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ABSTRACT

For diffusion-convection problems in which convection is
dominant, Petrov-Galerkin methods are used to overcome the well-known
inadeguacies of the Galerkin method. The question arises as to how the
test space should be chosen for a given trial space. We consider a
factorisation of the differential operator which leads to the possibility
of generating test spaces with a view to either producing a nodally accurate
solution or a solution which 1s a best fit in a mixed norm. The Riesz
Representation Theorem guarantees the existence of such spaces, and enables
the relationship between the trial space - test space pairing and the
optimality of the associated Petrov-Galerkin method to be investigated.
In particular for the one dimensional diffusion-convection problem we
establish explicit optimal error estimates for any conforming 'upwind’
finite element method when a piecewise linear trial space is used, and our
framework 1s exploited to analyse the commonly used test spaces.

For two-dimensional diffusion-convection problems a method aimed at
producing a solution which is a best fit in a mixed norm is considered,
and numerical experiments using this and some 'upwind' Petrov-Galerkin

methods are presented.



1. INTRODUCT ION

Suppose that § 1s a bounded open region in R" with a polygonal

boundary 09§ = 891 u 392, and 391 n 892 = ¢. Then if L 1is a linear second

order differentlial operator, we will consider the problem
Lu = f in Q , (1.1)

us=g on 391 ,» 9u/dn = 0 on 392.

for a quantity u : ¥ 1s a source term, and 23u/3dn denotes differentiation

in the direction of the outward normal on 892.

1.1 Weak Formulation

Let H™(Q) denote the Sobolev space of functions with derivatives up
to order m being square integrable over the region Q. We suppose that
92 1is smooth enough for there to exist a unique, continuous, linear mapping
Yg @ Hi(Q) L2(391] such that for each v e Hl(Q), Yo is the restriction

of v to 391; we will suppose that g is such that there exists

G € HY(Q) such that Y.(G) = g. Then HL (Q) is defined by
0 E

0
1 - 1 =
HEU(Q] = {ve H(Q) | Ygv = 0 on 391} » (1.2a)
and
Hé[Q] = {veH () | v-6e HE (@)} . (1.2b)
0

As a general reference see, for example, Ciarlet (1978).
Then the weak formulation of praoblem (1.1) is to find u e Hé[Q] such

that

Blu,v) =<f,\> VWV ve H}E Q), (1.3)
0

where the angular brackets <w1,w2> denote the inner product Jw1w2d9.'
Q
and B(w1,w2] is the bilinear form resulting from integrating the second

order terms of the inmer product <Lw1.w2> by parts, so that only derivatives



of W, and W, up to first order remain. In the case of vector arguments,

<ﬂ1,£2> denotes the integral [ Wq W, df.
Q

1.2 Conforming Finite Element Method

We construct a finite dimensional subspace Sh(Q] of HI(Q) : Sh[QJ

is
called the trial space, and 1s spanned by a set of basis functions
{¢i' i=1,...,N}. Then the space SS[QJ is defined as
sPea) = s™@ n KL (@) . (1.4)
0 E0

We will consider only g for which there exists Gh € shtnl such that
YO[Gh] = g. The space SE[Q] may then be defined by

SR = (V=6"+W | We spa} . (1.5)

1.3 Galerkin Approximation

The Galerkin approximation to problem (1.3) is to find U ¢ SE(Q) such

that

BIU,V) = <f,\> V Ve sgtm. (1.6)

In the case where L 1is a self-adjoint operator, we may write L = T*T

where T* is the formal adjoint of T. Then

Blv,w) = <Tv,Tw> , (1.7)

and the Galerkin approximation U 1is the optimal approximation from the

trial space to the solution u of equation (1.3) in the norm II-IlT

defined on Hé (Q) by
0

I-12 =<1, 1> (1.8)

The approximation problem now is purely cne of selecting a trial space

from which the solution to (1.3) can be adequately represented. As general

=

references to the finite element approximation, see Ciarlet (1978), Strang & Fix

(1973), and Zienkiewicz (1977).



2. NON-SELF ~ADJOINT PROBLEMS

Conditions under which there exists a unique solution to problem (1.3)
are given by the Lax-Milgram Theorem: see Ciarlet (1978). Existence and
uniqueness of a solution to problem (1.6) are implied since SE(Q] is a
subspace of Héotﬂl : see Aubin (1972) or Babuska and Aziz (1972).

Furthermore, if u 1is the unique solution to problem (1.3) and U

the unigue solution to the Galerkin equations (1.6), then

fu-ul; s 01+ e, i“: lu-v .., (2.1)
VeS_(Q)
E
where C1 and Cz are constants in the Lax-Milgram Theorem (see below), and

the formal adjoint of the operator L. As L moves away from self-adjointness,

the norm |T is that given by (1.8), where T*T = i{(L+L*), and L* is
whilst the error estimate (2.1) remains of optimal order, the constant C1/C2
may become Qery large. The Galerkin formulation then becomes useless, and the

problem is no longer purely one of choosing a trial space to adeguately represent

the solution to problem (1.3).

2.1 Petrov-Galerkin Methods

For non-self-adjoint problems Petrov-Galerkin methods have been put
forward by many authors to overcome the inadequacies of the Galerkin formulation
as exposed in the error estimate (2.1). These are generalisations of the
Galerkin method in which a test space Th(Q) c H(Q) is employed. Setting
TB(Q) - M) n Hé (), the system (1.6) is replaced by the problem of

0
finding U € SE(Q] such that

BIU.W) = <,V > VVeTQm. (2.2)

TB(Q] has the same dimension as the trial space SS(Q] and is spanned by
a set of basis functions {wi, i=1,...,N}. The problem of choosing a trial
space SB(Q] to adeguately represent the solution to problem (1.3) still

remains, but it is supplemented, or rather overshadowed, by the problem of



choosing the test space Th(Q] to associate with a given Sh(Q). The

conditions under which there exists a unique solution to problem (2.2)

are given by the Generalised Lax-Milgram Theorem (see Babuska & Aziz (1972)):-

The Generalised Lax-Milgram Theorem

Suppose that B(-+,+) 1is continuous on Hé (Q) x Hé () and coercive
0 0
| - | denotes a norm on Hl (Q),
Bi E0

on SE(Q] X TB[Q); i.e. suppose that

and that there exist positive constants C1 and C2 such that

(1) [Bvaw)| s c, v B, lw il 8, ¥ v,w e HL (Q),
0

i sup |B(V,W)|

(i1) h h - 2 C,,
VeSy(Q)  WeT () ||V||Bi||w||Bi 2
sSu

(111) ﬁ {Bev,w)| > 0 VWAD, WeTl(a.
VeSO(Q) ’ ' 0

Then there exists a unique solution U to (2.2), and the following error

estimate holds:

||”'“||Bi < 01+ Cy/C,] Vesg(Q) lu-vig -
1

Morton (1981) has shown that the estimate (2.4a) can be improved ta

inf

h I u-v | ,
VesC(Q) By

lIu-U||B. < (€,/C,)
i
and also the way in which for the Galerkin method the constant C1 is
related to the mesh Péclet number for diffusion-convection problems (see

below].
In particular the tasks then are to construct TS(Q] in such a way

as to guarantee existence of a solution to (2.2) for arbitrary mesh-size

(2.3a)

(2.3b)

(2.3c)

(2.4a)

(2.4b)

parameter h, and so that the constant C,]/C2 in the estimate (2.4b) is small.

2.2 Diffusion-Convection Problems =

We consider now the problem (1.1) in which the operator L takes the form

Lu = -V- (aVu - Eu) in 9]

(2.5)



for a guantity u. Here, a(x) is a scalar diffusion coefficient,
E(i) is a vector convective velocity, and so Lu = 0 represents a
conservation law for u. In physical problems of this type, u may be
the concentration of a pollutant in a river, in which case the Péclet

number, that is the ratio |EJ L/a where L is a typical length in the

domain, will typically be in the range 102 - 103, Or in a cooling problem,

U will represent the temperature of the coolant: for example, liquid sodium in

a nuclear reactor, where the Péclet number will be of the order 2-3 x 103

(Wakil, 1962).

One can show (see Morton (1981)) that for L as in (2.5), there exists

a unique solution to problem (1.3) provided that the following conditions

hold:

—

(1)

|o
L]
=

20 on 392, where n 1s the outward normal on 392.

(11) f

m

thﬂ].
(iii) 0 <ace Co[ﬁj. where @ denotes the closure of i

(1v) b e [HY(Q 2 and 9-b = 0.

2.3 Factorisation and Riesz Representers

Under the conditions (2.6) the weak solution u to problem (1.3) may

be written as u = u-. + G with Ug € Hé (). Then Ug satisfies

. 0
= 1
B(uo,w) Flw) YV we HEO(Q).
where
= . 1
B(w1.w2) = <a2w1. Zy2> + <v (Qw1].wé> Yow, W, € HEU(Q).
and
Flw) = <f - 7:(bG),w> - <a¥G,Ww > V¥ w e HL ().
0
It is convenient to introduce the operators
1 1 1
T,2a'y and T, = a® ¥ - b/a’,

P (2.8)

(2.7)

(2.8)

(2.9)

(2.10)

(see Morton (1981}). We can then write the Petrov-Galerkin formulation (2.2)



as: find U € SB(Q} such that

<T, U, T, V> + f b nlvdQ, = F(V)

392

vV e Tg(s'z].

(2.11)

Let H1[QJ denote the Hilbert space Hé (Q) equipped with the inner product

0

<:v.w>1 = <é%jw. a%jw> a <T1V,T1w>

and HZ(Q] denote the

product
<v,w >é

Hilbert space Hé (Q) equipped with the inner

0
<aW, W> + <(b-b/alv,w>

<(a%ZiE/a%]V' [aigjg/a%]w> + [ b-nwwdq,
892

<T2v,T2w> + f benvwd®

aQ

5 *
2

Consider the bounded linear functional

2

Then, using the Riesz Representation Theorem and the continuity of B8(.,.)

in H1[Q), there exists R

Ay (W) = <Towq, Tywy + I B0 W

0
892

: H1(Q] > H1(Q) such that

1

1
V W1:W2 € HE (Q].

(2.12)

(2.13)

(2.14)

(2.15)

< L =
T2w1, T1wé> + I brn wow,dl, <T1w1. T1(R1w2I> ¥ ow,.w, e Hilg).

That is, R1W2 is the Riesz representer of A, in H1[QJ. Similarly, there
2

exists R2

< > * =
T2w1, T,]w2 + [ b nw,w sz <T2w
an

That is, sz2

consider generating an approximation U € SB(Q] to the problem (2.11) using

: H2[Q] > HZ(Q]

is the Riesz representer of A

892

such that

172

ol

in H,(Q).
w, i 2[ }

Hence we may

1 T2(R2w2J >+ I E,Qw1(R2w2]d92 v W,y W
Q

~

(2.18)

25H2[

(2.17)



a test space related to the trial space through the transformation

h - an ;=
Ri TO[Q] = SD(Q]. i=1or2. (2.18)

We note that the existence of an inverse R;1 : Hi(Q] -> Hi(QJ. 1i=1,2,

is guaranteed by the coercivity of B(-,+). (See Babuska and Aziz (13872)).
Then using (2.17), problem (2.11) may be written as: find U e SE(Q] such

that

_ h

<T2U, TZ(RZV]> + I Q_Q_U(RZV)dQ2 = F(V) ¥ Ve TOIQ). {2.19)
892

Thus if the choice of test space in (2.18) with 1 = 2 could be achieved

exactly, the approximation obtained from solving (2.19) is an optimal

approximation from SE(Q] to u, in the norm ﬂa% v 2 +|||Ej/a%4|2

0
defined by T2. Alternatively (2.16) may be used to write problem (2.11)

as: find U e SS(Q] such that

<Ty UL T, RVI> = F(V) V Ve Tgtm. (2.20)

Hence if the choice of test space in (2.18) with i = 1 could be achieved

exactly, the approximation U € SE[Q) abtained by solving (2.20) is an

1
optimal approximation from SB[Q) to u in the norm ||a52fl defined by

0

T1.

3. ERROR ANALYSIS FOR PETROV-GALERKIN SCHEMES

The following estimate, established by Morton (1981), relates the
optimality of a Petrov-Galerkin method to the matching of a test space to

a given trial space.

3.1 Basic Estimate

Suppose that B(¢,*) : Hm(Q] X Hm(Q] +~ R is a continuous and coercive
bilinear form, where Hm(Q) is Hé (Q) equipped with an inner-product
0

< '.'>m. Then by the Riesz Representation Theorem, for each v ¢ Hm[QJ there

exists amap R_ : H (R} > H () such that
m m m



Blv,w) = <v, me >m VY we Hm(ﬂ]. (3.1)
Then if the constant Am is defined by

inf h
weTS(QﬂlV—mellm > Am“vum LA SO(Q)' (227

—e

and U is the Petrov-Galerkin solution to problem (2.2}, and u 1is the

solution to (1.3), the following estimate holds:

luul s -a2y7F  I0F g (3.3)
m m VESE(Q) m

3.2 Expressions for the Operators Rm in One Dimension

We will consider the one-dimensional Dirichlet problem:

-au' + bu' = f on (0,1) (3.4a)
u(O? =g ul1) = gr (3.4b)

where a and b are positive constants.

With the “- “1 norm as in (2.12), it follows that, for B(°,°*) as in

(2.8) and R1 defined by (3.1),

X

(R,v)(x) = vix) +[b/a]J (v(t) - V)dt, (3.5)
0

1
whére Vv aff°7ﬁ¥f7dt. (See Morton (1881)).
0

Similarly, with the ll'llz norm as in (2.13), the operator R2

defined by (3.1) may be explicitly written as

X R
(RVI(X) = v(x) +(b/a](} vie)eP ¥ 8840 _ ¢ ainn (bx/a:). (3.6)
0
" b(1-t)/
where K = [ e @ v(t)dt / (sinh (b/a)). (3.7)
0

We note that, whilst the expression for (R1v)(x) in (3.5) is considerably

simpler than that in (3.6) end (3.7) for (szl[x). the inverse

_ X _ bx/a_ 1 _ \
(R ) () = wix) - (b/a) [ RPTRRLISS VLT |t | I IPPRNLICS VI
0 et:l/a_] 0

is correspondingly more complicated than the inverse



-1 - - e
[sz] (x) = wix) (b/a) [ wlt)dt 575

0 1-e

X __~bx/a 1
J w(t)dt

o

3.3 The Calculation of qﬂ

For a given trial space and test space pair, the degree to which the
Petrov-Galerkin solution fails to achieve optimality is described by the
constant Am in the estimate (3.3). From (3.2) the smallest constant is

given by

sup inf Hv-me I
= h h
m VeSU(Q] WETO[Q] “V “m

It will be assumed that SB(QJ and TE(Q] are of dimension N, so that

any element V € 82[9) may be written as

N
! =i§1 Vi ¢i ’
and any element W e TS(Q) may be written as
N
W =1Z1 Wy ¥y
The N-vector V will denote the vector with components Vj‘ J = 1,...,N,

and W the vector with components Wj. j=1,...,N, etc. If we consider
inf

[3.8)

(3'9]

(3.10)

calculating WeTh[Q] ||V-me||m for a fixed element V ¢ SE(Q]. we may write
0

- 2 . P 2 x h
| v mellm ||y||m ||me||m +2<R W, RW-V> VWe To(@.
Then if W* € TB(Q] is the element which minimises ||v-me||m, we have

<RW* -V, RW> =0 ¥ We Th[Q].
m m m 0

and hence

g I By = 2
fv-Rrwe 2 =lviz -IRw|z.

(3.11)

(3.12)

(3.13)



_']O_

If the interval (0,1) is discretised into elements, with a set of

N + 1 nodal positions {xj, j=0,e0e,N +1}and x. = 0, x

0 N+1 = 1, we

may associate with node J the trial and test basis functions ¢, and qﬁ
respectively. We then introduce the three N x N matrices A, B and C

whose (i,j) entries are given by

Arg = SRy Vs Rovy >

Byy = <Ry ¥ir ¢y >

and 3
Ciy = <43, &5 >

1,--.,N
1,000.N (3.14)

-
non

respectively. Equation (3.13) may then be written in the form

inf

- 2 o ylpy - wel
WeTP () Iv-RWIZ=vicy - wemws . (3.15)
Combining (3.15) with (3.8) we have
, s (v cv-w*T A*)
Ac = h
m VeSO(Q] YTQ!
sup w*TAﬂ'
= Y \'- = (3.16)
V'V

The defining equation (3.12) for W* may be written in the form

AW* =BV . (3.17)

Substituting this into (3.16) and using the fact that A is symmetric and

positive definite, gives

sup VTBTA-1B!

42 = v (1 - Z—nuT™ . e
- v ey (3.18)

Since C 1is symmetric and positive definite, we may make the transformation

1
X = C*V, and hence

2 . 5 - , (3.49)
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We could then obtain q% by computing the largest eigenvalue of the
matrix I - QTQ, but such a method has the disadvantage that the square roots
of the symmetric matrices A and C have to be computed. Alternatively,
since C 41is symmetric and positive definite we could compute the smallest
eigenvalue %n satisfying the generalised eigenvalue problem BTA-1B! = me!.
(See, for example, Wilkinson (1965}). In the numerical calculations described
later in this section, the more direct approach of abtaining 1/A% by minimising
the expression

vicy

. (3.20)
vicc-8"a Tav

as a quotient of two quadratic expressions in the N variables V1,....V

problem is solved analytically for a large class of Petrov-Galerkin methods.

N

was used. In the Section 3.5, howsver, for the norm 1° this eigenvalue

The adoption of such an approach not only allows the constant Am to be

easily computed, but exposes the structure underlying the problem in this norm.

3.4 Analysis in One Dimension

From the definition (3.8) it is clear that 0 < A% < 1. Further,

if Am = 0, from (3.3) we have for the Petrov-Galerkin approximation

lo-ull = o

the trial space-test space relationship (2.18) has been satisfied

exactly, and thé optimal test space in the sense of reducing the constant

in the estimate (3.3) has been found. Where Am # 0, the aim is to calculate
the degree to which optimality in the estimate (3.3) is lost through having

a test space which does not satisfy (2.18) exactly. In this case,
0< A2 <, “
m

and hence from (3.18) we have

v oe'a By

0< - < VV#AQ. (3.21)
Vi c v




In the case of m

note that the matrix

In the case when

C

of the form

m:

as defined by (3.14) is a tridiagonal

1

2 -1

-1 2

-1
S,
h

0
[

=2'

’

_12_

for a piecewise linear trial space we

1]
2 -1
=1 2

2a/h + 2b2%h/3a

and upper and lower diagonal entries

Since

and so in both cases,

-a/h + b2h/6a.

vie

v

>

Combining (3.24) with (3.21) gives

Since

Ni=

C

such that V =

where

C

A
m

<o\ >m‘ m= 1,2, is a norm,

0

viie'aBiv > o

is symmetric and positive definite, there exists a matrix
-1
, with an inverse C °.

is the smallest generalised eigenvalue satisfying

C

¥V # 0.

is positive definite,

Hence for any V there exists a vector

-1
C *X, and A% can be written as in (3.19). Hence

L

N x N

C is again tridiagonal, with diagonal entries

matrix

(3.22)

(3.23a)

(3.23b)

{3.24)

(3.25)

(3.26)

(3.272)
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The complicated nature of R L

y leads to difficulty if this form

involving A_1 is used for the analysis in the case m = 1. Consequently,
having established (3.25) we may set Xm

1]-1 to give

C_1BTEm and premultiply (3.27)

by the matrix (BTA-

Em = %n A Em' (3.28)

The analysis to equations (3.27) and (3.28) is applicable for any choice
of conforming test space TB[Q] for either the case m =1, orm= 2.
The remainder of this section is concerned with using equation (3.28)
to establish optimal error bounds of the type (3.3) in the case m= 1 for a

general class of Petrov-Galerkin methods, namely 'upwind’ finite elements.

3.5 'Upwind' Finite Elements

Consider the problem (3.4) on a uniform mesh of size h, with N

interior nodes {XJ =3h, J =1,...,N } and Xg = 0, XNeq T 1. Using the
standard finite difference notation
A = -
0 UJ (UJ+1 UJ 1]/2 i
A, Uj = Uj+1 N Uj'
(3.29)
A uU,= U, -U ,
= J J J-1
2 = - -
nd e T R R IR
the left-hand side of (3.4) may be replaced by the difference operator
h™?(a 62 +bhiad _ + (-l ) U (3.30)
Choosing
a = coth (bh/2a) - (2a/bh) (3.31)

gives the difference scheme first proposed by Allen & Southwell (1955);

if f 1is constant this scheme will produce a nodally exact solution. ~
Numerous 'upwind' Petrov-Galerkin methods have been proposed with a view

to reproducing the difference operator (3.30) on a uniform mesh for problem

(3.4), and hence achieving nodal accuracy: see, for example, Il'in (1969),
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Christie et al (1876), Hemker (1977), Heinrich et al (1977), Barrett (1977),
Hughes (1978}, Kellogg & Tsan (1978), Dixon, Harrison & Morgan (13979), Griffiths
& Mitchell (1879), Hughes & Brooks (1979), Heinrich & Zienkiewicz (1978),
Axelsson (1981), Kellogg (1980), Brooks (1981).

One may easily show that in the case of a piecewise linear trial space

SE(Q), the best fit from this space to a function u in the norm ||-“

1 is
nodally exact: the best fit U* ¢ SE(Q] is defined by
1
f (u' - U"]¢j dx = 0, J=1,...,N (3.32)
0
where
[xj+1-x]/hj+1 , Xy < xS Xjoq
¢J(x] = (x - xj-'l]/hj s X4-1 < x < Xy s | (3.33)
0 ’ elsewhere s
and hj = Xy T Xyqe j=1,...,N#1. Bscause ¢3 is constant on each
element, equation (3.32) may be written as
A_ (u[xj] - UE]/A_xj = A+(u(xj] = UE]/A+Xj | (3.34)
This implies that (u[xj] > U3]/hj = [u[xj_1l - U3_1]/hj is a constant C,
say, for j =1,...,N+1, Hence, summing fram j =1 to j = N+1 gives

C =0, and so =

(u(xJ] - U%)/h, = (u[xj_1)-Uf 3/heo

17/hy 3-10/hy Toeeu,N#1, (3.35)

Since u[xo] = U*, then u(xj] = U3 for J = 0,...,N+1,

It is thus particularly appropriate that the norm ||-||1 should be
used in the analysis of 'upwind' Petrov-Galerkin schemes.

In an 'upwind' finite element method, the test space TS[Q] is spanned

by a set of basis functions {wj, j=1,...,N} of the form

wj(x] = ¢j(x) + aj(x), J = 1,....N, (3.36)
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where ¢j is as in (3.33) with h, = h for all j, and aj[x) has the

J
shifted form

0 ' X < xj— h
all(x - Xy + h)/h) vooXy S h <€ x < Xq o
ay(x) = 2 o, (x - h) kg <x sk v h, (3.37)
L 0 ’ XJ + h < x .

For a conforming finite elsment method, a(t) may be any continuous function

on the interval [0,1] , with the property that

a(0) = al1) = 0.

1

The sign of I a(t)dt will depend on the sign of b 1in equation (3.4a).
0

Typically, if b 1s positive, a(t) will be of the form

alt) P
Fig. 3.1
>t
o 1
Then aj(x) takes the form
&y (x) Fig. 3.2
> X
X, = h X, X_+ h
J J

en the interval (xj - h, xj + h).

Note that despite the fact that many of the well-known 'upwingd’

methods use an a(t) which is even about t = i, such a restriction is not

necessary in the following analysis.
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Some results concerning the structure of the matrices A, B and C

in (3.14) will now be established to enable the equation (3.28) to be fully

exploited.

Lemma 3.1

Let I denote the N x N identity matrix, and E denote the

matrix in which each entry is unity. Then for the non-dimensionalised problem

(3.4) in which b = 1, and the uniform mesh size is h, the N x N matrix

in (3.14) has the form
A = (h/a)(I - hE + kC) ,

1 1
where k=-a IU ¢5w3:1dx - (1/a) [0 ¢J¢jt1dx 5

Proof

For j = 1,...,N, combining (3.5) with (3.14) gives a diagonal entry

AJj of the form

1
Ajj = (1/a) [D(awj + wj - ij(awj + ¢j = wj]dx

1 1

Noting that ¢, = I Y.dx = h, f ¢'dx = 0, and
N g 9 g 4

1 1
[ ijédx = 3 [ d/dx (wjlzdx = 0, (3.40) may be written as
o 0

——

1 1 :
A = [2 2 - h2
33 a I wJ dx + (1/a) IU wj dx h</a
1 1 1
Also noting that f (wj + wj+1]2dx =2 Jo

and that wj + wj+1 = ¢j + ¢j+1 =1 in [xj. xj+1l .
1 1
so that JU (wj + wj+1)2dx = IO wgdx + h, gives

1 1
P -
[o vidx = h - 2 [o FUINLED

2
wjdx + 2 IU ijj+1dx.

A

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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' t -
Further, since wj + wj+1 0 in (xj.xj+1],

1 1 1
12 * 1 - [ ] +
IO *j dx 2[0 ijj+1dx JO wj[¢3 ¢j+1 ¢5_1]

=U|

giving

1 1
Pl2dx = - 2 f Pryl, dx . (3.43)

Hence on substituting (3.42) and (3.43) into (3.41) we obtain

1 1
= - ' - - h2 =
AJJ h/a - 2a [0 ij5+1dx (2/a) [0 ¢J¢J+1dx he/a, J 1,000,N.  (3.44

For the upper diagonal entry A

1341 }J=1,¢0.,N-1, combining (3.5)
with (3.14) shows that

1
Aygeq ™ (1/a) [0 (a¢3 Uy - h](aw3+1 by T h)dx. (3.45)

Equation (3.45) may be written as

1

1 1
AjJ+1 = a [0 ¢3¢3+1dx + [0 d/dx (ijj+1]dx + (1/a) JU ¢ij+1dx - h2/a.

1
But IO d/dx (ijj+1)dx = 0, giving

1 1
Ajj+1 = a [0 w3w5+1dx + (1/a) IU waj+1dx - h2/a. (3.46)

The lower diagonal entries Ajj-1’ j=2,...,N may be obtained through the

symmetry of A.
Finally, for 1 # 3. j + 1,

1

Ay = (172) [ (apy + ¥y - h) Capy +yy - o (3.47)

0

Noting that the support of wj nowhere colncides with that of by reduces

(3.47) to

Ags " -R2 /34 ; (3.48)



-

and (3.14) is given by
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Hence combining (3.44), (3.46) and (3.48) produces the desired result.

Lemma 3.2
With I, E, h and b as in Lemma 3.1, and the N x N matrices

and C as in (3.14), the N x N matrix BC-1BT has the form

Bc '8 = (h/a)(I - hE + yC),

1 xj : h
where y = (éﬁ a + J ajdx e
xj_1

Proof

First we note that

X141 X 4§41
Ix (awj + wJ]dx = Ix [a¢j + aaj + ¢j + aJ) dx
J J

xj+1
= -a + ih + f a, dx ,

J
X3
and = .
[ 3 ' ‘ Ij
y (awj + wj]dx = a + th + § aj dx.
J-1 . j-1

Then the diagonal element B

1
_ 1 - 1
13 J (awj + ¢j h)¢j dx

B .
0
xj ><j+1
= (1/h) IX (a¢3 + wj)dx - (1/h) Ix (awﬁ + wj)dx
Jj=1 J

xj xj+1

= 2a/h + (1/h) J a.dx - (1/h) J o .dx,
X J X J
J-1 J

from which we obtain

43 4 = TiesuN of the matrix B from (3.5)

(3.50)

(3.51)

(3.52)



_19_

X
J
Bjj = 2a/h + (2/h) ij-1 éj ax, J = 1,.0.N

In a similar manner we obtain, for j = 1,...N-1,

X
= -a/h+ 3 -ti/m |3 ay dx,
XJ_1

By541

and for j = 2,...,N,

B = - a/h -

v

%3
- (1/h} I aj dx.
XJ‘1

These are clearly the only non-zero elements of B, and we see that

Bjj =1-2 BJJ+1 and B - 1.

= B
J3-1 J3+1
Thus B may be written as
B = - (ph/alC + G ,

where p = E!jJ+1 and G 1s the N x N matrix with entries of 1 on the

diagonal, -1 on the lower diagonal, and zero elsewhere, so that

G+ G' = (h/a) C.
Clearly
¢ 8T = - (phza)t + ¢ 6T,
and hence
Bc '8 = (ph/al2C - (ph/a)(G + G') + GC G

p(p-1)th/a)2C + 6 6" .

It is clear that G_1 is the N x N triangular matrix with entries
-1
of 1 on the diagonal and below, and that GT is the N x N triangular

matrix with entries of 1 on the diagonal and above, so that

G + G =TI +E

Hence

T T

(a/h) G 1

(6 + GG~

(]

(@]

(ep]
1]

(a/n) (I + E).

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(258D

(3.59)

(3.60)

(3.61)
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But sinee E2 = NE and h{(1 + N)

= 1 we have
(I - hE)(I +E) = I + (1 - h)E - hE?
= I+ (1-h(1+N))E
= T. (3.62)
Thus
6c 16T = (h/a)(z + £)7)
= (h/a)(I - hE), (3.63)
enabling (3.59) to be written as
Bc 18T = (h/a)(I - hE + (plp-1)h/alC). (3.64)

The forms (3.38) and (3.50) can now be used to write equation (3.28) in

the following way:

(I - hE + yC) Em = Am (I - hE + kC) Em' (3.85)
Rearrangement of (3.65) gives

(1 - Am](I - hE) P, = (Amk -y)C P (3.66)

and hence, noting that 0 < 1 - km < 1, and using (3.62) we have
((Amk -y)/ (1 - Am)](I + E)C Em 8 P (3.67)

We will next show in Lemma 3.3 that the function (X k-y)/(1-y) 1is
a monotonic function of X, so that we can relate the smallest eigenvalue
Am to the largest eigenvalue of the matrix (I+E]JC.

Lemma 3.3

With k and y defined as in (3.39) and (3.51) respectively, the function
fIX) = (A k=y)/(1-y) < (3.68)

is a monotonic increasing function of XA for any upwind test functions

satisfying (3.36) and (3.37).
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Proof

We first note that
3f/3x = (k-y)/(1-2)2 .

Combining (3,39), (3.50) and (3.64), we may write

i xj+1 xj+1

alk-y) = -a I gj¢j+1dx - I ?jwj+1dx - p(p-1)h,
X X
J J

where

X
p =-% I 3+1 (awj + wjldx

*3

Noting that on the interval (xj.xj+1J.

SR T ¢
and using (3.71) enables (3.70) to be written as

X449

x X
a(k-y) = a2 I J+1 wjz dx - [ 1 wJ(1-wJde + I [awj + wjldx

XJ XJ

X

- rj” (ap! + ¢,)dx :
ol LAY

J

Hence by using the Cauchy-Schwarz ineguality we obtain

alk-v)

v

X, X X
52 I J+1 ¢jzdx . [ j+1 ¢§dx o [ j+1[aw3 . ¢j]2dx
X X

: X
J

u

X
-a-2a rxj+1 ijj dx .

J
We now note that since ¢3 is piecewise constant on (xj,xj+1] and
aj(xj] = aj(xj+1] = 0, wusing (3.36) gives
X X X X
3+ Y.atdx = f 3+1 ¢.o'dx + I j+1[a2]'dx = - J 3+ ¢ta . dx =
MRS R NS i M 3

and

-

o

(3.69)

(3.70)

(3.71)

(8720

(3.73)

xj+1

o
X, 3
J

dx
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and hence

X
J+1 tdy = - L
JX lJJJ-\ledx 3

J

Substituting into (3.73) gives the inequality

alk-y) 20 s (3.74)

and hence from (3.68) we deduce that f()) 1is a monotonic increasing

function of A. u

Using Lemma 3.3 and equation (3.67) we see that if Urna is the largest

X
elgenvalue of the matrix (I+E)JC, then the required km satisfies

[1-Am]/(km k-y) = ¥max . (3.75)

Equation (3.75) leads us to consider the eigensystem of the matrix

(I+E)C, and the necessary results are given by Lemma 3.4:

Lemma 3.4

For positive integers p,

- |48l iq2
Sp - [ h] sinc pw/N+1 (3.76)

is a double eigenvalue of (I+EJC corresponding to the two eigenvectors

_—_—

V= (sin(2pm/(N+1))7 sin (4pn/(N+1)), ..X 8in t2Nmr/EN+ﬂJT a
-p (3.77)
T .
and W = (sin®(pm/(N+1)), sin?(2pm/(N+1)), ..., sinZ(Npm/(N+1)) .
e
If N 1is even, this accounts for the complete eigensystem of the matrix
(I+E)C.

If N is odd, the one remaining eigenvalue is 4a/h and corresponds to

the eigenvector

MN =(,0,1,0, ..., 0, 1, 0, 1) . {(3.78)
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Proof

The Lemma can be easily established by the use of trigonometric identities

to show that for N even,

(I+E)C V =S V and (I+EJC W =S W, p=1,2,... N/2,
-p Tpp —p p—p
and for N odd,
(I+E)C V =S V nd (I+E) CW =S W_, = 1,2,.0.,5(N-1),
- pp ° =p  “pp . LR
and (I+E)C !N = (4a/h)yN. =

Hence, to summarise, the constant (1-A%]-% in the estimate (3.3) may
be obtained through the use of (3.26) and (3.75) where Y and k are defined
in (3.38) and (3.51) respectively, and Hmax is obtained through Lemma 3.4,

to give

Am = (1 + umaxyl/(1 + umaxk]' (3.79)

Hence when N 1is odd, Am is given by

_ h + 4ay
Am — h + 4ak H [3080]

and when N 1is even, Am takes the explicit form

s 02
- h + 4ay sin® INm/N+1 . (3.81)
h + 4ak sin? INm/N+1

A

Since for N even, Mrax = (4a/h)sin? iNm/N+1, and for N odd,

Mmax = 4a/h, we may write (3.79) as

Am = (h + 4auy)/(h + 4auk)

in all cases, where 0 < u £ 1. We note from (3.50) and (3.64) that

Yy = plp-1)h/a,
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and hence that

h + 4auy = h(1 + 4up? - 4yp)
= h((1 - 2upl2 + 4p2y(1-u))
= 0.

Further, from (3.39) we see that

o (%341 X441
h + dauk = h - 4u[a L Vibqdx # L ijj+1d><]
J J
X X X
= h + 4"(62 J j+11p32dx _ f J+11‘) dx + J j+1l,)2d>(]
xj xj J xj J
X X,
= 4u(a2 J j+1w!2dx + [ J+1Ew.-%]2dx + h[1-u]]
X J X J
3 J
>0 since wj is conforming.

Hence, using the inequality (3.74) we have that for Ap @s in (3.794,

0<A < 1.
m

3.8 Test Space Examples

(a) Heinrich et al (13877)

The test functions are of the type described by (3.36) and (3.37), where

alt) is the guadratic form

alt) = - 30t(t-1), 0<t <1, (3.82)

and o 1s a constant which determines the degree of upwinding. Heinrich et al

make the choice of Ipg = coth(bh/2a) - (2a/bh), so that for the constant
coefficient problem (3.4) the Petrov-Galerkin scheme reproduces the Allen & Southwel
difference operator (3.30) when a piecewise linear trial space is used.

The constants k and y in eguation (3.79) can be obtained from the.

definitions (3.38) and (3.51) respectively, and are given by

=
n

al1 + 302)/h + (902 - S)h/(30a), (3.83)

and

<
n

(h/a) ((a/h)2 + ag/h + 02/4 - 1/4). (3.84)
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Then in the case where N 1s odd, u takes the simple form Moax = 4a/h,

and hence Am is given by

2 2
Am . h o< + 4ag + 4a%/h ) (3.85)
(6h/5 + 12a2/h)c2 + (h/3 + 4a2/h)

A similar expression may be derived when N 1is even, using the explicit form

in (3.81).

In the limit of very high Peclet number, a -+ 0, and

1+ (umaxh/4)(cz - 1)

lm > ) g (3.88)
1 + (umaxh/30)(90 - 5)

When N 1is odd, (3.86) reduces to the particularly simple form

Ap > 1502/(5 + 1802) as a » 0. (3.87)
Choosing the parameter o = Ops @0 in Heinrich et al (1977) leads to ¢ » 1
as a > 0, and hence the smallest constant in the estimate (3.3) is
(1 - A%]-% + V23715 as a->0 . (3.88)

However, we may make use of the explicit form for km in equation (3.85)
to set axm/ac = 0, and hence show that the choice of o which establishes

the smallest possible error constant in {3.3) is

ot (5h/36a) (1 + 12(a/h)2)/(1 + 10(a/h)2), (3.89)
and the constant is
(1 - A;);ét > VB/5 as a-0 , (3.90)

which is a considerable improvement on (3.88).

-1 1
Values of the constants (1 - A%)  and (1 - A%]ost for a complete range
of Péclet numbers for the problem (3.4) with h = 0.1 are given in Table 3.2.

Figure 3.3 compares the parameters o and o

AS opt*’
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(b) "Super" Hughes & Brooks

When a piecewise linear trial space 1s used, the Streamline Upwind
Procedure introduced in Hughes & Brooks (1979) may be reformulated as a non-
conforming Petrov-Galerkin method: see Hughes & Brooks (1981). The test

functions are of the type described by (3.36) and (3.37) with

alt) =

[N

b Ops 0 <t <1, (3.91)

Such test functions are clearly discontinuous, and hence lie outside the frame-
work of the analysis in Section 3.5. However, we have modified the choice
of al(t) in (3.91) slightly to construct conforming test functions in which

Gj[x] takes the form in Fig. 3.4.

: Fig. 3.4
|
a |
l [
$ : > x
X -
3-1 1% Xj41
By choosing
N = = 1 = -
o oy = 3 h b cAS/(h e), (3.92)

the test function is normalised to have the same area as the discontinuous test
function using a(t) given by (3.91), and hence reproduces the same
difference operator for problem (3.4) when a piecewise linear trial space is
used. From the definitions (3.39) and (3.51) we may show that k and y in

eguation (3.79) are given by

=
n

=

111

a/h + 2ac?/e - h/6 - 402¢/3a + g2h/a

and

a’/h + 26(h-e)/h + 02(h-e)2/ha - h/4a.

<
[
<
1t
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Hence in the case when N is odd, Xm is given by

) —e112
S 4(a + o(h-€)) : (3.83)

(1/3+402)h2 + 4a2 + Ba2¢2h/e - 1602¢h/3

A similar expression may be derived using equation (3.81) when N is even.

If the form for o 1in (3.92) is substituted into (3.83) we may consider
Am as a function of €. This relationship is displayed in Figure 3.5 for a
range of mesh Péclet numbers. We may thus make use of (3.93) in selecting ¢
optimally in order to maximise the value of Am and hence minimise the smallest
error constant in the estimate (3.3). The optimal choice of ¢ 1s shown in

Table 3.1 for a range of mesh P€clet numbers when the element size h = 0.1:

Table 3.1
bh/a eopt
2 3.1699 x 1072
5 2.4743 x 1072
10 1.5294 x 1072
20 8.2231 x 107>
50 3.4003 x 107>
100 1.7166 x 107>
500 3.4581 x 1074
5000 3,4635 x 10 °
10000 1.7318 x 10°°

From Table 3.1 and Figure 3.5 it is clear that for large Péclet numbers,

Eopt depends almost linearly on the mesh Péclet number, and that as B8 = bh/a » =,

Eopt + 0, and the discontinuous Hughes & Brooks test function is the limit towards

which the optimal "Super” Hughes & Brooks test function tends as B + .
Furthermore, if the nonconforming Hughes & Brooks test functions are used

to evaluate the entries in the matrices A, B and C in (3.14) with the
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integrations being carried out element-by-element to avoid the inter-element
contributions arising from the discontinuities in the test functions, the

error constant thus obtained using equation (3.20) is
-1
(1 - a207% > 2//5 as a0, (3.94)

-1
which is the limit of the constant (1 - A%] ? for the conforming "Super”
Hughes & Brooks test functions with € = Eopt'
-1
Values of the constant (9 - A%) * for a complete range of Peclet numbers

for problem (3.4) with h = 0.1 are given in Table 3.2.

(c) Hemker (1977)

The test functions are of the type described by (3.36) and (3.37), with

a(t) given by the exponential form

alt) = (e-ht/a _ e-h/ -h/a

8 - (1-t)1 - e 11701 - e M), (3.95)

From (3.95) we note that
o+ Jafdx = - (1-t) + K (3.96)

where K 1s the constant a/h - e-h/a/(1 = e-h/a]. and hence that

¢j‘* aaj is a constant Kj' say, on the interval (xj.xj+1]. We may rearrange

(3.72) to obtain
X

X, X X, 2
y o= 22 | 32y, T3, i+ " 1| J+1 =
al kYl = a jx wj dx J wjdx + Jx awﬁdx 5 f (a¢3 wj a¢3]d{]

i %3 i %3

a2 ij+1 ]2 2a? ij+1 . ij+1 Cl gg_ij+1 ij+1
&+ -F'[: N ¢jdx p ) wjdx ¢jdx = ) wjdx ¢3dx
J

X, R X.
J J J J
2 (%3+1y02 g+ X3+ 1} (%541 ‘
= a Pledx + Y2dx + ap'dx - s (ap'+p.-ap’ ldx
X . J X. J X. J X . J J J
j ] ] -7
X X, X .
+ a2 f 24, - 2a2J I*yretdx - 2a J I*, srdx
5 U M . N .

J J J
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Having noted above that

X X X
f 3+ ap'ldx = J 3+ a¢jdx = -3 = 2a j J+1¢ Yldx ,
X, J X, Xy 373

we may therefore write

X X
- 1 = 1 - + =) !
alk-y) ‘xj (awj+wj a¢J] dx h' Jx (aw3 wj a¢J]dx

X X -
. (3 K.2 dx - — I . K.dx |2
xJ h| h xJ J

—

since KJ is constant on the interval (xj.xj+1).

Hence we see that y = k, and so from (3.79) that Am = 1. The smallest
error constant in the estimate (3.3) 1s thus unity for such an exponential
test space, and the optimal trial space-test space pairing has been achieved
for a plecewise linear trial space. The disadvantage of using a Petrov-Galerkin
method employing this test space is that it involves the evaluation of inner

products containing very steep exponential terms as in (3.95), which may be

difficult to achieve accurately unless high order or special quadrature rules are us

(d) Galerkin

Finally we will use the framework of our analysis to show how poorly the
Galerkin method may perform on problems of the type (3.4). With a(t) = O,

the constants Kk and Y in equation (3.79) are given by

=
n

h{({a/h)2 - 1/6a) (3.97)

and

h(a/h? - 1/4a), (3.98)

<
n

~~
and hence km is

>
n

2 _ 2 -
m (1 + umaxh((a/h) 1)/ (1 + “max(a /h h/6)). (3.99)
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When N is odd, (3.99) reduces to the particularly simple form

Ay = 12/012 + (h/a) ), (3.100)
and hence
-1 — e
(1 - A%J *=vh2 + 1232 /2/3a > h/2 /3 a as a 0. (3.101)

From (3.3) and (3.101) we see that whilst the Galerkin approximation remains
of optimal order, the smallest constant in the estimate (3.3) becomes unbounded

as the mesh PéEIet number increases.

Table 3.2
' (1 - a2)72
bh/a U
AAMZ AAMZ * SHB GALERKIN
2 1.0060 1.0060 1.0178 1.1547
5 1.0468 1.0428 1.0597 1.7559
50 1.2022 1.0945 1.1406 14.468
500 1.2344 1.0954 1.1532 144.34
10° 1.2383 1.0954 1.1546 28867.

HHMZ = Heinrich, Huyakorn, Mitchell & Zienkiewicz, with o]

1]
Q

AS®
HHMZ* = Heinrich, Huyakorn, Mitchell & Zienkiewicz, with o

Oopt'

=" ”n = = .
SHB Super” Hughes & Brooks, with o N and € Eopt

P e e -

Figure 3.6(a) shows the different test functions for a mesh Peclet number

bh/a = 5. Figure 3.6(b) is similar, with bh/a = 50.
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4. NUMERICAL EXPERIMENTS IN TWO DIMENSIONS

In the first part of this section generalisations of two of the
'upwind' Petrov-Galerkin methods in Section 3.6 are used to solve a two-

dimensional test problem.

(a) Heinrich et al (1977)

If a piecewise linear trial space is used for the solution of the
one dimensional problem (3.4), the test space employed by Heinrich et al
has a set of basis functions given by (3.36), (3.37) and (3.80). The degree
of upwinding is determined by the parameter o : if o = 0, the method
reduces to the Galerkin approximation:; if o 2 1 - 2/B, where 8 = bh/a is
the mesh Péclet number, the method produces a set of difference equations for
problem (3.4) with a discrete maximum principle and hence a solution which is
not oscillatory; the choice o = %as reproduces the Allen & Southwell
difference operator, (see Christie et al, 1976).

When the problem (1.1) with the operator L taking the form given in
(2.5) is considered in two dimensions, the trial space 1s generalised to become
the space of piecewise bilinear functions on a regular mesh. The trial functions
are then tensor products of the piecewise linear trial functions used for the
one dimensional problem (3.4); similarly the test functions are tensor
products of those used in one dimension.

Consider the test function associated with node i over the shaded

element in Figure 4.1(a)

v
P Figure 4.1(a)

-——— - -

N\
N\
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Using local (&,n} co-ordinates with origin at the centre of this

element and normalised between -1 and +1, the bilinear trial function o4

is given by
¢i = (1-8)/2 « (1-n)/2 .

Over this region the corresponding test function wi is given by

where

wi[E) = ¢i[E] + oiJa(EJ (4.2)
and

¢i(n] = ¢i(n] + oika(n]. (4.3)

The guadratic perturbation a 1s given by

al(s) = -3(1-s)(1+s)/4 . (4.4)

The coefficient ciJ along the edge 1j 1s given by

oiJ = coth (813/2) - 2/81J ’ (4.5)

with a similar expression for oik' Here BiJ 1s the mesh Péﬁlet number
calculated using local nodal velocity values along the edge ij . That is,

Bij = bijh/a where. biJ 1s the average velocity in the ¢ direction calculated
from bij = (Qifgj]‘gij/z: Eij is a unit vector in the direction from

node i to node J, and Ei and Ed are values of the velocity field

at nodes 1 and j respectively. Bik’ which is required for the coefficient

%4k along the edge ik, is calculated similarly.

(b) Streamline Upwind. (Hughes & Brooks, 1979)

With the introduction of an artificial diffusion tensor K, the

weak formulation of problem (1.1) with L as in (2.5) becomes that of finding

Ue SE(Q] such that

<PU, (a + KIT$> + <b:TU,6> = <F,¢> Voe SO(R). (4.6)
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The tensor K acts in the direction of flow, and hence takes the form

=

_ T
where b = (b1.b2] .

This is the formulation

and in Brooks (1981}, the parameter K

IS in (3.89). 1In the case of a general bilinear element with a

2
) b1 b1b2
= K
2
b1b2 b2

introduced in Hughes & Brooks (1979).

There,

(E.n)

local co-ordinate system having its origin at the centre of the element,

and normalised between -1 and +1 (see Fig. 4.1(b)), the parameter K is

given by

K = i(EbEhE + nbnhn].

where hE and hn are element size parameters, and bE and bn are the

velocity field components, in the & and n directions respectively.

+
44— hg === >

-

-~

The parameters £ and

3
and .
n
where 8. =b.h_/a

R are defined by

coth (B,./2) - 2/8

g g

coth (Bn/2] - 2/8n ,

and B =b h /a.
nn

n

s Fig. 4.

1(b)

(4.7)

is based on the choice of parameter

(4.8)

(4.9)

(4.10)
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The components b1 and b2 of the convective velocity field are treated
throughout as continuous functions, and since 2x2 Gaussian integration will
be used in the evaluation of the inner products in (4.6), their values
will be required at the Gauss points.
To reduce the cost of calculation, in (4.9) one might make use of the
limits
coth(a) - 1/a -+ a/3 as a~+0

and

coth(a) - 1/ > 1 as o>+ ®
matched at a = 3 to give the approximation

a/3 , |a] <3
coth(a) - 1/a = (4.11)
sign a , |a| > 3
though this was not used in the computations described below.

Owing to the form (4.7) of the tensor K, we may write
<O, (a+K)  V¢> = <aWl, 94> + <(K/b2)b-YU, b-V¢> (4.12)

and hence (4.6) becomes

WU, a¥p> + <b-WU, ¢+ (R/b2)p-yg> = <F.¢> VoesDla). (4.13)

If a 1is constant and the trial space is piecewise bilinear, then
Ve{aVl) = aV2U = 0 on each element. Provided therefore that the term
<av2u, b-V¢> 1is evaluated in this way, the left hand side of (4.13) may
be written as
<av2U - b-9U,y>_
where
¥ = ¢ + (K/b2)bevs (4.14)
and <~,->e denotes that the inner product is calculated by element-by-element

integration. Hence if on the right hand side of (4.13) f 1is integrated
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against ¢ rather than ¢ , the streamline upwind method may be regarded

as a consistent Petrov-Galerkin method using the test functions given in
(4.14), (see Hughes & Brooks, 1981). This approach was used in the numerical -
calculations carried out using this method. An analysis of the streamline

upwind method appears in Johnson & N&vert (1981).

4.1 Test Problem 1. (Hutton, 1981)

The problem is illustrated in Figure 4.2. Calculations were carried
out using a regular square grid of 10 x 20 elements using a piecewise
bilinear trial space. Diffusivity was varied from 0.1 to 10-B whilst the
velocity field and mesh size remained unchanged in order to increase the

mesh Peclet number. The velocity field b = [b1,b2)T is incompressible

and is given by

b1 = 2y(1 - x2)
) (4.15)
b2 = -2x(1 - y<) .
The boundary conditions are given by
u=1+ tanh (10(2x+1)) on y =0, -1 € x<0
x= =1, 0<y<1
u =20 on y = 1, =15 <1 (4.186)
x= 1, 0svy<1
and du/dn = 0on y =0, 0 < x <1

Note that on the outflow boundary y = 0, 0 < x < 1 n*b > 0. The boundary
data is therefore such as to guarantee existence and uniqueness of a
solution to the approximate problem.

Some typical streamlines are shown in Figure 4.2.

The results for this prablem are shown in the form of outlet profiles,
that is for y = 0 and 0 < x < 1, in Figure 4.3 for the Streamline Upwind

method and in Figure 4.4 for the Heinrich et al method. For the case of pure
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convection, nodal values of the solutions at the outlet are given in

Table 4.1.

X Exact HB Error E?ror HHMZ Error Er?or
0.0 | 2.00000 2.00000 = - 2.00000 - =
0.1 2.00000 1.97928 -0.02071 1.0 1.98248 -0.00752 0.4
0.2 | 1.98999 2.02345 0.02346 1.2 2.02335 0.02336 1.2
0.3 | 1.99933 2.09622 0.09689 4.8 2.08511 0.09578 4.8
0.4 | 1.96403 1.77387 -0.190186 9.7 1.75906 -0.20497 10.4
0.5 | 1.00000 0.96107 -0.03893 3.9 0.95045 -0.04955 5.0
0.6 | 0.03597 0.139840 0.16243 = 0.21810 0.18213 =
0.7 | 0.00067 -0.06399 -0.06466 - -0.048869 -0.04936 -
0.8 | 0.00001 ~0.00752 -0.00753 = -0.02230 -0.02231 -
0.9 | 0.00000 0.00558 0.00058 - 0.00734 0.00734 =
1.0 | 0.00000 0.00000 - - 0.00000 = -

Table 4.1

The results are shown in the column headed HB for the Hughes & Brooks

Streamline Upwind Scheme, and in the column headed HHMZ for the upwind method

of Heinrich et al.

Neither scheme satisfies a discrete maximum principle.

In both cases there is an overshoot of 4.8% at

nodal error in both cases occurs at x

It should be pointed out that as the mesh is refined, although such

4.

= 0.3, whilst the maximum

overshoots are gradually eroded, the general trend of overshoot before the

steep gradient persists.

For example, the overshoot using the Streamline

Upwind method at the point where the approximate solution takes on its highest

value is shown in Table 4.2 for varying mesh sizes.

h X HB - Exact soln.
0.1 0.3 9.689 x 1072
0.05 0.35 4.580 x 1072
0.033 0.366 1.794 x 10°%

Table 4.2
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Ne such overshoot remains by the time h 1is reduced to 0.02.

Some results for this problem using high order finite difference

formulae are presented in Thompson & Wilkes, 1982.

4,2 Mixed Method based on Bz[-.°]

We now consider a method, for probliem (1.1) where the operator L
is of the form (2.5), based on the formulation proposed by Barrett & Morton
(1982). The aim is to produce a best fit U* ¢ SE[Q) to the solution in

the norm based on the operator T2 in (2.10). For one dimensional problems

direct Petrov-Galerkin methods with this aim are constructed in Barrett &
Morton (1980) and analysed in Barrett & Morton (1981) and in Barrett (1980).

For the two dimensional problem we define the bilinear form

By (wy,wy) = <paWw,, B> + <w1,a-1(pg-g + Velpablw>

v WyaW, € H1[9]

2
where p(x) is a positive weight function which may be chosen. The

bilinear form on Hé () 1in (2.14) 1is then
0

R T b, ok ,
By(wy,wy) = <a®Ww, - ba “w,,pla’Ww, - ba “wy)>+ P, w, ds
2% (4.17)

1
€ HE {Ql.

V w,,w
! 0

2

Then 82[w1,w2] is Hé (Q) - elliptic provided that

0
pa>0 and pb2? + Ve(pab) 2> O, (4.18)
conditions which can simply be satisfied by choosing
p>0 and b-Vipa) 2 0.

Noting that for Wq,W, € H1(Q].

~<V-(a¥w, - bw,), paw> = <aWw, - bw,., V(paw,)>

- J (agw1 = qu]oaw -nds

af

2
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-1 1
= <a®ww, - ba *w,, pala’Ww, - ba

=

w2]>

+ <bgw1 » 2w1. (pb + Zﬁpa]]w2> = [ (agw1 N Ew1lpaw2-g ds, (4.19)
R
we see that when a 1is constant the weak formulation (1.3) may be considered

as finding u € H;(Q) such that
B,(u,v) = <F,pv> + <bu - avu,a ' (pb + V(pa) V> (4.20)

VVeHé[Q)
0

If v 1is an approximation to v = bu - aVu, we may solve for U ¢ SE[Q)
such that
B,(U,¢) = <f,p¢> + <V,a ' (pp + V(pa))e> V¢ eshia. (4.21)
The problem now is to obtain an equation for V which can be used
alternately with (4.21) to give a convergent iteration. A preliminary
technique, which works well for the constant coefficient problem considered
by Raithby (1976) but not for the Test Problem 1 above, was put forward by

Barrett & Morton (1982). This was based on solving
<b x V, xé> = <-ab x VU, xe>

for each element, where Xg is the characteristic function having the
value unity in the interior of element e and zero elsewhere, together

with an explicit difference scheme to solve
Ty =0
in the 1limit of pure convection.
The dependence of the approximation U in (4.21) on the accuracy of

the approximation V 1is through the following estimate : suppose that U* ¢ SE(Q]

is the best fit in the norm 52[-.°) to the solution u to problem (1.3)

so that
h
Bz(U‘:¢] = BZ(U1¢] v ¢ € SD(Q)- (4-22]

Writing q = a_1[09.+ Vi{pall, subtracting (4.20) from (4.21) gives
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B, (U - u¢) = <a(V - v).¢> ¥ ¢esla,

and hence using (4.22) we obtain
By(U - U, ¢) = <as(V - v).> ¥ ¢ e SDal. (4.23)
Since U - U* ¢ SE(Q] we have

fu-u*|2=<aety-w), U-uU>

slEu vl tel w-wl

where é =a/ |E| . Then since

<U- U, altpb b + Velpab)I(U - US> = fu - u* | 2- <pav(u - U*), v(U-u*)>,
2

we have that

iju - U-||2$y||é-(!-y_)|||_2 , (4.24)

where y 1s a constant such that
lob + V(pa)| < ya*(gg.g + Zf[pqg]]% uniformly. (4.25)

Note in particular that if a 1s constant, Veb = 0 and the weight

. =1
function p(x) =1, then y = a i. (Note that there is a factor a °
)

.|2
From (4.24) it is clear that only the component of v in the direction

in the weighted L2 part of the norm

of a 1is important, and consequently we now construct an equation for
s = aa*v which may be used in an iterative scheme with (4.21).
We suppose that a is constant and let _é denote the unit vector parallel

to the convective velocity field b, and n a unit vector perpendicular to it.

Then if b has components b1 and b2 in the Xx and y co-ordinate

directions respectively, we may write

s = (1/b)(b,,b,) and A = (1/b)(-b,,b,), (4.26)

where b2 = b% + b2. If we take p(x) =1, then a = a”'b, and
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v=(s/b)s -a 3u/dn, (4.27)

where du/9n denotes the derivative in the direction of n.

Taking i and j to be unit vectors in the x and y directions respectively,

(4.27) may be rewritten as

Y = (sby/b? + (bya/b?)(-b, du/3x + b, du/dy)) 1
(4.28)

+ (sby/b? - (b,a/b?)(-b, 3u/dx + b, du/dy)) 3 .
Using the divergence operator on (4.28), and the fact that ¥+b = 0 enables
us to write

Vev = (b*V)(s/b2) - aV-(3u/3n n) . (4.29)
Since Lu = 0, with L as in (2.5), can be written as Vev = 0 we have

(B-9) (s/b2) = aV:(3u/3n R). (4.30)
We use a finite difference approximation to equation (4.30) in an
iterative scheme with (4.21), namely

o 2 - . A ~
(E_z)h(S/b ) a¥ [(g_yhU)g). (4.31)

where the values of U on the right hand side are obtained from the finite
element solution to (4.21) at the previous iteration step.

The operator bV is discretised to give (E-Z]h using a directionally
upwinded finite difference operator. We shall use finite difference stencil

notation in which the stencil represents a discrete operator on the nodal value

at its centre, for example,

0 0 0
Yo Yy 0 053 7 YaBqy * ¥28ioq 5 * Ya®iq 510
Y4 0 0]

On a regular square mesh of size h with, for example, b1 2 0, b2 >0

and b1 p- b2. the stencil representing (QjZ]h is
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0 0 a
(1/h) bz-b1 b1 0
-b2 0 0

Generalisation to other velocity directions is straightforward.
To interpret the right hand side of (4.31) we make use of the bilinear
nature of the approximation U. Consider the four elements surrounding node

i,]

1-1,3+1 1,541 141,341
A tE o8B

1-1, 3 i » 141,
.0 s .c

1-1,3-1 1,41 141,51+

The points A, B, C and D are the centres of each of the elements,

and since U 1is bilinear we may write

U(A) = (U u + U ),

£-1,3+1 T YUg, 501 P Ygioq,g P Yy

with similar expressions for U(B), U(C) and U(D). Then at the mid-points of
the interior sides of the elements, i.e. E,F, G and H, we may compute w

using

oU/9x (E)

(u(B) - UCA)I/h

Bid 3U/3y (E)

(Ui,j+1 - Ui,j)/h »

with similar expressions at the points F, G and H. To approximate the

right hand side of (4.31) we then use
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(a/h)[E(b%/bz] 3/3x - (bb,/b2) 3U/3y) (F)

-((b%/bz] U/ ax [b1b2/b2) U/ dy) (H)

+((b$/b21 U/ 3y [b1b2/b2] u/sx) (E)

-((b%/bzl U/ dy (b,‘bz/bz) 3U/3x) (G) :[ .

Values of S/b2 are set on the boundary 391 using a finite difference

approximation to

S/b2 = U - (ab:yU)/b2 .
From (4.23) it is clear that if our approximation to S 1s chosen from the
same trial space as U, then it should attempt to be a least squares best
fit to S. Consequently we next interpolate the nodal values of S produced

by the difference scheme for equation (4.31) to obtain SI and then project

onto the trial space in a least squares sense to obtain S With the trial

II°

Space piecewise bilinear spanned by basis functions {¢J’ j=1,...,N} , suppose

we interpolate SI in the form

1=1 1 *
where {wj, j=1...,N} forms a basis for a space of piecewise biguadratic
functions over the domain. Then the projection SII onto the trial space is

obtained by solving

B~

<7 _ _ h
(Syp ¢y SIj ¥y, 95> = 0V ¢, € Sylal. (4.32)

J=1 J

In particular if the domain is partitioned using a regular square mesh,

equations (4.32) correspond to inverting the difference stencil operator

1 4 1 1 10 1
(1/38) 4 16 4 SII = (1/144) 10 100 10 SI (4.33)
J J
1 4 1 1 10 1 ~

for all j such that ¢j € SB(Q].
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S

and we solve for U ¢ SE(Q) such that

-1
By(U.¢) = <F,¢> + <a 'S_;,¢> Ve SB(QJ

as the next step in the iteration. Since the bilinear fomm BZ[-,-)

I1 is then put into the right hand side of equation (4.21),

(4.34)

is

symmetric, equation (4.34) leads to the inversion of a symmetric matrix.

Results for the Mixed Method applied to Test Problem 1 are shown in

Figure 4.5 in the form of outlet profiles at y =

=0, 0 < x < 1.

As the mesh Péclet number decreases it is found that convergence in the

iteration scheme between equations (4.21) and (4.31) may not be reached.

At low mesh Péclet numbers the oscillatory nature of the best fit U*

norm based on 82(-,°]

in the

is less severe, and consequently the need for a recovery

Procedure is diminished.In these circumstances we consider making use of the

directionally upwinded difference stencil for the operator beV 1in a difference

scheme applied directly to approximate the equation Lu =

(2.5). We will consider the case where at node 1i,J

0 with L as in

we have b, 2 0,

1

b2 2 0, and b1 2 b2, though generalisation to other velocity directions is

straightforward. Combining the upwind stencil

0 a 0
(1/h) bz—b1 b1 0
-b2 0 0

with the central difference operator for beV we obtain

a 0 0 0
{a/h) b2-b1 b1 0 + ({(1-a)/2h) -b1
-b2 0 0 0

as an approximation to the operator beV, where a € [a,117.

with the discrete Laplacian operator

b2 0
0 b1 {(4.35)
-b2 0

"~

Combining (4.35)
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o -1 0
(a/h2) | -1 4 -1
o -1 o

produces the following stencil to represent the operator Lh:

0 (1-a]8y-2

a/2h? 2aBy-(1+a)Bx-2 B + 208,
_2 - = -

aBy (1 a]By 2

where Bx = b1h/a and By = b2h/a.

Thus Lh has a discrete maximum principle if we choose

a 21 - 2/8>< and o 2

Further, the choice

o

whilst giving a maximum principle, produces a scheme which is exponentially
fitted when the flow is along the co-ordinate directions.

A discrete maximum principle is used by Kellogg (1980) to establish

a8 uniform error bound of the type

where k 1is independent of h
dimensional generalisation of the exponentially-fitted difference scheme due
to Allen & Southwell (1955). Such a scheme, however,
"crosswind diffusion"” (see Griffiths & Mitchell (1979)).

difference scheme represented by (4.36) is that the "crosswind diffusion”,

|u(xj) . Ujl < kh,

coth (%(Bx + By}) - 2/(6x + ByJ 2

0

(1-a]Bx-2

0

and of the Péélet number b/a, for a two-

suffers from excessive

(4.36)

(4.37)

(4.38)

An advantage of the

representing artificial diffusivity, is zero not only when the flow is along a

co-ordinate direction, but also in the case where the flow is at 45D to the

mesh.
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Results using the difference scheme (4.36) for Test Problem 1
compare favourably with those produced by the high-order difference schemes

presented in Thompson & Wilkes (1982).
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4.3 Test Problem 2

The problem has the same flow field as Test Problem 1 but the
boundary condition along x = 1, 0 £y <1 becomes u = 100, and along the
inflow boundary y = 0, -1 € x £ 0, as well as along the other tangential
boundaries, we have u = 0. This thus represents a cool fluid being convected
tangentially past a hot plate. Again the calculations were carried out using
8 regular square grid of 10 x 20 elements using a piecewise bilinear trial space
and the mesh Péclet number varied by varying the diffusivity parameter only.

Figures 4.6 - 4.9 show cross-sections of the solutions between x = O
and x = 1 at various values of y for a range of Péclet numbers produced by
the Streamline Upwind scheme and by the upwind scheme of Heinrich et al. Figures
4.10 and 4.11 show the same cross-sections produced by the Mixed Method described
in Section 4.2.

In the case where the diffusivity coefficient, a, tends to zero, the
oscillations produced by the Mixed Method are compared in Table 4.3 with those
in the weighted least squares best fit to the asymptotic approximation to the
solution (described in Section 4.4.1) in the norm derived from (4.17). 1In
Section 4.4.2 a recovery procedure, as used in one dimension by Barrett (1980),
is described for recovering information from the oscillatory approximation

resulting from the Mixed Method.

y = 0.0 y = 0.5
P Mixed Method Best Fit Mixed Method Best Fit
1.0 100.000 100.000 100.000 100.000
0.9 -27.422 -28.269 -27.312 -28.145
0.8 8.302 8.098 7.944 7.930
0.7 -2.556 -2.415 -2.278 -2.246
0.6 0.805 0.628 0.643 0.554
0.5 -0.261 -0.568 -0.178 -0.322

TABLE 4.3
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4.4 Recovery of Boundary Layer Information

First of all an asymptotic approximation to the solution is presented
for the boundary layer region near x = 1; in particular the half-width of the

boundary layer is calculated, where the half-width &(y) 1is defined by
ul1 - 8Cy)) = $u (M)

The recovery procedure is then employed. and a comparison between the half-width

thus predicted and that of the asymptotic approximation is made.

4.4.1 Asymptotic Approximation

The equation Lu =0 with L as in (2.5) and the convective

velocity field as given by (3.15) becomes

-ad2u/9x? - ad2u/3y? + 2y(1-x2)3u/dx - 2x(1-y2)3u/dy = O - (4.39)
Since the boundary layer is at x = 1, setting x = 1 - ki gives

~(a/k?)32u/382 - ad2u/3y2- 2yE(2-KE)AU/IE - 2(1-kEI(1-y2)au/ay = 0 . (4.40)

Following, for example, Lamb (1932), Wilson (1959), Milne-Thomson (1960), we

make the choice of k = a%. producing a stretching of the x axis which causes
the boundary layer to lie in the region 0 < £ £ 1. Away from the region where

y 1is close to 1, we may neglect the terms of order k and k2 in equation (4.40)
to give

32u/3E2 + 4yE3U/IE + 2(1-y2)3u/ay = O. (4.41)
Using the fact that V:b = 0 we may rewrite (4.41) as

92u/3E2 + 3/3E(4yEu) + 3/3y(2(1-y2)u) = 0. (4.42)
Integrating (4.42) with respect to & from 0O to hly) gives

h
[au/agjg + [4y£u]8 = -2(3/3y) f (1-y2)udE. (4.43)
0

Treating (4.42) as a free boundary problem, we define h(y)} by u(g, y) =0

~

and 3u/3&(E,y) = 0 when £ = h(y), and obtain

h

(3/3y) ((1-y2) J udg) = 3lou/agl, o - (4.44)
0
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As in the references above we choose the functional form for

proposed by Von KArman:

u(g,y) = 100 (1 - sin(wE/2h)),

which satisfies the boundary conditions

ul0,y) = 100, uth,y) = 0 and 3u/3&(h,y) = 0.

This then allows h(y) to be solved for by substituting (4.45) into (4.44).

Since
h
J udg = [100(E + (2h/7) cos(nE/Zh]]]g
a
= 100 (m-2)h/7T ,
and
[8u/ag]€=0 = -100w /2h,
we obtain

(3/73y) ((1-y2)h)} = -w2/4h(m-2).

Multiplying (4.46) by 2h(y)(1-y2) we obtain

(3/79y) ((1-y2)212) = -in2(1-y2)/(w-2) ,

and hence

h2(y) = d2/(1-y2)2 - in2(y-y3/3)/(m-2)(1-y2)2

where h =d at vy = 0.

In order to relate the half-width of the boundary layer, &(y)

quantity h(y), consider the form of wu(g,y) in (4.45). If &g,
2

u(€,,y) = 100 (1 - sin (WE%/Zh[y)]] = §0,

and so solving for &, gives
2
E, = shiy)
UL A
and hence
1
§y) = 5 a*hly).

(4.45)

(4.46)

(4.47)

_1
a %8, then

(4.48)
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4.4.2 Recovery Procedure

For each value of vy, recovery is carried out in one dimension by
assuming that the solution in the boundary layer region can be represented
by the form
eB(x-'l] .

UR[x] = A C, (4.489)

where A,B and C are functions of y, and are determined by solving the

system

82 (U.¢j] = B2 [uR.¢J]. j =31, 3-2 (4.50)
and

u(xJ) = uR(xJ)
Here, node J 1s on the boundary x = 1 at, say, v = Y, naodes J-1 and
J-2 are adjacent nodes at the same y value, and xJ denotss the x-position
of node j.

Along the 1ine y =Y, U 1s taken as the expansion

U=ZU¢ (XDY]I
3%
J
where Uj is the nodal solution parameter at node j produced by the Mixed Method.
In (4.50) Bz(wq,wzl is the one-dimensional analogue of (4.17) in the case of

Vb =0 and a is constant, namely

1 1
-1 o
= 1 !
52(w1,w2] JD aw1w2dx + JD a b w1w2dx, (4.51)

where denotes differentiation with respect to x.

Equations (4.50) lead to the system
1 1 1.,
tat B i =
Jo au ¢J-i dx + Jg a b U¢J_i dx Ri’ i=1,2

and 1 1
I a ABe® X Mgt L ax I a "oz X Miery, ax =R, 11,2
0 0 - (4.52)

and
C = uR(xJ] - A, (4.53)
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Rearrangement of (4.52) gives

1
AG
0

where

and hence using (4.54) for

C may then be obtained from (4.54) and (4.53) respectively, and the recovered

a

half-width 8g

BeB(x—1

1

}¢j—i dx + JO

T
D; = jo a b ¢j_; dx

i=1 and 1

calculated using

Ae B0R + ¢ = 50,

2

-1.2 _B(x-1) _ ‘)
a b%e ¢J-i dx Di

In Table 4.4 positions of the recovered half-width &

diffusivities and compared with the half-width, & ,

(4.47) and (4.48).

value of GR at y =0,

For equation (4.47)},

that is d = 3a

Ni=

R

- D,u
1 1

2 we may solve for B.

R

x.), 1

A and

are shown far various

1,2

(4.54)

obtained by using equations

d 1is calculated from the recovered

GR. so that the asymptotic and the

recovered boundary layer half-widths are matched at y = 0.

Figure 4.12 compares graphically the positions of & and 8 The

R'
Success of such a recovery procedure is crucial in assessing the value of the Mixed

Method approach.

Diffusivity 1.0 x 1072 | 5.0 x 10°° 1.0 x 107

5 5 3 R | 5 5 e
0.0 .0569 | .0569 .0408 | .0408 .0227 | .0227 -
0.1 .0531 | .0529 .0381 0383 .0218 | .0218 0.5
0.2 .0499 | .0494 .0359 0362 .0214 | .0212 0.9
0.3 .0472 | .0462 .0341 0343 .0213 | .0205 3.8
0.4 .0443 | .0433 .0326 0325 .0217 | .0199 8.3
0.5 .0430 | .0405 L0316 0308 .0229 |.0193 | 15.7

s TABLE 4.4
e 1is the % error (_6 ;> x 100.



ACKNOWLEDGEMENT

I would like to express my gratitude to Professor K.W. Morton
for his invaluable guidance and supervision during the course of this

work.



REFERENCES

f11

(2]

3l

£4]

[s]

el

[71

(8]

(9]

rol

(111

r121

r131

[14]

ALLEN, D.N. de G., & SOUTHWELL, R.V., 1855. Relaxation methods applied
to determine the motion, in two dimensions, of a viscous fluid past
a fixed cylinder. Quart. J. Mech. Appl. Math. 8, pp. 129-145.

AUBIN, J.P., 1972. Approximation of Elliptic Boundary Value Problems.
John Wiley & Sons, New York.

AXELSSON, 0., 1981. Stability and Error Estimates of Galerkin finite element
approximations for convection-diffusion equations. TI.M.A. J. Num. Anal.
1, No. 3, July 1981, pp. 328-348.

BABUSKA, I. & AZIZ, A.K., 1972. Survey lectures on the mathematical
foundation of the finite element method. The Mathematical Foundations of

the Finite Element Method with applications to Partial Differential Equation
(Ed. A.K. Aziz) Academic Press, New York, pp. 3-363.

BARRETT, J.W., 19880. Optimal Petrov-Galerkin methods. Ph.D. Thesis,
University of Reading.

BARRETT, J.W. & MORTON, K.W., 1980. Optimal finite element solutions to
diffusion-convection problems in one dimension. Int. J. Num. Meth.
Eng., 15, pp. 1457-1474.

BARRETT, J.W. & MORTON, K.W., 1981. Optimal Petrov-Galerkin methads
through approximate symmetrization. I.M.A. J. Num. Apnal., 1, pp. 433-468.

BARRETT, J.W. & MORTON, K.W., 1982. Optimal finite element approximation for
diffusion-convection problems. The Mathematics of Finite Elements and
Applications. Proc. MAFELAP 1981. (Ed. J.R. Whiteman), Academic Press,
London, pp. 403-411.

BARRETT, K.E., 1977. Finite element analysis for flow between rotating discs
using exponentially weighted basis functions. 1Int. J. Num. Meth. Eng.,
11, pp. 1809-1817.

BROOKS, A.N., 1981. A Petrov-Galerkin finite element formulation for convectic

dominated flows. Ph.D. Thesis, California Institute of Technology,
Pasadena, California.

CHRISTIE, I., GRIFFITHS, D.F., MITCHELL, A.R. & ZIENKIEWICZ, 0.C., 1976.
Finite element methads for second order differential eguations with
significant first derivatives. Int. J. Num. Meth. Eng., 10, pp. 1389-1396.

CIARLET, P.G., 1978. The Finite Element Method for Elliptic Problems.
North Holland Publ. Comp., Amsterdam.

DIXON, L.C.W., HARRISON, D. & MORGAN, J.V., 1979. On singular cases arising
from Galerkin's method. The Mathematics of Finite Elements and Application
III. (Ed. J.R. Whiteman), Academic Press, pp. 217-225.

GRIFFITHS, D.F., & MITCHELL, A.R., 1979. On generating upwind finite element
methods. Finite Element Methods for Convection Dominated Flows.
AMD- Vol. 34, A.S.M.E. (Ed. T.J.R. Hughes), New York, pp. 81-104.



£15]

£16]

£171

[181

(191

r2ol

(211

(22]

(23]

241

(251

[26]

rz71

(28]

{29]

(30]

HEINRICH, J.C., HUYAKORN, P.S., MITCHELL, A.R. & ZIENKIEWICZ, 0.C.,
1977. An upwind finite element scheme for two-dimensional convective
transport equations. Int. J. Num. Meth. Eng., 11, pp. 131-143,

HEINRICH, J.C. & ZIENKIEWICZ, 0.C., 1979. The finite element method and
'upwinding' techniques in the numerical solution of convection dominated
flow problems. Finite Element Methods for Convection Dominated Flows.
AMD - Vol 34, A.S.M.E. (Ed. T.J.R. Hughes), New York, pp. 105-136.

HEMKER, P.W., 1977. A numerical study of stiff two-point boundary problems.
Thesis, Math. Cent. Amsterdam.

HUGHES, T.J.R., 1978. A simple scheme for developing 'upwind’ finite
elements. Int. J. Num. Meth. Eng., 12, pp. 1359-1365.

HUGHES, T.J.R., & BROOKS, A.N., 1979. A multi-dimensional upwind scheme
with no crosswind diffusion. Finite Element Methods for Canvection
Dominated Flows. AMD - Vol. 34, A.S.M.E. (Ed. T.J.R. Hughes), New York,
pp. 19-35.

HUGHES, T.J.R., & BROOKS, A.N., 1981. A theoretical framework for
Petrov-Galerkin methods with discontinuous weighting functions
application to the streamline-upwind procedure. Finite Elements in
Fluids, Vol. 4 (Ed. R.H. Gallagher}, J. Wiley & Sons, New York.

HUTTON, A.G., 1981. The numerical representation of convection.
IAHR Working Group Meeting, May 1981.

IL'IN, A.M., 1969. Differencing scheme for a differential equation with a
small parameter affecting the highest derivative. Math. Notes Acad.
Sci. USSR 6, pp. 596-602.

JOHNSON, C., & NAVERT, U., 1981. An Analysis &f some finite element methods
for advection-diffusion problems. Conf. on Analytical and Numerical
Approaches to Asymptotic Problems in Analysis. (Eds. 0. Axelsson,

L.S. Frank and A. van der Sluis), North Holland.

KELLOGG, R.B., 1880. Analysis of a difference approximation for a singular
perturbation problem in two dimensions. Baundary and Interior Layers -
Computational and Asymptotic Methods (Ed. J.J.H. Miller), Boole Press,
Dublin, pp. 113-117.

KELLOGG, R.B. & TSAN, A., 1978. Analysis of some difference approximations
for a singular perturbation problem without turning points. Math.
Comp., 32, pp. 1025-1038.

LAMB, H., 1932. Hydrodynamics. Sixth edition. Cambridge University Press.

MILNE-THOMSON, L.M., 1960. Theoretical Hydrodynamics. Fourth edition.
Macmillan & Co. Ltd., London.

MORTON, K.W., 1981. Finite element methods for non-self-adjoint problems.
University of Reading, Num. Anal. Report 3/81. N

RAITHBY, G.D., 1976. Skew upstream differencing schemes for problems
involving fluid flow. Comp. Meth. Appl. Mech. & Eng., 39, pp. 153-164.

STRANG, G.., & FIX, G.J., 1973. An Analysis of the Finite Element Method.
Prentice-Hall, New York.



311

£32]
[33]
[34]

[35]

THOMPSON, C.P.,

Finite Difference Formulae.

WAKIL, M.M. EL,

WILKINSON, J.H.,

WILSON, D.H., 1959,

& WILKES,

1962. Nuclear Power Engineering.

1965.

ZIENKIEWICZ, 0.C., 1977.

McGraw-Hill,

London.

Hydrodynamics.

N.S., 1982. Experiments with Higher-Order
AERE - R10493, U.K.A.E.A., Harwell.

McBraw-Hill, New York.

The Algebraic Eigenvalue Problem. 0.U.P,

The Finite Element Method.

Edward Arnold (Publ.) Ltd., London.

Third edition.



€°p 2anLTI

10
; ~
-2°0
-0
-9 °0
-8°0
~0°1
-2°1
-4 °)
-¢°)
00 300001 °0-------
10-300004 0 ===~~~ 87l
20~300002 °0 -——~———-
S0~300001 °0 0%
NOISN4410
+2%
/0010 = 3ZIS HSM

J1408d LTUNC  "SNIGNIADN I MHVRILS STHONH  °1 HIE0¥d 1S3l €930




by 2INLTA

00 300001 °0 - - ====-~
10300001 *0 -=====~
20-300002 0 ————~
50300001 "0

NOisSndd4la

/ 001 ‘0 = 3Z1IS HSM

¥°0

€0 0 1°0

-2

A

BA

~8°0

~0°l

KA

~¥°l

- 9°l

~0°'¢

J1408d 13UNC  °0OHLIN ONIADN IV 13 HOIWNIH

*l W31680¥d 1S31 €930




Gy =2anh1a

0°) 60 8°0 20 9°0 50 v0 g0 2°0 10
“ ; 4
- 20
-y
- 90
-g°0
-0°l
-2
L yey
Loy
00 300004 0 -------
10-300001 0 ------= - g°|
20-300002 0 —————
50-300001 0 r0%
NOISN4410
+z
/' 001°0 = JZIS HSM

FI404d L1TUNC  °OOHL3W O3XIN ! H37E0¥d 1S31 8930



9°p oanbra

0°0=A  HOIYNIZH S'0=A  HOINNIZH 6°0=A  HIIYNIZH

’ 0°0=A S3HOMH S°0=A SIHONH 6°0=A SIHOM

10 3001 °0 = Y3EWNN 13703d HSIW *SONOD A¥YONNOS 13HOINIA ¢ W31g0dd 1S31 8930




L'y @anb1g

O " O e |
0°0=A  HOIMNIZH S°0"A  HOINNIZH &°0=A  HJINNI3H
0 i 0
y 0°0=A S3HONH S°0=A S3IHINH 6°0=A  SIHINH

€0 3002 °0 = Y¥Y3E8WNN 13133d HSIW *SANOD A¥YONNOE 1ITHIOIMIA ¢ W31804d 1S31 €930



8y 2anb1y

0°0=A  HOINNIZH

./

§'0=A HIIYNIM

/

6°0=A  HOIMNI3H

’ 0°0=A  S3HUMH

~<J 0

S°0=A  S3HO9MH

6°0=A  S3HONH

€0 3001 °0 = Y3EWNN 131334 HS3M

"SONOJ AYVONNOS 137HOINIA

¢ W31804d 1S3l €930




6"V 2anbtg

0°0=A  HOIYNIZH

i\

S°0=A HOIMNI3H

A

6°0=A  HOIYNIZH

7 ,/(\ O

0°0=A  S3IHONH

/\ 0

S°0=A S3HINH

6°0=A  S3HONH

90 3001 °0 = YIBWNAN 137103d HSIW

I ————————— R

‘SONOD AYYONNOS 13THOIYIA

¢ W3180yd 1S3l 893




01°¥ @2anb1g

0°0=A 0 30°I = 3 S0=A 030°L = 3dd 6°0°A 0 30°I = 3dW

7 0%0=A 1307C = 3dd S°0=A | 30C = 3 6°0=A | 30°C = AdH

QOH1IW O3XIW *SANGD AYVONNCE 13THIINIA ¢ W3180Y4d 1S31 6932



0°0=A <C30°I = 3

i

S0=A <€ 30°I = 3

A

9

6°0=A € 30°1 = 3dH

4/o
3du

0°0=A S30°L =

N

S°0=A S 30°I = 3

6°0=A S 30°l = 3AdH

QOHLM C3XIW

"SONOJ AYYVONNCE LI HIINIC

C W31a0Y¥d 1S3l €937




Z1°% °anblg
X
00°l 66 0 86 ‘0 26°0 96 °0 S6°0
“ ; " : 00
11°
1
1
1
1
1
1
]
.v& 4 ¢
"
1
O3H3A0I3H o "
1
JLIATVNY © 4 u 4 %0
\ y
. i
! i
. '
H '
' H
k.. m— ] 71 S°0
¢0-30°1 = VY ¢€0-30°s =Y c0-30°L = ¥ A
‘HLIOIA-J4TVH H3AV] ANVONNOE 40 NOIL11SOd

‘¢ W3N80¥d 1S31 6930



