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1. INTRODUCTION

A feature essential to the success of the finite element method
is its creation of approximations which are optimal in some integral energy
norm. This leads to the need to recover local information about the solution,
e.g. point-values or derivative point-values, when additional qualitative data,
e.g. smoothness, monotonicity or positivity, are assumed. (This procedure
contrasts with that for finite-difference methods since there the underlying
philosophy is the approximation of point-values, and hence additional information
would be generated by some form of grid interpolation). The design of
algorithms for this purpose could be regarded as a problem within the general
field of optimal recovery (Michelli & Rivlin, 1976) but we shall refer only
to the now almost classical results of Golomb & Weinberger {1858). In the
finite element literature, however, there are already a number of ideas
concerned with improving the accuracy of the basic Galerkin approximation,
e.g. superconvergence, local averaging and defect correction, and it is also
dur aim to bring some of these viewpoints together in a single framework.
The detailed results we shall present are preliminary in the sense that they
apply only to one-dimensional problems approximated by piecewise linear or
piecewise constant functions, but the framework adopted will be guite general
as the eventual aim is to develop similar methods for two- and three-
dimensional problems and more general approximations.

Suppose then that a(-,-] is a symmetric, bilinear, coercive form on

HxH, where H 1is a separable Hilbert space of functions: we denote by

HE the energy norm given by

||v||2EE alv,v) (1.1)

and by HE the space H eguipped with this norm. Let u € HE be the

solution we seek, to a differential problem for which a(+,*) is the associated



form, then the Galerkin approximation uh to u from a finite-dimensional
subspace Sh c HE is given by

atuh,vh) = alu,v whe s, (1.2)

From this definition we have the fundamental error projection property

a[u-uh,vh) =0 wh e Sh , (1.3)

and the optimal approximation result

= inf |lu-v"| ¢ vl e s (1.4)

h o
[lu-u7ll g
It is from these properties that one deduces the standard error bounds
(see Strang & Fix, 1873), the superconvergence phenomena which are so
important for the practical efficacy of the finite element method, and the
adaptive mesh refinement strategies which are now being developed (Babuska

% Rheinboldt (1978), Reinhardt (1981) and Gartland (1984) .

In the one-dimensional case, with

b
alu,v) = [ (pufvf + quVv)dx (1.5)
a

and either

(i) p>0, g20 with H = Hq(a,bj and certain bolundary conditions
or

(i) p=0,q>0 with H = L?(a,b)

there are two well-known examples of improved accuracy for piecewise linear
approximation, i.e. Sh consisting of continuous piecewise linear functions based
on certain fixed nodes {xj} € la,b] with h related to the maximum
distance between nodes. These are the problems p =1 and g =0 1in (1.5)7,
which is derived from the 0.D.E. -uﬁ = £ with Dirichlet or Dirichlet/
Neumann boundary conditions, and p = 0 with g = 1 which is the best L?

fit for u. Thus (1.3) becomes



b .
al I [u—uh)'vhhx = 0 whe Sh
a
(1.6)
& h
or b) [ (w-uMvhyx 0 0 wh e s".
a .
With (1.8a) it is well-known that u" is exact at the nodes, i.e.
uh[xj] = u[xj]. This is a conseqguence of the Green's function for the
underlying 0.D.E. being itself piecewise linear and this property is
easily destroyed by changes to the problem, for example
b .
‘K
J plu-uM "M ax = 0 (1.7)
a

with p not constant. With (1.6b), on a uniform mesh, we have the

widely-quoted formula
_gp h h = 4
u[xj] 5 {u (xj—1) + 10u [xj) + U [Xj+1)} oth™)  (1.8)

in the interior if u € \/\14’0° The reason for this local-averaging result

is that with three pieces of data, namely uh[xj_1], uh(xj] and uh(xj+1l,
one can find a quadratic polynomial which fits this data and, if u is
sufficiently smooth, this quadratic will be an 0(h*) approximation to u
locally, just as for interpolation with polynomials. However at specific
points, one of them being the mid-node xj, an extra order of convergence

is obtained since the error function for the next higher degree polynomial,
i.e. cubic, passes through zero there. This idea is not so unstable with
respect to changes in the problem and results like (1.8) still hold for

weighted L2 fits of the form
b
J q(u—uh]vhdx =0 q > 0. (1.9)
a .
The importance of such formulae for improved accuracy goes far beyond

the above examples. For Barrett & Morton (1980, 1981, 1984) use a symmetrizing

technigue on the non-self-adjoint diffusion-convection problem



-(aut)t + (bu)' = f, (1.10)
which aims at an approximation which is optimal in a norm

b

J (pv'2 + qv2)dx , (1.11)

a
where p = pa?, g = pb? + [pab)f and p 1is a positive weighting
factor. For a dominantly convective problem, a << b, we will have p << g
and an approximation in a norm which is "close” to that for {(1.9); with this
type of problem too, local recovery formulae like (1.8) exist. Furthermore,
as Morton (4g82a) has shown, most currently used Petrov-Galerkin methods for
problems like (1.10) can be regarded as approximations to an alternative
symmetrization which leads to an optimal approximation in a norm like (1:11)
but with p =a and g = 0. Thus, for model constant coefficient problems,
exact values are achieved at the nodes for arbitrary f, as -in Hemker (1877)
with exponential test functions, but for the general variable coefficient
case we do not have local recovery formulae of the quality of (1.8).

These least-squares type problems are also of great significance
for evolutionary problems and several authors have exploited the fact that,
for such problems, Galerkin methods lead naturally to least-squares
approximations to the solution - see Cullen & Morton (1880). At the very
least, this fact needs to be taken account of in the graphical presentation
of final results for problems where non-linear effects are pronounced.
Moreover, it is increasingly being recognised that some sort of recovery
or post-processing at each time step can give significantly improved
accuracy - see van Leer (1373), Morton (1982 p, 1984).
The formula (1.8) assumes that the underlying true sclution wu. 1is

smooth, but for many problems this assumption will not hold over at least part

of the domain. In diffusion convection problems there may be sharp boundary
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layers -and evolutionary problems may well involve shocks and other
discontinuities. To deal with these different cases Barrett & lMorton (1980)
adopted the following general technique for local recovery. Any a priori
data on u was incorporated into a local approximation uR with a number of

free parameters. Then the error projection property (1.3) was exploited

by requiring that

: o i
a[uR u .¢j) 0 | (1.12)
for a sufficient number of local basis functions ¢j of Sh to determine

these parameters. Using (1.3), this approach can be regarded as determining

U 80 that it fits known data functionals a(u,¢j]. In a part of the domain

where u is smooth a polynomial form for uR could be chosen, however, in,

for example, a boundary layer, an exponential form would be more appropriate.
If we move on to the case where p and g are of comparable magnitude

in (1.5), the above approach can still be followed but local recovery results

are disappointing and it is better to recover globally, i.e. uR satisfies

alug - A NRVAL I whesh . (1.13)

Here Up would belong to a space of the same dimension as Sh which, for

smooth problems, would generally be chosen to be piecewise-polynomials
of higher-order e.g. cubic splines with suitable end conditions. Clearly

this formulation is equivalent to a Petrov-Galerkin approximation of u with

piecewise linear test functions and higher-order trial functions,

) ) h
alug = usvy) = 0 wh € s, (1.14)

As such it is subsumed by standard Petrov-Galerkin error analysis

which shows that Uz attains the appropriate higher-order of accuracy,

e.g. fourth order for cubic splines, if u is sufficiently smooth. However

the direct solution of (1.14) would hardly be efficient, especially if uh



had already been computed, and so we propose that Up should be calculated
iteratively by using (1.14) in a defect correction mode. This involves only
the solution of systems of equations with the symmetric, positive-definite,
Galerkin stiffness matrix for Sh and different right-hand sides.

The ideas in this paper can often be considered within the framework
of Golomb & Weinberger (1959), and this connection is noted at various points.
Their basic problem is the approximation of an unknown element u of a
Hilbert space H when certain data on u 1is given. More specifically it is
assumed that

(i) the values of certain bounded linear functionajl Fj[uJ Jj=1 -+ n

are given,

(ii) a bound for bl(u,u) is known, where b(e,¢) 1is a symmetric,

bilinear, coercive form on H.

Their main result is that the "optimal” approximation to u is given by
_ n
G= ) a8, , (1.15)

where the ej are the representers of the Fj in H equipped with inner-

product b(e,°), .and the aj are determined by the conditions
F,.(u) = F, j=1 > : 1.18)
i J(u] J n (

If an approximation to any bounded linear functional of u is required,
say F(u), i1.e. any further information about u 1is needed, then the best

available estimate is F[Uj, with the sharp error bound
|Fw) - F(w ]2 = {b(6,8) - b(F,®Hblu,u) - b(L,W} , (1.17)

where 6 1s the representer of F and 8 its orthogonal projection with
respect to b(+,+) onto span{ej}. From our viewpoint the Fj would be either uh[le

or a[u,¢j] and b(e+,+) some integral energy norm which implied smoothness properties



by including higher derivatives in ite definition: thus, for instance,
the nodal superconvergence of Galerkin approximations is a direct application
of (1.17). Also although this framework seems inapplicable to the case where
the qualitative assumptions on u are other than those of smoothness, our
method of dealing with examples of such problems in §2.4 has underlying
similarities.

The present paper is divided into two sections. In §2 we investigate
recovery from weighted L2 fits like (1.9), with the given data consisting
of functionals of the form Jqu¢j or uh(ij. Local recovery formulae for
smooth solutions u, generalising (1.8), are deduced in §2.2 and §2.3 and
we specifically mention the connections with previous work. In §2.4 two
examples of local recovery for non-smooth u are considered, but we note
that the study of this type of problem is still at an early stage. In 83
recovery from 0.D.E. formulations like (1.5) is investigated again with
functionals a(u,¢jJ or uh[xj] as data. §3.2 examines whether the techniques
of 82 can be carried across and concludes that this is possible for the
singular perturbation case p << g. The general 0.D.E. bilinear form,
for which local recovery is inappropriate, is considered in §3.3-3.5 and
here we use global recovery, together with ideas similar to defect and deferred
correction, to produce higher-order approximations efficiently. In both §2

and §3 numerical examples are given to illustrate the theoretical results.



Vs RECOVERY FROM WEIGHTED L2 BEST FITS

2.1 The Moment and Point Functionals

With the interval [a,b] partitioned into elements with nodes

a = xD < X4 “E.. X34 < xJ = b we denote by Sh the space of continuous

piecewise linear functions spanned by { ¢j[x]}, where ¢j[x] is a standard

basis function satisfying ¢j(XK) =6 the Kronecker delta: we also denote

Jk’
by (e,¢) the standard L2(a,b) inner product and by ]

. || the corresponding

norm. Given the following scaled moment functionals of an unknown function

M - h
F, 1= .0, , 9. . , .
J[uJ (qu ¢JJ/(q ¢J) V¢J €S (2.1.1)

where g(x) 1is a smooth positive weighting function, we wish to estimate
the value of F(u), some other bounded linear functional of u. More
specifically we will be interested in estimating point values of u and its
derivative under given smoothness assumptions.

Under the minimum smoothness requirement on u, HuII; = (qu,u) bounded,
it follows that the optimal approximation to any functional F(u)

bounded in L2 is F[uh], where uh is the best fit from Sh

to u in

[q; that is, where uh is given by
[quh,¢.l = (qu,¢.) Yo, € Sh (2.1.2)
J J J

{see Golomb & Weinberger (1958) p. 131). Suppose Br € L2(a,b) is the

Riesz representer of F(°) with respect to | |q' that is, F(v) = [qv,gF]

X (a,b)
for every VvV € L2 @5 and gE € Sh its corresponding |

lq best fit. Then

we have

It

Ftw) - F| = |tatu-uM,g )]

|(q[u-uh], gF—gEJI

IA

_h _h
lu-u™M g Negmgell

< et | [l < 1T 2o



and this bound is sharp as it is attained for u = B

The key to the above is that uh is the best fit to u in |

I,

» Hq representers of the known moment functionals.

from the span of the |
Unfortunately, due to the lack of smoothness assumed, this framework as it

stands cannot be used for estimating point values of u. In assuming more

2
a2

smoothness on u, say bounded, the Golomb & Weinberger theory

requires one to construct a higher order piecewise polynomial approximation

.[2] H

to u; namely, the best fit to u in
I _[Z]H

moves away from our aims as we are interested in estimating point values of

from the span of the

representers of the known moment functionals. This reqguirement

an unknown solution u to a differential equation, where in doing so
we have already computed a piecewise linear, or some other low order,
approximation to u. Thus we wish to estimate the point values of u and
its derivative either directly from the given moment functionals or from a
low order piecewise polynomial approximation. We will return to the ordinary
differential equation problem and its connections to Golamb & Weinberger theory
in 83. 1In this section we will concentrate on the pure approximation
problem in the weighted L2 norm.

Given the data (2.1.1), then we wish to estimate point values of
u from a small number of either these moment functionals or the point
Fﬁnctionals

F?[u] N uh[le j=0-J, (2.1.4)

where uh is defined by (2.1.2). Consider the case of a uniform mesh
of length h and g(x) = 1. Under these circumstances we have for

u € C*(a,b) that

2

F?(u] = h_1[u,¢jj = {1 * %E} u[xj] + 0(h*) ji=1->173-1,
(2.1.5)
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where Gu[xj] := u[é[xj + xj+1]J - u[%[xj_1 + xj]J. Operating on both sides
2
of (2.1.5) by [1 = %5- we obtain
2
1 -8 M = uix,) + ont) j=2+8-2 a (2.1.6)
12 J J

Therefore a local average of 3 moment functionals,

M M M , . 4 . ,
[—Fj_q[uJ + 14Fj[uJ N Fj+1[u)]/t2,ylelds an 0(h') approximation to u(xj].
Clearly the above approach can be generalised to obtain an arbitrarily high
order approximation to u(xj], provided u 1is sufficiently smooth and ><j
is far enough away from the boundaries, by taking a local average over a
larger number of moment functionals.

In addition from (2.1.2) we have that
(ﬂ + EL% uh(x.] = Fm[u] i=1->3-1 (2.1.7)
B J J

and so local averages of the point functionals yield higher order
approximations to u[xj]. For example, combining (2.1.6) and (2.1.7)

yields

P P
(-F. _(u) + 10F. _(u) + 54F.(u) + 10F.
J-2 J=1 J +

P
o) - Yo (W)/72

as an 0(h*) approximation to u[ij. This result is equivalent to that
obtained by the local averaging technigque given by Bramble & Schatz (1976).
In that paper they present various averaging rules for the best L2 spline
approximations on a uniform mesh. In particular they show that presented

with 2m + 1 point functionals centred about the mesh point x then one

KJ
can take a local average of them yielding an D[h2m+2] approximation to

u(xKJ. In subsection 2.2 we extend their results for piecewise constants

and continuous piecewise linears as follows:- given n successive moment
functionals {FM ,(uJ}T , Wwe show that for any x € [x, ,x 1 there exists
k+J j=1 K™ "k+n+1

a local average of them, depending on x, which yields an 0(h") approximation
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to u[xKJ. In addition, we show that there exist n points of
superconvergence where this local average yields an O(hn+1] approximation.
Moreover, our results are valid for a general g € Cla,b] and a non-uniform
mesh. We believe our approach to be more transparent and note that it can be
generalised to higher order approximation spaces.

Although local averaging formulae based on the point functicnals can be
obtained from those based on the moment functionals via (2.1.7) or its
analogue in the case of a non-uniform mesh and general g, more compact formulae
may be obtained by considering the point functionals directly. It is very
instructive to ignore boundary effects for the present and consider the case
of uh beinglthe best piecewise linear L? fit on a uniform mesh to u

over the infinite real line. In this case for u € C*(R), combining (2.1.5)

and (2.1.7) and operating on both sides by (1 + 62/8]—/l yields

h (., 82 X
u [xj] [1 12] u(ij + 0(h™") . (2.1.8)

Although uh is only an O0(h?) approximation to u at the nodes Xj’

from (2.1.8) we may first deduce that there exist points of superconvergence:-

h T h
u (xj + Ah) = (1 Alu (xj) + Au [Xj+1]
- i, _ 82 _ 82 4
(1 ) [1 12] u(xj) + A[1 12]u(xj+1) + 0(h*)
- ulx, + Ah) - 22 [BAz-BA+11UM (x. + Ah) + D(h®);
J 12 .0

(2.1.9)

that is, uh is 0(h®) accurate where A = 3[4 t-ﬁ%J, the Gauss points
corresponding to the roots of the second degree Legendre polynomial. Secondly,

the relationship (2.1.8) also implies that the local average
P P P ~
(Fyoqlud v A0F (W) + Fy  (uN)/12

is an 0O(h*) approximation to u(xj] differing from the earlier formula

P
by GqFj[u]/72. Once again this result can be generalised to obtain an
arbitrarily high order approximation to u(xj], provided u is sufficiently

smooth. Thus one can see that different recovery formulae are obtained if -
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one works directly with the point rather than the moment functionals.
Note that in the second case the piecewise linear best fit does not need
to be computed, although the results can always be given in terms of the
{F?(u)}.

Unfortunately, recovering from the point functionals is not a rabust
procedure and many of the results are lost as one moves away from a uniform
grid over the infinite real line and g = 1. This is not surprising because
of the link between the best L2 approximation by continuous piecewise
linears and the cubic spline interpolation problem. It is well known for the
latter that if the end conditions are not chosen appropriately many super-
convergence results in the interior are lost, see Lucas (1974). We discuss this
connection and present our limited results for point functionals in
subsection 2.3.

One should also note that for some approximation spaces working
with the moment functionals is equivalent to working with the point
functionals. An example of this occurs when Sh is the space of piecewise

constant functions spanned by {xj(x]}, where xj[x) is the characteristic

h h

function for the element [xj_l,xj+lJ. For u' € §' the moment functional is
2 2
defined by
M, h M h
F.lu') = F,(u) := (qu,x.)/(qg,¥%. ¥x, € S 2.1.10)
3 3 %4370,y X3 [
M
and because F,(x.) = §,. we have
J 1 1
FPew) 1= uix,) = Fhw). (2.1.11)
J J J

Thus the moment and point functionals are equivalent.

The recovery procedures using the moment and point functionals
described above and in subsections 2.2 and 2.3 assume that the underlying
solution u 1is sufficiently smooth. Finally, in subsection 2.4 we address the

problem of non-smooth and rapidly varying functions, e.g. shocks and boundary

layers.
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2.2 Recovery from the Moment Functionals

2.2.1 General mesh

Although the framework we adopt is gquite general, for ease of exposition
we restrict ourselves to studying only moment functionals arising from either
piecewise constant or continuous piecewise linear approximation spaces.

These two choices enable us to convey the main ideas which can be generalised
to higher order approximation spaces. With the notation of the previous
section we are presented with either n consecutive piecewise constant moment

functionals
F(w) = (qux, . )/(ax,..) 1=1+n (2.2.1a)
k+1 TAK+L TAK+L

or n consecutive continuous piecewise linear moment functionals

M - I
Fk+i(uJ = [qu,¢K+i]/[q,¢K+iJ i=1->n (2.2.1b)

where g € Cla,bl and qg(x) > O Yx € [a,bl. In addition, we introduce

the following notation. We denote by In the union of support of the basis

» K

functions for k+1 = k+n and by hn the length of the maximum element.

sk
Thus we have I\ = [X .3:X eyl and b o= = MEERE TS
piecewise constants, and In,K = [Xk’xk+n+1] and hn,k = T?x [xk+i+1_xk+i]
i=0-n
' m
for piecewise linears. We shall alsoc denote by W 'p(In KJ the usual Sobolev
norm involving derivatives up to order m in the Lp[In K) norm. .

Lemma 2.1
For any v € Cla,bl, then FE+i[V] =0 1 =1-+n implies that v has

n zeroes in I .
n, k

Proof: For piecewise constants introduce w such that w!' =gv on I

- M _ . .
and w[xk+%] = 0. Then FK+i[v) = 0 implies that
! = bl =] i =]
(W.’Xk+i] W[Xk+i+%) W[xk+i-£] 0 i 1 + n. Therefore, we have
W(xk+i+%] =0 1=0U-=n implying that wf has n zeroes in_ In,k’ which

yields the desired result as g » O.
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For piecewise linears introduce w such that w" = qv on I«

with w[xK] = w(x J = 0, assuming the moment functionals are in the

k+n+1

interior; that is, k # -1 and k #J - n. Then FE+1[V] = 0 implies that

] - =
[W' J¢K+i] - A_[A+W(xk+i)/A

backward and forward difference operators. Therefore, imposing the boundary

+Xk+i] =0 1i=1=>n, where A_,A  are the usual

conditions, we have w(xk+i] =0 1i=0-+n+1 implying that w" and hence

v has n zeroes in I . The above proof can be adapted by replacing the

n,k
boundary condition w(xkl =0 by wf[xk+1] =0 if k = -1 and
= 1 = 1 = - [ |
W(xk+n+1] 0 by W<(xk+n] 0 if Kk J - n.
Corollary
. . : th . M i
There exist unique (n-1) degree polynomials c, K+j(x] J=1=>n
such that
M M _ 1 o )
K+i (Cn,k+j] = Gij i=1=>n ; (2.2.2)
th . . .
and thus any (n-1) degree polynomial pn_1(x] can be written in the form
. E‘ M M
Dn_1[x) = Fk+j [pn-1)cn,K+j(X]' (2.2.3)

J=1

Proof: With {¢2(X]}2=1 a basis for polynomials of degree n-1 we need to

show that there exist unique coefficients bg i such that
M _¢oom .
Cn,k+j[XJ = Z bz,jWR(X] J=1->n.
2=1
. . MM _ M M
The equations (2.2.2) imnly that A B = In’ where A and B are nxn

M - M

matrices with entries a, = .
i, k+i

M ]
(wzl and bz,j' respectively; and In

is the nxn identity. From Lemma 2.1 we deduce that if n consecutive

moment functionals of a [n-1]th degree polynomial Pr- (x) are zero

1
then pn—1[XJ = 0. This implies the invertibility of the matrix AM and

hence the existence and uniqueness of the polynomials c: K+j(xJ j=1=>n.

As these polynomials are linearly independent the result (2.2.3) follows

immediately. u
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We now have the main result of this subsectiogn:-

Theorem 2.1

p . . . M .
Given n consecutive moment functionals, Fk+i[U] i=1->n, of an

unknown function u. Then if u € W (I ] it follows that

n, Kk
n
M M n (n)
|ux) .Z Frog(WE OO s U™ [ o ) VeI . (2.2.4)
1"1 nJK
. . M M M.
Moreover, there exist n points of superconvergence zj, Z2yeee0z An
In K’ roots of the nth degree monic polynomial Z: K[x) such that
M M _ .
Fk+i[Zn,k] =0 i=1+n , (2.2.5)
. S, N,
at which if u e W (In k) we have
Mo T o G e ot et - (2.2.6)
|u(22) _Z ke (900 et zle < Chn,K | l|Lw[I y L > nN. L2,
i=1 n.k
th :
Proof: The (n-1) degree polynomial
n
¢ M
Phoq(x) = qu P o ey &) (2.2.7)

is such that FE+i(u - pn_1] =0 1i=1+n. FromlLemma 2.1 it follows

that pn_ interpolates u at n distinct points {Ei}2=1 in I

n,k"

Therefore the error betwsen u and P,-4 can be bounded using the standard

1

Cauchy remainder for polynomial interpolation to yield

n n
_ M M =l _ VT
|u(x) .Z Flops (W Cn,K+i[X)l £ = | 11, (x EiJI || u [|L (I 3
1_1 nlk
= n )y
s ey el (1, ) eIk
From the proof of Lemma 2.1 we deduce that Ei € [xk+i—1‘ xk+i+l] for
2 2

piecewise constants and Ei € [x 1 for piecewise linears

k+i-17 Xk+i+1

implying that the constant C in (2.2.4) is bounded above by 1 and n+1 1in

the respective cases.
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The nth degree monic polynomial

n
M n M n, M
= = . 2.2.8)
Zo X)) =x qu Fk+j[x ]Cn,K+J[XJ (
is such that FM (ZM J =0 1i=1>n. Hence the polynomial p_ ,,
K+i nJK n"l

defined by (2.2.7), interpolates u - BZS K for any B € R at n distinct

points {”1[61}2=1 in In,k and so
M n
lutx) = gz (x) - p 0] s =l (xn| lu

1 (n)
N 59

gt =
L [In,k)

Vx € In,K - (2.2.9)

(n) . M
1 - I
Choosing B = u (xk+%[n+1JJ/n' and noting from Lemma 2.1 that Zn,k has
n zeroes {22}2=1 in Irl K yields the desired result (2.2.8) for
n+1,e
uew [In,K]' ]
Corollary

Since u' is interpolated by p%_1. where p

at n-1 distinct points it follows that

q-q 18 given by (2.2.7)

M Mt n-1
Freglule o (] s Chy «

|ur(x) -
. 1 »

(n) “

ne-13
=~
+
[

oo VXGI .
L [In,kl n,k

(2.2.10)

1

. 1 1 t
Moreover, there exist n-1 points of superconvergence ZT"ZQ"""ZE41 in

Mt
In K roots of Zn. (x)  where Z: K(xJ is given by (2.2.8). at which the

order of approximation is increased to n if u € w”+1’”[1 ).

n, Kk

2.2.2 Uniform mesh, g = 1 and linear elements

We illustrate the recovery procedure using moment functionals by
explicitly generating the faormulae for the case of continuous piecewise
linears on a uniform mesh of length h with the weighting function g chosen

to be identically one. Taking an odd number of interior moment functionals,
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n=2m+ 1, implies that the mid-point of the interval I is by symmetry

n,k

a point of superconvergence for approximating the function. Thus to exploit

symmetry it is desirable to consider a collection of moment functionals

M .1 m ]
{FK+i[u] = h [u'¢K+i)}i=—m centred about the fixed, superconvergent,

. . . . M m . .
point X In practice the Lagrangian basis {Cn,K+j(XJ}j=—m satisfying

M M B S
Fk+i[cn,K+j] = Gij i m-=>m

(2.2.11)

is not ideal, since if m is increased one has to recompute the complete set

of basis functions. It is far better to use a Newton type basis {dE+j(x]},

where d?+j(x] is a polynomial of degree 23 if j 2 0, and of degree

-2 -1 if j < 0 satisfying

M =
dk(X] = 1 »

MooM L . .
Fk+i[dk+j] =0 i=-3->3-1 gz 1
and
M M _ . . 3 .
Fk+i[dk+j] =0 i=-(j+1) » j+1 J £ -1.

For a uniform mesh and g = 1 the polynomials dlVI .(x) are of the form

k+Jj
dM .fx) = wm {x } XKJ
k+J J ==
Clearly through symmetry w?(t) is an odd function about t =0 for

negative and an even function about t = -3 for j positive. For what

follows though it is convenient to express them in the following way

Moy o
WO(tJ =1

= 3-1
W) = t2TT ;G W) iz
=J _ : =Js% 2

L= -(j-1)
and
. -1
2 !
W) = e e T el W) e

(2.2.12)

(2.2.13)

(2.2.14)
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where the coefficients am are defined by the relationships (2.2.12).

FE(GZV] and 6FM (v) = FM(ST 3 V) where T ,v(x) = v (x + ih),

M
L} 2
Since § FK(V] k-1 =y g -1 z

it follows that

" o2t M[[ ] ]}'//’ (20) ! g =031 3z
%58 -
N [E} ]///2|g] S T T RS T G
- & P,
(2.2.15)
-—szzFB[[§+é 2J_1} (221 g =031 Jz1,
M | j i
T C2|g|-1.M (. ,)235-1 _
—-F F_%L[F+z] ]} (2]g|-1)0 g = -(3-1) » -1 jz2

As our recovery formula is exact for all polynomials of degree 2m it is a

simple matter to show that it takes the form

moo, GZJFE[U] mooy 523-1FE_1[uJ
Y w,(t) G T L v () VIR , (2.2.18)
j=0 J JJs .J=1 J J :
. ; 2m+1 . .
yielding an 0O(h ) approximation to ulx, *+ th) for |t = m+1.
Introducing ng 1= w?[D]/(Zj]! J 2 0 we deduce from (2.2.14) and (2.2.15)
that (2.2.18) evaluated at the superconvergent point t=0, O[h2m+23, reduces
to
m =
y cg. GZJFE[UJ ; (2.2.17)
j=0
where
M 3i1 201 ((x)23) M
.- 62% [H ] (2301 52
2] 4=0 0 {lh 28
. (2.2.18)
M _
CO = 1

A simple calculation yields that

o - Sl e

Y (25423 (24+1)

L =031, Jz 1.
(2.2.19)
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Thus using the results (2.2.18) and (2.2.49) it is very simple to generate

the coefficients ng and we obtain

M 1 m_ 1 m_ 1
i T3+ G Boey G =5 et (2.2.20)

The error in the approximation (2.2.16) can be expressed in the form

m+1
M - -
E2m+1’k(u,tl 1= u[xk+thl J g2m+1(t,s]u[xk+sh1ds, (2.2.21)
-{m+1)
where
m 62J¢ (sh) m 623_2[¢ (sh)-¢ ,(sh)]
g (t,8) 1= ) owh(t) ———— + T W ) 2 = :
2m+1 " i2p 9 (231! ey ~j (25-1)1
J i (2.2.22)
Expanding u(x) 1in a Taylor series about X we find
o 14
_ 201 [x xk) (3) X (x—s]2m+1 (2m+2)
ulx) = ——u (x, ) + ——u (s)ds
L il k (2m+1) !
j=0 X
k
= P2m+1[x) + R2m+1(x3.
) M ' _ _ . , .
Slnce E2m+1,k[P2m+1,D] =0 and R2m+1(xkl = 0 we find (by interchanging the order

of integration in the double integral for the error) that the error at the super-

convergent point x is

g - (™ y
E2m+1,K (u,0) = - J g2m+1[0.sl R2m+1[xK+ShJ ds
— ~(m+1]
M (2m+2)
sz+1(0,sJu (xk+shJ ds , (2.2.23)
-(m+1)
where
2m+2 s
M h M 2m+1
o= e = - <
62m+1[0,sJ S Tome T g2m+1(0,y][s y) dy (m#+1) £ s 2 0
-(m+1)
and (2.2.24)
G[vl (0,s) := GM (0,-s) 0 £ s £ m+]

2m+1 T Pome
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Thus we have

m+1
" w0 s 167 (0,8 ds] o122,

2m+1, k 2m+1 L%
-(m+1)

If the kernel G2m+1[D’SJ is of one sign it becomes a simple matter to

calculate the error constant, as we have using (2.2.23)

m+1 M m+1 M
|sz+1[0,s)[ ds = | G2m+1[0,s] dsl
-(m+1) -(m+1)
m+1
" DET:E—— I M (0 5J82m+2ds
(2m+2) 1 S

-{m+1)

A simple calculation using (2.2.22) and (2.2.19) yields that the right-hand

M
2m+2

side of (2.2.26) is simply |C ple X

2m

of one sign we have that

M 2_M
CZj 8 Fk[ull

M 2m+2 (2m+2)
|u(xKJ - < |C2m+2| h ||u

I ~13

=
j=a L [xk_

We have checked explicitly that GIVI

2m+1[0‘53 is of one sign for

and we conjecture that it is true for all m. As an example we have from

(2.2.20)

5]
82 8" h (6)
lutx,) - [1 - +—] L 12 g ol g

K-m—1,xk+m+1]

| h . Therefore if G +1[0,s]

m-1,xk+m+1

-3°%k+3

(2.2.25)

(2.2.28)

(2.2.27)

(2.2.28)

In a similar manner to the above one can obtain a simple recovery formula

for the derivative of u. It follows from the corollary to Theorem 2.1

that
m-1 829 ) m §237 1
L@ gm0 L o i
j=D J j L] j___/l J J .

is an O[th-1] approximation to uf(xk+thJ for -(m+1) £ t £ m.

(2.2.29)
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1
Introducing ng_1 1= wwj (-3)/(23-1)1 jz 1 it follows from (2.2.14)

and (2.2.15) that (2.2.29) evaluated at the superconvergent point t = -3,

2m

0(h™"), reduces to
-1 25-1 _M
h Yoo, 8T R W, : (2.2.30)
i 2j-1 k-3
j=1
where
-1 23-1
M . I J 28-1 M [[x ., A -
Coy-1 z 8 Fly ([h + 4 Cogoqf /(23-1) 322  (2.2.31)
[+
and
M _
C1 = 1

A similar calculation to (2.2.19) yields that

. 622+1[[5123+q]
2j—ﬁ] ) hl ~ |x=0

= i - 1 >
20-1 oM ( X3 Z3+123 g=1+3-1, jzz2
=3 L h _] i
(2.2.32)
Once again if the corresponding kernel i1s of one sign, which we cenjecture
to be true for all m, we have
| -1 ? M 23-1 _M | | g2y, (2men)
u'(x, ,) - h . C,, , 8 F, ,u)] = |c h™ [|u | |
k-3 321 23-1 k-3 2m+1 L [xk—m-1’xk+mL
(2.2.33)
As an example we have from (2.2.31) and (2.2.32} that CM sz X and CM TV
P e e 3 8 5 1920
implying that
-1 §2 M 37 4 (5)
lut(x, ,) - h [1 - ——J §F J(w)| s ===n"* JJu’| i (2.2.34)
k 2 8 K 2 1920 L [XK_B’XK"'Z]

In addition, from the construction (2.2.12) and (2.2.13) of the polynomials

w? we deduce that all zeroes of WT[m+1J(t] are points of superconvergence
1
for the recovery formula (2.2.16) and zeroes of W:'[t] are suUperconvergence
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points of the recovery formula {2.2.29). Therefore it is useful to tabulate

these polynomials. Using (2.2.14) and (2.2.15) we obtain for example

M
w_1[t] =t
W(E) = g2 et o
(2.2.35)
w_2[t] =t 2t
M — 3 _ 2 - ._4_
WZ[tJ t’ + 2t 2t 3t + 15
M M . . .
As an example we have (1 + AJFK[UJ - AFK_1[UJ is an 0(h®) approximation
to u(xK + Ah) df A = i(-1 % ng’ roots of wT[t]. This is the moment

functional analogue of the result (2.1.9).

2.2.3 Numerical Examples

We now describe various numerical examples to illustrate how the technigues
described in this section perform in practice. Throughout we consider moment
functionals generated from continuous piecewise linear functions and take
u(x]=ex, All the moment functionals have been evaluated using a 4-point Gauss
rule on each element; this is of sufficiently high accuracy that we may ignore
this quadrature error.

4

In Table 2.1, where we adopt the notation 0.35(-4) = 0.35 x 10 , we

present results in the case of a uniform mesh of length h = 0.1 and g =

It
N
-

We compare the performance of recovery formulae based on 2, 3 and 4

moment functionals, in all cases being centred about the origin. For each
formula we state all the superconvergent points for recovery of the function
and the derivative and give the error between the true and recovered soclution
at these points. For comparison we give the error between the true and

recovered solution at a non-superconvergent point.
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Number of Comparing Expected Rate of| (True -
Moment X Function or| Convergence at Recovered
Functions Derivative X Solution)at x
2 -0.64550 (-1) F 3 0.35 (-4)
0.0 2 -0.21 (-2)
0.64550 (-1) 3 -0.37 (-4)
0.0 D 2 -0.13 (-2)
3 -0.12247 F 4 -0.19 (-5)
0.0 4 0.11 (-5)
0.12247 4 -0.21 (-5)
-0.70711 (-1) D 3 0.58 (-4)
0.0 2 -0.25 (-2)
0.70711 (-1) 3 -0.60 (-4)
4 -0.17772 F 5 0.12 (-8B)
-0.58454 (-1) 5 -0.48 (-7)
0.0 4 0.45 (-5)
0.58454 (-1) 5 0.50 (-7)
0.17772 5 -0.14 (-8)
-0.13229 D 4 -0.34 (-5)
0.0 4 0.19 (-5)
0.13228 4 -0.37 (-5)

TABLE 2.1 ¢ Uniform mesh h =0.1 and g = 1

From Table 2.1 we see clearly the advantage of sampling our recovery
formulae at the superconvergent points. To link up these results with the
formulae of section 2.2 we consider for example the case of 3 moment functionals.
The superconvergent points of the recovery formula (2.2.16) for the function
value u(th) occur at the roots of WTZ(t]; that is, t = i//gl 0, as can be
seen from (2.2.35). Hence we obtain the superconvergent points 0.0, 1//25

(¥ £ 0.12247) in Table 2.1. The approximation to u(0) is then given by
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(1 - 82/12) Fg[u] and from (2.2.27) we have a bound for the error:-

(0.1
90

(iv)

A

U0 - (1 - 82 /12)Fh () | Il

| L¥1-0.2,0.21

0-2 /90

* 0.11 x 10'5,

0.13571 x 10>

11

Therefore the bound (0.1)% e is in good agreement

with the true error, given in Table 2.1.

In Table 2.2 we present the results of using 4 moment functionals
centred about the origin on a uniform mesh of length h = 0.1 with g = 1 + x.
We see there is no deterioration in the results due to g being non-uniform and

again observe the advantage of sampling at the predicted superconvergent points.

In Table 2.3 we present the results of using 4 moment functionals

non-uniform mesh with nodes -0.25, -0.1, 0.025, 0.125, 0.2, 0.25 and g =

Once again there is no deterioration in the results.

Number of Comparing Expected Rate of | (True -
Moment X Function or | Convergence at Recovered
Functions Derivative X Solution) at x
4 -0.17588 F 5 0.13 (-B)
-0.56567 (-1) 5 -0.48 (-7)
0.0 4 0.45 (~5)
0.601863 (-1) 5 0.49 (-7)
0.17907 5 -0.13 (-8)
-0.2 D 3 -0.76 (-3)
-0.13045 4 -0.34 (-5)
0.17775 (-2) 4 0.19 (-5)
0.13376 4 -0.36 (-5)
TABLE 2.2 : Uniform mesh and g = 1 + x

on a

1}
N
.
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Number of Comparing Expected Rate of | (True -

Moment X Function or | Convergence at Recovered Solution)

Functions Derivative X at x

4 -0.2 F 4 0.56 (-4)

-0.15073 5 0.36 (-6)
0.36293 (-2) 5 -0.73 (-7)
0.12195 5 0.35 (-7)
0.20848 5 -0.35 (-7)
-0.2 D gm -0.17 (-2)
-0.95217 (-1) 4 -0.66 (-5)
0.58381 (-1) 4 0.21 (-5)
0.17333 4 -0.19 (-5)

TABLE 2.3 : Non-uniform mesh and g = 1

2.3 Recovery from the Point Functionals

2.3.1 Uniform mesh over the infinite real line and g = 1

As we have seen in 2.1, for piecewise constants recovering from the point
functionals is equivalent to recovering from the moment functionals. For
continuous piecewise linears these procedures are different and this is the
case that we consider here. We are presented with n consecutive point

functionals

P - h L
FK+i(uJ =y [xk+i) i=1>n, (2.3.1)

where uh € Sh is such that
h h
(glu - u'l, ¢j] =0 V¢j €S . (2.3.2)

It is convenient to introduce the discrete Green's function g: € Sh such that

h h
9. =8, Vo, €S . 2N
(9 g;- ¢;) = 8,4 ¢y ( )
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Then we have

P _ h ) h o hy h ) h
Fi(uJ = u [xi) (g g, u ) {g g;» u) (qu, gil . (2.3.4)

Unfortunately unlike retovering from the moment functionals, recovering
from the point functionals is not a robust procedure and many results that
one may expect to hold do not. For example FE+i[pn—1] =0 4i=1=>n
in general does not imply that the (n - 1]th degree polynomial pn_1[x] = 0.
To illustrate this consider the following example.' With the interval
[-1,1] partitioned into four elements with nodes {-1,-h,0,h,1}, a simple
calculation yields that the best continuous piecewise linear fit uh to the
guadratic 6x2 - h? in the L2 norm (that is, g = 1) is such that
uh(-hJ = uh(D) = uh[h] =0 if h is chosen to be [[17)% - 31/4 ~ 0.2808.

Thus this fundamental result does not hold on a general mesh for n = 3.

One may ask under what restrictions does it hold. We have the following

result.
Lemma 2.2
If uh is the best piecewise linear fit on a uniform mesh of length
h over the infinite real line to a (n - 1)th degree polynomial Pr-1 in the

2 . = p - h - . . .
L™ norm (that is, g = 1), then Fk+i(pn-1] =u [xk+iJ 0 i=1>n implies

that pn_1(x] = 0.

Proof: From (2.3.4) we have in general

n-1 . 5
PP tp ) = (ap s 2R ) = 320 tatxx, )% g, et 3 x, 1751
= ni1 lo p[j] (x,,.3/3!1 (2.3.5)
320 ijtn-1 Tkl e
where
cij - (q[x-xk+i]j, g2+i] i (2.3.8)
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If g=1 and Sh is defined on a uniform mesh over the infinite real

line, then Oij is independent of 1 because

Q
I

0 i j h
1] J {x xk+i) gk+i(xJ dx

-

I X gk+i[x + xk+i] dx

-0

=[ ngB(x] dx = oj Vi€ Z : (2.3.7)

We note that if any of the above constraints are relaxed then Gij is
no longer independent of i. Defining the (n - 1Jth degree polynomial

Qn_1[xl by
ni’l
(o.p
j=0 3

(3]
n-1

£
—
X
—
n

(x)/31] .

we deduce that Qn_1[x) 0 since we are given that Qn_ (x

1" "k+1 Fk+i

i =1 n. This implies that pn_1[x) =0 as o5 =1. -

Corollary
With g £ 1 and a uniform mesh over the infinite real line there exist

unique (n - 1)th degree polynomials CE j[XJ J =1+ n such that

FPeP ) = 6., i=1>n (2.3.8)
i 7n, ] ij

and thus any (n - 1)th degree polynomial p (x) can be written in the

n-1
form
0 p p

pn_1[xJ = j§1 Fk+j(pn-1]on,j(x = xk]. {2.3.9)
Proof: An explicit calculation yields that

gg(x]=h_1/3 ) [/5-2J|J|¢j(x1

j:—oo

and so

g?(x] = ggtx - xg) = h'vi [/5—2J|J'l|¢j[x1 . (2.3.10)

j:—OO
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5 . A n A - X
,(x) in terms of {wz(x1}£=1, where wztx) wi[ ] and

We express Cn,J h

(x] A is any basis independent of h for polynomials of degree n - 1,
w% 2=1

P (x) =
n,J

»

ne~-13

bz’j b, 00 i=1>n. (2.3.11)

2=1

The equations (2.3.8) are equivalent to APBP = In' where AP and B are

n x n matrices independent of h with entries a? . = F?[@QJ = [@g,ng and
the unknown coefficients bz 5’ respectively. The invertibility of AP and hence
the existence and uniqueness of c? L (x) J=1->n follow from Lemma 2.2.

n,J
setting cP .(x) = P .(x - x.) it follows that F° .(cP . .) = 6&.., yielding
n,k+j n,J K k+i "n,k+j ij

the desired result (2.3.9). =

Even under the restrictive conditions above of a uniform mesh over the
infinite real line and g = 1 the analogue of Lemma 2.4 does not holds, that
is, given v € Cl-w,») Fi+i(vl =0 1i=1-n does not imply that v has
n zeroes. For example the quartic polynomial 15x* - h* has only two zeroes,
but a simple calculation yields that its corresponding best piecewise linear

fit uh is such that uh(-h] uh[DJ = uh[h) = 0. This means that one cannot

bound the error

n
; p p _
u(x) igq Fk+i(u) cn,i[x X, ) (2.3.12)

using interpolation theory. Furthermore, one cannot deduce that there exist

n points of superconvergence. Suboptimal results can be obtained by relating
the point functionals to the moment functicnals; that is, Fi+i(VJ =0
i=1->n implies that FK+i(v] =0 i=2>n-1 Thus using interpolation
theory the error (2.3.12) can be shown to be at least D[hn_zl and that there
exist n - 2 points of superconvergence, where the error is at least O(hn_1].
However, this does not identify any advantage in using the point functionals over
the moment functionals.

An alternative approach as we are only considering the case of a uniform

mesh and g = 1 1is to explicitly generate the recovery formulae as we did for
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the moment functionals in subsection 2.2.2. Choosing n = 2m + 1 to

exploit symmetry we consider a collection of point functionals {FE+i[u]}?=_m

centred about x, . Adopting analogous notation to that in 2.2.2. it follows

K
that our recovery formula approximating u(xK + th) 1s the analogue of
(2.2.16):-
mo 2JFE(U] mo 623_1FE-1[U)
e ———— + 2
LW ) LW~y
= J—1
(2.3.13)
= gp (t,slu(x, + sh) ds
e 2m+1 ’ k ?
where
0 m o 523 g(shJ mo 23 ZIgO(sh] g [sh]]
t, 1= . el ;
g2m+1( a) 'ED WJ(t] {2331 -Zq W-j[tJ (25-1)1
’ ] (2.3.14)

the analogue of (2.2.22). Expanding u(x) in a Taylor series as in 2.2.2 we

have that the error in the approximation (2.3.13) is given by

p ‘ [T e (2m+1)
E2m+1 K(u,t] i J_ H2 +1[t ,8JU [xk + sh) ds 5 (2.3.15)
where
f
s 8] 2m
J g2m+1[t,y][s-y) dy -0 ¢ g < t
. h2m+’| -
H2m 1(t SJ:= [2—ij 4 (2.3.15]
- wgp (t,y) (y-8) "My t¢s<ew
' 2m+1 7!
L s

Hence we have

I=2

“u[2m+'l]
2m+1, Kk

i | S J- [Hypaq (£28) | 1L (0

gCh2m+" ||U(2m+1) ||L°°(_°°’°°J for |t| ESm+ 1. (2.3.17)



_30_

At the superconvergent point t = 0 (2.3.13) reduces to

m o
P R (DR (2.3.18)
j=o
where
J: 2]
P 28.p [1X P Y1 :
C; { z 87 Fy ([h] ]sz} /(231 jz 1 (2.3.19)
2=0
and
P =
CD 1
and the error is
p . > p (2m+2)
E2m+1,K[U,O). [ G2m+1(0,5)u (xk+8h]d5’ (2.3-201
where
2m+2 s
p .. h P _y2m*1 —0 < <
Coms1t0-8 1= Zemy J Bomeq (0o ¥ILey) T dy 21310
= (2.3.21)
and
p = p = < <oo
G2m+1(0,s]. G2m+1[0' 5) 0 s i
Hence we have
p < ® P (2m+2) -
|E2m+1,k[“'03| s J_w |65, .4(0,8)[ds  [[u [T

2m+2 llu[2m+2] (2.3.22)

Ch

A

[

After some tedious calculations due to the global nature of the

approximation one can evaluate the coefficients ng from (2.3.18) to obtain

p_ 1 p___1
G, B 5 C R . (2.3.23)

Unfortunately, unlike with the moment functions, the. kernel G2m+1[0,sl
is highly oscillatory thus making it difficult to isolate the constant in the
error. It is obviously simple to obtain a lower bound for this constant,

[+ ] [= o]
. p p _ P 2m+2
since J_m|62m+1(0’5)ld8 z Ij_w82m+1(0,s]ds| |C2m+ZI h . As an example

we have
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62

lg[xk) = [1 * ——} Fi[u)l e

A

4 - .
e ch* |lu HL(_OO,W) 3 (2.3.24)

where we know the constant C 1is no smaller than , which it would be if

A
360
u were a guartic polynomial. Clearly, one can obtain corresponding formulae
for the derivatives of u. It is also useful to tabulate the polynomials

w?[t), whose roots determine the points of superconvergence, and we obtain

for example

P -
wo,(t) =t
w?(t]=t2+t+—;—
p R
w_z[tJ t 2t

p = 44 3 - _.1_
wz(t] t7 o+ 2t t 15

As an example we have (1 + A]FE[U] - AFi_1[U) is an O0(h®) approximation

to u[xk + Ah) if X = %{-1 + /%T], roots of wq(t), as we derived previously

in (2.1.9).

2.3.2 General case

We now look to see how the above results are affected if we consider
the case of g = 1 and a uniform mesh on a finite domain [a,bl. To do
this we follow Chandler (1980) and exploit the connection between the best L2
approximation by continuous piecewise linears and interpolation by cubic splines.
For a function v, its cubic spline interpolate vC satisfies the system of

equations

62 62
h[1+=] v (x.)] =—vix.) j=1>3-1, {(2.3.25)
6 G J h J

see Schultz (1973) for example. This system can be rewritten, since vg

is a continuous piecewise linear function, in the form

[Vg = Vﬂ ) 0 i=1>73-1. (2.3.28)

J
To define the cubic spline interpolate uniquely, the system (2.3.28) has to be

supplemented with two extra conditions. As is well-known these have to be chosen
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carefully so as not to reduce the rate of convergence in the interior,

see for example Behforooz and Papamichael (1979) and Lucas (1874). One can

relate the piecewise linear L2 fit uh to u to a cubic spline interpolation
ht2) (-2)

problem by noting that u is the cubic spline interpolate of u ,

where u[_mJ denotes the m-fold indefinite integral of u. The two extra

conditions used in defining uh can then be related to cubic spline end
conditions. At the left hand end we would either impose uh[a) = u(a)l,
corresponding to vg[aJ = v'"(a), or (u - uh,¢D] = 0, corresponding to
vé{aJ = v'(a) from the minimality property of cubic splines; similarly
at the right hand end.

Now that this link has been made, results concerning uh and u can be
lifted from the well-developed theory of cubic spline interpolation. In fact
the result (2.3.24) was given by Curtis and Powell (1967) for the second
derivative of a function and its corresponding cubic spline interpolate, when
ignoring boundary effects. The effect of the boundary conditions considered
above has been studied by Lucas (1874) among others for cubic splines and
unfortunately it is shown that the result (2.3.24) is lost, in the sense that it
does not hold uniformly for k = 1 + J - 1, but clearly still holds for a fixed
node X, as h tends to zero. However, the result (2.1.9) remains if we
use (u - uh,¢j] =0 j=0 and J as our end conditions. The latter result
has been proved independently by Richter (1978}, when studying integral equations
where the L2 norm plays an important role. We now show that this result

generalises to a guasi-uniform mesh and for a general smooth weighting function

g.

Theorem 2.2

For u € wa’w[a,b) and uh defined by (2.3.2) we have that

A

| (u - th(nglJl ch® j=0+J-1 , (2.3.27)
2
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where

X, 4 = X, + % [1 + f%:}hj+‘ i h, , = X, - X, (2.3.28a)

and
max
h

T 3=003-1 Mie

Nl—-

provided the mesh is guasi-uniform; that is,

h,../h, =1 + 0(h) j=1->3J-1. (2.3.28b)

In addition we have that

0->J-1.
(2.3.29)

. -1 h
|uf[5[xj+xj+1J] - hj+%[u (x,,

_,h 2 -
; ;) - [ijJI < Ch j

Proof: 0On each element [xj.xj+1l let uI denote the linear interpolate

of u at the Gauss points x?il so that we have
2

I 1 _ G- _ G+ M o1
ulx) = u (x) + 3(x xj+%1(x xj+%1u (é[xj + xj+1l) + R ,

x € (x.,x, ) (2.3.30)
J i

where R is o(h§+ll. Over the interval I[a,b] u' is a discontinuous
2

piecewise linear function. We now introduce another discontinuous piecewise

linear function <t defined by

Tix,£) =+ 2utix,+) - utix,-)) IR
J J J
(2.3.31)
T[XDJ > T[xJJ = 0
so that uI + T 1s a continuous piecewise linear function over [a,bl].
A straightforward calculation yields that
- /I 3
- —_— + - 11 B
T(xji) + o7 (hj+§ hj_%J{hj_% hj+%]u_[le + 0(h7) (2.3.32)

J=1~>3-1.
Therefore under the guasi-uniformity assumption on the mesh we have

|t(x)| = cn® vx € [a,b] . (2.3.33)
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On each element [xj, xj+1J approximate the weighting function g

by the constant q(%[xj + xj+1J]. Denoting this piecewise constant approximation

by a: we introduce Gh € Sh such that

(G - oM, $;,) = 0 i=0+J . (2.3.34)
Since
"3+ G G+
(x = X, ,4)(x - x,. Jlax + B) dx =10 Ya,B € R
% J*z J*z
J i=0-+J-1

it follows from (2.3.30) that

(@ 40 = @t v 1+ R -1, ¢ 1=0+1J.

From the diagonal dominance of the mass matrix M with entries

Mij B (q¢j,¢i3/[q,¢i] i,j = 0+ J we have
—h 1 -1, = — i
00 - [T 1] ST (@R - 1,60/ ol
< ch?
The above with (2.3.33) implies that
| (u - Eh)(x?flJl < ch’ j=0+1J-1. (2.3.35)
2
In addition we have
—h _—h I o om el 3
u [xj+1] u [ij =u [xj+1 ) - u [xj+] + 0(h™)
= V3 ) - uixI1 ¢ oh®)
J+s J+z
N 1 3 - -
= hj+§ uf(z[xj + xj+1l) + 0(h”) j=0~>J-1
(2.3.36)

The desired results (2.3.27) and (2.3.29) follow from (2.3.35) and

(2.3.36), respectively, if we can show that
T - WMo s e Vx € [a,bl. (2.3.37)

Since |[g(x) - g(x)| £ Ch and lulx) - uh(xll < Ch? ¥x € [a,bl, we have that



_35_

|(glu™ - u), ¢iJ/(q, ¢il\
- P _ h . 3
= [((q - altu - u), ¢,)/(a.9;)| = cho.

The desired result (2.3.37) then follows from the diagonal dominance of M. ®

2.3.3 Numerical Results

We now describe various numerical examples to illustrate how the
technigues described in this section perform in practice. Throughout we
consider point functiocnals generated from continuous piecewise linear
functions over the interval [0,1] and take u = cosx. Once again
a 4 point BGauss rule was used on each element to evaluate the necessary
integrals.

In Table 2.4 we present results in the case of a uniform mesh of
length h and g = 1. We see that the predicted rates of convergence occur.

h

The superconvergence of u , 0(h®), to u at the Gauss points of degree 2

is seen from row 2, whereas row 1 shows that uh is only 0(h?) at the nodes.

t
The superconvergence of uh-, 0(h*), to u' at the midpoints of the elements
2
is seen from row 3. The fact that [1 + %E} uh[xj] is an 0(h") approximation

to u[xj] in the interior is seen from row 5, whereas row 4 shows that this
does not hold uniformly over the interval [0,1], as predicted.

In Table 2.5 we see how these results are affected by choosing a non-

(x + 13_1. As predicted by Theorem 2.2 we still have the

1
superconvergence of uh at the Gauss points and of uh- at the midpoints.

constant g, g

12

approximation to u(ij in the interior.

2
However, in addition we see that (1 + §—J uh[xj) still yields an 0C(h")
L

We next lowk at the effect of a non-uniform mesh. In Table 2.6 we present

results for g = 1 with

-2 - g
h2j+% §h =0~ 1
and
4 J
= S = B
Mo3+d 7 3" J=07g



_36_

We note that this mesh is not guasi-uniform; that is, it does not satisfy

(2.3.28b). Thus as expected we lose the superconvergence of E2 and E3.

In Table 2.7 we present results for g = 1 with
= = 1 TR~ &
hj+§ = [ 2h[J)]hj_% J 1+ 3 1
with 1
h, = h(J) = 201 - (1)7).,

Ni=

We note that this mesh is quasi-uniform and so we regain the superconvergence
2
of E2 and E3. Note that h__ = h(J) and h(J}/h(23) =1 + (32,

Key to the tables:-

J-1 3
E1 = {3h;[e(0)1% + T ilh, ,+h,  1lelx)1° + th. ,le(1)1°}
2 321 J-z J*3 J J-3
J-1 3
E2 = { ] 4% h_+l[[e(x9+l]]2 ¢ el 1171)
j=0 'z AhE X544
J-1 elx,, JelxJ] 2 3
5w ] b, [%[XJ+1] e(xj]} } 3
j=o %2 Mjed
I3 1 . h h h 2 2
E4 = {321 (hyy * My Uik = o5 W)+ 100 )+ ulixg, 1) )
and
(33-4)/4 3
Es ={ )} (h,, *h _ Jdwix) - = whix, ) o+ 10d"x0 ¢ M 0%
3=(J+4)/4  J7F J+z J 12 3= J 3+
_ _h _ _ G+ _ 1 1
where e(x]) ulx) u (x), hj+% xj+1 xj and xj+%- xj + 2[1 1/3] hj+§
1
h=g, J= 16 32 B4
E1 0.28 (-3)|0.58 (-4) |0.17 (-4)
E2 0.20 (-5)|0.25 (-6) |0.32 (-7)
E3 0.16 (-3)| 0.42 (-4) | 0.11 (-4)
E4 0.19 (-6) | 0.17 (-7) |[0.15 (-8)
ES 0.40 (-7) | 0.24 (-8) |0.15 (-9)

TABLE 2.4 : Uniform mesh and g = 1
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h=l, 16 32 64
J
E1 0.28 (-3) 0.69 (-4) 0.17 (-4)
E2 0.20 (-5) 0.25 (-6) 0.32 (-7)
E3 0.16 (-3) 0.42 (-4) 0.11 (-4)
E4 0.27 (-8) 0.23 (-7) 0.20 (-8)
E5 0.72 (-7) 0.43 (-8) 0.27 (-9)
TABLE 2.5 : Uniform mesh and g = ('l+><]—/I
_1
h=—, 16 32 64
J
E1 0.37 (-3) 0.93 (-4) 0.23 (-4)
E2 0.17 (-3) 0.43 (-4) 0.11 (-4)
E3 0.30 (-2) 0.10 (-2) 0.37 (-3)
TABLE 2.6 : Non-guasi-uniform mesh and g = 1
J 16 32 64
E1 0.36 (-3) 0.91 (-4) 0.23 (-4)
E2 0.10 (-4) 0.13 (-5) 0.16 (-8)
E3 0.54 (-3) 0.14 (-3) 0.34 (-4)
TABLE 2.7 : Quasi-uniform mesh and g = 1
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2.4 Recovery Techniques for Non-Smooth Functions

The recovery procedures described in subsections 2.2 and 2.3 assume
that the underlying solution u 1is sufficiently smooth and hence it can
be well approximated by polynomials. In this subsection we discuss briefly
the problem of non-smooth and rapidly varying functions, e.g. shocks and
boundary layers. As we have seen recovering from the moment functionals
for piecewise linear approximations is far more robust than recovering
from the point functionals and so we attempt to generalise the former to
cope with non-smooth functions.

Presented with n consecutive moment functionals {Frll]+i[u]};_1 . 1in
subsection 2.2 we constructed a (n - 1)%0 polynomial p__ ,(x) as our

n-1

recovery function whose coefficients were determined by reguiring

Fl:+i[u -p,) =0 i=1+>n ; (2.4.1)
this yielded.
p_q(X) = qu LD RCASRN £ I (2.4.2)
where the (n - 1)th degree polynomials 02,K+j(x] J =1->n satisfy
(2.2.2). From Theorem 2.1 we see that if u is smooth in In,K then

pn_q(x] is a good approximation to u(x). However, if u is non-smooth

or rapidly varying then an alternative form of recovery function may be more

appropriate.

Consider the more general form of recovery function Upi-

uR[xJ -

; ajgj(xl » (2.4.3)

I ~13

1
which still depends linearly on parameters uj but where the basis functions

gj € Cla,b]l are chosen to incorporate any a priori knowledge of the form of

u that one might have. The coefficients uj are then determined from requiring
the generalisation of (2.4.1) to hold:-

M _ _ 3
Fk+i[u uR] = 0 i=1=>n. (2-.4.4)
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A constraint on the choice of basis {gj(XJ}g=1 is that there should

exist a unique solution Up to the set of equations (2.4.4). Thus we

0. From

have to show that Flvl .EUR) =0 1 =1->n implies that u

k+1 R

Lemma 2.1 we see that this is equivalent to showing that if u has n zeroes

R
in In K then Up = 0. Therefore to guarantee the existence and uniqueness
of Ug to (2.4.4) we require the set of basis functions {gj[x]}g:1 to be

unisolvent on In,K'

As an example if u exhibits a boundary layer it may be more appropriate
to use an exponential rather than a polynomial basis; that is, for n = 3
choose gq[x] =t gy, gz[x) = x and gs(x) = &7 for some given constant
instead of g3[x] = x2, It is a simple matter to show that {1,x,ecx} is
unisolvent for any o # 0 and hence the recovery procedure (2.4.4) is
well-posed. If a good choice of o is used, e.g. the boundary layer width
is known a priori from an asymptotic analysis, then this exponential basis
performs far better than the polynomial basis.

However, in general, a good estimate of o may not be known a priori
and indeed it may be the most important aspect of the underlying boundary

layer that one wishes to recover. Incorporating it as a parameter we could,

for example with n = 3, take

uR(x] =qa, +o. e 3 (2.4.5)

1 2

3

as an appropriate recovery function. Once again the parameters {ocj}j=,l

are determined from requiring (2.4.4) to hold. The crucial difference now
is that we have a non-linear recovery problem as a non-linear equation for the
parameter ag has to be solved. Hence it is difficult to guarantee the

exlistence and uniqueness of u since this depends on the given data

R
Moy

{Fk+i i=1"

Despite the lack of theory the form (2.4.5) of recovery function
is easy to implement and has worked well in practice when boundary layers have

been present. Several numerical examples are given in Barrett & Morton (1880,1884)

and Morton & Scotney (1885) for the continuous piecewise linear moment functionals
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M = 1 1
Fk+i[u] [pu, K+i) + (qu.¢K+i]

with g »> p, which arise from a symmetrizing Petrov-Galerkin approximation
of diffusion-convection problems.

Anather situafion where a non-linear recovery procedure is appropriate
arises in the approximation of hyperbolic conservation laws. The underlying
function u may well contain shock discontinuities or at least discontinuities
of gradient: these will generally be separated by regions of smooth variation.
If a finite element approximation yields an L2 best fit on a fixed mesh
at each time step, point values will need to be recovered for the calculation
of flux functicns to be used in following the solution through the next
time step. For such problems there is much to be said for using piecewise
constant approximations rather than piecewise linears: we have already
seen in sub-section 2.2 that recovery of smooth functions is just as easy
and indeed, the coefficients in the uniform mesh case decrease more rapidly;
there is no distinction between point and moment functionals so the recovery
is always a robust procedure; and the greater compactness of the basis functions
is important in recovering rapidly varying functions.

Applications of these ideas may be found in Morton (1982b,1984). In

the vicinity of a shock a recovery function of the form

uR[xJ - (2.4.8)

works well in practice and is very easily implemented: for piecewise

constant approximations it i1s merely a matter of replacing three fixed elements
by two elements with a free boundary, the shock position. The presence of shocks
is detected by an appropriate shock recognition criterion and smoother recovery
is used between them. For example, piecewise constants can be recovered by
quadratic splines or by piecewise linears. In the latter case this may be

achieved by an adaptive procedure which maintains monotonicity - see Morton (1984).
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3.  RECOVERY FROM 0.D.E. BEST FITS

The continuous piecewise lipear Galerkin approximation uh to the

solution of the two-point boundary value problem

Lu = -(pu*')? + qu = f p*0,gz0
(3.1)
u(a) = u(b) =0
satisfies
h N
alu,¢.) = alu,¢.)
. . (3.2)
= (f,¢.)
¢J
for j = 1,...,0 - 1. We use the same notation as section 2 with the symmetric
bilinear form
b
alv,w) = I (pv'w! + gvw) dx , (3.3)
) :a
and also let I = [a,bl, I, , = [x.,x, .1, h.., =X, - x, and
J+z J7in J+z j+1 j
h = max{hj+l} j=0-J-1. For the moment it is only assumed that
) 2

p,q € L¥(1) and T € H—1[I) which is sufficient for (3.2) to be well-defined

and for al(le,) to be an energy norm equivalent to the usual norm over the
‘space HS[I] of functions in H1 satisfying homogeneous Dirichlet boundary

conditions; thus

llvllé = alv,v) v € H;[I) . (3.8)

3.1 Limited applicability of local recovery

In the previous section, on recovery from weighted L2 best fits,
it was found that particular sampling points and local averages of uh could
be determined which gave more a&curate approximations to u and its derivative.
For the case of 0.D.E. best fits, however, such results are very limited and in
general an alternative approach, developed in 3.3, is necessary. Nevertheless
for the important class of problems with p << g, usually termed singularly
perturbed problems, we can extend some of the weighted L2 best fit analysis

and this is given in-3.2. In this subsection we shall comment on the 0.D.E.

”
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best fit problem for general p,g and present those results which are possible.
If the framework of Golomb & Weinberger (1859) is used and it is

assumed that data functionals a(u,¢j] j =13 -1 are given together with

a bound on the energy nofm a[u,u)é then, because the ¢j are the representers

of the data functionals with respect to the energy inner product, we immediately

obtain the result that uh is the optimal approximation to u in this sense.

Hence any other information required of wu, i.e. any linear functional

F(-) of u bounded w.r.t. the energy norm, can best be approximated by

forming F[th. If we consider at which points one ought to sample uh,

i.e. F(v) = v(X) and x is chosen to minimise the optimal error bound,

then we have

1
D - P s 86 - 8@ I Cllullg - 1 I
-_— - 1 1 (3.1.1)
- (66X - 6N {|u HZE - lll.lh ||2E}2 ,
where G(es,+) is the Green's function for L and thg,'] the || * |E Galerkin

approximation to G(X,*). (This bound is achieved when u = G(x,*).) Now if
pE W1’w[I) it is clear that asymptotically Gh(Q.-J will give a better
approximation to G(X,*) when x is a node because only then can the deriyative
discontinuity in G(x,*) be accurately approximated by continuous piecewise
linear functions. Thus the "best” points at which to sample uh are at the
nodes. (In fact it can easily be shown, using the explicit representation
of G(e,*) and Gh[','J, that for contant p.g on a uniform mesh
(6603 - 6N, is 0(h) at the nodes but only 0(h?) at other points.)
Note that our nonlinear data is a bound on the energy norm of u and so only
u € Hg(I]: is assumed, later in this subsection we shall look at the ideas
suggested by the Golomb & Weinberger approach when greater smoothness an u |
is introduced.

A more straightforward method for deriving accuracy results for point

functionals of u is to use the Green's function idea directly, as in Douglas &
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Dupont (1974). Thus

ulx,) - uh(x.] a(G(x.s*), u - uh]
J J J

a(G[xj,-) - vh, u - uh).
where vh is an arbitrary continuous piecewise linear function and so

h h
] e

lutx.) - uMtx )] s e ||Blx,e) - v
J J J

[jlu - u
E
VhESh

E

1+ pew (1), and so Blx;,e) € H' (1) W La.x,10 0 H2[[xj,b]]. this

immediately gives the standard result that for u € H2[IJ T uh is

at the nodes. 1In fact

max | (u - M| s che lu |
1535231 J ES

is a superconvergence result in itself since 0(h?®) error bounds at points

2,®

normally require u € W (I). An improved asymptotic convergence rate

only appears, however, when higher order approximating subspaces are used.

(3.1.2)

(=" 1I=31)

0(h?)

(3.1.4)

Nevertheless even for continuous piecewise linear functions we are able to obtain

superconvergent results for the derivatives of u. Thus with the standard

notation for divided differences we have

_ . h
(u-u J[xj_,l

»X. 1 alG(Ix, ,,%x.1,°), u - uh]
J J- J

1

alBIx, L »x 1,0 - v u - u™
) J- J

1

where vh is again arbitrary. The Green's function can be written

A
[at

51(x152(€]/t[x) X
G(x,&)

51(6152[x]/t[x] X

v
a

. = t _ 1 0 .
with t p[sqs2 5152], where P and s, are linearly independent

solutions of Lv = 0, 54 satisfying the boundary condition at a and

the boundary condition at b; hence vh can be chosen so that

h
I

llG(lx,_
J H1[I/Ij_

1;xj],-) - v :

NI=-

and

|

HG[[xj_,l

JX-]J'] -V i s _ 1
J W 23"z

(3.1.5)

(3.1.6)

(3.1.7)
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with €, and C, depending on (=N - and ||g || . through
- W) L¥(1)
||SiH i = 1,2. Combined with (3.1.5) this gives
W2
lu - uh][xj_1,xj]| schl flu- ||, e Qo= A,
HU(I/T, ) W, ).
J~z J-z2
(3.1.8)

Thus if u € W™ h

(I), so that |lu - u'f] ,
W (I

(1974)) and u[xj_1,xj] is an 0(h?) approximation to wu'(x,

is 0(h) (see Douglas & Dupont

1 then
J-s
max h
12i<d | (u - u Jf(xj_%]l < ch? |lul 3, e (3.1.9)
In certain circumstances similar arguments can be used to produce 0(h2?)
approximations to the second derivatives of u from
_ . h ) _ g b _h
(u-u ][xj_1,xj,xj+1] a(G([xj_1,xj,xj+1], J-v,u-u). (3.1.10)
Thus we may choose vh so that
|]G[[x._1,x,,x.+1],-3 - vh|] 8 s C,h (3.1.11)
e HU(I/(T, UL, ,))
dictal 957
and
X,
3+ h, hy,
| PUBLIX,_qoXgsXyqlse) = V- Ut
X,
j-1
h h
* q[G[[xj_1.xj,xj+1].-J vy (u-u)
' h h
g e {h fju-u _ | tu - u)Ix,_,,x.1[0(3.1.12)
2 1,w(I ul ) =13
33275+
h
+ = [ s R N = h. f .
[tu - u) X xJ+1]| * |h3+§ J_%| | [xJ)I
+ h2 ”u"'ll o }
L (I I,
[ 3-397544
where C, and C, depend on ||p || and | q || through

lsill 5w i=1,2. Hence if the mesh is uniform and u € W'
W (1)

twice u[xj_1,xj,xj+1] gives an 0(h?) approximation to

*®(1), so that

uff[xj], we have
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max lum (x,) - 20" x,
J J-

sX o X,
12331 7

) 1| £ chr Ju “w4’w ' 31 1. 184

1 (1)

The above convergence results for divided differences of u and uh may be
compared with those derived by a different method in 3.3. Note that even on a
non-uniform mesh it is possible to obtain 0(h?)} approximations to u' at the
midpoint of each sub-interval by using the differential equation.

At the beginning of this subsection it was stated that difficulties arise
if one tries to extend the techniques of section 2, i.e. local recovery using

a small number of functionals of the form

. M .
(1) F,(W) = al(u,¢,)/C(h, , + h, ,)
J EREE I (3.1.14)
or (11) P = uix,)
J J
and we now investigate why this is so.
Suppose, for example, that n consecutive moment functionals,
Fﬂ+i(u] i =1->n say, are used and we try to form a linear combination
T M
.Z aiFk+i(u] so that
i=1
== n M
P _q(x) = -2 oF 1 (P_q) (3.1.15)
i=1
for all polynomials pn_1 of degree n - 1, where x is some chosen
point in In,k = [Xk’xk+n+1]' It is immediately clear, however, that this
is impossible if g 1is identically zero over In K since then the r.h.s. of
(3.1.15) is zero for constants. Even if the assumption g > 0 on In K is
made, so that we could now define
Ftu) = alu,¢,)/(q,9,) (3.1.16)
gt T A0 A0y o

to agree with Section 2, there is no guarantee that « 0 satisfying

IEERRFLM

(3.1.15) can be found. For example if P is a polynomial such that

1

N (] . . . .
n-1 0 and Proq ¢ 0 over In,K’ it is possible for a given g to choose

p > 0 on each subinterval in turn so that
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X, X . X .
-1 J+1 -1 AJ J+1
1 = ] . 7
hj+% Jx P Pnq hj—é y PPhoq * [x g pn-1¢j (3.1.17)
J i-1 3-1
. M ) o
for j =k + 1>k +n. Thus Fk+i(pn—1] 0 i=1-+>n but P4 # 0.

Finally even if (3.1.15) were solvable for o .,0_ ;3 e.g. p,g constant

(A n

allows the techniques of Section 2 to be used to prove this result; we would

still face disappointment. Thus

M
a.F . (u - pn_1] (3.1.18)

M = = - —-_
aiFK+i[u) = ul(x) p (x) 1 iFret

1 ] i

u(x) -

I ~3
no~13

i

with arbitrary pn;1, but although Pp- could be chosen so that

/l
||u - pn_1|| " = 0(h™) the form of the functionals F? means that
L (I )
n, Kk
. g M . n-2 .
ulx) - Z aiFK+i[u) is only Q0OCh J. The only type of 0.D.E. for which
i=1

such problems can be avoided are those of singularly perturbed form with g

of order unity and p << 1. Then the question of solving (3.1.15) for

Opsereslp may be analysed by regarding it as a perturbation of the corresponding
weighted L2 problem. Alsc the error bounds for u(x) - E uiFE+i(uJ are

of the form O(h") + e Il hn_2 and thus if p i: ;omparable with

‘L [In,kJ

h* there is no loss of accuracy. Some results in this direction are given
in 3.z.
Similar difficulties arise if we try to recover locally using the point

functionals F;[u). The global nature of these functionals,

F?(u) a(Gh[xj.°),u] , (3.1.19)

together with the fact that the error u - uh does not better 0(h2) in any
negative Saobolev norm for piecewise linear approximating functions, implies that
local recovery by polynomials to the same accuracy as for the weighted L2 best
%it is not possible, except in the trivial case p constant and g zero.

If p 1s comparable with gh?, however, Gh(xj,E] is exponentially decreasing

as €& moves away from xj, for example if p and g are constant then
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Gh[xj.xk3 2 ¢~ |37k |van*/p (3.1.20)

with s > 1.

As was mentioned at the beginning of this subsection, the optimal
approximation to u in the sense of Golomb & Weinberger (1959), when data
functionals a[u,¢j) j=1=J-1 and a bound on the energy norm a[u,u)%
are given, is the Galerkin approximation uh. Now we try to generalise
by using the same data functionals but assuming more smoothness on u,

i.e. using a new energy norm containing higher derivatives of u, and it is
clear that different choices will lead to different optimal approximations.

For example if we first consider the special case of p and g constant,

we may define an energy norm

Alv,w)

b
J (pv™ w' + gv'w'Jdx (3.1.21)2
a

and rewrite the data in terms of this norm, viz.

a[u,¢j) = A[u,ij j=1->+3J-1 (3.1.22)

where x; E ¢j .and xj(a] > xj[bJ = 0, Thus the X3 are natural cubic
splines and the optimal approximation for the data a[u,¢j] J=1>3-1

1
and the bound A(u,u)?® 4is the natural cubic spline xh defined by the Petrov-

Galerkin equations

alu - Xh,¢jJ =0 J21-+3-1 . (3.1.23)

Since this may also be written as a Galerkin approximation w.r.t. the new
energy norm,

alu - xh,¢jl = Alu - xh.ij , (3.1.24)

it is clearly well-defined. For the general case of variable p and d,
with u assumed to have k derivatives in L2(I) we introduce the energy

inner-products for k 2 2 :-
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k/2-1

[LK/ZV,LK/ZWJ ) (hiaituia) sz[bJLZw(bJ} k even
A (v,w)= .
K (k=1)/2 (3.1.25)
a2, (72 4y T i a) L bta) sl (b LR b)
=1 k odd
and rewrite the data as
a(u,¢jl = AK(u,wj], (3.1.26)

where wj = 9, + Ej with the two components satisfying

(1) L™ o, = ¢j and Lzej(a] = Lgej(bJ =0 L =0k -2

(i1) LK/2£j= 0 if Kk even or a[L[k_1)/2€j,L(k_1]/2£j] =0 if Kk odd.

Thus the V. are well-defined for any k and the optimal approximation

J-1
wh = Z a.y, 1is defined by the Petrov-Galerkin equations
3=1 JJ
h .
alu - ¢ .¢jJ =0 j=1>J3-1 (3.1.27)
or the Galerkin equations
h .
Ak(u -y ,wj] =0 J=1+J-1. (3.1.28)

The function wh is a generalised natural spline, although not quite fitting

into the theory of Varga (1971}, and if p and g are sufficiently smooth,

2(k-1) C(ZK-SJ

e.g. pE€C (I) and g € (I), it has a continuous 2(K-1]th

derivative with jump discontinuities in the (2K-1]th derivative at the nodes.

Like wj above, wh may be split into two components Gh and Eh. the

latter ensuring that szh[a) = Lzu[a] and szh(bJ = Lzu[bJ for & = 1> [(k-1)/2]
and the former giving the standard natural spline minimisation property w.r.t.
the integral part of the energy norm Ak(°,°J. The approximating power of

the ¢¥. may be derived by adaptations of the following argument, here given

J
= J-1
for Kk = 2 and the w-norm. For z € W' (I) 1let ¢h =) Bj¢j be the
J=1

continuous piecewise linear L2 best fit to Lz, then
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J-1
z(x) = ) B.¥.(x)
PECIRAR

(Glx,*), Lz - ¢ (3.1.29)
- (B(x,+) = GLlx,+), Lz = ™)

where GI(x,-] is the continuous piecewise linear interpolate of G(x,+). Thus

J-1

260 - 3 B 0] = [l8u) - sl iz - et
j=1 9 L' (1) L¥(1)
h (3.1.30)
< ch? Lz - ¢ |
L (I)
Now if Lz were zero at the boundary
= h < 2
iz = o™l . scon x|l 5
L (1) W7 (1)
{3.1.31)
stz llge -
w1
but since this need not hold we have in general the standard natural spline
J-1
result that ||z - §  B.v.l| is only O0(h?) over I but 0(h*) over
=1 4%

any interior interval.

0f course in practice one would not be able to use these optimal generalised
splines, but this viewpoint shows how to proceed. A higher-order piecewise
polynomial space is chosen and we find the element of this space whose Galerkin
approximation is the same as that of u itself, i.e. a Petrov-Galerkin
formulation as used above. Efficient methods for implementing this idea are

examined in 3.3.

3.2 Recovery for Singularly Perturbed Problems

In this section we shall examine the possibility of recovery using
moment functionals when p << g in (3.1). Thus we shall assume that n
consecutive moment functionals

m . .
Fk+i[UJ = a[u,¢K+il/[q,¢K+i) i=1+n (3.2.1)

are given and we wish to prove that there is a unique polynomial ¢ of degree

n-1

n - 1 or less satisfying
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(g__,) = Fm

a-1 k+i[u) i=1->n (3.2.2)

and to show how well q approximates u. We shall try to proceed as in

n-1
Section 2 and regard the (puf,¢3]/(q,¢j) term in (3.2.1) as a perturbation.

Let Pr-1 denote the space of [n-1]th degree (or less) polynomials
on In K and T2 the linear mapping from Pr-1 to R" defined by
szn_1 = b (3.2.3)
where
= 1 1 { =
bi (ppn_1.¢K+il/[q,¢k+iJ i=1->n. (3.2.4)

Using the -norm on both spaces together with the fact that

-1
1 <
et 41l & sc,ohn e Wl (3.2.5)
n-1 LC(1 ) 2 .n,k n-1 L®(T )
n,k n,k
for any element of Pn-1’ we have
_1 —
I, 1l = 2c, |lpl| la Il /th. A ) (3.2.8)
2 e : L1 ) L7z ) Tl Tk
n,k n,k
where h = min h, .4 We already know from Section 2 that the mapping
n,k 0<3n K+j+z
g
T1 tPoq T R defined by
T,l Ph-q = C : (3.2.7)
where
c, = [qpn—1’¢k+i]/[q'¢k+i) i=1->n , (3.2.8)

has a bounded inverse and thus if

— -1 -1
lell <h hosee, a7l [kl (3.2.9)
Lo (1 ) n,k n,k 2 L° (T ) 1 '
n, k n,k
then (T, + TZJ'1 exists with
-1 -1 ,
ferg 1 s i, 701 - & (3.2.10)
where
i -’l - —’l —_—
2y el o MlaIl T ey (B0 s e
n, k n, k (3.2.11)
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Thus if p 1is sufficiently small to satisfy (3.2.8), there 1s a

unique [n-1]th degree polynomial g which satisfies (3.2.2). To bound

n-1
the error qn_1 - u, let rn-1 be any element of Pn-1' so that
(T, + T,) (ro_q - qn_11 = (T, T2] (rn_,l - ul. (3.2.12)
Regarding [T1 + TZJ (r‘n_,l - u) as an element of Rn, we have
_/] 1
e, 1 0e =Wl oslla T (2 |||l | (o, = )|
S = L7z ) MO I R ! L")
= -1
h + ||al| IEs - ul| ) (3.2.13)
n,K co n-1 e
L [In,k] L [In,k
and thus
1 1 1
le__, - u sy + 1) el 2 ||pl|
n-1 0 1 2 o ® n,k
L (I s L (In,K L [In,K)
(3.2.14)
Il e _, = ul] + all |z _,-ull
n-1 . © © n-1 © )
L (I offs L (I k L (In,k]
Therefore
g _,- ull slla _, -t 4l + v o4 7yl
n-1 e n-1 n-1 © n-1 ®
L [In,K) L [In,K L (In.K]
(3.2.15)
< -1 -1 _
s gyl lall sl
. L (In,kl L‘(In,kj L (In,k
-1 = -1 -1
el IR el L e . el
L (I ) L (I
n,k n,k :
L (In,k]'

Since p is restricted by (3.2.39) the above inequality implies that I
approximates u to optimal order provided that the various inverse operators

are bounded independently of the mesh size.
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The problem that we have not answered either here or in Section 2
is to bound T;1 in terms of g and the mesh spacing. In general this
seems to be a difficult problem and we restrict ourselves to the following
comments.

(a) If g 4is constant and the mesh is uniform one may use the linear

transformation vy = (x - xk)/h to show that T%q can be bounded independently

of h and g, i.e. “T;1llw £ C,. Thus the restriction on the size of p in
(3.2.9) can be written
el ¢ gh?/(2C,C,) (3.2.16)
L (I )
n,k
(b} If g is.constant and the mesh non-uniform then the size of T;1
depends on the mesh spacing. If
h n
v' o= .Z oy by g (3.2.17)
i=1
satisfies..
h _
T1v = c (3.2.18)
(c.f. (3.2.7)) and w 1is the cubic spline defined by
wit = vh (3.2.19)
and w(x, ) = wix } = 0, then the [n+1]th degree polynomial p
K k+n+1 ' n+1
defined by
1" =
P g = Py (3.2.20)
and pn+1(xkl .= pn+1(xk+n+1] = 0 interpolates w at EEEETE NN
Thus the error in polynomial interpolation gives
P 0 = v B X% ) e ee e (X=X Jow IX, seeasX x1}
n-1 dx2 K’ k+n+1 k’ *Tk+n+1’
(3.2.21)
and from this we would like to be able to deduce that
i h
[T sc|v (3.2.22)
L (I ) L (I

n, k n,K1
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where C is a function of the mesh-spacing. If this is so then the diagonal

dominance of the matrix Aij = {¢i¢j allows us to write

IR s 2ell, (3.2.23)
L™(1 Q-
n, k
and hence
-1 3C
Ir s - (3.2.24)

(c) We do not know how to tackle the case of variable g although of

course one could always write

- qlx.)
ki

a[pn_1,¢j] = q[xj]{[pn_1,¢.3 i

] alx;) Ph-1795 (3.2.25)

1 t
. (ppn_1,¢71 }
(x.)
R
and regard the last two terms as perturbations. However this would
involve unnecessary restrictions on g of the form of bounds on

sup

x€[xj;1,xj+1]

(3.2.26)

qlx) - q(xj] ‘
: q[xj)

3.2.1 Numerical Results

We give below three tables of results which are completely analogous
to the tables in section 2.2.3 except now we are recovering from moment functionals
containing a derivative term with small coefficient p. The addition of this
term does not seem to diminish the accuracy of the recovered solution but note
that the alternation in sign of the error at consecutive superconvergent points

does not now occur.
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Number Comparing Expected
of % Function or|rate of (True - Recoavered
Moment Derivative | Convergence Solution) at x
Functions at x
2 -0.46547 (-1) F 3 -0.45 (-5)
0.0 2 -0.11 (-2)
0.46547 (-1) 3 0.59 (-5)
0.0 D 2 -0.25 (-3)
3 ~0.94871 (-1) F 0.75 (-6)
0.0 0.44 (-86)
0.94871 (-1) 4 0.90 (-8)
-0.54772 (-1) D 3 0.95 (-5)
0.0 2 -0.15 (-2)
0.54772 3 -0.87 (-5)
4 -0.14102 F 5 -0.72 (-7)
-0.55799 (-1) 5 -0.20 (-7)
0.0 4 0.26 (-5)
0.55799 (-1) 5 0.21 (-7)
0.14102 5 0.84 (-7)
-0.10741 D -0.56 (-6)
0.0 0.84 (-B)
0.10741 4 0.85 (-86)
TABLE 3.1 : Uniform mesh h =0.1, p = 0.1 (-1) and g = 1
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Number Comparing Expected
of . Function or | rate of (True - Recovered
Moment Derivative Convergence| Solution) at x
Functions at x
4 -0.13049 F 5 -0.10 (-86)
-0.56281 5 -0.27 (-7)
0.0 4 e
0.56083 5 0.16 (-7)
0.14956 5 0.49 (-7)
-0.2 D S -0.10 (-2)
-0.10029 4 0.67 (-8B)
0.12403 4 0.86 (-B)
0.11321 4 -0.38 (-B)
TABLE 3.2 : Uniform mesh h = 0.1, p = 0.1 (-2) cos X
and g = 1 + X.
4 -0.2 F 4 0.77 (-4)
-0.12314 5 0.11 (-7)
5
5
5
-0.2 D 3 -0.18 (-2)
-0.75042 4 -0.18 (-5)
0.64484 4 0.97 (-6)
0.13320 4 0.19 (-5)
TABLE 3.3 : Non-uniform mesh, p = 0.1 (-2) and g = 1
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3.3 Recovery through Defect Correction

Following the discussion at the end of section 3.1, we now consider how
to obtain a more accurate global approximation to u by using a higher-order
piecewise polynomial space Th and finding the element of this space whose
continuous pilecewise linear Galerkin approximation is the same as that of u
itself. Thus, denoting the span of continuous piecewise linear functions by
Sh again, we wish to solve

a[ﬂh, vh) = al(u, vhJ Vvh € Sh (3.3.1)

for Gh € Th. (Note that uh plays the same role here as Up in section
2.4). This can only be a well-posed problem if Th and Sh have the same

dimension and we then have a Petrov-Galerkin formulation

atid?, v = 8, v w ¢ gn (3.3.2)

with continuous piecewise linear test functions and higher-order trial
functions. The basic results concerning existence, unigueness and approximation
for this type of method are contained in the following theorem adapted from

Morton (1982a).

Theorem 3.1
If
. 3 , : 5
(1) ;;nfh EuDh la(vh, vh]| 2 yav", WM aw?, WM
v ET v €8
: YO0
and (1i) sup a[vh, vh) > 0 Y vh € Sh. vh # 0,
WMerh
. L ~h h .
then (3.3.2) has a unique solution u €T with
a(Gh - u, ﬂh -u) £ y-z S a[vh - u, vh - y) =
~h__h
v €T

The natural choice for Th would be either
(a) higher-order splines with appropriate end conditions
or (b) higher-order continuous piecewise Lagrange polynomials.
It is hardly efficient however to first obtain the Galerkin approximation

uh and then the Petrov-Galerkin approximation Gh. In fact we wish to avoid
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solving any system of algebraic equations other than those with the
symmetric coefficient matrix {a[¢i ¢j)}. This can be achieved by solving

(3.3.2) in Stetter’'s (1978) defect correction iterative form

a0 = awhvh - faedhvM - My wh e g" (3.3.3)
i+1 il i

with u, = uh. Here P is the nodal interpoclatory mapping between S

and Th which we assume to be bijective. Thus we obtain a seguence of
. h h . h h _

functions {ui} c S which hopefully converge to u where Puco =u

By writing (3.3.3) as

h

a(ui+,l

- uz,vh] = a[u? N uz N P(u? - u:],vhl (3.3.4)

we can clearly see that convergence of {uz = uZ} to zero is to be expected
if the sequence remains "smooth enough” for the piecewise linear interpolation
error projection I-P to exert its contracting power.- see Skeel (1981).

We shall now prove some convergence results about the iteration (3.3.3).
This will be done, however, in a more general setting by not assuming the
existence of a Petrov-Galerkin approximation. We shall merely let P be a
bijective nodal interpolatory mapping between Sh and a higher-order continuous
approximating space Th, and compute the iterates u? by (3.3.3). Thus the

analogue of (3.3.4) is

a(ub = uh,vh)‘= a(ub - b - P[uh - uh),vh] + alu - Puh,vh] #3535
i+1 I i I i I I
with u? the continuous piecewise linear interpolate of wu; the additional

final term shows that the smallness of {UQ - u?} is restricted by the

approximating power of the space Th.
First we show that the iteration (3.3.3) will converge with at least
an 0(h) rate.
Theorem 3.2
If p € wq’m[I] and P is bounded in the Hq(IJ norm uniformly in h

then
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h h h h h
|u, . - u]l < C{h||u, - ugll +||u - Pu|| 3. (3.3.86)
LT ES) TS o) Ao
Proof
S . h h h . . .
etting v = Ujeq ~ UI in (3.3.5), integrating by parts and using the
fact that P 1is interpolatory yields
h hi? h h h h
||u. -u H £ Calu, - Uo,u, - u.) by coercivity
i+1 I H1[I) i+1 I i+1 I of a (e,+)
C o (et - - ot P Pl
R AtUiq7Hp? 7 POy Tl I TUp TR Yy
¢ (u - Pul} dx
h h h h h h
< Clluy,, - ul| {fu, = us - Plu, - )|
i+1 I H1[I] i I i il L2(IJ
h
+ |lu - Pu]| }
Uit
Thus
h h ~ h h h
| u - u | < C{h ||PCu, - un)| + fJu - Pul|| }
T i TS § %o
h h
< C{h||lu; - u | + |lu = Pu_|| }
SRS 2
by the stability of P. ®
Using
| hy 2 h h
fluy = uc] s Calu, = u., u, - u.)
LSS 0 G E (3.3.7)
. _h h_ h
= C alu upsUg uIJ

we can show, by applying the same integration by parts as in the above

proof, that
h h h
||uq-ur]| C |lu-uz]| < Ch? [ju® || . (3.3.8)
OFSL Y iy %2 LA

A

{(This is equivalent to the 0(h?) convergence of the first divided differences

of uh and u, cf. .section 3.1). It follows that, i1f u is sufficiently smooth
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and the approximating power of the space Th is sufficiently great,

o - o2 < cp?*t : (3.3.9)

it
For example if Th consisted of cubic splines with suitable end conditions

and u € H*(I) we should reach the asymptotic accuracy limit with u;, when

h
I

L
llug - ug < Ch ||ul » (3.3.10)

Hn HY (1)

and further iterations would not improve this power of h. The significance
of convergence in the H1 norm is that first derivative approximations to the

same accuracy will usually be possible. Thus, continuing the example, if

A? is a nodal finite-difference functional which is bounded in the H1 norm,
h
|A,l v| s clv]| 7 , (3.3.11)
H (x)
and such that
IA? v - vix)]sc h* ||v]] (3.3.12)
' H3 (1)
for some x € I, then we should have
- h h — h h h, h h
lut(x) - A1u2| < fJutta - A1ux| + ‘A1(uI - u2)| (3.3.13)
£ on* |lul]
HS (1)

In certain circumstances, however, this convergence rate can be
improved. To analyse these situations we need a measure of the "smoothness"
of functions which are only in H1(I] and so semi-norms based on the divided
differences of nodal values are used. Denoting w(ij be Wj we have the
standard divided difference notation

(1) w[xj,xj+1] = (wj+1 = wj]/hj+%

(ii) w[xj_1,xj,xj+1] = (w[xj,xj+1

(3.3.14)

] -W[xj_1,xj]]/[hj_ + hj+%l

N
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and we define

J-1 R
i = h, '
sl { T h g D) }

(S50

J-1 1
i1 h, h, Ywix, ,,x.,x,. 10252,
(i1) || w]| 2 { ) + FRERACIS X xJ+1]J }

(Note that these are norms on Sh and we could have used (i) in Theorem 3.2,

||[vhJY“ ) = |[th , for all v € s , but this was unnecessary since
(I) D

s" < vl )

We can now show that if the coefficient p in the differential equation
is constant then, by considering convergence in the D2 norm, the iterates
of (3.3.3) converge at an 0(h2) rate.

Lemma 3.1

If p 1is constant and vh is the piecewise linear Galerkin approximation

to v,
v -l s cllv - (3.3.16)
D L (I)
Proof
b
_.h - -1 _.h
(v - v ][xj_q,xj,le1] (hj—% + hj+é] Ja (v - v) ¢j dx
O S I | G NN
AL I L i
and hence «
_1 J+1 1
| (v - vh][x. X%, 1| £Cth, , +h, ) ° {v - thzdx B
J=1 3773+ J=z *z "
and J-1
h h
v - vl ,scflv-vif -
D L7 (I)
Thearem 3.3
If p is constant and
J-1 N s ) )
{1 onah, P e B g
j=0 L D

Iy

with o dindependent of h, then
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h
s ctn? Juf-u]|

luf,ymulll -, s
D

h
2 + hlu - puI||H1[I)} : (3.3.18)

Proof

Since uz = uh - P[uh-u?) and u - puh are both zero at the nodes

I I

h _ h h _h h_ h oo h_ h h
llugcquzll o2 = lluj,qmug - fuy-upPlug-up} - (“'P“1]|ID2

and Lemma 3.1 using (3.3.5) shows that

h

TR L

h h h h h_ _ o0
i+1_UI“ 2 £ Clluy, mup - fuj-up-Plug-upd} - (u PuIJ[]LZ[I)

Then using standard Galerkin error analysis and (3.3.17) we have

J-1 1
h h 2 h h 2 2 h
lu, -urll 5 scthC § JlPlu-ulam|| )* + h |Ju-Pus]| }
S & j=0 SR L2(1j+%] SRS
21 hoh
<ot lufdll o e nlleRdll g 3

We regard (3.3.17) as a natural stability assumption and it is satisfied
easily if Th is a span of cubic splines for example. It corresponds
to the boundedness of P in the H1 norm assumed in Theorem 3.2. From

Lemma 3.1 it follows that

lud - ol P ch® || ul] 20 (3.3.19)
and so
llu: - u;H , ch? (i1 (3.3.20)

if u 1is sufficiently smooth and Th is of sufficient approximating power.

[h2(1+1)) approximations to u"

Convergence in the D2 norm means that O
may be obtained by applying suitable difference stencils to u: provided
that u 1is smooth enough.

If p 4is not constant the iterates will only converge at a rate

higher than 0(h) 4if the mesh is smooth.
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Lemma 3.2

If u € H(I) and p € WW’™(I) then

lu-a"|] 5 s cten? « sh) flufl , = Rl 5 3 (3.3.21)
D H (1) H7 (1)
_  max _
where &h = 123231 {lhj+% hj_%l}-
Proof y
tu-uMix. L.x..x, .1 = -(h, ,+h, 37} . (u-uM et dx
Jj-1"377 3 J-z  J+z “ J
Raq I
= (h, ,+h 1]_1p[x.3_1 f ’ [(p-p[x.)](u—uh]'¢! + q[u-uh]¢.]dx
Jiial S i J Xy g J J J
Xj+_1
= (h, ,+h, ) Toixa! J [atu-uMé.-p? (u-u™ 1 1dx
J-z Jtsz J J J

X34

+

h_ h
hj+% p[xj,xj+1][uI u ][xj,xj+1]

h h
p[xj_1,xj][uI-u ][x._ s %]

J-1"7

h_h
+hj+%1p[xj_1,xj,xj+1][gI u J(xj] i =

Each of the components of the r.h.s. is easily bounded apart from

+1 h
' (u-u 1 d A
le 7 J¢J x| j+3
=il J 31

_ X"
|, J 3*1 (- p'(x.]][u—uh] dx
J*z X J
J ' -1
_h.1
J-z

ki X+ 3
|h_1 J ‘ p'[u—uh]dx - hiq, J p'[u-thdxl
X 7z )y

IA

X, h
J I (pr- prix,)) (u-u del
X, -
X, 3 X,
|pr(x.)] Ih.llJ 31 (u;-uh]dx ~ h.ilj J (u;-uh]dxl
J J¥z)x%5 J7z ij_1
J+1 N J
(u-uh)dx - h.q, [u-uh]dx|
I J-3 I
X X,
j-1

+

1

1
+3

+

' ,
Ip‘[ijI |hj

1A

1
3 h
Cthy_ythy,F e,

LIy 4Ty, )

1
2

+ohflul ,

= . 4) H (I, ,ul. ,
J-z J+z J-z J+z

+
c
=y
I
[
H I
X
-
~
[

+
=
N
[
T
w
Camn
H
(-



Hence

This lemma enables us to obtain a convergence result for the first iterate

h

Y4

Theorem 3.4
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+h, ,J((u
J+z

£

If ueH(D), pe W’ (D), sh s chl

then

Proof

n

Proceeding as in Theorem 3.3

lu

and thus the result follows from Lemma 3.2

Therefore, if Th

for

u € H4, we would have

ceh’ + sh) flull
H% (1)

-, 2
u J[xj_1.xj,xj+1]] )

2
+ b Ju ]
o (1)

}

uniformly and (3.3.1

=

7) holds

h 4 h
- ul|| s c{h” + nllu -Pu_|| }
T A il
h h h h h h h h h
-u_|| < lu)-ul - {ul-uZ-Plu-us)} - (u-Puld ||
1 I L2[I) 1 1 o I 0 I i L2[IJ
+ llug-u;—P(uh—u;] + (u—Pu?]H 5
L (1)
2 h h h
£ C {h" ||ug = u ] + h||lu-Pu.|| }
0 Fp? il
n
is capable of D[hs) approximation in the H'l norm
h _ h - 4
Hu,l uI|| . 0(h™)

L™ (1)

2
To show that subsequent iterates can converge at an 0O(h") rate

demands a more detailed analysis and to simplify this we assume henceforth

that the mesh is uniform i.e.

h

joyp = D

In any case:-

(3.3.22)

(3.3.23)
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(a) the smoothness regquired of a non-uniform mesh would be so great
that it would normally only be satisfied by uniformity,

(b} u 1s assumed to be very smooth so there is no reason for using a
non-uniform mesh.
We also need the following additional notation for higher-order divided

difference semi-norms:-

J-n

Ni=

nh an (wjlz} (3.3.24)

Jwil =1
Dn J

I~
o

where

Bn(ij S w[xj,xj+1,...,xj+n] . (3.3.25)

Now it can be shown that the higher-order differences of u - uh are also

0(h?).
Lemma 3.3
It nz2, ueH D, pew™ ™) and ge W (1) then
-1
h 2 n h
ju - u || . =cth®|lull £ ) Ju-dl ) (3.3.26)
B H* ) k=0 ok
Proof
h -1 L4 (4 h!
- = - - — L
Bn([u u )j-1] (n{n-1)h) Bn_Z(p[xj] Jx {p p[xj)][u u J¢j

Jj-1
+ q(u—uh)¢j)

X,
i -1 -, 31 h Voo h
= (n(n-1Jh) an_z[p[xj) {Ixj_1q[u—u ]¢j p'(u-u ]¢5
h h
+ h81[pj381([u-u ]j] + ha1[pj_1]81([u-u )j—1]

h
+ 2h82[pj_11(u—u )[ij}

as in Lemma 3.2 and then (3.3.26) follows by repeated use of Leibnitz's formula

for divided differences of products. u
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|
DK
divided differences will also be O0(h?) by induction, provided that

Since we already know that |ju - u k = 0,1,2 are 0(h?), the higher
u, p and g are sufficiently smooth. This leads to the O0(h?) rate of

convergence for the iterates in (3.3.3).

Theorem 3.5

If mz2, ucH™D, ped™n, geH %) and

J-Kk . 2 1 ~ =
{ I e tMhm) }zs 3 ., wWher 3327
j=0 CooL=(I, ,) D
J*z
for 0 2 k £ m2 with o independent of h, then
h h 2(i+1)
|u, - ul]| . =ch lull (3.3.28)
i I Dk H2m[I)
for 0 £ 1 £ m-1, 0gkgm-1
Proof
For i =0 Lemma 3.3 gives the result. For 0 < i £ m1 and k =1
we have
h h h h h
A e R R N
o T =1 I ERREIES

by adapting the argument of Theorem 3.2. For 0 < 1 < m-1 and k 2z 2 we have

h h
BK{[ui UI]j—1}

h  h _ h
BK{[ui u_l, [u

_h_ o h _nh
I75-1 11 " Vg 7 Pluggupdly

_ _p,.h
(u PUIJj—1}

1

1]

-1
-(k(k-1)h) aK_ZLwa¢31

~ _ _ _h h _..h B _ h .
where W = u, u {Ui—1 Ug P[ui_1 uIJ} {u PuIJ. Hence using
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[ ]_1 [xj+1
- 141
p xj ) (p p[xj])w ¢j + qw¢j

X

-1
plx.) {J
J X

J-1

3+

- 1 1
qw¢j p‘w¢j + 81[pj_1](u.

3-1

J[xj_1

h_h
i uI

- h _h
31(pj](ui UI)(xj+1) }

and repeated application of Leibniz's formula gives

[
D

JENE h  h
ol {Iah -y

Combining these results proves the theorem n

3.3.1 Numerical Results

The two tables below contain

h _ Uh ”

i-1 I

-Kk+L+1
(3 _

results for the differential equation

-(cosx u')' + xu = f u(0) = u(1) = 0,
where f is chosen so that the solution is

u(x) = x(1-x)e*
J 4 8 16 32 64
DO 0.59(-2) | 0.16(-2) 0.40(-3) | 0.10(-3) | 0.25(-4)
D1 0.20(-1) 0.58(-2) 0.15(-2) 0.38(-3) 0.95(-4)
D2 0.58(-1) | 0.21(-1) 0.61(-2) |0.16(-2) | 0.43(-3)
DC 0.47(=3) 0.27(-4) 0.12(-5) 0.46(-7) 0.18(-8)

TABLE 3.4: One iteration of defect-correction

)
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J 8 16 32 64
DC1 0.12(-4) 0.77(-6) 0.48(-7) 0.30(-8)
DC2 0.28(-6) 0.33(-8) 0.41(-10) | 0.58(-11)

TABLE 3.5: Two iterations of defect-correction

Approximations to the above problem were computed on a uniform mesh
with J sub-divisions. The first three lines in Table 3.4 are the errors
in the Galerkin solution point-values, first divided differences and second

divided differences respectively; calculated by the formulae

J-1

(a) f2n 2 (ulx)-d"x. )4

jo1 J J

J h 2%
(b) { h Z ((u-u)[x. 1,><.]) }?

j=1 J- J

J-1

h 2,1

(c) { 2nh j§1 ((u-u )[Xj_1’xj’xj+1]) }

The results support the theoretical predictions of O(hz) convergence.

The last line in Table 3.4 contains the error in the defect-correction
solution, calculated as in (a) above, when one iteration with piecewise
Lagrange cubic polynomials was used. Table 3.5 contains the errors in the
defect correction solutions, after one and two iteractions, when piecewise
Lagrange quintic polynomials were used. The results support the theoretical
predictions of O(ha), O(ha) and 0(h6) convergence respectively.

One point Gauss quadrature was used to compute the basic piecewise-
linear Galerkin solution, while subsequent defect correction iterations in-
volved the calculation of a right-hand side with two or three Gauss points.

The original O(hz) accurate coefficient matrix however was retained.
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3.4 Recovery through Deferred Correction

An alternative method of obtaining O(ha) approximations to u is to use
an idea similar to the deferred correction approach with finite differences.
We do not, however, need to use asymptotic expansions directly.

If u? is the piecewise linear interpolate of u
u?(x) = uh(x) - a(Gh(x,.),u-u?) (3.4.1)

and on each sub-interval
X

N j+1 3
W) - w0 = [T gbotu (bt (3.4.2)
X .
J
where g is the Peano kernel for linear interpolation. Thus if zh is

an approximation to u" we may form

J+1
w(x) = j g(x,t)z"(t)dt (3.4.3)

X .
J

and wh, the Galerkin approximation to w, will give a correction to subtract

from o in (3.4.1). Hence an improved estimate of u? is obtained.

Theorem 3.5

If p € W*™(I) then

Hu? N

M, < onlfur-2"l (3.4.4)
L (1) Lo(1) *

Proof

At a node Xj
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u?(xj)-(uh_wh)(xj) - a(G:(xj,.), w-(u-u)) h (3.4.5)
= a(G (Xj")'G(Xj")’ w-(u-up))
since w and u—u? are zero at the nodes. Thus

|uh—(uh—wh)[ < C max {|G(x.,.)-Gh(x.,.)H }Hw-(u-uh)u
| I ILw | J J H1(I) 1 H1(

(1) 1€j<J-1 I)

< ch®flu—z]| (3.4.6)
L2(1)

using the smoothness of the Green's function. ®
There are several ways of generating an O(hz) piecewise linear
approximation to u" and thus computing wh will give O(ha) approximations

to u at the nodes. If the mesh is uniform then we set

zh(xj) = (uh(x.+

i 1) - 2uh(xj) + uh(xj_1))/h2 (3.4.7)

for j=1—J-1 and estimate u" at the end points by linear extrapolation

l.€.
(a) zh(xo) =2 zh(x1) - zh(xz)
i i i (3.4.8)
(b) z (x3) =2z (x3_4y - 2 (x5_,)
Then
o2, <y, e I, (3.4.9)
L*(1) L™(1) L7(D)

where yh is the piecewise linear function with nodal values u”(xj)
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j=0—J, and so

lunsy™ , < en®ut) (3.4.10)
L°(1) L7(I)

J-1
h h 0D P N2 o h e Nk )P 192
and |ly -z ”LZ(I) { > (y (XO) z (XO)) + ) (y (xj) z (xj)) +

1
2

(y(x)z(x))}

At the internal nodes the last expression is bounded by

|yh(xj)—zh(xj)| |u"(x )- 2u[xJ 19% 5% 1+ 2| (u-u )[xJ 1,><J j+1]|
<ot 2t L T
R ALY
(3.4.11)
using standard approximation results and (3.3.16). At the initial node
|yh(x0)_zh(x0)| < |u"(x0)—(2u”(x1)—u"(x2))|
+ |2(u"(x1)—2u[x0,x1,xz])-(u"(xz)-Zu[x1,xz,xz])|
+ |2(u—uh)[x0,x1,x2] = (u—uh)[x1,x2,x 1]
< C{h3/2Hu1VH2 anH o) )
LH{Tyu15 505 9) L (14uT50155)
(3.4.12)
using the Peano kernel error formula for linear extrapolation. Inserting

(3.4.11), (3.4.12) and the analogous result at the final node into (3.4.10)

leads to

lun-z < Ch?|ul]
L2(1) H* (1)

If the mesh is not uniform a possible appraoch is to compute for
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j=1 3
;. L = 1 {q(x, 1)uh(x. )-pr(x. 4) uh[x. ,x.] - fix, 1)}
J-2 p(xj_%5 J-2 J-2 J-3z J=1""J J-z
(3.4.13)

and then obtain the nodal values of zh by linear interpolation and extra-

polation i.e.

h
z (xo) = {(2h1+h3/2)21 = h123/2}/(h%+h3/2)
h ~ ~ .
20 = (hpgdyg + g2/ (gt 92123
h ~ ~
z (XJ) - {(Zh\]—%-’_h\]—}/z)ZJ—%_hJ—%ZJ—B/Z}/(hJ—%-’_hJ—}/Z) (3.4.14)

To prove that u" - A s O(hz) we first note that

u"(XJ_%)—Zj_% = p(X %) {Q(X 1)(U u )( %)-p'(xj_%)(u_uh)[xj_1,Xj]
_p|(xj_%)(u'(xj_%)—u[xj_1,xj])} (3.4.15)
and so
|U"(xj_%)-2j_%| ) C{l(u-uh)(xj_1)‘ + |(U-Uh)(xj)| + ](U-Uh)[xj_1,xj]]
nig ol (3.4.16)
2 Lo(I. )
J-2
and thus
{ g d " -3, |21 <cond
=1 J'%|u (5-1 'Zj—%l b < IU”HB(I) . (3.4.17)

If yh, however, is the piecewise linear function obtained as in (3.4.14)
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but using the true mid-point values of u" rather than z then

lun(x, -3, 4|22 (3.4.18)

J
Z h, 1
- J-2 J-2

7 J°

Nj=

h _h
”)’ -z ” P < Cf
Lo(I J
provided that the mesh is not too distorted: i.e. there exist positive

constants c, and c, independent of h and j such that

(3.4.19)

Jun-z"|

A [T I e I (3.4.20)
Lo(T) L=(I) L=(T)

|
HA (1)

where the first term on the right-hand side is bounded by the error in

linear interpolation and extrapolation.
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