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Abstract

This report represents a personal attempt to provide an overall
framework for discussing the inviscid (or nondiffusive) limit of general
conservation laws. The first chapter provides motivation for this
enterprise via several paradigms from fluid mechanics. In the second
chapter, it is first necessary to derive a more general definition of
piecewise continuity. Then, structures are introduced for both
diffusive and nondiffusive conservation laws in different forms. As a
corollary, a formal definition of diffusivity is derived in the next
chapter, along with a demonstration of 1its validity for the
Navier-Stokes’ equations. A model of a single two-dimensional steady
diffusive conservation law is then constructed, somewhat analogous to
Burgers' equation. Finally, in the fourth chapter, a survey is given
of the work of others in attempting to provide the appropriate function
space for describing nondiffusive conservation laws and various issues

concerning the nondiffusive limit are discussed.



0. Introduction

My research objectives are to gain understanding into the behaviour
of fluid flow at the weak end of shock waves and to improve the
stability of numerical schemes within this region. However, in
analysing the structure of the equations characteristic of the flow in
this region, I have found it necessary to analyse the general structure
of conservation equations; and, in attempting to characterise the
behaviour of the shock tip in the presence of limiting viscosity, I have
been drawn towards providing an overall framework for discussing the
nondiffusive limit.

Having found no single reference which treats these fundamental
problems in a unified manner (although [1], [2] and [3] come close), I
decided to write a report on the subject myself.

I would like to also add the following two justifications for the
work of this report: firstly, that it will provide the groundwork for
subsequent reports; and secondly, that it may well have useful
spin-offs, such as the construction of the appropriate model equations

for this flow region.



1. Paradigms From Physical Systems

1.1 The Concept of Conservation

In many physical applications such as fluid mecharics,
electromagnetism and quantum mechanics, there is the general set-up of a
quantity (u say) varying in space (x) and time (t) 1in such a way
that, given a volume (V(t)) which varies over time in a known manner,
the amount of the quantity u within the volume changes in a way
related to the flux (f(u)) of the quantity out of the surface (S(t))
enclosing the volume V(t). This is the principle of consgrvation.

For example, in fluid mechnaics, for the conservation of mass, the

quantity is density (p) and the flux is the momentum density (pq)

with the conservation law being

%? J pdv + J pqeds = O (1.1)
\Y S
where V and S are fixed over time.

1.2 The Concept of Diffusion

Many physical applications also contain higher order effects which
dominate only where quantities change value rapidly (such as at boundary
layers or shocks). These diffusive effects have the effect of damping
down rapid changes. For example, in fluid mechanics, viscosity opposes
the formation of discontinuous shock waves and limits them to steep

transition fronts. The process is modelled by Burgers' equation (see

[4], chapter 4).



1.3 The Concept of Source Phenomena

Diffusion and conservation may not describe all dominant effects in
the behaviour of dynamical systems. Other effects, such as those due
to a non-Euclidean geometry, rotation, chemistry and/or nonequilibrium
thermodynamics are collectively described as source phenomena and are
treated by adding certain 'right-hand side’ terms to the equations of

motion.



2k Description of the Generalised Structure

2.0 Introduction

Before the generalised structure can be formulated, it is necessary
to describe the space of functions appropriate for the conserved
quantities. This space must allow continuous discontinuity surfaces
within the domain of an arbitrary dimension. In studying the
literature I was only able to come across either nonconstructive
function spaces, (e.g. Sobolev spaces and the like, see [5]). on which
the position of discontinuities were unknown, or ad hoc definitions of
constructive function spaces, (e.g. a countable union of
non-intersecting shock curves in two dimensions, see [6] and [7]).

It became apparent to the author that what was required was
something more fundamental, namely a definition of piecewise continuity
in several dimensions. After playing around with the formulation of
this space, 1its definition came out inductively, along with the

definition of generalised flat intervals.

2.1 Definition of Piecewise Continuity and Flat Intervals in

Several Dimensions

Let A be an arbitrary finite open compact subset of RN of
dimension N. (N >0).
Let
Ry = {x € R lixll, <K} . (2.1)

the N-dimensional hypercube of semi-length K > O,

Hence RE is a possible choice of A for all K > 0.

Let ® be the disjoint union operator.



Let % be the range function.

Let Cw[X - Y] be the space of continuous, infinitely
differentiable functions from X to Y.

The definition of piecewise continuous functions will be achieved
in two steps. Firstly the space of shock discontinuities (%n(A)) and
the space of generalised intervals (fn) are defined inductively.

Initially, 9O(A) and 91 are defined as follows:

Definition 2.1

0 e P0) © 3 Mo e, Xi..ox € A
0 Mo
such that a2~ = @ {xm} . (2.2)
m=1
So x X are distinct.

Definition 2.2

I1 € 91 & 3 X, X, € Ré such that Xy < X and
I1 = (xl. Xr) for some K > O . (2.3)

These definitions are fairly simple. The inductive definitions follow

analogously with a few alterations:

Definition 2.3

vn < N, 2" e y"(1) © 3 M. a? ..... aﬁ C A such that
n
M
n = n
Y = b a
m=1
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(i) 31" e 9", e C[I®™ — 4] such that ¢ is 1 -1 and
n
() = o .
(2.4)

where Qn(A) is the space ofthe closures of elements of Vn(AL

o™ € (A) & 2" € F)) . (2.5)
Thus elements of yn(A) are disjoint unions of smooth surfaces with
dimension n.

There is also the parallel definition of "

Definition 2.4

vn, "es o
(i) 3K >0 such that InClRKn;
(ii) 31" is simply-connected;
(1i1) o1 € I (®Y)
(iv) I" is open. (2.6)

This inductive definition follows since gn_l(Rﬁ) is well-defined and
N is an arbitrary integer, (so the restriction n < N 1is unimportant).

Examples of ao. al and a2 are given on figure 1, examples of Il

12 and I3 are given in figure 2. It is clear that the boundary of
an element of yl(A) will be an element of QO(A). and the boundary of

an element of 92(A) will be the disjoint union of an element of yl(A)

with an element of TO(A). This leads to the following lemma:



Lemma 2.1

For all A satisfying the conditions in the above definition, V N € N,

va <N, valedn) 3.9e9%0), ol evlay.. ..ol e 9™y
such that
m
(1) Vm<n, M- @ of ;
k=0
m-1 "
(ii) Vm¢n, a" = 8 o
k=0

The last background definition required prior to the final
definition of piecewise continuity is that of the jump function, [-].
This is defined in the usual way to be the difference in the value of a
function on either side of a surface of discontinuity. Notice that the
jump of a jump is not defined because surfaces of discontinuity will
typically either peter out (giving a continuous decrease in jump
strength to zero) or they will meet together in groups of three (so two
quantities cannot be identified). It may be assumed that jumps do not
jump in value at these points, but this assumption is not necessary for
the definition of piecewise continuity.

Let A be defined as before. Then prm(A), the space of
piecewise continuous function with m continuous derivatives with

domain A 1is defined as follows:

Definition 2.5

uepwc™(8) © 3N e ¥4y such thac
(i) u e AMana Tl

Gad [u] € "N 1y (2.7)
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where Cm(X) is the space of continuous m times differentiable

functions with domain X. Note that u is undefined on SN—I\sj—l.

This set corresponds to the set of irregular points of u.

Another wuseful definition 1is that of a piecewise continuous

surface. Let Eg be the space of piecewise continuous surfaces of
. . . e N 2N .
dimension n contained within RK for some k > O. Then n 1S

defined as follows:

Definition 2.6

5" ¢ z’l = (i) 3K> 0 such that S" € @“(mﬁ) ;
(ii) " s simply-connected.

Gauss’ divergence theorem and Stokes’ curl theorem may now be stated

within this formalism:

Lemma 2.2 (Gauss' Divergence Theorem)

VYV NEN, Y §N—l € Eg_l closed (i.e. topologically equivalent to a
N

sphere), containing the volume V',

Ve ctivgt

Jv-fdv = J feds . (2.8)

Lemma 2.3  (Stokes' Curl Theorem)

v §2 € 23 open V f € C1[§2]3 .
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| Gapgs = [ rar (2.9)
5% 55>

Note: 6§2 is only the outer boundary of §2 and does not contain the
inner lines of discontinuity of slope because s" e g (Rg) and not
yn(mﬁ). The curl theorem has been written with N = 3 as it is seldom

necessary to consider higher (or lower) dimensional generalisations.

2.2 The Generalised Diffusive Structure

2.2.1 Integral Form

Before the integral form can be defined, more notation needs to be
introduced. By convention, superfixes will be used for dependent

variables and suffices for independent variables.

Let there be N space dimensions parameterised Dby
X = (Xl""'xN) € RN. Let the time dimension be parameterised by
t €R, = [0,=]. Let A be a subset of RN obeying the same
conditions as in the previous section. Define the M conserved
. I M .
variables u = (u”,..., u ) by:
. i 1 . i i
VidM, u €cC [R+ x A —R] ., with u =u (t,x) . (2.10)
Define the M? flux vector components f§ (i,j =1,...,M) by:
.. i o M . i i
Yij<MN, fj € C[R" —R] . with fj = fj(g) ; (2.11)

Let there be «a constant scale values for the diffusion coefficients

forming the vector d = (d1 ..... da)' Let there be aM?N? components
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to the rank 5 viscosity tensor V;im (i,1 =1,..., M; j.k=1,...,N;

m=1,...,a) defined by

Vild{M Vjk<N, Vm<a,

il o M . il il
Vj] €EC[R*—R] ., with ijm = Vj] (u) . (2.12)
. 1 SM ]
Finally, let there be M source terms S°,.... defined by

vicH, s ec®m®" xR x4 —R]. with

st = sl(uit.x) (2.13)

Definition 2.7

The integral form (I) of the equations of motion with diffusion
is defined as

(D &vTes', Des suchthact TCR, DcCa,

VidiM, J (ui,Ei).(nt,g)ds = Jsldtdv (2.14)
d(TxD) TxD
i i il & !
where  F. = f} -y 2L Vidm Vj<N, (2.15)
J J Jkm axk m
(using the summation convention); and (nt,g) is the unit normal to

the space-time hypersurface 8(T x D) - see figure 3.
This definition could, of course, be generalised to the case of an
arbitrary space-time volume in R+ x A or specialised to the case of

steady state. The former leads to greater theoretical complications

but may be useful for moving boundary problems.
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A  more conventional integral form may be derived ‘rom

definition 2.7. Observe that ™ = (tl,t2) for some t < too

tj.ty € R,. Also 3(TxD) = TxD & TxdD, with T = {t On 4T,

1't2}'
(nt.g) = (£1,0) and on aD, (nt,g) = (O,g*) where g* is the scaled

unit normal to dD. The integral equation definition 2.7 can then be
rewritten
i i t2 i t2 i
f{u|t-u|t}dv+fj E-d_sdt=JIde. (2.16)
D 2 1 t.vdD t.YD
1 1
Thus, since D 1is constant, in the limit t2 = t1 — O we obtain
g[ uldv+f Fleds = Jsldv. (2.17)
D ab D

The integral form follows naturally from physical arguments. The

strong and weak forms may now be derived easily.

2.2.2 Strong Form

Definition 2.8

The strong form (S) of the equations of motion with diffusion

requires the stronger condition

and may be written:

(8) & V¢te R+ Vx €A VidM,

a—t" + voF = S z (218)
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2.2.3 Weak Form

Let Cé[X — R] be the space of continuous once-differentiable

functions from X to R which are zero on JX.

Definition 2.9

The weak form (W) of the equations of motion requires only the

original weak condition V 1 ( M, ui € Cl[[R+ x A— R] and may be

written:

W vTes Des such that TCR,

DCA, ¥i <M, vpl € CLT=D — R].

. B o
J [u‘ g—f + Flovg! + Sl¢1]dtdv = 0 (2.19)

(not summed over i).

2.2.4 Equivalence Proof

If the stronger continuity condition is assumed, the three forms of
the equation of motion can be proved to be equivalent. Summation

convention will not be used on this subsection.

Theorem 2.4

If Vi<M u €CR x4 —R], then

(I) & (S) & (W) .
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1) & (S):
Xes” Xcy=oXxe v (Y) by the definitions of $* and &I
provided Y satisfies the same conditions as A. Hence

d(T x D) € 2§+1, so we may apply Lemma 2 (the divergence theorem) to

the left-hand side of equation (2.14).

Now the space—time divergence of (ui,El) is g% + V°E1. Hence
we infer
() =vTes Des" st TcRr.DCA,
aui i i
VidM, ‘[ &§€_ + v°F ]dtdv = J S'dtdv . (2.20)
TxD TxD
Hence, as T and D are quantified over all of R+ and A, we may

apply Lagrange’'s lemma and infer

(I) ®VY t€R_Vx€h VilM

aui i i
T + v°F = §° (2.21)

since the continuity of u 1implies this equation is well-defined,

ie. (I) & (S).

S & (W):

Let o= J {g; (ul) + v-(¢iEi)}dtdv . (2.22)
TxD

As already shown, d(TxD) € 2§+1, so the divergence theorem is

applicable:
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= 3= [ e Y, s (2.23)
3(TxD)
But $ € Co(TxD — R] . hence J' = O . (2.24)
Also, by the product rule,
i i i i i i aui i
Jl = j{‘#iul + I_?1~v¢ + ¢ [73? + v+F ]} dtdv . (2.25)
TxD
Thus, combining (2.24) and (2.25),
i i i i i aui i
u ¢t + Fev¢p ) dtdv = - ¢ i veF" |dtdv . (2.26)

TxD TxD

Adding J ¢181dth to each side we obtain the equivalence

TxD
{ui¢i + Floggd + si¢i} dtdv = 0 &=
TxD
Bt aui i i
¢ {5?. + v F' - S } dtdv = O , (2.27)
TxD

Also, by Lagrange’'s lemma, as ¢ 1is also an arbitrary function within

R+ x A, we have the identity:

(s) =vrest, pesNseTCnr,

DCA, VidM V¢ eC[TxD—R]

g S
J ¢1{§%— + veF! - sl} dtdv = O . (2.28)
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But this is just a quantification of the right-hand side of (2.27).

Hence (S) 1is equivalent to the same quantification of the left-hand

side of (2.27) - which is precisely (W).

2.2.5 The Nondiffusive Limit System

Here we are concerned with the behaviour of the solution as a
function of the diffusion coefficients, d, in the limit d — 0.
First of all, the system must be constructed.

Assume the continuity hypothesis of theorem 2.4, i.e. YV i <M,

u' € Cz[IR+ x A — R]. Hence theorem 2.4 holds, so the integral, strong

and weak forms are all equivalent.
Let (B) stand for consistent sufficient boundary conditions.
Thus we assume it is theoretically possible to solve the problem of,

given (B) and (I) (or (S) or (W)), to determine u over the domain

[R+><A.

Definition 2.10

> (d) < (B) A (I) (2.29)
3(d) B VidM o u o= u(tx:d) . (2.30)
Where l— is the symbol for logical inference, A" is the logical
‘and’, and u, is the solution vector. 2(d) represents the system of
equations with boundary conditions dependent on d. Clearly

3(d) € (B) A (S) and 3(d) & (B) A (W).
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The nondiffusive limit system may now be written as

lim 3 (d) . (2.31)
d-o

with corresponding solution vector

lim u (t,x;d) . (2.32)
d-o
The question of whether 2(o) (i.e., the nondiffusive system) is

equivalent to lim 3(d) will be addressed in 83.5 and 84.1.1.
d - o

2.3 The Generalised Nondiffusive Structure

2.3.1 Integral Form

The integral and weak forms could be defined with T x D having
the same constraints as for the diffusive structure. However, as will
become apparent when discussing the equivalence proofs, it is more
convenient to restrict T x D such that either u 1is smooth within
TxD or TxD 1is partitioned into two regions by a single smooth
space—time shock, T.

Formally, consider T € #', D e 8 such that TCR, DCA. A
more restrictive class of piecewise continuous, m times differentiable

functions, prZ[TxD — R, ] 1is defined as follows:

Definition 2.11:

u € prZ[TxD — R] & u € Cm[T x D — R]

or 31 €% yec [I"—TxD] such that



- 21 -

i) ¢ dis 1 -1 ;

i) 4(v)

1]

r(Ty = {(I(t) such that t € T} ;

iii) V t € T, D=D (t) ® I'(t) ®D'(t)  such that

D+(t) € 9N (see Figure 4)
iv) u € d"[D(T) - R] :
u € "D (T) = R] ;

[u] € c"[I(T) - R] ;

where Di(T) = {Di(t) 1t €T} .

Definition 2.12

D (t),

(2.33)

The integral form of the equations of motion without diffusion

requires the condition

VidM oule pro[lR+xA — R]
and is defined by

Iy ovrtes! pes™  sueh that Tc R,. and

o e pwcd[TxD — R],

Vi (M, J (o', £-(n,.n)ds = JSidtdv .
d(TxD) TxD

2.3.2 Strong Form with Jump Conditions

(2.34)

The strong form may now be defined analogously to the case with

diffusion apart from the fact that it does not hold over curves of
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discontinuity. Along these curves we have jump conditions holding -
generalisations of the Rankine~-Hugoniot jump conditions. At the
intersections and ends of these curves, we have no information - as in
the case of the definition of piecewise continuous functions. A

similar definition of these and the weak forms is given in [1] pp.1-3.

Definition 2.13

The strong form and jump conditions of the equations of motion

without diffusion require the condition V i ¢ M, u' € prl[R+xA — R]

and are defined by
Y @veeR. Vvrend (o, vich B 4ol 2 sl (235

(J)eVieR, vxed (e), VidH, ((w'1.[£']) (n,.n) = 0; (2.36)

where 9N e {QN_I(t): t € R+} is the discontinuity surface for

u and
(nt,g) is its space-time normal.
Note
(J) may be rewritten as
[£']n" 2
VidiM s = — where s 1is the shock speed and n is now
[u™]
the unit space normal. This is the usual form of the unsteady

Rankine-Hugoniot jump conditions.
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21.8.8 Weak Form

Definition 2.14

The weak form without diffusion only requires the condition

1

vi¢H,  u e pwc®Rxt —R] and is defined by (W) <V T €y

D e ?N such that TCR_ , DCA and V ¢i € Ci[TxD — R].

J {ulel + £1-v! + sTe)deav = o (2.38)
TxD

(again, not summed over 1i).

2.3.4 Equivalence Proof

If, again, the stronger continuity condition is assumed, the three
forms of the equation of motion can be proved to be equivalent.

Summation convention is again not used in this subsection.

Theorem 2.5

If ¥i¢M u' €puC'[Rxt —R], then
* * *
(I)Y)=S)AJ) = W)
("N’ is the logical ‘'and’ symbol).
(Note: the equivalence of (S*) A (J) and (W*) is discussed for one

dimensional flow in [8] pp.246-248).

Proof

(1) = (5) A (J):

If u 1is continuous in D then the equivalence of the integral

and strong forms is identical to that given in theorem 2.4 apart from
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replacing El with fl. We may thus limit ourselves to considering
the case where u is discontinuous in D. Let F+(T). I' (T) be the
two sides of TI'(T) corresponding to D+(T), D (T) respectively, see

figure 4.

Now

n
+

[~ ] uw

3(TxD) aD'(T) 8D (T) TI'(T) T (T)

and, for a bounded function,

J = J + _J _ (2.40)

»*
Thus the integral equation in the definition of (I ) may be rewritten

as

S e I I N O S RCS e

ap'(T)y ap(T) Iy Tr(T)

= { J + J }Sidtdv : (2.41)
+ =

D'(T) D (T)

Since TI(T) 1is a smooth surface, 6D+(T), aD (T) € E§+1‘ so the

divergence theorem is again applicable, since ut and £1 are
continuous within D+(T) and D (T). Also,
J‘wds - J vds = J [y]ds (2.42)
FTr I (T) I(T)

for all functions .
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Hence we obtain the equivalent form:

J (uy + v-£' - sh)ddv + J\ (up + verl - slydedv
D' (T) D (T)

]

| @M ity s (2.43)
r)

Thus we have (S*) AN(]) = (I*) by simple integration.

Clearly D+(T) and D (T) may be deformed to include any
connected region in TxD\@N(T), given an initial TI(T) C §N(T). Hence
(I*) = (S*), by Lagrange’s lemma. Also, by considering limitingly

thin domains D+(T). D (T) we derive the condition

| @ D my. mas = o (2.44)
r(n)

and as TI(T) 1is also arbitrary, again by Lagrange's lemma, we infer

(1) = (J).

(S A ) & (W)

Again, the case where u is continuous in D gives the

equivalence of the strong and weak forms by an argument identical to

that of theorem 2.4, and we may again limit ourselves to the case of u

being discontinuous in D.

Let

Ji - j {gF ulel) + v-(£i¢i)}dtdv _ (2.45)
+
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As already shown, 6D+(T) and 38D (T) € E§+1. so the divergence theorem

is applicable to both of these integrals

=Jl = ij '(u', £1)+(n,. n)ds . (2.46)
aD~(T)

But as ¢1 has compact support on J(TxD),

Ji = ¢i(ui, £i)-(nt, n)ds , (2.47)
r'(T)
and
o= J ol (ul, £')+(n,. n)ds . (2.48)
I (T)
Applying (2.42) we obtain
Bert = [ @' D ey mas (2.49)
r(T)
since ¢i is continuous across TI'(T). Applying the product rule to
(2.45) gives
Ji = J‘ {ui¢i + gi»v¢i + ¢i(ui + v-ﬁi)}dtdv . (2.30)
p*(T)

ilm .
As ¢~ 1is continuous across [(T), we have

{ j + j } (ui¢i + gi-v¢i)dtdv
+ u—

= J ui¢i + floveldtdy | (2.51)
TxD
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and
{ J " J }Si¢idtdv " Jsidaidtdv. (2.52)
D'(T) D (T) TxD
Equations (2.49),...,(2.52) combine to give
| lel v ttewst + stpacay = [ #l(@'l (£ (. m)as
TxD r(T)
” { J + J } #'(ul + veg' - s)deav . (2.53)
+

D' (T) D (T)

So equations (2.38), (2.53) and the assumption u' € prl[R+xA ——>R+]

Vi<M give (W)evTes, Des such that TCR, DCA and

Vi<M ul€pwC [T — Rl Vi<M Ve eclmn R,

[ttt e mas - { [+ [} etateonet - shharay = o
I(T) D'(T) D (T)
(2.54)

with the possibility I(T) = & - the empty set.
From (2.54) we clearly infer (S*) AN(]) = (W*) as the logical

quantifications are satisfiable.

But also, D+(T) and D (T) may be deformed arbitrarily or may

become limitingly thin, hence

(W) =V (t.x) € R xS (T) |

ui + vef" -8 =0 by Lagrange’s lemma,

ie. (W) = (89
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and (W) =V T, D as above,

el ey mas = 0 (2.55)
(1)

But as TI'(T) and ¢i are arbitrary, (2.55) gives (W*) = (J) again,

by Lagrange’'s lemma.

2.3.5 Connectivity Conjectures

(W*) and (I*), although they are defined only for domains

containing simple discontinuities, are logically equivalent to
definitions defined over any countable union of domains containing
simple discontinuities. It would seem, therefore, that they are
applicable to any shock geometry as long as the shock configuration does
not contain shock ends or shock collisions. It may be that even these
restrictions are unnecessary as they only occur at isolated irregular
points. However, these issues do not seem to be very imporrtant, so I

have not pursued work on them any further.

2.4 Relationship to Tonti's Work

2.4.1 Description of Tonti's Structure

In his paper ([2]), Tonti describes a general structure for
physical systems. His basic idea was to classify variables
representing quantities into four types and relate each type with two
others forming a closed system, see figure 5. A simple example is
given in figure 6. This scheme was then shown to be applicable to a
wide variety of physical theories, (see figure 7), and a mathematical

theory of the general structure and its dual was formulated.
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2.4.2 Attempt at a synthesis

The natural idea is of course to represent the general diffusive

and nondiffusive equations of motion for a system of conservation laws

within Tonti’'s structure, However, after considerable effort, I have
found this to be impossible. It seems that Tonti’s structure needs to
be extended in order to relate it to conservation laws. Figures 8 and

9 show these extended structures for the diffusive and nondiffusive

conservation laws respectively.
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31 Further Formal Definitions

3.0 Introduction

It is well known that the incorporation of negative diffusion
coefficients leads to ill-posed problems. However, for a system of
diffusive conservation laws to remain well-posed, it shall be necessary
to derive a stronger condition than simply non-negativity of the scale
values for the diffusion coefficients (it is more akin to a generalised
parabolo-ellipticity). A suitable definition of diffusivity is
therefore formulated and then validated for the Navier-Stokes'’
equations.

The structure for a generalised system of conservation laws with
diffusion may be used to construct a model equation for two—-dimensional
steady flow. This is the next formal definition provided.

Further to this, it is shown that the invariant property of the
formal definition of diffusivity also holds for a stronger formal
diffusivity condition. However, this second definition does ot seem to
have the same applicability.

The next subject to be tackled is the admissibility of solutions to
nondiffusive systems. Existing work in this field concentrates on
simple cases, so the intention here is merely to conject on the general
structure of formal admissibility criteria.

Further to this, a general formal definition of hyperbolicity for
nondiffusive systems 1is derived, along with some comments on another
feature of the system structure.

Finally, the possible formalisation of the concept of antidiffusion

is discussed.
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3.1 Diffusivity
For the formulation, we will need the strong form of the equations

of motion with diffusion. Equations (2.15) and (2.18) give

(S) ®VteR Vx€A Vi(M,

1
du a i il du
3t * Kj{fj(‘-l) Vi) B dm}

Il
2}
[N

—~
=

ct
1%
N

(3.1)

(using summation convention).

A formal definition of diffusivity in the general spirit of [8] will be
given. An alternative formulation could be along the lines of [9].
In [8], Garebedian concentrates on the highest order terms in the

system. In (3.1) this gives us

1
il 3%u

Now, consider a change of co-ordinates which preserves the time

variable:

(t,x) = (t,§) . with § = §E(t.x) . (3.3)

Let

v(t.£) = u(t.x) . (3.4)
The term (3.2) may now be rewritten as

vil (u) d azvl a§p qu
= JgE 0 Ix, & '
m Ep fq %J Xy

il (3.5)
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Let M11 be the matrices given by

il il
M)k & Viggledd,

and let N11 be the matrices given by

a_ g, &%
pq ~ jkm m axj axk ’

(N

Thus the highest order term in (3.1) is now represented by

i1 g%u
jk axjaxk

M

and

il 62v1
3 8F
Pq Ep Eq

But equations (3.6) and (3.7) give the relationships:

il il afp afq
Moo = Mk ox, 5%
ole! J i "6,
- (vE),(rthy | (vE)
- >'pJ jk* =gk -
Thus
Lo wilep)T
Hence, as vE, Nil and Mil are all square matrices,

determinants g (3.12) gives

1

det N'U = Jg)2dec mi!

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

taking

(3.13)
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where J(f) 1is the Jacobian of the transformation (3.3). When the

transformation is well-defined,

0 < J(E) <o Vx €A VteER, . (3.14)

This leads us to the formal definition of diffusivity:

Definition 3.1

A conservation law satisfying equation (3.1) is diffusive if

VteR, . VxeED, Vilg<M,

det M1 3 0 (3.15)

where Mll is defined as in equation (3.6).

Lemma 3.1

The definition of diffusivity is well-defined since the sign of

i . . . . .
det M is invariant under any well-defined co-ordinate transformation

(as already shown).

3.2 Validation for the Steady Navier-Stoke's Equations

3.2.1 One Dimension

The one-dimensional steady Navier-Stoke’s equations are

& W - - w] - o (3.16)

where

g ] (3.17)
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pu
f = |p(p.T) + pu” (3.18)
el 4 o]
4 0 |
fv = g-du/dx (3.19)
udu/dx |
8 B
d, = 0 (3.20)
dT/dx |

)
d = [ . ] . (3.21)
o

where Mo+ K, are scale values for u and «. In the one-dimensional

case, the viscosity tensor is only rank 3 and is represented by
il
v, (w) .

By comparing (3.16) with (3.1) in this case, we obtain the

relation:
1 du1 v e
Vo(w 3= d = pf(u) + kf (u) , (3.22)
where
1,1 il
(Ym) = Vm . (3.23)

Also, in this one-dimensional case, (3.6) reduces to
il

- V;l(g)dm (3.24)

il .
where M are now 1 x 1 matrices.
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But (3.19) and (3.20) show that

1 0 0 0 dp/dx
il du
Ym (u) T dm - 0 2u 0 du/dx . (3.25)
4uu K dT/dx

Hence the matrix of matrices (Mll) is given by

0 0
oy = o & ol (3.26)
0 -4uu K

Thus the formal diffusivity condition (3.15) holds provided V t € R,

V x € A,

[NV \ Ve

(3.27)

&
(N4

The only one of these conditions that may cause problems in validation
is the condition u > O. This will hold because the flow must be

unidirectional in one dimension and by the normal choice of variables u

1s non-negative.

3.2.2 Two Dimensions

The two-dimensional steady Navier-Stokes' equations are

ar aG

-a; + W = Q ol (328)
where

F = f - uf - «kf (3.29)

- - -v ~c

G = g~ Mg, — Kg, (3.30)

e
I
—
Rel
o
<
—j
At
—3

(3.31)



g(u)

Il

£,(u) =

éﬂq

=C

g,

Conversion

equations:

(u)

f (u)

(u)

to

the
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pu
p(p.T) + pu®

puv

pv
puv

p(p.T) + pv®
1

0
2
3 (2ux = vy)

u + v
y X

2
j§11(2ux B vy) + v(uy + vx)

0]

u + v
y X

2 |
§' (2Vy - ux)

2
u(uy+ vX) + 3 v(2vy - ux)

. o

T
(0.0,0,T )

T
0,0,0,T :
( )

previous formalism is

UlLﬁ}f p(p.T) + %-p(u2 + vz)]

V[ e m) + 5 e + 2]

e

given by

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

following
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i i i i

F = F1 i G = F2 i (3.38)
iy | i i i "

f = fl ; o4 = f2 ; (3.39)

Equation (2.15) gives the relationships

i i il aul
F1 = fl = Vlkm dm 5;; ; (3.40)
i i il aul
F2 B f2 = V2km dm 5;; . (3.41)
d is again defined as in equation (3.21).
Hence we have
i i il aul
ufv + K.fc = Vlkm dm % . (3.4:2)
i i il aul
HE, * K&, = v2km dm 5§; ' (E43)
equation (3.6) then gives
1
i i il du
]J.fv + Kfc = (M )lk % 3 (34‘1)
i i il au1
Mgt kg = (M )2k q . (3.45)

Now, putting 1 =1 in equations (3.44) and (3.45), we observe both

left-hand sides are zero. Hence

V1, M = 0. (3.46)

(Note M11 are now 2 x 2 matrices).
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Also, as there are no Py and py terms in the fluxes on the left-hand

sides of equations (3.44) and (3.45) we also have:

Vi, Mt o= o, (3.47)
There are now only nine matrices to find - namely Mil for
2 <i,l € 4. These we found by setting i=2,3,4 in turn in
equations (3.44) and (3.45):
i=2
2 22 22
(3.44) = 3 u.(2ux = vy) = (M )llux + (M )12uy
23 23 24 24
+ (M )llvx + (M )12vy + (M )llTx + (M )12Ty ; (3.48)
22 22 23
(3.45) = u(uy + vx) = (M )21uX + (M )22uy + (M )21Vx
24 24
+ () v+ (BT ( asTy - (3.49)
Hence (3.48), (3.49) =
- 4 5
: 5 0
M2 - |3 (3.50)
e uo
. 2
0 ~ 3T H
G < (3.51)
- O
Wt - o (3.52)
(3.50) = det M2 - 22 (3.53)

(3.51) = det M>> - %pz . (3.54)



i

= 3

i

=4

(3.44) = u(u, +v,) = %),

+ (M33)11v + (M )12vy + (M34)11Tx + (IVI'?"1

2 > 2
(3.45) = S u(2v, - u) = %)+ (0 Yy
33 33 34 34
+ (M )21v + (M )22vy + (M )21T + (M )22T
(3.55), (3.56) =
2 | g
N 5
= 3 H 0 )
33 K 0 ]
M -
4
Y TH
wt - oo,
(3.57) = det M2 = £ 2
(3.58) = det M>° = 2
(3.44) = kT_+ 2 (20 - v ) + mv(u, +v.) = (M), u
y y X 117'x
42 43 44 44
(M) ou + s )11"x ¥ (MY, + (M Pt G0 ) pl
(3.45) = «T_ + pu(u_ + v ) + 2uv(2v -u ) = (M42) u
y y X 3 y X 217x
42 43 43 44 44
M )gouy + (M) g v+ (M )ggve + (M) o Tk (M) 0T,
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32
u, + (M )12uy

)1oT

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

55)

56)

57)

58)

59)

60)

61)

62)

63)
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(3.62), (3.63) =

4
= pu v
w2 - [ 3 } (3.64)
= § |JA'S Hu
[ nv - 2 L
w3 - ] (3.65)
| mu 3 v
44 [ K 0
Gl B ] (3.66)
(3.64) = det M = Zp2(2u + v?) (3.67)
(3.65) = det ¥ = Z.2(u® + 2v?) (3.68)
(3.66) = det MTt - 2 . (3.69)

Hence the formal definition of diffusivity 1is validated for the
two—dimensional steady Navier-Stokes’ equations as the determinants of
all the matrices Mil are non-negative.

It is suspected that the three-dimensional steady flow equations
may also be validated. Steady flow has been chosen for ease of
computation, since u 1is here not defined as the conserved variables

for unsteady flow, but as a simpler set of primitive variables.

3.3 A Two-Dimensional Single Equation Model of Diffusion

As stated in the abstract, it is hoped that this model equation
will have a use similar to Burgers’ equation. It is relevant, however,

to two-dimensional steady flow rather than one-dimensional unsteady

flow.
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We start by taking the diffusive strong form of the equations of

motion given by equations (2.15) and (2.18):

1
d i il du i, -
gt ax—j{fj@) =V () qdm} = S{wtx) . (i)

The following simplifications are made:

i) N = 2 ;
ii}) 8/t = 0
Hi)a = 1 [ (3.71)
il . .
iv) ijm(g) is constant;
V) S1 = 1
vi) M = 1 J
Let
F1(u) = f(u). and f(u) = g(u) . (3.72)
11 . .
Let ijl be given by the constant matrix
A B
V = [ B C ] . (3.73)
Note V is symmetric as, in this simplified case, the ordering of 5%“
J
d . .
and 5— 1is unimportant.
ax
k
Equation (3.6) gives the relation
M, = dV, . (3.74)
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Thus the diffusivity condition here is, assuming d > O,

det V> O
(3.75)

The equation of motion is now:

d
Ix [f(u) -d V11“x -d V12“y] +
2 g(u) - d Voou -d V,,u = 10
dy 21 x 227y)
(3.76)
i.e.
f(u)x + g(u)y = d(Auxx + 2Buxy + Cuyy) , (3.77)

- a model equation for two-dimensional steady flow.

3.4 Strong Diffusivity

The previously stated definition of diffusivity was based upon the
invariance of the sign of the characteristic matrices multiplying the
highest order derivatives within the system. It is a generalisation of
the hyperbolic/parabolic/elliptic classification of a single second
order partial differential equation. However, as will be shown,
positive (negative) definiteness (semi-definiteness) is invariant under

arbitrary co-ordinate transformations.

Definition 3.2

A conservation law satisfying equation (3.1) is strongly diffusive

if v te€ R+, V x € A4, Vi, l M,
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il q . 3 ..
M is positive semi-definite

VyeRr, vl y o (3.78)

Lemma 3.2

Strong diffusivity is well-defined as the condition (3.78) is

invariant under a change of co-ordinates.

Proof

Equation (3.12) gives Nil vE Mil(vg)T ;

i

Let
P = v¢f . (3.79)
If the co-ordinate transformation x — §£(t,x) 1is well-defined, P is
non singular.
So we may define
z = (P) y. (3.80)

Then, (3.78) gives

i.e. 2 Nz, (3.81)

Also, as P 1is invertible, span{y} = span{z}.

Hence the lemma is proved.
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Note

Equations (3.51) and (3.57) show that the two-dimensional

Navier-Stokes’ equations do not obey this condition.

3.5 Diffusive Admissiblity

Diffusive admissiblity 1is the process of using a sequence of
diffusive systems, E(g), in order to choose a specific solution to the
corresponding nondiffusive system, Z(o).

It will be necessary to introduce a new form of norm in order to
characterise this convergence process. The paradigm illustrating this
necessity is the way in which a sequence of tanh curves do not converge
to their limiting function (a step function) in the normal sense. In
order to overcome this, the norm described combines the dependent and
independent variables in a way which would seem to be analogous to the
use of Lagrangian variables. (An alternative norm 1is the total
variation norm).

Two versions of the admissibility criterion are presented, one
stronger than the other. They are, however, both weaker forms of
convergence than uniform or pointwise convergence as already explained.
It should be noted that there may be viscosity tensors for which the
solution does not converge in the weak limit and there also may be
solutions of 2(o) which are not limits of viscous solutions.

Once these criteria have been defined, a related condition on the
viscosity tensor is described. First of all, this new norm is defined.

It could be called a nondimensionalised cartesian combination norm, but

that's a bit of a mouthful!
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Definition 3.3

. N M . : .
The norm || “T.L,g' R+ xR xR - R+ is defined by:
2 |X| 2 M i 2 )2—
t - v
) i . U
i=1
where T,L,Ul,...,UM > 0.

As in 82.2.5, let u (t,x;d) represent the solution to 3(d). We

may now define the two forms of diffusive admissibility.

Definition 3.4

The undirected diffusively admissible solution, u (t.x;0) to

2(o) for the viscosity tensor V;im(g) is that which obeys the

condition:

v T.L,Ul.....UM > 0, Ve>O, 3 d(e) < do such that V 41' §2

such that lgl[. |§2| < d(e). v (tl, 51), 3 (t2, §2) such that

”(tl' X1 g*(tl, Xy gl)) - (t2. Xo g*(tz, Xo 92))”T.L.g < e, (3.83)

for some do > 0,

Definition 3.5

The directed diffusively admissible solution, g*(t,§;9), to 3(o)

for the direction d (|§| = 1) and the viscosity tensor V;im(u) is

that which obeys the condition:
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v T,L,U", ..., U > o0, Ve>O, 3 d(e) < do such that

vV d .d, < d(e), V (t;.x;) 3 (ty.x,) such that

0ty xyu (e x5 did)) - (%54, (t5.%Xss dzc_i))"T,L,[_J <e, (3.84)

for some d > O.
o

It should be noted that these two conditions are problem dependent.
Independent conditions may be constructed by considering model problems
such as plane wave solutions to the Riemann problem (see {11]).

In order to define the related condition on the viscosity tensor,
it will be necessary to define some new concepts and variables.
Starting from definition 2.8, the strong form (without quantification)

of the equations of motion is

du a i il aul i
== + g{fj(n_l) = Vi@ alzdm} = ST(ust.x) . (3.85)

Now, let Aj(g) be the flux matrices defined by

of .
a—-l = Aw) (3.86)
where
i
(£J)1 = fJ
and : (3.87)
(u) = u1

Now, consider a change of variables u — Yj(g) which has the property

of diagonalising the flux matrix Aj(g). So, if Pj(g) is defined by
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Piw) = 5 (3.58)

we require

PiwA P (@) = A(w) (3.99)

where Aj(g) is a diagonal matrix and (3.89) is not summed over j.
The related condition on the viscosity tensor corresponds to the
directed form of the admissibility criterion. It 1is therefore

necessary to collapse the rank of the viscosity tensor. Let ij(g)

be the matrix with the property

il il -

(W) = Vi(w)d (3.90)

for all j.k ¢ N.

Definition 3.6

The related condition on the set of viscosity matrices W.k(g) is:

for all transformations u — Yj(g) satisfying the condition (3.89),

Y ik Pj(g)ij(g)Pil(g) is positive definite, (3.91)

(not summed over j or k).

Motivation for this definition comes from Pego’'s result ([11]), showing
that, on the case N = I, this related condition, when holding in a
neighbourhood of a fixed value u_, ensures that the directed

diffusively admissible condition for the corresponding viscosity tensor

is equivalent to the entropy condition for the non-diffusive solution
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for weak shock solutions to the Riemann problem. The entropy condition

will be discussed, along with other conditions, in §84.2.

Note

From equation (3.90),

il il %
(ij) = vjkmdm .
but equation (3.6) gave
il il
(M )jk B Vjkmdm
Thus
il il
()™ = 000y - (3.92)
Also the diffusivity conditions related to M11 and the corresponding
condition on V%l related to W._, . So we see that in some sense
Jjkm jk

these are duals of each other.

Also the admissibility conjecture can be seen intuitively by noting
that the matrices Pj(g) have the effect of diagonalising the
respective flux matrices Aj(g) in the sense of (3.89). A
diagonalised flux matrix corresponds to a decoupled system, so it is
natural to expect the right-hand side to be at least positive

semi—-definite in this situation. Hence the definition 3.6.

3.6 Hyperbolicity

We start here by again quoting the general structure of a

nondiffusive system of conservation laws. Equation (2.35) gave
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d i i
gt T ax, (£5(0)) = S'(uwit.x) .
J
Using equation (3.86), this may be written in the alternative form:

du du
3c + Ay (W E = S(u;t.x) . (3.93)

We now quote Majda’s definition of hyperbolicity (see [1], p 10).

Definition 3.7

N

For an arbitrary unit vector, w. € R, we define the following

matrix
Aluiw) = Aj(@)a, (3.94)

the system of conservation laws (3.93) is then said to be hyperbolic if

and only if
YVw, A(uiw) has real eigenvalues. (3.95)

An extension to this definition would be to also constrain the
eigenvalues to be distinct (this is discussed at length for he case of a
single space dimension in [16]). However, it is not clear whether this
constraint is satisfiable in the multi-dimensional case. In any case,

a useful lemma is the following:
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Lemma 3.3
The hyperbolicity condition, with or without the extra condition on
the eigenvalues, 1is invariant under an arbitrary well-defined time

independent co-ordinate transformation.

Proof
We consider the arbitrary co-ordinate transformation given by

equations (3.3) and (3.4), except that we now have

E = E(x) - (3.96)

The equation system (3.93) may now be transformed to

ov av 6§k o
3t * Ay(¥) 5@;'5;; = S(v;f.t) . (3.97)
where
K (.0 = Au(x.0)
o : (3.98)
S(v(E(x),t):E(x).t) = S(u(x,t):x.t)
Let
. Of
B, = K, 5;5 . (3.99)
J

The corresponding hyperbolicity condition on the system in v is

V o such that |w| = 1

B(w) = Bkwk has real (distinct eigenvalues).
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But,
at
= k
Ble) = A; 5o 9
J
i.e.
e T
Blo) = K((vw8)'0), - (3.100)
As x» £ 1is a well-defined transformation, vf 1is always finite
and invertible. Thus

V x, span{w} = span{(vg)Tg} ; (3.101)
Hence the hyperbolicity condition for B(w) 1is inferred from that for

A(w).

Note that B(w) does not in general depend on § and t only
through v(f,t), see equation (3.99). Hence the structure given by
equation (3.93) is only invariant for a restricted class of co-ordinate

transformations with

vE = VvE(v(E(x.t).t)) . (3.102)

Furthermore, in the case when § = {(x), the structure is only

invariant for linear transformations (as can be easily shown).

3.7 Antidiffusion

As already discussed, one useful measure of diffusion is the signs

) .. . il
of the determinants of the characteristic matrices M. However,



- 52 —

there are other possibilities. Entropy can be used to measure
diffusivity because diffusion is a dominating process within shock waves
and entropy increases through a shock while otherwise remaining
constant. Pike ([13]) has shown that taking Pia’s formula for
viscosity ([14]) leads to a spiked entropy profile for the
one-dimensional steady Navier-Stokes’ equations, see figure 10. One
may infer that this corresponds to a region of antidiffusion lying
within an outer region of diffusion.

Another way of viewing the problem is by using the method of
characteristics. For a single equation in two dimensions (be it
space—-time or space-space), the characteristic surface may exhibit a
Riemann-Hugoniot (or cusp) catastrophe corresponding to the weak end of
the shock wave, see [7] and [15]. Normally, the overturned
characteristic manifold is fitted with a discontinuity curve
corresponding to the Rankine-Hugoniot jump conditions. However, if
this 1is not assumed, the three-valued function region could be
interpreted as a region of antidiffusion.

Formal results concerning shock formation and catastrophe theory

will be given in a later report.
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4. A Survey of the Mathematical Treatment of
Conservation Laws with Limiting Diffusion

4.0 Introduction

The mathematical treatment of conservation laws is compelled to
possess a close relationship with continuum physics in order to maintian
its applicability. This relationship is summerised below.

As already mentioned, nonlinear conservation laws permit the
formation of shock waves in finite time. The mathematical treatment of
these shocks in a nondiffusive setting necessitates the introduction of
discontinuous function spaces. This introduction, however, leads to
the possibility of the non-uniqueness of solutions (see [16], p.8).

Hence, some means of distinguishing between possible solutions is

required. The ones that are selected are generally called admissible
solutions. Thus admissibility criteria need to be established and
compared.

One selection criterion, as already mentioned in 83.5, is to admit
solutions which are limits of the corresponding diffusive system. This
would seem to be a natural resolution, but the issue is not this simple
as there are other ’'natural’ choices (for example, those that correspond
in some way to physical entropy), and also, the diffusive admissibility
criterion is too weak on its own in the case of systems (see [11]).

In terms of the mathematical theory itself, there are two things to
note. Firstly, it is often necessary to derive a function space for
the solution which is, in some sense, invariant (usually invariant in
time), the invariance property in this context is commonly called
regularity. Secondly, there would seem to be a tension between the

(usually meansure theoretic) nonconstructive analysis of these systems



_54_
and the derivation of constructive algorithms. Obviously, both
endeavours have their place, but there often seems to be a bias to one

or the other within accounts in the literature.

4.1 Admissibility Criteria

4.1.0 Introduction

An excellent summary of the different admissibility criteria is
given by Dafermos in [3]. He shows all the standard possible criteria,
their inter-relationship, and their relationship to physics. The
emphasis here in this paper is on the nondiffusive limit, so the

corresponding admissibility criterion is treated first and separately.

4.1.1 Non-Diffusive Limit Admissibility

The formulation for this problem was given in 83.5. The only
relevant points here would seem to be as follows: firstly, that the
criterion depends upon the choice of viscosity tensor and the sequence
of diffusion scale coefficients; and secondly, that the criterion is

of ten equivalent to the entropy criterion (see below and [17]).

4.1.2 Alternative Admissibility Criteria

The three main alternative criteria to the nondiffusive limit

criterion are: the entropy criterion, the shock criterion and the
entropy rate criterion. The entropy criterion is a model of physical
entropy and the second law of thermodynamics. This basically means the

existence of an entropy function that increases across shock waves (i.e.
in the direction of the flow).
The shock admissibility criterion is based upon the concept of

characteristics converging onto (rather than diverging from) a shock
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wave. Two alternative forms of the criterion are given by Lax ([16])
and Liu ([18]).

The entropy rate criterion is based on the idea that entropy is not
only increasing, but that it is increasing as fast as it can under its
constraints. This criterion only seems to have been discussed by

Dafermos in [3] and does not seem to be used much in practise.

4.2 Issues Concerning Convergence

4.2.0 Introduction

This section describes the analytical and numerical convergence of
systems of conservation laws and the convergence of shock waves and

their corresponding jump conditions in the nondiffusive limit.

4.2.1 Analytical Convergence of Solutions

For a single equation on one dimension, Oleinik ([19]) has shown
(in an extensive study) the total variational convergence for all finite
time under reasonable assumptions.

The case of two conservation laws (again in one dimension) was
first tackled by Conley & Smoller in [11] for the Riemann problem.
They give conditions on the matrix of diffusion coefficients (similar to
definition 3.6 in this simplified setting) in order to guarantee
convergence and a counter—example which does not converge for a wide
class of data.

The general case of several conservation laws has been studied by
DiPerna ([20]) and Pego ([12]). Pego’s work also covers the general
case of several space dimensions. He derives conditions and

counter—examples analogous to Conley and Smoller’s. One of his
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counter—-examples seems to add weight to the thesis that undirected
convergence is impossible but directed convergence is sometimes possible
(cf. definitions 3.4 and 3.5 in §3.5).

Two existence theorems for systems of conservation laws with

dissipation are given by Hoff in [21].

4.2.2 Numerical Convergence of Solutions

There are at least three factors relevant to this problem.
Firstly; the process of discretizing a continuous system may introduce
dissipative effects (see [22], pp. 108-119). This may also be viewed
in the opposite way - certain diffusive terms may be added to a
nondiffusive system which have an exact discretization (called the
modified equation method).

Secondly, it has been found that the incorporation of artificial
diffusion terms into a numerical scheme can improve stability and
convergence (see [23]).

Thirdly, other exponents stress the relevance of the physical
origins of diffusive terms within a system of equations as the
numerically approximated nondiffusive system will often itself be an
analytical approximation of a diffusive system (although they have
different time scales). It is argued that making these dissipative
terms more ’'physical’ will lead to improved stability and convergence

necessarily as the physical process is stable (see [24]).

4.2.3 Convergence of Shock Waves

The issue in question here is how (if at all) do shock wave

profiles in systems with diffusion converge to discontinuous profiles in
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the corresponding system without diffusion. Whitham ([4], §4) has
studied the case of viscous shock convergence for Burgers’ equation.
Exact solutions do not seem to have been studied in this way for more
complicated systems (see, however, a later report in this series for
generalizations of the Cole-Hopf transformation). In view of this fact
and the difficulty of locating shock waves analytically (as they are a
feature internal to the flow), it appears that little other work has
been done in this field. Haberman ([15] and [25]) sets up a framework
for analysing this issue but is concerned with a slightly different

problem.

4.2.4 Convergence of Jump Conditions

More work has been carried out in this field than in that of the
previous section. The one—-dimensional locally steady case has been
studied by Courant and Friedrichs ([17] pp. .135-137). They show how
the Navier-Stokes’ equation lead to the appropriate form of the
Rankine-Hugoniot jump conditions in this case. However Dulikravich
et.al. ([26]) claim that the Rankine-Hugoniot jump conditions are only
possible if Stokes’ hypothesis is enforced.

Whitham ([4], 84) shows the convergence of the jump conditions,
again for Burgers’ equation. Haberman ([15] and [25]) gives
convergence for the weak end of shocks in space-time. Initial analysis
by the author would seem to suggest that weak shocks in space behave the
same way (even more than for strong shocks). More about this will be

said in a later report.
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4.3 The Two Approaches to Regularity Without Diffusion

4.3.1 The Nonconstructive Approach

Within the nonconstructive approach to regularity there are two
distinct sub-approaches. The first approach consists of requiring the
function space to be the class of piecewise continuous (usually
infinitely differential) functions and then attempting to discern what
conditions are necessary on the flux functions and the initial data to
ensure regularity. Examples in the case of a sigle equation are the
work of Schaeffer ([7]) and Dafermos ([27]). According to DiPerna
([6]), a C” condition on the initial data is insufficient to guarantee
pr00 behaviour for all time.

The second approach is to use a weaker function space than the
space of piecewise continuous functions and employ measure theoretic
arguments to ensure regularity and to obtain insight into the behaviour
of shock waves within the domain.

It is well accepted (e.g., see [5], [6]) that the weakest space
exhibiting regularity and worthy of analysis is the space of functions
of bounded variation in the sense of Cesari (see [28]). In this case,
DiPerna ([6]) cites that the two-dimensional space-time domain may be
partitioned into three basic regions for a single equation, namely those
of continuity, discontinuity and irregularity. These three regions
contain successively one less dimension in terms of their Hausdorff
measure. The region of discontinuity may itself be partitioned into an
at least countable union of Lipschitz continuous curves (in the case
when A is infinite). Also, the appropriate form of the
Rankine-Hugoniot jump conditions is obeyed along these curves. Nothing

is known about the behaviour of the function in the regions of
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irregularity, but this is not serious as these are just isolated points
at the ends of the shock curves in this case. These results do not
seem to have been generalised to higher dimensional problems or to
systems.

Other stronger function spaces that have been analysed are integer
Sobolev spaces (see [1] and [29]), non-integer Sobdev spaces (also
called Besov spaces, see [5] and [29]) and uniformly local Sobolev
spaces ([1]).

A new method relevant to these problems is the method of
compensated compactness (see [30]) for an extensive overview). I can't
make head or tail of it myself (’so it really is a bit of a

Tartar!’ - M.J. Baines).

4.3.2 The Constructive Approach

As is well known, the two basic approaches to providing algorithms
to solve systems of conservation laws are shock capturing and shock
fitting. The most important shock capturing method lending itself to
analysis is Glimm’s random choice method (as the method uses piecewise
constant data, it has some features of both shock capturing and shock
fitting), see [31].

In shock fitting algorithms it is always assumed that the exact
solution is a piecewise continuous function of space and time. An
exact solution of a simple model characteristic equation shows that the
initial formation of shockwaves is an example of the cusp catastrophe
(see [15] and [32]) and the ensuing discontinuity may be fitted by using
the Rankine-Hugoniot jump conditions with logical consistency. In

practice, this 1is the only method employed for the propagation of
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discontinuous shock fronts (yet catastrophe theory is not generally used
in practice to describe the initial breaking of waves). This method
works well in cases of approximate radial expansion (where the surface
will propagate normally). However, in certain circumstances (for
example a rotating bow shock), this method may well lack accuracy and it
would be expedient to define a shock velocity in some constructive sense
in order to predict the new position of the shock wave. I intend to

address both these deficiencies in a later report.
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5. Conclusions

In this report a formal basis for discussion concerning systems of
conservation laws in several dimensions 1is given. This has led to
equivalence proofs for the different forms of expressing the equations
of motion and formal definitions such as those of diffusivity and
admissibility. Finally, a survey of work done on the mathematical
treatment of conservation laws with limiting diffusion has been

presented, with several areas I intend to follow up in later reports.
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Tonti’s Diagram for Maxwell’s Equations
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Tonti’s Structure for some Physical Theories
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Tonti’s Diagram Extended for Diffusive Conservation Laws
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Tonti’s Diagram Extended for Nondiffusive Conservation Laws
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