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Abstract

In this note an algorithm for improving the conservation of the second moment when
using a semi-lagrangian method is presented. This is achieved whilst maintainin;
the positivity and conservation of the first moment recovered in previously published

algorithms.

1 Introduction

Semi-Lagrangian based methods have proved, in various guises, very successful in
Computational Fluid Dynamics (CFD), mainly in connection with atmospheric flow
prediction where they have gained widespread acceptance (see Staniforth and Cote,
1991, for an overview). They can be described as a technique using a fixed grid that
essentially combines the method of characteristics with a suitable interpolating pro-

cedure.

It is known that the use of a linear interpolation between computational points some-
times produces an excessive amount of attenuation. The numerical damping can be
reduced by using a more refined interpolation algorithm which will determine the
spatial accuracy of the scheme. Over recent years various higher order interpolants

have been proposed.

Consider the semi-Lagrangian solution to the scalar problem:

us + a(x,t).Vu =0 (1.1)
which describes the advection of u(x,t). The invariance of a scalar quantity

u(x,t) = u(xog, to)

along a trajectory,
t
x(t) = xo(to) + [ a(x,7)dr.

to

is common to a wide variety of fluid dynamics topics. The aim is to obtain a good
approximation of the function u(x,t) at all the x; points of a fixed discrete grid, as-

suming that v and a are known everywhere in the grid at an earlier time ¢;. When



solving the advection equation, apart from achieving an accurate numerical approxi-
mation we may also desire, for many reasons, to mimic other properties of the analytic
solution to (1.1). In particular, if Va = 0, we may wish our numerical solution to

introduce no new extrema (positivity property) or we may desire that

% /Q udf = 0 (1.2)

where Q is the domain we are interested in solving (1.1) over. Note that boundary
conditions might mean the right hand side of (1.2) is replaced by some non-zero
quantity. However, to keep the discussion simpler, and because the ultimate goal is
to solve equation (1.1) on the sphere we ignore this complication.

Whilst (1.2) is, by far, the most common conservation law that numerical schemes
try to reproduce, in fact we could replace the integrand with any power of u. In

particular
d
—d—t/ﬂuzdﬂ =0. (1.3)

This could be referred to as conservation of energy if (1.2) was considered as conser-
vation of mass but we will use the less ambiguous description that (1.3) represents
conservation of the second moment, (1.2) representing conservation of the firsi mo-
ment.

Semi-Lagrangian schemes do not, inherently, give us any of the properties discussed
above. Earlier work has addressed two of these properties. Positivity can be obtained
using the implementation due to Rasch and Williamson (1990) and Williamson and
Rasch (1989) but here the method proposed by Bermejo and Staniforth (1992) is
used. This takes the solution at a point ¢, u;, to be the weighted average of two

semi-Lagrangian solutions

w=ul +o;(uf —uf) 0<ou <1 (1.4)

7 i

u” is restricted to be positive and is hence generally a low-order solution, whilst

there is no restriction on u# which is hence usually taken to be a high-order solution.
To be compatible with previous work, a bilinear interpolation is used for u* and a
cubic-spline interpolation is used to provide u*.

Denoting by ™" the minimum of the set of solution values used to interpolate at

the foot of the trajectory passing through x;, and similarly u***, we can choose o
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such that " < u; < u*®. The maximum such value is denoted by of™** and the
corresponding solution
resulf — uf)

_..L
U; = U; + i ;

is positive.

Priestley (1993) introduced a further modification to this approach to conserve the
discrete version of the first moment. That is, denoting by S; the area associated with

node %, then it is attempted to enforce
> Siu; = constant. (1.5)

Suboptimal values 0 < o < a®® are taken to satisfy (1.5). The complete algorithm
for doing this is described in Priestley (1993). Essentially it calculates an average
value of o, @y, that, if applied to all the nodes still allowed to be altered, would give
a solution u that satisfied (1.5). If it happens that for some nodes a,, > of***, then
for these nodes o = a/*® and they are removed from the allowable set. The value
of a,, is then recalculated until the algorithm terminates.

Upon concluding the algorithm a number of nodes are left that have as their o*
the average, suboptimal value a,,. Over long time scales, energy or second moment
conservation may become significant, in climate modelling for example, and so it
is desirable to minimize any error in this quantity induced purely by the advection
scheme. In this paper we present an algorithm that is applied to these remaining
nodes to improve, and hopefully obtain, conservation of the second moment as well.

In other words we want to enforce
> Siui = constant (1.6)
i

whilst maintaining positivity and conservation of the first moment.

2 Second Moment Conservation

For this purpose the nodes that are still able to be changed are flagged by iflag(i) =
0 whereas those whose « has been already set are flagged by iflag(:) = 1. The



requirement expressed in (1.6) will be used in the form
o) Su? = constant — Y Su? = target =T
iti flag(i)=0 iriflag(i)=1
Introducing the notation 8; = uff — uF, note that in Priestley (1993) all the 3s with
iflag(i) = 0 were of one sign and it was possible to assume §; > 0 (by multiplying by
-1 if necessary). In the following the cases must be treated separately, so, if the sign
of the 3's was changed in the algorithm for conservation of the first moment, then it
must be undone before proceeding.
Let u} = uFf + of (uf — ul) be the current solution value, i.e. with the latest values
of ! and define
T =Y S
We will present two algorithms next. First, the ’best’ algorithm as this is the one most
likely to find the solution sought. A second version is given later for the ’fair’ algo-

rithm. It is similar but may not recover as much second moment. It has nevertheless

the advantage of being better suited for parallel computation.

2.1 ’Best’ algorithm
It can be described through the following sequence:
1) Define T4 =T — T*
2) Order the points for which iflag is still zero such that
Siup > Soug > ... > Spu, TF<T

51U1<52U2<...<Snun ™ >T

Note that, for simplicity, the points have just been labelled 1,...,n. The label
just refers to the order in the list and will relate to an actual node via a pointer.

See also remark 1.

3) Take the pair of points u; and u, and proceed to add § to u; and substract it from
U, t0 maintain first moment conservation. This results in an increase/decrease

of second moment of (S; + S,)6% + 26(S1u; — Spuy). Solving
(Sy + Sp)6% + 26(S1uy — Spu,) = T (2.7)
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the amount 6™°°?, mass that has to be transferred to achieve conservation of the

second moment, is obtained. See remark 2.

4) Calculate §1, the most mass that can be added to u; to avoid violating positivity

constraints:

if 6>0 6 = (ol —ad)f

(2.8)
else 0 = —aif
Calculate d,,, the most mass that can be substracted from u,:
ifg>0 o = B
b b (2.9)
else 6, = (af — &),

5) If both é; and 4, are greater than §meed then the algorithm has succeeded. What

remains is just to transfer the mass by altering the o's, i.e.,

need
* _ %
al—a1+ /Bl
need
¥ __ %
o, = o, + 3
n

See remark 3.

6) Otherwise, choose § = min(d1,d,) and calculate the appropiate o's, updating
ut, ut and T*. Also set the flag to 1 for the node that limited the choice. And
GOTO 2.

2.1.1 Remarks

1. For efficient ordering algorithms, see W.H. Press et al.(1992) for example. More
importantly, after the first pass we only need to apply an insertion algorithm.

This is particularly trivial when 7™ < T

2. When T™¢¢4 is positive (2.7) always has a (real) solution. When 7™ is negative

it may not. In this case we take

Snun - Slul

5need —
S+ S,

This gives a minimum of second moment for this pair of points. In this case

then it is necessary to loop through the algorithm again regardless of step 5.
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3. Clearly division by zero must be avoided here. On the other hand, when 3 =0
altering the value of o* does not change the solution u*. In practice, though, this
means ignoring the nodes 7 where |(;] < € and € is some tolerance, by setting
their flags to 1. The algorithm itself only requires an € distinguishable from
zero by the computer. However, enormous savings can be made by taking € as
large as possible. Within the range 10~% — 1073 the extra cost of the algorithm
cannot be discerned. The results obtained are, to all purposes, identical to those
obtained with € = 107°. However, the cost of the recovery of the second moment

can become the most expensive part of the whole solution in this latter case.

2.2 The ’fair’ algorithm

The only real difference to the ’best’ algorithm is that all the points in the ordering

are put into pairs (uy, un), (42, Un—_1), .... If there are np such pairs then redefine
Tneed = <17
np

for step 3. Steps 3 to 6 are then applied to each pair and loop through the algorithm
again if any of the pairs failed in Step 5.

This algorithm is closer, in spirit, to the one given in Priestley (1993) for the conser-
vatin of the first moment. Since there is now a significant amount of calculation that
can be done independently of what is happening at other points it is better suited to
parallel computations. Another alternative, if there are k processors say, would be
to split the list in Step 2 into k parts, taking the bottom n/2k points with the top
n/2k points, etc., and sending each of these lists to a different processor with a target

Tmeed [k and using the *best’ algorithm on each separate list.

3 Results

Two test problms are considered. The first problem is that of the slotted cylinder
of Bermejo and Staniforth (1992) advected by a given velocity field, a = w(—y,x)
which causes the cylinder to rotate with constant angular velocity w. The second is
the same problem with the slotted cyliner replaced by a sin? cone of the same radius

and maximum height.



Following Bermejo and Staniforth (1992) the errors for this problem are split into the
dissipation error (DISSER) and the dispersion error (DISPER). The first and second
moments are estimated in the same way as in Priestley (1993). The maximum and
minimum values are also given.

In table 1 the results to the slotted cylinder problem using the cubic spline semi-
Lagrangian method with positivity and first and second moment conservation algo-
rithms applied are given. This is directly comparable with table 3 in Priestley (1993).
Very close observation of the results shows that the conservation of the second mo-
ment has improved by about 3/10%. There are a number of reasons for this. The
algorithm may not be able to recover much second moment if a) there are too few
points passed to the algorithm, b) 8; ~ 0 for many nodes, ¢)a,, ~ o"** for many
nodes. In actual fact, both b) and c) seemed to be true. Matters are made worse by
the fact that so much of the second moment is lost in the first time steps. Whilst it
is probably unsafe to infer too much from this result, it should also be noted that the
error has also improved by a similar amount.

Purely in order to create a situation where there are some nodes for which g; is
not so close to zero and g, not so close to a"*® we use a variation on the scheme.

Essentially, instead of uX we use u™" and then take

maz __ ,,Tin
ama:c . ui ui
i - H min

i i
In effect this allows us to use, in terms of equation (1.4), o’'s less than zero or greater
than one. Looking at the errors in tables 2 and 3 will convince the reader that we
are not recommending this approach. We stress it is solely used to show what the
algorithm for the conservation of the second moment can do when there is enough
room for it to manoeuvre in.

Table 2 shows the result obtained for the slotted cylinder problem. It can be seen that
the algorithm has vastly improved the conservation of the second moment. For the
sin? cone, conservation of the second moment is actually achieved as table 3 makes

plain. In table 4, the results for this problem with the method from Priestley (1993)

are given for comparison.
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Conclusions

We have given an algorithm for conserving the second moment of a semi-Lagrangian

generated numerical solution whilst maintaining positivity and conservation of the

first moment. It has been shown that, provided there is enough ’freedom’ in the

solution, conservation, or vastly improved conservation, of the second moment can be

achieved by the algorithm. The remaining question is, then, how well it will work for

more realistic problems? This is the basis for future work.
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N°At | RFM RSM MAX MIN DISSER DISPER
96 | 1.00000 | 0.869577 | 3.99988 | -6.28837x10717 | 4.3882x1073 | 4.4309x10~2
192 | 1.00000 | 0.850333 | 3.99847 | 1.7448x10~' | 5.8454x1073 | 5.1511x 1072
288 | 1.00000 | 0.83665 | 3.99403 | 3.3377x107Y° | 7.0207x1073 | 5.6284x10~2
384 | 1.00000 | 0.82585 | 3.99071 | 4.4215x1071 | 8.0332x1073 | 5.9971x10~2
480 | 1.00000 | 0.816827 | 3.98983 | 4.9297x107° | 8.9371x107% | 6.3064x 1072
576 | 1.00000 | 0.809004 | 3.98840 | 5.5226x107'° | 9.7644x107% | 6.5818x 102

Table i: Errors for slotted cylinder problem using 'best’ algorithm for second moment

conservation with low order scheme .

N°At | RFM RSM MAX MIN DISSER DISPER
96 1.00000 | 1.00000 | 4.00000 | 0.0000 | 2.7981x10722 | 0.761600
192 | 1.00000 | 1.00000 | 4.00000 | 0.0000 | 9.7257x10717 | 1.14240
288 | 1.00000 | 0.998870 | 4.00000 | 0.0000 | 3.0618x10~7 | 1.34923
384 | 1.00000 | 0.997355 | 4.00000 | 0.0000 | 1.6805x107°% | 1.28435
480 | 1.00000 | 0.995317 | 4.00000 | 0.0000 | 5.2714x107¢ | 1.20990
576 | 1.00000 | 0.991611 | 4.00000 | 0.0000 | 1.6953x1075 | 1.31311

Table ii: Errors for slotted cylinder problem using ’best’ algorithm for second moment

conservation without low order scheme.
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N°At | RFM RSM MAX | MIN DISSER DISPER
96 | 1.00000 | 1.00000 | 3.84885 | 0.0000 | 1.8654x1072" | 3.8321x 1073
192 | 1.00000 | 1.00000 | 3.60297 | 0.0000 | 1.2878x10713 | 6.5552x10~3
288 | 1.00000 | 1.00000 | 3.53551 | 0.0000 | 5.4579x1072* | 7.8643x1073
384 | 1.00000 | 1.00000 | 3.53194 | 0.0000 | 6.5460x 10713 | 9.7556x 1073
480 | 1.00000 | 1.00000 | 3.53158 | 0.0000 | 5.1410x 10~ | 1.1081x1073
576 | 1.00000 | 1.00000 | 3.49792 | 0.0000 | 1.4544x1071* | 1.3529x 1073
Table iii: Errors for sin? cone problem using 'fair’ algorithm for second moment

conservation without low order scheme.

N°At | RFM RSM MAX MIN DISSER DISPER
96 1.00000 | 0.996275 | 3.92855 | -2.3174x107*® | 6.8844x10~7 | 2.12x107
192 | 1.00000 | 0.993942 | 3.90136 | 5.2935x1072% | 1.8234x107% | 4.9562x107°
288 | 1.00000 | 0.991910 | 3.88197 | 5.0292x10722 | 3.2552x 1076 | 8.0885x10~°
384 | 1.00000 | 0.99005 | 3.86616 | 1.0153x1072! | 4.9271x1076 | 1.1447x107°
480 | 1.00000 | 0.988301 | 3.85256 | 2.6200x10~2 | 6.8203x 1075 | 1.4989x10~5
576 | 1.00000 | 0.986625 | 3.84046 | 4.4204x1072! | 8.9228x107% | 1.8700x107°

Table iv: Errors for sin? cone problem using method with just the first moment

conservation.
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