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ABSTRACT

This report is the first of three that will consider the analysis
of fluid flow through axi-symmetric ducts (inclusive of de-Laval nozzle
flow) by its reduction to an approximate quasi one-dimensional fliow. The
qualitative behaviour of the flow variables is discussed and detailed
calculations carried out to show graphically the flow variable variation
throughout the duct for particular cases of both subsonic and supersonic

flow.
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INTRODUCTION

This is the first of three reports in which we discuss the exact
and approximate solution of a particular problem in fluid mechanics by
using variational principles and finite element methods. The problem to
be considered is steady compressible gas flow through various types of
duct, and in this report we specify the form of the problem and obtain
detailed solutions faor later comparison. This will give a firm

foundation for future work.

Thus in Section one the properties of the full compressible flow to
be considered are stated and algebraic relations derived (see [2])
between the mechanical flow variables associated with the motion of a

fluid particle on a streamline in the flow field.

In Section two the concept of duct flow is introduced together with
the duct types to be considered. The reduction to an approximate quasi
one-dimensional form, in which a single streamline represents the full

flow [3], is presented.

The first two sections are then Tinked together in Section three in
the discussion of graphical representations of the relationships between
flow variables holding for a particie moving on the duct representative
streamline, and hence throughout the actual quasi one-dimensional duct

flow.
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Finally in Section four the combination of the theory of Section
two and the treatment of Section one for a general flow Teads to a
convenient parameterization of the approximate duct flow, through a
point-wise non-linear relationship between fluid speed and distance
along the duct axis. A basis for comparison with the numerical

approximations of the two later reports is therefore obtained.



SECTION ONE : COMPRESSIBLE FLOW

1.1 FLOW HYPOTHESIS

The purpose of this section is to define the properties of the flow
to be considered. Algebraic relations between the mechanical flow
variables associated with a particle moving on a streamline in the flow
field are then derived (cf.[2]) and subsequently these are represented

graphically.
The fluid

The fluid in which the flow occurs is assumed to be a polytropic
gas and has associated with it a set of thermodynamic equations. Such a
gas satisfies the law of Boyle and Gay-Lussac expressed by the equation

of state
pvs= [Ro/m] T, (1.1)
where p indicates pressure, T temperature, m the molecular weight of

the gas and R° the universal gas constant. The quantity v, the specific

volume, is defined by
v=_/p, (1.2)

where p is density.



Taking the specific heat capacity at constant volume, c,» defined

by

c B R y (1.3)

m (7-1)

to be constant, where 7 is the adiabatic exponent associated with the

medium, then in the present case the internal energy, U, of the medium
U=¢ T, (1.4)

is proportional to the temperature. Using (1.3) and 1in addition

combining (1.4) with (1.1) yields the entropic equation of state,
p=7gp, (1.5)

for the fluid medium (see [1]) where 7 is a function of entropy S.

Again using (1.3) we can define the entropy function

7(8) = [Ro/m] exp[ Dn/cv] [ —So] ] , (1.6)
where So is a datum constant, and the internal energy
U= [1® /7 -1 ] PYLE (1.7)

The equation set (1.5) [with (1.6)] and (1.7) form the

thermodynamic equations associated with the fluid considered.



Fiow definition

The assumptions associated with the fluid flow are now given. On
considering the fluid to be inviscid and neglecting heat conduction the
entropy at a fluid particle remains constant throughout the motion, i.e.

the changes in state at the particle are adiabatic so that

Ds =0, (1.8)

where t is time and D/Dt denotes the material derivative.

If the motion is furthermore assumed to be steady so that the fluid
speed, pressure, density and entropy are unchanged in time at each
point, then the flow has the property that all fluid particles passing
through a particular point in the flow field will have the same values
of these quantities and subsequently follow the same path, the

streamline, through that point.

The flow can therefore be described by streamlines invariant in
time. A consequence of these assumptions is that not only 1is the
entropy, S, constant at a fluid particle but it is a constant for each
streamline throughout the flow field. Hence the entropy function, 7(S),

itself is therefore also constant for each streamline.



1.2 EQUATIONS OF MOTION

The motion of the fluid is gdoverned by the steady form of the

conservation equations of fluid dynamics,

CONSERVATION OF MASS : V.(pv) =0, (1.9)
CONSERVATION OF MOMENTUM : Vp+ p (v.V) v=0, (1.10)
CONSERVATION OF ENERGY : pvVUu+pVv=o0, (1.11)

where v is the fluid speed and V the gradient operator, together with

the equation of state (1.5).

The conservation of energy equation (1.11) may be simplified,
through substitution of (1.9), to a form reflecting the fact that the
changes of state are adiabatic

ADIABATIC CHANGES OF STATE : v.Vs=o0. (1.12)

The momentum equation (1.10) can be rewritten in the form,

V(u+Ip/pl +v3/21 ) -TVs=vx (Vxv), (1.13)

and subsequently, by enforcing (1.12), as an explicit relationship

holding on a streamline in the flow field (see [2])



U+ [p/pl + [v2/2] = CONSTANT ON A STREAMLINE . (1.14)
The integration constant of (1.14) is the total energy per unit
mass available to a particle moving on a streamline in the fluid, h.

This then hecomes the steady form of Bernouilli’s equation that holds on

the streamline in the flow field

U+ [p/p]l + [v¥/21 = n . (1.15)

1.3 RELATIONS BETWEEN FLOW VARIABLES

Attention 1is now confined to the motion of a fluid particle on a
single streamline in the flow field. In addition to pressure, fluid
speed, temperature and density, that have been defined previously, we

introduce mass flow rate, Q, and flow stress, P, defined by

Q=pv (1.16)

and

p+pv? . (1.17)

e
1

For an ideal gas algebraic relations between pairs of these
thermodynamic and mechanical flow variables collectively holding for a
particle as it moves on a streamline in any flow field, in up to three
dimensions, have been derived in [2]. These relations hold for any fluid

particle moving on the streamline irrespective of its detailed motion.



Firstly, direct substitution of the thermodynamic equations (1.5)
and (1.7) into Bernouilli’s equation (1.15) yields a relationship
between pressure and fluid speed for a particle moving on the

streamline,
p(v) = 517/ (1=1) [ L=D/11 [h-(v2/2)] ](7/7‘1) . (1.18)

specified through assigned constant values of entropy, defined by

(1.6), and total energy per unit mass.

Before progressing to the derivation of the other relations it 1s

convenient at this point to define certain significant fluid speeds.

There is a maximum limit speed, U which a particle can attain in
its motion on each streamline. This speed is approached as the density

tends to zero and is

v = (2 h)5 ) (1.19)

defined solely in terms of the total energy (see [1]). It is apparent
from (1.18) that the 1imit is necessary so that the pressure remains

reail.

The most significant fluid speed that may be attained by the
particle moving on the streamline is the critical speed, Cy- This is the

speed at which the fluid speed equals the local sound speed and divides



the streamline into segments of subsonic and supersonic flow (see [1]),

i.e.

v<C SUBSONIC FLOW ,

(1.20)

v > C, : SUPERSONIC FLOW .

Cy is defined through the introduction of a constant, g, related to the

adiabatic exponent 7,

p = (1-1)/(r+1) , (1.21)

and the 1imit speed (1.19) attainable on the streamline (see [1]):

Cy = BV - (1.22)

Therefore note that for the flow of a steady poliytropic gas the critical

speed is independent of entropy.
Returning to the algebraic relations, subsequent to the definition
of (1.18), the relations between the fluid speed and remaining flow

variables may be obtained through (1.1), (1.5), (1.16) and (1.17):

T(v)

[mRo] [(-1)77] [h—[v2/2]] ; (1.23)

p(v) = M/ U7 [ (=177 Th-(v¥/2)] ]“/(7‘”) o (1.24)
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av) = 70 [ [G-1/11 (/2] ](‘/(7“)) . (1.25)

p(v) = g1/C177)) [ LG-0/1) Th-(v?/2)1 + v ) (1.26)
[ [G-D/71 Th-(v2/2)] ](‘/(7“))

The critical values of all of the mechanical flow variables,
corresponding to particle motion on a particular streamline, can now be
obtained through substitution of the critical fluid speed into the full
set of algebraic relations (1.18) and (1.23)-(1.26). Furthermore these
relations can be used to provide, through the fluid speed, a particular

parameterization of the relationships between the mechanical flow

variables.

1.4 GRAPHS OF ALGEBRAIC RELATIONSHIPS

Specification of the fluid and the choice of streamline parameters
allows graphical representation of the algebraic relations (1.18) and

(1.23)-(1.26) between the flow variables, p, v, p, T, Q and P.

The adiabatic constant for most gases 1ies in the range 1 =+ 5/3,
In the present case the fluid is considered to be air, which at moderate
temperatures can be assumed to be polytropic. The associated

thermodynamic constants are then given as in [2] by



vz 1.4, (1.27)
m= 28.96 x 1072 kg , (1.28)
and
R,= 8.31 Jmot K ! . (1.29)

For the isolation of a particular streamline it is necessary to
assign constant values of entropy, S, and total energy, h. The entropy

value is taken to be that at standard temperature and pressure,
g = 7.08 x 10% (SI UNITS) , (1.30)

and the total energy value that at standard temperature and zero fluid
speed

5 Jmo‘|_1kg_1 : (1.31)

h=2.74 x 10

It is now possible to compute the limit speed (1.19) and critical

speed (1.22) attainable by a particle on this particular streamline,
these becoming

740.3 ms ™!

<
1]

(1.32)

and

302.5 ms | .

(e}
1]

(1.33)
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Furthermore, the magnitude of the critical values of the remaining
flow variables on this streamiine may be found from (1.18) and

(1.23)-(1.26), namely,

P, = 53100.13696 ,

T, = 227.26593 ,

%
p, = 0.81425 , (1.34)
Q, = 246.31124 ,

and P, = 127608.9692 .

Given a uniformly increasing discrete set of fluid speed values,

0<v, Sv i = 1(1)101 , (1.35)

(see FIG.1t) the variation of the remaining dependent flow variables
may be obtained from the algebraic relations (1.18) and (1.23)-(1.26).
These are represented graphically in FIG.1. Further, using the fluid
speed as an intermediate numerical parameter, graphical representation
of the relationships between any other pair of mechanical flow variables

may be found (FIG.2).

Note that a particular motion may be represented as a sub-set of
points on each of the graphs (FIGS.1,2) and that only a portion of each
graph is in general necessary to define completely the relative
variation of each mechanical flow variable pair throughout that entire

motion.



GRAPHICAL REPRESENTATION OF ALGEBRAIC RELATIONS
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SECTION TWO : A PARTICULAR MOTION

The analysis is now confined to a specific example of compressible
flow, governed by equations (1.9), (1.10) and (1.12). The motion to be
studied is the flow of air, modeliled by the polytropic gas, through

various types of duct.

2.1 DUCT FLOW

We consider firstly flow through either a converging or diverging
cone section which is cylindrically symmetrical about 1its axis
(FIG.3¢,33). The discussion then proceeds to consideration of a duct
type of great practical importance by taking a particular combination of
the section forms shown in FIG.3¢,7¢ which are connected in a manner so
as to form an axi-symmetric de-Laval nozzle, with a single point of

minimum area known as the nozzle throat (FIG.3¢::).

An additional assumption made here about the duct flow is that it
be homentropic, so that the entropy is constant throughout the flow
field, except at discontinuities such as shocks. The energy equation in
the form (1.12) 1is then satisfied identicaily. As for the general flow,
the duct flow field can be thought of as consisting of streamlines

invariant in time.
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Boundary conditions must be supplied to fully define the motion.
The inlet duct houndary condition is prescribed as stated in [3].
It is assumed that a ’control surface’ can be positioned in the flow
field at duct entry, across which the fluid velocity vector is
arthogonal. The mass flow rate, Qe’ and total energy, he’ at entry are

then assigned across this surface as functions of position.

Since Bernouilli’s equation (1.15) holds on the streamlines in the
flow field (§1), a fluid particle moving on such a streamline will
always have associated with it the total energy value at entry, assigned

at the streamline entrance to the duct via the control surface.

R‘\-H_\___‘ r'._'___-—
| b
—p- CONVERGING SECTION ! !h-—»- DIVERGING SECTION
L]
L]
-.__‘_'_‘_-d- "\-—5__-_‘-\.—\-

1 ..4-..1-""-‘-‘-“‘- '\--___q__.-q-
= CONE FLOW o
-
_.f"-’-‘- :
il |
/4- i
— i
\\\‘ ol |
1
! T |
1 1
| ENTRY SECTION i = EXHAUST SECTION i
] d-"-‘_‘!q_--_ i
, """ THROAT e~ i
| _,..—"'"‘— -q'm-‘ |
lv‘_-"-‘._-_ q‘.“\-\' ‘:
__q_.."%‘-\%-' i
NOZZLE FLOW T~ !

FIG THREE



_13_

2.2 QUAST ONE-DIMENSIONAL DUCT FLOW

The aim here is the reduction of the full flow (82.1), by the use
of a guasi one-dimensional approximation, to consideration of a single
representative streamline on which the particle history typifies the
particular duct flow. An outline of this process is given in [3], but is

also presented here for convenience.

Quasi one-dimensional approximation

Recalling that the duct 1is axi-symmetric, introduce first the

notation,
X : Distance along the axis of the duct from the entry station.

A(x) : Area of surface, possibly curved, at x orthogonal to every

streamline in the flow field.

Now introduce a quantity, a(x), the average mass flow rate across

the transverse surface of area A(x). This, through,

Q(x) A(x) = J Q dA |, (2.1)
A

defines the quasi one-dimensional approximation, where the integration

is over that surface.
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The motion equation (1.9) is now replaced by the form implied by

(2.1) applicable to this approximation to duct flow, namely

d (@A) =0. (2.2)
dx

Integrating (2.2) 1in the present case yields a local explicit

relationship,
Q(x) = ¢ Ag (2.3)
A(X)
where C A_ = J Q dA, , (2.4)
A

between the average mass flow rate and the associated transverse
surface, where Ae is the area of the entry surface to the duct and Qe is

the duct entry mass fiow rate.

The constant C in (2.3) can now be interpreted, by comparing (2.4)

with (2.1), as the average mass flow rate across the duct entry surface.

The quasi one-dimensional approximation is shown in FIG.4 applied

to the approximation of flow through a de-Laval nozzle.



QUASI ONE-DIMENSIONAL APPROXIMATION
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Reduction to a single streamline

The key factor in the reduction process is that it can be shown
that at any arbitrary point, x, along the duct axis there exists a
co-axial ring of streamlines in the flow field, through the 1local
transverse surface, on which the mass flow rate, Q(x), equals the local

average value.

The particle motion on this ring is therefore representative of the
full duct flow. Although the total energy will remain constant on each
streamline individually passing through the ring (from (1.15)) it may
vary transversely in accordance with the specification of the total
energy as a function of position across the entry surface; under these
circumstances there is therefore vorticity in the flow. To allow a
further reduction to a single flow representative streamline it is
necessary to assume homenergicity (constant energy.in the flow field)

and thus 1rrotationality of the flow.

These assumptions are reasonable as long as the duct area variation
is small. The flow under consideration can now be thought of as a
primary flow through the duct and therefore the transverse surface,
A(x), may be taken to be the local duct cross-sectional area. The
co—axial ring of streamlines can be represented by to a single
streamline defined by the constant values of total entropy and energy

inherent from the homentropic and now homenergic nature of the flow.

The constant C in (2.3) can now be identified with the entry value
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of mass flow rate on the typical streamline. Furthermore the motion

equation (2.2) takes the particular form,

d (@A) =0, (2.5)
dx

and the relationship,

Q(x) = CA_, (2.6)

e
A(X)

represents a Jlocal map, valid on this representative streamline,
between distance along the duct axis and mass flow rate through the

duct.

The complete definition of a particular motion 1is obtained by
inclusion of the quasi one-dimensional boundary conditions. The
boundaries can be thought of as a pair of points at the inlet and outlet
locations on the typical streamline. The 1inlet boundary condition,
analagous to the full duct flow (§2.1), is to specify the entry mass

flow rate on that streamline,
Q =C. (2.7)

The corresponding mass flow rate outlet boundary condition, Qo, is

available through impiementation of the local map (2.6),
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Q. =CA (2.8)

e ?
A(x)

where A0 is the outiet transverse surface area.

Thus in summary the concept of primary duct flow can be reduced to
the consideration of particle motion on a single representative
streamline defined by the constant values of entropy and total energy

inherent in the definition of the flow.
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SECTION THREE : FLOW VARIABLE RELATIONSHIPS FOR PRIMARY DUCT FLOW

The essential result from the derivation of the algebraic relations
between the mechanical flow variables associated with a fluid particle
moving on a specified streamline, and thus also 1in the graphical
representation, is that these apply to any such motion of the particle

in any flow field.

Therefore, in particular, for reduction of primary duct flow to
consideration of particle motion on a single representative streamline,
the algebraic relations hold. The graphical representation of these
relations for this motion, and hence for the actual approximation to
duct flow, may therefore be obtained. These manifest as segments of each
of the set of full graphs associated with motion on a general streamline
when the entropy and total energy values that are inherent in the
homentropic and homenergic nature of the flow are specified; the actual
values assigned are those stated previously in (1.30) and (1.31). This
was considered briefly in [3] but only in relation to the de-Laval

nozzle flow; the following discussion includes and expands this work.
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3.1 CONE SECTION FLOW

The geometries of the cone sections considered are illustrated in
FIG.3t¢,¢i. The factors in obtaining the appropriate part of each graph,
that provide the inter-variable relationships for a particular cone
section motion, are the quasi one-dimensional mass flow rate boundary

conditions on the representative streamline, (2.7) and (2.8).

The process of positioning ordinates at these boundary values, on
the subset of the general graphs (FIGS.1,2) involving mass flow rate as
a dependent variable, picks out, on each, the relationship between mass
flow rate and each dependent variable throughout the complete motion. In
the present case this is the portion interior to the two boundary

ordinates (see FIG.5).

The subsequent availability of the boundary values of all of the
flow variables, for a particular motion, allows the determination of the

complete set of inter-variable relations (see FIG.6).

However the assignment of the mass flow boundary conditions for a
particular cone section flow does not uniquely determine the flow type
that may subsequently occur. It is equally probable that this may be one
of either subsonic or supersonic flow throughout; specifying one of the
associated flow inlet pressures will determine which will take place. An
ordinate, denoted ’'C’, placed on FIG.5:i: at the inlet mass flow rate
boundary condition, for the particular motion, provides the pressure

value corresponding to subsonic flow (see i’ on FIG.5:i¢¢) and to
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supersonic flow (see ’'ii’ on FIG.5:::¢). The role of the critical speed
(1.33) on the streamline in distinguishing the flow types is apparent
from FIG.5:. Additionally the effect that the section geometry has on
the fluid itself is aiso clearly illustrated by the relationship between
density and mass flow rate shown in FIG.5::. It can be seen that in a
converging cone section subsonic flow is expanded whereas supersonic

flow is compressed, the reverse occuring in a diverging section.

Conditions for flow

The most significant flow variable value on the streamline in this
context is that of mass flow rate (1.34d) which may be used to derive
conditions under which a flow will occur. This critical mass flow rate
value is the maximum that may occur on the streamline specified by
(1.30) and (1.31) and thus the maximum value that may occur for flow
through any duct modelled by the quasi one-dimensional approximation, in
particular here a cone section. Through the local map (2.6) there then
exists, for a cone section, a corresponding critical minimum

cross-sectional area,

AL, =CA_, (3.1)

through which a flow may take place.

In a converging cone section on attainment of this value the flow

will theoretically halt [1].
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Thus to ensure flow throughout the section the entry mass flow rate to

the representative streamline must be chosen so that it satisfies the

condition

FOR FLOW THROUGH A CONVERGING SECTION : C £ A_Q

Similarly the analogous condition for flow to occur at all in a
diverging section is

FOR FLOW THROUGH A DIVERGING SECTION : C ¢ Q, - (3.3)

I1lustration cone section motions

A converging conical section is now specified through thé inlet and

outlet cross-sectional areas,

Ae = 1.15 , (3.4)

and the relevant parts of the graphs between the flow variables found
by the specification of the mass flow rate boundary conditions, through

(2.6), and in accordance with condition (3.2),

C = 200.0 , (3.5)

Q_ = 230.0 .



_22_

Inequality (3.2), for this particular section, takes the form,

C £ 214.1837 , (3.6)

which is obviously satisfied by the entry boundary condition here,

(3.5a).

The two possible flow types throughout this converging section are

represented on FIGS.5,6 in the following manner,

SUBSONIC FLOW : a=+b,

(3.7)
SUPERSONIC FLOW : d -+ c ,

where a, d, are the flow entry points and b, ¢ are the flow outlet
points for the respective flow types on each graph, and the arrow
indicates the variable variation in the flow direction; the critical

point is indicated on each graph by ’x’.

A diverging section is also specified by

(3.8)

>
1
—

.15

and the boundary conditions assigned through (2.6), whilist ensuring

that condition (3.3) is upheld, by
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C = 230.0

and (3.9)
Q. = 200.0 .

The relationships between the flow variables for the two possibie
flow types throughout +the diverging section are again shown on
FIGS.5,6, and explained below, in which the notation takes the same

meaning as previously,

SUBSONIC FLOW : b-a,

and (3.10)
SUPERSONIC FLOW : ¢ =+ d .
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.2 DE-LAVAL NOZZLE FLOW

The relationships between variables for the flow through a
specified de-Laval nozzle, of the form (FIG.33::), are obtained by
fundamentally the same process that was employed for cone section flow.
An additional factor arises though, due to the existence of the single
cross-section of minimum area, At’ at the nozzle throat. The maximum
mass flow rate, Qt,that can possibly occur throughout a particular
nozzle can then be obtained directly from the local map (2.6), and is

given by,

Qt = C.A_ . (3.11)

Thus for a particular nozzie motion the relation paths are now
determined by a triplet of ordinates placed on FIGS.1,2, at the
associated boundary and throat mass flow rate values (2.7), (2.8) and
(3.11); the flow trajectory will pass through these, as explained below,

dependent on the flow behaviour throughout the nozzle (see FIGS.8,9).

Flow behaviour

The important condition in the determination of this behaviour
concerns the maximum throat mass flow rate (3.11) in comparison with the
critical value (1.34d). On making the assumption that the fluid enters
the nozzle subsonically (1.20a), only a finite number of possibilities

may subsequently occur.
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To clarify the discussion an 1illustrative path, relating filow
stress and mass flow rate, associated with each of the flows is provided
in FIG.7. Note the critical values on each graph dividing the relation

into regions of subsonic and supersonic flow.

1. Subsonic flow

If the mass flow rate at the throat is less than the critical value

then the flow will remain subsonic throughout the complete nozzle,
Qt < Q* . (3.12)

There then exists a single path, remaining on the subsonic segment,
on each of FIGS.1,2; this occurs in two distinct stages reversing at the

throat ordinate, which is shown below with reference to FIG.T:3,
a-c-b, (3.13)

where ’a’ corresponds to the nozzle entry point, ’b’ to the subsonic
outlet point and ’c¢’ to the critical point. The particular flow variable
behaviour for this illustrative case is given below, noting that Pe’ Pt
and PoSUb are the inlet, throat and subsonic outlet values of flow

stress respectively.

C"Q"Qo)

(3.14)

P~ p, =+ pSUP
e o}
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2. Terminating flow

This flow behaviour results if the mass flow rate at the throat

potentially exceeds the critical value, i.e.
(3.15)

This maximum mass flow rate will actually then occur at the

location in the nozzie entry section where

(3.16)

A(x) = A, = CA, ,
Q*

and it is at this point that the flow will theoretically halt (see
[11). The predicted value at the throat cannot exist and the nozzle is
said to be choked. This is similar to the occurrence in cone flow where
in the present case the throat cross-sectional area is less than the
critical value (3.1) associated with that particular motion and
therefore in the same way conditions can be derived here which will be
necessary if flow is to occur. Flow throughout the complete nozzle can
be ensured by specifying the inlet boundary condition in accordance with

the condition,

(3.17)

In this case the path representing the inter-variable relationship
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on each of the graphs FIGS.1,2 will then terminate at the respective
critical values, in the case of FIG.7:¢:: shown below, where ’a’ is the

duct inlet point and ’e’ is the critical point past which the flow

cannot occur,

a-e. (3.18)
This can also be seen in terms of the actual flow variables present

in FIG.7:113,

(3.19)

where P* is the critical value of flow stress.

3. Transition flow

On the actual equality of the throat mass flow rate with the

critical value,

Q, = Q , (3.20)

and therefore on coincidence of the throat area with that critical
value associated with the particular motion (3.1), one of two possible

flow types may arise in the nozzle exhaust section.
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The first possibility 1is that the flow will remain subsonic
throughout the nozzle taking the critical flow variable values at the

throat, e.g. as here,

(3.21)
sub
Pe -+ P*ﬂ Po ,
and thus the relation path will remain on the subsonic segment, where

with reference to FIG.7d (a, b, ¢, take the same meaning as previously)
a=-¢c—-+b. (3.22)

Alternatively under the correct conditions it may become ’sonic at
the throat’ and subsequently supersonic in the diffuser. The associated
path on the graphs will now continue through the respective critical

values and onto the supersonic segment, 1.e. with respect to FIG.7:v,
a-c¢c=+d, (3.23)

where d is the supersonic outlet point and, with respect to the actual

flow variables being considered in this illustration,

C-+Q ~Q,

(3.24)
sup
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P is the supersonic outlet value of flow stress.

where POsu

The conditions necessary for the latter to occur are directly
related to the outlet pressure of the nozzle. Inspection of FIG.7a,
with an ordinate erected at the outlet mass flow boundary condition for
the particular motion, gives two alternative choices of this quantity,
indicated thereon by ’'b’ and ’d’. If neither of these are enforced the
flow will remain subsonic throughout the nozzle, but prescription of
either of these values will determine directly the nature of the

corresponding diffuser flow,

poSUb (b) : SUBSONIC DIFFUSER FLOW ,
(3.25)
sup .
Po (d) : SUPERSONIC DIFFUSER FLOW .
The split of a solution, at a defined point, into two that are

equally probable is termed a bifurcation, which in the present case

occurs at the sonic point.

Therefore the significant difference between section flow and
de-Laval nozzlie flow is the possibility of a transition from subsonic to
supersonic flow at the nozzle throat. This can take place at no other
location because attainment of the critical mass flow rate (1.34d) must
occur where the nozzle area is critical, by (3.1), and if this did not

occur at the throat then the fiow would terminate.

The inlet boundary condition must be adjusted to allow transition
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flow through the equality of (3.17), the condition becoming

C=Q, A . (3.26)
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I1lustration of a nozzle motion

An illustration of the de-Laval nozzle 1is given by specifying the
inlet, outlet and throat cross-sectional areas such that the minimum

area occurs at the throat. We can take as an example,

A =11,

e

At = 1.0, . (3.27)
and Ao = 1.2 .

The relationships between flow variables for subsonic flow
throughout, critical at the throat, and transition flow are then
obtained by specification of the mass flow rate triplet (2.7), (2.8) and
(3.11); these are assigned below through the local map (2.6) and are

chosen such that the transition flow condition (3.26) holds

C = 223.9193 ,

o
[

t Q, = 246.31124 , (3.28)

205.25936 .

2
"

The variation of each flow variable with respect to mass flow rate
throughout the nozzle 1is shown 1in FIG.8 and subsequently the
inter-variation for the remaining pairs of variables in FIG.9. In both
of these set of graphs the two possible flow behaviours are indicated in

the following way
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a-¢c=b : SUBSONIC FLOW ,
(3.29)

a—-c—=d : TRANSITION FLOW ,

where ’a’ is the respective variable inlet value, ’'b’ the subsonic

outlet value, ’'d’ the supersonic outlet value and ’c’ the critical

point.
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SECTION FOUR : AN ALGEBRAIC FORMULATION FOR PRIMARY DUCT FLOW

The aim of the concluding section of this report is to determine
fhe specific variation of each flow variable, for a particular motion,
in terms of the spatial distance, x, used as a parameter along the duct
axis. Thijs will provide an exact solution preceding a finite element

approximation of primary duct flow to follow in a subsequent report.

The graphical representation of the algebraic relations between the
flow varijables for a particle moving on the duct typical streamiine
contains the variable inter-relation throughout the duct itself; thus
this parameterization can be used in obtaining the required variation of

each variable with x.

On specification of a range of spatial locations between the duct
inlet and outlet stations, i.e. distances along the duct axis, the local
map on the streamline (2.6) gives the corresponding axial mass flow rate
variation, lying between the associated boundary values (2.7) and (2.8),
for that motion. The corresponding ordinates at these values on the
subset of graphs (FIGS.1,2), involving mass flow rate as a dependent
variable, then provides, by inspection, the axial variation of the each

of the other flow variables. This is indicated schematically as

[2.6] (FIGS.1,2)
X = Q(x) - v(x),p(x),p(x),T(x),P(x) . (4.1)
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This process, although theoretically correct, is inefficient to
implement. The method actually used to determine the flow variable axial
variation is a particular extension, applicable to quasi one-dimensional
duct flow, of that used for the derivation of the algebraic relations
associated with particle motion on a general streamline (§1), now

applied to the motion on the duct representative streamline.

4.1 FORMULATION

The theory associated with particle motion on a specified general
streamiine (§1) shows that Bernouilli’s equation (1.15) holds thereon in
the flow field. This streamline is chosen to be the representative
streamline in the context of quasi one-dimensional duct flow and the
constant entropy and total energy values assigned to be those inherent

from the properties of the full flow, i.e. (1.30) and (1.31).

Substitution of the equation of state for the gas medium (1.5) and
the expression for the internal energy (1.7) into (1.15) may yield, if
rearranged in an alternative manner to (1.18), a relation between

density and fluid speed, namely,

vViag [ y ] p T 1z2n. (4.2)

A second such relationship between these two flow variables is

obtained by rearrangement of (2.6) and substitution of (1.16) to give
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p(v) = C A (4.3)

where the assumption has been made, consistent with primary duct flow,

that the duct area variation is small,

dA < § . (4.4)
dx

Substitution of (4.3) 1into (4.2) then provides an explicit
non-linear relationship between the duct axial location and the 1local

fluid speed on the representative streamline,

v2+2q[7][CAe ]7'1=2hv7'1. (4.5)
=17V AK)

and more specifically in the present case for air flow by,

0.4

v2+77)[CAe ]0'4=2hv (4.6)

v A(X)

A relationship unique to a particular motion may be obtained
through substitution of the flow constants (1.30), (1.31) and
specification of the duct area variation, together with the mass flow

rate entry condition (2.7).
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4.2 SOLUTION ALGORITHM FOR DUCT RELATION

The fluid speed, at an arbitrary spatial position in the duct, on
the representative streamline, is computed by the application of a fixed

point iterative algorithm on the rearranged form of (4.6),

F(v)

v o224yt 7 [ C A ]0'4 = 0. (4.7)

v A(x)

A general iterative algorithm is first considered,

v1‘+1 B g(vi) , (4.8)

defined such that at the root, Vys

vy = 9lv,) (4.9)

where v1+1 is the updated solution at jteration level i+1 and v1 is the

solution at the present iteration level 1.
A sequence of root approximations { v } (at iteration level i) is
generated by the iterative scheme (4.8) commencing at an initial value

v®. Then from (4.8) and (4.9),

i+1
v

- vy = 90V atvy) (4.10)

Then by the Mean Value Theorem [4], if (4.8) is continuous and
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differentiable on an interval [a,b], then
(v -y ) (v - v, ) 9, (4.11)

where v < & < v, . The iterative scheme defined by (4.8) will then

converge in a region around the root if
| 97| < 1 (4.12)

which implies from (4.11) that

i+1 i
Fvi v | <l v v | (4.13)
and hence that
tim (vt =y, (4.14)
i+

The particular iterative algorithm we shall employ in the solution
of the equation (4.7) is Newton’s single variable method expressed

through a particular right hand side of (4.8),
gv = v - [ Fivh/F (vl ] (4.15)
where F’(v') = 2 vi— 0.8 vy 8 ; (4.16)

with > * ’ indicating the first derivative with respect to the function

argument and
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Frvly = 2+ 1,28 h (v) 28 (4.17)

with 7 " ' indicating the second derivative with respect to the

function argument.

Now, as required for the Mean Value Theorem, the function g in
(4.15) is continuous and differentiable on [a,b] and therefore Newton’s
method will converge in a region around the root if the convergence
condition (4.12) holds. In the present case, from (4.15), this takes the

form

rvy Provly Lt (4.18)
[ Fr(v)?

In the context of quasi one-dimensional duct flow, by substitution
of the relation (4.7) and its derivatives (4.16) and (4.17), the modulus

term in (4.18) will take the particular form

[ vi12 -2 h vi1%% 4 7 9 [ A /AG01%4 ] [2+128h [v*]'z'ﬁ]
6

2 vl - 0.8 v ]2

(4.19)

We now discuss quadratic convergence of Newton’s scheme by
considering its application to the solution of an arbitrary non-linear

function.
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It is necessary to make several assumptions about the function and

its associated derivatives

1. THE ROOT(S) OF THE FUNCTION ARE OF MULTIPLICITY ONE ,
2. THE FIRST DERIVATIVE OF THE FUNCTION IS NON-ZERO , (4.20)

3. THE SECOND DERIVATIVE IS CONTINUOUS ,

where 2. and 3. hold 1in respective open interval(s) containing its

root(s).

Then there exists an ¢ > 0 such that the iterative algorithm is
quadratically convergent to the root(s) whenever the initial data is

specified such that the condition,
| VO -v, | <€, (4.21)
holds (see [5]).

In the present case the non-linear function is (4.7) relating the
fluid speed to the axial location in the duct. It has been shown for
such a motion that there may exist two flow types, subsonic and
supersonic, throughout; this intuitively suggests the existence of two
distinct associated roots, each with multiplicity one, at each axial

position.

The first derivative (4.16) of the function is non-zero for all

positive values of its argument except when undefined at zero or for the
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particular value

i 1/2.6
v = (0.4 h) ~ 86.774 , (4.22)

while the second derivative (4.17) is continuous on (0,4) for all

values of § (see [4]).

It may be assumed that the duct axial fluid speeds will be
positive, and we thus conclude that the conditions (4.20) certainly hold
in open intervals (0,86) and (87,a4), where now a is an arbitrary

positive number.

Therefore if the zero(s) of the function F in (4.7) lie in either
of these open intervals then there exists an ¢ > 0 such that on
application of Newton’s method (4.15) to (4.7) the convergence is

guadratic whenever (4.21) is upheld.

Finally convergence is assumed to have been reached when the
absolute value of the residual of (4.7) is less than the specified

tolerance,

| Fvy | < 0.00001 . (4.23)
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.3 CONE SECTION FLOW PARAMETERIZATION

The axial fluid speed variation for a particular motion is obtained
by evaluating the solution of the equation (4.7) at a specified discrete
number of positions throughout the cone section. The domain of solution,

on which the section lies is defined as

0.0 € x

i

1.0 . (4.24)

The variation is determined firstly for flow through a converging

cone section defined by (3.4) for the explicit area variation
ACX) = 1.0 + 0.1 (1.0-x) + 0.05 (1-x)2 (4.25)

(see FIG.10:¢), and then for flow through a diverging cone section
specified by (3.6) and

A(X) = 1.0 + 0.1 x + 0.05 x° (4.26)

(see FIG.111).

The particular form of the non-linear relation for each of the

motions are, for flow through the converging section,

2 4

Ev) =vi -2 h v Y e 7y [ 230.0 ]+ (a.2n)

1+ 0.1(1-x) + 0.05(1-x)2
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and for flow through the diverging section,

2 4

F(v) = v& =2 h O

+ 77 [ 230.0 ] , (4.28)

1+ 0.1x +0.05 x?2

where, recall, the flow constants are (1.30) and (1.31).

To ensure convergence of the iterative scheme applied to the
solution of F = 0 in both of the above cases the initial data must
satisfy the associated form of the convergence condition (4.18) [with
(4.19)]. In the present case there are 101 spatial locations axially,
uniformly spaced, throughout the solution domain. The bounding initial
data intervals associated with a sample of these locations, for each
motion (see TABLES.1,2), is used ultimately to define constant initial
data over the entire solution domain; this will satisfy in each case the

respective intersection bounding interval,

CONVERGING SECTION FLOW : [10,774] , (4.29)
ar

DIVERGING SECTION FLOW : [10,774] . (4.30)

Note that the coincidence of these is simply a consequence of the fluid
speeds throughout the two cone section motions being the inverse of each

other.
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CONVERGING SECTION

BOUNDING INITIAL DATA INTERVALS

DOMAIN LOCATION x

SECTION AREA A(x)

BOUNDING INTERVAL [a,d]

0.0 1.15 [9,774]
0.5 1.0625 [10,790]
1.0 1.0 [9,782]

TABLE ONE

DIVERGING SECTION

BOUNDING INITIAL DATA INTERVALS

DOMAIN LOCATION x

SECTION AREA A(x)

BOUNDING INTERVAL [a, /]

0.0

0.5

1.0

1.0

1.0625

[10,790]
[9,782]

[9,774]

TABLE TWO
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Numerical experiment confirms the existence, within an arbitrary
initial data bounding interval associated with an axial location, [a,J],

of two distinct internal intervals,

(rtl : [«,302.5) ,
(4.31)

[r2] : [302.5,41 ,

the dividing factor being the critical fliuid speed value (1.33).

On solution of F = 0 1in either case, (4.27) or (4.28), at a
specified location it would intuitively be expected that the assignment
of initial data from [r1] would cause convergence of the iterative
method (4.15) to the respective subsonic root and if from [r2] to the

supersonic root

This division into intervals [r1] and [r2] is true of all of the
bounding 1intervals at every position 1in the solution domain and
therefore the initial data intersection intervals (4.29) and (4.30) for
both motions can be divided globally into distinct intervals,

[R1] : 10.0 < v°

< 302.5 ,
(4.32)

[R2] : 302.5 < v° < 744.0 .

It can now be reasoned that assignment of initial data, uniform

over the entire solution domain (4.24), from [R1] will cause convergence
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of the iterative scheme to the subsonic root of (4.27), or (4.28) at
each duct location. This will then give the subsonic axial fluid speed
variation for that particular motion. Similarly assignment of uniform
initial data within [R2] will give the supersonic axial fluid speed

variation.

The iteration of the axial fluid speed variation of hoth flow types

for both motions is now started from the constant initial data,

SUBSONIC FLOW v

N\
x
PN

200.0 0.0 £ xs$ 1.0,
(4.33)

SUPERSONIC FLOW : v

500.0 0.0

IA
x
I

1.0,

in accordance with (4.32). The qualitative behaviour of the fluid
speeds, i.e. the roots, is available from the corresponding graphs
(FIG.4). It can be seen that all such values for both motions 1lie within
the open 1interval (87,¢), and thus 1f the initial data can be
additionally specified such that it 1is sufficiently close to the
respective root then this will ensure quadratic convergence of the

iterative method.

The axial fluid speed variation for flow through the converging
section, subsonically and supersonically, is shown in FIGS.10:¢,¢z and
for the diverging section in FIG.113¢,iz. These respective
parameterizations may then be used to determine the axial variation of
the remaining flow variables, for each flow type in each motion, through

the algebraic relations (1.18) and (1.23)-(1.26) (see FIGS.10,11).
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Furthermore, each of the respective fluid speed variations may
subsequently be taken as an intermediate numerical parameterization in
these algebraic relations to provide the remaining inter-variable
variations applicable to the particular motion, in the same manner as

was performed for a general stream-line in (§1).
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4.4 NOZZLE FLOW PARAMETERIZATION

For determination of the nozzle axial fluid speed variation for a

particular motion, let the domain of solution, on which the nozzle lies,

be,

0.0 { x £2.0. (4.34)

The particular motion to be considered is defined by (3.27), (3.28)

and the area variation by

1.1 - (x/8.0) 0.0 £ x

I

A1(x) 0.8 ,
(4.35)

A2(x) (2.6/3.0) + (x/6.0) 0.8 £ x

I

2.0,

(see FIG.12%).

The particular non-1inear relation between fluid speed and axial
nozzle location is then in two parts associated with the nozzle entry

section and exhaust section (diffuser),

FOE v-2nvl 47y [ 246.31124 ], (4.36)
1.1 - (x/8.0)
F,(v) = Vo2nvt i1 g 246.31124 . (4.37)

(2.6/3.0) + (x/6.0)



_48_

respectively, again with the flow constants taking the vaiues (1.30) and

(1.31).

The convergence condition (4.18) [with (4.19) 1in 1its associated
form] must bound the initial data at each of the 201 uniformly spaced
nozzle locations if Newton’s method is to converge. TABLE.3 here gives a
sample of these axial positions and associated bounding intervals, the

intersection of which, namely

DE-LAVAL NOZZLE FLOW : [10,776] , (4.38)

provides a guideline for the assignment of the uniform initial data

values over the complete solution domain.

DE-LAVAL NOZZLE BOUNDING INITIAL DATA INTERVALS

DOMAIN LOCATION x NOZZLE AREA A(x) BOUNDING INTERVAL [a,/]
0.0 1.1 [10,786]
0.8 1.0 [10,798]
2.0 1.2 [9,776]

TABLE THREE

In the same manner as for section flow it is found that the
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intersection interval (4.38) may again be split into two distinct
internal initial data regions, again divided by the critical fluid speed
(1.33),

o]

[R1] 10.0 £ v~ < 302.5 ,

and (4.39)

[R2]1 302.5 < v® < 776.0 .

The assignment of initial data is taken to be

SUBSONIC FLow : v° = 200.0 0.0 < x € 2.0,
(4.40)
TRANSITION FLOWw : v° = 200.0 0.0 ¢ x £ 0.8
v® = 500.0 0.8 < x £ 2.0,

uniform over the solution domain (4.34). From [R1] this will be
expected to provide convergence at each axial location, of the iterative
method to the subsonic root of the appropriate function (dependent on in
which section of the nozzle this position lies) and correspondingly if

from [R2] to the supersonic root.

The qualitative behaviour of the roots is again available from the
graphs (FIGS.8,9). These roots lie within the open interval (87,a) and
thus the particular initial data specified takes into account not only
the required flow type through the nozzle, but also allows the

possibility of quadratic convergence of the iterative scheme.
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The subsonic axial fluid speed variation is shown in FIG.12 and the
transition axial fluid speed variation in FIG.13. Once again these
parameterizations may subsequently be used in the determination of the
axial variation of the other flow variables for both flow behaviours
fhrough the algebraic relations (1.18) and (1.23)-(1.26) (see

FIGS.12,13).

The remaining approximate inter-variable relations for each flow
behaviour, analagous to (§1), may then be obtained by the use of each
fluid speed variation as an intermediate numerical parameterization in

the same algebraic relations.
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4.5 SUMMARY

An algebraic formuiation for the determination of the axial fiow
variable variation in quasi one-dimensional primary duct fliow has been

examined.

A key factor is that Bernouilli’s equation in the form (4.2) holds
on a streamline which is representative of the full duct flow. When
combined with the map (2.6), relating position along the duct axis to
local mass flow rate, a parameterization of the flow variables, in terms

of position, 1is provided, which gives insight into their behaviour.

The non-l1inear relation connecting velocity and axial distance 1is
solved at a discrete number of points throughout the duct by the Newton
iterative algorithm, paying special attention to the convergence
conditions. The axial variation of the remaining flow variables can then

be simply computed.
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