numerical method based on the

techniques embodied in figure 4.14 is made using the one dimensional time-dependent
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Figure 4.14: Schematic bounds obtained using forward and backward derivatives

diffusion example considered in section 4.1.4, namely

∂û

∂t
− ∂2û

∂x2
= 0, (4.156)

in the domain 0 ≤ x ≤ 1, 0 ≤ t ≤ ∞, with boundary and initial conditions

û(0, t) = 0, (4.157)

−û(1, t)x = 0, (4.158)

û(x, 0) = x(2− x). (4.159)

The quantity of interest was again chosen to be

Θ(û) =

∫ 1

0

û(x, t) dx. (4.160)

The known analytic solution (4.73) and quantity of interest (4.75) enable the perfor-

mance of the results obtained using the different discretisation methods to be evaluated.
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Initially the first time step of the method is considered. The two approximations for the

quantity of interest at t = ∆t are then

Θfd = Θ(û(x, 0)) + Θ′(û(x, 0)) ∆t forward (4.161)

Θbd = Θ(û(x, 0)) + Θ′(û(x, ∆t)) ∆t backward (4.162)

which, given a small enough time step, satisfy either the bounds

Θfd ≤ Θ(û(x, ∆t)) ≤ Θbd (4.163)

or conversely

Θbd ≤ Θ(û(x, ∆t)) ≤ Θfd (4.164)

depending on the evolution of the quantity of interest. Although the forward and back-

ward discretisations contain the derivative of the analytic quantity of interest, and there-

fore cannot be implemented directly, numerical approximations to these schemes can be

constructed. Considering the quantity of interest to be defined as

Θ = 〈û, r〉, (4.165)

the backwards discretisation method suggests the following semi-discrete approximation

Θbd
h ≈ Θbd,

Θbd
h (ût+∆t

bd ) = 〈ût
bd, r〉+ ∆t〈∇ · ∇ût+∆t

bd , r〉, (4.166)

= 〈ût+∆t
bd , r〉, (4.167)

where ut+∆t
bd satisfies the analytic solution of the implicit numerical method

ût+∆t
bd − ût

bd

∆t
= ∇ · ∇ût+∆t

bd . (4.168)

Similarly, the forward discretisation suggests the semi-discrete approximation Θfd
h ≈

Θfd,

Θfd
h (ût+∆t

fd ) = 〈ût
fd, r〉+ ∆t〈∇ · ∇ût

fd, r〉, (4.169)

= 〈ût+∆t
fd , r〉, (4.170)

and the explicit numerical scheme

ût+∆t
fd − ût

fd

∆t
= ∇ · ∇ût

fd. (4.171)
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In fact, both of the numerical methods derived, (4.168) and (4.170), are specific examples

of the general theta method described in section 4.1 with θ = 1 and θ = 0 respectively.

In section 4.1 it was found that, as a result of applying the theta method, approximations

to the solution of the time-dependent diffusion problem at each time-step are governed

by the Helmholtz equation. Moreover, using the dual extremum principles to construct

these approximations enables bounds on quantities of interest, at each time step, to be

found.

However, in order to apply the Helmholtz functional a degree of implicitness is required

in the numerical scheme and therefore the modification

ût+∆t
fd − ût

fd

∆t
= 0.9∇ · ∇ût

fd + 0.1∇ · ∇ût+∆t
fd , (4.172)

to (4.170) is suggested. Similarly, for balance, the modification

ût+∆t
bd − ût

bd

∆t
= 0.1∇ · ∇ût

bd + 0.9∇ · ∇ût+∆t
fd , (4.173)

is made to (4.168). With the first time-step complete the method is advanced in time.

The key to maintaining the upper and lower bounds after multiple time-steps depends on

the ability of the numerical solutions ut
fd, ut+∆t

fd , ut
bd and ut+∆t

bd to accurately approximate

the derivatives of the quantity of interest.

Implementing the technique is a straightforward procedure because employing the same

quantity of interest as in section 4.1.4 enables the pair of twinned problems derived in

that section to again be re-cycled. From the pair of twinned problems upper and lower

bounds on the quantity of interest in terms of the analytic solution of the semi-discrete

problem can be found for both forward and backwards discretisations. Then, due to the

concave nature of the analytic quantity of interest in time, figure 4.3, a proposed upper

bound is found by using the backward discretisation at each time step. A proposed

lower bound is found using the forward discretisation at each time step. The results

obtained using a time-step of 0.01 and 1 quadratic element are shown in figure 4.15.

From figure 4.15, it can be seen that after a relatively short period of time the proposed

lower bound no longer lies below the analytic quantity of interest. The failure of the

lower bound was observed for a range of time-steps and grid densities. The failure

can be attributed to errors propagated in the solutions ut+∆t
fd which over time render

112



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

t

Q
ua

nt
ity

 o
f i

nt
er

es
t

Proposed lower bound
Proposed upper Bound
Analytic

Figure 4.15: Bounds on the continuous problem using forward and backward derivatives

the numerical solution a poor candidate from which to calculate approximations to the

gradient of the quantity of interest. In addition, the errors in the solution ut+∆t
fd tend to

overestimate the gradient of the quantity of interest, destroying the lower bound. The

possibility that the overestimate of the gradient of the quantity of interest is linked to

the convexity of the functional G− effectively employed in constructing the semi-discrete

schemes (4.168) and (4.168), requires further research. However if this proves a plausible

explanation for the poor lower bound, generating semi-discrete methods based on the

dual functional G+ could be explored.

The failure to construct effective upper and lower bounds on an evolving quantity of

interest from a series of discrete approximations suggests that methods in which the

solution is considered over the complete space-time domain simultaneously, should be

considered. Two such alternatives are now discussed.
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4.3.2 Laplace Transforms

The first alternative to computing a series of time-stepped solutions is to apply a Laplace

transform to the governing equation in order to transform the time derivative into an al-

gebraic relationship. This method is considered by Gurtin [19] and enables the minimum

and maximum principles to be applied in the transformed space. For practical problems

numerical inversion of the Laplace transform would probably then be favoured in order

to recover approximations to the quantity of interest. Numerical methods to invert the

Laplace transform are reviewed in [14] and provided a sufficient degree of accuracy could

be obtained, bounds on the analytic quantity of interest would be established.

The application of the Laplace transform is obvious in the case of the time-dependent

diffusion case but in the advection-diffusion case the first order spatial derivative re-

mains. Despite the possibility of removing the remaining spatial derivative with a fur-

ther transform implementation of such techniques is likely to hinder the application of

the extremum principles in general.

4.3.3 Continuous Time

The second alternative to a time-stepping method is to discretise the governing equation

over the complete spatial and temporal domain simultaneously. Associated with this

technique is a greater computational cost, especially as the end time increases and the

domain grows. However, the accumulation of errors experienced as a solution is marched

forward in time is avoided. One technique to solve over the complete space-time domain

is to effectively square the operator in the governing equation. The primal problem to

solve is then (in a general framework)

A∗(Aφ̂− s) = 0, (4.174)

as opposed to the original non-self-adjoint equation

Aφ̂ = s. (4.175)

The effect of squaring the operator renders the originally non-self-adjoint problem self-

adjoint, and generates the additional boundary conditions required around the domain.

Methods based on solving over the complete space-time domain will be developed in

chapter 5.
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In addition to governing the solution of the semi-discrete equations considered in this

chapter, the Helmholtz functional motivates two alternative approaches to obtaining

the relatively difficult upper bound associated with the diffusion operator. The first

suggestion is a new constraint for the diffusion functional.

4.3.4 A Helmholtz Inspired Constraint

The H+ constraint for the Helmholtz functional enables the function p to be expressed

in terms of the function q without having to invert the operator T ∗. This is a desirable

attribute that enables the constraint to be satisfied through direct substitution. The H+

constraint for the diffusion functional is lacking this property. However a new hyper-line,

H++ passing through the stationary point (p̂, q̂), and on which the functional is convex,

can be found by inspection. The equation for the new hyper-line,

p = p̂ + r − T ∗q, (H++) (4.176)

enables the function p to be expressed in terms of the function q, but also contains the

analytic solution p̂. The inclusion of the analytic solution prevents the constraint from

being used directly, but approximations to the constraint of the form

p = pf + r − T ∗q, (4.177)

where pf is a fine scale solution of suitable accuracy, are explored in chapter 5. A

schematic representation of the hyperline H++ is plotted in figure 4.16 from which the

similarities with the Helmholtz constraints, figure 4.1, can be identified.

The second suggestion prompted by the Helmholtz functional is time-stepping the upper

and lower bounds to the required steady-state solution.

4.3.5 Time Stepping to a Steady-State Solution

For problems in which a time-dependent solution with homogenous boundary condi-

tions can be shown to decay to zero a steady-state solution exists corresponding to the

inhomogeneous boundary condition. Consider the problem

r =
∂u

∂t
+ T ∗Tu, (4.178)

=
∂uTD

∂t
+ T ∗T (uTD + uSS), (4.179)
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where
∂uTD

∂t
+ T ∗TuTD = 0, (4.180)

and as a result of a geometric property similar to that described in section (4.1.6),

uTD → 0 as t →∞. The steady-state solution then satisfies the equation

T ∗TuSS = r (4.181)

and hence as t →∞, u → uSS. The convergence of the solution of the time-dependent

problem to that of a steady-state problem motivates considering the convergence of the

bounds obtained from the time-dependent problem to that of the steady-state problem.

The advantage of such a method would be the simplicity of the constraints associated

with the Helmholtz functional governing the time-dependent solution, in comparison

to those of the diffusion functional governing the steady-state solution. The possibility

of obtaining bounds on the quantity of interest by time-stepping to the steady-state

solution is also explored in chapter 5.
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Chapter 5

The Non-Self-Adjoint Case -

Continuous Time

In chapters 2 and 3 self-adjoint operators have been considered for which bounds on

the stationary value of the governing functional are known to exist. The nature of

these bounds all arise form the positivity inherent in some self-adjoint operator and

which translates to the required convexity in the associated functional. When non-

self-adjoint operators are considered this underlying framework is removed and upper

and lower bounds of the type sought are not naturally forthcoming. In chapter 4,

attempts to simulate these bounds were developed by careful discretisation of the non-

self-adjoint components. However, the resulting bounds only approximated the quantity

of interest and the long term behaviour of the numerical method could only be justified

by mimicking additional properties of the analytic solution.

In this chapter a more general approach is taken in which the original non-self-adjoint

equations are modified in order to obtain new self-adjoint problems. Bounding the

quantity of interest is still the primary goal of the method and retaining the required

quantity of interest whilst modifying the governing equations is crucial. This is achieved

by adjusting the dual problem appropriately.

5.1 Construction of the Method

For completeness the method will be described from first principles although many

of these techniques previously used will again be exercised. The techniques include
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twinning a pair of self-dual problems to obtain bounds on a non-self-dual problem and

demonstrating extremum principles. The aim of the method is to bound the quantity

of interest

Θ(φ̂) = 〈φ̂, t〉, (5.1)

where φ̂ is the analytic solution of the primal problem

Aφ̂ = s, (5.2)

and A is a non-self-adjoint operator. The dual problem is governed by the adjoint

operator A∗ and is forced by the function t,

A∗σ̂ = t. (5.3)

The definition of the primal and dual problems coincides with the stationary point of

the functional G(φ, σ)

G(φ, σ) = −〈〈σ,Aφ〉〉+ 〈〈σ, s〉〉+ 〈t, φ〉, (5.4)

for the first variation of the functional G(φ, σ) is

δG(φ, σ) = 〈〈δσ, s− Aφ〉〉+ 〈t− A∗σ, δφ〉. (5.5)

The stationary value of the functional

G(φ̂, σ̂) = 〈t, φ̂〉 = 〈〈σ̂, Aφ̂〉〉 (5.6)

coincides with the quantity of interest sought but, due to the lack of self-adjointness, the

factorisation A = T ∗T is not available and the required positivity of the inner product is

absent. With the aim of introducing positivity into the stationary value the alternative

functional

J (u, v) = −〈v,A∗Au〉+ 〈v, A∗s〉+ 〈t, u〉 (5.7)

is considered. The first order variation of the functional J (u, v) is

δJ (u, v) = 〈δv, A∗(s− Au)〉+ 〈t− A∗Av, δu〉, (5.8)

and hence the stationary conditions of the functional are

A∗(Aû− s) = 0 Primal Problem, (5.9)

A∗Av̂ = t Dual Problem. (5.10)
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In this arrangement of the problem it is assumed that the null spaces of A and A∗ are

empty, or equivalently that the solutions φ̂ and σ̂ are unique. Under these assumptions

the two solutions φ̂ and û of (5.2) and (5.9) are equal. In contrast the dual solutions σ̂

and v̂ satisfy different equations, (5.3) and (5.10), and have a different character from

each other. Critically the stationary value of the functional J (u, v),

J (û, v̂) = 〈t, û〉 = 〈〈Av̂,Aû〉〉 (5.11)

is identical to the quantity of interest Θ(φ̂) through the coincidence of φ̂ and û. In

addition, the stationary value J (û, v̂) can be evaluated as the difference of two positive

inner products, using the twinning method, and therefore the possibility of bounding

the quantity of interest is present.

The modifications to the operator have succeeded in producing self-adjoint primal and

dual problems, and the required positivity in the stationary value inner product. In

relationship to the existing literature if a discretisation using finite elements is employed

the primal problem (5.9) is termed a least-squares finite element method (LSFEM),

for which extensive analysis exists including [25]. One advantageous characteristic of

the method is that the self-adjointness of the operator A∗A translates to a symmetric,

positive-definite matrix in a finite-dimensional discretisation, for which efficient methods

such as conjugate gradients can be used.

5.1.1 De-Twinning

The operator A∗A is self-adjoint and positive, and in order to obtain the quantity of

interest as the difference between two positive quantities the twinning transformations

are again used,

p1 = u + v, u =
1

2
(p1 + p2), r1 = A∗s + t, (5.12)

p2 = u− v, v =
1

2
(p1 − p2), r2 = A∗s− t. (5.13)

The twinning method transforms the functional J (u, v) of (5.7) into

J (p1, p2) =

[
−1

4
〈p1, A

∗Ap1〉+
1

2
〈p1, r1〉

]
+

[
1

4
〈p2, A

∗Ap2〉 − 1

2
〈p2, r2〉

]
. (5.14)

This functional can then naturally be decoupled into the pair of ‘twinned’ problems

corresponding to the squared brackets in (5.14). Finally we introduce the intermediate
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variables q1, q2 where

q1 = Ap1, (5.15)

q2 = Ap2, (5.16)

which enables J (u, v) to be represented as

J (p1, q1, p2, q2) =

[
−1

2
〈〈q1, Ap1〉〉+

1

4
〈〈q1, q1〉〉+

1

2
〈p1, r1〉

]

+

[
1

2
〈〈q2, Ap2〉〉 − 1

4
〈〈q2, q2〉〉 − 1

2
〈p2, r2〉

]
, (5.17)

=
1

2
T1(p1, q1)− 1

2
T2(p2, q2), (5.18)

where

Ti(pi, qi) =
1

2
〈〈qi, qi〉〉 − 〈〈Api, qi〉〉+ 〈pi, ri〉 i = 1, 2 (5.19)

is recognised to be of the same form as that obtained in the diffusion functional. The

diffusion functional has been shown to be saddle shaped and as a result of this topology,

and provided the appropriate constraints can be satisfied, bounds can be constructed

on the stationary value Ti(p̂i, q̂i), of the form

µ−i ≤ Ti(p̂i, q̂i) ≤ µ+
i i = 1, 2. (5.20)

In particular, bounds on the quantity of interest Θ(φ̂) can then be calculated as

Θ(φ̂) = J (û, v̂) =
1

2
T1(p̂1, q̂1)− 1

2
T2(p̂2, q̂2), (5.21)

and hence the quantity of interest is bounded above and below by the computable

bounds
1

2
(µ−1 − µ+

2 ) ≤ Θ(φ̂) ≤ 1

2
(µ+

1 − µ−2 ). (5.22)

The ability to obtain the bounds (5.20) is solely dependent on being able to satisfy the

appropriate constraints. In section 2.1.3 the lower bound on the stationary value of the

functional was found by constraining the functional to satisfy

q = Ap. (5.23)

This constraint, as with the diffusion functional, is simply satisfied by direct substitution

to obtain the constrained functional T −(p),

T −(p) = −1

2
〈〈Ap,Ap〉〉+ 〈p, r〉, (5.24)
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which is maximised at p̂ since

T −(p)− T −(p̂) = −1

2
〈〈Ap,Ap〉〉+ 〈p, r〉+

1

2
〈〈Ap̂,Ap̂〉〉 − 〈p̂, r〉, (5.25)

= −1

2
〈〈Ap,Ap〉〉+ 〈〈p,A∗Ap̂〉〉 − 1

2
〈〈Ap̂,Ap̂〉〉, (5.26)

= −1

2
〈〈Ap− Ap̂,Ap− Ap̂〉〉, (5.27)

≤ 0. (5.28)

A lower bound on the stationary value is therefore found by maximising the functional

T −(p) in a finite dimensional subspace.

An upper bound on the stationary value of the diffusion functional was found by con-

straining the functional such that

A∗q = r. (5.29)

However in this case, as a consequence of the uniqueness assumptions on the inversion of

the operator A∗, satisfying the constraint A∗q = r strongly is no easier than solving the

original dual problem. As a result, an alternative method of obtaining an upper bound

on the stationary value T (p̂, q̂) is required. Two alternative methods were inspired by

the Helmholtz functional, the alternative constraint in section 4.3.4, and time-stepping

to a steady-state solution in section 4.3.5. The validity and practicality of these two

methods are now considered.

5.1.2 Alternative Upper Bounds on T (p̂, q̂)

One approach to obtain an upper bound on the stationary value T (p̂, q̂) is to build

the constraint A∗q = r into the functional. A simplistic method of achieving this is to

simply add the residual squared, multiplied by a user defined constant α to obtain

T AL(q) =
1

2
〈〈q, q〉〉+ α〈A∗q − r, A∗q − r〉. (5.30)

Functionals of this nature are called augmented Lagrangians and heuristically, minimi-

sation of the functional should both result in the constraint being closely satisfied and

the minimisation of 〈〈q, q〉〉. In order to achieve this balance α must be chosen care-

fully and possibly adjusted during the minimisation process. Beside the complexities of

determining α to ensure a useful minimum is attained, choosing α such that

T AL(q)− T AL(q̂) =
1

2
〈〈q, q〉〉 − 1

2
〈〈q̂, q̂〉〉+ α〈A∗q − r, A∗q − r〉, (5.31)
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is greater than zero is non-trivial. A superior method to ‘augment’ the functional is to

consider the H++ constraint inspired by the Helmholtz functional. The H++ constraint

is

p = p̂ + r − A∗q. (H++) (5.32)

Substituting the constraint into T (p, q) the constrained functional T ++(q) is obtained

T ++(q) =
1

2
〈〈q, q〉〉 − 〈〈Ap̂, q〉〉 − 〈r − A∗q, A∗q〉+ 〈p̂ + r − A∗q, r〉,

=
1

2
〈〈q, q〉〉 − 〈〈q̂, q − q̂〉〉+ 〈A∗(q̂ − q), A∗(q̂ − q)〉, (5.33)

which is an upper bound on the stationary value of the functional, for

T ++(q)− T ++(q̂) =
1

2
〈〈q, q〉〉 − 〈〈q̂, q − q̂〉〉+ 〈A∗(q̂ − q, A∗(q̂ − q)〉 − 1

2
〈〈q̂, q̂〉〉,

=
1

2
〈〈q − q̂, q − q̂〉〉+ 〈A∗(q̂ − q), A∗(q̂ − q)〉,

≥ 0. (5.34)

In addition, the competition between minimising the two inner products of the functional

T AL(q) is removed. Taking the first variation of the functional T ++(q)

δT ++(q) = 〈〈δq, q − q̂ + 2AA∗(q̂ − q)〉〉, (5.35)

the eigenvalue problem

(AA∗ −
(
−1

2

)
I)(q̂ − q) = 0 (5.36)

is obtained at the stationary point, and as the eigenvalues of the positive operator AA∗

are all greater than zero (5.36) implies q = q̂. Therefore at the stationary point of the

functional both the minimum of the inner product 〈〈q, q〉〉 and the constraint A∗q = r

are satisfied.

As remarked in section 4.3.4 the constraint (5.32) is not practically implementable due to

the appearance of the unknown analytic solution p̂. Instead, using an accurate fine-scale

solution pf is considered. The constrained functional T ++(q) is then

T ++(q) =
1

2
〈〈q, q〉〉 − 〈〈Apf , q − q̂〉〉+ 〈A∗(q̂ − q), A∗(q̂ − q)〉, (5.37)

and an upper bound exists if,

T ++(q)− T ++(q̂) =
1

2
〈〈q, q〉〉 − 〈〈Apf , q − q̂〉〉+ 〈A∗(q̂ − q, A∗(q̂ − q)〉 − 1

2
〈〈q̂, q̂, 〉

=
1

2
〈〈q − q̂, q − q̂〉〉 − 〈〈Apf − q̂, q − q̂〉〉+ 〈A∗(q̂ − q), A∗(q̂ − q)〉,

(5.38)
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is greater than zero. The difference between the functionals can be re-written by com-

pleting the square to give

T ++(q)− T ++(q̂) =
1

2
〈〈q − q̂, q − q̂〉〉 − 〈〈Apf − q̂, q − q̂〉〉+ 〈A∗(q̂ − q), A∗(q̂ − q)〉,

=
1

2
〈〈 (q − q̂)− (Apf − q̂), (q − q̂)− (Apf − q̂) 〉〉

− 1

2
〈〈Apf − q̂, Apf − q̂〉〉+ 〈A∗(q̂ − q), A∗(q̂ − q)〉,

=
1

2
〈〈Apf − q, Apf − q〉〉 − 1

2
〈〈Apf − q̂, Apf − q̂〉〉

+ 〈A∗(q̂ − q), A∗(q̂ − q)〉,
=

1

2
‖Apf − q‖2

〈〈〉〉 −
1

2
‖Apf − q̂‖2

〈〈〉〉 + ‖A∗(q̂ − q)‖2
〈〉, (5.39)

and therefore provided

1

2
‖Apf − q‖2

〈〈〉〉 + ‖A∗(q̂ − q)‖2
〈〉 ≥

1

2
‖Apf − q̂‖2

〈〈〉〉, (5.40)

T ++(q) is an upper bound on the stationary value.

A slightly weaker inequality is found by directly comparing the functionals T (pf , q) and

T (p̂, q̂) with pf and q unconstrained,

T (pf , q)− T (p̂, q̂) =
1

2
〈〈q, q〉〉 − 〈pf , A∗q〉+ 〈p, s〉 − 1

2
〈〈q̂, q̂〉〉+ 〈p̂, A∗q̂〉 − 〈p̂, s〉,

=
1

2
〈〈q, q〉〉 − 〈pf , A∗q〉+ 〈pf , A∗q̂〉 − 1

2
〈〈q̂, q̂〉〉,

=
1

2
〈〈q, q〉〉 − 〈〈Apf , q − q̂〉〉 − 1

2
〈〈q̂, q̂〉〉,

=
1

2
〈〈q, q〉〉 − 〈〈q̂, q − q̂〉〉 − 1

2
〈〈q̂, q̂〉〉 − 〈〈Apf , q − q̂〉〉+ 〈〈q̂, q − q̂〉〉,

=
1

2
〈〈q − q̂, q − q̂〉〉 − 〈〈Apf − q̂, q − q̂〉〉. (5.41)

Again, the difference between the functionals can be re-written by completing the square

to give

T (pf , q)− T (p̂, q̂) =
1

2
〈〈q − q̂, q − q̂〉〉 − 〈〈Apf − q̂, q − q̂〉〉,

=
1

2
〈〈 (q − q̂)− (Apf − q̂), (q − q̂)− (Apf − q̂) 〉〉

− 1

2
〈〈Apf − q̂, Apf − q̂〉〉,

=
1

2
〈〈Apf − q, Apf − q〉〉 − 1

2
〈〈Apf − q̂, Apf − q̂〉〉,

=
1

2
‖Apf − q‖2

〈〈〉〉 −
1

2
‖Apf − q̂‖2

〈〈〉〉, (5.42)
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and therefore provided

‖Apf − q‖2
〈〈〉〉 ≥ ‖Apf − q̂‖2

〈〈〉〉, (5.43)

T (pf , q) is an upper bound on the stationary value. The inequality (5.43) also illustrates

the lower bound available if the constraint q = Apf is applied. One strategy would

therefore be to obtain a lower bound using the standard constraint q = Apf , and obtain

an upper bound by ensuring that the relative errors ‖Apf − q‖〈〈〉〉 and ‖Apf − q̂‖〈〈〉〉
satisfy the inequality (5.43). In this manner by evaluating either the functional T (pf , q)

or T ++(q) an upper bound can be found. Although not a strict argument, the additional

residual squared term in the inequality (5.40) may act as a safety net if the inequality

(5.43) is proving hard to satisfy.

A second method of obtaining an upper bound on the stationary value of the diffusion

functional by time-stepping the Helmholtz functional to a steady state was outlined in

section 4.3.5. Unfortunately a conflict in the numerical schemes required to guarantee

convergence to a steady-state solution whilst iteratively satisfying the required constraint

prevents this method from being viable. This conflict is demonstrated by considering

the equation

A∗Ap = r, (5.44)

notionally solved by taking the limit as t →∞ of the equation

pt + A∗Ap = r, (5.45)

where t may be a pseudo time as oppose to physical time variable. To simulate this limit

a numerical scheme is constructed and in order to preserve the geometric property that

ensures that (5.44) is the correct limit of (5.45) the Crank-Nicolson type discretisation,

as used in chapter 4, is employed. The resulting numerical scheme
(

A∗A +
2

∆t

)
pt+∆t =

2

∆t
pt − T ∗Tpt + 2r (5.46)

is solved using the variational principle for the Helmholtz equation. In particular the

constraint imposed to obtain an upper bound on the Helmholtz functional is

A∗qt+∆t +
2

∆t
pt+∆t =

2

∆t
pt − T ∗Tpt + 2r. (5.47)

However, in the limit as both pt+∆t → pSS and qt+∆t → qSS this constraint tends to

A∗qSS = 2r − T ∗TpSS, (5.48)
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rather than the required constraint

A∗qSS = r. (5.49)

To obtain the constraint (5.49) the fully implicit scheme
(

A∗A +
1

∆t

)
pt+∆t =

1

∆t
pt + r (5.50)

is required. The constraint to obtain the upper bound on the Helmholtz functional for

the fully implicit scheme is then

A∗qt+∆t +
1

∆t
pt+∆t =

1

∆t
pt + r. (5.51)

which if pt+∆t and pt tended to pSS would satisfy (5.49). However a convergence proof

similar to the geometric property described in section 4.1.6 is not available for the fully

implicit scheme and therefore there is no guarantee that a steady-state solution will be

found, and the constraint (5.49) satisfied. The inability of the method to satisfy the

constraint through an iterative procedure is not too surprising as there is no guarantee

that the solutions of the constraint will lie in the finite-dimensional approximation space.

The existence of an element in the approximation space satisfying the constraint is even

less likely in the current framework as the constraint has a unique solution.

The uniqueness properties associated with the constraint H+ in effect renders the saddle-

shaped topology of the functional degenerate. The constraint is excessively strong and

instead of producing a set of functions q, over which the functional can be minimised the

constraint generates the analytic solution q̂ solely. By employing the constraint H++ the

uniqueness condition is weakened and the functional can again be minimised over a set

of functions q. As with the lower bound, optimisation problems of this form reduce to

problems in linear algebra when considered in a finite dimensional approximation space

and therefore upper bounds can easily be computed in this manner. To guarantee a

valid upper bound the inequality (5.43) must be satisfied, and to ensure that this occurs

the following procedure is adopted.

5.1.3 The Procedure

The following procedure attempts to satisfy the inequality (5.43) by considering two

solutions of differing accuracies defined on a fine and a coarse mesh. The procedure is

then to:
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1. maximize the quadratic functional T −(pf
h) by solving the associated stationary

equations in a large finite dimensional subspace obtaining a relatively accurate

approximation pf
h to p̂, and an optimal lower bound µ− for the subspace.

2. obtain a relatively inaccurate approximation qc
h to q in a smaller approximation

space such that the inequality

‖Apf
h − qc

h‖〈〈〉〉 ≥ ‖Apf
h − q̂‖〈〈〉〉 (5.52)

holds. This can be achieved in one of two ways.

(a) maximize the quadratic functional T −(pc
h) by solving the associated station-

ary equations in a small finite dimensional subspace to obtain a relatively

coarse approximation pc
h to p̂, and generate qc

h as

qc
h = Apc

h. (5.53)

(b) Construct a weakly equivalent function q = Apc
h by solving the stationary

equation

0 = 〈〈Aδpc
h, Apc

h − Apf
h〉〉 (5.54)

using the solution pf
h obtained from maximising T −(pf

h). This method defines

a projection from the fine to coarse grid denoted Pf
c where

qc
h = A(Pf

c pf
h). (5.55)

(c) Construct qc
h by applying the operator A to an interpolant of the solution pf

h

in the coarse approximation space,

qc
h = A(If

c pf
h) (5.56)

where If
c is the interpolation operator between fine and coarse spaces defined

by transferring the value of the nodes where the coarse and fine grids coincide.

To enable the three methods to be compared the projection and interpolation

operators must honour the Dirichlet boundary conditions on the solution p. This

requirement ensures that the three elements pc
h, Pf

c pf
h and If

c pf
h belong to the same

approximation space.
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3. evaluate the functional T ++(qc
h) or T (pf

h, q
c
h) to obtain an upper bound.

Control of the relative magnitudes of the errors ‖Apf
h−qc

h‖〈〈〉〉 and ‖Apf
h−q̂‖〈〈〉〉 is achieved

through the choice and size of the spaces that the functions lie in. Consider two spaces

Sf and Sc such that Sc ⊂ Sf with pf ∈ Sf and pc ∈ Sc. With a view to obtaining the

lower bounds using continuous finite elements, the spaces Sf and Sc are the result of

a fine and coarse discretisations of the domain respectively, and include the Dirichlet

boundary conditions. We choose q = Apc
h so that the inequality to satisfy is then

‖Apf
h − Apc

h‖〈〈〉〉 ≥ ‖Apf
h − Ap̂‖〈〈〉〉, (5.57)

as q̂ = Ap̂. Provided that the spaces are nested in such a way that Sc ⊂ Sf the inequality

(5.57) can always be satisfied by making Sf sufficiently large. The exact fineness required

for the discretisations depends on the rate of convergence of the solution in the ‘energy

norm’, ‖Aph − Ap̂‖〈〈〉〉, with respect to the grid size.

Convergence of the solutions in the energy norm is studied via Cea’s Lemma (cf [8]).

This states that for any ξ ∈ Sh

‖Aph − Ap̂‖2
〈〈〉〉 = 〈〈Aph − Ap̂,Aph − Ap̂〉〉, (5.58)

= 〈〈Aph − Ap̂,Aph − Ap̂〉〉+ 〈〈Aξ,Aph − Ap̂〉〉, (5.59)

= 〈〈Aph − Ap̂,A(ph + ξ)− Ap̂〉〉, (5.60)

≤ ‖Aph − Ap̂‖〈〈〉〉 ‖AIh(p̂)− Ap̂‖〈〈〉〉, (5.61)

where Ih(p̂) is an interpolant of p̂ constructed by choosing the appropriate ξ. Hence

the rate of convergence of the approximate solution in the energy norm is the same as

the rate of convergence of the interpolation induced by the basis functions employed.

Bounds on the rate of convergence can be found in [8] and [26], and will be of the form

‖Aph − Ap̂‖〈〈〉〉 ≤ Chs. (5.62)

A conservative estimate of the order s of the scheme, is then required in order that an

inequality of the form

‖Apf
h − Ap̂‖〈〈〉〉 ≤ 1

ns
‖Apc

h − Ap̂‖〈〈〉〉, (5.63)

can be asserted. Obtaining a practical value for the order of scheme is a non-trivial task

as in general the analytic solution will not be available. However, it is envisaged that if
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a degree of agreement is found on the order of a particular finite element discretisation

over multiple test problems then the use of the same value on further problems could

be justified. The obvious case in which greater care would be required is to solutions

containing singularities. Such solutions are not considered here. Defining Sf to be a

n-fold mesh interleaving of Sc such that ns ≥ 2 then

‖Apf
h − Ap̂‖〈〈〉〉 ≤ 1

ns
‖Apc

h − Ap̂‖〈〈〉〉, (5.64)

≤ 1

2
‖Apc

h − Ap̂‖〈〈〉〉. (5.65)

From the triangle inequality

‖Apf
h − Apc

h‖〈〈〉〉 ≥ ‖Apc
h − Ap̂‖〈〈〉〉 − ‖Apf

h − Ap̂‖〈〈〉〉, (5.66)

≥ 1

2
‖Apc

h − Ap̂‖〈〈〉〉, (5.67)

and therefore combining (5.65) and (5.67) the required inequality

‖Apf
h − Apc

h‖〈〈〉〉 ≥ ‖Apf
h − Ap̂‖〈〈〉〉 (5.68)

is satisfied.

The mesh condition ns ≥ 2 is not very restrictive, since the requirement that Sc ⊂ Sf

restricts n to the integers greater than 1. Hence for a mesh doubling, n = 2, the finite

element method is only required to have a first order rate of convergence in the energy

norm with respect to the mesh size.

Having identified that the correct space for q, the function is constructed by one of the

methods 2a,2b or 2c. Method 2a generates the solution pc
h directly from the variational

principles and therefore minimises the energy norm. Methods 2b and 2c construct the

coarse solution directly from the fine solution and as a result they are likely to be

non-optimal in the sense that

‖Apc
h − Ap̂‖〈〈〉〉 ≤ ‖APf

c (pf
h)− Ap̂‖〈〈〉〉 Method 2b, (5.69)

‖Apc
h − Ap̂‖〈〈〉〉 ≤ ‖A If

c (pf
h)− Ap̂‖〈〈〉〉 Method 2c, (5.70)

but may offer computational savings. In particular an interpolation operator defined

by transferring the value of the nodes from the fine to the coarse grid at the locations

where the nodes coincide requires no further matrix inversions. Choosing to construct
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qh
c using a non-optimal projection or interpolation does not alter the procedure required

to obtain an upper bound. For example choosing to use method 2c, the inequality to

satisfy is

‖Apf
h − AIf

c pf
h‖〈〈〉〉 ≥ ‖Apf

h − Ap̂‖〈〈〉〉. (5.71)

From the rate of convergence of the finite element method a mesh interleaving is chosen

such that

‖Apf
h − Ap̂‖〈〈〉〉 ≤ 1

2
‖Apc

h − Ap̂‖〈〈〉〉, (5.72)

≤ 1

2
‖AIf

c pf
h − Ap̂‖〈〈〉〉. (5.73)

Then, again using the triangle inequality,

‖Apf
h − AIf

c pf
h‖〈〈〉〉 ≥ ‖AIf

c pf
h − Ap̂‖〈〈〉〉 − ‖Apf

h − Ap̂‖〈〈〉〉, (5.74)

≥ 1

2
‖AIf

c pf
h − Ap̂‖〈〈〉〉, (5.75)

and combining (5.73) and (5.75) the inequality

‖Apf
h − Apc

h‖〈〈〉〉 ≥ ‖Apf
h − Ap̂‖〈〈〉〉 (5.76)

is satisfied. A similar argument holds with the projection operator.

5.2 An Example - Simple Advection

In chapter 4 the addition of the advective term led to a deterioration in the quality of

the results obtained. Therefore to test the new method the advection equation in the

(x, t) domain Ω = [0, 1]× [0, T ], periodic in the sense that x(1, t) = x(0, t), is considered.

Although the advection operator has additional structure including skew symmetry, this

has intentionally not been exploited in order to maintain generality. The primal problem

is then advection of the initial data φ0, that is,

φ̂t + φ̂x = 0 in Ω, (5.77)

φ̂ = φ0 t = 0, (5.78)

corresponding to Aφ̂ = s. The solution of the primal problem coincides with the sta-

tionary point of the functional

G(φ, σ) =

∫∫

Ω

{
φb−

(
∂φ

∂t
+

∂φ

∂x

)
σ

}
dx dt−

∫ 1

0

[σ(φ− φ0)]t=0 dx +

∫ 1

0

[φσT ]t=T dx,

(5.79)
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for the fist variation of the functional δG(φ, σ) is

G(φ, σ) =

∫∫

Ω

{
δφ

(
b +

∂σ

∂t
+

∂σ

∂x

)
−

(
∂φ

∂t
+

∂φ

∂x

)
δσ

}
dx dt

−
∫ 1

0

[δσ(φ− φ0)]t=0 dx−
∫ 1

0

[δφ(σ − σT )]t=T dx. (5.80)

In addition the stationary point of the functional defines the dual problem to be

−σ̂t − σ̂x = b in Ω, (5.81)

σ̂ = σT t = T, (5.82)

corresponding to A∗σ̂ = t. Comparing the primal and dual problems confirms that

the advection equation is non-self-adjoint, and characteristically the dual problem runs

in reverse from the final condition σT . The stationary value of the functional is, as

expected, the solution of the primal problem weighted by the forcing terms of the dual

problem

G(φ̂, σ̂) =

∫∫

Ω

φ̂b dx dt +

∫ 1

0

[
φ̂σT

]
t=T

dx. (5.83)

The physical significance of the stationary value can be chosen by the appropriate se-

lection of the forcing functions b and σT .

Following the framework constructed in the general notation the operator is modified

so as to obtain a self-adjoint problem set, the solution of which coincides with the

stationary point of the functional J (u, v). Initially the additional constraints u = φ0

on t = 0 and v = 0 on t = 0, are placed on the functions u and v. In due course these

constraints will be included in the functional using the intermediate functions q1 and q2

as Lagrangian multipliers. The functional J (u, v) is then

J (u, v) =

∫∫

Ω

{
ub−

(
∂u

∂t
+

∂u

∂x

)(
∂u

∂t
+

∂u

∂x

)}
dx dt +

∫ 1

0

[uvT ]t=T dx, (5.84)

and the primal problem is defined to be

−ûtt − 2ûxt − ûxx = 0 in Ω,

û = φ0 t = 0,

ût + ûx = 0 t = T,





corresponding to A∗(Aû− s) = 0. (5.85)

The natural boundary condition arising at t = T ensures that the boundary conditions

on û coincide with the solution φ̂ and hence enforces equality of the solutions of the
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primal problems, û = φ̂. The dual problem is defined to be

−v̂tt − 2v̂xt − v̂xx = b in Ω,

v̂ = 0 t = 0,

v̂t + v̂x = σT t = T,





corresponding to A∗Av̂ = b, (5.86)

with the original Dirichlet condition σ = σT at t = T being modified to a Neumann type

condition v̂t + v̂x = σT at t = T . As required the stationary value J (û, v̂)s is identical

to G(φ̂, σ̂)s through the relationship û = φ̂,

J (û, v̂)s =

∫∫

Ω

ûb dx dt +

∫ 1

0

[ûσT ]t=T dx. (5.87)

To obtain the pair of self-dual problems the twinning transformations u, v → p1, p2,

u =
1

2
(p1 + p2), (5.88)

v =
1

2
(p1 − p2), (5.89)

are applied to the functions to obtain

J (p1, p2) =

∫∫

Ω

{
1

2
(p1 + p2)b− 1

4

(
∂p1

∂t
+

∂p1

∂x

)(
∂p1

∂t
+

∂p1

∂x

)

+
1

4

(
∂p2

∂t
+

∂p2

∂x

)(
∂p2

∂t
+

∂p2

∂x

)}
dx dt +

1

2

∫ 1

0

[(p1 + p2)σT ]t=T dx.

(5.90)

The intermediate variables q1 and q2 are now introduced as Lagrangian multipliers for the

Dirichlet conditions on p1 and p2 respectively. The complete functional J (p1, q1, p2, q2)

is then

J (p1, q1, p2, q2) =

∫∫

Ω

{
1

2
(p1 + p2)b− 1

2

(
∂p1

∂t
+

∂p1

∂x

)
q1 +

1

4
q2
1 −

1

4
q2
2

+
1

2

(
∂p2

∂t
+

∂p2

∂x

)
q2

}
dx dt +

1

2

∫ 1

0

[(p1 + p2)σT ]t=T dx

−1

2

∫ 1

0

[(p1 − φ0)q1 − (p2 − φ0)q2)]t=0 dx, (5.91)

=
1

2
T1(p1, q1)− 1

2
T2(p2, q2). (5.92)

From (5.92) the pair of functionals Ti(pi, qi) can be identified as

Ti(pi, qi) =

∫∫

Ω

{
piei −

(
∂pi

∂t
+

∂pi

∂x

)
qi +

1

2
q2
i

}
dx dt−

∫ 1

0

[(pi − fi)qi]t=0 dx

+

∫ 1

0

[pigi]t=T dx, (5.93)
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with the forcing terms

e1 = b,

f1 = φ0,

g1 = σT ,





corresponding to r1, (5.94)

and

e2 = −b,

f2 = φ0,

g2 = −σT ,





corresponding to r2. (5.95)

The stationary value of the functional is obtained by substituting the analytic solutions

pi = p̂i and qi = q̂i and is found to be

Ti(p̂i, q̂i) =

∫∫

Ω

{
p̂iei − 1

2

(
∂p̂i

∂t
+

∂p̂i

∂x

)
q̂i

}
dx dt +

∫ 1

0

[p̂igi]t=T dx, (5.96)

=
1

2

∫∫

Ω

p̂ieidx dt +
1

2

∫ 1

0

[p̂igi]t=T dx +
1

2

∫ 1

0

[fiq̂i]t=0 dx. (5.97)

Having isolated the pair of self-adjoint and self-dual problems the saddle shaped topology

of the governing functionals can then be demonstrated. Again, dropping the index for

clarity, and considering the general functional T (p, q) the constraint corresponding to

the hyper-line H−,

pt + px = q in Ω, (5.98)

p = f t = 0, (5.99)

can be applied to the functional by direct substitution. On substitution of the constraints

(5.98) and (5.99) the functional

T −(p) =

∫∫

Ω

{
pe− 1

2
(pt + px)(pt + px)

}
dx dt +

∫ 1

0

[pg]t=T dx, (5.100)

is obtained. It satisfies the maximum principle since

T −(p)− T −(p̂) =

∫∫

Ω

{
(p− p̂)(−p̂tt − 2p̂xt − p̂xx)− 1

2
(pt + px)(pt + px)

+
1

2
(p̂t + p̂x)(p̂t + p̂x)

}
dx dt +

∫
[(p− p̂)(pt + px)]t=T dx,

=

∫∫

Ω

{
(pt + px)(p̂t + p̂x)− 1

2
(pt + px)(pt + px)

−1

2
(p̂t + p̂x)(p̂t + p̂x)

}
dx dt +

∫
[(p− p̂)(pt + px)]t=0 dx,

= −1

2

∫∫

Ω

( (pt + px)− (p̂t + p̂x) )2dx dt,

≤ 0. (5.101)
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Alternatively, applying the constraints corresponding to the hyper-line H+,

−qt − qx = e in Ω, (5.102)

q = g t = T, (5.103)

the functional

T +(q) =

∫∫

Ω

1

2
q2dx dt +

∫
[fq]t=0 dx, (5.104)

is obtained. Conversely, this functional satisfies the minimum principle since

T +(q)− T +(q̂) =

∫∫

Ω

{
1

2
q2 − 1

2
q̂2 + p̂(qt + qx − q̂t − q̂x)

}
dx dt +

∫
[p̂(q − q̂)]t=0 dx,

=

∫∫

Ω

{
1

2
q2 − 1

2
q̂2 − (p̂t + p̂x)(q − q̂)

}
dx dt +

∫
[p̂(q − q̂)]t=T dx,

=
1

2

∫∫

Ω

(q − q̂)2dx dt,

≥ 0. (5.105)

As anticipated, applying the constraint (5.102) strongly is as difficult as solving the

original primal problem and an upper bound is calculated by applying the procedure

outlined in section 5.1.3.

5.2.1 Results

The quantity of interest is chosen as the weighted integral of the solution at the final

time using the functions b = 0, and φ0 and σT constructed from quadratic sections.

The functions φ0 and σT are plotted in figure 5.1 The analytic solutions to the pair of

twinned problems are then

p̂1 = φ0(x− t) + tσ(x− t + 1), (5.106)

p̂2 = φ0(x− t)− tσ(x− t + 1). (5.107)

The knowledge of the analytic solutions of the twinned problems enables the required

inequality expressed as either

1

2
‖Apc

h − Ap̂‖〈〈〉〉 ≥ ‖Apf
h − Ap̂‖〈〈〉〉, (5.108)

or

‖Apf
h − Apc

h‖〈〈〉〉 ≥ ‖Apf
h − Ap̂‖〈〈〉〉, (5.109)
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Figure 5.1: The boundary conditions φ0 and σT

to be verified for the method employed. The twinned problems where discretised us-

ing piecewise continuous quadratic finite elements. In accordance with the procedure

outlined in section 5.1.3 the lower bound was calculated by maximising the functional

T −(pf
h). From the lower bound the rate of convergence of the method can be calculated

as the error in the energy norm is directly related to the error in the lower bound,

‖Aph − Ap̂‖2
〈〈〉〉 = 〈〈Aph − Ap̂,Aph − Ap̂〉〉 (5.110)

= 2T −(ph)− 2T −(p̂) (5.111)

from (5.28). The convergence in the energy norm of the solutions of the twinned prob-

lems with T = 1 is shown in figure 5.2. From figure 5.2 a conservative estimate for the

order of the scheme is one and therefore a simple mesh doubling between the coarse

and fine grids is sufficient to obtain an upper bound on the stationary values of the

functional. The upper bound was found by constructing qc
h as

qc
h = AIf

c pf
h, (5.112)

where the interpolation operator is defined by transferring the value of the nodes at the

points where the meshes coincide. The upper bounds for the pair of twinned problems

were evaluated as T (pf
h, q

c
h).

As a result of the chosen weighting function the quantity of interest fluctuates as the

final time is varied, and is sensitive to errors in the wave speed and diffusion of the
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Figure 5.2: Convergence of the finite element solutions in the energy norm, ‖Aph−Ap̂‖,
with respect to element size, h, T = 1

numerical solution. The analytic value of the quantity of interest can be calculated

from the analytic solution of the primal problem

φ̂(x, t) = φ0(x− t), (5.113)

and therefore

Θ(φ̂) =

∫ 1

0

[φ0(x− T )σT (x)]t=T dx. (5.114)

The numerical solutions of the pair of problems governing p1 and p2 with T = 1 are

plotted in figure 5.3. The solutions were obtained using 24 × 24 elements for the fine

grid. The approximate solutions of the primal and dual problems, (5.85) and (5.86), are

obtained from the solutions p1 and p2 by inverting the twinning transformation, taking

the sum and difference respectively. These solutions are shown in figure 5.4. From this

it is noted that while the primal solution u is an approximation to the advection of the
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initial data, the dual solution v is not simply advection of the function σT backwards in

time. The change in the characteristic of the dual solution is a result of introducing self-

adjointness into the governing equations. In doing so the quantity of interest is evaluated

as the boundary integral of solution of the primal problem, weighted by the Neumann

boundary condition of the dual solution. The Neumann type boundary condition at

t = T is responsible for the growth in the solution and the deviation of the solution

from σ̂.
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Figure 5.3: Solutions of the p1 and p2 problems
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Figure 5.4: Solutions u and v of the primal and dual problems

Figure 5.5 shows the upper and lower bounds obtained on the Θ(φ̂) for varying end

times. In solving over domains in which T 6= 1 it is assumed that the mesh doubling

employed is sufficient to ensure valid upper and lower bounds. Although the upper
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bounds µ+
i are potentially weaker than the lower bounds the construction of the bounds

on the quantity of interest as

1

2
(µ−1 − µ+

2 ) ≤ Θ(φ̂) ≤ 1

2
(µ+

1 − µ−2 ) (5.115)

distributes this imbalance evenly. In figure 5.5 each pair of bounds is generated by

solving the pair of twinned problems in the domain (0 ≤ x ≤ 1, 0 ≤ t ≤ T ) and in

order that the divergence of the bounds with time can be investigated, the ratio of

elements in the time direction to the end time was kept constant. From figure 5.5 a

gradual drift in the accuracy of the bounds is experienced as the end time is increased.

This drift in is due to the gradual diffusion of the advected data and as the quantity

of interest is a particular weighted integral of the solution the shape of the solution at

the final time is important. In addition, the finite element method is unlikely to be

conservative and therefore the solution is likely to experience gradual decay. In order

to try and tighten the bounds obtained a higher grid density can be employed. Figure

5.5 indicates a significant improvement in the accuracy of the simulations when the grid

density is doubled.

A characteristic of this method is that the complete (x, t) domain is required to be

discretised which for long time simulations yields costly simulations. In order to try

and maximise the efficiency of long-time simulations grid adaption techniques can be

implemented.

5.3 Grid Adaption

The advantages of defining a local error indicator based on the quantity of interest has

been discussed in section 1.3.1. One method of obtaining an error indicator based on the

quantity of interest is by localising the contribution each element makes to the difference

between the bounds, a quantity directly related to the accuracy to which the quantity

of interest has been resolved. In [45] Suli and Houston equidistribute the contribution

to the error representation formula (1.6) made by each element. In a similar manner a

grid adaption method can be formulated within the present framework to equidistribute

the contribution to the difference between the upper and lower bound made by each

element. In this way it is possible to ensure that the error in the quantity of interest,
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Figure 5.5: Bounds on Θ(φ̂)
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essentially the difference in the bounds, is below a user defined tolerance. Defining our

approximation Θh to be the average of the upper and lower bounds the following bounds

on the quantity of interest can be formed

∣∣∣Θh −Θ(φ̂)
∣∣∣ ≤ 1

4

∣∣µ+
1 − µ−2 − µ−1 + µ+

2

∣∣ , (5.116)

=
1

4

∣∣∣∣∣
N∑

el=1

[
µ+

1 − µ−2 − µ−1 + µ+
2

]
el

∣∣∣∣∣ , (5.117)

≤ 1

4

N∑

el=1

∣∣[µ+
1 − µ−2 − µ−1 + µ+

2

]
el

∣∣ . (5.118)

where
[
µ+

1 − µ−2 − µ−1 + µ+
2

]
el

is the contribution from the element el to the error in the

quantity of interest, and N is the total number of elements in the discretisation. The

desired accuracy in the quantity of interest is found by enforcing

∣∣[µ+
1 − µ−2 − µ−1 + µ+

2

]
el

∣∣ ≤ 4

N
tol (5.119)

and iterating to obtain ∣∣∣Θh −Θ(φ̂)
∣∣∣ ≤ tol. (5.120)

The grid adaption method described will now be applied to the advection equation

considered in the previous example. For the purposes of this example the end time

T = 1 is chosen.

5.3.1 Grid Adaption Applied to the Advection Example

Grid adaption can be naturally applied to the advection example as the contribution

from each element to the error in the quantity of interest is computable. The local

contributions are found from the bounds µ−i and µ+
i which are expressed as integrals

over the whole computation domain. For example

µ− = T −(pf
h),

=

∫∫

Ω

{
pf

he1 − 1

2
((pf

h)t + (pf
h)x)((p

f
h)t + (pf

h)x)

}
dx dt +

∫ 1

0

[
pf

hg
]

t=T
dx,

=
N∑

el=1

∫∫

el

{
pf

he1 − 1

2
((pf

h)t + (pf
h)x)((p

f
h)t + (pf

h)x)

}
dx dt

+
N∑

el=1

∫

el

[
pf

hg
]

t=T
dx, (5.121)
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where it is understood that the second integral can only have non-zero contributions

from elements with a boundary segment along the line t = T . Therefore

µ−el =

∫∫

el

{
pf

he1 − 1

2
((pf

h)t + (pf
h)x)((p

f
h)t + (pf

h)x)

}
dx dt +

∫

el

[
pf

hg
]

t=T
dx, (5.122)

and the local contributions to the upper bound can be found in a similar fashion. The

desired accuracy in the quantity of interest is again found by enforcing

∣∣[µ+
1 − µ−2 − µ−1 + µ+

2

]
el

∣∣ ≤ 4

N
tol (5.123)

and iterating to obtain ∣∣∣Θh −Θ(φ̂)
∣∣∣ ≤ tol. (5.124)

In constructing a grid refinement method based upon the upper and lower bounds we are

assuming that the procedure outlined in section 5.1.3 extends to unstructured meshes.

The validity of this assumption will be investigated with numerical values obtained

from the refinement procedure. The upper bound will again be found by using the

interpolation operator to define the coarse function pc
h on a grid half the density of

that on which pf
h is defined. The refinement algorithm will be to simply double the

mesh density in any element failing to satisfy the refinement criterion 5.123. In addition

elements will always be grouped in sets of four to enable the coarse mesh, with half

the mesh density, to be easily defined. Any resulting hanging nodes are removed by

interpolating the value of the solution from the neighbouring nodes, using the same

basis functions that are being used to represent the solution. For optimal bounds on

Θ(φ̂) separate grids should be implemented for the two solutions p1 and p2, however,

the grid requirements of the two problems appear very similar and the two problems

were solved on the same grid for reasons of economy. The fine grids in figure 5.6, on

which pf
h is defined, were produced using the refinement procedure with the tolerance set

at 0.045. The refinement of the grids displays the structure expected and observed by

Suli and Houston [45]. Namely, the procedure refines the grid along the characteristics

transporting components of the solution pertinent to the accuracy of the quantity of

interest. In this example the quantity of interest is effectively an integral evaluated in

the left half of the domain at the final time. The characteristics of the solution are the

straight lines

x = t + constant (5.125)
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Figure 5.6: The fine computational grids, refinement levels 1 - 4

and from figure 5.6 it is observed that the areas of the grid that are most significantly

refined correspond to the characteristics that pass through the left half of the domain

at the final time. In particular the central strip of these characteristics are refined to

the highest degree and this portion relates to the greater weighting in the quantity

of interest stimulated by the function σT around the region x = 0.25, (T = 1). In

theory the solution can be arbitrarily inaccurate away from the key characteristics and

therefore the grid can remain relatively coarse. However, a certain degree of resolution

is required across the solution in order that large errors incurred in irrelevant sections

of the solution do not pollute areas in which a greater degree of accuracy is necessary.
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The balance between the grid requirements of the various parts of domain is quite subtle

and the basic grid refinement procedure employed is probably far from optimal. For

example the method did not include a grid coarsening step. However, it was successful

in driving the error in the quantity of interest down and the numerical values obtained,

corresponding to the grids in figure 5.6, are show in table 5.1 where,

|Θh −Θ(φ̂)| ≤ ε1 =
1

4

∣∣µ+
1 − µ−2 − µ−1 + µ+

2

∣∣ , (5.126)

|Θh −Θ(φ̂)| ≤ ε1 ≤ ε2 =
1

4

N∑

el=1

∣∣[µ+
1 − µ−2 − µ−1 + µ+

2

]
el

∣∣ . (5.127)

From table 5.1 it can be seen that the bound on the error in quantity of interest is

much less than the bound ε2. This difference is due to the evaluation of ε2 preventing the

cancellation of many local error terms. However both bounds can be calculated during

the refinement procedure and therefore although the method maybe driven by forcing

ε2 ≤ tol, the user has the liberty of stopping the refinement procedure when ε1 ≤ tol.
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Level No Nodes ε1 ε2

1 600 0.18382 0.23810

2 2296 0.02534 0.06753

3 5424 0.00766 0.04888

4 13200 0.00179 0.04262

Table 5.1: Error and error indicators corresponding to grid refinement levels 1 - 4

Again, a tacit assumption is made that the difference in the errors between the coarse,

fine and analytic solutions of the pair of twinned problems satisfy the required inequality

‖Apf
h − Apc

h‖〈〈〉〉 ≥ ‖Apf
h − Ap̂‖〈〈〉〉. (5.128)

Inspection of the convergence data of the numerical solutions, figure (5.7), confirms this

assumption at all refinement levels.

Using the upper and lower bounds as an error indicator compares favourably with meth-

ods based on the error representation formula (1.6). An error indicator is required to

reliably represent the magnitude of the local contribution to the error in the quantity

sought. However, the inability to evaluate the error representation formula due to the

presence of the analytic solution results in the set of inequalities (5.116)-(5.118) existing

only as approximations to the error in the quantity of interest, although the method per-

forms effectively over the catalogue of examples implemented by Suli and Houston [45].

In contrast the ability to evaluate the error in the quantity of interest using the upper

and lower bounds produces strong results in the form of the inequalities (5.116)-(5.118)

and which are confirmed by the results displayed in table 5.1.

5.4 Conclusions and Extensions

The procedure outlined provides an effective means of bounding quantities of interest

governed by non-self-adjoint operators. The ability to obtain these bounds hinges on

satisfying the inequality (5.43). The example considered illustrated that satisfying the

inequality (5.43) is feasible in practice although the method relies on obtaining a con-

servative estimate of the convergence rate of the finite element method used. In practice
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determining the convergence rate would require a preliminary convergence study and in

general add an additional cost to the method. If a mesh adaption routine is to be used

the convergence study would also have to consider unstructured grids. Further research

is required in this area to explore fully the limitations that this places on the method.

However, in contrast to the dual extremum principles constructed by Collins for the heat

equation [12] the method described in this chapter is implementable and the required

constraints to obtain the upper and lower bounds can be satisfied in practice.

A description of this method for obtaining bounds on a quantity of interest governed by

a non-self-adjoint operator has been submitted to Computers and Fluids as part of the

proceedings of the AMIF 2002 conference held in Lisbon.

Having generated the method using regular quadrilateral elements the method could also

be extended to unstructured triangular meshes. An unstructured triangular mesh has

greater flexibility and node movement, as well as mesh refinement could be considered.

However, unstructured meshes also introduce additional complexities and, in particular,

obtaining the coarse grid with the required accuracy properties could be challenging.

Obtaining progressively coarser grids is a component of the multigrid solving routine

and this body of literature would provide a practical starting point.

The ability to obtain bounds on the quantity of interest to a given tolerance is a useful

attribute of the method, although the cost of the refinement procedure will depend

on the efficiency of the algorithm. The technique of refining the approximation space

depending on the magnitude of the local contribution to the error in the quantity of

interest can be employed to any problem where the upper and lower bounds are evaluated

as integrals over the computational domain. Therefore, a similar method could also be

defined to refine the grids used to obtain numerical solutions in chapter 3.

5.4.1 Generating Numerical Methods

In the example considered standard finite elements were used to obtain the numerical

solutions. However the numerical solutions do not retain any of the properties of the so-

lution of the advection equation, namely conservation of the advected quantity. Provided

that the requirements to generate upper and lower bounds are satisfied other numerical
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methods can also be considered. Ideally a numerical method could be found for which

the conservation of the primal solution u could also be shown. A possible method to

generate conservative numerical methods may stem from choosing the quantity of inter-

est to be the integral of the conserved quantity and then applying discretisations to the

primal and dual problems that preserve this quantity. Further research into this area is

required before the feasibility of this approach can be evaluated.

5.4.2 Splitting the Computational Domain

The key draw back to the method is the requirement to discretise over the complete

spatial and temporal domain considered. At first sight it seems that this limitation may

be removed as the quantity of interest is evaluated as an integrals over the complete

domain and therefore it may be possible to split the domain, for example along the

line t = T/2, and sum the pairs of integrals calculated over each sub-domain. The

procedure would then be to, calculate approximations to the solutions (p1, q1) and (p2, q2)

in the first sub-domain, 0 ≤ t ≤ T/2, and then use the solution obtained along the

boundary t = T/2, as boundary conditions for the solution in the second sub-domain

T/2 ≤ t ≤ T . Unfortunately this procedure in not feasible, due to the lack of information

on the internal boundary t = T/2. To solve over the fist sub-domain, information about

the dual solution is required to form a boundary condition on t = T/2. However,

this information has yet to be propagated backwards in time from the end condition

and is therefore unavailable. The advection of the dual solution backwards in time

prevent methods based on stepping forward in time from being constructed. The only

circumstance in which such a method could be formulated is if the quantity of interest

did not require data from ‘upstream’. A quantity of interest of this form might be the

integral of the solution over space and time up to the latest sub-domain. The quantity

of interest considered in section 5.2 is not of this form as the integral of the solution at

the final time was sought.
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Chapter 6

Focusing on the Stationary Value

Directly

During the course of this research the goal has been to bound physical quantities evalu-

ated as weighted integrals of the solution of the governing equations. Using the method

of twinning such quantities of interest can be expressed as the difference between the

stationary value of two self-dual variational problems and therefore only self dual prob-

lems will be considered in this section. The stationary value of the functional sought in

the context of a self-dual problems is

Θ(p̂) =
1

2
〈p̂, r〉, (6.1)

which for this section will be considered the quantity of interest. The solution p̂ satisfies

Ap̂ = r, (6.2)

and where in addition to the self-duality of the problem, the operator is considered to

be self-adjoint, either naturally or by modifications to the original system through the

method outlined in chapter 5. Therefore the governing equation can be written as

T ∗T p̂ = r. (6.3)

for some operator T .

In the preceding chapter, approximations to Θ(p̂) have been found by projecting the

stationary equations associated with the variational principle into a finite dimensional

subspace and solving weakly to find approximations ph ≈ p̂. Having obtained an ap-

proximation to the stationary point of the functional an approximation to the stationary
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value can be evaluated and, due to the convexity properties of the constrained function-

als considered, these approximations have been one-sided.

The natural extension to the philosophy outlined in the abstract is to consider whether

an approximation to the stationary value can be obtained directly, without first calcu-

lating the stationary point. After all, the prime objective of the simulation is solely to

obtain an approximation to the stationary value. This chapter investigates the possi-

bility of directly obtaining approximations to the stationary value of the functional, the

quantity of interest sought.

Methods to evaluate the quantity of interest can be constructed in either the continu-

ous case or through finite dimensional discretisations of the variational principles. For

simplicity, the methods considered will be constructed in the finite dimensional context

with reference made to the continuous analogues as appropriate.

The intuitive response to the feasibility of determining the stationary value of a func-

tional without effectively determining the stationary point is negative. In a continuous

formulation, seeking to evaluate the stationary value of a functional without knowledge

of the stationary point is equivalent to evaluating a weighted integral of a function

without explicit knowledge of the values the function takes over the required interval.

In this context the unknown function is p̂ and the weighting function is r. The para-

doxical nature of this task is highlighted if the weighting function r can be chosen to

be a delta function, implying that the integral sought is equal to the value of the un-

known function at a specified location. Of course, although the function p̂ is considered

unknown additional information about the solution exists. For example, p̂ is related

to the weighting function r through the governing equation (6.3), and dual extremum

principles may be available on the stationary value (6.1). However, regardless of this

additional information, the algorithms considered in this chapter which are capable of

producing the stationary value have had in some sense to have inverted an operator of

the form T ∗T .
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6.1 The Finite Dimensional Model

Discretisation of the stationary equations of the constrained functionals G−(p) and G+(q)

result in linear matrix equations of the form

K−p = b−, (6.4)

K+q = b+, (6.5)

where K− and K+ are symmetric positive definite matrices, as a consequence of the

self-adjointness of the operator T ∗T . The construction of K− and K+ in the case of the

diffusion functional is given in section (2.4.3). The bounds on the stationary value of

the functional Θ are then

1

2
pTb− ≤ Θ(p̂) ≤ 1

2
qTb+ + c1, (6.6)

where c1 is a constant required in the case of the Helmholtz functional, section 4.1.2.

For generality we consider the matrix equation

Kx = b, (6.7)

and wish to evaluate the scalar

Θh = Θh =
1

2
xTb, (6.8)

where Θh will be a one-sided bound on Θ due to the properties inherited from the

variational principle. The notation Θh will be preferred when the subscript is used

as the iteration index in the following algorithms. As with many numerical solution

procedures there are direct and iterative alternatives, both of which will be considered.

Moreover the formulation of the problem from which Θh will be obtained can be derived

in a multiplicity of ways, including descent methods and eigenvalue problems.

6.2 Descent Methods

Of the many descent, or gradient, methods formulated for solving a system of linear

equations the conjugate gradient algorithm is particularly efficient. Equivalently, it

is used in finding the stationary point of a quadratic functional when the matrix K
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is symmetric and positive definite. Therefore, implementing the conjugate gradient

algorithm to obtain the quantity of interest is a natural approach since the self-adjoint

positive nature of the governing operator translates to a symmetric positive definite

matrix.

6.2.1 A Conjugate Gradient Approach

Descent methods for obtaining the stationary point of a function are based on the

observation that that the solution vector x of (6.7) coincides with the stationary point,

a maximum say, of the function

g(x) = −1

2
xT Kx + bTx (6.9)

over all x. Of greater interest is that the stationary value g(x̂) coincides with the

quantity sought, Θh. It is worth noting that this is just the finite dimensional analogue

of the variational principles discussed in the previous chapters.

The efficiency of the conjugate gradient method in obtaining the stationary point is due

to the iterative construction of a set of conjugate basis vectors spanning the solution

space, and in which x̂ can be expanded. In exact arithmetic and for N unknowns it is

known that this construction is completed in N iterations. However, for large problems

a sufficient degree of accuracy may be attained earlier. The efficiency of the method to

find the solution x extends to efficiently finding Θh. In addition a small storage saving

is made as the vector x is not stored in memory.

The conjugate gradient method as stated in Braess [8] is: for an initial vector x0 and

search direction d0 = −g0 = b− Kx0, iterate k = 0, 1, 2, ...

αk =
gT

k gk

dT
k KdT

k

, (6.10)

xk+1 = xk + αkdk, (6.11)

gk+1 = gk + αkKdk, (6.12)

βk =
gT

k+1gk+1

gT
k gk

, (6.13)

dk+1 = −gk+1 + βkdk, (6.14)

until the residual gk = 0, or a convergence criteria is satisfied.
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The conjugate gradient method applied directly to Θh = Θh is found simply by updating

Θh instead of x. Therefore, with an initial vector x0, an initial value for the quantity of

interest is calculated,

Θh
0 =

1

2
xT

0 b (6.15)

and the same search direction d0 = −g0 = b−Kx0 is employed. The modified conjugate

gradients algorithm is then: iterate k = 0, 1, 2, ...,

αk =
gT

k gk

dT
k KdT

k

, (6.16)

Θh
k+1 = Θh

k +
αk

2
dT

k b, (6.17)

gk+1 = gk + αkKdk, (6.18)

βk =
gT

k+1gk+1

gT
k gk

, (6.19)

dk+1 = −gk+1 + βkdk, (6.20)

until the residual gk = 0 or a convergence criteria is satisfied.
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Figure 6.1: Convergence of Θh computed using the conjugate gradient method, N = 15
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Figure 6.2: Basis vectors generated by the conjugate gradient method, N = 15
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The performance of the conjugate gradient method is evaluated by obtaining a lower

bound on the stationary value of the functional governing the solution of the Poisson

equation

−d2p̂(x)

dx2
= 1 0 ≤ x ≤ 1, (6.21)

p̂(0) = p̂(1) = 0. (6.22)

The diffusion functional governs the solution of the equation set (6.21)-(6.22), and in

particular a lower bound on the stationary value of the functional is given by

G−(p) =

∫ 1

0

{
p− 1

2

dp

dx

dp

dx

}
dx, (6.23)

where the function p satisfies the boundary conditions (6.22). Discretising the stationary

equations using a finite element expansion for p with basis functions φi also satisfying

the boundary conditions (6.22),

p =
N∑

i=1

xiφi, (6.24)

δp = φi i = 1, ..., N (6.25)

results in the matrix equation

Kx = b, (6.26)

governing the coefficients xi. The elements of the N ×N matrix K and the N ×1 vector

b in this case are

Kij =

∫ 1

0

dφi

dx

dφj

dx
dx, (6.27)

bi =

∫ 1

0

φidx. (6.28)

The convergence of the stationary value calculated using the conjugate gradient method,

with respect to the number of iterations, is shown in figure 6.1. The method was

implemented with differing levels of discretisation fineness and the number of iterations

required to achieve a one percentage relative error in the stationary value is graphed

in figure 6.6. In general, the required degree of accuracy in the quantity of interest

was obtained within approximately N
2

iterations. This characteristic is displayed in

the convergence history of the method with N = 15 shown in figure 6.1. The sudden

reduction in the error can be explained by considering the basis vectors generated by
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the algorithm. On inspection of the basis vectors, shown in figure 6.2, it is apparent

that the solution, which is symmetric about the axis x = 0.5, is efficiently represented

by the first eight vectors alone, with the remaining vectors contributing negligibly.

In general the convergence of the quantity of interest may not exhibit the characteristics

displayed by this example. However, the conjugate gradient method offers a robust

descent method for which the convergence of the quantity of interest could always be

accelerated by the use of an appropriate pre-conditioner if required.

6.3 An Eigenvalue Formulation

The descent method implemented in the previous sections replicates the structure of

the continuous problem at a discrete level. Alternatively, the problem of obtaining the

quantity of interest can be re-formulated as an eigenvalue equation. This finite dimen-

sional eigenvalue problem will be examined with the aim being to construct numerical

methods to evaluate the quantity of interest. The corresponding continuous eigenvalue

problem is considered by Levine and Schwinger [28] to obtain approximations to scale

invariant quantities in electromagnetic theory.

The eigenvalue problem is formulated by rendering the solution scale invariant by rewrit-

ing it as

Kx =
(xTb)

2Θh

b. (6.29)

Re-arranging (6.29), the generalised eigenvalue problem

ΘhKx =
1

2
bbTx, (6.30)

= Bx, (6.31)

or equivalently

(B−ΘhK)x = 0 (6.32)

is obtained, where

B =
1

2
bbT (6.33)

is a rank 1 operator, Θh is the eigenvalue parameter and x the corresponding eigenvec-

tor. The degenerate nature of the operator B strongly affects the distribution of the
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eigenvalues of this problem. In particular, the eigenvalues of (6.32) are the same as

those of the standard eigenvalue problem

(K−1B−ΘhI)x = 0 (6.34)

as K is of full rank. The eigenvalues of the operator K−1B can be investigated by

decomposing the symmetric positive definite matrix K such that

K=L−1L−T . (6.35)

The standard eigenvalue problem is then of the form

Θhx =
1

2
(Lb)

(
bT LT

)
x, (6.36)

=
1

2
zzTx, (6.37)

where

z = Lb, (6.38)

and the hence the product of the operators K−1B is shown to be a the rank 1 outer

product of the vector z. The rank one nature of the operator K−1B implies that there

exists a single non-zero eigenvalue which corresponds to the quantity of interest sought.

Ideally the single non-zero eigenvalue of (6.32) could be found directly. One obvious

approach is to invert the full rank matrix K and evaluate Θh as the trace of the matrix

K−1B. However, inverting the matrix K is costly and little different from solving the

original matrix problem (6.7). An alternative method to calculate this eigenvalue using

determinants can be found in Porter and Stirling [40].

6.3.1 A Direct Method

The ability to obtain an explicit expression for the quantity of interest, the non-zero

eigenvalue, is due to the degenerate nature of the operator B. To obtain the result of

Porter and Stirling it is observed that for a non-trivial eigenvector to exist the operator

must satisfy

0 = det(K− 1

2Θh

bbT ), (6.39)

=

∣∣∣∣K−
1

2Θh

bbT

∣∣∣∣ . (6.40)
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Denoting the governing operator as

G = Θ−1
h bbT − 2K, (6.41)

where Θh 6= 0 the elements of G are

Gij = Θ−1
h bib

T
j − 2Kij. (6.42)

Elementary row operations can then be applied to G to obtain Ḡ where

Ḡij =





Θ−1
h b1b

T
j − 2K1j i = 1,

2αiK1j − 2Kij i 6= 1,
(6.43)

and

αi =
bi

b1

. (6.44)

The ability to eliminate Θ−1
h from all but the first row is due to the rank 1 property

of the product bbT . In addition, the structure of Ḡ enables the determinant of the

operator to be written as the difference of two closely related determinants. Therefore,

0 = |G| , (6.45)

=
∣∣Ḡ

∣∣ , (6.46)

=
N∑

j=1

(
Θ−1

h b1b
T
j − 2K1j

)
Cij, (6.47)

=
N∑

j=1

Θ−1
h b1b

T
j Cij − 2K1jCij, (6.48)

= Θ−1
h b1 |X| − 2 |Y | , (6.49)

where Cij are the cofactors of the (N − 1×N) matrix A with elements

Aij = 2αi+1K1,j − 2Ki+1,j, (6.50)

such that

X =


 bT

A


 , Y =


 kT

A


 , (6.51)

and kT is the first row of K

kT
i = K1,i. (6.52)

An explicit formula for the quantity of interest is then

Θh =
b1

2

|X|
|Y| . (6.53)
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In adopting this method it is assumed that b1 6= 0. If this is an invalid assumption

then the equations can be re-numbered or the determinant expanded around a different

row. The existence of at least one non-zero element of b is guaranteed in order that the

solution x of

Kx = b (6.54)

is non-trivial. Although the formula (6.53) provides an explicit means of obtaining the

quantity of interest the direct numerical evaluation of determinants is generally avoided

due to the high number of multiplication operations involved. Practically, an LU fac-

torisation of the matrices X and Y would be implemented and the determinant evaluated

from the diagonal elements. However, the computational cost of calculating the deter-

minants is unlikely to be less than computing the stationary value of the functional

using the conjugate gradient algorithm.

An exceptional case in which the evaluation of the determinants may prove the cheaper

option is when the computation is executed in parallel and the explicit nature of the

determinant exhibits greater scalability. The relative savings of parallel computing have

not been considered in this research and it is assumed that all computations are carried

out in a serial fashion.

The quotient of two determinants appearing in the computation of quantity of interest is

reminiscent of Cramer’s Rule and suggests the existence of a matrix system in which Θh

is evaluated directly from a single component of the solution vector. The corresponding

matrix system can be found through further simplification of the result of Porter and

Stirling. The key to the simplification is the high degree of similarity between the

operators X and Y enabling X to be written as

X = (I + H) Y, (6.55)

where

H =


 hT

0


 . (6.56)

Therefore, the quantity of interest can be expressed in the following manner

Θh =
b1

2

|X|
|Y| , (6.57)
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=
b1

2

|I + H| |Y|
|Y| , (6.58)

=
b1

2
(1 + h1) , (6.59)

where the vector h is obtained by solving the system

YTh = b− k. (6.60)

Again, obtaining h1 from (6.60) is unlikely to be as cost efficient as computing the quan-

tity of interest using the conjugate gradient algorithm since Y is no longer symmetric.

The matrix system (6.60) illustrates that although quantity of interest appears to have

been computed in isolation from an N dimensional stationary point, the eigenvalue

formulation embeds the quantity of interest within a complementary N dimensional

problem. Therefore, in either approach the core cost of inverting a N × N operator is

incurred in obtaining the quantity of interest.

The iterative descent method discussed in section 6.2.1 was found to be an effective

method to obtain the quantity of interest and therefore it is natural to consider whether

an effective iterative algorithm to compute the single non-zero eigenvalue exists.

6.3.2 An Iterative Eigenvalue Approach

An iterative procedure to evaluate Θh = Θh is constructed by considering the largest

positive eigenvalue, β, of the operator

F = B−Θh
k(K− I), (6.61)

and tracing a convergence path such that in the limit as the iteration count k gets large,

βk → Θh
k → Θ. Under such conditions the eigenvalue problem

[B−Θh
k(K− I)]x = βkx (6.62)

converges to

[B−ΘhK]x = 0. (6.63)

The power method is used to obtain approximations to the largest eigenvalue of the

operator F and, to ensure that the power method converges to the largest eigenvalue,
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an additional shift is added and the operator

F(Θh
k, γ) = B−Θh

k(K− I) + γI (6.64)

is considered. A suitable convergence path is found to be attained by a simple relaxation

of the Θk. The algorithm is then

• Initialise: An initial value for Θh, Θh
0 is required, which may be obtained from a

coarse solution, an estimation, or arbitrary value. An estimation for the magnitude

of the shift required can be obtained by applying a few iterations of the power

method to the operator F(Θh
0 , 0). If the results of the power method, α, is negative

and reasonably converged then an effective shift is γ = −1.5α, which helps ensure

that all the eigenvalues of F are positive and therefore β is the dominant eigenvalue

identified by the power method. Due to the additional shift β0 = α+γ. An initial

vector x0 is also required. In the limit Θh
k → Θh, x converges to the eigenvector

with largest eigenvalue and hence this will be the scale invariant solution of the

matrix equation (6.3). Therefore, a vector containing any coarse attributes of

the solution is a good initialisation point, although an arbitrary vector is also

acceptable.

• Iterate: The iterations proceed according to the algorithm

Θh
k = θh(βk−1 − γ) + (1− θ)Θk−1 (6.65)

xk =
xk

xT
k xk

(6.66)

y = F(Θh
k, γ)xk (6.67)

βk = xT
k y (6.68)

xk+1 = y (6.69)

The results obtained by applying this iterated power method to the example (6.5) are

shown in figure 6.6. In comparison with the results obtained using the conjugate gradient

algorithm the convergence of the power method is considerably slower. In contrast to

the conjugate gradient method the power method does not systematically construct a

basis in which to expand the solution. Instead, the power method converges to the

dominant eigenvector in the limit of a sequence in which the contributions from the

remaining eigenvectors become negligible. Therefore, using the power method the limit
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of a sequence is sought and acceleration techniques can be employed in an attempt to

reach the limit point more efficiently. The use of acceleration methods is discussed in

the next section.

Alternatively, the reciprocal eigenvalue problem

Kx = µBx (6.70)

can be considered where

Θh =
1

µ
. (6.71)

The eigenvalues of (6.70) are now all infinite except one corresponding to the reciprocal

of the quantity of interest. An iteration method of the form

[K− µ(B− I)]x = βkx (6.72)

where the convergence βk → µk → Θ−1
h is then desired. The large interval between

the eigenvalue of interest and the remaining eigenvalues suggest that iterative methods

will converge rapidly. However, to obtain approximations to the smallest eigenvalue

the inverse power method is required and this involves the inversion of the governing

operator. The cost of inverting the operator precludes serious consideration of this

method.

6.3.3 An Accelerated Power Method

The convergence rate of the power method is the main detraction from the algorithm

and therefore attempts to accelerate this should be investigated. Ideally the convergence

of the sequence of eigenvector approximations xk tending to x would be accelerated as

the eigenvector, as opposed to the eigenvalue, is the driving variable in the algorithm.

The accelerated algorithm is then

• Initialise as before

• Iterate with every nth eigenvalue update accelerated

Θh
k = θ(βk−1 − γ) + (1− θ)Θh

k−1 (6.73)

xk =
xk

xT
k xk

(6.74)
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Figure 6.3: Schematic diagram of the interpolation-extrapolation method applied to the

ith component of x

yk = F(Θh
k, γ)xk (6.75)

βk = xT
k yk (6.76)

every nth iteration (6.77)

xk+1 = A(yk,yk−1, ...,yk−m) (6.78)

else (6.79)

xk+1 = yk (6.80)

where A(yk,yk−1, ...) is an acceleration scheme depending on the previous m iter-

ations.

The standard Aitken acceleration method was found to be inefficient in this application

due to fluctuations in the convergence path of the eigenvector components. Instead,

an interpolation-extrapolation acceleration method is considered. The interpolation-
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extrapolation convergence method aims to construct a local approximation to the com-

ponents of the eigenvector by interpolating the value of the components over previous

iterations using the Lagrangian functions commonly used as basis functions in finite

element methods. In the implementation considered, the individual components of the

last three normalised vectors y were interpolated using quadratic polynomials. From

this interpolation the first and second derivatives of the components with respect to

the number of iterations can be approximated and then the path of each component

extrapolated forward using a truncated Taylor series. This approach is schematically

illustrated in figure 6.3.

The step size over which to extrapolate is calculated automatically by balancing the

terms in the Taylor series. Therefore

step = min

(∣∣∣∣
2f ′

f ′′

∣∣∣∣ , max step

)
(6.81)
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Figure 6.6: Comparison of descent and power methods

where f ′ and f ′′ are the approximations to the derivatives of each component of the

eigenvector with respect to number of iterations. An upper limit is placed on the step

size to prevent large step sizes occurring in regions where there is little curvature present.

A different step size is then calculated for each component of the eigenvector in order

to speed convergence. A suitable value for the maximum step size would seem to be N ,

the number of unknowns, and therefore the number of components in the eigenvector.

An explanation as to why N is a suitable maximum step size is due to the observation

that in larger problems the convergence rate of the eigenvector is slower and therefore

a larger maximum step length can be afforded.

The interpolation-extrapolation method improves the speed at which the components

of the eigenvector converge. This improvement is registered in figure 6.4 and is also

reflected in the speed in which the accelerated power method converges to the required

eigenvalue, figure 6.5. However, in comparison with the conjugate gradient method the

163



accelerated power method still proves costly. The relative cost of the methods are shown

in figure 6.6. From figure 6.6 the relationship between computational cost and size of

problem can be investigated. The cost of an iteration of the power method and the

conjugate gradient method is considered comparable as both are dominated by a single

matrix vector multiplication. Figure 6.6 demonstrates that not only is the conjugate

gradient method cheaper but the cost of the method grows less quickly with problem size

than the power method. In addition, the graph suggests that although the accelerated

power method is faster than the non-accelerated version both methods share the same

dependence on the size of the problem. This is due to both methods sharing similar

convergence paths, but with the accelerated version effectively traversing these paths

more swiftly.

6.4 Conclusions and Extensions

In this chapter algorithms to compute the quantity of interest have been investigated.

The conclusions that can be drawn from this investigation are that, regardless of the

method, a base cost exists equivalent to solving

Kx = b. (6.82)

Moreover, whilst re-formulating the original system as an eigenvalue problem enables

a succinct representation for the quantity of interest to be found, the standard com-

putational cost of evaluating the expression detracts from the method. In general it is

therefore recommended that the solution method should mirror the original continuous

structure and the conjugate gradient approach be adopted.

The methods considered in sections 6.2 and 6.3 have been formulated on the basis of

continuous counterparts. In addition, the quantity of interest can appear in the solution

vector through augmenting the resulting set of stationary equations or careful selection

of the basis functions for the solution.

164



6.4.1 The Quantity of Interest as a Component of the Solution

Vector

The simplest method to obtain the quantity of interest as a component of the solution

vector is to augment the set of finite dimensional stationary equations

Kx = b (6.83)

with the equation for the quantity of interest

Θh =
1

2
xTb. (6.84)

The resulting matrix system is then


 2 bT

0 K





 Θh

x


 =


 0

b


 (6.85)

which could be solved for the first unknown. However, the reformulation of the problem

in this form generates little computational advantage as the matrix is now larger and

lacks symmetry. Of greater interest is the discretisation in which the original forcing

function r is included in the approximations space. A lower bound would then be found

by considering the expansion

ph =
N∑

i=1

xiφi (6.86)

where the first basis function is chosen as

φ1 =
1

〈r, r〉r (6.87)

and the remaining satisfy

〈φ1, φi〉 = 0 i = 2, · · · , N. (6.88)

The basis functions generate the matrix

Kij = 〈〈Tφi, Tφj〉〉 (6.89)

and vector

bi = 〈φi, r〉 =


 1

0


 (6.90)
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respectively. The quantity of interest is then the first unknown in the matrix equation

Kx = b (6.91)

where K has now retained symmetry.

In the construction of this example it has been assumed that the boundary conditions on

ph do not imply that x1 = 0. Considerations of this nature would have to be examined for

each particular application and if appropriate, the boundary conditions could be applied

through the use of Lagrange multipliers. In general, it is expected that including the

function onto which the projection of the solution is sought within the approximation

space might be advantageous. Further research is required in this area to investigate this

hypothesis. In this example the forcing function has been used explicitly to generate

the approximation space, however, providing the function is representable by the basis

functions similar results could be expected, although the quantity of interest would no

longer be identified with the solution component x1.
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Chapter 7

Conclusions and Further Work

The thesis has explored the applications of dual variational principles to a range of

practical problems. In the self-adjoint setting the existing theory is elegant and effective

at generating sharp bounds on integral quantities for self-dual problems. Incorporating

the twin transformation enables these bounds to be generated on non-self-dual problems.

The geometric interpretation of the dual variational formulation has proved a useful tool

from which many of the extensions of method have been generated.

The construction of the novel consistent upscaling methods is an example in which the

saddle-shaped interpretation of the governing functional is exploited. The comparison

problem at the heart of the consistent upscaling method ensures that the substitute

functionals, defined over the coarse permeability data, lie above and below the convex

and concave portions of the original functional respectively.

A considerable part of the research undertaken was involved in extending and applying

dual extremum principles to non-self adjoint problems. Extending the theory to include

non-self-adjoint problems was motivated by the desire to apply the dual extremum tech-

niques to time dependent problems. The first extension considered involved constructing

methods that are discrete in time but continuous in space. These semi-discrete meth-

ods (constructed in chapter 4) provide an efficient means of approximating the quantity

of interest via the dual extremum principles associated with the Helmholtz equation.

The extremum principles for the Helmholtz equation enables two approximations to

the quantity of interest to be made and therefore provide an estimate of how well the

problem has been resolved.

167



The semi-discrete methods provide a means of approximating the quantity of inter-

est but in order to obtain strict upper and lower bounds on the quantity of interest

associated with a non-self-adjoint problems consideration of the complete space time

domain was found to be necessary. The requirement to consider the complete domain

is due to the embedding of the original non-self-adjoint problem in a larger self-adjoint

problem. Embedding the original problem in this manner is not normally considered

advantageous, for example greater differentiability is demanded from the basis functions.

However, in this context it is assumed that the construction of upper and lower bounds

on the quantity of interest offsets the difficulties associated with the embedding. To

obtain the upper and lower bounds in the continuous non-self-adjoint case the alter-

native bound of section 5.1.2 was implemented. The validity of the alternative bound

depends on the convergence rate of the finite element method employed. Further work

is required in this area to determine situations in which this bound may fail. In conclu-

sion, the extension of dual extremum principles to non-self-adjoint problems is possible

provided that a variational formulation exists for the self-adjoint alternative containing

the original problem. The attractiveness of implementing the method will depend on

the importance of obtaining bounds on the quantity of interest relative to the cost of

the computation. However the bounds are computable, determined purely from easily

obtainable weak solution, e.g. finite elements. This is in direct contrast to the bounds

proposed for non-self-adjoint problems by Collins [12] and Gurtin [19] which in practice

are hard to implement.

The final chapter pursues efforts to obtain the quantity of interest without explicitly

determining the solution of the governing equation. In a finite dimensional discretisation

of the continuous problem the conjugate gradient method is found to be particularly

effective at calculating the stationary point of the functional and therefore indirectly

the quantity of interest. In addition, consideration of the scale invariant form of the

variational principle transforms the approximation of the quantity of interest into an

eigenvalue problem. However, approximating the required eigenvalue is found to be more

expensive than implementing the conjugate gradient minimization itself, and therefore,

the conclusion is that conjugate gradient algorithm provides the most effective means

of approximating the quantity of interest directly.
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7.1 Further Work

The further work associated with this research can be divided into two categories: re-

search directly concerned with the contents of the thesis and research inspired by the

thesis. The research directly concerned with the thesis involves continuing the devel-

opment of dual extremum principles for non-self-adjoint problems. The initial focus of

this work would be on further analysis of the alternative bound in section 5.1.2 and

attempts to construct a comparison principle from which the bounds on the quantity of

interest could be constructed from the semi-discrete methods described in chapter 4.

The research inspired by the thesis includes computing physical quantities of interest

for a wider range of problems. In order that a wider range of range of problems can be

addressed the determination of strict upper and lower bounds may have to be relaxed.

Efficient techniques to calculate functionals of this nature have been developed through

the adjoint partial differential equation methods [7, 17, 38, 41, 45] described in the

literature review. However, such methods do not necessarily aim to preserve qualitative

features of the partial differential equation solutions. The preservation of qualitative

features of the analytic solution at a discrete level is the essence of geometric methods

[9]. An interesting direction for further research would be to investigate the advantages

that adopting a geometric solution method that preserves global qualitative features of

the solution has upon the accuracy of the quantity of interest.

Although the dual extremum principles have not been considered from a geometric

approach in this thesis, the constraints imposed on the solution can certainly be view

as qualitative features of the solution. For example, considering the simple case of

Laplace’s equation for a function p(x), the pair of constraints, or geometric properties,

in the domain are

−q(x) = ∇p(x) invariance to datum, (7.1)

∇ · q(x) = 0 conservation of flux. (7.2)

In the case of Laplace’s equation constraining the solution to satisfy either of the ge-

ometric properties introduces the required convexity into the governing functional and

bounds can be constructed on the stationary value of the functional. If convexity was
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not induced into the governing functional through the application of these constraints

the natural question is which of these properties, for a given output functional, should

be satisfied in order to obtain a greater degree of accuracy in the output functional.

More generally, the partial differential equation considered may have many symmetries

and invariances and it is conjectured that a subset of the geometric quantities can be

identified which have a dominant effect on the output functional, depending on its na-

ture.

The goal of the research would then be to identify, for a given boundary value problem

or initial boundary value problem and a quantity of interest, the qualitative properties

of the solution affecting the accuracy of numerical approximations to the quantity of

interest. Having identified the qualitative properties pertinent to the accuracy of the

numerical approximation, appropriate discrete analogues could be constructed.

Considering methods in the spirit of the discrete variational techniques of Marsden et al

[31, 32] would form a good starting point and, although strict bounds on the quantity

of interest would no longer be obtained, a wider range of problems could be addressed.

These problems include

• Multiphase and oil recovery, governed by the black-oil models, with the output

functional defined as the net well production. The symmetries to consider initially

include conservation of the mass and momentum of the individual fluid phases.

• Aspects of atmospheric modelling governed by the semi-geostrophic equations, in-

cluding frontogenesis, and climate modelling governed by a balanced energy model.

The output functionals considered in these contexts are mean wind velocities and

integrals of the energy flux to the poles respectively. The symmetries associated

with these quantities include the conservation of potential vorticity, momentum

and energy.

In addition, adopting a geometric approach complements the current philosophy in which

the quantity of interest is also defined globally. Moreover, it is expected that by incorpo-

rating the dominant qualitative properties of an analytic solution into a discrete method,

significant gains in the effectiveness and efficiency of the numerical approximation to

the output functional will be achieved.
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