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Abstract

The water flow in an open channel can be described by the Saint-Venant equations which
can be written as a system of hyperbolic conservation laws with source terms. In this report
we study numerical schemes for the case of steady state flows in nonprismatic channels with
rectangular cross-section and variable breadth function. The numerical schemes adopted
are based on the Roe and Engquist-Osher schemes and have been constructed in two ways:
a direct approach where the derivative of the flux function is discretised directly and an
indirect approach where the chain rule is used to split the derivative of the flux function
and the term due to variable breadth function is treated as a source term. In all cases the
source terms are discretised pointwise (and centrally if they involve a derivative).

We show that the best numerical scheme in the direct approach is the Engquist-Osher
scheme and that both the Engquist-Osher and the Roe schemes have good behaviour in the
indirect approach. Overall the Engquist-Osher method seems to be the scheme behaving
best in the two approaches.
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Chapter 1

Introduction

One-dimensional systems of hyperbolic conservation laws with source terms can be writ-
ten in the form
wi + F(z,w), = D(z, w). (1.1)

The function F is a fluz function, the function D is a source term and w is the vector of
conserved quantities. If D(z,w) = 0 then equations (1.1) are said to be in conservative
form.
Particular cases are systems where the flux function F and the source function D depend
only on w
wy + F(w), = D(w). (1.2)

A practical application of systems of the form (1.1) is to the flow of water in a non-
prismatic open channel with a variable bed. Another example is the quasi-one dimensional
flow of a perfect compressible inviscid gas in pipes with constant or smoothly varying cir-
cular cross-section (see [4, 8]) or in a nozzle (see [1]). This flow is modelled by the Euler
equations. Other applications are possible (see [24] for more details).

In the particular case we are interested in, the system of equations (1.1) describes the
flow of water in an open channel of reciangular cross-section and variable bed and breadth
functions (if the breadth function is constant, the function F depends only on w as in (1.2))
(see [18]).

_In this case we have a system of two equations where the source terms involve the bed
slope as well as the breadth function and its derivative. There is also an extra term in D
if we take into account the bottom friction.

The discretisation of the source terms has been studied by many authors (see, e.g., [12,
9,13, 7, 6, 16, 18, 25, 17, 21, 10, 4, 19], the work of [18, 25, 7] being particularly relevant
for this work.

The source term can cause problems in accurately approximating (1.1), in particular if
the source term is stiff (see [17]).

Some useful references on the numerical solution of hyperbolic systems of conservation
laws are [15, 14, 11, 24].

In the next chapter the Saint-Venant equations describing water flow in an open channel
are introduced as well as some of their properties. In chapter 3 we describe the numerical
schemes used, based on the Engquist-Osher [5] and Roe [20] schemes. The numerical
results obtained are discussed in Chapter 4. Finally, in Chapter 5, we present some general
conclusions and discuss further work.



Chapter 2

The Saint-Venant equations

In this chapter the Saint-Venant equations are introduced and some of their properties
are discussed with the main focus being the steady-state case.

Under the assumption of steady-state flow the Saint-Venant equations reduce to a single
nonlinear ordinary differential equation describing the variation of the free surface.

In Section 2.1 we introduce the Saint-Venant equations and some notation. In Section
2.2 the particular case of a prismatic cross-section channel is studied and a rectangular
cross-section channel will be assumed thereafter. The characteristic speeds are presented
in Section 2.3. The steady-state case is the main focus in Section 2.4 and 2.5. The aim of
Section 2.6 is to discuss ways to deal with the source terms.

2.1 The Saint-Venant equations for channels with variable
breadth and rectangular cross-section

The one dimensional free surface water flow in a channel can be modelled by the Saint-
Venant equations (see [3, 18]). These equations can be written as a system of equations of
the form (1.1) with

W:(S)’ F(x’w):(%ifgh>’ D(gv’w):(gIz-I—gA(zSo—Sf))’ (2.1)
where . |
L =/0 (h—n)odn (2.2)
and )
f= [ (h=noadn. (23)

For simplicity, the channel is assumed symmetric about the plane y = 0 (see Fig. 2.1 and
Fig. 2.3). The notation used in (2.1) is the following (see also Fig. 2.2)

z € [0, L], L being the length of the channel

h(z,t) is the depth, i.e. the level of the free surface above the bed level
u(z,t) is the z-component of the fluid velocity

A(z,t) = foh o(z,n)dnis the wetted area

Q(z,t) is the discharge, i.e. total volume of the flux through a given cross-section
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b(z) is the channel breadth

g is the acceleration due to gravity

o(,1) is the width of channel as a function of both z and 7

n(x,t) is a coordinate which measures height relative to a fixed level
zp(z) is the height of the lowest point of the cross-section

So = —2z, is the bed slope

Sy is the friction slope which models the effects of viscosity through friction with
the solid boundaries.

In this model it is assumed that both ¢ and z; are continuously differentiable functions
and that @ > 0 everywhere (if Q < 0, just reverse the z direction to obtain @ > 0).

/
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Figure 2.1: Horizontal cross section of a channel at height 7
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Figure 2.2: y-cross section showing bed and free surface



Figure 2.3: Sketch of a channel with rectangular x-cross section and variable breadth
function (constant bed slope)

The quantity Sy is usually written (see [18]) in the form

Qe
= 2.4
where P is the perimeter, K is the conveyance given by

AR

and n is a constant representing the roughness of the channel. The friction slope 5y can
be expressed by using Chezy’s or Manning’s laws (see [3]). Here the Manning formulation
for the friction slope Sy is adopted, i.e. k1 = 5/3, k2 = 2/3 and the Manning coefficient,
n, is chosen to take the value 0.03.

In the following section the case of prismatic cross-section channels is studied and some
new notation is introduced.

2.2 Prismatic cross-section channels

If the channel has prismatic cross-section but variable breadth, the function o can be
written as o = b(z) + 2hZ (see Fig. 2.4).

Figure 2.4: x-cross section showing a trapezoidal channel

We present a table, Table 2.1, with the expressions of some of the variables according
to different types of prismatic cross-section and according to the breadth function being
constant or variable.



Breadth variable Breadth variable Breadth constant
Trapezoidal cross-section Rectangular cross-section | Trapezoidal cross-section
b(z)>0,Z >0 b(z)>0,Z=0 b(z)=B>0,Z >0
a(z,h) =b(z)+2nZ o(z,h) = b(z) o(h)= B +2hZ

Az, h) = h(b(z) + hZ) A(z,h) = hb(z) A(h) = KB+ hZ)
P(z,h) = b(z)+ 2h/1 + Z2 P(z,h) = b(z)+2h P(h) = B+ 2hy/1+ 22
L = %h%(m)%— %Zhg’ I = %hzb(a:) L = %hQB + %Zh3

I2 = %hzb’(x) Ig = %hzb/(II)) Iz =0

Table 2.1: Some formulas for the Saint-Venant equations (with and without breadth func-
tion being constant) corresponding to rectangular and trapezoidal cross-sections

The case where the breadth function is variable and the cross section is rectangular
(b(2z) >0 and z = 0) is the one studied here.

2.3 Characteristic speeds

Actually the function F(z,w) in (2.1) can be thought of as a function of b(z) and w,
F(b(z), w). In the particular case of variable breadth function and rectangular cross section

we have 0
F o)~ 2:5 )
F(b(z),w) = = 2 2 . 2.6
(b(z), w) <9Ai+%gAh o+ 19y (2:6)
Hence , oF oF 8
F F db F Ow
EPSl T il e (2.7)
where _
oF 0
I 2.8
0b ( —%gh2 ) (2.8)
and .
oF 0 1
6‘—W_—J_<gh—u2 2u)° (2.9)

The Jacobian matrix J has eigenvalues A\; = u+¢, Ay = u — ¢, which give the character-
istic speeds, (¢ is the wave celerity and is given by ¢ = gA/b for a rectangular cross-section
channel) and eigenvectors

r1:<uic), m:(uiC). (2.10)

2.4 The Steady Problem

The steady flow equations can be obtained from the equations (1.1) by assuming no
time dependence. In this case equations (1.1) reduce to

dQ
il

dFr

% — .D, (2.11)



with ' and D being, respectively, the second components of F and D. The first equation
corresponds to a constant discharge and hence (2.11) can be written as a unique nonlinear
ordinary differential equation of the form

% _ D(z, h), (2.12)

or equivalently,
2
dh _ So— S+ ;%fgho'xdm

e 2.1
dz 1-F? (2.13)
As we can see, the denominator of equation (2.13) vanishes when
Q%a(z,h) _ |ul
F, = A T =1, (F, = Froude number) (2.14)

which corresponds to critical flow. The flow is called supercritical if F, > 1 and subcritical
if F, < 1 (note that o(z,h) = b(z) in the case of a channel with rectangular cross-section).

Summarising, in the steady case, the Saint-Venant equations (1.1) reduce to a single
equation of the form (2.12) with discharge @ constant, F(z,h) = %2 + gl; and D(z,h) =
gl + gA(So — Sy).

2.5 Steady boundary conditions

Since the steady solution of the Saint-Venant equations is a particular example of the
unsteady equation, the boundary condition requirements should be the same but obeying
the rule of being constant in time.

With @ > 0, we have also v > 0 and consequently, A\; > 0 (see Section 2.3). Hence a
variable has to be specified at inflow (for either supercritical or subcritical flow) and that
variable should be @ which we know remains constant in the steady-sate case.

If the flow is supercritical at'inflow (A2 > 0) we have to specify another variable at inflow,
and we choose the depth h. No variables have to be specified for supercritical outflow.

If the flow is subcritical at outflow (A; < 0) we have to specify another variable at
outflow, and we choose the depth . No additional variable has to be specified for subcritical
inflow.

2.6 Source terms

One possible approach to deal with the source terms is to split the inhomogeneous prob-
lem into an advection problem (homogeneous) and a source problem (ordinary differential
equation) and then treat the resulting problems independently (see e.g. [24]). This is not
the approach adopted here. Instead we use numerical schemes based in the Roe [20] and
Engquist-Osher [5] schemes to solve the entire equation (2.12) numerically.

Roe’s scheme has been used by many authors to solve systems of the form (1.2) numer-
ically (e.g. [2, 6, 18, 19, 20]) and also of the form (1.1) (e.g. [7, 13, 18, 25]). These works
point towards a discretisation of the source terms coupled with the way the derivative of
the flux function is discretised.

The use of the Engquist-Osher scheme [5] for problems of the form (1.1), even in the
steady-state case, has not been so thoroughly studied. Special mention to the work of
MacDonald [18] is due, which was fundamental to our study. Some of the ideas presented



in [18] are developed further in the present report. Although MacDonald used both the
Engquist-Osher and the Roe schemes to solve problems of the form (1.2) and (1.1) in
the steady-sate case, some questions remain unanswered. For example, which is the best
discretisation of the source terms, particularly if the Roe method is used.

In this report we did not aim to do an upwind discretisation of the source terms. Nev-
ertheless we present some results of an upwind approach depending strongly on special
knowledge of the test problems and hence of not very practical use otherwise. The upwind
discretisation of the source terms will be the subject of a future report. Hence, in the
present work, the source terms were discretised pointwise if we were using the Engquist-
Osher scheme and averaged between neighbouring grid points if we were using the Roe
scheme. Some of the numerical schemes involve the need to discretise a source term which
Is a derivative, as we will see in the next chapter. In this case a centred approximation (or
a centred approximation at the half-point) is taken to approximate the derivative term.

In the next chapter the numerical schemes used to approximate (2.12) are described.
The work of MacDonald [18] is central to this report and to the next chapter in particular.
In fact we followed some of his ideas and extended others and used some of the test problems
in [18] to test our algorithms.



Chapter 3

Discretisation

A uniform grid was used. For a channel of length L (¢ € [0, L]), we have z; = th,
i=0,1,..., N with a spacing h = L/N (N € IN).

Following the work of MacDonald [18] the numerical solution to (2.12) was sought by
using a finite difference discretisation combined with a time stepping iteration. Hence if 7;
represents the finite difference operator approximating the differential operator

dF(z,h)

Th= === — D(s,h), (3.1)

the time-stepping iteration has the form

1 _ pn
—JW—’ +T;h" =0 n = 04 Lws (3.2)

where the superscript notation indicates the iteration and the subscript notation indicates
the grid point. So h7 represents an approximation to h(z;) at the iteration n. The initial
approximation h° was taken to be, as suggested in [18], the linear depth profile joining the
values of the boundary conditions (when provided) or/and the value of the critical depth
function at the endpoint needed. (Note that for the case of a rectangular cross-section it
is possible to obtain the function h.(z) explicitly).
~ The discretisation of the derivative of the flux function, %%hl ,was considered in two

ways. One way was to take into account the explicit dependence of the derivative of F' on
z directly in the discretisation. This approach was taken by MacDonald [18] when using
an Engquist-Osher method to solve (2.12). The other way was to split the derivative of F
by the chain rule and to keep the terms depending on h (z fixed) on the left-hand side,
treating the other terms (due to variable breadth function) depending on z (h fixed), as
source terms. This idea was also explored in the work of [7, 25, 13| for problems of the
form (1.1).

A suitable discretisation of the source terms was sought for both ways adopted to dis-
cretise the derivative of the flux function.

Schemes based on both Engquist-Osher [5] and Roe [20] schemes were used.

In the following we describe in more detail how this discretisation was implemented.

3.1 Direct discretisation of —(—HFdﬁ’h

In order to model numerically the dependence of F on z directly we allowed the numerical
flux function to also depend on z. (We shall use the notion of numerical flux function even



for these inhomogeneous problems). A possible first-order approximation of (F(z,h)), in
the interval (z;,2,41) is given by

d o 9 &irgs hjni ) — g(®j4q-1, Ry, hjq)
for any real ¢ (see [18]), where
Pire = ( + DA (3.4)
and g is consistent with F, i.e.
g(z, h, k) = F(z,h). (3.5)

A Godunov-type interpretation (see [23]) of g,,1 as the time average across the cell
i+3 g

interface at z = Tiyls points to a choice of ¢ = % Nevertheless the cases ¢ = 0, 1 were also
studied.

The choice of the parameter ¢ was thought of in two ways, firstly, fixing the parameter
q(¢g=0, 1,%) from the start and secondly, changing it according to ‘the wind’ (¢ = 0 or
¢ = 1). The first approach is used in schemes 1 and 2 below and the second approach in
schemes 3 and 4.

Scheme 1 is obtained from the Engquist-Osher scheme [5] by adding the argument z
to any evaluations of the function F and its derivatives (see [18]). The corresponding
numerical flux function is

g1(z,u,v) = F“(z,u)+F+(a:,v)+F(z,a) (3.6)
where
F~(z,u) = /au min{F;(z,s),0} ds
Ft(z,u) = /:msax{Fs(x,s),O} ds (3.7)

and a > 0 is arbitrary.

Scheme 1 was used in [18] and there a comparison between the three choices of the
parameter ¢ mentioned above (¢ = 0,1, 0.5) can be found. Hence here we just present some
results with the choice ¢ = 0.5 because this seems to give a good behaviour for all the test
problems.

Scheme 2, based on the Roe scheme [20], is constructed in a similar way, by adding the
argument z to any evaluations of the function F or its derivatives. In this way we obtain
a Roe based scheme with the numerical flux function given by

1
g2(zk, hRr, hr) = 5 [F(2ks hR) + F(zk, he) = |sprl(hr — hi)) (3.8)
with AT
F(zx, ff;:hfka, L) hr # hr
SLR = (3.9)
Fy(zg, hr) hr = hp,

where z, and zg represent two neighbouring grid points and the point z, was chosen to
be either z;, or R or the midpoint of the interval [zL,zR], ﬂ%ﬂi (the numerical results
presented correspond to this last choice of Tk).



The other idea mentioned was to think of the parameter ¢ varying according to ‘the
wind’. The numerical results used for this case were obtained by using two schemes, one
based on the Engquist-Osher scheme (scheme 3) and the other based on the Roe scheme
(scheme 4). The idea in scheme 3 is to build a scheme similar to scheme 1 but where the
parameter ¢ is allowed to vary taking the values 0 or 1. So if the flow is entirely subcritical,
¢ = 1 and if the flow is entirely supercritical ¢ = 0. If in the interval considered the flow
changes from subcritical to supercritical (resp. supercritical to subcritical), the parameter
¢ will change from 1 to 0 (resp. from 0 to 1). The scheme will be explained in more detail
in Section 3.4. Scheme 4, based on the Roe scheme, was constructed in a similar way and
for the interval [zy,zg] can be written with the help of a ‘numerical flux function’ given
by

1
ga(zR, 2L, hR,hL) = - [F(zr,hL) + F(zr,hr) — |sLr|(hr — hL)] (3.10)
with .
P hi # hr
SLR = (3.11)
Fu(zr,hr) hr, = hg.

Actually, another scheme differing from scheme 1 only in the way the decision is made,
was built. The decision was taken to be the one in scheme 3 and it will be explained in
more detail in Section 3.4. The results were similar to the ones of scheme 1 and therefore
are not shown in the report.

3.2 Indirect discretisation of —K—HFdz’h

Since by the chain rule the left-hand side of (2.12) can be written as

d OFdh OF db
&M= nt (3.12)
we can think of treating the term %% as a source term. This approach is not new when

applied to a Roe-based scheme (see, e.g [18]) but it appears to be new for the Engquist-
Osher scheme. (Generally the Roe scheme has been used in this way to solve the more
general system of equations (1.1).)
In part 2 of this report the idea of discretising the source term according to the way the
left-hand side is discretised it will be taken in account.
In this way we can construct the following finite difference approximation of left-hand
side,
OF dh _ g(zk, hj+1,hy) — g(@k, by hj—1)
Oh dz AV ’
where zj is fixed. In scheme 5 we took z; = z; (an Engquist-Osher based scheme) and
Ty = ﬂ%”i"ﬂ for a Roe-based scheme, scheme 6. Scheme 5 is then built by using (3.13)
together with the numerical flux function (3.6). Similarly, scheme 6 is built by using (3.13)
together with the choice of numerical flux function given by (3.8).

(3.13)

3.3 Treatment of source terms
In the direct approach (see Section 3.1) the source term D(z,h) has the form

D(z,h) = gl + gA(So — Sy) (3.14)

10



where I depends on both b/(z) and A, Sy is known exactly (from the way the test problem
is given - see Section 4.1 for more detalls) and Sy is given by (2.4) and depends on both z
and h.

In the indirect approach the source term has an added term which is the one corre-
sponding to the part of the derivative F\(x,hk), which is put on the right-hand side (see
section 3.2). Let us call it d(z, k). So the source term in this indirect case is

oF db
8b da

Actually, expression (3.15) can be written in the form

d(z,h) = D(z,h) - (3.15)

d(z,h) = gIy + gA(So — S¢) —|— o —hb'(z) — gI, = gA(So — S¢) + —hb (2) (3.16)

since gly cancels.
In our test problems the source term (3.15) was not discretised globally but each term

separately, i.e. D(a: h) and %I; ji In schemes 1, 3 and 5 we used a pointwise discretisation

of D(z,h),i
D(z,h) =~ D(z;,h;), (3.17)

whereas for schemes 2,4 and 6 we used an average between neighbouring grid points, i.e.

D(zr,hr) + D(zR, hr)
> :

An upwind approach is also possible in the way described in [18] or some decomposed
approaches for the full system as studied by [6, 13, 25, 8, 22]. In the latter case the source
terms are approximated by a linear combination of the eigenvectors of a Roe matrix.

For the indirect schemes 5 and 6 it remains to work out a way to discretise the term
% when treated as a source term. We chose to approximate this source term with the

derivative by a centred discretisation or a centred discretisation at the half-point.

D(z,h) ~ (3.18)

3.4 Numerical schemes described in more detail

Here we describe in more detail the numerical schemes used.

The algorithms for the schemes 1,3 and 5 were implemented by using the numerical flux
functions gy and g3 as described in sections 3.1 and 3.2. The algorithms for the schemes 2,
4 and 6 were implemented in a different way, without the direct use of the numerical ﬂux
functions g3, g4, since that is more suitable for computational purposes. In this section we
describe the algorithms used in more detail.

For scheme 1, supposing that there is a unique critical depth at each z cross-section
he(z) and because F' is convex, we have

hishivi <he(eivq) = 9(Tjag, hjt1,hs) = F(@j4q, hig1)
hishijvr > he(zivg) = 9(@jtqs hivr, hj) = F(j49, ). (3.19)

But the cases of hj < he(2j44) < hjt1 and hjy1 < he(244) < h; have to be analysed as
well. All the poss1b1e cases are taken in account if we rewrite (3. 6) in the form

P(@j4q5 Bijsy) hivts by < he(244)
; F(&jq0,h;) hiv1yhi > he(ziaq)
91( s gy, By) = S Al e
914 itar oyl ‘?) F ('L'J..I_q, hJ+1) + I (IJ+Q, .’L‘?) — F(T3+q:;?c(3'j+q) h] > hc(xj+q) > hj+1
F(2j1q, he(2j1q)) hj < he(@j4q) < hjpa

(3.20)

11



For scheme 3 the numerical flux function can be thought of as depending on two grid
points, instead of one. The two grid points adopted are the endpoints of the interface. So
the numerical flux for this scheme can be written as
F(@jg1,hipn) hjt1 < he(zjs1) and by < he(z;)
F(:L‘j,hj) hj+1 > hc($j+1) and hj > hc(:l:j)
93(z41, @5, i, hy) = § Flzian, hin) + Fag,hy) = F(25, he(25))
hijt1 < he(zj41) and h; > he(z;)
F(zj, he(z;)) hit1 > he(wjg1) and by < he(z;).
(3.21)
The Roe-based schemes 2, 4 and 6 were implemented in the following way:

1. the values of spp were computed for every interval of the form [z, zr] and stored in
an array

2. for each interval:

(a) we compute the value of AF, that is,
AF = F(zg, hg) — F(zg, hr) (3.22)
for schemes 2 and 6 and
AF = F(zg,hgr) — F(zL,hr) (3.23)

for scheme4;

(b) we check the sign of spr to make the decision whether to update either hz, or
hr. Hence we have

if sp,r < 0 then Ay, is updated according to
APt = A} — AtAF/Az (3.24)
if spr > 0 then hp is updated according to
Ay = b — AtAF/Az (3.25)
3. for each interval the source terms are added to the updated variables

4. overwrite the values at endpoints with analytical boundary conditions if necessary.

Note that if an upwind approach were to be used the sign of spr also decides how to
take in account the source term.

Since schemes 5 and 6 are similar to schemes 1 and 2 (with the numerical flux function
computed at a fixed grid point) we will not explain them in more detail.

A different version of scheme 1 was also tried where we took the values of F' as in scheme
1 but the decison was taken from scheme 3 instead. Since the results were very similar to
scheme 1 we do not present them here.

12



Chapter 4

Numerical results

4.1 Test problems

The test problems were chosen from the ones presented in [18] such that different types
of flow (inclusive of hydraulic jumps) are illustrated. These test problems are constructed
in such a way that an analytical solution for the full steady Saint-Venanl equations is
known. The principle is that if a particular depth profile & is known, it is possible to
compute (analytically) the bed slope Sy that makes this profile an actual solution of the
steady equation (see [18] for more details).

The four test problems chosen illustrate different flow features and correspond to the
flux of a flow in an open channel of rectangular cross-section and with variable breadth

function given by
| 10-5 10 (—l 1)2 (4.1)
rl=JlU0—2oe o — - . b
%) =P 200 2

3 k [ S L

= s = ] e M | e we
.

Figure 4.1: Graph of the horizontal cross-section of the channel

Manning’s friction law was used with coefficient 7 = 0.03. The details of the test problem
are given in tables 4.1 and 4.2.

The test problems were chosen from the ones given in [18] by MacDonald (test problems
9-12 in Appendix B) and correspond to different types of flow. The boundary conditions
needed (see section 2.5) are given in table 4.2. Other boundary conditions (if needed) are
taken as the values of the critical depth function h, at the corresponding endpoints, as
suggested by MacDonald [18].

The depth profile in test problem 1 is subcritical whereas in test problem 2 it is entirely
supercritical. In test problem 3 the flow is subcritical until approximately one third of the
length of the channel and then changes smoothly to supercritical. In test problem 4, a

13



Prob. | Type of flow Analytical depth profile h

)2

. 2
2 | Supercritical h(z) = 0.5+ 0.5exp (20 (555 — §)
3 Smooth transition h(w) = 1.0 — 0.3 tanh (4 <2% - ))
. 0.7+ 0.3exp (555 — 1) z < 120
4 hydraulic jump h(z) = o B

)=\ cop(=0.1(0 — 120)) T2 o ki (3252885) + 6(a) @ > 120

where kg = —.274406, k1 = —.948343 and k, = 4.89461
$(z) = 1.5exp (0.1 (200 1))

1 Subecritical h(x) =0.940.3exp | —20 (ﬁ _

e

o

Wi

Table 4.1: Test problem details: type of flow and analytical solution

Prob. | L/m | Q/(m®s™1) | hin/m hout /m
1 200 20 0.902921
2 200 20 0.503369
3 200 20
4 200 20 0.7 1.49924

Table 4.2: Test problem details: length of channel, discharge and boundary conditions

hydraulic jump occurs at z = 120m and the depth profile jumps there from supercritical
to subcritical.

4.2 Results and discussion

We have considered two different measures of accuracy (L; norm) according to the type
of scheme used. In schemes 1, 3 and 5 the criterion of convergence for the iterative method
was

N-1 +1
1 Z hGT — R}
N-14 At

and for schemes schemes 2, 4 and 6 the criterion of convergence for the iterative method
was

) < TOL (4.2)

T hn+1 n\ 2
J
N g ( ) < TOL. (4.3)

Actually, we used a relative type of error measure corresponding to (4.2) and (4.3).
For almost all the schemes, TOL = 1078 with the exceptions of scheme 3 where, for test
problem 1 (n = 10 and n = 20), TOL had to be set higher, 10~%. The numerical results
of scheme 4 have an oscillatory behaviour and do not seem to converge whatever the TOL
and At chosen. Hence no numerical results for that scheme will be presented here.

The approximate solutions obtained from schemes 1-3,5-6, to each test problem, are
shown in Figures 4.2-4.10. It can be seen from the graphs that overall the approximate
solution obtained from Engquist-Osher schemes (schemes 1, 3 and 5) is the most accurate,
followed by scheme 6. In fact, the smallest L; error (for N = 10,20, 40,80, 160) is obtained:

14



in test problem 1 by scheme 1; in test problem 2 by scheme 3; in test problems 3-4 by scheme
5 (centred).

As expected, when N increases, the centred discretisation and the centred discretisation
at half-point (schemes 5 and 6) yield a similar error (see Figures 4.21-4.28). The only case
where an upwind discretisation (schemes 5 and 6) provides a more accurate solution than
the centred discretisation is for problem 2 when using scheme 6 (see Figures 4.21, 4.23
4.25 and 4.27 and also 4.18 and 4.19).

The idea in scheme 3 to change the parameter ¢ in scheme 1 (as explained in section

3.1) does not seem to provide better results than the ones obtained through scheme 1 (see
Figures 4.21-4.28).

?
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1.4 b 160 h .
_ N
1.4} .
X

"0 50 100 150 200 o 50 100 150 200

x/m x/m

Figure 4.2: Scheme 1 for problems 1-4 (Az = 10)
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As we can see from Figure 4.3, scheme 2 generates a numerical solution that is not very
accurate. In particular, for test problems 1 and 2 the numerical results are shifted to the
right of the true solution and in test problem 3 the numerical solution forms a bump on

the region of supercritical flow.

+ ﬁch.Z: s=0.5 + Sch.2;:s=0.5
147 — ‘exact 147 | — hexact
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T
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Figure 4.3: Scheme 2 for problems 1-4 (Az = 10)
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As we can see from Figure 4.4, scheme 3 seems to provide an accurate solution to all
test problems. Moreover, from Figure 4.23 we can see that, for test problem 2, the results

from scheme 3 have the smallest L, error.

50 100 150 200 0 50 100 150 200

depth/m

0.6 : : - : : . - - -
o] 50 100 150 200 0] 50 100 150 200
x/m

Figure 4.4: Scheme 3 for problems 1-4 (Az = 10)
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Figure 4.5: Scheme 5 (ctr.) for problems 1-4 (Az = 10)
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Figure 4.6: Scheme 5 (ctr. half-pt.) for problems 1-4 (Az = 10)
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Figure 4.8: Scheme 6 (ctr.) for problems 1-4 (Az = 10)
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Figure 4.9: Scheme 6 (ctr. half-pt.) for problems 1-4 (Az = 10)
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Comparing Engquist-Osher based schemes 1 (direct) and 5 (indirect) we can see (Tig.
4.12 or 4.21) that the approximate solution of scheme 1 is more accurate for test problems
1, 2 and 4 whereas the approximate solution of scheme 5 is more accurate for test problem
3. Neverthless, for test problem 4, the L, error is smaller in scheme 5 than in scheme 1
(see Figure 4.28).
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Figure 4.12: Schemes 5 (centred half-point) and 1 for problems 1-4 (Az = 10)
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Comparing Roe-based schemes 2 (direct) and 6 (indirect), we can see that the approxi-
mate solution obatined from scheme 6 is considerably more accurate than the approximate

solution obtained from scheme 2, for all test problems (see Fig. 4.13).
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Figure 4.13: Schemes 6 (centred half-point) and 2 for problems 1-4 (Az = 10)
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The approximate solutions obtained from Engquist-Osher based schemes (schemes 1, 3
and 5) seem to show that either the direct or the indirect approach perform well and better,
in general, than Roe-based schemes (see Figures 4.21-4.28). However, the direct approach
gives a more accurate solution to test problems 1 (subcritical flow) and 2 (supercritical flow)
whereas the indirect approach performs better for test problems 3 (smooth transition) and
4 (hydraulic jump).
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Figure 4.14: Scheme 3 and 1 for problems 1-4 (Az = 10); “*’ means that it was used
TOL= 1071

27



In the indirect approach (schemes 5 and 6) the derivative put on the right-hand side was
discretised in three diferent ways: centred discretised, centred discretised at the half-point
and upwind discretised. The upwind discretisation implemented depends strongly on the
computation of the critical depth function and on the critical 2, which is relatively easy to
compute for the case of rectangular cross-section but much more difficult for a more general
prismatic cross-section. For the Roe-based schemes it seems easy to implement un upwind
discretisation in the way Glaister [9] and others (e.g. [6, 2, 7]) have done. But an upwind
discretisation of the right-hand side for Engquist-Osher based schemes has to be thought of.
The numerical results for the different types of discretisation of the derivative on the right-
hand side are shown in figures 4.15- 4.16. From the numerical results obtained, the centred
approximation at the half-popint seems more accurate than the centred approximation
for both schemes, 5 and 6 (remember that D(z,h) is pointwise or averaged discretised
in all the numerical results presented - see Section 3.3). In figures 4.18 and 4.19 we can
compare the upwind discretisation and centred (half-point) discretisation of the right-hand
side derivative for schemes 5 and 6.
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Figure 4.15: Schemes 6 and 5 (both centred) for problems 1-4 (Az = 10)
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The indirect approach of splitting the derivative and absorve % in the source terms

was the one followed in schemes 5 and 6 and as we can see from Figures 4.5-4.10 provides
an accurate numerical solution. In almost all the test problems, scheme 5 is more accurate
than scheme 6. The only exception is test problem 2 (see Figures 4.21, 4.23, 4.25 and 4.27)
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Figure 4.16: Schemes 6 and 5 (both half-point centred) for problems 1-4 (Az = 10)
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Chapter 5

Conclusions

In Section 4.2 the solutions to test problems 1-4 obtained by using schemes 1-3, 5-6
were presented and discussed. The test problems were chosen to represent different types
of flow.

We have seen that the Engquist-Osher schemes (schemes 1, 3 and 5) provide a more
accurate solution than the Roe schemes (with the type of source term discretisation studied
here). The best Roe scheme is scheme 6 since scheme 4 does not converge and scheme 2
generates a solution that is not very accurate (see Figure 4.3). The work done by several
authors (e.g. [2, 25, 13]) suggest that there should be a balance between the upwind
discretisation of the flux functions, when using Roe scheme, and the discretisation of source
terms. We intend to study our schemes in a similar manner in a next report.

For Roe schemes (schemes 2 and 6), the indirect approach provides a more accurate
solution than the direct approach. The same is not true, in general, for Engquist-Osher
schemes (schemes 1,3 and 5). We have seen that the direct approach generates a more
accurate solution to test problems 1 and 2 (flow entirely subcritical or supercritical, re-
spectively) whereas the indirect approach gives a more accurate solution to test problems
3 and 4 where there is a change in the flow (subcritical to supercritical and supercritical
to subcritical, respectively).

In general, in the indirect schemes 5 and 6, the centred discretisation of the derivative
on the right-hand side gives a more accurate approximation to the true (analytical) depth
profile than the upwind discretisation. The only exception is test problem 2. Two ideas
are worth studying. The first is whether this remains true even if D(z, k) is also upwind
discretised. The second idea is to modify the upwind approach implemented here since it is
strongly dependent on the knowledge of the critical function k. and follow the ideas in [13]
or [2, 25] (and other authors) for Roe scheme. This latter idea means that the knowledge
of the switch on the left-hand side given by the method adopted (Engquist-Osher-based or
Roe-based) should be used to decide on the upwind of the source terms (combined or not
with the upwind discretisation of D(z,h) as well).
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