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SUMMARY

A finite difference scheme based on flux difference splitting is
presented for the solution of the two dimensional Euler equations of gas
dynamics in a generalised coordinate system. The scheme is based on
numerical characteristic decomposition and solves locally linearised
Riemann problems using upwind differencing. The decomposition is for a
generalised coordinate system and a convex equation of state. This
ensures good shock capturing properties when incorporated with operator
splitting and the advantage of using body-fitted coordinates. The

resulting scheme is -applied to supersonic flow of ‘'real air' past a

circular cylinder.
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1. INTRODUCTION

The approximate (linearised) Riemann solver of Roe' has proved to
be successful in its application to the compressible flow of an ideal
gas in one dimension®, and in two dimensions when incorporated with
operator splitting®. A similar Riemann solver was proposed by
Glaister® for compressible flows in one dimension and general convex
equations of state. This scheme was extended® to the two dimensional
Euler equations in Cartesian coordinates and general convex equations of
state using operator splitting.

In this paper we seek to extend further the analysis of Glaister to
a generalised coordinate system. The resulting scheme can be used with
non—-Cartesian, body-fitted meshes in two dimensions. The area of
generating body fitted meshes is one that 1is increasing in
importance6'7.

In 82" we consider the Jacobian matrix of one of the flux functions
for the Euler equations in a generalised coordinate system, and in 83
derive an approximate Riemann solver for the solution of these

equations. Finally, in 84 we describe a two dimensional test problem

and display the numerical results achieved using the scheme of §3.



2. EULER EQUATIONS

In this section we state the equations of motion for an inviscid,
compressible fluid in two dimensions in terms of two generalised space
coordinates. We also give the eigenvalues and eigenvectors of the

Jacobian of one of the corresponding flux functions.

2.1 Equations of flow

The two dimensional Euler equations for the flow of an inviscid,
compressible fluid can be written in generalised coordinates §,n as
(see Appendix A)

(Jﬂ)t + EE + gn = 0,

(1)
where
¥ o= (p.pu.pv.e)l (2)
E(w) = (pU.y,p + pull, - x p + pvU.U(e+p))" . (3)
G() = (AV.= ¥gp + puV.xep + puV.V(e+p))' . (4)
e = pi + %p(u® + v?) (5)
and
U= ynu - xnv . V= va = yfu . (6a-b)

The Jacobian of the grid transformation x =x(f.n) , y =y(§.n) from

Cartesian coordinates x,y to generalised coordinates §.n 1is given by

o= kg, - Xy (7)

The quantities p(E.n.t) , u(g,n.t) , v(§.n.t) , p(§.n.t)

i=1i(f.m.t) and e(E.m.t) represent the density, velocity in x and



y coordinate directions, pressure, specific internal energy and total
energy, respectively, at a general position £, in space and at time

t . In addition, we have an equation of state of the form
p = p(p.i) . (8)
In the case of an ideal gas, equation (8) takes the form
p = (v-1)pi, (9)

where < 1is the ratio of specific heat capacities of the fluid.

2.2 Structure of the Jacobian

We now give the Jacobian of the flux function F(w) ., and its
eigenvalues and eigenvectors, since this information, together with
similar information for the Jacobian of G(w) will form the basis for

the approximate Riemann solver.

aF
The Jacobian A = a%» of the flux function F(w) 1is given by
0 - 0
n n
y Faz—EE{H—qz)] Py Py Py
-ul U+ 11— -x u-y v— —
e b ynu[ p ] " n'p Ynp
A= (10)
-x Faz—gi(H—q2)~—uU ¥ _v+x ugl U-x V[I—EEJ -x Ei
] J n np n U p n P
b, ) p. P. P,
U|a2-H-—(H-q? H-uU— ~x_H-vU— U[1+—1]
[a p )|y il B ™ P

where the fluid speed q , enthalpy H and sound speed a are given

by



q2 =3 u2 + V2 R (11)
H = p/p+ i+ %? (12)
and a® = pp,/p° + P, (13)

il
o

and the quantities P;.P denote the derivatives

p p'i)l '
o]

g%(p.i)l , respectively. The elgenvalues ?\i of A are given by
i

A

1,2.3.4 = U & av xﬂ2 + ynz » U, U (14a-d)

with corresponding eigenvectors

. ay ax T
U

e. o= 1, ut ==, vFiF ==, H: EZ— (15a-b)
~1,2 /x2+y2 /x2+y2 /x2+y2

! non n°n nm

r pp T
es = |Lauv. i+ %(uPwv?) - —B] (15¢)
= ! P,

and
T

&4 = [O. X Ve X0 + ynv] a (15d)

Similar results hold for the Jacobian of G(w) .

In the next section we develop an approximate Riemann solver based

on the results of this section.



3.  APPROXIMATE RIEMANN SOLVER

In this section we derive an approximate Riemann solver for the
solution of equations (1)-(8).
We propose solving equations (1)-(8) using operator splitting, i.e.

we solve successively

%(Jg)t + Ef = 0 (16a)
and

W, + G = 0 (16b)
along £ and m coordinate lines, respectively. We describe the

scheme for solving equation (16a) and the solution of equation (16b)

will follow in a similar way.

3.1 Linegrised Riemann problem
If the solution of equation (16a) is sought along a § coordinate
line given by 7 = N, » @& constant, using a finite difference method,

then the solution 1is known at a set of discrete mesh points

(E.n.t) = (Ej.no.tn) at any time tn . Following Godunov® the
approximate solution g? to w at (fjno,tn) can be considered as a
set of piecewise constants w = E? for § € (Ej - %ﬁ , Ej + %gj at
time tn where Af = Ej - Ej—l is a constant mesh spacing. A Riemann
problem 1is now present at each interface Ej—% = %(fj_l + §j)
separating adjacent states g?_l,g? . We consider solving the

linearised Riemann problem

W), + A0S e = 0 (17)



where zj—% = z(g?_l,g?) is an approximation to the Jacobian A and is

a constant matrix depending on the states either side of § The

4

matrix gj—% will be required to satisfy the following three properties

g ¢ n n n n
(1) B (Wi 0 8;) > AR as ¥, >¥; X,

(ii) zj—% has four linearly independent eigenvectors

and

(111) 8E = K, 0w .

These properties were shown by Roe' in the ideal gas case in Cartesian
coordinates to guarantee conservation and have good one-dimensional

shock-capturing properties.

3.2 Numerical scheme
Once such a matrix has been constructed equation (17) can be solved

approximately as

(wn+1_ n) (wn_wn )
Nk Nk ~ N. N.-—l _

Ji —omc  * Ajy TIE = 0 (18)
where k can be j-1 or j , At = tn+1 -ty is a constant time step
and Jj—% is an approximation to the grid Jacobian at
(E.n) = (Ej_%,no) . If we project

4
n ~n v
Ay = Xy~ ¥jq = z a.e (19)
i=1
where gi are the eigenvectors of Ej—% then equation (18) can be
written as
- S
() g 1S
Jiy —ore  * AE = Qo (20)



where Xj are the eigenvalues of Ej—% . Equation (20) now gives rise

to the following first order upwind algorithm

n+1 n 20t o~ o~ . N
Y1 = %41 = Jj_%Af Aiaisi oA <0 (21a)
and
n+1 n 20t o~~~ . >
g, =X - Jj_%AE Aiaisi if Ai >0 . (21b)

Extensions of this first order algorithm to second order can be made®

and to non-uniform grids*®'**.

3.3 Grid generation and grid Jacobian
The purpose of this paper is to present an approximate Riemann
solver for use with non-cartesian body fitted coordinates. The mapping

from physical (x-y) space to computational (§-n) space can be given

analytically, or constructed numerically'Z. In the case where the
mapping x =x(E.n) . y =y(E.n) is known analytically we can
approximate Jj—% in equation (18) as
JJ—% = (X’g'yn - anE)(Ej_%-no) H (21)
alternatively, Jj—% can be approximated using central differences.
3 —1
In addition, we will need a suitable approximation x% A for xn at
(§j_%,no) and in the analytic case we take
-4 _
I = % (85 mp) (22)
3 -1,
as in equation (21); otherwise we set x% % to be the arithmetic mean
of central difference approximations to xn at (EJ_I,no) and
(Ej.no) 3 Similar approximations hold for xf,yn and yE (see

Appendix B).
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3.4 Construction of A

Consider a § coordinate line given by 71 = o+ @ constant, and
denote points Ej—l'fj on this line by EL'ER , respectively. In
‘s n o _ n _ _ LI
addition, we denote Xj—l = XL , zj . XR ., and assume that X = xn ,

-,
Y = y% A denote approximations to xn.yf that are constant in the
interval (EL.ER) . Our aim is to construct a matrix ﬁj—% B ﬁ(zL'NR)

satisfying properties (i)-(iii) of §3.2. Equivalently, we could find

average eigenvalues Xi and average eigenvectors gi of the Jacobian

A at EL'ER given by equations (14a-15d) such that

4
Az = E ase, (23a-d)
i=1
and
4
AF = z X.a.e, (24a-d)
= & 1iad
for some wavestrengths Zi . Where
AC:) = (f)g = (4)p - (25)
This yields the following approximate Jacobian
X, = ®, D, At (26)
M T sl
with the required properties, where Ej-% e [31.52.53,34] and
EJ—% = diag(kl,kz.AB.k4) . The choice of wavestrengths in equations

(23a-24d) is made by initially considering states W and wp that are
close to some average state w as follows.

~

We seek al.az,aB and a4 such that

4
Az = z ae, (27a-d)
i=1
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2 .
to within O(A®) where e, are given in §2 and W .Wp are close to

N

some average state w . After some manipulation (see Appendix C) we

~

find that equation (27a-d) yields the following expressions for a,

a . = _2_;?[@ g p2(YAu-XAv (28a-b)
x2+Y2
C£3 = Ap = 2121 (280)
+
@, = pm}%%ﬁéﬂ (284)

where we have made the assumption that to within 0(A%)

A(pZ) =ZAp + pAZ, Z=uv,H and i , (29a-d)
A(pZ2) = Z%Ap + 2pZAZ , Z=u or v , (30a-b)

and
Ap = ppAp + piAi . (31)

With the expressions given by equations (28a-d) it is possible to show

that
4
E o= ) ANage, (32)

to within O0(A%) .
We now return to the general case, i.e. consider two states ¥ ¥
not necessarily close such that equations (23a-24d) are satisfied

exactly, where

K, = U2 av/ x2+y% 0,9 (33a-d)
~s ~ ~ang T
. [l.u T e R I SO T AL _all_.(___] (342-b)
s x2+Y2 X2+Y2 p X2+Y2
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& = [l.u.v,i + %B(u+v?) - = ] (34c)
Py
~ ~N ~ T
ey, = (0.X.Y.XU + YY) (34d)
5y o= —%—[ﬂp + Effiégéﬁﬁ!l] (35a-b)
. EmEiE (35¢)
3 ~2
a
a4 = p X2+Y2 (35d)
T =Yu-xv (36)
and
=P, + ,57 (37)

Thus, we have to determine averages S.G.?.Si.ﬁp,ﬁ and 1 such that
equations k23a—24d) are satisfied subject to equations (33a-37). This
problem has a solution and can be determined in a similar way to that of
Glaister® for the Cartesian case (see Appendix D). The required

averages are

Vo, ' Z. + Vp,
Z = L_L = ZR , Z=u,v,i or H, (38a-d)
p = ¢prR (39)
and
p = p(H-1-4%2-%? . (40)

In addition,
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Ap = ppAp + piAi , (41)

and suitable approximations satisfying equation (41) are

~ p(pR’iR) = p(pL'iR) p(pR'iL) - p(pL'iL)
p %[ &

T ; . -
P, = é[pp(p-lR) + pp(p-iL)] . P =PR=P . (42b)
p(pp.ip) = Plpp.1i;)  p(p;.ip) = plp; . 1)

~ R’'R R'°L L'"R L'"L . .

p; = %[ A1 * ¥ ]'1L # 1. (43)
and

;i = %[pi(pR.i) + pi(pL.i)] oo dp=dp = (43b)
(In practice we would replace the conditions Ap =0, Al =0 with
|ap]| < ", |ai] < 10", where the integer m is machine

dependent. ) In the case of an ideal gas equations (42a-43b) yield

TR
1l

(v - 1%(1, + 1 (44a)

R

o
e
Il

(v - 1)%(pL + pR) . (44b)

The approximate Riemann solver presented here can now be

implemented as in equations (2la-b) where the required wavespeeds Xi .

~

wavestrengths a; and associated directions ey are given by equations

(33a-43b). In particular, the required approximate Jacobian is given

by
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0] Y

I
p ne rv e, NP
a? —i(H u?-v?) ] U YveXu—
P P

Rj-4% =

In the next section we describe a test problem used to test the

algorithm of this section.

~ si N Vg o pi
a®-—H-u?-v )]—uU t+yu [1——]

P

pi

-X 0
-
—Xu—Yv—i "{—i
P p
w ol Ps P
U-xv [1 "—f:] gt
P .0
~XH-vU— U1+
p

=

P
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4.  TEST PROBLEM AND NUMERICAL RESULTS

In this section we describe a standard test problem in two
dimensional gas dynamics, and give the numerical results achieved for
this problem using the Riemann solver described in §3.

The problem is that of uniform flow of ’'real air’ past a circular

cylinder. The equation of state used can be written as

p = (v(p.i) - 1)pi

where the form of ~(p,i) is determined via curve fits to experimental
data'®. The radius of the cylinder is 0.5 and the initial conditions
chosen are p=1.4, u=80, v=0 and p=1, corresponding to
Mach 8 flow. An O-type computational mesh is used and thus the grid
transformation is from (x,y) physical space to (§.m) = (R,9)

computational space, where R,¢ are standard plane polar coordinates

(see Appendix F). Because of the line of symmetry along ¢ =7 and
the supersonic conditions along ¢ =w/2 , the region of computation
considered is (R,¢) € [O.5,Rmax] x [w/2,7] . (The exterior of the

boundary is taken as R = 3 for the computations shown here.) The

grid spacing in the ¢-direction is uniform with 32 grid lines given by

¢j = (j—%)gz + g , J=1,...32 . In the R-direction two types of grid
spacing are chosen, The first type of grid spacing is uniform with 33
grid lines given by Rj = (j—%)g€-+ 0.5, j=1,...33. The second

grid spacing is of a non-uniform, geometric type with 34 grid lines

given by
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m
j 950 2nd

p = 1.1648336. Along ¢ =7 a symmetry boundary condition is applied

Ry =0.5+%k . Rj=R_ + wi™ | j=2....34 where k =

and along ¢ = /2 supersonic boundary conditions are applied.
Reflecting boundary conditions are applied along the surface of the
cylinder R = 0.5 (see Appendix G) and inflow conditions are applied
along R = Rmax . The scalar scheme used is first order’, however, a

second order TVD (total variation diminishing) scheme could be used.

Figures 1,2 and 3 display the density contours at t = 0.2, 0.4 and
0.6, respectively, for the mesh with uniform spacing in the R-direction.
Corresponding results for the case where the mesh spacing is non-uniform
in the R-direction are shown in figures 4,5 and 6. In both cases the

shock has been captured over at most three cells.
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Figure 3






Figure 5
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5. CONCLUSIONS

We have presented an approximate linearised Riemann solver for
two—-dimensional compressible flows using body fitted coordinates. The
resulting scheme has been applied to supersonic flow of a real gas past
a circular cylinder. The numerical results achieved show that the
shock has been captured over only a few cells. Furthermore, the scheme
developed applies to any convex equation of state and to any regular,

body-fitted mesh.
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APPENDIX A

In this appendix we give the derivation of equations (1)-(7).

The Euler equations for compressible flow in two dimensions are

+f +g

t xRy (A1)

w
~

|
RO

where x,y are Cartesian coordinates, w 1is given by equation (2) and
2 T

f = (pu, ptpu®, puv, u(e+p)) (A2)
2 T

g = (pv. puv, ptpv®, v(etp)) . (A3)

Defining an invertible, twice continuously differentiable mapping from

(x.y) space to (f£.m) space by x =x(§.,n) , y =y(£.n) then we have

d a d

and
a a i)
a;_’- = Xn -a—x' + yn a—y- (AS)

using the chain rule for partial derivatives. Combining equations (A4)

and (A5) yields

a 1 a a
& = S v )
and
a 1 a a
5 - e s (D)
where
J = xEyn - yfxn : (A8)
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Using the expressions given by equations (A6) and (A7), equation (Al)
becomes

If we note, hOWever, th.at

g_f[ynf. - xn%] * g_n[xL:% - yffa]

1l

£+ y of - =
Y T YmEL T BE T *neR

+ + = i - = f
*eEn T XenE T Yein T Yeno

f - f +x - X ,
Yeen ~ Yein T ¥eBn T B

(since xEn = B¢ and Yen = ynf) , and that Jzt = (Jz)t ,  then
equation (A9) becomes
. +F.+G_ = 0. Al0

where

F = f -x
~ ynN 'n%

T
= (pU, ynp + pulU, - xnp + pvU, U(e+p))

I P]
]

- f
Xg& ~ Vg,

= (pV, - YeP + puV,  xep + pvV, V(e+p))T

and U,V are given by
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APPENDIX B

In this appendix we give suitable central difference approximations
for xn.yn.xf and yf . when the transformation x = x(£.1m) .

y = y(£.m) 1is generated numerically.

When we are performing an update in the m~direction, along the

] . | =, § =
line m = mn, we require approximations xJ_%. yJ A. xj # and yJ N
i n n § §
to Xﬁ.yn,xf and yE . respectively, in the interval (fj_l,fj).
This gives rise to approximations
xj_% 3 % x(fjini_‘_l) - x(EJ'ni_l) + x(fj_l 'ni+1) - x(Ej_l lni_l) (Bl)
n | M+1 ~ M M+1 ~ M1
[ - - 1
j—% . X(EJ-TT1+1) x(EJ—l sni+1) x(EJ-ni_l) X(EJ_I-ni_l)
XE = Y% E — E + f — E (B2)
J i-1 J J-1
e J-¥% J-%
with similar expressions for yn and yE . If we expand the

expressions on the right-hand sides of equations (Bl) and (B2) as a

. . _ A .
Taylor series about the point (Ej—%'ni) = (A(§j+§j_1),ni) we obtain

and
j=% ] )
where

2 — -—
6%my = My T2yt My



representing first order approximations on non-uniform grids. If the
grid in the mn-direction is uniform then the approximations given by
equations (Bl) and (B2) are second order accurate. In addition, we now

have an approximation for the grid Jacobian J at (Ej-%'ni)

J %
given by

A - T T - I 7
JJ-% = X Iy *n Yg -
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APPENDIX C

In this appendix we derive the expressions given in equations

(28a-d) for the wavestrengths a, so that equations (27a-d) are
satisfied to within O0(A%?) . VWriting equations (281-d) out in full we
have
Ap = a +a, tog (C1)
aY aY
A(pu) = al(u + 3—) + az(u = a—) + aqu + a X (c2)
aX aX
A(pv) = al(v - a—) + a2(v + a—) toagv + a4Y (C3)
al al EEi
Ae . al(H + a—) + az(H - a—) + a3(H - pi) + a4(Xu + Yv) , (C4)
where

d = VX2 +Yv2 | (C5)

From equations (C1-C3) we have

A(pu) - ubhp = zY @, - a2) + a4X (C6a)
aX
A(pv) = vhp = - a—{al - a2) + a4Y (C6b)

and combining equations (C6a) and (C6b) we obtain

d2a4 = X(A(pu) - udp) + Y(A(pv) - vAp) (cn)
and

A(pU) - UAp = a(a1 = a2)d , (C8)

since U =Yu-Xv and X,Y are constant. Since e =pH -p ,
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equation (Cl) and (C4) yield

A(pH) = HAp - dp = (a; - a,) al _ , a® a, + a,(Xu + Yv) (C9)
P p=Afp = & &%) g P p, 37 % :

If we substitute for a4X from equation (C6a) and a4Y from equation

(C6b) into equation (C9) we get the following expression for «

3
pa’
P ay = u(A(pu) - ubp) + v(A(pv) - vAp)
+ Ap + HAp - A(pH) . (C10)
Now, to within O0(A%?) we have
A(pZ) = pAZ + ZAp , Z = u,v,H and U (Clia-d)
so equation (Cl0) becomes
2
gé—-as = pudu + pvAv + Ap - pAH . (C12)
i
Also, :
AH = A(p/p + i + %u? + %v?)
= 82 _P 454 A1+ ubu + viv (C13)
P 2
p
to within O(A%?) so that equation (Cl12) gives
p Ap + piAi
- ey n e N
ay = Ap . (C14)
a
where we have used
2
= B (52 _ 15
P po (& - 1) (C15)

Finally, since

Ap = piAi + ppAp (C16)
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to within 0(A®) , equation gives

= ap -l
ay = Ap - (C17)
a
This now gives
- = - A
a +a, = Ap ay = 2 (c18)

from equation (Cl), and combining equations (C8) and (C18) gives

1 a
%2 % o3 (4p £ p 3 40)
1 a
= — [Ap tp I (YAu - XAV)] " (C19)
2a2
where we have used equation (Clld). The remaining wavestrength ay is

now given by equation (C7) as

p(XAu + YAv)
d2

ay (C20)

where equa_tions (Clla-b) have been used.
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APPENDIX D
In this appendix we derive the averages that make equations

(23a)-(24d) satisfied.

Writing equations (23a)-(24d) out in full we have

Ap = Zl + 22 + 53 (D1)
A(pu) = ;1 [G + Z‘-l] + 52[5 - aal] + NBG + ~4X (D2)
AMpv) = a [3 . 3—"] i N2[$ + -35] + oy + oY (D3)

be = Mpi) + A(p 5 + 000 )

=;;/’;+T+%GZ+%;2+?'E +E;/';\J'+'i‘+%§2+%;2-ﬂ
1 d 2 d
+ as[i + %u® + %2 - p ;E] + a4(Xu + Yv) (D4)
Py

A(pU) = Zl(ﬁ+2d) + ay(U - ad) + gl (D5)

MYp + pul) = a (U +ad)|o + 2| + o (U - aq)fa - 2

1 d 2 d
+ a3Uu + a4UX (D6)
A(Xp + pvU) = al(U + ad) |v - a—} + az(U - ad)[v + 3_]

+ a3Uv + a4UY (D7)

and
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A[U(e+p)] = A[U(pi + ¥u® + wv? + p)]
- @ a0fph e Tt v i+ 2
+ Zz(ﬁ - ad) [E/Z R Y z—U]
~ o~ ~ ~ p
+ aBU[i + %u® + % - p ;E-]
Py
+ e X+ Yv) (D8)
where
U = Yu-Xv . (D9a)
a2 = T + P i (ng)
2 P
p
d = \'4 Xz + Yz ) (Dlo)
X,Y are constant and ;i . i=1,...4 are given by
oo L pa .
B a1'2 - '2§' [Ap + d AU] (D11a b)
a = bp- bp (D1lc)
2
a
and
- - » XAu + YAv - (D11d)
4 42

Firstly, equation (D1) 1is satisfied by any average, and equations

(D1-D3) yield

A(pu) phu + ubp (D12)

A(pv) pAv + vAp (D13)

whilst equation (D5) gives

A(pU)

I

pAU + Ukp . (D14)
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From equations (D6) and (D7) we obtain, respectively,

A(pul) = ulhp + uphU + pUbu (D15)
and

A(pvU) = ;EAp + ;;AU + ;ﬁAv . (D16)
which combine to give

A(pUZ) = UPAp + 2pUAU . (D17)

Substituting for ; from equation (D14) into equation (D17) yields the

following quadratic equation for G
ApUZ - 2UA(pU) + A(pU?) = O . (D18)

Only one solution of equation (D18) is productive, namely

7 - A(pU) - v/(A(pU))2 - ApA(pU?)

U 2
i.e.
= Vo 'U, + Vp,' U
T Ol Y ' (D19)
Ve + Vg
and equation (D14) now gives
~  A(pU) - Uhp
p = X = VPLPR . (D20)
Equations (D12) and (D13) give
~ Mpu) - phu  YPL Y * VPR up
u = Ie (D21)
Vo' + Vg
and
o A(pv) - ;ﬁv VEZ‘VL = VEE'VR
v ip (D22)
Vip + Vog
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We note that equations (D9a), (D19), (D21) and (D22) imply that
U = Yu-3Xv.

Two equations now remain, namely (D4) and (DS). If we employ equation

(D9b), equation (D4) yields

s

A(pi) - idp + ;—E Ap - %— Ap = %uPhp + %v3Ap
Py Py

+ puldu + pvAv
2

- A[f"z‘—z]—A[%-] , (D23)

and equations (D20)-(D22) imply

A(pu?) = uZAp + 2uphu (D24)
A(pv?) = v2hp + 2vphAv (D25)
so that equation (D23) becomes
" PP ~
A(pt) - ihp + —2 pp - RAR _ o | (D26)
Py Py

In addition, we note the following identities

Ve (P /pp) + Vg (Pp/Pg)

A(Up) = Uhp + pAU (D27)
Vo, + V'
L R
A(pUZ®) = —§f-Ap + p U zAz
ps V5_122 + V5_122
+ péU L1 St . z=u or v , (D28a-b)
Vip + Vg



= B33 =

so that after using equation (D26) we find that equation (D8) yields

~ (Ve [p /p +‘Au2+%v2]+ b [p /p +%u2+%v2]
A(pU1) + PAU L |PL7FL L L R |"R"R R R

Ve + Vg
- UA(pi) = S[S/}S + 1+ %2+ %??2]AU . (D29)
Now
A(pUi) - UA(pi) = pAU Ve 1y, * Vg g (D30)
Vo + Veg

and thus equation (D29) gives a mean enthalpy ﬁ given by

H = p/p +1 + %2 + thy? (D31)
where
o Vo 'H, + Vpg'
G W R R (032)
Vo' + Vg

Furthermore, since H =p/p + i + ¥%u® + %v? then H and i are

related linearly and in view of equation (D31) this suggests that i 1is

averaged in the same way as H , 1i.e. we choose
= Vo' i, + Vo' i
1 = i R (D33)
Vo + Vg

Finally, following equation (D33) we find that
A(pi) - ihp = pAi
so that equation (D26) becomes

Ap = ppAp + piA1

~

giving a means of determining averages pp and Py -
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APPENDIX E

In this appendix we derive an approximate Riemann solver for the

specific case of an ideal gas. In this case we generalise the Riemann

solver of Roe' for cartesian coordinates to body-fitted coordinates

using an 'intermediate’ or 'parameter' vector.

If the gas is ideal then the equation of state is given by

p = (v -1)pi

so that equations (5), (13) and (12) become, respectively,

e = ;gT-+ %o(u® + v?)

a2 = 1B
p
and
a2
H = ESP + %(u2 + Vz) g

Firstly, we define a 'parameter’ vector
1
u = pé(l.u.v.H)T

so that ¥ and E are quadratic in y3 ., specifically

u,u T
_ 2 1 4 (7—1) 2 -1 2
X = Eﬁfuluz’uIUB' ~ t oy Rty “3]
- & a-1 (+1) 2 _ (atl)y 2 _
E = [Yulu2 Xu1u3. Y S 1Y4 + 5 Yo 5 145 Yu2u3

_ opfr1 _ (1) 2 . (-1), 2 _
X-(—;—-)-ulu4 oy Xu3 + XuZ + Yu.u Yu2u4 Yu2u4]

2v 2 273

(E1)

(E2)

(E3)

(E4)

(E5)

(ES)

(ET)
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Now since
A(ab) = alb + bha (ES)

where A(°+) = (°)R - (-)L and the overbar denotes the arithmetic mean,

ie. * = %[(-)L + (-)R] , then equations (E6) and (E7) give

Ay = BAy (E9)
and
AE = Chn (E10)
where
261 0 0 ]
u u 0 0
B = 2 1 (E11)
3 0 u1 0
u u
Y4 (-1)- (D)= e
Y ¥ 42 ¥ U3
and
[ Y52~x63 Yal -xGl 0
Y y-1)= ilillyﬁ -Xu - Ll:llyﬁ -Xu Yll:llﬁ
5 4 ¥ 2 s 3 2 ~ 1
C = R AR L R (E12)
x{-1 O Dssava, - O va xO=D5 |
¥ 4 ¥ 2 3 ~ 3 "2 ¥ 1
i 0 Yu4 —Xu4 Yu2—Xu3
(N.B. X and Y are constant). From equations (E9) and (E10) we
obtain
AE = CB_IAm , (E13)

and thus the required property

AE

Aby (E14)



2

gives an approximate Jacobian A

If we write

and

=2

<

TR

A

1}

(=3 b—FII[\')I

S

W

=R

then the eigenvalues of A are

>

i

with corresponding eigenvectors

w2

where

=J4
H-

<?
H
afs?

al%?

al&s

(=4
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given by

found to be

~

Utad, U, U

e

<

? + Yv?

Yu - Xv

Vv X% + Y2

Xu + Yv

(E15)

(E16)

(E17)

(E18)

(E19a~d)

(E20a-d)

(E21)

(E22)
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and

a? = (v-1)(H - %® - %?) .

(N.B. In the ideal case p = (v-1)pi ,
that the third component of the continuous eigenvector

¥u? + %v? )

Finally, to complete the Riemann solver we need to
onto the eigenvectors e, as
4
4y E E“if,i
i=1

so that AF can be decomposed into the four waves as

e N
e.
iol '’

~

4
AF = Raw = Exi
i=1

~

since X ~ has eigenvalues Ai with eigenvectors g

i

equation (E24) we have

Ap = ;1 + 32 + 23
A(pu) = ay [u + ?1—] + az[u - —] + agu + a4X
A(pv) = al{v - E—J + az[v + __] + v + 4X

P, E (~1)i. p;

(E23)

= (v~1)p so

e3 becomes

project Aw

~

(E24)

(E25)

Writing out

(E26)

(E27)

(E28)

, ;1[ﬁ+ aﬂ] B [ﬁ = ﬂ] . ;3[%32 . %;;2]

+ ;4(XG + Y;) 3

(E29)
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From equations (E26)-(E28) we have

Apu) - ubp = (a, - a) %i + @ X (E302)
and
Apv) - vhp = (a; - @) %§ +aY (E30b)
which combine to give
a,d® = X[A(pu) - GAp] + Y[A(pv) - CAp] (E31)
and
A(PU) - Ubp = (o - ay)ad . (E32)

Using equations (E23) and (E26) equation (E29) gives

~

2 2 2
A .u_ L _ ~ ~ a ~2 ~2
_L'r-l + A[p2 ] + A[p2 ] e (a1 + a2) o Ya<Ap + %vAp
~ ~ ;ﬁ ~o s ~e
+ (oz1 - az) Tt a4(Xu + Yv) . E33)

~ ~

and on substituting for a4X from equation (E30a) and for a4Y from

equation (E30b), equation (E33) becomes

A 2 2 ~ ~ i ~ ~
% + A[plzl—] + A[p—‘zr—] = (al + a2) 2‘71 + uA(pu) + vA(pv)

- YuZhp - ¥v3hp . (E34)

Combining equations (E32) and (E34) gives

~

- 2uA(pu) - 2;A(pv)] ; (E35)

+ u?Ap + v3hp

~ 1 a(A(pU) - UA -1
a g = ;[Ap + af{a(p c)i 3 (72 )[A(puz) + A(pv®)

In view of the expressions for E.; and U given by equations (E16),



(E17) and (E21) we can simplify

A(pu) —uhp =
A(pv) - ;Ap =
and
A(pU) - Ubp =
where we have defined
p =V prR '

and in addition we have

A(pu®) - 2ub(pu) + uZA

A(pv?) - 2;A(pv) + v2A

Thus

~

a5 = -1%—[Ap +
” %‘2

and from equation (E1)

~
Q.

and finally, from equations (E31), (E36) and (E37) we obtain

PEAU

pAu

pAv

pAU

p =

P

d

5 = Ap - (a1 + a2) = Ap -

4 42

~ _ p(Xbu + YAv)

D’NZ I_g

(E36)

(E37)

(E38)

(E39)

(E40)

(E41)

(E42)

(E43)

(E44)
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APPENDIX F
In this appendix we look in detail at the analytic grid
transformation used for the problem of flow past a circular cylinder.
The grid transformation used to obtain an 'O’-type computational
mesh is given by
X = Ecosn, y = £ sinn (Fla-b)

or equivalently

f=”x2+y2v n

= arc tan (y/x) . (F2a-b)
(N.B. € and m correspond to plane polar coordinates R and ¢ ,
respectively.)
From equations (Fla-b) we have
xn = f sinn , yn = F cosn
and
x§ = cosn , yf = sinn .

Thus, when we update along a line 7 = My We take

i .y
x% = - fj-% sin fo , y% cos 7,
-1 L |
xg 4 = €os 7, . yg % = sin Mo
where EJ—% = %(Ej_l + fj) . In particular, we have
J%,\2 J¥\2 _ g2
(xn ) + (yn ) e EJ'_%

and

N o T b S o - 00 o = T
Jj-% = X Iy *n Y - fj—%'
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Similarly., when we update along a line § = EO we take

4 _ % _
xn = EO sin nj_% ; Yﬂ =
and
%
xg—% = cos nj_% , yg =
where nj_% = %(nj_1 + nJ) .l In part;cular. we
H?+ g =
and

R b T b I b T
Tju = X Yn "X Vg

§0 CoS My,

sin LY

have

§o -



APPENDIX G
In this appendix we describe how the boundary conditions are

applied for the problem of flow past a circular cylinder.

(1) Along the boundary ¢ = 7/2 supersonic boundary conditions
apply, i.e. all waves are leaving the region of computation and

therefore no special treatment is required.

(ii) Along the boundary ¢ = 37/2 we apply symmetry boundary
conditions, i.e. for updating along an arc R = Ro we position a
cell interface at ¢ = 37/2 and set p,u,v and p to have the
same values on the exterior of the region as on the interior of the

region. In this way ;i =0 and thus AE =0 .

(iii) Along the boundary R = Rmax supersonic inflow applies,
i.e. we prescribe the initial data for p,u,v and p .

(iv)_ Along the boundary R = 0.5 we apply rigid wall boundary
conditions, i.e. for updating along a line ¢ = ¢o we position a
cell interface at R = 0.5 and set p,p and tangential velocity
to have the same values on the exterior of the region as on the
interior of the region. In addition, on the exterior of the
region we set the normal velocity to have equal wmagnitude but
opposite sign to that on the interior of the region.
Specifically, if we denote by subscripts E and I to mean

exterior and interior values respectively, then

(tangential velocity)I uIcos(qSO - w/2) + vIcos(w - ¢o)

uIsinqbO = vIcos¢O ,



(normal velocity)I

and thus

(tangential velocity)E

(normal velocity)E

We set
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1]

ucos(m - ¢,) - vicos(¢, - 1/2)

1

- uIcos¢o = vIsin¢o .

i

upsing, - vpcosé, .

. chos¢0 = vEsin¢O N

Pp = P . Pg = Pg

and

(tangential velocity)E

(normal velocity)p

which imply

uEsin¢O

- chos¢0

and hence

In particular,

1l

(tangential velocity)I

- (normal velocity)I

vEcosq)o &= uIsin¢o - VICOS¢0

vEsing, - (- urcosé, - vIsin¢o)

- uIcos2¢0 - VISin2¢o

- uIsin2¢o + vIcos2¢0 .

pl + ApE(uE + v

P

I i
=T+ %pI[(— u cos2¢, - V151n2¢0)2

+ (- ursin2g, + vIcos2¢o)2]

=1 * ¥eglup + v) = ey w



