
UNIVERSITY OF READING

The Shallow�Water Semi�Geostrophic Equations

on the Sphere

Mark H� Mawson

A thesis submitted for the degree of Doctor of Philosophy�

Department of Mathematics

August ����



Abstract

The semi�geostrophic equations of meteorology are considered in their shallow�

water form on the sphere� To distinguish between the equations considered here

and those described by Shutts and Salmon we refer to our equations as the �spher�

ical semi�geostrophic equations�� It is shown that there may exist a unique so�

lution to these equations on the sphere for 	nite time under given conditions

if certain key results can be proven� A robust numerical method is developed

based on a 	nite�di
erence predictor�corrector scheme which uses a multigrid

algorithm to solve the elliptic equation which arises in the correction step� Nu�

merical techniques are developed which restore numerical solutions which at any

stage fall outside the solution set for the equations back into it� Eulerian and semi�

Lagrangian prediction schemes are compared for simulations starting from both

idealised data and data taken from an operational numerical weather prediction

model� It is found that the semi�Lagrangian scheme is superior in the vicinity

of the pole� since it does not generate small�scale numerical noise and better

preserves the shape of features� The results for the spherical semi�geostrophic

equations are also compared with those from a shallow�water primtive equation

model� Clean comparisons for idealised data simulations are dicult to obtain

due to the scarcity of analytic solutions on the sphere which are common to both

equation sets� Solutions for real data simulations are also presented for both

spherical semi�geostrophic and primitive equation shallow�water models� They

are found to be in good agreement for the large scale features present in the real

atmospheric data�
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Chapter �

Introduction

In atmospheric modelling we are interested in predicting the motion and proper�

ties of a �uid on a sphere� For the Earth�s atmosphere this is a very complicated

problem with many microphysical processes interacting with the dynamical �uid

motion� for example latent heating due to the changes in phase of water in the

atmosphere� The system is also subject to external forcing from upper and lower

boundaries� For example� at the lower boundary there are the �uxes of heat and

moisture into and out of the oceans and land masses� whilst at the upper bound�

ary there is radiative forcing� Added to these e�ects are the more unpredictable

ones such as those caused by volcanic eruptions or other natural phenomena�

These unpredictable elements are beyond our control and we seek to provide the

best possible model of the atmosphere for use in both operational weather fore�

casting and long time climate simulations� The models in current use are based

on a simpli�ed form of the Navier�Stokes equations� where approximations ap�

propriate to the scales resolvable by current computing power and to the nature

of the atmosphere have been made� These equations are supplemented by many

schemes� called parameterization schemes� which seek to represent the e�ects of

the microphysical processes and the unresolved motions on the large scale quanti�

ties predicted by the equations� The �rst person to realise that this was possible

	



was V� Bjerknes in the early part of this century� who recognised that there was

a deterministic set of equations for the atmosphere� He also showed that the

system was highly non�linear and that in general there was no analytic solu�

tion� Undaunted by this L� F� Richardson performed the �rst numerical weather

prediction experiment� publishing his results in 	
��� �
�� The calculation took

several months� and unfortunately the results were found to be in error by several

orders of magnitude� Perhaps because of this error� or more likely because of the

time and labour involved in obtaining the results� numerical prediction remained

only a hypothetical possibility until the advent of the computer� During this

time the forecasters continued to use their tried and trusted methods� many of

which are still commonly used today in the forecasting of phenomena� such as

fog� which numerical models have yet to predict well� The techniques used by

forecasters during the early part of this century are described in Shaw ����� The

�rst successful numerical prediction came not long after computers �rst appeared

and was due to Charney� Fjortoft and von Neumann in 	
�� �	��� Since then

the rapid advances made in the power of computers have led to equally rapid

growth in the complexity and size of the atmospheric models run on them� A

typical operational global model in use today has a horizontal resolution of 	��

kilometres and a vertical resolution of 	 kilometre� this requires around 	�� mil�

lion data points per variable held� The resolution of the model is constrained by

the power of the computer and how quickly you wish to obtain the forecast from

the model� To provide more detailed forecasts of what is commonly considered

as weather� namely� cloud� rainfall� fog� and wind� for a particular area of the

world a model with higher resolution than the global one is run for that area�

Such models typically have horizontal resolutions of ���� kilometres and better

vertical resolution in the lowest 	� kilometres of the atmosphere� of the order of

�� metres� For climate simulations� which need to be run for many decades to

obtain statistically signi�cant results� lower resolution global models are used as

�



they require less computer time� The complexity of the atmospheric models has

increased substantially over the last �� years� particularly the representation of

the microphysics in the numerical model� These increases in complexity led to

better forecast and climate predictions� However it was also possible to obtain

signi�cant increases in forecast skill simply by running the models at higher res�

olution� and such improvements were generally obtainable every �ve years with

the arrival of a new� faster� generation of computer� The experience of many

numerical weather prediction centres is that this situation has now ceased to be

true and much work is required when increasing the resolution to obtain any sig�

ni�cant improvement� One reason for this is that the resolution of models has

now reached the point where the separation into resolved and unresolved motions

for certain atmospheric phenomena is less clear cut� see Smagorinsky ���� for a

�gure showing the time and space scales of atmospheric motions� The interaction

between the motions on the various scales is important in the correct modelling

of such features� and thus the interaction between the parameterization schemes

and the large scale equations must be well understood� It is now likely that every

time we change the model resolution we must spend considerable time under�

standing the interactions at that scale in order to obtain a better forecast� To do

this� we must gain understanding about these interaction processes and how we

are modelling them� Another limiting factor is our knowledge of the initial con�

ditions� The worldwide observing system is able to provide only a small fraction

of the data required to initialise the model at any one time� We have to produce

a best estimate of the initial conditions for the model based on the available data

and that data which has gone before� plus information from the previous run of

the forecast model� The problem is discussed in detail in Daley ����� Operational

forecast models can be very sensitive to small perturbations in the initial condi�

tions� and this is another area where more understanding is required to make the

best use of the data we have and in trying to determine which is the most likely

�



scenario�

In order to improve the current numerical weather prediction models it is essen�

tial that we understand more about the real atmosphere and more about our

numerical model as well� In particular� we need to understand how the model

reacts to the forcing we are providing� To gain insight into how both the at�

mosphere and the model work much work has been done with simpler models

of the atmosphere� These simpler models are usually based on equations which

have had a further level of approximation made to them� and in the early days of

computers were used as the basis for providing weather predictions� for example

Charney et al� �	��� Much work has been done with these simpler equations con�

�ned to a plane where the Coriolis force due to the Earth�s rotation is assumed

constant� known as the f�plane approximation� This approximation is valid for

many phenomena of interest in mid�latitudes and much insight has been gained

from running these models in this way� We wish to discover if more insight can

be gained into more general phenomena by considering one of these simpler mod�

els on the sphere� In particular we would like to be able to run such a model

using real data and compare the results with those gained from an operational

model� This� it is hoped� will allow us to investigate many questions of interest�

such as the importance of representing fast timescale motions explicitly rather

than as a parameterization� In this thesis we take one of these equation sets and

extend it to the sphere� The equations we choose to study are essentially the

semi�geostrophic equations �rst suggested by Eliassen ���� in 	
��� the useful�

ness of which was �rst really seen in the work of Hoskins and Bretherton ����

in 	
��� In their paper they demonstrated the ability of the equations forced

by a deformation �eld to produce idealised atmospheric fronts which possessed

many of the characteristics of real fronts� Since then these equations have been

used extensively to investigate� in particular� the role of moist processes� such

as latent heat release and evaporation� in the formation of atmospheric weather
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fronts� see for example Holt ����� Holt and Thorpe ���� Castelli et al� �	��� to list

just a few� They have also been used to simulate idealised �ow over a mountain�

Cullen et al� �	��� Pierrehumbert ���� where the topic of interest was the e�ect of

a barrier on a uniform �ow normal to it� This is of interest in the simulation of

downslope wind storms where sudden strong winds and a signi�cant rise in tem�

perature can occur� such storms are common in mountainous areas such as the

Canadian Rockies� The equations� including friction� have also been used to look

at idealised sea breeze simulations� Cullen �	��� Wu and Blumen ��
� have looked

at the interaction between the semi�geostrophic equations and the atmospheric

boundary layer as has Young �����

We adopt a typical approach when embarking on looking at a three�dimensional

problem on the sphere� and that is to �rst consider the shallow�water form of the

equations� Instead of the full ��d problem we now have only a ��d one with the

variation in the third direction being represented only by the changing height of

the free surface� It has often been found that the major problems in a ��d model

can be found in the equivalent shallow�water problem� such as problems with the

co�ordinate poles in numerical methods� Results obtained for the shallow�water

problem are often readily generalised to the full ��d one with little extra e�ort�

We thus start by trying to prove analytically that there exists a unique solution to

the semi�geostrophic shallow�water equations on the sphere� chapter �� We then

proceed to develop a robust numerical method for solving the equations� chapter

�� using some of the knowledge and insight we gained in the analytic work� This

numerical method is then used to integrate forward in time both idealised and

real atmospheric initial data� chapter �� These simulations are compared with

those from the shallow�water equations derived from the usual equations used

in atmospheric modelling� The shallow�water simulations provide some insight

into the underlying behaviour of the ��dimensional equations but it is not ex�

pected that they will provide any signi�cant new insight into the behaviour of





the real atmosphere� However� the results gained from the simulation of a form

of Rossby�Haurwitz wave� see Haurwitz ���� for a description of the true wave�

using the semi�geostrophic shallow�water equations on the sphere may do this�

The extra understanding we are looking for� it is hoped� will be provided by the

full ��dimensional model� The extension of this work to ��dimensions on the

sphere is outside the scope of this thesis but some comments on this are provided

in chapter �

We begin by stating the semi�geostrophic equations after �rst stating the funda�

mental predictive equations for the atmosphere and describing which approxima�

tions are made to obtain the usual equations used in numerical weather prediction�

the so called Primitive equations�

��� The semi�geostrophic equations�

Our starting point is the frictionless Navier�Stokes equations for a �uid on a

rotating sphere of radius a in spherical polar co�ordinates ��� �� z� where � �

��� ���� � � ���������� and z is the distance from the centre of the sphere

Du�
Dt

� ��r�p � ��sin�k � u� � g � �r�

�
u� �			�

where � is the speci�c volume� � is the rotation rate of the sphere and the second

term on the right�hand�side of the equation is known as the Coriolis term� k is

the unit vector normal to the surface of the sphere� � the viscosity coe�cient and

g is the gravitational force including the centrifugal forces�

g � g
a
� �k � ��k � r�

where r is the particle position measured from the origin at the sphere�s centre

and g
a
is the gravitational force� The derivative D�Dt is the usual Lagrangian

derivative and

u� � �u� v� w�

�



r� �

�
	

acos�





�
�
	

a





�
�




z

�

with r�

�
the three dimensional Laplacian� We also require the conservation of

mass� often refered to as the continuity equation� given by

	

�

D�

Dt
� r�	u� �		��

We now assume that the atmosphere is a perfect gas� so that

p� � RT �		��

where T is the temperature� and R the gas constant obtained by taking the inverse

mass�weighted average of the gas constants for the gases that make up the atmo�

sphere� To complete the equation set we require the �rst law of Thermodynamics

which may be written as

Cp

DT

Dt
� �

Dp

Dt
� Q �		��

where Q is a source term and Cp is the speci�c heat at constant pressure for the

gas� We thus have six equations in the six unknowns� u� v� w� �� T and p� In

the atmosphere the source term in the thermodynamic equation contains a very

large contribution from changes in state of water and hence a predictive equation

for the distribution of water in the atmosphere is required�

DL

Dt
� S �		�

where L is the total amount of water� in kilograms of water per kilogram of air�

and S is a source term� These general equations are simpli�ed by �rst neglecting

the viscous terms� We then make the Boussinesq approximation which allows us

to ignore density variations except in the buoyancy terms� This approximation

is valid under the conditions of interest provided that the typical scale of any

motion is small compared to the density scale height of the atmosphere itself�

Thus it says that motions are of shallow depth� This is roughly true for the
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troposphere� the bottom 	� kilometres or so of the atmosphere� but is less true

for motions above this region� Since most models are concerned with modelling

the troposphere this approximation is commonly used� For a full discussion of the

Boussinesq approximation see Veronis and Spiegel ����� Finally the atmosphere

is assumed to be in hydrostatic balance

� � ��

p


z
� g	k �		��

Hydrostatic balance is obtained from the equation for the vertical velocity w�

when it is assumed that vertical accelerations are negligible� After making these

approximations we obtain the Boussinesq Primitive equations which form the ba�

sis for almost all NWP models�

The usual approach to understanding this ��d problem is to �rst consider the sim�

pler problem obtained by making the shallow�water approximation� The system

obtained contains many of the salient features and usually all of the problems

encountered in developing numerical methods� such as problems with the co�

ordinate poles� It is also often easy to extend results and methods developed for

the shallow�water equations to the full ��d problem� Since in this thesis we shall be

concerned with the shallow�water semi�geostrophic equations on the sphere� and

since the extra approximations we shall make to derive the simpler equation sets

are equally well illustrated in the shallow�water form as in the full ��dimensional

form� we now make the shallow�water assumption to obtain

Du

Dt
� �grh� ��sin�k � u �		��


h


t
�r	�hu� � � �		��

where h is the height of the free surface� u � �u� v� and

r �

�
	

acos�





�
�
	

a





�

�

r	�hu� �

�
	

acos�


�hu�


�
�

	

acos�





�
�cos� hv�

�

�



and the Lagrangian derivatives are taken along the free surface� Equations �	���

and �	��� will be referred to the shallow�water primitive equations� and simula�

tions with them will be used in chapter � as a comparison with those obtained

from the semi�geostrophic equations� The simple models� which we now derive�

are all based on approximations which �balance� the horizontal pressure gradients

with some function of the horizontal velocities� For this reason these models are

known as Balanced Models� The simplest� and most common de�nition of bal�

ance is known as geostrophic balance and de�nes a wind �eld called the geostrophic

wind� denoted u
g� by

g

acos�


h


�
� fvg �		
�

g

a


h


�
� �fug �			��

where f � ��sin� is refered to as the Coriolis parameter� The �rst set of sim�

ple equations considered were the Quasi�Geostrophic equations� These can be

obtained by forming the vorticity equation and then eliminating the divergence

from it using the continuity equation� If we now let the horizontal velocities

be geostrophic we obtain the Quasi�Geostrophic equations� This derivation can

be found in many textbooks on dynamical meteorology� for example Riegel and

Bridger ���� which also contains a summary of the limitations of this equation

set� This very simple set of equations was used before modern computers became

available to provide understanding about the atmosphere� for example see Char�

ney �		�� and was also used as the basis for early numerical weather prediction

models� Much work has been done with these equations but they are too sim�

pli�ed to describe many of the important mechanisms involved in atmospheric

dynamics�

A less restricted set of equations� still using geostrophic balance� was proposed

by Eliassen ���� in 	
�� but was largely ignored until the publication of the 	
��

paper of Hoskins and Bretherton ����� Salmon has shown� ���� ���� that the






quasi�geostrophic equations are valid for a particular chosen rest state and that

they cease to be so if signi�cant deviation from this state occurs� The equations

of Eliassen do not su�er from this problem since they require no prescribed rest

state� Since the publication of ���� in 	
�� these equations have been extensively

used as a tool in understanding mid�latitude dynamics on an f�plane� They

have become known as the Semi�Geostrophic equations since they are derived by

including the geostrophic balance equations in the equation set� but replacing u

by u
g
only as the predicted quantity in the momentum equations� This approx�

imation was called the geostrophic momentum approximation by Hoskins �����

The resulting equations when used on the sphere are

Dug
Dt

� �grh� fk � u �				�


h


t
�r	�hu� � � �			��

g
	

acos�


h


�
� fvg �			��

g
	

a


h


�
� �fug �			��

where the Lagrangian trajectories are calculated using the full wind �eld� u� rather

than the geostrophic wind� ug� These are the equations we wish to study on the

sphere and we shall refer to them as the shallow�water spherical semi�geostrophic

equations to avoid confusion with other forms of the semi�geostrophic equations

on the sphere� see section 	�� for a discussion of other possible equation sets� Since

it has been shown that friction may be included in these equations� Cullen �	���

and that this modi�es the de�nition of geostrophic balance� we henceforth denote

ug by u�� This notation is inspired by Hoskins ���� where in his derivation of the

semi�geostrophic equations he showed that the full horizontal velocity �eld u can

be expanded in terms of the geostrophic velocity u
g

u � ug �
Dvg
Dt

�
D�

Dt

�
ug �

Dvg
Dt

�
�
D�

Dt

�
ug �

Dvg
Dt

�
� 				

	�



v � vg �
Dug
Dt

�
D�

Dt

�
vg �

Dug
Dt

�
�
D�

Dt

�
vg �

Dug
Dt

�
� 				

where
D

Dt
�

	

f

D

Dt

provided that ����Du

Dt

����� jfuj

The geostrophic velocity is thus the leading order approximation to the full ve�

locity and we adopt the notation u� to represent the approximation of u which

includes no derivative terms� In a series of papers ��	�� ���� Cullen and co�workers

proved the existence and uniqueness of solutions to the f�plane semi�geostrophic

equations for any �nite time� The ability to prove such results is an attractive fea�

ture of this equation set and naturally poses the question as to whether the results

can be extended to the semi�geostrophic equations on the sphere� The proof they

obtained was constructive and formed the basis of an ingenious numerical model�

the geometric model� Cullen and Purser ����� which is guaranteed to converge to

the analytic solution of the equations as the spatial and temporal resolution is

increased� A �nite�di�erence model was then developed� Cullen �	�� which could

be compared with the geometric model and allowed more complicated features to

be examined� If we can extend the theory to the semi�geostrophic equations on

the sphere then we should be in an equally good position to construct an accurate

numerical algorithm which also converges to the analytic solution� This model

is fundamental to our work as it will be the basis for our attempts to gain un�

derstanding� since analytic solutions for problems on the sphere are very scarce�

For problems initialised with real atmospheric data� the numerical model is our

only way of gaining understanding� At this point we brie�y consider some other

balanced equation sets�

		



��� Other comparable balanced equation sets�

We have chosen to study the semi�geostrophic equations on the sphere� and we

have simply taken the basic de�nition of the equations and allowed the coriolis

parameter f to vary and included spherical geometry� The equations that result

do not possess some of the basic properties that the full equations do� for example

they do not conserve potential vorticity� To try and retain such properties for

varying f both Shutts ���� and Salmon ���� have used a Hamiltonian approach

to the geostrophic momentum approximation� As they had di�erent goals in

mind when deriving the equations they chose to make di�erent assumptions and

thus obtained di�erent equation sets� Salmon�s approach is designed to keep exact

conservation of energy and potential vorticity whilst allowing order one variations

in the Coriolis parameter� f � For the f�plane case his equations are identical

to the semi�geostrophic equations� Shutts�s approach was to obtain equations

valid on the sphere which also conserved energy and potential vorticity� The

equations he derives� called the planetary semi�geostrophic equations� are identical

to the semi�geostrophic equations except for the Lagrangian derivative term in

the meridional momentum equation which becomes

sin�
D

Dt
�vgsin��

These equations allow non�zero height gradients along the equator unlike the

semi�geostrophic equations� and thus support a wider class of solutions there�

Thus we have three versions of the semi�geostrophic equations for variable f � To

avoid confusion we now adopt the following terminology� We refer to the semi�

geostrophic equations we shall use as the spherical semi�geostrophic equations�

those of Salmon as Salmon�s semi�geostrophic equations� and those of Shutts as

the planetary semi�geostrophic equations�

It is an open question as to which of the three versions of the semi�geostrophic

equations is the best one to investigate atmospheric motions on the sphere� It

	�



could be argued that those sets derived from a Hamiltonian approach are in some

way better because they preserve some of the properties of the full equations

which the spherical semi�geostrophic equations do not� Another advantage of

deriving the equations this way is that it introduces the possibility of �nding

a symplectic numerical solution procedure for them� A symplectic numerical

method is one which preserves the Hamiltonian structure of the analytic equations

in a time integration� Symplectic methods have been shown to produce more

accurate results� and in some cases to show that the non�symplectic method has

actually produced a completely spurious solution� see for example Miller �	��

These methods are currently being applied to systems of ordinary di�erential

equations but their application to partial di�erential equations is probably only a

matter of time� To help decide which set to look at we could also investigate how

well they represent simple solutions� for example linearised wave solutions� when

compared to the solutions obtained from the Primitive equations� Shutts ����

showed that for the planetary semi�geostrophic the phase speeds of the gravest

modes of travelling wave solutions are greater than those for the corresponding

modes of the primitive equations� In chapter � we shall consider the phase speeds

for the gravest modes of the spherical semi�geostrophic equations and show that

they are slower than for the gravest modes of the primitive equations� This

demonstrates that the choice of which set to study could lead to quite di�erent

answers� As all three equation sets reduce to the same one on an f �plane we expect

that the di�erences between them will be most pronounced in low�latitudes where

the variation in f is greatest� However� there might be considerable di�erences

in mid�latitudes as well as the di�erences in phase speeds for travelling waves

suggest� In this thesis we have chosen to study the spherical semi�geostrophic

equations� we could equally well have chosen one of the other equation sets� In

principle the numerical method that is developed in chapter � could be applied

to the planetary semi�geostrophic equations� but care would have to be exercised
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at the equator where vg is allowed to be in�nite but is multiplied by sin� which

is zero� To implement this on a computer will require some very careful thought�

De�nitions of balance other than geostrophic can be used to de�ne more general

equation sets� such as the linear balance equations and the balance equations

described in McWilliams and Gent ���� Discussion of these equations� along with

other balanced equations� can be found in that paper and in others by the same

authors ���� and ��	� and more recently in Allen et al� ���� These models are more

general than those derived from geostrophic balance but because they describe

more atmospheric motions they may be less useful in providing the understanding

that we seek� This is because their extra complexity may make it more di�cult

to isolate the important processes� The logical approach seems to be to extract

all the understanding we can from each level of simple model and to gradually

increase the models� complexity as our understanding grows� It is thus necessary

that we discover what we can from models based on geostrophic balance before

embarking on more complex systems�
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Chapter �

Theoretical results

In this chapter we try to prove the existence and uniqueness of solutions to the

shallow�water spherical semi�geostrophic equations on the sphere� We begin by

reviewing the known results for the ��dimensional f �plane equations which were

proven by Cullen and co�workers ���� ���� and note where the problems lie in ex�

tending their theory to the sphere� We then consider a di	erent approach for the

shallow�water equations on the sphere and proceed to try to prove the existence

and uniqueness of a solution
 noting as we go some points which will be relevant

in the implementing of a numerical method for these equations� We are unable

to prove the required results
 but include the work we have done noting what

still needs to be done to complete the proofs� Finally we look at how we might

extend the solutions beyond the point where the constraints we have identi�ed

as being necessary
 but possibly not su�cient
 to prove existence and uniqueness

are violated�

�



��� Known results for the f�plane case

Results for the f � constant or f �plane case were proved in a series of papers by

Cullen and co�workers in the last decade� These proofs were for the ��dimensional

equations in a bounded domain
 but can be extended to periodic domains as

well� The basis of their approach was a co�ordinate transformation which yields

a particularly simple set of equations in the new variables and a Monge�Amp�ere

equation
 the solution to which determines the mapping between the co�ordinate

systems� We present their method here
 without proof
 for illustrative purposes

and to enable us to draw comparisons later� We shall consider why it is not

possible to extend this method to the sphere whilst noting the constraints required

to obtain the results
 since it is expected that similar constraints will be required

to obtain the results on the sphere�

����� Existence and Uniqueness on a f�plane

Most of this subsection can be found in Cullen and Purser ���� where discussion

on the extensions of the theory to more complicated cases
 including the equa�

tions on the sphere
 is also presented� The proofs of the mathematical results

they needed can be found in Cullen et al �����

We begin by stating the ��dimensional hydrostatic f �plane semi�geostrophic equa�

tions� We adopt the notation of Cullen and Purser with the exceptions that we

use u� instead of ug and � for � to avoid confusion with the spherical polar

co�ordinates ��� �� used later�

Du�
Dt

� �f�v� � v� �����

Dv�
Dt

� �f�u� u�� �����

D�

Dt
� � �����

��



D�

Dt
� � �����

�fv���fu�� g���ref � � r� ����

where D�Dt � 	�	t� u�r
 � is the thermodynamic variable de�ned as

� � T

�
pref
p

�����

with �ref and pref some reference values
 typically ���K and ������pa respec�

tively
 f is the constant coriolis parameter� The continuity equation is written in

terms of the speci�c volume �� The vertical co�ordinate z is the one introduced

by Hoskins and Bretherton ���� which allows the particularly simple form of the

continuity equation ������ It is de�ned as follows


z �

�
���

�
p

pref

� ���

�

�
A pref


�refg�
 � ��

where �ref is a reference density value and 
 is the ratio of speci�c heats
 see

Hoskins and Bretherton for more details� The equations are considered in a

closed domain � in x � �x� y� z� with zero mass �ux through the boundary�

A new co�ordinate system is now�de�ned as follows

X � �X�Y�Z� � �x� v��f� y � u��f� g���f
��ref��

and with this de�nition we can write the equations as

DX

Dt
� �f�Y � y� �����

DY

Dt
� �f�x�X� �����

DZ

Dt
� � �����

D�

Dt
� � �����

where �
 de�ned as 	�x��	�X�
 is referred to as the inverse potential vorticity

since it can be shown that � � q�� where q is the potential vorticity� These new

��



equations can be re�interpreted as de�ning the motion of material parcels in the

new co�ordinates� Following Cullen and Purser we call fXg data space and fxg

physical space� We note that

UX � �f�y � Y �� f�X � x�� ��

and rX�U � � and hence equation ����� becomes

�
	

	t
� UX �rX

�
� � � ������

It can be shown that there exists a potential function R�X� such that rXR � x

and

R�X� � f�x�X � P �x�

where

P �x� � � �
�

�
f��x� � y��

and also that rxP � f�X� As pointed out by Chynoweth et al� ���� the co�

ordinate transformation is simply a Legendre transform�

The solution procedure is now as follows�

Suppose that at time t we have � as a function of X subject to the condition that

the integral of � over all X gives the volume of � in physical space� We can now

solve the following Monge�Amp�ere equation

det�	�R�	Xi	Xj� � 	�rXR��	�X� � � ������

to �nd R for the given � with the boundary condition that rXR � x is always

within � for all X� After �nding R
 rXR can be calculated and hence the map�

ping between data space and physical space is established� All the information

required to update the solution is now available� It is of note that in this interpre�

tation the full velocities u are not used anywhere in the procedure but could be

diagnosed if required� They are interpreted as re�arrangements of the parcels and

��



not simply as advecting velocities� The constraint required to solve the system is

that if the potential function P is interpreted as a surface
 then it must be convex

when viewed from below� This implies that R is also convex� This is equivalent

to requiring general two�dimensional parcel stability for the atmospheric state as

shown in Shutts and Cullen ����� The convexity also implies that the potential

vorticity q de�ned as q � det�	�P�	xi	xj� is everywhere non�negative� In �nite

areas where the potential vorticity is zero the �elds are still uniquely determined

with the exception of the velocity �eld u which is undetermined� This is not a

problem since the solution procedure does not require u�

The important features of this approach can be summarized as follows�

i� The co�ordinate transformation
 which allows the system to be written in the

simple form given by equations ������ and ������

ii� The convexity of the function P 
 which allows the mapping between the two

spaces and hence the ability to retrieve the values of all the �elds from knowing

just ��

iii� The conservation law for �
 which allows the integration to proceed for any

�nite time�

iv� The proofs enable discontinuous solutions to be included in the theory since

they require only that P and R are continuous� their derivatives need not be�

����� Application of this Procedure to the Sphere

We consider each of the important features of the approach in turn�

The co�ordinate transformation can again be applied but this now yields terms

involving 	f�	y which cannot be absorbed into the D�Dt operator to obtain the

same simple form as before� Care must also be taken at the equator where f � �

��



since the transformation involves terms in ��f � Modifying the transformation to

have no terms in f in the denominators is easily done and poses no problems in

the f �plane case� The fact that the potential vorticity is zero at all points on

the equator and f � � makes the determination of the full velocity �eld u from

just knowing � not possible there� For the f �plane case it can be shown that if

parcels need to be re�arranged to satisfy the constraints
 �ii� above
 then the val�

ues obtained after the re�arrangement do not depend on the path taken� On the

sphere these values depend on the path followed and this may not be unique for

solutions with jumps� The f �plane proof for q � � uses a �global� re�arrangement

property which is not valid on the sphere� If q is bounded away from zero and

in�nity then u is bounded and �jumps� do not occur� So if we desire uniqueness

then we will need at least that the potential vorticity is everywhere positive� A

further complication is that the conservation law for �
 and hence also the con�

servation of potential vorticity
 does not hold� The non�conservation of � puts

a limit on the length of time before the convexity condition is violated which is

data dependent� This method would only guarantee existence for an arbitrarily

short time
 which is not su�cient for practical purposes�

From this we see that we shall need to �nd a solution procedure which does not

require us to write everything in terms of the potential vorticity since we cannot

obtain a simple form for this on the sphere� To prove the results for the sphere


stability to small displacements and q � � away from the equator are likely to

be required constraints� We will only be able to prove existence while the con�

straints hold and this may not be for very long� Therefore it is important that we

also consider how we may obtain physically sensible solutions beyond this point�

Finally we would like to obtain a solution at the equator which de�nes
 as well

as is possible
 the values of all the �elds there�

��



��� Results for the equations on the sphere

We re�state the shallow�water spherical semi�geostrophic equations �������������


henceforth SSG
 for ease of reference in the rest of this section�

	h�	t�r��hu� � � ������

	u��	t� u�ru� � �grh� fk � u ������

g
�

acos�

	h

	�
� fv� � � ������

g
�

a

	h

	�
� fu� � � �����

where k is the unit vector in the usual z direction
 f � ��sin�
 a is the radius of

the sphere
 g is the gravitational acceleration
 h is the height of the free surface


u� � �u�� v�� is the balanced wind �eld and u � �u� v� is the full wind �eld�

����� SSG Energy Conservation

We prove that the SSG energy de�ned as

�

�
hu�

� �
�

�
gh�

is conserved when integrated over the sphere� This proof holds in fact for any

closed domain with zero �ow across the boundaries� A similar proof for the prim�

itive shallow water equations can be found in Pedlosky ��� where the energy is

de�ned analogously but with the full wind u replacing u��

Proof�

Taking the dot product of equation ������ with hu� gives

hu��
	u�
	t

� hu�
�

�
r�u��� � fhu���k � u� � �hu��grh ������

��



where we denote u��u� by u��� We note the following identity

�A�r�B � r��AB��Br�A

Applying this to the second term in equation ������ gives


h
	

	t

�
�

�
u��

�
�r�

�
�

�
huu��

�
�

�

�
u��r��hu� � fhu���k � u� � �hu��grh ������

Equation ������ can now be used to simplify the third term in equation ������ to

�

�
u��
	h

	t

and this combines with the �rst term to give

	

	t

�
�

�
hu��

�

We now apply equations ������ and ����� to the fourth term in equation ������

to obtain


fhu���k � u� � hgu�rh

Application of equations ������ and ����� to the term on the right�hand�side of

equation ������ shows it to be identically zero� Thus we now have


	

	t

�
�

�
hu��

�
�r�

�
�

�
huu��

�
� �hgu�rh

By applying the identity to the right�hand�side of this equation and using equation

������ we obtain


	

	t

�
�

�
hu�� �

�

�
gh�

�
� �r�

�
�

�
huu��

�
� gr��h�u�

Integrating this expression over a closed domain with no �ow across the bound�

aries
 and applying the divergence theorem to the right�hand�side gives the desired

result�

Q�E�D�
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����� SSG Absolute Vorticity Evolution Equation

The shallow�water form of the SSG potential vorticity denoted q�f 
 the SSG

absolute vorticity
 denoted by hq�f 
 are de�ned following Hoskins ���� by

hq �

�
f �

�

acos�

	

	�

�
g

afcos�

	h

	�

�
�
gtan�

a�f

	h

	�

	 �
f �

�

a

	

	�

�
g

af

	h

	�

�	

�

�
�

a

	

	�

�
g

afcos�

	h

	�

�	 �
�

acos�

	

	�

�
g

af

	h

	�

�
�

gtan�

a�fcos�

	h

	�

	

or equivalently


hq �

�
f �

�

acos�

	v�
	�

�
u�tan�

a

	 �
f �

�

a

	u�
	�

	

�

�
�

a

	v�
	�

	 �
�

acos�

	u�
	�

�
v�tan�

a

	

Here we show that the SSG equations do not have a Lagrangian conservation

law for q�f � The existence of this conservation law was essential in the proof of

existence and uniqueness of the f �plane semi�geostrophic equations� To do this we

consider the equations on a plane in cartesian space �x� y� with f a function of y�

We do this in cartesian co�ordinates rather than spherical polars since it simpli�es

the proof
 as we do not have to include the metric terms
 and it is easier to see

which terms must cancel in order to obtain conservation of q�f on an f �plane�

We wish to emphasize which terms must cancel as this cancellation will be shown

to be important in making the semi�Lagrangian version of the numerical scheme

work near the poles where f is nearly constant
 see Chapter �
 section ������

The de�nition of q in cartesian co�ordinates is

hq �

�
f �

	

	x

�
g	h

f	x

���
f �

	

	y

�
g	h

f	y

��
�

	

	x

�
g	h

f	y

�
	

	y

�
g	h

f	x

�

or equivalently

hq �

�
f �

	v�
	x

��
f �

	u�
	y

�
�

�
	u�
	x

��
	v�
	y

�

��



and the SSG equations in cartesian co�ordinates are

	h

	t
�
	u

	x
�
	v

	y
� �

Du�
Dt

� �g
	h

	x
� fv

Dv�
Dt

� �g
	h

	y
� fu

g
	h

	x
� fv� � �

g
	h

	y
� fu� � �

where
D

Dt
�

	

	t
� u

	

	x
� v

	

	y

We now prove that the evolution equation for q on this cartesian plane is


Dq

Dt
�

fv

h
�
u

h

	u�
	x

�
v

h

	u�
	y

������

where  � 	f�	y
 provided that h � C� and u� v� u�� v� � C�� Where a function

is in Cn if all its partial derivatives upto and including order n exist and are

continuous�

The evolution equation for q�f is

D�qf���

Dt
� f��

Dq

Dt
� qf��v ������

which on substituting for Dq�Dt gives a non�zero right�hand�side�

Note� If f is a constant the right�hand�sides of these evolution equations are zero

and thus they become conservation laws� Thus we prove the result for the f �plane

case which we stated in the previous section�

��



Proof�

We denote by subscript x the partial di	erential with respect to x and similarly

for y� We de�ne uxy � �ux�y� Consider


D

Dt
�v�x � u�y� � �f�ux � vy�� �ux � vy��v�x � u�y�

� uxu�y � vyv�x � vxv�y � uyu�x � v

We note that we have assumed that �ghx�y � �ghy�x and thus the terms on

the right�hand�side of the equation cancel� We will see the importance of this

particular cancellation in chapter �� Similarly

D

Dt
��v�xu�y � u�xv�y� � ��ux � vy���v�xu�y � u�xv�y�

� fuxu�y � fvyv�x � fuyu�x � fvxv�y

� ghxy�u�y � v�x�� u�xghyy � v�yghxx

� v�xv � u�xu

We note that the terms uyv�xu�x from �v�x
D

Dt
�u�y� and u�x

D

Dt
�v�y� cancel
 and

the terms vxv�yu�y from �u�y
D

Dt
�v�x� and v�y

D

Dt
�u�x� cancel� The terms involving

derivatives of h in line � of the equation combine to cancel exactly� We now form


D

Dt
�f� � f�v�x � u�y�� v�xu�y � u�xv�y� �

� �ux � vy��f
� � f�v�x � u�y�� v�xu�y � u�xv�y�

� fv � uu�x � vu�y

This is simply
D

Dt
�hq� � q

Dh

Dt
� �fv � uu�x � vu�y�

Assuming h �� � then dividing through by h and combining the �rst term on

either side of the equals sign we obtain the required result for q�

Q�E�D�
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����� Existence and uniqueness of solutions on the sphere

In this section we would have liked to prove that there exists a unique solution

to the SSG equations on the sphere for some �nite time under certain conditions�

However we have not been able to do this� We present instead an argument

which would give us existence and uniqueness if the missing results can be proved�

Whether these missing results can be proven is an open question� In chapter � we

will present some numerical results which suggest that the numerical algorithm

is converging to a unique solution� Although this numerical result is not a proof


it suggests that there may exist a unique solution to the SSG equations on the

sphere under the conditions we assume in this section� This is because we use the

numerical equivalent of these conditions in order to obtain the numerical solution�

This gives us some hope that we may eventually be able to prove the analytic

existence and uniqueness results�

We introduce the following notation�

De�nition ��� We denote the spatial domain by � and where we are considering

time dependent equations denote the whole domain by � � �t�� t��� When we

consider time varying functions we denote the space of continuous functions in

space at �xed time t by C��� and those continuous in time at a �xed point in

space by C�t�� t�� with functions continuous on the whole domain simply denoted

by C� Other function spaces are de�ned in the same way�

The Existence and Uniqueness Problem

Suppose we are given u���� �� t�� u��� �� t�� and h��� �� t� at time t � t� such that

the SSG equations ������������ are satis�ed� We seek to �nd under what condi�

tions there exists a unique solution to these equations at time t� � t� �

The approach we adopt is to �rst show that the SSG equations can be reduced to

one equation in one variable away from � � �� We then show that if we insist that

��



this equation is elliptic that this single equation tends to the natural boundary

condition at � � � as we let � tend to zero� This gives us an equation for the

single variable at � � � and hence an equation for the whole sphere� We now

need to prove that there exists a solution to this equation� This we are not able

to do
 so we state what needs to be done to prove this result� To obtain the single

equation in one variable we have to assume that 	h�	t is continuous in time� To

remove this restriction we pose a new problem and then try to prove that there

exists a unique solution to this new problem� Again this has not been completed

and we show what still needs to be done�

Reduction to a single equation

It is possible to reduce the system of equations ������������ to one equation for

the time evolution of the height �eld� This can be done by �rst using equa�

tions ������ and ����� to replace u� in equation ������ provided that f �� �� This

now gives equations for the time evolution of the �rst derivatives of the height

�eld� The resulting equation
 when written out in components
 provides a pair of

equations which are linear in u and v allowing us to write each of these horizontal

velocity components simply in terms of the height �eld and its �rst and second

derivatives� We can now replace u and v in equation ������ provided that q is

non�zero
 see section ����� for the de�niton of q
 to obtain the following single

equation


	h

	t
�

�

acos�

	�hu�

	�
�

�

acos�

	�hvcos��

	�
� � ������

where

hu �
�

q

�
�
g

a

	h

	�
�

	

	t

�
g

afcos�

	h

	�

���
�

a

	

	�

�
g

af

	h

	�

�
� f

�

��



�
�

a

	

	�

�
g

afcos�

	h

	�

��
�

g

acos�

	h

	�
�

	

	t

�
g

af

	h

	�

��

and

hv �
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We de�ne

Mx � f �
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a�fcos�
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	�

 h �
	h

	t

� �
g

fq

With these de�nitions we observe that

hq � MxNy �MyNx

Assuming that all �rst derivatives of h are continuous then for all j�j � � equa�

tion ������ is a second order partial di	erential equation for  h
 with the following

form


�

acos�
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�Ny
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�
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which is elliptic if

q �
�

�h
�My �Nx�

� ������

Note� It is easily shown that the right�hand�side of this condition is zero if f is

constant�

We have reduced the SSG equations to one equation in one unknown everywhere

except � � �� We now need to complete the reduction to one equation by �nding

the equation at � � �� We note that at � � �
 f � � as well and equations ������

and ����� reduce to

	h�	� � �

	h�	� � �

and di	erentiating with respect to t gives

	  h�	� � �

	  h�	� � �

assuming that h � C�� This gives us two �rst order equations for  h at � � �

instead of one second order equation� We could use these equations at � � �

along with equation ������ away from � � � and pose the question does there

exist a unique solution to these equations on the sphere ! Before we contemplate

this we investigate the e	ect that insisting equation ������ is elliptic has on h�

Writing q in its component form equation ������ is

hq � MxNy �MyNx �
�

�
�My �Nx�

� � �

It would be useful to know what conditions are required on Mx
 Ny
 My
 Nx for

this to hold� Shutts and Cullen ���� prove that if h � C� then a necessary but

not su�cient condition for q � � on an f �plane is that Mx � � and Ny � �

for f � � and Mx � � and Ny � � for f � �� These conditions are known as

��



the inertial stability conditions� Inertial stability says that parcels are stable to

�small� displacements in the stated directions
 in this case � and �
 whilst the full

criteria q � � can be considered as requiring inertial stability in all horizontal

directions� It is probable that this is also a necessary condition for variable f

as well� If we assume that it is then it will also be a necessary condition for

equation ������ to be satis�ed� We now consider how this assumption constrains

the solution near � � �� If we take just the Ny term then we have


Ny �
�

a

	

	�

�
g

af

	h

	�

�
� f

If we insist that Ny is continuous then it must be zero at � � � since it is assumed

to be positive for � � � and negative for � � �� As we approach � � � then f also

approaches zero and we can consider just the remaining term� Since f � ��sin�


	h�	� � O��� as � tends to zero
 or this term becomes unbounded� Let us solve

�

a

	

	�

�
g

af

	h

	�

�
� �

where � is a function which goes to zero as � goes to zero� As we are near zero

we can approximate sin� by � to an adequate approximation and multiplying

through by a��g we obtain
	

	�

�
�

�

	h

	�

�
� �

where we have rede�ned � to include the factor a��g� Integrating twice we get

h �
Z
�

Z

� d�
�
d� � c����� � d���

Substituting this into the inequality for Mx at � � � tells us that the arbitrary

function d can only be a simple constant� Similarly substituting into q at � � �

implies that c can also only be a simple constant� Evaluating the integrals for

the function � is not possible so instead we de�ne

� �
Z
�

Z

� d�
�
d�

��



We can write � in the general form

� � �rp��� ��

for some power r and function p� Substituting this expression into the constraint

on Ny to determine the restrictions on r and p gives

r�r � ���r��p � ��r � ���r��
	p

	�
� �r��

	�p

	��

which must tend to zero as � tends to zero� This is satis�ed if r � � � � for some

� � � and p � C�� Thus the general form of the solution at � � � must be

h � d � c�� � ����p��� �� �� � �� ������

where p � C��

Substituting this general form for h in equation ������ and letting �� � gives

O�����

�
	�  h

	��
�
	�  h

	��

	
� O�������

�
	  h

	�

	

� O�������

�
	�  h

	�	�

	
� O�����

	  h

	�
� O����  h � O����

If we multiply through by �� and look for a solution which is in Cn on the sphere

where n � � then this reduces to

	  h

	�
� �

at � � �� Thus insisting that equation ������ is elliptic and taking the limit of

it times f� as � � � gives the same equation at � � � as we obtained by con�

sidering the balance equations ������ and ������ We note that we can multiply

equation ������ by f� away from � � � since f is non�zero and that this does not

change the ellipticity condition �������

��



Proposition ��� There exists a unique solution to equation ������ times f� on

the sphere at time t if

q �
�

�h
�My �Nx�

� � � � �� �

q � � � � �

which satis�es

	  h�	� � �

	  h�	� � �

at � � � with h � Cn on the sphere with n � �� Furthermore the solution

 h � Cn�� on the sphere�

To prove this we need to know when an elliptic equation has a unique solution�

The only result I have been able to �nd in the literature is�

De�nition ��� The second�order partial di�erential equation on a closed domain

�

nX
i�k��

aik�x�� ���� xn�
	�p

	xi	xk
�

nX
i��

bi�x�� ���� xn�
	p

	xi
� c�x�� ���� xn�p � r�x�� ���� xn�

is elliptic if the quadratic form

nX
i�k��

aik�x��i�k

is always de�nite of the same sign for all x � �� where the �i�s de�ne the co�

ordinate axes�

We shall assume that this quadratic form is positive de�nite and consequently if

A�x� is its determinant then A�x� � � for all x � �� We then have the following

Theorem


��



Theorem ��� The second�order elliptic partial di�erential equation on a closed

domain �

nX
i�k��

aik�x�� ���� xn�
	�p

	xi	xk
�

nX
i��

bi�x�� ���� xn�
	p

	xi
� c�x�� ���� xn�p � r�x�� ���� xn�

has a unique solution p � C� for the Dirichlet or Neumann boundary condition

on the boundary of the domain� denoted ��� given by

�
dp

dl
� �p � "

where l is the normal to the boundary� if the coe�cients are all of class C� in �

and r is continuous in � and of class C� in � � �� with c � � and � � � but

not both identically zero� Further if the coe�cients and r are all in C	n��
 then

p � Cn�

Proof� See Miranda ���
 Section ��
 pages ���� for the Neumann case and

section �� pages ������� for the Dirichlet case�

To apply this theorem to equations on the sphere we need to map the sphere onto

a closed domain in cartesian space� If we de�ne

x � a�

y � asin�

then this maps the surface of the sphere to a plane in cartesian space� Applying

this transformation to an equation on the surface of the sphere produces the

following boundary conditions on the solution p

p��� y� � p���a� y�

p�x�� a� � p�x�� a� 	x�� x� � ��� ��a�

p�x���a� � p�x���a� 	x�� x� � ��� ��a�

��



for which we cannot apply Theorem ���� Alternatively we can map the surface

of a hemisphere onto a circle in cartesian space by

x � acos�cos�

y � asin�cos�

If we map the northern hemispheric surface onto domain denoted by �N and the

southern hemispheric surface onto a domain denoted by �S then the boundary

condition is that p on ��N is equal to p on ��S� We now show how this mapping

onto two hemispheres can be used to try to prove proposition ����

Outline of how Proposition ��� might be proved�

Applying the hemispheric mapping to f� times equation ������ gives an elliptic

equation in the open domains �N and �S and on the boundary of each domain

the equation becomes
	  h

	l
� �

where l is the normal to the boundary� We could thus apply Theorem ��� to both

hemispheres separately
 if the theorem only required the equation to be elliptic

on the open domain� However we have not been able to �nd this result� It then

remains to show that the solution on ��N is equal to the solution on ��S� If we

can show that the solution for each hemisphere is of the form ������ then this

should not present much of a problem� If the solution is not of this form then

we expect that at some later time q will cease to satisfy the ellipticity constraint

������� In theorem ��� we have that if the coe�cients and right hand side are Cn

then the solution is in Cn��� To form equation ������ we need h � C� at least

to obtain coe�cients in C�
 and hence the solution for  h will be at best in C� if

Theorem ��� can be extended to the open domain� Thus we obtain the last line

��



of the proposition
 if h � Cn then  h � Cn���

Finding h knowing  h

Assuming the existence and uniqueness of a solution to equation ������
 propo�

sition ���
 we now have an initial value problem  h � F �x� y� t�
 where F �x� y� t�

is the solution of equation ������� There is a unique solution to this initial value

problem for t in some time interval t� � t � t� provided that F is continuous in

this time interval and its �rst derivatives in space exist and are bounded� �See


for example
 ���
 chapter ���

The spatial conditions on F are satis�ed by our solution and it thus remains to

show that F is continuous in time on this time interval� However we have already

assumed this to derive equation ������� We would like to remove the assumptions

about continuity of h and its derivatives with respect to time� To do this we will

consider the following problem


New Problem

Given equation ������ on the sphere
 under what conditions does it have a unique

solution which is continuous in time for some time interval �t�� t�� !

We note that if its solution is continuous in time then we can go back from this

equation to the SSG equations ������� �����
 by retracing the steps used to derive

this equation
 and thus the conditions for the solution of this new problem are

exactly those for the solution of the original one� Assuming that q is non�zero

and h � C� then the only problem in retracing the steps used to derive the single

equation comes at � � �� Here we can �nd the balanced velocity �eld
 but the

full velocity �eld is not completely determined at � � �� To �nd u at the equator

we can solve equation ������
 but this is only one equation for the two unknowns�

�



The velocity �eld u can be considered as being made up of two components
 a

divergent part and a rotational part� If we consider just the divergent part and

substitute for u using an irrotational form in equation ������ then we obtain a

Poisson equation� This is easily solved and thus we know the divergent part of

the solution� The rotational part is undetermined and hence so is the problem

at the equator� Extra information must now be used to obtain the full solution�

This situation is not uncommon in many practical problems and the practice of

choosing a solution on a physical basis has been shown to work very well
 see

Seidman ���� for a discussion of this issue� One sensible solution is to choose to

set the rotational part of the velocity �eld to zero at � � ��

We would now like to prove the following proposition�

Proposition ��	 There exists a unique solution to the New Problem on a do�

main � � �tb� te�� where � is the surface of a sphere radius a� provided that

h � C���� at tb and the following inequality holds at every point in the domain

� �
�

�h
�My �Nx�

� � q �


where we allow q � � at � � � and the second partial derivatives of My� Mx� Nx�

Ny are continuous and bounded with the data inertially stable� Further we then

have h � C���� for any t � �tb� te�� and h � C��tb� te� and hence this solution also

satis�es the SSG equations�

Outline of how it might be proved�

We consider t � te as this implies the result for all the previous values in the

interval� We denote the elliptic equation������ by L�p� � r where L is the elliptic

operator
 p the solution and r the right�hand�side� We note that L
 p and r all

depend on the time t�

��



The assumptions we have made guarantee a unique solution to the equation at

time t � tb assuming proposition ���� We can form a �rst estimate to the solution

at any other t in the interval by de�ning


h��t� � h�tb� � p�tb�t

where p�tb� is the solution of our elliptic equation at time tb� We note that by

construction h is continuous on the time interval and belongs to C����
 provided

that Theorem ��� holds for n � 
 which is an open question� Assuming that the

q remains bounded
 inertially stable and the second partial derivatives of M�N

are continuous and bounded
 then we could solve the elliptic equation at a later

time than tb and hence re�ne our estimate� De�ning #t � te � tb we can obtain

a sequence of approximations de�ned as follows


hm�t� � h�tb� �
n��X
i��

wi�t�pi
#t

m

where pi is the solution to the elliptic equation at time t�i#t�m using the values

of hm at this time to calculate the coe�cients and right�hand�side
 and de�ning

ti � tb � �i� ��#t�m with

wi�t� �

��
�

� if t � ti

� if t � ti��

�t� ti���ti�� � ti� otherwise

It is again noted that provided each of the pi can be found then this estimate

of the solution is also continuous in time and belongs to C���� by construction

provided that Theorem ��� holds for n � 
� We now consider what happens if

we let m�
 at time t � te�

h�te� � h�tb� �
Z te

tb

p�� �d�

since p �  h� We noted earlier that for a unique solution to this integral equation

we require that p is continuous on the time interval� We can replace the integral

��



by the limit of the in�nite sum


h�te� � h�tb� � lim
m��

m��X
i��

wi�te�pi
#t

m

and since we are considering time te all the wi � �� We need to prove that this

limit exists and is �nite� This we have yet to do� Assuming the boundedness of q


Mx
 Nx
 My
 and Ny
 should allow us to bound the right�hand�side of the elliptic

equation and this may enable us to prove this result� We noted in the outline of

how proposition ��� might be proved that we required h � Cn with n � � to form

the elliptic equation and that the solution was only in Cn��� Hence if we were to

start with h � C� we would only be able to solve the elliptic equation since the

solution we obtained would then be in C� and hence we could not form an elliptic

equation from this solution� Since we are taking the limit as m�
 in this pro�

cedure we must have h � C�
 which is a severe restriction� We have also assumed

that q and My
 Mx
 Nx
 Ny are continuous and bounded
 which is essentially the

same as assuming that the derivatives of h are continuous and bounded and thus

e	ectively assuming that h exists� We therefore need to able to prove these as�

sumptions without assuming h exists� This is possible in the f �plane case since

q�f satis�es a Lagrangian conservation law� However as shown in section �����

this conservation law does not hold for variable f for the SSG equations� It maybe

that this proof could be used to prove existence and uniqueness for the Planetary

Semi�Geostrophic equations which possess a Lagrangian conservation law for q�f �

����� Comparison of this Method with other methods

for balanced equations

To solve a balanced set of equations the procedure adopted by many authors

has been to reduce the set to one predictive equation in one unknown and a

set of diagnostic equations to obtain the original variables from this single un�
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known� This single predictive equation for the Quasi�Geostrophic equations and

the f�plane Semi�Geostrophic equations is simply a Lagrangian conservation law

and is thus relatively easily solved� The recovery of the original variables from

the new unknown at a later time requires the solution of an equation
 a Monge�

Amp�ere equation in the f �plane Semi�Geostrophic case
 under some constraint

which guarantees a unique solution� See Hoskins et al ���� for a discussion of

this idea and how it might be extended to the full equations of �uid motion�

We note that in their terminology the recovery of the original variables is re�

ferred to as the potential vorticity inversion and the possibility of such recovery

the invertability principle� The method used for the SSG equations di	ers in

that the evolution equation is written in terms of one of the orginal variables

and so no recovery is required
 unless the direct substitution used to obtain the

other variables is considered as such� E	ectively the two steps
 prediction and

recovery
 used in other balanced solution procedures have been combined into one

with the penalty that the evolution equation has become much more complicated�

Of interest is how large is the time interval for which the solution to the SSG equa�

tions would continue to satisfy the constraint ������! This is obviously dependent

on the initial data and some estimate of it may be obtainable by considering the

SSG vorticity evolution equation and calculating when q would become negative

assuming the right hand side of the equation does not change with time� We

note that in the f �plane Semi�Geostrophic case the potential vorticity evolution

equation is a Lagrangian conservation law and thus we have that the potential

vorticity remains bounded inde�nitely� In fact
 as noted earlier
 Cullen et al ����

have shown that it holds for any �nite time� We consider in the next section

how we may extend the solutions on the sphere beyond the point where the con�

straint ������ is violated by adding additional physical information�

��



��� Solutions beyond the breakdown

Proposition ��
 which asserts the existence of a unique solution
 is not true when

q ceases to satisfy the constraint ������� As stated already this could happen

since the evolution equation for q�f is not a conservation law on the sphere� The

question is thus
 given any initial data which satis�es the equations can we prove

that q is bounded away from zero away from the equator for any �nite time !

The answer to this is unknown� If we extend the equations to better represent

the real atmosphere
 by including forcing functions which mimic atmospheric

microphysical processes for example
 then we expect that we will violate the

conditions� We need to de�ne what we mean by a solution at the point where

these conditions are violated�

De�nition ��
 Any solution of the SSG equations belongs to the set of functions�

S� where h � S if h � C� and satis�es the constraint ������ and is of the form

������ about � � ��

We must now �nd a solution procedure which produces a unique solution within

S� In the f�plane case
 f �� �
 it has been be proved by Cullen et al ���� ����

that given h not in S then there is a unique re�arrangement of X � fx � v� and

Y � fy � u� such that h then belongs to S� This re�arrangement property does

not
 unfortunately
 extend to the sphere because of the variation of f � In the

f�plane case
 f �� �
 solutions exist when q � � whereas on the sphere we have

proved existence only for q � �� Assuming that any forcing functions are bounded

then it can be shown that if at any time t q becomes zero at some point x then

as time continues the solution stays in the solution set by expanding this area of

zero q as required� The existence of solutions at q � � allows uniqueness unlike

q � � � � where the choice of � would determine the solution� For f� � � � �

there always exists a solution in S since h � constant would satisfy this� How�

ever this solution may not be obtainable via this simple re�arrangement approach

��



since it does not allow us to change the X and Y values at a material point� This

solution may also be unphysical if too large a value for � is chosen� The existence

of solutions at q � � allows the proof of existence of solutions for arbitrary long

time via this re�arrangement idea without mixing parcel properties� To obtain

a uniqueness result for the sphere a necessary �rst step appears to be to prove

the existence of solutions on the sphere with q � � away from f � �� For the

f�plane case where f � � then the only stable solution is for h to be a constant

on the whole domain� Given a non�constant distribution then the solution is for

all the �uid to be mixed to give a homogeneous �uid� For this case a simple

re�arrangement of X and Y is not su�cient� On the sphere
 e	ectively the equa�

tions have no resolution in the ��direction at � � � and given a non�constant

distribution along � � � then the solution is for all the �uid along � � � to be

mixed to give a homogeneous �uid� If we use the geometric model idea of Cullen

and Purser ����
 where the domain is divided into a �nite number of elements

with the values of X and Y constant on each element
 then it may be that for

the sphere a re�arrangement could be proven to exist which preserved the areas

of the elements and enforced the extra constraint that there could be only one

element at f � � as this would remove the problem of variations existing along

f � ��

Assuming the existence of an analytic unique solution is proved
 then in construct�

ing a practical method
 primarily for numerical computations
 for the sphere these

di�culties result in a very ill�conditioned problem with the elliptic equation pos�

sibly ceasing to be elliptic at some point� It is thus necessary to stabilize the

numerical method in some way� This can be done by restoring the ellipticity con�

straints when they are violated or if the ill�conditioning is very serious to not allow

them to become within some tolerance of being violated� To do this it appears

to be sensible to try and include both the approaches already discussed
 possibly

trying something akin to the re�arrangement procedure applied locally �rst and
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then a global mixing type procedure� It would be desirable to �nd a unique way

of doing this but until the theoretical results exist this is probably not possible�

For typical mid�latitude values of f and realistic data the re�arrangements
 al�

though �global� in principle
 are observed from experiments with the geometric

model of Cullen and Purser ���� to be con�ned to a small area around the points

where the semi�geostrophic potential vorticity is negative� As this procedure is

known to give a unique answer this seems a viable solution for such mid�latitude

values� However near the equator we may need to represent the mixing process

and this is typically represented by a di	usion operator which leaves us with a

choice of coe�cient to make� In the numerical problems attempted in chapter

� the e	ect on the solution of varying the coe�cient is small
 since the areas

where mixing is required are almost always near the equator where the solution

is almost constant� These results give us some con�dence that although the pro�

cedure may not give a unique result it is reasonably insensitive to small variations

in the choice of parameters� From these experiments we are unable to distinguish

between violations of the constraints generated by numerical error and those
 if

any
 generated by the true equations� In the numerical schemes developed in the

next chapter we try to minimize the occurrences of computational violations by

careful consideration of areas where such errors may be common
 for example

near the equator� Thus as yet we have no answer to this uniqueness problem


merely numerical procedures which work� This is an area where further work will

be required�

Areas of negative potential vorticity correspond to areas where the atmosphere

is unstable in some direction� For vertical instability it is often assumed that

this instability is removed on a timescale of an hour or so� The SSG equations

only represent motions with timescales slower than f�� which is typically about

� � � hours and the faster timescales are collapsed to zero� We know that in
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unstable areas the SSG equations are inappropriate to represent such motions

and the violation of the constraints is one way of diagnosing where those motions

occur� Suppose we consider these equations as acting like a time lapse camera

taking pictures of the atmosphere every hour or so� Then what we see as we look

at the pictures at one time may be an area of instability
 while the next picture

shows no instability� By comparing the two we may deduce the net e	ect of that

unstable area
 and it is that net e	ect that we need to represent� The solution

method of Cullen
 for the f �plane case
 allows this to be done exactly since given

initial unstable data it constructs the stable minimum energy state which results�

However we may wish to add extra physical understanding to this procedure� We

could choose to add to our equations an extra set of physical rules
 which are only

active when instabilities are present and then remove those instabilities leaving

us once again in a state where we can continue forward in time� This e	ect could

be included as a forcing term on the right hand side of the equations� As the

atmosphere has motions on all scales and is subject to external forcing
 from solar

radiation for example
 such rules already exist for many processes in atmospheric

prediction models and are called Parameterization schemes� We need to develop

such schemes to represent the unstable processes found in the forced equations

used here� As this is outside the scope of this work we shall not pursue this mat�

ter further� In the next chapter we only discuss how we overcame the problem of

instabilities in the numerical model of the unforced equations�

��� The Analytic approach as a Numerical

Method�

We could use the constructive method given in the outline proof of proposi�

tion ��
 to de�ne a numerical method as follows� We form the discrete analogue
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of equation ������ and solve the resulting variable coe�cient elliptic problem as

suggested in the outline proof of proposition ���� The solution to this equation

can be found via a multigrid solver to be described in section ���� Having found

this solution we multiply by our chosen timestep to �nd the new values of h at

the next time�level� It now remains to show that these new values also satisfy

the constraints of the theorem to allow us to both �nd the values of the other

�elds at the new time�level and to continue to advance the solution in time� This

procedure has the bene�t that the problem is reduced to simply �nding 	h�	t

and we need only diagnose u and u� if required� The only major problem
 there�

fore
 lies in enforcing the constaints should they be violated at the new time�level�

Supposing that the constraints are violated
 then we could try to avoid this by

taking smaller timesteps which would reduce the time truncation error� If the

violation is not caused by numerical errors
 or if the required timestep would

lead to prohibitive computational expense
 then we are left having to enforce the

constraints directly� We could try the methods to be described in section �����

which work for the predictor$corrector approach of the next chapter to see if

they would restore the constraints� Time has prevented us from pursuing this

approach since we began the project by trying to extend the predictor$corrector

approach of Cullen ��� and Mawson and Cullen �����

��



Chapter �

Numerical solution procedure

In this chapter we describe a numerical procedure for solving the SSG equations

for arbitrarily long time� The approach we used is based on a predictor�corrector

method� Here we �x u at time t and predict h� u� at time t � �t� The values

obtained at t��t will not satisfy the balance equations and we use them to ob�

tain a correction equation which determines the corrections required to h and u�

in terms of corrections to u� This method requires the enforcement of a slightly

modi�ed ellipticity constraint from that obtained in the previous chapter� To

integrate the equations for an arbitrarily long time we must �nd a way of enforc�

ing the constraints which guarantee that the corrector equation is elliptic� We

describe a procedure for doing this which attempts to minimize the changes to be

made to h and u� to obtain ellipticity� The predictor�corrector method requires

both u and u� at the equator to advance the solution in time� As noted in the

previous chapter� the rotational part of u is not de�ned at the equator and some

care is required in using u near the equator� This approach requires the solution

of variable coe	cient elliptic equations on the sphere and we demonstrate the use

of multigrid methods for this purpose�


�



��� The Predictor�Corrector Approach

The basic idea for this method can be found in Cullen ��� where a similar ap�

proach was implemented for a ��dimensional �x� z� f�plane version of the equa�

tions� In this section we consider whether we can prove analytically that this

approach gives us a unique solution to the SSG equations� We show that for a

�xed timestep �t we can obtain a unique solution via this method if a proposition

similar to ��� holds� but we are unable to say anything about the convergence

as �t tends to zero� However� we demonstrate� via numerical experiments� that

it appears that the method convergences to the correct solution for �xed spatial

resolution� We begin by re�stating the SSG equations for ease of reference�

�h

�t
�r��hu� � � ����

�u�
�t

� u�ru� � �grh� fk � u �����

g

acos�

�h

��
� fv� � � �����

g

a

�h

��
� fu� � � ���
�

where f � ��sin�� a is the radius of the sphere� g is the gravitational accelera�

tion� h is the height of the free surface� u� � �u�� v�� is the balanced wind �eld and

u � �u� v� is the full wind �eld� We refer to equation ���� as the mass equation�

equation ����� as the momentum equation and equations ����� and ���
� as the

balance equations�

For the moment we assume that we are given two distinct problems� Firstly

a prediction problem de�ned by equations ���� and ����� given u� Secondly a

re�arrangement or correction problem de�ned by equations ����� and ���
� given

some initial data which does not satisfy them� We seek to �nd under what

conditions unique solutions exist to these two problems� If we can do this we


�



then consider how these two problems may be combined to prove results for the

complete system�

����� The Advection Problem

We note that equations ���� and ����� can be written in the following form�

M �p� � �

�t
p �

mX
k��

Ak�x� t�
�

�xk
p�B�x� t�p � r�x� t� �����

where p � �p�� ���� pn� is a vector with each pk a function of x � �x�� ���� xm� and

t� Ak�x� t� are Hermitian matrices of degree n� For equation ���� n �  since

there is only one variable h� while for equation ������ n � � since there are two

components of u�� m � � for both equations since we are looking at a problem

with two space dimensions � Given u equation ���� can be solved independently

of equation ����� and so we need prove existence and uniqueness for it �rst and

then we may prove existence and uniqueness for equation ����� assuming that h is

given for the required time interval� It thus su	ces to solve the general existence

and uniqueness problem for equation ������ We assume� without loss of generality�

that we start at time t � � and denote by p� the value of p at this time�

Theorem ��� Let Ak be Hermitian and t � Ak�x� t� � B��� �� � �� with

t � B�x� t� � B�� Then for an arbitrary p� � D�
L� and for an arbitrary

r�t� � E�t �D�
L���t � ��� we have a unique solution of equation ����� such that

p�t� � E�t �D�
L���t � �� and p � E�t �L���t � ���

Theorem ��� In Theorem ��� if we assume t� Ak�x� t� � Bmax�����m� �� 	 � 	

� and t � B�x� t� � Bm are continuous� and p� � Dm
L� � r�t� � E�t �Dm

L���t � ���

�m � �� � �� ����� then there exists a unique solution such that p�t� � E�t �Dm
L���t �

��� where we take the di�erentiation with respect to t in the sense of the topology

of Dm��
L� �


�



Proof� The proofs of these theorems can be found in Mizohata ����� where these

theorems are referred to as Theorem ��� and ��
 on page ����

The following notation for certain function spaces is used in the statement of the

theorems�

Bm is the space of functions f�x� where� given 
 � �
�� ���� 
n�

D�f�x� �
���������n

�x��� ����x
�n
n

f�x�� ���� xn��j
j � m�

are all bounded and continuous�

D��� is the space of C� functions de�ned on an open set � with the support of

the function a compact set of ��

Let E be a topological vector space� A function belongs to the space Emt �E��a �
t � b� if and only if it is m�times continuously di�erentiable in �a� b� under the

topology of E�

Similarly EmLp��� is the space of functions de�ned on an open set �� and their

derivatives in the sense of distributions belong to Lp including mth order deriva�

tives� the norm of the space is

k f�x� km�Lp����
X
jaj�m

k D�f�x� kLp���

�often seen elsewhere as Hm
p ��� or Wm

p �����

Dm
Lp��� is a subset of EmLp���� such that it consists of functions de�ned as the

limits of sequences of functions in D��� by the topology of EmLp����

With these theorems the existence of solutions to equations ���� and ����� is

proven under the conditions stated�


�



����� The Correction Problem

We require that at any given time t� equations ����� and ���
� are satis�ed� Given

any u��x� y� t�� and h�x� y� t�� this will generally not be true and we obtain instead

non�zero residuals on the right hand sides�

Question� Do there exist conditions on the given data such that there exists a

unique vector uA�x� y� which re�arranges the given data such that equations �����

and ���
� are satis�ed �

Denoting the solution by uA� �h
A� we construct the desired vector uA as an instan�

taneous velocity which corrects the given data u� and h using the SSG advection

equations ���� and ����� giving

uA� � u� � uA

acos�

�u�
��

� vA

a

�u�
��

�
uAv�tan�

a
� g

acos�

��hA � h�

��
� fvA �����

vA� � v� � uA

acos�

�v�
��

� vA

a

�v�
��

� uAu�tan�

a
� g

a

��hA � h�

��
� fuA �����

hA � h� 

acos�

��hu�

��
� 

acos�

��hvcos��

��
�����

The terms on the right�hand�side of equations ����� and ����� represent� in or�

der of appearance� the value of u� before the re�arrangement� an advection term

which depends on the gradients of u�� a term representing the e�ect of changing

the height �eld� and a term due to the sphere�s rotation� The term involving the

height �eld correction could be re�written in terms of uA using equation ������

Equation ����� represents the change to the height �eld due to the divergence

of this instantaneous velocity� We have chosen in equations ����� and ����� to

approximate the advection terms by a simple forward Euler scheme and hence

they are written in terms of u�� We could have a used a backward Euler scheme

instead� in which case they would have been written in terms of u�A� In fact�

we can choose to represent the advection term by any advection scheme we wish�


�



The choice of forward Euler is the simplest and gives the simplest form for the

resulting correction equation�

If we denote by � the di�erence between the solution and the given data then

we can obtain from equations ����� and ���
� the following corrector equations�

g

acos�

��h

��
� f�v� � �Rew �����

g

a

��h

��
� f�u� � �Rns �����

where Rew and Rns are the residuals of equations ����� and ���
� for the given

data�

We can replace the � quantities in these equations by using equations ����� and

����� to leave two equations in the unknown velocity uA�

g

acos�

�D

��
� f

�
f �



acos�

�v�
��

�
u�tan�

a

�
uA � f

a

�v�
��

vA �
fg

a

�D

��
� Rew ����

g

a

�D

��
� f

�


acos�

�u�
��

� v�tan�

a

�
uA � f

�
f � 

a

�u�
��

�
vA � fg

acos�

�D

��
� Rns

�����

where we have de�ned D � r��huA�� It now possible to use equation ����

to substitute for uA in equation ����� provided that the terms multiplying uA

are non�zero� Similarly we can use equation ����� to substitute for vA in equa�

tion ���� provided that the terms multiplying vA are non�zero� Under these

assumptions we have

�
f � 

a

�u�
��

�
f

a

�v�
��

�
g

acos�

�D

��
� fqhuA �

�
f� � f

a

�u�
��

� 

a

�v�
��

�
g

a

�D

��

�

�
f � 

a

�u�
��

�
Rew � 

a

�v�
��

Rns �����

g

�
f �



acos�

�v�
��

�
u�tan�

a
�

f

acos�

�u�
��

� fv�tan�

a

�
�D

�y
� fqhvA

��



� g

�
f� �

f

acos�

�v�
��

�
fu�tan�

a
� 

acos�

�u�
��

�
v�tan�

a

�
�D

�x

�

�
f �



acos�

�v�
��

�
u�tan�

a

�
Rns �



acos�

�u�
��

� v�tan�

a
Rew ���
�

If f �� � and q �� � �see section ����� for the de�nition of q�� we can multiply both

equations ����� and ���
� by �fq� If we take the divergence of the resulting

equations� namely

r�� ������fq� ���
��fq��
we obtain one equation for D of the following form�



acos�

�

��

�
A

acos�

�D

��

�
�



acos�

�

��

�
B�

a

�D

��

�

�


acos�

�

��

�
B�

a

�D

��

�
�



acos�

�

��

�
Ccos�

a

�D

��

�

�D � RHS �����

where A�B�� B�� C are functions of f� h�and �rst derivatives of u� and RHS is a

function of f� h�Rew� Rns and �rst derivatives of u��

The condition for this equation to be elliptic is�

q� � f�� �



h
r�u�

�
r�u� � �f

�
f �



acos�

�v�
��

�
u�tan�

a

�
� �f

�
f � 

a

�u�
��

��

Equation ����� is similar to equation ����� and to complete equation ����� on

the sphere we have to de�ne it at � � �� At � � � equations ����� and �����

simplify to
g

acos�

��h

��
� �Rew �����

g

a

��h

��
� �Rns �����

If we insist that the given h is inertially stable and hence satis�es the functional

form ������ around � � � then it is easy to show that the residuals Rew and Rns

are zero at � � �� Noting that �h � �D we obtain

�D

��
� �

�



�D

��
� �

	� at � � �� Multiplying equation ����� by �fq�� and expanding the coe	cients

proves that equation ����� becomes �D��� � � as �� �� If proposition ��� can

be proven then a similar argument could be used to prove existence and unique�

ness for equation ������

This unique D determines� via equations ���� and ����� a unique uA�

We can now use equations ����������� to obtain the solution uA� �h
A which satis�es

equations ����� and ���
��

Note� If f is constant and equations ����� and ���
� are satis�ed� then the ellip�

ticity condition reduces to q � �� which is a known condition for existence and

uniqueness of solutions in this case�

����� Solving the system by Advection then Correction

We propose a solution method for the system as follows�

Fix u��� �� t� � u��� �� t�� for t � �t�� t�� and solve the advection problem� �����

������ to obtain u���� �� t�� and h��� �� t���

Now solve the correction problem to obtain an instantaneous uA��� �� and hence

obtain uA� ��� �� t�� and hA��� �� t�� which satisfy equations ����� and ���
� at time

t��

Since both steps have a unique solution we now have obtained a unique solution

for u� and h at time t� which satis�es equations ��������
� but is dependent on

the value of �t � t� � t�� To advance our solution to time t� � �t we need to

obtain u at time t��

��



De�ne

u��� �� t� � u��� �� t�� � uA��� ��
�
t� t�
�t

�

for t � �t�� t��� and hence

u��� �� t�� � u��� �� t�� � uA��� ��

This de�nition of u��� �� t�� gives the value which if it had been used at time

t� would have resulted in no residuals occuring� In e�ect we are constructing a

velocity u which is constant for the time period �t�� t��� This is better understood

by considering u to be de�ned at the mid�point of this time interval and that it

represents an approximation to the actual wind �eld which gives approximately

the same net e�ect as appplying the true wind �eld for the whole time period�

The accuracy of this approximation depends on how fast the true u changes with

time� For the motions that this equation set represents� the change in u is slow

and so it should be su	ciently accurate to obtain good solutions� The validity of

this statement about accuracy can only be tested by numerical experiments�

Questions �

� Does the solution obtained by this method converge as �t tends to zero �

�� Is the solution to which it converges the true solution of the original problem �

We consider �rst the question of convergence� Suppose we are given data at

time t�� We try to prove that at some �xed time t� � t� the sequence An �

hA��� �� t���tn� converges to a solutionA as �tn tends to zero� for any �xed choice

of � and � on the sphere� where hA��� �� t���tn� is the solution to equations �����

���
� at time t� obtained by the predictor�corrector method described at the start

of this section using a timestep �tn� and �tn is a strictly monotonic decreasing

sequence which tends to zero as n tends to 
� We need only show convergence

of hA as this determines the other �elds via equations ��������
�� provided that

��



q �� � which we have already assumed� and hence they must also converge� Given

that we do not know A� to prove convergence it is su	cient to show that the

sequence is a Cauchy sequence� i�e�

given � � � there exists N such that 	m�n � N �

jAn �Amj 	 �

Since �tn � � as n�
 it is su	cient to show that�

jAn �Amj 	 M j�tn ��tmj

for some bounded constant M �

We cannot obtain an analytic expression for hA��� �� t���tn�� however� we can

construct a numerical method which follows the procedure outlined at the start

of this subsection� Thus by �rst �xing the resolution in space� ��� and ��

or equivalent depending on discretisation method chosen� we can ask the same

question of our numerical method �see Section ���
�� Showing convergence nu�

merically of the numericalmethod gives some indication that the analytic method

may converge� We are unable at the moment to say more than this�

It then remains to show that this solution is the true solution� A necessary con�

dition for the solution to be a solution of the SSG equations is that Rew and Rns

are zero for all time� We therefore need to show that as �t� �� then Rew � �

and Rns � � at every point in time in the domain� It is su	cient to show that

R� � as �t� � where

R �
Z
�

�t��t���	tX
n��

�jRewjn � jRnsjn��t

and the domain � is taken to be the sphere� R is simply the integral of the

timestep�weighted absolute values of the residuals over the time interval� We

demonstrate the behaviour of R as the timestep varies in a numerical experiment

�




in Section ���
� If the advection equations were simply conservation laws of the

form

�W

�t
�r�uW �

where W represents any of the variables h� u� or v�� and the residuals did not

contain derivatives� then it would be possible to show that R � � as �t tends

to zero for a simple time�marching algorithm eg� forward Euler� This result is

independent of the actual function u� As the choice of u obviously changes the

solution� this choice of u is important� Thus to prove R� � as �t tends to zero

it is necessary to bound the right�hand�side of the advection equations with the

time truncation error� I do not believe this can be done without knowledge of

the function u�

����� Convergence Results derived from Numerical Ex�

periments

A numerical version of the predictor�corrector method was implemented as de�

scribed in section ���� The numerical results given here are for the Heun local�

timestepping advection scheme� see section ����� for details� with two iterations of

the corrector step� Similar results are obtained with the other advection schemes�

Convergence to a unique solution

We choose a �xed resolution of �� by �� points and take for our initial data

real ���hpa �elds valid at ���� GMT on the st February �� which we shall

call time t�� We choose time t� to be ���
 GMT on the same day and obtain the

�elds valid at this time via the numerical method with a particular choice of the

��



timestep� We calculate Ejk� Mjk� E
�
jk and M�

jk de�ned as follows�

Ejk �


N

NX
i��

jh��i� �i� t���tj�� h��i� �i� t���tk�j

Mjk � Ejk�j�tj ��tkj

E�
jk � max

��i�N
jh��i� �i� t���tj�� h��i� �i� t���tk�j

M�
jk � E�

jk�j�tj ��tkj

where i loops over all N points in the domain� and �tj� �tk divide t�� t� exactly�

Ejk is the left�hand�side of our Cauchy inequality� except that it is the L� mean

over all points� E�
jk is the largest value in the domain which typically occurs at

the same point for all choices of �t� Mjk and M�
jk are the constants on the right�

hand�side of the inequalities which we wish to bound to show convergence�

Note� For this time period the special steps taken to enforce the required con�

staints on the data to ensure solutions exist were not required for any of the

timesteps�

We choose �t� �  minute� All timesteps in the table are in minutes�

j �tj E�j M�j E�
�j M�

�j

� � ����� � ��
 ����� � ��
 
�
��� � ��� 
�
��� � ���

� 
 ������ � ��
 ������ � ��
 ������ 
�
���
 � ���


 � ��� � ��� ����� � ��
 ������ 
�
��� � ���

� � ������� � ��� ������ � ��
 ������� 
�
���� � ���

� �� ������� � ��� ����

 � ��
 ����
 
�

�
 � ���

� �
 ������ � ��� ������ � ��
 ����
�� 
�
���� � ���

The same approach was applied to initial data from ����� GMT on the 
th June

��� giving the following results�

��



j �tj E�j M�j E�
�j M�

�j

� � ������ � ��
 ������ � ��
 
�
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�
��� � ���
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�
���� � ���
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 ������ 
�
���� � ���

� � ������ � ��� ����� � ��
 ������� 
�


�� � ���

� �� �����

 � ��� ������ � ��
 ����� 
�
���� � ���

� �
 ������ � ��� ����� � ��
 ����� 
�
���� � ���

Thus it appears that for these two cases that

E�j � M j�t� ��tjj

and

E�
�j �M�j�t� ��tjj

whereM � sup�M�j� and M
� � sup�M�

�j � are bounded� in fact almost constant�

Since we cannot run exhaustively all initial data with all timesteps we can never

make a de�nitive statement about numerical convergence� However from these

two� randomly chosen� general data cases the results suggest that the method

converges to a unique solution for �xed resolution�

It is suprising to note the degree of agreement between the two cases given that

the M values derived for each case are data�dependent�

It is trivial to prove that M is data�dependent since for initial data of h��� �� �

constant� u� � u � �� the solution remains the same for all time and M � � for

all timesteps regardless of the numerical method�

��



Convergence of the residuals

For the case of the 
th June ��� the quantity

Rj �
NX
i��

�t��t���	tjX
n��

�jRewjn � jRnsjn��tj

was calculated� where N is the number of grid�points in the domain� The calcu�

lations were performed for the same time period and timesteps as Section ���
�

Assuming R� � as �t� � then we can write

R � c�tn

for some constants c and n � �� We wish to calculate c and n for this case� For

�t �  we have that c � R� since

Rj � c�tnj

Using this value for c we calculate n for the other values of j�

j �tj Rj n

  ���� � ��� �
� � ���� � ��� ���

� 
 �� � ��� ���


 � �� � ��
 ���

� � 
��� � ��
 ���

� �� ��� � ��� ���

� �
 ���� � ��� ��


From this it appears that R� � as �t� � and so we belive that the numerical

method is converging to the true solution of the SSG equations� As we will prove

in section ����� the Heun scheme as implemented tends to second order accuracy

��



in time as the timestep tends to zero� The results gained here show that as the

timestep decreases R is tending to zero with order �tn where n� � as �t� ��

It thus appears that as the timestep decreases the residuals are tending to zero

with the order of the truncation error of the prediction scheme�

��� Numerical Implementation of the Predict�

or�Corrector Method

Notation and Variables

We de�ne the following notation for averaging and centred �nite di�erence oper�

ators in cartesian �x� y� and spherical polar ��� �� co�ordinates where x � a�cos�

and y � a� for a sphere of radius a� Given an n � m array of points equally

spaced on a domain ���X�� ��� Y � then

�x � X��n � �� �y � Y��m � �

and on the sphere given the domain in ��� �� space as ��� ��� ����� ��� then

�� � ��n� �� � ��m� �

The operators in cartesian co�ordinates are

�xh�x� y� � �h�x��x��� y�� h�x��x��� y����x

�yh�x� y� � �h�x� y ��y���� h�x� y ��y������y

h�x� y�
x
� �h�x��x��� y� � h�x��x��� y����

h�x� y�
y
� �h�x� y ��y��� � h�x� y ��y������

��



and in spherical polars

��h��� �� �


a��cos�
�h�������� �� � h�������� ���

��h��� �� �


a��
�h��� �������� h��� ��������

��ch��� �� �


a��cos�
�h��� �������cos���������h��� �������cos���������

h��� ��
�
� �h�� ������ �� � h�������� �����

h��� ��
�
� �h��� � ������ � h��� ����������

We also de�ne

U � �U� V � � �uh� vh�

and

h�x� y� t� n�t� � hn�x� y�

or simply hn� with hn��� �� de�ned analogously� We note that

h
xy

� h
yx

� h
xy

and that this holds for � and � also�

����� Computational Grid Choices

We have chosen to use a �nite di�erence model on a uniformly spaced grid in

��� �� space� This has the disadvantage of creating problems at the poles of the

sphere where we need to hold n polar values for each row� given that we have

n points on a row� This is not a serious problem for scalar quantities� such as

the height of the free surface h� where all the values are the same but care must

be taken with the vector quantities u� and u� In this section we consider the

arrangement of the variables on the computational grid and how this a�ects the

accuracy of the discretised equations� as well as identifying any spurious solutions

generated by a particular grid choice� We also consider how to de�ne any vector
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Figure ��� SSG model B�grid variable staggering�

quantities at the poles should the grid staggering require their storage there�

In computational �uid dynamics and numerical weather prediction much time

has already been spent on investigating various grid staggerings� see for example

Arakawa �
�� and here we shall consider just two� Using the nomenclature of

Arakawa and Lamb ���� which classi�es the grids depending on the positions of u

and v relative to the height of the free surface h� we refer to the two grids as the

B�grid� �g ��� and the C�grid� �g ���� If we use the semi�Lagrangian advection

scheme described in section ����� then the advection operator in the momentum

equation does not in�uence the grid choice� This leaves us to consider the forcing

functions on the right hand side of the momentum equations� the mass equation�

and the ability to represent and remove residuals in the corrector step�

The mass equation is

hn�� � hn � ��t���U�
� ��cV

�
�

on the B�grid and

hn�� � hn � ��t���U � ��cV �

�
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Figure ���� SSG model C�grid variable staggering�

on the C�grid� The B�grid involves averaging operators and so we expect some

extra smoothing to be introduced which is not present in the C�grid version� The

forcing functions on the right hand side of the momentum equations are f�v�v��

and f�u� � u� for the B�grid and fv � �fv��
��

and �fu��
�� � fu for the C�grid�

where we have used the balance equations ����� and ���
� to substitute for the

spatial derivatives of h in the forcing functions� For geostrophically balanced �ow

u � u� and the forcing function should be exactly zero� This is satis�ed exactly

by the B�grid but not by the C�grid and thus the B�grid will give a more accurate

representation of the true forcing for such �ows�

For the calculation and removal of the residuals we �rst consider the C�grid� The

residuals are given uniquely without any averaging by

Rew � g��h� fv�

Rns � g��h� fu�

To obtain the correction equation we form the right hand side of the equation

R � ��Rew � ��Rns

��



which is at the  h! points on the grid as is the divergence D� Using the centred

�nite di�erence operators to discretise the second order partial di�erential equa�

tion yields a � point stencil for D which is the minimum possible� We can solve

this for D and calculate the implied U exactly and thus when we form

��U � ��cV

we obtain the calculated D exactly� In the theory we could remove all the resid�

ual in one application but here there is some averaging in the coe	cients of

equation ����� and in certain terms in equation ����� which forms the implied

corrections to u�� This averaging produces only very small errors since almost all

terms in calculating h and u� are evaluated exactly using the exact values of D

and U � However this averaging forces us to perform one or two iterations of the

procedure to remove the residuals completely�

For the B�grid we have no unique way to de�ne the residual which involves no

averaging� In obtaining the exact forcing for geostrophically balanced �ows we

have assumed that

��h
�
� fv�

and

��h
�
� �fu�

To be consistent we should use these de�nitions to de�ne the residuals�

Rew � g��h
� � fv�

Rns � g��h
�
� fu�

This has the disadvantage that the residuals will not see a chequerboard pattern

in the height �eld� It is well known that schemes on the B�grid su�er from

such spurious computational modes and the inability of the correction step to see

them� and hence to remove them� is a problem� The mode can be suppressed by

��



projecting the height �eld onto the unstable mode either locally or globally and

then removing a percentage of the mode found from the data� see Margolin et

al� �
��� The choice of percentage used is usually found by experiment� For the

local procedure we start at one corner of the grid and sweep through the points

removing the mode as we go� In this procedure a small percentage is removed�

for example �"� and a number of sweeps are applied� In the global procedure� as

all points are updated simultaneously� a larger percentage� for example �"� is

used and only one application is required� This procedure� as well as suppressing

the chequerboard mode� can add some additional smoothing to the solution� To

de�ne a � point stencil for D we need to de�ne D at the u� v points on the

grid� not the h point where it is de�ned for the mass equation� We also need to

take centred di�erences of the residuals over two grid�lengths� not one� since the

residuals are now also held at the U points and not half a grid�length away in the

appropriate direction as they are for the C�grid�

R � ���Rew � ���Rns

We thus end up with a much larger stencil for the right hand side then we did

for the C�grid and this leads to a smoother� less accurate solution of the elliptic

equation on the �rst iteration than obtained with the C�grid� There is also some

averaging in the calculation of the coe	cients of the partial di�erential equation

as we found with the C�grid� Having found the solution D we now �nd the

corresponding U and to do this we must calculate the derivatives of D found in

equations ���� and ����� centred over two grid�lengths� The major drawback

of the B�grid is that the D used in the calculation of the height correction is an

averaged version of the one used in the balanced velocity u� update�

hA � h� ���D � ���cD

We �nd that the height �eld correction is much smoothed because of this� typically

��� ��" of the true correction� whilst the balanced velocity correction is almost

�




exact� This procedure� as for the C�grid� needs iterating and because of the

smoothing of the height �eld update� it typically takes many iterations to converge

to the same accuracy as the C�grid solution obtains without iteration� To derive

the same accuracy as the C�grid procedure involves at least an order of magnitude

more iterations and this is computationally very expensive� This inability to

remove the residuals e	ciently along with the computational chequerboard mode

has convinced us that we should not solve the equations on the B�grid�

So far we have not considered the e�ect of the grid choice on which variables are

held at the poles and on the equator� We consider just the C�grid since we have

discarded the B�grid� In the last chapter we required �h��t on the equator to

solve the elliptic equation ������ We thus choose to put h� and hence D� on the

equator enabling us to solve the elliptic equation which arises in the correction set

via a similar approach to that used for equation ������ This choice implies that

we hold U at the equator as well� We determine the divergent part of U at the

equator� see section ����
 for details� whilst the rotational part of U is set to zero�

The inertial stability constraint requires that v� � � on the equator and hence v�

on the equator is zero for all time� We choose to put a height point at each of the

poles as well since this allows an easy de�nition of the divergence at the pole as

the sum of the polewards mass �uxes V � The height value at the pole represents

the value for the polar cap which extends half a grid�length equatorwards of the

pole in all directions� We also need to de�ne v� at the pole and instead of solving

the momentum equation for v� at the pole we choose to derive its value from

surrounding values� This is done by �rst calculating a mean local cartesian u�

at the pole using the values of u� half a grid�length equatorwards and v� one

grid�length equatorwards as follows�
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unp�c � �
n

Pn
i��

�
u���i� ������ �� ����

�
cos�i���

�v��i��� ��������sin�i����

vnp�c � �
n

Pn
i��

�
u���i� ������ �� ����

�
sin�i���

�v��i��� ��������cos�i����

usp�c �
�
n

Pn
i��

�
u���i� ��������� � ���

�
cos�i���

�v��i������ � �����sin�i����

vsp�c �
�
n

Pn
i��

�
�u���i� ��������� � ���

�
sin�i���

�v��i������ � �����cos�i����

where unp� and unp� denote the mean cartesian balanced wind at the north and

south poles respectively and n is the number of points on a row� This mean local

cartesian value is then used to de�ne v� at each point around the pole as follows�

vnp� ��� � vnp�c cos� � unp�c sin�

vsp� ��� � vsp�ccos� � usp�csin�

De�ning v� at the poles this way means that U at the pole is required only for the

advection of u� in the Heun advection step and the calculation of the departure

points in the semi�Lagrangian advection step� We discuss its de�nition for those

purposes in the relevant sections� We need also to consider what we mean by

cos� at the pole� Analytically this value is zero� which would cause a problem

in taking ��cV at the pole which is required to calculate the divergence there�

This quantity represents the change in mass of the grid box surrounding � by the

mass��ux into it from the grid boxes to the north and south� The cosine values in

this derivative represent the area of the grid�boxes which are latitude dependent�

The cosine value for any grid box can be found by calculating the area which isZ ��	���

��	���
��cos�d� � ���cos�sin������

��



For small values of �� we have sin������ � ���� to a good approximation�

O������
� and hence the area is approximately

����cos��

and so the cosine which represents the area is almost exactly the analytic value

of the cosine at the mid�point of the grid box� If we evaluate this integral at the

pole we �nd that the cosine value which represents the area is cos��������
�

to the same degree of approximation� This is the value that we need to use at

the poles and not the analytic value of zero�

����� Prediction Schemes

We consider two di�erent numerical schemes for the prediction of h and u� at

time t � �t given h� u� and u at time t� The �rst is an explicit Eulerian advec�

tion scheme which has been used for many years and is currently the basis of

the U�K� Meteorological O	ce operational numerical weather prediction model�

The second is a semi�Lagrangian scheme which has been successfully applied to

the primitive equations by many authors� for example McDonald and Bates �

��

and shown to have some advantages over standard Eulerian schemes� We wish to

see if there is any bene�t in applying the semi�Lagrangian approach to the SSG

equations� In this section we describe both schemes� emphasising the problems

caused by implementation on the sphere� and give accuracy and stability results

where possible�

A� The Heun Scheme

The Heun advection scheme is a two�time level explicit Eulerian method and

is described in Mesinger and Arakawa ���� and Mesinger �
��� To illustrate the

��



scheme and investigate its temporal accuracy we consider just the simple advec�

tion equation�
�h

�t
� �c�h

�x
�����

The �rst step of the Heun advection scheme is to form a �rst approximation of

hn��� denoted h� as follows

h � hn ��tcn
�hn

�x

A second step is now performed using h as the starting value to obtain h� by

h� � h ��tcn
�h

�x

The full update is now given by

hn�� � hn �
�


�
�h � hn� � �h� � h�

�

which simpli�es to

hn�� � hn � cn�t
�hn

�x
�



�
�cn���t�

��hn

�x�
�



�
cn�t�

�cn

�x

�hn

�x
�����

where the last term is zero if cn has no spatial dependence�

Temporal Accuracy

To investigate the temporal accuracy of the scheme consider the Taylor series

expansion of h�t�� truncated at the third derivative� which is

hn�� � hn ��t
�hn

�t
�

�t�

�

��hn

�t�
�O��t
�

substituting for �h��t from the advection equation ����� to get

hn�� � hn�cn�t�h
n

�x
�


�
�cn���t�

��hn

�x�
�


�
cn�t�

�cn

�x

�hn

�x
�

�
cn�t�

�cn

�t

�hn

�x
�O��t
�

By comparing this with equation ����� we see that if c is independent of x and

t then the Heun scheme is second order accurate in time� If c is not independent

��



of x and t� as is the case for the general advection equations we are using in the

SSG model� then the scheme is still �rst order accurate and tends to second order

accuracy as c tends to a constant�

Spatial Accuracy

If we use centred �nite di�erences then we obtain second order spatial accuracy�

If higher order accuracy is required it can be achieved simply by broadening the

stencil to include more points and using standard higher order centred approx�

imations to the derivatives� In this section we limit ourselves to second order

accuracy for simplicity� See Cullen and Davies ��� for an example of a fourth

accurate scheme�

Von Neumann Stability

We consider the Heun scheme applied to our simple advection problem ����� and

we de�ne a wave solution hn � #nh�e
ikx where # is an ampli�cation factor and

h� is some initial value of h� For stability we require that j#j � � Substituting

the wave solution into the Heun scheme gives

# � � ikc�t� k�c��t���

and hence

j#j� �  � �kc�t���


which is unconditionally unstable except for the trivial case where c � �� Cullen

and Davies ��� show that the modi�ed Heun step

h � hn ��t

�
c
�hn

�x
� �t

�

�

�x

�
c�
�hn

�x

��

which includes a di�usion term� has ampli�cation factor

# � � ikc�t� �kc�t���� � i�kc�t�
��

��



with

j#j� �  � �kc�t���� � �kc�t�����

which is stable for kc�t 	
p
�� see Marshall �
�� for examples of these schemes

applied to simple problems� In practice if kc�t 	  then the instability in the

original scheme is very weak and in more complicated equations where other

damping operators are found it is often unnecessary to include this explicit dif�

fusion term� In the implementation in the SSG model we use the scheme in its

original form with kc�t 	  and rely on the correction step to overcome the weak

instability still present�

Application to the SSG equations

a� Cartesian geometry�

The discretised mass equation ���� is

hn�� � hn � ��t��xUn � �yV
n� ������

which is a simple one step Euler scheme with �rst order accuracy in time� second

order accuracy in space� Alternatively the mass equation could be discretised as

hn�� � hn � ��t�u�xhx � v�yh
y
���t�h�xu� h�yv� �����

where the �rst term on the right hand side could be replaced by a Heun advection

step� This has the disadvantage of creating errors in the calculation of the diver�

gence D due to an inconsistency between predictor and corrector steps� because

in the correction step the divergence is calculated via the discretisation ������ not

the alternative one ������ The use of the alternative discretisation also leads to

large errors at the equator since we now need to use U when only the divergent

part of U is well de�ned� We thus use the original discretisation for the mass

��



equation�

The discretised momentum equations consist of an advective part and two forcing

terms on the right hand side

un��� � H�un�� ��t�g�xh
y � fV�h

y
�

vn��� � H�vn� ���t�g�yh
x
� fU�h

x
�

where H�un�� represents the Heun advection of un� given at each step by

u� � un� �
��

U

h
x

�y
�xun�

�x

� V

h
y ��yu

n
�

and H�vn� � represents the Heun advection of vn� given at each step by

v� � vn� �
U

h
x ��xv

n
� �

��
V

h
y

�x
�yvn�

�y

These discretisations are second order accurate in space� Temporal accuracy is

only �rst order since� although the Heun scheme is at least �rst order accurate

and tends to second order accurate as U tends to a constant� the forcing terms

are only �rst order accurate in time � If we perform a Von Neumann stability

analysis for the Heun part of the discretisation only� assuming a wave solution of

the form hn � #nh�e
i�kx�ly�� we �nd that

j#j� �  � 
��


as before except that here


 �
u�t

�x
sin�k�x� �

v�t

�y
sin�l�y�

b� Spherical Polar geometry�

The discretised equations now have to include the e�ects of the co�ordinate trans�

formation and become

hn�� � hn � ��t���Un � ��cV
n�

�



un��� � H�un� ���t�g��h
� � fV�h

�
�

vn��� � H�vn� ���t�g��h
�
� fU�h

�
�

where H�un�� represents the Heun advection of un� given at each step by

u� � un� �
�
	� U

h
�

��

��un�



A
�

� V

h
� ���u

n
� �

�
U

h
�v

n
�

���
tan�

a

and H�vn� � represents the Heun advection of vn� given at each step by

v� � vn� �
U

h
����v

n
� �

�
	� V

h
�

��

��vn�



A
�

� U

h
�u

n
�
�� tan�

a

The choice of averaging of the trigonometric terms involving tan�which arise from

the co�ordinate transformation is arbitrary and the one shown here is certainly

not the only choice� It is� perhaps� the most natural choice and experiments with

other averagings did not demonstrate any signi�cant sensitivity to the choice�

The accuracy properties of the discretisation are not a�ected by the co�ordinate

transformation� which just leaves the question of stability� The Von Neumann sta�

bility analysis performed previously requires the ratio of �x to �y to remain �xed

which is not true in spherical geometry� Therefore we cannot perform the analysis

and hence we cannot investigate the choice of the averaging of the trigonometric

terms on stability� Again experiments have shown little sensitivity to the choice�

Assuming that the linear analysis would have yielded the same ampli�cation fac�

tor� which numerical experiments demonstrate to be approximately true� then

problems will arise as we approach the poles� since u�t�a��cos� will typically

be an order of magnitude bigger than the equatorial values� If� as experiments

suggest� we require that this quantity remains less than  everywhere for a stable

solution then we obtain a severe restriction on the timestep we can choose� We

propose two di�erent approaches to relax this constraint on the timestep�
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i� Local Time�stepping�

The idea is to choose a timestep �t which gives a stable prediction scheme at

low latitudes and then perform multiple applications of the advection step with a

correspondingly shorter� and hence stable� timestep at higher latitudes� Each of

these advection steps uses the values of u� from the end of the previous step but

keeps the advecting velocity U �xed at the old time�level value� We only need

multiple applications of the Heun scheme in the ��direction since the stability

restriction is not violated in the ��direction for typical atmospheric �ows� We

calculate the integer number of applications of the Heun scheme� s�� required on

any row � to ensure that u�t��a��cos� 	 � where �t� is the local timestep

de�ned below� by

s� �  � max
��i���	����	�

ju��� i�j �t

a��cos�

where we could have used only the maximum value of u on the row �� However

experiments showed that using the average over that row and the ones to the

north and south produces a more stable solution� This form also allows this

value of s� to be used as the number of applications of the Heun scheme in the

prediction of u� on the row polewards of this v� row� The corresponding local

timestep for each row is then given by

�t� � �t�s�

We note that because of the trigonometric term in the momentum equations we

should predict both u� and v� simultaneously so that we always have both vari�

ables at all the required intermediate time�levels� Unfortunately� because of the

averaging required on the C�grid� this implies that we must perform the same

number of applications of the ��directional Heun scheme on every row to achieve

this goal� The scheme was implemented by �nding the maximum number of ap�

plications required by any row and using this value on all rows� Attempts to

��



remove this restriction were not made since it was seen from experiments that

multiple applications of the Heun scheme in the ��direction only were less ac�

curate then multiple applications of the whole Heun step� So for momentum

advection we implemented multiple applications of the Heun advection using the

largest timestep which is stable at all points on the sphere and which divides the

desired timestep exactly� This� although not the cheapest option� is cheaper than

applying this small timestep to the whole predictor�corrector method� however

it is less attractive than it �rst appeared�

ii� Fourier Damping�

This approach is based on an idea which has been in common use since the

beginning of numerical weather prediction� see for example Arakawa ���� The

idea is to choose the timestep based on stability considerations at low latitudes

as before but now we check every row on the sphere to �nd if it has any unstable

waves and any we �nd are then multiplied by a damping coe	cient� E�ectively we

are searching for the waves for which the ampli�cation factor # satis�es j#j � 

and we then wish to multiply those waves by a factor d such that dj#j 	 �

These modi�ed waves are now stable and we regain a stable scheme� To do

this it is necessary to transform our grid�point data into a wave representation

via a Fourier transform and hence the name Fourier damping� In practice as

we approach the pole the amount of damping on any particular wave number

increases and so the procedure reduces the model�s ability to resolve features in

the ��direction� This is equivalent to degrading the resolution in that direction

or alternatively to increasing the e�ective grid�length� We can thus consider this

approach as a way of obtaining almost uniform resolution in meters rather than

in radians� The Fourier damping procedure is as follows�

For each row � �nd the largest value of k � n��� where n is the number of points

�




on a row� such that the following is satis�ed

max
�
ju��� ��j �t

a��cos�
sin�k��� 	 

If k � n�� than there are no unstable waves on that row� Experiments have

shown that it is bene�cial to insist that no row polewards of another can have

more stable waves then that row� For each row with unstable waves we perform

a discrete fast Fourier transform� often abbreviated to �t� to obtain the real and

imaginary Fourier coe	cients for each wave�number� We now damp the unstable

waves by setting

rdj � rj

�
k

j

��
k 	 j � n

�

where k is the maximum stable wave number� j is the wave number we wish

to damp and rj and rdj represent the undamped and damped Fourier coe	cient

respectively� Both real and imaginary coe	cients are damped equally� We now

perform another fast Fourier transform to return the damped wave representation

to grid�point values� The choice of damping function is empirical and we have

chosen the one used in the U�K� Meteorological O	ce uni�ed model� see Cullen

et al ����

The equations at the poles and the equator

In spherical geometry we need to de�ne what we mean by the equations at the

poles� The mass equation becomes�

hnp � �Dnp � �X ��cV �
X
�



cosnp�
V ��� �� ������cos��� ������

hsp � �Dsp � �X ��cV � �X
�



cossp�
V ������ � �����cos���� � �����

where the superscripts np and sp denote the values at the north and south poles

respectively� The U term does not appear since the integral of ��U around a row

��



is identically zero� For the momentum equations we need only consider u� since

we de�ned v� at the poles and equator in section ����� On the u� row next to

the pole we need to de�ne U at the pole to use in the calculation of U
�
� we set

U at the pole to zero� For the rows half a grid�length either side of the equator

we have to form U
�
and so we require U on the equator and this is not well

de�ned� We therefore de�ne U on these rows to be the value of U on the row half

a grid�length polewards of this row� This choice gives a signi�cant reduction in

numerical noise near the equator when compared to using the value of U at the

equator in forming U half a grid�length either side of the equator� We note that

across the equator the inertial stability code� to be described in section ������ and

used to enforce ellipticity and hence the existence of a solution� ensures that

u��������� � u���������� 	�

which has the e�ect of removing the cross equatorial advection of u� since V ��u�

is identically zero across the equator�

B� The Semi�Lagrangian Scheme

Consider the forced advection equation for some scalar P

DP

Dt
� F �P� x� y� t�

where x and y are space variables� t is time and F some known forcing function�

Given this equation at time t� the solution at time t� can be obtained via a

Lagrangian approach as

Pa � Pd �
Z a

d
F

where subscript a denotes the value at the arrival point at time t�� d the value at

the departure point at time t� and the integral is taken along the trajectory fol�

lowed� Suppose we solve this equation via a fully Lagrangian approach on a time

interval �t�� t�� with the departure points at time t� equally spaced� At time t�

��



the arrival points will generally have evolved to be highly irregularly spaced� see

for example Welander ����� The way to avoid this is to use the semi�Lagrangian

approach� Now instead of �xing the departure points as equally spaced we re�

quire instead that the arrival points are equally spaced� The arrival points are

now known and we must calculate the departure point� and since this will gen�

erally not be a point where the value of X is known we will need to interpolate

to this point� To �nish a discretised approach we need only approximate the

integral along the trajectory� We consider each of these three elements in turn

and state accuracy and stability results� In the implementation used here we

follow the two�time�level approach of McDonald and Bates �

�� A review of the

semi�Lagrangian method can be found in Staniforth and C$ot%e ���� where they

also discuss three�time�level schemes�

Departure point calculation

We wish to �nd the co�ordinates of the departure point �xd� yd� at time t for the

trajectory which arrives at �xa� ya� at time t��t� If we apply the mid�point rule

we obtain

xd � xa � �t

�x
um�t��t���

yd � ya � �t

�y
vm�t��t���

where subscript m denotes the value at the mid�point of the trajectory� McDon�

ald �
�� used the arrival point values of u at time t to approximate um�t��t���

and successfully integrated the shallow�water primitive equations� This approach

is only �rst order accurate in time and McDonald and Bates �
�� showed that a

second order accurate calculation gives noticeable bene�ts for timesteps greater

than �� minutes� which we also verify in chapter 
� Robert ��� argued that

an improved estimate of the departure point can be obtained by improving the

��



estimate of um� This is done by solving the iterative equations

unm�t��t��� � u�xa � un��m �t��x� ya � vn��m �t��y� t��t���

where superscript n denotes the nth iterate and the �rst guess is obtained by

extrapolating u at time t at the arrival points to time t � �t�� using a second

order accurate extrapolation� For example�

u�t��t��� � �����u�t�� ����u�t��t�

which gives a second order accurate temporal approximation to the departure

point� In practice McDonald �
�� found that a single iteration with a bi�linear

interpolation to obtain the value at the mid�point was su	cient� with more iter�

ations and higher order interpolation yielding no noticeable bene�t� In chapter 


we shall use both �rst and second order accurate trajectory routines�

Interpolation

The spatial accuracy of the advective part of the scheme is determined by the

accuracy of the interpolation of the quantity at the departure point� The spatial

truncation error is found to be one order higher than the order of the interpolation

so that� for example� cubic interpolation gives a fourth order accurate scheme�

see for example Staniforth and C$ot%e ����� A second order accurate scheme can

be obtained by linear interpolation but many authors� eg McDonald �
��� have

found such schemes to cause unacceptably large damping of the solution� Follow�

ing most authors we use bi�cubic interpolation and hence a fourth order accurate

advection scheme is obtained�

For the unforced advection problem this combination of trajectory calculation and

interpolation is unconditionally stable� see Staniforth and C$ot%e ���� for references�

��



This just leaves the forcing term to consider� A second order temporal accurate

approximation to the forcing term is given by the trapezium rule

�F �t��t� � F �t����

and thus the whole scheme is second order accurate in time� fourth order in space�

Implementation in the SSG model

The mass equation written in Lagrangian form is

Dh

Dt
� �hr�u

which becomes

ha � hd ��t�r�Ud�t� �r�Ua�t��t����

when discretised using a semi�Lagrangian approach and the trapezium rule� The

�rst problem is that we do not know U at t��t and we cannot calculate it until

after the correction step� An alternative second order accurate form is to use the

mid�point rule to obtain

ha � hd ��tr�Um�t��t���

where we could �nd U at the mid�point using the same calculation that we used

to �nd u for the calculation of the departure point� The more signi�cant problem

is the same as when we considered using the Heun scheme to solve this equation

and is the inconsistency introduced between how the equation is solved in the

corrector and predictor steps� This inconsistency� as noted earlier� can lead to

large errors near the equator where only r�U is well de�ned and u is not� We

therefore use the Eulerian form of the mass equation exactly as we did in the

Heun scheme

ha�t��t� � ha�t��r�Ua�t�

��



and this gives only �rst order accuracy in time� second order accuracy in space�

For momentum we adopt the vector approach of McDonald and Bates �

� as

described in Bates et al� ���� We write the equation in its vector form

Du�

Dt
� �grh� fk � $u

where k is the usual unit vector in the direction normal to the surface of the

sphere and

$u �

�
U

h
�
�
V

h
�

�

This can be discretised as

u�a � u�d �
�t

�
��grhd�t� � �fk � $u�t��d�

� �grha�t��t� � �fk � $u�t��t��a�� ������

to give second order accurate solutions in space and time� The vector approach

is described in detail in Bates et al� ��� and we omit the details here� We note

that this approach has no problems with the polar singularity and any velocities

required at the poles can be obtained by �nding the correct local cartesian vector

at the pole via the method described at the end of section ����� At the equator U

is de�ned as the average of the U velocities either side of the equator� The inertial

stability enforcing conditions constrain u� to be constant across the equator� see

section ������ and in an Eulerian scheme� like the Heun scheme� this stops cross�

equatorial transport of u�� In the semi�Lagrangian scheme it is found that using

V on the row next to the equator in the calculation of the trajectories leads

to signi�cant numerical noise� which degrades the solution� If we set V on the

row either side of the equator to zero the noise problem is removed� For typical

timesteps� an hour or less� this stops trajectories from crossing the equator and

so we are again stopping cross�equatorial transport of u�� In neither code is this

a major restriction since near the equator u� is approximately zero and it is the

cross�equatorial mass transport that is important� The correction step will adjust

��



the balanced velocity �eld to be consistent with the mass �eld and so this extra

restriction� imposed to reduce numerical noise� is not a serious one�

This leaves us with the forcing terms to consider� As already noted we do not have

a value for U at time t��t and so the form in equation ������ is not appropriate�

As we considered with the mass equation we could replace this approximation

with a mid�point value and still retain second order accuracy� If we use the

mid�point rule for just the term involving U then we are now evaluating the

two forcing terms at di�erent points and time�levels which would lead to larger

errors for geostrophically balanced �ows where these two terms should cancel� To

minimise these errors we should only use the values at time t since here the �ow

is balanced whilst at time t � �t� we have yet to compute the exact balanced

�ow and we have only estimates of the values� We thus arrive at the �rst order

accurate in time discretisation

u�a � u�d ��t �grhd�t� � �fk � $u�t��d� ������

Implementing this discretisation leads to model runs failing in the region of the

poles where the constraint enforcement procedure described in section ����� fails

to remove areas where negative q appears and hence the correction equation

ceases to be elliptic� The problem is the appearance of the negative values of

q� The reason for their appearance in the solution can be found by looking at

the derivation of the evolution equation for q� see section ������ Near the poles

�f��� is approximately zero and q should be almost conserved� To obtain this

conservation we noted in section ����� that we require

�

�x

�
�h

�y

�
�

�

�y

�
�h

�x

�

which in spherical polars becomes



acos�

�

��

�


a

�h

��

�
�



acos�

�

��

�
cos�

acos�

�h

��

�

�



Using the discretisation of equation ������ we �nd that this does not hold at the

departure points since they may no longer be uniformly spaced due to both the

evolution of the trajectories for the di�erent points on the staggered grid and

errors in calculating the trajectories� This requirement can be satis�ed by using

the values at the arrival point at the old time�level which is still a �rst order

accurate in time approximation given by

u�a � u�d ��t �grha�t� � �fk � $u�t��a� ����
�

Using this discretisation we �nd that the code now executes without any sign of

developing areas of negative q and with no obvious detriment to the solution�

We note that both prediction schemes� Heun and semi�Lagrangian� use forcing

terms and mass equation which are �rst order accurate in time� The only formal

di�erences are that the semi�Lagrangian scheme as implemented is fourth order

accurate in space for the unforced advection of u� compared to second order

accuracy in the Heun scheme� It is relatively easy to code a fourth order accurate

version of the Heun scheme� see for example Cullen and Davies ���� but here we

have left it as second order� Since we are not using semi�Lagrangian advection

for all the quantities we cannot show that the coupled system is unconditionally

stable and we expect that there may be a limit on the timestep we can take�

This compares with the Heun scheme where we know that it is unconditionally

unstable in theory and we probably have to rely on the correction step to keep

the scheme stable�

����� Constraint Enforcement

In section ��� we de�ned the solution set S in which a solution exists� In the nu�

merical procedure it is possible for the �elds obtained at the end of the prediction

step to lie outside this set at certain points� We wish to put these points back

into the solution set whilst making the minimum changes to the �elds H and

��



u� and here we consider how we might do this� In section ��� we identi�ed two

processes which apply in the f�plane case for f �� � and f � � respectively� In

the �rst case the solution can always be found by re�arranging the �uid to satisfy

the constraint and in the second the only solution is h � constant which can be

obtained by uniformly mixing all the �uid� In the numerical code we must ensure

that the partial di�erential equation to be solved in the correction step is elliptic�

and this is the analogue of the existence conditions for the theoretical problem�

We approximate the �rst process by simply re�arranging the balanced velocities

to satisfy the inertial stability conditions� The conditions are

f�f � ��v� � u�tan��a� � � ������

f�f � ��u�� � � ������

We note that the �rst condition depends on u� whilst the second is independent

of v�� We enforce the second condition �rst and then use the resulting u� �eld

in enforcing the �rst condition� The conditions are enforced via an iterative

procedure� At the start of each iteration of the routine to enforce the second

condition we set u� on the row either side to the mean value of the current values

on those rows� We then form

E � f�f � ��u
r
��

and if E � � at some point ��� �� we set

ur��� ��� ������� � ur���� ������� � 
E�f �m

ur��� ��� ������� � ur���� ������� � 
E�f �m

where superscript r denotes the rth iteration with the initial data values cor�

responding to those at r � �� 
 is a parameter set to ��� which was found by

experiment to give the best convergence rate and m is a minimum increment to

be added� set to ������
� which was also found to be bene�cial in speeding up

��



the iteration near the equator� If� on iteration r� no updates are performed then

the condition is enforced� A solution always exists since u� set to the global mean

of the input values at the start of the routine� satis�es the algorithm� This rou�

tine mimics a simple arrangement of the parcels by swapping values whilst also

including some smoothing which is comparable to the mixing process required in

the f � � case�

The �rst condition can be enforced on each row as it has no global dependence�

unlike the u� condition where the mean value at the equator couples all the

columns together� We set v� at the equator to zero and then at each point on the

other rows we form

E � f��f � ��v
n
� � u�tan��a�

where u� is the value obtained after enforcing the second inertial stability condi�

tion� ������� If E � � at some point ��� �� we form the updates

vn��� �� ������ �� � vn� ��� ����� ��� 
E�f �m

vn��� �������� �� � vn� �������� �� � 
E�f �m

where 
 and m have the same values as before� A solution always exists provided

that u�tan��a is not signi�cantly greater than f � which is the case only for non�

physical �ows by which time the solution is meaningless�

In the development of the code the inability to remove inertial instability was

the usual sign that the code was failing and this was used to determine when

the procedure should be stopped� Enforcing inertial stability is not su	cient to

guarantee existence of the solutions� see Shutts and Cullen ����� for the exact con�

ditions� Instead we require that q is greater than some positive� data dependent�

value which� as we shall see in the next section� is su	cient to guarantee elliptic�

ity of the reduced elliptic equation ������� However� solving the reduced equation

with inertial stability enforced and the full ellipticity condition not satis�ed is

found to still lead to the generation of spurious solutions� We must therefore �nd

�




a way of ensuring that the full condition is satis�ed� It has not been possible to

�nd a ��D �nite di�erence discretisation that mimics the f�plane re�arrangement

procedure performed by the geometric model of Cullen and Purser ���� �Cullen

personal communication�� We therefore implement a global mixing procedure

which is done using a di�usion scheme� This scheme is applied to &q � hq rather

than q as it is computationally cheaper to implement and numerical experiments

showed that it had no detrimental impact� The �rst step is to form &q and then

solve the following conservative di�usion equation for the increments �&q

�&q �


acos�

�

��

�
C�

acos�

�&q

��

�
�



a

�

��

�
C�



a

�&q

��

�

where we have to specify the coe	cients C� and C�� We wish to di�use &q only in

the areas where it is likely to violate the ellipticity conditions and so we choose to

specify the coe	cients dependent on the current value of &q relative to the value

&q would have if there was no �ow� namely f�� We �rst note that the maximum

stable di�usion coe	cients given by linear stability analysis are

Cmax
� ��� �






�a��cos���

�t

Cmax
� �






�a����

�t

where the ��direction coe	cient depends on the latitude �� We now de�ne the

&q dependent coe	cients at a point ��� �� as

C���� �� �

������
������

� if &q � 
f�

Cmax
� ���� �
f� � &q���f��
 � ��� if 
f� � &q � �f�

Cmax
� ��� otherwise

and

C���� �� �

������
������

� if &q � 
f�

Cmax
� � �
f� � &q���f��
 � ��� if 
f� � &q � �f�

Cmax
� otherwise

��



where 
 and � are parameters which control the switching on of the di�usion and

the point below which the maximum stable value should be used� In practice we

found that


 � ���� � � ��

gave good results for all the cases considered in the next chapter� We now need

to �nd the implied increments to the height �eld given by the di�usive correction

�&q since we can then �nd the corresponding increments to u� via the balance

equations� We need to solve�
f �



acos�

�

��

�
g

afcos�

��h��h�

��

�
� gtan�

a�f

��h��h�

��

�
�
f �



a

�

��

�
g

af

��h��h�

��

��

�
�


a

�

��

�
g

afcos�

��h��h�

��

��
�



acos�

�

��

�
g

af

��h��h�

��

�
�

gtan�

a�fcos�

��h��h�

��

�
� &q ��&q

This simpli�es to�


acos�

�

��

�
g

afcos�

���h�

��

�
� gtan�

a�f

���h�

��

� �


a

�

��

�
g
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���h�
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��

�
�


a
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�
g

afcos�

���h�

��
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acos�

�
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�
g
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���h�

��

�
�

gtan�

a�fcos�

���h�

��

�

�Mx

�


a

�

��

�
g

af

���h�

��

��

�Ny

�


acos�

�

��

�
g

afcos�

���h�

��

�
� gtan�

a�f

���h�
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�


acos�

�
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�
g

af

���h�

��
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�
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a�fcos�

���h�

��

�

�Nx

�


a

�

��

�
g

afcos�

���h�

��

��
� �&q

where we have used the notation de�ned in section ������ page ��� This is a very

complicated and expensive equation to solve for the correction� considering that

we have chosen the coe	cients using tunable parameters� We therefore wish to

��



simplify it to reduce the computational cost involved� We begin by neglecting

the terms in �h� which removes the �rst two terms and leaves us with a variable

coe	cient second order partial di�erential equation for �h� This new equation

has an ellipticity condition which depends on &q� To avoid having to enforce this

condition we can further simplify the equation by neglecting the mixed derivative

terms which produces the more strongly elliptic equation

Mx

�


a

�

��

�
g

af

���h�

��

��

�Ny

�


acos�

�

��

�
g

afcos�

���h�

��

�
� gtan�

a�f

���h�

��

�
� �&q

This is elliptic if we have Mx and Ny � � which is simply the condition that the

data is inertially stable� If we consider f to be constant then we could further

simplify the equation by noting that typically

Mx�f  � Ny�f  

to obtain

gr� ��h� � �&q ������

We choose to solve equation ������ rather than the full equation since it is com�

putationally very cheap to do so� and in test cases there was no noticeable bene�t

to the solution from solving the full equation� Solving this equation to obtain the

corrections works well in the examples we have tried and alleviates any problems

with the formation of areas of negative q�

����� Correction Step

We follow the argument of section ���� which described how the corrector step

could be constructed in a theoretical manner except that now we consider how this

may be implemented on the C�grid� We use a simple explicit Euler advection

step to discretise the momentum equation and obtain the C�grid analogue of

��



equations ����� and �����

�h � �����U � ��c�V � ������

�u� � �
�
	��U

h
�

��

��u�



A
�

� �V

h
�
���u� �

�
�U

h
�
v�

���
tan�

a
� g���h

�
�
f�V

h
�

������

�v� � ��U

h
� ���v��

�
	��V

h
�

��

��v�



A
�

� �U

h
� u�

�� tan�

a
� g���h

�� f�U

h
� ������

where � represents the di�erence between the true values at the new time level

and the current guess� which in the case of h and u� is the predicted value at the

new time level whilst for U it is the value at the old time�level� We calculate the

residuals

Rew � g��h� fv�

Rns � g��h� fu�

and then form the correction equations

g���h� f�v� � �Rew �����

g���h� f�u� � �Rns ������

We can now substitute for the corrections �h and �u� from equations �������������
in equations ����� and ������ and noting that �h � ��D we obtain the discre�

tised form of equations ���� and �����

g���D � f

�
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h
� ���v� �



h
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If we were to continue following the procedure of section ���� we would now

need to substitute for �V in equation ������ using equation ����
� and for �U in

equation ����
� from equation ������� However because of the averaging incurred

by using the staggered grid this would cause the equations at any point to be

coupled to the equations at all other points� The e�ect of the coupling decreases

with distance from the point about which the original substitution is performed�

However it is not practical to pursue this line and so we seek to simplify the

equation accepting the penalty that we shall not be able to remove all the residual

in one go� This is similar to omitting the term in the SIMPLEC algorithm which

leads to a simpler scheme at the expense of extra iterations� see Van et al� ����

and Wen et al� ����� We require that the iteration we construct must converge

to the same solution as that obtained for the full equation� and this has yet to

be proven� We can avoid the coupling if we neglect the terms involving �V in

equation ������ and �U in equation ����
�� If we also neglect the � derivative of

�D in equation ������ and the � derivative of �D in equation ����
� since these

terms are order f smaller than the derivatives of �D in the other co�ordinate

direction in the respective equations� then we obtain the reduced equations

g���D � f

�
f �



h
�
���v� �



h
�
u�

�� tan�

a

�
�U � Rew ������

g���D � f

�
f � 

h
� ���u�

�
�V � Rns ������

For simplicity we de�ne

A �


f
h
f � �

h
� ���v� �

�

h
�u���

tan�
a

i

B �


f
h
f � �

h
� ���u�

i
Then taking the divergence of equations ������ and ������ we obtain away from

the equator

���gA���D� � ��c�gB���D� ��D � ���ARew� � ��c�BRns� ������

��



which is elliptic if the data is inertially stable� and we have shown in section �����

that this is easily enforced� This ellipticity condition is much simpler than the one

derived in section ���� and is a necessary but not su	cient condition for the full

ellipticity condition to hold� We now need to derive the equation at the equator�

In section ���� we noted that if we enforce inertial stability on the data then we

have removed the residuals on the equator� When we enforce inertial stability we

do so only on the balanced velocities and not on the height �eld� This is because

of the di	culty in enforcing

f

�
�f � ��

�
g

f
��h

�
�

�
g

f

tan�

a
��h

���� � �

and

f

�
f � ��

�
g

f
��h

��
� � �

for which no e�ective numerical method could be found� Thus we are unable to

continue to follow the approach of section ����� We note that an alternative to

enforcing the Neumann boundary condition at the equator is to use a Dirichlet

condition since all the results we have used for elliptic equations hold equally

for this type of boundary condition� This leaves us with the problem of �nding

the solution at the equator before we can solve for the rest of the domain� The

equation we need to satisfy at the equator is

���D � Rew ������

since the other balance equation is formed half a grid�length polewards of the

equator where f �� �� ������ is easily solved to give

�D � e��� � s���

where e��� is the solution of equation ������ and s��� is some arbitrary function�

We note that s��� is simply the zonal mean solution of equation ������� or the real
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Fourier coe	cient a� in a Fourier expansion of the solution �D in the ��direction
given by

�D��� �� � a���� �
�X
k��

ak���cos�k�� � ibk���sin�k��

We could now use this transform on equation ������ to �nd the coe	cient a��

A cheaper� although exactly equivalent� way is to integrate both sides of the

equation with respect to � over ��� ��� Doing this we obtain�

Z �	

�
����gA���D� � ��c�gB���D���D� d� �

Z �	

�
����ARew� � ��c�BRns�� d�

and noting that Z �	

�
�Dd� � a�

we can write this as

Z �	

�
gB��c����D�d� � a� �

Z �	

�
����ARew� � ��c�BRns��

�
Z �	

�
����gA���D� � ��c�gB���D�� d�

If ��A � � then the �rst term in the second integral on the right�hand�side

is identically zero� If we also assume that the second term in this integral is

negligible and approximate

Z �	

�
gB��c����D�d�

by

��c���a��
Z �	

�
gBd�

we obtain

��c���a��
Z �	

�
gBd�� a� �

Z �	

�
����ARew� � ��c�BRns�� d�

The solution of this is easily obtained since on the C�grid B is not evaluated

at f � � and hence does not become in�nite� The omission of terms and the

approximations made imply some doubt about the accuracy of the solution ob�

tained by this method� However� the approximations made are no worse than
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those made to derive the reduced equation ������ and at worst should just add

extra iterations to the procedure� Using this method to �nd a� and then solving

equation ������ with the Dirichlet boundary condition does produce a noticable

unremoved residual at the equator in the multigrid solution on the �rst appli�

cation of the corrector step on a timestep� which is removed on the subsequent

iteration of the corrector step� No adverse e�ects appear from this unremoved

residual and idealised experiments with the multigrid code suggest that the error

may be entirely due to the multigrid algorithm� and not because of the simpli��

cations made here� see section ����
� The results gained via the solution of the

reduced equation ������ and the Dirichlet boundary condition method are given

in the next chapter� and as we saw in section ���
 these simpli�cations do not

appear to be detrimental to the solution in any way� except perhaps in a slight

loss of accuracy� We discuss the solution of the variable coe	cient elliptic equa�

tions on the sphere in section ���� Equation ������ is solved via the hemispheric

method described there� whilst the solution to Poisson�s equation required in the

constraint enforcement is solved using the global multigrid code�

Having solved the reduced equation ������� then we can �nd �U and �V uniquely

by substituting �D in equations ������ and ������� with the exception that we

cannot �nd �U at the equator� This problem is overcome by noting that both

�D at the equator and �V either side of the equator are well de�ned and we

can solve

���U � �D � ��c�V

Solving this for �U at � � � given �D and �V does not give a unique solution

as it introduces a constant of integration� in this case an arbitrary function of phi�

This arbitrary function represents the rotational part of �U which we choose to

set to zero� This is the point in the numerical procedure where the unde�ned part

of the solution at the equator appears� in this case it is the rotational part of U

which is unde�ned� This is no suprise since in the previous chapter we noted that
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the rotational part of the wind �eld is unde�ned at the equator� We choose to set

the rotational part of U to zero at the equator� and since it is not used anywhere

else in the solution procedure its de�nition is of no importance� We can now use

these corrections to calculate the corrections �h and �u� using equations ������

to ������� The value of U at the new time level is given by U � �U��t� By

omitting the terms in the derivation of equation ������ we have sacri�ced some

accuracy to obtain the compact ��point stencil and also the ability to remove all

the residual in one corrector step since we are still using the full equations ������

to ������ to calculate the corrections� This forces us to perform some iterations

of the correction procedure� In practice only one or two iterations are required

to remove the residual�
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����� The Complete Procedure

The full predictor�corrector scheme can be summarised as follows

Step � q dependent di�usion�

Step � Inertial stability enforced�

Step � Prediction step�

Step � Inertial stability enforced�

The following steps are iterated n times�

Step 	 Corrector step�

Step 
 Inertial stability enforced�

For some of the test problems it was found to be bene�cial to include an iner�

tial stability enforcing step after the di�usion step� particularly when the local

timestepping Heun scheme was used as the predictor� The di�usion step is only

performed once at the beginning of the timestep whilst the inertial stability test

must be applied before every corrector step to ensure that the reduced equation

to be solved is elliptic�
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��� Multigrid Methods on the Sphere�

����� Introduction to Multigrid methods�

Many problems in computational mathematics require fast� accurate solutions to

elliptic partial di�erential equations� If we consider the model problem�

��Q

�x�
� f�x�

on a periodic domain� then if we discretise using� for example� centred �nite�

di�erences we obtain the matrix system�

AQ � F

where A is a square� symmetric tri�diagonal matrix� Fast direct methods exist

for such a problem� If we now consider the more complicated equation�

a�x� y�
��Q

�x�
� b�x� y�

��Q

�y�
� f�x� y�

and again discretise we obtain a block tri�diagonal matrix system� For a N �N

problem the cost of direct solution is O�N�� and takes O�N�� elements of memory

storage� We can take advantage of the banded structure of this problem by using

algorithms such as the Ahlberg�Nilsen�Walsh �� which reduce costs to O�N��

operations� For certain classes of problems there are faster direct methods� For

example if the coe	cients a� b are simply functions of y then a Fourier transform

can be employed in the x�direction to reduce the problem to simply solving a set

of �D equations� This works in ��dimensions but when we look at a ��D problem

then the cost of direct solution becomes totally prohibitive� O�N��� For general

problems fast iterative methods have been developed which converge to machine

precision� These iterative methods take� in most cases in ��D� signi�cantly less

computer time than the direct method and require considerably less storage� while

in ��D they represent the only practical way of solving the problem� For elliptic
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equations the Multigrid method has usually been shown to be the best iterative

procedure� see Gary et al� ���� for example�

The basic strategy behind multigrid is to choose a computationally cheap solver

for the matrix problem� referred to as the smoother� and combine it with a proce�

dure which solves the problem on a sequence of computational grids� Given the

matrix system Ax � b then a simple iterative solver is the Jacobi iteration where

we separate A into three matrices� a diagonal� a strictly upper diagonal and a

strictly lower diagonal� denoted D�U�L respectively and form the iteration�

Dxn�� � ��L� U�xn � b

Convergence for the Jacobi iteration is quite fast for a few iterations and then

becomes very slow� The reason behind this is easily understood by looking at the

Fourier modes of the error e � b�Ax� The Jacobi method converges quickly for

the high frequency modes� often refered to as the'rough� modes� of the problem

but very slowly for the low frequency modes� often refered to as the 'smooth�

modes� If we were to coarsen the problem by solving it on a grid with half as

many nodes then the Jacobi method would now converge quickly for the 'rough�

modes on this new coarser grid� We need to be able to perform this coarsening

without changing the solution to the problem� This suggests the following pro�

cedure� here shown for just � grids�
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smooth m times on �ne grid

�R
transfer problem to coarser grid

�R
smooth m times on this grid

�R
transfer problem to coarsest grid

�R
smooth m times on coarsest grid

��

transfer problem to �ner grid
��

smooth n times on this grid
��

transfer problem to �nest grid
��

smooth n times on �nest grid

The method shown above is called a �m�n� V�cycle multigrid method� The V

comes naturally from the shape and the �m�n� describes the number of smoothing

iterations performed on the descending and ascending parts of the cycle respec�

tively� In many applications a direct solution method is employed on the coarsest

grid to get an exact solution� however we use an iterative approach on this grid

as well� As we are using an iterative approach on the coarse grid we shall de�ne

a �m�k�n� V�cycle in the same way but with k now referring to the number of

iterations of the smoother on the coarsest grid� The transfer from a �ne grid to

a coarser grid is known as restriction whilst the transfer from coarse to �ner is

called prolongation� For most problems several V�cycles will be needed before the

solution converges to the required level of accuracy�

Convergence of the multigrid procedure depends mainly on two things� Firstly

the smoother chosen must smooth the rough modes on every grid� Secondly the

restriction operator must be such that the problem on the coarser grid is the same

as if the original problem had been posed on that grid� In practice it is found

that this does not have to be exact but must however be close in some sense� A

third� although lesser consideration� is that the prolongation operator is usually

chosen to be the adjoint or inverse of the restriction operator� To obtain the
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optimum scheme for any particular problem in practice it is usually necessary to

investigate in some detail the performance of smoothers and various restriction

and prolongation operators� Here we will limit ourselves to creating a robust

method using the simple �m�k�n� V�cycle�

More background information can be found at a very basic level in Briggs ���� or

for a more complete introduction see either of the books by Hackbusch ���� or

Wesseling ����� For a review of multigrid methods for typical elliptic problems

which arise in meteorology see Fulton et al �����

����� Solution of a class of second�order P�D�E�s on the

sphere�

We wish to solve elliptic equations of the form�



acos�

�

��

�
A��� ��

acos�

�Q

��

�
�



acos�

�

��

�
B��� ��cos�

a

�Q

��

�
� C��� ��Q � R��� ��

on the surface of a sphere radius a given that C � �� The equations are ellip�

tic provided that A�B � �� 	�� �� The equations are written in spherical polar

co�ordinates ��� �� where � � ��� �� and � � ��������� so that � � � is the

equator�

We also wish to consider the same problem everywhere except � � �� with the

solution Q given for all � at � � �� which is e�ectively the simultaneous solution

of two hemispheric problems� To distinguish between them we shall call them the

Global and Hemispheric problems respectively�

If the coe	cients A�B�C were simply functions of �� this form of equation could

be solved very e	ciently using a direct method� see for example Moorthi and Hig�

gins ��
�� However� this is not the case here and so we need a di�erent approach�

Barros ��� has applied multigrid methods to Poisson type equations on the sphere

and this work is based on his�
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We wish to solve the problem on an M � N equally spaced grid in ��� �� space

where M is even and N is odd� We de�ne �� � ��M and �� � ���N � ��

We denote by Qi�j the value of Q at ��i � ���� �� � �j � ����� Thus there

are M points at both north and south poles� although in practice we shall only

need one� We discretise the problem using centred �nite di�erences� so that�

�Qi�j

��
� �Qi�����j �Qi�����j����

with an equivalent de�nition for derivatives in the � direction� If we locate the

coe	cients on the computational grid so as to avoid the need for any averaging

then we arrive at the following stencil�

Q Q

Q QA

A

B B

j

j���

j�

i i��� i�

If� for simplicity� we consider Poisson�s equation� r�� � f � on the sphere� then

using centred �nite�di�erences we obtain a second order accurate solution� For

the problems for which we wish to use multigrid this is su	cient� It is reasonably

easy to implement more accurate schemes at the expense of increasing the size

of the stencil and hence the minimum number of points required on the coarsest

grid� Increasing the size of the coarsest grid increases the cost of direct solution

on it� If an iterative method is used then in general the number of iterations

required may increase quite dramatically� see for example the e�ect of one less

��



grid in the results in table �� in section ����
� This may also not be desirable if�

as is required here� line solvers must be used as the smoother� This is because

the matrices generated by the line solvers becoming increasingly complicated and

more expensive to solve�

����� Implementation

De�nition of convergence�

We need to de�ne when convergence has occured� There are two commonly used

de�nitions which measure the performance of the multigrid scheme� We de�ne

the root mean square residual for the matrix problem Ax � b as

rms �

�


s

sX
i��

�bi �Axi�
�

� �

�

where s is the number of elements of x� The �rst measure of convergence is the

Multigrid Convergence Rate �henceforth MCR� which is de�ned simply as the

root mean square residual at the end of a V�cycle divided by its value at the

start of the V�cycle� The second measure is called the Practical Smoothing Rate

�henceforth PSR� and is de�ned for a �m�n� V�cycle as�

�MCR�
�

m�n

The �rst measure is an absolute measure of convergence whilst the second re�ects

the amount of work done in the V�cycle and hence is a better measure for com�

paring the di�erent values of �m�n� which could be used� As we are using �m�k�n�

V�cycles we should probably take into account k� however as this is in practice

little di�erent from n or m we do not bother� We choose to de�ne convergence

as the point where the practical smoothing rate becomes close to � since when

this happens we are getting very little extra convergence per V�cycle� In the
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examples considered later we generally get a PSR value between ��� to �
� for all

V�cycles except the last one or two� A good cuto� value for de�ning convergence

has proved to be ����� This is because the scheme can often perform many more

V�cycles with values around ��� to ��� before reaching a value of  but they gain

us little extra bene�t for often a substantial cost�

We note that it is not uncommon for certain problems for some iterative proce�

dures to reach a plateau after a certain number of iterations� The scheme may

remain there for many more iterations before once more converging quickly� This

behaviour can be observed� for example� in conjugent gradient methods� We have

not seen anyone publish results suggesting that this is also the case with multi�

grid� For the test problems we have tried convergence has always been to machine

precision with no evidence of a plateau� To con�rm this we have re�run the same

problems at greater precision on the computer and converged to this new value

of machine precision� Thus we are reasonably con�dent that this convergence

de�nition is useful�

Data representation at the pole�

The pole is simply one point although we hold M values there� However we keep

all M polar values of each variable and each trigonometric function there the same

to enable easier addressing in the computer code� The coe	cients A are set to

zero at the poles since there is no meaning to the � directional derivative there

and they are never used� The right�hand�side R is the value at the pole but is

stored as the value averaged over allM points at the pole� Each point thus holds

R�M � This is because when this value is used in the restriction by points away

from the pole it is this average value which is required�

We note that the value of cos� applicable in any grid�box centred on ��� �� is

actually the average value over the box with corners at �� � ����� � � ������
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This was discussed in section ����� page ��� We note that as we change grids the

value at the poles will change whilst the other values remain the same� However

the polar cosine value can always be obtained simply as ���
 on any grid�

Grid sequence�

The grid sequence generated depends on whether we are solving the global or

hemispheric problem�

In the ��direction we require all grids to have an even number of points since this

allows us to apply restriction by simply taking alternate grid points� This con�

straint could be removed but would require a more complicated restriction and

hence is probably undesirable� Secondly the minimum number of points allowed

in this direction is set to 
� as it takes three points to resolve the second order

PDE in this direction� We could allow three points but this adds a little extra

complexity to the code and experiments show that no extra bene�ts in terms of

performance accrue�

In the � direction we ensure that the number of points is always odd so that

when we coarsen by taking alternate points in the ��direction we still keep points

at both poles and on the equator� which� besides keeping the restriction simple

allows almost the same code to be used for both global and hemispheric prob�

lems� In the global case we set the minimum number of points to � rather than

the � needed to resolve the problem� This is done for practical purposes only as

experiments show we gain no extra e	ciency from using just the � points� For

the hemispheric problem the minimumnumber is set to � which is consistent with

the global problem in that it has � points between the boundary conditions on

the coarsest grid�

As an example of the grids generated we consider a �� � �� global problem

where we restrict by taking alternate points in each direction every time�
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Grid Index � �

� �� ��

� �� ��


 
� ��

� �
 �

� � �

 � �

Thus we end up with a �� � problem to solve on the coarsest grid� the grid gen�

eration being stopped by the ��direction criteria becoming violated on the next

grid down� For problems on the sphere� if we wish �� to be equal to �� then we

requireM � ��N��� Thus� in general� the criteria for stopping generating grids

will be violated �rst in the ��direction� To enable more grids to be generated we

allow restriction in just the ��direction when the � criteria becomes violated� For

example here are the grids generated for the �� � �� hemispheric problem�

Grid Index � �

� �� ��

� �� ��


 
� ��

� �
 �

� � �

 � �

We see that the generation would have stopped on grid � since this is when the

��direction criteria is violated but we now have allowed a sixth grid� The grid

generation is now stopped on grid  as the ��direction criteria is violated on the
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next grid down� The reason behind numbering the coarsest grid  is that if we

add more points then it is easier to see the structure growing�

Smoother�

We consider the problem Ax � b� We wish to smooth the rough modes of the

error so we calculate the residual�

r � b�Ax�

where x� denotes the current solution and solve the correction equation for �x�

A�x � r

and then update the solution by

x� � x� ��x

The question is thus which is the optimum iterative solver for the correction

equation � The solver must smooth the rough modes on all grids and be as

computationally inexpensive as possible� The problem on the sphere is that we

are not dealing with a square grid in cartesian space but with one with strong

anisotropies� Consider again our example grid of ����� and calculate the ratio

of a��cos� to a���

on Row � we get� ���� � 

on Row �� we get�  � 

on Row �� we get� ���� � 

From this it is obvious that towards the poles the problem is more strongly coupled

in the ��direction than in the ��direction and to a lesser extent the converse is true

as we approach the equator� For problems exhibiting these strong anisotropies

the usual point smoothers used in many multigrid algorithms have very poor
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smoothing properties� However� line smoothers do smooth very well� see for

example Barros ���� The disadvantage with line smoothers is that we now have

to solve a �D matrix problem on each line and thus they are signi�cantly more

expensive per application than point smoothers� However because the smoothing

rates for the line solver on an aniostropic problem are signi�cantly better than

those for the point solver� see Barros ��� for an example of typical smoothing

rates� many point solves are required to reduce the residual by the same amount

as one line solve� Thus for a strongly anisotropic problem to reduce the residual

by a speci�ed factor the line solver is usually computationally cheaper than the

point solver� More information about point and line smoothers can be found in

the books by Hackbusch ���� and Wesseling ����� It would seem that we need only

use a line solver in the ��direction� however analysis� see Barros ���� also shows

that this can be a poor smoother close to the equator due to the presence of the

anisotropy in the ��direction� The e	ciency of the ��direction solver decreases

as the anisotropy in the ��direction becomes stronger� The most robust solution

is to combine line smoothers in both directions� This solution is expensive per

V�cycle compared with the point smoothers but converges quickly� We need

to investigate whether an alternating line relaxation procedure� where we �rst

smooth in the ��direction and then in the ��direction� is required for the problems

we are interested in or is a ��direction line solver all that is required� There still

remain two questions to answer� Firstly which type of line relaxation should we

use � Secondly how do we treat the poles �

There are three common line relaxation schemes� Jacobi� Gauss�Seidel and Zebra�

The Zebra scheme is the extention of the Red�Black point solver scheme to line

solvers� Each line of the problem is coloured alternately red then black� We then

solve on all the red lines and update the solution before solving on the black lines�

The choice between the three line relaxation appears to be� for the problems

considered here� an open question as they all have comparable performance in
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terms of the number of V�cycles required� However the Zebra line relaxation

o�ers the bene�t of being vectorisable on a CRAY Y�MP computer and thus is

signi�cantly cheaper on this particular architecture� by a factor of between � and

� times� The Zebra scheme is also well suited to parallel computer architectures�

although we have yet to implement the scheme on a massively parallel computer�

We consider how to implement multigrid on a massively parallel computer in

section ������

The poles are treated as follows� No ��direction line solve is performed at the

poles� In the ��direction line solver� each line is solved for all the points not at

the poles using the current polar values as Dirichlet boundary conditions� Then

the polar values are updated using a point smoother� for example at the north

pole� �
�C �

X
M

Bcos���������

�y�cos�pole�

�
�x � b�A�x� ��x�

where �x on the right hand side is set to zero at the pole� and we note that we

need to sum the residuals at each point at the pole to obtain b there due to the

way we have chosen to store them� The residual calculated on the right hand side

is the value at the end of the line solves� The cosine at the pole is not zero as

noted earlier� This polar treatment makes the usual multigrid smoothing anal�

ysis di	cult� however the procedure works very well in practice� We note that

a recent paper by Douglas et al ���� has proposed a uni�ed convergence theory

for multigrid methods which avoids many of the previously required restrictions�

These restrictions included A being symmetric which� in general� is not the case

here� It may be possible to establish a result for the scheme proposed here using

this theory� However� for problems with general coe	cients� which are our goal�

these estimates are probably only obtainable numerically�
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Restriction�

We choose to perform the restriction by taking alternate points in each direction

and we have to restrict the �elds� A�B�C�Q�R and the trigonometric functions�

Since the coe	cients and the trigonometric functions are the same for every V�

cycle we need only perform the restriction on them on the �rst cycle� To conserve

certain properties of the original problem on the �nest grid and also because of

the grid staggering we need to apply the restriction di�erently to each �eld�

The trigonometric constants are simply injected and so remain exact� The excep�

tion to this is at the poles where we have to change the values� This is because�

for example� the average over the grid box of cos� is always ���
 where �� is the

grid length for the particular grid the scheme is on� Hence when we restrict we

change �� and hence we must also change the trigonometric values at the poles�

The solution Q and coe	cient C are also injected but with no special treatment

at the poles� The coe	cient A cannot be transfered by injection since it is not

held at the same point on the coarse grid as it was on the �ne grid� This is easily

seen from the folowing diagram showing the location of Q and A for both �ne

and coarse grids�

Q Q QA A

Q QA

Fine grid

Coarse grid

A on the coarse grid is calculated by linear interpolation from the coarse grid

values� The B coe	cient is treated similarly to the A one by using linear inter�

polation to obtain its value at the new grid location� This just leaves R to be

restricted� We choose to restrict not R but the current residual� which we denote
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by r� given by

r�fine� � R�fine�� LHS�fine�

where LHS is the left hand side of our equation and the �fine� denotes that it

is evaluated on the �ne grid� After performing the restriction we then obtain the

right hand side on the coarser grid by adding on the new value of the left hand

side on the coarser grid�

R�coarse� � restricted�r�fine�� � LHS�coarse�

This process is known as the full approximation scheme� often abbreviated to

FAS� We choose to perform the restriction using full�weighting not injection� Full(

weighting in �D to a point i would look like

ri�coarse� � �ri���fine� � �ri�fine� � ri���fine���


where the factor which is the divisor is simply the sum of the number of values

inside the bracket� A simple way to generate full�weighting is to successively

apply the averaging operator s de�ned by

s�ri� � �ri���� � ri�������

until a desired full�weighting is obtained� Hence we could write the one de�ned

here as

ri�coarse� � s�s�ri�fine��� or s
��ri�fine��

The advantage of full�weighting is that it preserves the property that if

X
fine

r�x � �

then X
coarse

r�x � �

The equivalent de�nition in ��D on the sphere is a little more complicated since

the area of the grid boxes is not constant� The required full�weighting of r at a

��



point i� j not at the pole is



�cos�i

�
������

�rcos��i���j�� ���rcos��i�j�� ��rcos��i���j��

���rcos��i���j �
�rcos��i�j ���rcos��i���j

��rcos��i���j�� ���rcos��i�j�� ��rcos��i���j��

�
������

This is simply a grid box area weighted version of the �D full�weighting applied

in ��D� To complete the restriction we need the equivalent de�nition at the pole�

The condition we must satisfy is� if

X
fine

r��cos��� � �

then X
coarse

r��cos��� � �

where we sum over all points including every one at each pole� This is because of

the way we chose to store the residual there� It is important to note� as pointed

out in the section on data representation� that the polar cosine value changes as

we change grids� Full�weighting at the pole� in this example the north pole� gives

ri��



�


�cos�i��

X
i���M

ri��cos�i��

where all the cosine values are those for the �ne grid� As all the polar values are

the same then we need only do this for  point and then set the others� Simple

arithmetic then shows that we have satis�ed the required condition�

The reason for requiring the restriction to satisfy this condition is that to solve

Poisson�s equation on the sphere the integral of the right hand side over the sphere

must be zero� This is known as the compatibility condition� This condition must

also be satis�ed on all coarser grids as well and hence is the main reason for using

full�weighting�

��



Prolongation�

The only �eld we need to transfer to a �ner grid is the current value of the an�

swer Q� This is done by linear interpolation since this it is cheap and also the

inverse of the full�weighting restriction operator up to an arbitrary constant� The

combination of linear interpolation and full�weighting restriction is probably the

most commonly used in multigrid schemes� It is also probably the easiest to use

in the standard multigrid smoothing analysis�

����� Results�

For the moment we choose to use a ������� V�cycle with an alternating zebra

line relaxation scheme� where the numbers in the V�cycle de�nition refer to the

number of alternating line solves on each grid not to the total number of line

solves� Later in this section we consider how the choice of numbers in the V�cycle

a�ects the results and also whether alternating line relaxation is required� The

�rst problem we consider is simply that of Poisson�s equation r�Q � F on the

sphere� This equation possesses a unique solution only up to an arbitrary con�

stant� This can easily be seen to be the case in the numerical solution since the

centred �nite form of Poisson�s equation at a point �i� j� on the grid is



a�cos��i�j���
�Qi���j � �Qi�j �Qi���j��



a�cos�i�j���

�
�Qi�j�� �Qi�j� cos�i�j���� � �Qi�j �Qi�j��� cos�i�j����

�
� Ri�j

and Q� c also satis�es this �nite�di�erence equation for any constant c� However

since we are using line solvers as our smoother we discover that the multigrid

method can only have zero as its arbitrary constant� This is because the �nite�

�



di�erence equation for the ��direction line solver is



a�cos��i�j���
�Qi���j � �Qi�j �Qi���j��



a�cos�i�j���

�
Qi�jcos�i�j���� �Qi�jcos�i�j����

�
� Ri�j

and for the ��direction line solver it is

��Qi�j

a�cos��i�j���
�



a�cos�i�j���

�
�Qi�j�� �Qi�j� cos�i�j���� � �Qi�j �Qi�j��� cos�i�j����

�
� Ri�j

and substitutubg Q � c instead of Q into either of these forms gives c � �

as the only constant which still satis�es the equation� Hence a nice bene�t of

using line�solvers in the numerical solution of this problem is the removal of the

inde�niteness of the solution�

For Poisson�s equation we have A � B �  and C � �� We set

F � sin���� � �sin���

which has a solution of Q � sin�cos�� which is very smooth� Thus we expect this

to be a good test of multigrid as the smoother will not start to be e�ective until

we reach the coarsest grids� We compare the number of V�cycles required for

convergence and the CPU time taken for this problem for a series of resolutions�

each of which has twice as many points in each direction as the previous one� We

de�ne convergence to have occured when the practical smoothing rate is worse

than ������ The results obtained are in table ���

The column entitled grids states how many grids the grid generator produced� For

the last example we limited the number to � to investigate the e�ect this would

have compared to the � grids it would have used� The residuals are calculated as

the root mean square of the error on the �nest grid as de�ned earlier� The CPU

is the total time taken for all V�cycles whilst the scaled CPU is time taken per

point per V�cycle� The code was executed on one processor of a CRAY Y�MP





Dimensions Grids Init� Res� Final Res� V�cycles CPU Scaled CPU

�
 x � � ���x�� ����x��� � ����� ��
�x���


� x �� 
 ��
�x�� ���x��� � ���� �
x���

�� x �� � ����x�� ����x���� � ��
�� ����x���

�� x �� � ���
x�� �
��x���� � ���� ����x���

��
 x ��� � ���x�� ����x���� � ����
 ����x���

��
 x ��� � ���x�� ����x���� � ����� ����x���

Table ��� Global multigrid scheme for Poisson�s equation�

���
 using �
 bit precision arithmetic� The maximum possible reduction in the

initial residual is 
 orders of magnitude since at this level of reduction we reach

the limit of �
 bit machine precision� In practice� because of the restriction� line

solvers and associated rounding errors� this is hard to obtain and for this problem

we typically get a reduction in the residual of ten orders of magnitude� We note

a slight apparent gain in accuracy as the grid size increases� however the reason

for this is not obvious and may well be associated with rounding error� Figure ���

shows the error for the ��
���� case at convergence with the only visible contour

being at ���� and then only a few points on the equator are visible� Figure ��


shows the same picture but with an additional contour at ����� We now see a

pattern of small scale noise but it is interesting to note that the wave�number 

pattern of the solution in the ��direction shows through at this level� We have

solved the same problem using �� bit precision arithmetic and then obtained a

solution which converged to over �� orders of magnitude� This con�rms that the

main reason behind termination of the iterations is true convergence to machine

precision� or as close as is possible�

One property of multigrid is the so called grid independent convergence� where

increasing the size of the problem does not change the number of cycles required

for convergence� This is shown to be true for this case with the exception of the

�



smallest problem which takes one fewer cycle� Allowing as many grids as possible

is obviously bene�cial from the example of the ��
���� problem where when we

allow one less grid� although the solution still converges to the same accuracy� it

takes � more cycles� Finally we look at the cost� The cost of multigrid methods

usually scales order n log n where n is the number of points but we see from the

scaled CPU that the cost scales better than order n� This is because the CRAY

is a vector machine and the bigger problems are more e	cient� resulting in in�

creased performance and so comparably cheaper execution� We shall consider

vectorisation aspects and the scope for parallelism in more detail in the next sec�

tion� Without the vector option we see a scaling in line with that expected�

We now consider exactly the same problem but for the hemispheric case where

Figure ����

the solution is given at the equator� All the parameters were the same as for the

�



Figure ��
�






global problem and the results are given in table ����

We note that once again we verify the grid independence assertion for this exam�

Dimensions Grids Init� Res� Final Res� V�cycles CPU Scaled CPU

�
 x � � ��x�� ����x���
 � ��� ����x���


� x �� 
 ���x�� ����x���� � ����� ��
x���

�� x �� � ����x�� ��x���� � ���� ���x���

�� x �� � ����x�� ��
x���� � ���� ����x���

��
 x ��� � ����x�� ��
x���� � ����� ���x���

Table ���� Hemispheric scheme for Poisson�s equation�

ple� The scaled CPU time is greater than for the global problem at each resolution

but still decreases as the problem size increases� The reason behind this increase

is that we now have shorter vector lengths in the ��direction� in fact half those

of the global problem� and the longer the vector the more e	cient it is� The

unexpected feature is that unlike the global problem the hemispheric problem

converges progressively worse as the grid size increases� If we consider the error

for the ��
� ��� problem at convergence� plotted with a contour of ���� in �g�

ure ���� we see immediately that the problem is at the equator� Comparing this

�gure with the equivalent global error� �gure ���� we note the expected similarity

with the exception of this area� The problem therefore lies with the boundary

condition and if we contour with an interval of ��
 then we observe that the

error is not uniform in sign but has a wave�number  signature� In an attempt

to remove this we recall that for this problem we used as the boundary condition

the analytic solution� However� we should use the actual numerical solution to

the problem on the boundary to be consistent� otherwise we have an introduced

a second order inaccuracy� given that the numerical solution is second order ac�

curate� Doing this� however� does not remove the error� The error appears to

be in transferring the problem between the grids and since the solution on any

�



grid is determined by the boundary condition� the boundary condition must be

transferred so as to be consistent with the transferred problem on that grid� The

worsening results for the hemispheric problem suggest that more grid transfers

equals a poorer solution and that we have not achieved this consistency� For this

relatively easy problem it is probably possible to construct a restriction operator

which will alleviate this fault� However for the more general problems that we

wish to solve� for example equation ������ this is not possible and the presence

of this error is of some concern�

Figure ����

We now consider the more complicated problem where we have variable coe	�

cients

A �
� � sin�

sin��

�



B �


sin��

C � 

RHS � �sin��cos��sin� � �� �sin� � �sin��

� sin��
 � �cos� � �cot��� 
cos��cot���

which has as solution

Q � sin��cos��sin�

We note that at the equator the coe	cents A and B are in�nite as is the right

hand side but a smooth analytic solution exists� To �nd a solution numerically

is not possible at the equator since the machine cannot divide in�nity by in�nity

and obtain the correct answer� However we can solve the problem by giving the

solution on the equator as a boundary condition� We apply hemispheric multigrid

with the analytic solution at the equator to this problem obtaining the results in

table ����

These results are very similar to those gained with Poisson�s equation and ex�

Dimensions Grids Init� Res� Final Res� V�cycles

�
 x � � ����x�� ���
x���� �


� x �� 
 ���x�� ��x���� �

�� x �� � �

�x�� ����x���� �

�� x �� � ��x�
 ���x���� �

��
 x ��� � ����x�
 ��x��� 

Table ���� Hemispheric scheme for variable coe	cient problem�

hibit the same failing in that there is a large error at the equator compared to

elsewhere in the domain� However� the hemispheric code does produce a solution

whereas the global problem is inapplicable� The problem could be re�scaled to

allow a global solution by multiplying by the reciprocal of the largest coe	cient

�



throughout� provided that this is not zero except possibly at the equator� How�

ever� for general coe	cients� there is the problem that they are inside a partial

derivative and care must be exercised in this re�scaling to avoid leaving divisions

by zero in the code� In practice the coe	cients need to be di�erentiated out to

leave a system which includes terms involving both �rst and second derivatives of

the solution and �rst derivatives of the coe	cients� To apply centred di�erences

to this system requires averaging of derivatives and coe	cients in parts of the

discretisation which can lead to a loss of accuracy�

We now return to the question of whether the ������� V�cycle is optimum and

also whether or not we require alternating line relaxation� To investigate these

questions we consider again Poisson�s equation on the sphere using the hemi�

spheric version of multigrid at ��
� ��� resolution� Due to changes in the maths

library routines used to calculate trigonometric functions on the Cray Y�MP the

result for the ������� V�cycle with alternating line relaxation is not identical to

the one obtained earlier� All comparison results quoted here and elsewhere were

performed consistently� in the sense that any results compared used the same

maths library routines� For the results in table ��
 all the schemes converged to

the same degree of accuracy�

Alternating �A� V�Cycle Number of CPU time

or ��line ��� Cycles in seconds

A ������� � �����

� ������� � ���
�

� ���� � �����

� ����� � ���

� ������ � �����

Table ��
� Comparison of Multigrid schemes�

�



From table ��
 it is easy to see that for this problem there is no need for the

alternating line scheme as the ��direction line solver on its own converges to

the same accuracy in the same number of cycles� Using the ��direction only

solver reduces the cost by over ��" in this example� To test if this held true for

solving the correction equation ������ from the previous chapter idealised data

runs were performed with the alternating line and ��direction only schemes using

the ������� V�cycle� The following times were obtained for the �rst order in time

semi�Lagrangian solution of the McDonald�Bates idealised problem� described in

the next chapter� with a ��� second timestep and run for � days� The times are

the total times for the run and so include all code�

Alternating lines � ��� seconds

��direction only � �
 seconds

We again see a signi�cant saving� 

" in the execution time by using the ��

direction only solver� The di�erence in the height solutions at the end of the

integration� caused by the slightly di�erent results obtained by the two di�erent

multigrid procedures� is of the order ���� metres which is negligible�

We now look again at table ��
 to see the e�ect of changing the V�cycle properties

on the ��direction only scheme� The ���� V�cycle and the ������� V�cycle

take almost identical times with the ���� cycle taking approximately twice the

number of cycles to converge� From this we can deduce that it is not the grid

transfers that matter in this problem but the number of actual solves the scheme

performs� since the total number of solves performed by each version was almost

the same� Since the problem is known to be very smooth we try the ����� cycle

to seeif there is any improvement from solving more accurately on the coarsest

grid� It is not suprising therefore that this scheme is faster than the ����

scheme but only by �"� Finally we try the ������ scheme since in many practical

implementations of multigrid the optimal computational scheme has been found

to be one where extra solves were included on the ascending branch while keeping

�



to just one on the descending branch� This scheme produces a further saving and

for this problem the ������ V�cycle ��direction only scheme has been found to be

optimal on one processor of a CRAY Y�MP� Using the ������ V�cycle ��direction

only scheme for the idealised McDonald�Bates problem gives a CPU time of ���

seconds which is a modest saving compared to that gained by not using the

alternating line scheme� Again no signi�cant impact on the solution was noticed

with this version of multigrid and we can use any of the multigrid schemes to

obtain the solution if we are not concerned about the amount of CPU time used�

����� Discussion of future developments and parallelisa�

tion aspects�

We intend to extend the code to ��dimensions but before proceeding too far

in this direction it is necessary to consider performance aspects closely� For the

moment we shall be running the code on a CRAY Y�MP ���
 computer which has

� processors and �
 megawords of memory� The ��D code used only  processor

and only just over � megawords of memory for the largest problem we considered

in the previous section� We shall ignore memory considerations as these are

not of primary concern� The question is how to make most use of the computer

architecture to obtain the best execution time� The CRAY uses a shared memory

architecture and when using microtasking it behaves as an SM�SIMD machine�

Shared Memory Single Instruction Multiple Data� hence SM�SIMD� is based on

the principle that all memory is central and shared� with the same piece of work

being allocated to each processor but working on a di�erent piece of data� The

best example is a loop construct� Suppose we have a loop over ��� elements and

we simply wish to perform

A � B � C

��



The machine allocates the �rst hundred elements to processor one� the next hun�

dred to processor �� and so on� They then each perform the calculation in parallel

on their own area of data and then return the answer to main memory� In simple

terms we can gain parallel performance if the calculations we want to perform do

not feed back on each other� We note that if a loop will run in vector mode then

it will also execute in parallel� To implement multigrid on a SM�SIMD machine

and obtain good performance is relatively easy if we use a red�black or zebra

type scheme� These have the desired advantage of not interacting� Performance

however becomes less e	cient as we coarsen the problem as there is less work

to spread around� For the ��D cases considered in the last section there was

no noticeable bene�t from using more than one processor� In fact for the small

problems the cost actually increased since to perform parallel execution incurs

some cost penalties� In ��D this will be much less of problem mainly due to the

increased problem size�

Another form of parallel architecture is known as DM�MIMD� Distributed Mem�

ory Multiple Instruction Multiple Data� Here we have a connected network of

processors with no central memory which each have the entire instruction set but

only a small amount of the data� The main problem with making multigrid run

e	ciently on this architecture is that we come across the granularity problem� To

make any code e	cient the amount of computation done by each processor must

be signi�cantly more than the time spent communicating with its neighbours�

Communication is considerably more expensive than computation and the num�

ber of times information is required about the new values of points surrounding

any processor thus needs to be minimised� The granularity is the number of

nodes of the problem held by each processor to enable this computation versus

communication battle to be won� This suggests that point smoothers are the

desired option and that line smoothers� where we need to solve a large matrix

equation are likely to be impractical if communication overheads are very large�

�



Regardless of the smoother we use as we coarsen the grids we leave fewer and

fewer points at each node and performance deteriorates� One way to get around

this is to limit the minimum number of points each processor can have� how�

ever this restricts the number of grids we can generate and we have already seen

how this can signi�cantly increase the number of iterations required� To make

things even worse as we add more processors to increase our computing power

the performance of multigrid can get worse� One solution is to use a system

called agglomeration where we keep the granularity high by coarsening and keep�

ing the numbers of points on some processors large at the expense of leaving some

with no points at all� Thus we are e�ectively reducing the number of processors

working� This has the disadvantage� in practice� of increasing the length of the

communication links but can gain some extra e	ciency and does not increase the

number of iterations required� Smith and Fiddes ��� noted that implementing

multigrid without aglomeration was signi�cantly more complicated than other it�

erative solvers� for example conjugate gradient� on a DM�MIMD machine� Other

authors� for example Linden et al� �
�� and Robinson ����� have successfully im�

plemented multigrid on parallel architectures with varying degrees of success and

much work will no doubt continue in this area� However� of more concern is that

no one has considered� as far as we know� the problem of including line solvers

rather than simple point solvers� Naik and Van Rosendale ���� have suggested

that a technique called semi�coarsening can be used in conjunction with point

solvers to avoid the need for line solvers� Semi�coarsening advocates coarsening

only in directions in which the smoother performs well� They have successfully

implemented this approach for problems with strong anisotropy� However Barros

��� mentions this idea but concludes that in cases where the anisotropy changes di�

rection inside the domain� as it does for our case� semi�coarsening may be di	cult

and expensive to implement� This is because of the changing anisotropy causing

di�erent strategies to be required at di�erent points in the mesh� In the worst

��



case semi�coarsening degenerates to the so�called algebraic multigrid method� In

this method we generate all possible grids by restricting all current ones in one

direction at a time� We then solve on each� This requires a more complicated

set of restriction and prolongation operators as we need ways to combine answers

from various grids� A simple � � � example of all the grids generated� assuming

a minimum number of � points in each direction� exhibits all the salient features�

� � �

�R��
� � 
 
� �

�R���� �R
�� � 
 � 
 �� �

�R �R�� ��

 � � 
� �

���R
� � �

We note for example that to obtain the problem on the 
 � 
 grid we need to

combine the information from the � grids above it� This combination is not

necessarily a simple addition but depends again on anisotropy and the problem�

However� it may prove to be worth the e�ort on a DM�MIMD machine where line

solvers will probably be impractical�

��



Chapter �

Computational Results

In this chapter we present computational results for several idealised and real

data cases using the predictor�corrector method described in the last chapter�

We compare the performance of the various advection schemes on one of the

idealised problems� and also on real data� We also compare results with those

obtained from a C�grid primitive equation model� the semi�Lagrangian model of

Bates et al� ���� henceforth PE� Before we do this we need to explain how initial

data is obtained for both models� as initialising the SSG model� particularly with

real data� requires some care�

��� Data Initialisation

A� SSG Model�

The shallow�water SSG model requires consistent initial 	elds of h� u� and u�

Given an initial height 	eld� providing it is inertially stable and q is not zero�

see section 
�
�
 for the de	nition of q� then we could obtain all the other 	elds

directly from the equations after having calculated the initial values of �h��t

�
�



and hence �u���t by solving the elliptic equation for �h��t� However the initial

height 	eld may not satisfy these constraints� as typically happens when using ��

hpa height 	elds from operational forecast models� Also many idealised problems

used to test the shallow�water equations su�er from the same failing� for example

the problem of McDonald and Bates described in section ��
�� is inertially un�

stable near the equator� and the Rossby�Haurwitz wave problem� section ��
�
�

has areas of negative q� We cannot use the direct method to 	nd the other 	elds

when we do not have an initial height 	eld which satis	es the constraints� and so

we have developed the following initialisation procedure for the SSG model�

Initialisation stage ��

We take the initial height 	eld and iterate the correction step from the pre�

dictor�corrector method but updating only the balanced velocity 	eld u�� We

perform k iterations of this procedure which gradually 	ts u� to the height 	eld

where possible� In areas where the height 	eld violates the conditions required

to 	nd the other 	elds directly� the inertial stability constraint applied to the u�

	eld prevents the balanced wind 	eld from satisfying the balance equations for

this illegal height 	eld� The procedure can be sumarised as

iterate k times

Step � Corrector step� Updating u� only�

Step � Inertial stability enforced�

Initialisation stage ��

The second stage of the procedure is to take the 	elds at the end of the 	rst stage

and apply the correction step procedure again but now allowing h to be updated

�




as well� In areas where a valid solution could have been found by the direct

method� the 	rst stage of the initialisation should have also found that solution

provided that k was large enough� In areas where a valid solution could not have

been found a residual still exists and the second stage of the initialisation removes

this residual without signi	cantly a�ecting the solution in the other areas� The

procedure is thus

iterate l times

Step � Corrector step� Updating u� and h only�

Step � Inertial stability enforced�

We now need de	ne the initial values of u which we set to be equal to the balanced

velocity obtained at the end of the second stage of the initialisation� In principle

we should calculate �h��t and �u���t and 	nd u exactly from the direct method�

but in practice setting the initial values equal to the balanced velocity has been

found to be su�cient�

The only serious problem with this method was found when trying to initialise

the model with a uniform zonal �ow� In this case the procedure successfully

initialised the �ow in mid to high latitudes but was very poor at initialising in

low latitudes� This is because the rate of convergence of the initialisation proce�

dure when h updates are not allowed is proportional to f � and hence the number

of iterations needed to obtain the solution is proportional to f�� and near the

equator tends to in	nity� This problem is easily overcome by setting the uniform

zonal �ow directly since the height 	eld satis	es the conditions required to use

the direct method� In problems� such as the Rossby�Haurwitz problem� where a

perturbation is applied to a uniform zonal �ow we use the initialisation procedure

after 	rst setting the balanced velocities to satisfy the uniform zonal �ow part of

�
�



the initial data�

For all the problems we consider in this section typical numbers used in the initial�

isation procedure are� �� iterations of the 	rst stage of the initialisation procedure

and �� iterations of the second stage� The most important thing to achieve is

to 	t the balanced wind 	eld to the height wherever possible and experiments

show this to be well achieved after �� iterations� Only a few iterations of the

second stage are usually required� typically  to ��� but we use a lot more than

is required simply to be sure that the initial residuals are removed to machine

precision�

B� PE Model�

Primitive equation models are susceptible to gravity waves which are a solution

not supported by the SSG model� For many problems gravity waves can be gen�

erated by imbalances in the initial data� and appear as noise in the solution�

which can lead to di�culty in interpreting the underlying solution to the prob�

lem� Two approaches are frequently used to overcome this problem� The 	rst is

to add a damping operator to the equations to suppress the gravity wave noise�

This has the disadvantage of also introducing some unwanted smoothing into

the underlying solution as well� The second approach is to use an initialisation

scheme to remove the initial imbalances� This second approach is generally suc�

cessful for some time period into the forecast� after which gravity wave noise can

appear because of imbalances generated by forcing functions� For the unforced

shallow�water equations there are very few imbalances generated by the numerical

procedure� and a successful application of an initialisation procedure is usually

su�cient to suppress the gravity waves for the whole forecast period in which we

are interested� typically upto �� days ahead� We use the digital 	lter initialisation

�
�



procedure of Lynch and Huang ���� to initialise the PE model� For the idealised

data cases� where the initial wind 	elds are basically geostrophic� the initialisation

procedure has little impact and both PE and SSG models run from very similar

initial data� For the real �� hpa data the di�erent initialisation procedures can

lead to some signi	cant di�erences between the two starting states� This will be

an issue we shall address when we consider the real data cases in section ����

��� Idealised Data

����� McDonald�Bates ���� Problem

The problem we consider was posed in McDonald and Bates ���� and is de	ned

by setting the initial height 	eld h by

h��� �� � h�
afvsin��sin�

g

where h and v are 	xed constants taken as h � �����g metres and v � 
�ms���

with f the Coriolis parameter and g the acceleration due to gravity� This data

represents a high�low system in each hemisphere which forces a �ow of v metres

per second across the pole� The balanced wind 	eld u� and the full wind 	eld u

were then set via the procedure described in section ��� with �� iterations used in

both stages of the initialisation procedure� If we set the initial velocities directly

using the balance equations we 	nd that the data is inertially unstable across the

equator� This can be veri	ed by substituting the analytic form for h into the

inertial stability conditions� The initialisation procedure removes this instability

whilst having negligible impact on the initial data elsewhere on the sphere� Fig�

ure ��� shows the initial height 	eld obtained in the northern hemisphere� Since

the data is identical in the southern hemisphere� except that the high�low pair

are rotated through ��� degrees of longitude� the solutions are identical in each

hemisphere so we show charts only for the northern one� We now integrate the ini�

�
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tial data using the predictor�corrector method of the previous chapter with three

di�erent prediction schemes� The 	rst is the semi�Lagrangian scheme with 	rst

order accurate trajectories� we will consider the e�ect of second order accurate

trajectories in the section on real data problems� The second is the Heun scheme

with Fourier damping and the third is the Heun local timestepping scheme� All

three schemes were run at a spatial resolution of ��
 � �
� points with a ����

second timestep and output was obtained after  days of integration� Figure ���

shows the height 	eld after  days for the semi�Lagrangian run� Comparing this

with the initial height 	eld� 	gure ���� we note that the high has gained height

whilst the low is less intense� This is unexpected since we assumed that the high

and low would both become weaker by a similar amount� since this is what was

found by McDonald and Bates ���� running their primitive equation model� We

will verify their results later in this section using the same resolution and timestep

used here� One property of the SSG equations on the sphere seems to be their

ability to maintain high pressure systems at their initial intensity for a long time�

we shall see this again when we look at the real data problems� The same results

are obtained in the height 	elds from the other prediction schemes� 	gures �� and

���� with a summary of the values in table ���� We will consider this behaviour

more fully later� when we compare results with those for the primitive equations�

For the moment we consider only the di�erences between the di�erent integration

schemes used here�

From the height 	elds after  days it is hard to see any di�erences between the

three schemes� so we look at a 	eld which is more sensitive to any small scale

noise� We consider the SSG absolute vorticity� q� see section 
�
�
 for de	nition�

which is a quantity obtained from di�erentiating the 	elds and shows greater

sensitivity to any noise� q is also an important 	eld to look at since the existence

of solutions depends on it satisfying the ellipticity condition� equation �
�

�� and

�
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Scheme Max Height Min Height

�m� �m�

Initial Data ������� 
�����

Semi�Lagrangian after  days ����
� ��
��


Heun Fourier Damped after  days ������ ��
���

Heun Local Timestepping after  days ����
� ��
��


Table ����

any scheme prone to noise is likely to come close to violating this condition more

often than one that is not� The initial q 	eld is shown in 	gure ��
� and we see that

it is very smooth with approximately circular contours with a maximum value of

����� � ������ Figure ��� shows the same 	eld after  days integration using the

semi�Lagrangian scheme� We see that the contours have remained very smooth

and retained the same shape� with the exception that there is some ridging in the

contours under where the high in the height 	eld can be found� The maximum

value has also increased slightly to ������������ Figure ��� shows the same 	eld

for the Fourier damped Heun scheme� and at 	rst sight there appears to be little

di�erence between it and the semi�Lagrangian solution� On careful inspection it

can be seen that the �� unit contour around the maximum value is not as smooth

and circular as was the case with the semi�Lagrangian solution� showing that

there is some degradation of the solution very close to the pole� Figure ��� shows

q for the local timestepping Heun scheme� Here we can see signi	cant noise ex�

tending as far as  degrees North� and becoming particularly bad near the pole

where there are values in excess of ��� � ������ This noise was not particularly

sensitive to the number of local timesteps used and increasing the number did not

remove the problem� We do not consider the local timestepping option further

because of this noise problem� but to help choose between the other two schemes

we re�run the same problem using a timestep of ���� seconds� Again the height

���



	elds� 	gure ��� for the semi�Lagrangian scheme and 	gure ���� for the Fourier

damped Heun� look very similar� Comparing them with those obtained for the

���� second timestep run we notice a further increase in the height at the centre

of the high to ��� metres� the low is also more intense� Looking at the q 	elds�

	gures ���� and ���
� we notice that away from the pole they again agree very

well� but whilst the semi�Lagrangian solution still has a smooth circular �� unit

contour the Fourier damped Heun scheme has started to fragment this feature�

To further compare the various schemes we investigate the accuracy of the schemes

for real data� Here we use the real data simply to look at accuracy and leave the

discussion of the results until section ���� 
 day integrations from the initial data

of �st February ���� were performed� running with a ���� second timestep and

we take as the true solution a semi�Lagrangian run with a ��� second timestep

and second order accurate trajectories� We evaluate the mean and max height

di�erences between the three schemes we have looked at so far� plus the semi�

Lagrangian scheme with second order accurate trajectories� and the calculated

truth at the end of the 
 day integration� The results are in table ��
�

Scheme Mean Height Max Height

Error �m� Error �m�

S�L �st 
���� ���
�

S�L 
nd ���
 ������

Heun FD 
���� ��



Heun LT 
���� ������

Table ��
� Comparison of advection scheme errors�

We see that the semi�Lagrangian schemes have a considerably lower error than

the Eulerian ones� although because the numbers are relatively small it is hard
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to see the di�erences when looking at charts of h� except in very small areas�

The di�erence between the two semi�Lagrangian schemes is less signi	cant� but

the second�order accurate trajectories do yield a bene	t for this timestep which

agrees with the 	ndings of McDonald and Bates ����� We choose to use the

semi�Lagrangian method from now on since we have seen that it is better able to

represent features in the q 	eld near the poles and has smaller errors� This has an

added advantage in that when we compare with the primitive equation solutions

we shall be using the same integration method in both models�

We now consider how the McDonald�Bates solutions from the SSG model com�

pare with those from a primitive equation model� The PE model we use is the

C�grid shallow�water semi�Lagrangian model of Bates et al� ��� upon which the

semi�Lagrangian SSG model was based� The only major di�erence in the imple�

mentation of the semi�Lagrangian scheme in the PE model is that we use the

semi�Lagrangian form of the mass equation� and not the Eulerian form used in

the SSG model� This means that the PE model does not explicitly conserve

mass� although deviations from the initial global mean value are very small� Fig�

ure ���� shows the height 	eld after  days from the PE model with an ���� second

timestep� The initial 	eld is almost exactly the same as for the SSG model� 	g�

ure ���� and so we compare the solution with the initial data from the SSG model�

We note that both high and low have lost intensity almost equally� approximately

��� metres� These solutions verify well with those found in Bates et al� ���� Com�

paring the PE solution with the corresponding SSG semi�Lagrangian solution�

	gure ���� we see that unlike the PE model the high in the SSG model has grown

slightly whilst the low has lost almost exactly the same intensity� ��� metres� The

positions of the centres of the high and low agree quite well with the high very

close to the same location� whilst the low in the SSG model is approximately �

degrees east of the PE centre� Since the solution is rotating clockwise this implies

���



that the low in the SSG model is rotating at approximately � degree per day

slower than the PE low� The low in the SSG model is more circular than the

PE solution which shows a south�west to north�east slant� Apart from this� the

shape of the features is broadly similar but with the features covering a slightly

di�erent area� This is because the SSG model has to maintain mass conservation�

and since it has not lost the central mass in the height 	eld to balance the gain

in the low� it must change the areas of the features to ensure conservation� To

see why there are di�erences in the high in the two models we would like to look

again at the SSG vorticity� q�f � q�f is de	ned in terms of the balanced velocities

which are not available from the PE model� Instead we shall look at the PE

absolute vorticity� which we shall denote r� which in cartesian co�ordinates is

r � f �
�v

�x
�

�u

�y

which is in terms of the full velocities and is available from both models� Fig�

ure ���� shows r for the PE model after  days and 	gure ��� shows the same

	eld for the SSG model� It is immediately apparent that there is large ridging in

the contours in the SSG model� under and ahead of the high centre� which is not

present in the PE model� Looking at the initial distribution of r� 	gure ����� we

see that this ridging was not present in the initial data� If we look at q from the

SSG model� 	gure ���� ridging can also be seen in a similar area to that in the r

	eld but it is not as pronounced� This ridging represents the presence of low ab�

solute vorticity �uid near the high centre and is consistent with the maintenance

of the high centre at its original value� We conclude that in the SSG model there

is either an advection of low absolute vorticity from low latitudes to maintain the

feature� or there is some generation of low absolute vorticity ahead of the high

centre� Since the absolute vorticity� either balanced or full� is not conserved in

the SSG model� see section 
�
�
� either or both of these mechanisms may be re�

sponsible� Also there could be some generation due to the constraint enforcement

and also due to the correction step� As neither q nor r is a predictive variable in

��



the SSG model it is di�cult to investigate this matter further� We could form

the advection equation for q and use this as a diagnostic in trying to answer this

question� but this has yet to be done� Since we do not have an analytic solution

for the problem� one further question to be answered is whether or not the high

in the SSG model is a true solution of the equations or not� The gain in height

in the SSG model does increase as the timestep increases� as noted earlier� but as

the timestep is decreased the solution converges to one where the height 	eld still

does not reduce from its original value� This� coupled with the same results being

obtained from di�erent advection schemes� suggests that the approximations used

in the corrector step can lead to a slight growth in high values of height� However

the underlying solution is that the height 	eld does not weaken as it does in the

PE model� This suggests that the SSG model is more insistent on retaining highs

than the PE model�

����� The Rossby�Haurwitz Problem

Known solutions to the shallow�water primitive equations on the sphere are un�

common� with the most well�known being the Rossby�Haurwitz wave� see Haur�

witz ����� This wave will propagate from east to west at a known angular velocity

without changing shape� if the equations are non�divergent� However� for the

shallow�water equations with a free surface this is not the case� The propagation

speed is reduced� the shape is no longer unchanged� and the wave is unstable for

wave�numbers greater than � Hoskins ����� This problem is still a standard test

problem for the primitive shallow�water equations on the sphere and has been

studied by many authors� for example� Phillips ���� Cullen ����� and Doron et

al� �
�� The problem is determined by four parameters� a scale height� which is

simply a base height for the free surface� the wave number which we are interested

in� a parameter � which sets an underlying zonal wind 	eld from west to east�

and a parameter K which controls the amplitude of the wave� Complete details
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can be found in Phillips ���� The standard problem used for wave�number �

is found in Phillips and we would like to use this a test problem for the SSG

model� However� this standard problem has areas of negative absolute vorticity

in the initial data� In fact no true Rossby�Haurwitz wave can be used as the

initial conditions for the SSG model because the data requires that a non�zero

height gradient exists along the equator� see 	gure ���� for the Rossby�Haurwitz

wave initial height data for the parameters� wave number �� � � ����� � �����

K � ����� � ���� and a scale height� referred to as �� in Phillips� of �� � g�

For small values of � and K the initialisation procedure of the SSG model can

be used without a�ecting the initial data extensively� the initialised height 	eld

for the parameters just given is shown in 	gure ����� We run the SSG model

from this initialised 	eld and the PE model from the analytic initial data using a

timestep of ���� seconds at ��
��
� resolution� Running the PE model from the

initialised 	eld used as the starting 	eld for the SSG model produces a solution al�

most identical to that obtained by running the PE model from the analytic initial

data� Figure ���� shows the height 	eld from the SSG model after  days� The

	eld is largely unaltered with the axes of the troughs and ridges showing a slight

westwards tilt which is typical of solutions gained with the primitive equations� A

similar result is gained for the primitive equations run from the true initial data�

	gure ��
� shows the height 	eld after  days� The main di�erence between the

two solutions is the distance the wave has propagated to the west� In the SSG

model the wave has propagated approximately �� degrees whilst in the PE model

it has propagated about �� degrees� The theoretical distance the wave should

have propagated in a non�divergent primitive equation model is ��� degrees for

the parameters chosen here� To understand this propagation behaviour we per�

form a linearised analysis of the non�divergent SSG equations for travelling waves

following Shutts ����� where in section ��� in his paper he performs the analysis

for the planetary semi�geostrophic equations� The linearised non�divergent SSG

��



equations are�
�u�
�t
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��

acos�
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�����
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cos�
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����

where � � gh� Equations ����� and ���
� can be used to give expressions for

u and v in terms of � using equations ����� and ���� to substitute for u� and

v�� Substituting these expressions for u and v into equation ����� gives a partial

di�erential equation for �� Introducing the new variable

	 � sin�

and assuming that � is a travelling wave of form

� � Gm�	�e
i�m���t�

then it can be shown that the partial di�erential equation for � can be written

��� 	��

	�
��Gm

�	�
�




	�
�Gm

�	
�

�
m
m
	�

�
m�

	��� � 	��

�
Gm � � �����

where


m � �

�

�

This is the same equation as derived by Shutts� except for the factor of 	� in

the denominator and a di�erent 
m� The 
m we have derived here is identical

to that for the primitive equations� and hence for linearised non�divegent �ow

waves that can be completely represented by both SSG and PE models should

propagate with the same velocity� We note that the planetary semi�geostrophic

�




equations have propagation speeds which are in excess of those for the SSG and

primitive equations� as shown by Shutts� The equal propagation speeds for the

SSG and PE equation sets on an f�plane can be seen in the integrations of

Whitaker ����� However� as noted earlier� the Rossby�Haurwitz wave cannot be

represented by the SSG equations� In chapter 
 we showed that any solution

of the SSG equations at the equator must be of the form �
�
�� and since � is

assumed to be a solution it must satisfy

� � d � c�� � ��	�p��� ��

for some function p � C� and �  �� We now use the following expression for �

� � 	�	�Gm�	�e
i�m���t�

since this then satis	es the condition at the equator� Substituting this form for

�� and taking � � �� gives

	�� � 	��
��Gm

�	�
� ��� �	��

�Gm

�	
�

�
	m
m � �	 �

m�	

��� 	��

�
Gm � � �����

which can be compared with equation ����� which was obtained with the origi�

nal substitution� This is a generalised eigenvalue problem for 
m and solutions

were obtained by solving the discrete version obtained by applying centred 	nite�

di�erences to the derivative terms in equation ������ For wave�number m � ��

using �
� points to discretise the interval� all the eigenvalues are positive with

the gravest mode corresponding to

� � �
�

�
�

which compares with the primitive equation gravest mode

� � �




�

We thus expect that the propagation speed of the wave in the SSG model should

be two�thirds of that of the wave in the primitive equation model� when there is

��



no basic state zonal �ow� For the parameters chosen for the numerical experiment

the wave in the SSG model would have propagated �
 degrees in a non�divergent

atmosphere� and this is in very good agreement with the �� degrees that it prop�

agated in the numerical experiment�

At this point we make some observations about the Rossby�Haurwitz wave as a

simple representation of atmospheric motion� The atmosphere does not support

the large amplitude oscillations at the equator required by the Rossby�Haurwitz

wave and the propagation speed of the wave is much greater than that observed

in the real atmosphere� The wave that can be represented by the SSG model is

more typical of that seen in the real atmosphere� and the reduced propogation

speed of the wave compared with the Rossby�Haurwitz wave is also much closer to

the observed values� The exact agreement between primitive equation and SSG

propagation speeds for waves un�constrained by the SSG solution at the equator

is another desirable property of this equation set�

��� Real ���hpa Height Data

We now wish to consider the ability of the SSG model to handle real initial data to

see if our model is capable of producing realistic large scale evolution on the whole

sphere� We take as our initial 	eld the �� hpa height 	eld from an operational

forecast model� Once again we do not have an analytic solution for this problem�

however we wish to see if the evolution of the features found in the initial data

is physically realistic� Since there is no external forcing in this problem� it is

essentially more useful as a test of the numerical scheme than as a validation of

the equations� However� we expect that the motions with the longest time and

space scales should persist since they are better resolved� whilst the shorter scale

motions should be lost� As a guide to the �correct� solution to the problem we
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perform the same integration for the primitive equations� We take as our initial

data the ��hpa height 	eld from the �st February �����again at a resolution of

��
��
�� The height 	eld obtained after the SSG model initialisation procedure

is shown in 	gure ��
�� This data contains a large high over northern Europe

which has forced the usual zonal �ow in this area to �ow up towards the pole�

This feature is known in meteorology as a blocking high and can persist for 
 to

� weeks in the real atmosphere� We expect that the shallow�water model should

maintain this feature whilst it will probably lose the smaller scale lows which are

visible in the southern hemisphere� Figures ��

 to ��
 show the height 	eld

after �� �� � and �� days respectively of an integration of the semi�Lagrangian

SSG model starting from this initial data and using an ���� second timestep�

Looking at the 	rst few days of the integration� it is noticeable how the smaller

time�scale features are gradually disappearing whilst the main long time�scale

feature� the blocking high over northern Europe� is largely unaltered� By day 

this feature is the only signi	cant one left and it persists throughout the ten days

of the integration� This behaviour agrees with what we expected and to further

verify this we run the PE model for the same case� We start the PE model from

the SSG initial data after applying the PE initialisation to suppress any gravity

waves� The application of this extra initialisation produces some changes in the

initial data� Figure ��
� shows the height 	eld after � days of the integration and

	gure ��
� after �� days� The integrations of the two models after � days show

very good agreement� better than that obtained for the idealised test cases� This

suggests that the Lagrangian Rossby number� de	ned as

���Du
Dt

���
jfuj

is small� much less than �� for the �ow� and hence that the geostrophic momen�

tum approximation used to derive the SSG equations from the PE equations

holds� see Hoskins ����� As noted in section ��
�
� both models have the same

��



phase speed for linearised non�divergent waves that are solutions of both equation

sets� This suggests that the waves common in ��hpa �ows are not of Rossby�

Haurwitz type� and further enforces the view that the Rossby�Haurwitz wave is a

poor representation of reality� The major areas of di�erence are in low latitudes

where both models have formed high centres but in di�ering locations� This is

not too surprising since the di�erences in the models are more pronounced in

low latitudes where the PE model can support a wider variety of solutions than

the SSG model� Comparing the features after �� days� it is noticeable that the

blocking high has been almost completely lost in the PE model whilst it is still

prominent in the SSG model� Since there is no way of verifying the truth� we

merely conclude that� as in the McDonald�Bates idealised data case� the SSG

model maintains highs for longer than does the PE model� Other real data cases

have been run but they add little or no extra information to that already given

and so we have not included them here�
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Chapter �

Conclusions and Discussion

We begin by drawing conclusions from the work in this thesis before embarking on

a brief discussion of the extension of the work to three�dimensions on the sphere

and making a few comments on the inclusion of friction in the equations�

��� Conclusions

� We have been unable to prove the existence of a unique solution to the SSG

equations on the sphere given certain constraints� However we have shown

how this might be proven given that certain key propositions� ��� and ����

can be proven�

� A predictor�corrector method has been developed which is robust and ap�

pears� in numerical experiments at �xed spatial resolution� to converge to

the analytic solution� A necessary part of the procedure has been the con�

struction of a method which restores any solution which leaves the solution

set of the equations back into it� This part of the numerical procedure is

one area where more work may be required to �nd the optimum scheme�

	
�



� The semi�Lagrangian advection scheme is better at preserving shape� does

not su�er from small�scale noise� and has smaller errors than the Eulerian

Heun advection schemes�

� Multigrid methods can be used to solve the elliptic equations which arise in

the correction step in the numerical method� There is a problem with the

transfer of boundary conditions between the various grids leading to slow

convergence of the solution near the boundary� and thus a poor solution

is obtained there compared with elsewhere in the domain� This does not

appear to cause any problems in the numerical simulations so far attempted�

but is an area where more work and understanding is required�

� Solutions from the Spherical Semi�Geostrophic equations compare well with

those from the usual Primitive shallow�water equations for the test problems

we have looked at� These test problems are primarily concerned with large

scale motions and it remains to be seen how well the solutions compare

for small scale motions on the sphere� The main di�erence in the solutions

we have obtained lies in the SSG equations maintaining the intensity of

high height values for longer� The results obtained from the SSG Rossby�

Haurwitz simulations are more reminiscent of travelling waves in the real

atmosphere� since they do not possess the large height gradients along the

equator which are found in the usual Rossby�Haurwitz wave� and also their

propagation speed is slower than that for the usual wave�

	




��� Discussion

����� Extension to � dimensions

Following Hoskins ��
� the ��dimensional SSG equations may be written in spher�

ical polar co�ordinates ��� �� z� as

Du�
Dt

� Sp �r��� ��k � u ���	�
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A similar approach to that in chapter � can be used to reduce this set of equa�

tions to one equation for ����t� Equations ���	� and ����� can be used to obtain

expressions for u� v and w in terms of u�� v�� � and �� Equations ���������
�

can now be used to substitute for u�� v� and � in terms of � and the resulting

expressions for u in terms of � can be substituted into equation ����� to obtain a

single equation for ����t� We can follow the same approach as used in chapter

	��



� to try to prove the existence of unique solutions to this equation under the

generalised versions of the conditions required in the ��d case� It is anticipated

that this extension will not prove di�cult if the results required to show existence

and uniqueness for the shallow�water problem can be proven�

The numerical procedure can also be extended to ��d� We have one more pre�

dictive equation for � and a ��d version of the correction equations� The main

problem in extending the numerical scheme lies in the extension of the method to

restore solutions outside the solution set back into it� It may be that application

of the ��d procedure on each model level in the vertical along with insisting that

����z � �� the static stability condition� will su�ce� However� this an area where

some work may be required�

����� Inclusion of friction

Cullen �	
� discussed the inclusion of friction into this equation set� and in shallow�

water form the equations become
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and the Eulerian form of the derivative is
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with CD the drag coe�cient� More complex functions representing frictional

e�ects can readily be included� Assuming that the drag coe�cient is constant

then it can be shown that the rate of change of energy for this system is

�hCD�u�
�
� u��u� u��

which is negative de�nite� If we were to try to reduce this equation set to one

equation in one variable we �nd that we cannot do it� This is because we are

unable to replace u� in the time derivatives of equation ����� with �h��t by using

equations ���� and ���	�� without obtaining time derivatives of u� which we

cannot then eliminate�

We now consider an alternative way of including friction� namely�

Du�
Dt

� Sp � grh� ��k � u� CDu ���		�

�h

�t
�r��hu� � � ���	��

g
	

acos�
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g
	

a

�h

��
� �fu� � CDv� ���	��

where we have simply swapped u and u� where they appeared in the friction

terms� We can reduce this equation set to one equation in one unknown since

equations ���	�� and ���	�� can now be used to obtain expressions for u� in terms

of h without any terms in u appearing� The rate of change of energy for this

system is

hCD��u� � u�� � u��

which can give rise to positive energy changes if u� is larger than u by a large

enough amount� Any equation set which can produce positive energy sources is

unsuitable for long time integrations� However� if there are no physical situations

where positive energy could be generated then the equations could be used� It is

	��



probably better to ask if there are any valid solutions to these equations which can

give rise to a positive energy source� It is thus possible that this second system

may be the better one to use� particularly as it could be considered as the more

obvious of the two� This is because the �rst system used by Cullen is not the one

obtained by simply using the Ekman velocity rather than the geostrophic wind

in the geostrophic momentum approximation used to derive the equations� The

system obtained that way is in fact this second system� for which the existence

and uniqueness of solutions could be proved using the approach of Chapter �

providing we can prove the outstanding results from Chapter �� This is an area

where more work may be useful�

	��
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