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Abstract

Pontryagin's maximum principle from optimal control theory is
used to find the optimal allocation of energy between growth
and reproduction when lifespan may be finite and the trade-off
between growth and reproducticon is linear. Analyses of the
optimal allocation problem to date have generally yielded
'bang-bang' solutions, i.e. determinate growth: life-histories
in which growth is followed by reproduction, with no
intermediate phase of simultaneous reproduction and growth.
Here we show that an intermediate strategy (indeterminate
growth) can be selected for if the rates of production and
mortality either both increase, or both decrease with
increasing body size; this arises as a singular solution to
the problem. Our conclusion is that indeterminate growthlis
optimal in more cases than had been realised. The relevance

of our results to natural situations is discussed.



Introduction

Two main patterns have been recognized with respect to the way
organisms allocate energy between growth and reproduction
(sibly, Calow & Nichols, 1985). We shall say organisms have

determinate growth if they stop growth when they become

mature. This is what engineers would call a bang-bang
strategy. Alternatively if the organisms continue growing

while reproducing they are said to have indeterminate growth.

This usage is quite common (e.g. Sibly et al, 1985; Kozlowski
& Wiegert, 1987), but the terms have also been used with
different meanings (e.g. Sebens, 1987).

Under which circumstances should each of these two
patterns be selected for? Most situations analysed to date
have had determinate growth as an optimal strategy. This is
surprising given the ubiquity of indeterminate growth in
nature. Previous analyses of this problem include Taylor et
al, (1974) and sibly et al, (1985), who used models of the
same type as ours described below, but restricted to infinite
lifespan. By lifespan we here mean maximum reproductive age.
Ziolko & Kozlowski (1983) explicitly investigated the effect
of lifespan on optimal life history, but they did not allow
size-dependent mortality. All these analyses yielded bang-
bang solutions (except in some of the cases of non-linear
trade-offs analysed by Sibly et al, (1985)). However, Gabriel
(1982) using numerical methods showed that indeterminate
growth could be optimal if lifespan was finite and both
production and mortality rates increased with size.

Here we develop a generalized analytical model which



includes the previous treatments as special cases, and treats

the case considered by Gabriel (1982) analytically.

The Optimal Control Problem

Following earlier treatments (Leon (1976), Alexander (1982),
Sibly et al, (1985)) we consider the allocation process as a
problem in optimal control theory, in which a performance
criterion, here fitness, is maximised by the choice of a
control variable (allocation of resources between growth and

reproduction). First we give precise meaning to these terms.

Fitness maximization

We follow Charlesworth (1980) and most modern treatments in
Supposing that the fitness of a life-cycle strategy is best

measured by its per capita rate of increase, r, defined by the

equation

1= [e* 1(t) b(t) dt (1)

ot —n

where t is age, 1l(t) is survivorship from birth until age t,
b(t) is the rate of giving birth, and T is maximum
reproductive age.

In common with most life-cycle theorists we search for
strategies which maximise fitness since those strategies are

likely final products of evolution.



Model of Growth and Reproduction

Of the total energy, P(W), available to an organism of a given

size, W, for production, at some stage some must be used for

reproduction. There is, in a sense, always competition

between somatic growth and reproduction for a share of P(W),

and here we consider how that should be resolved. We shall

not consider here the problems of optimising P(W), instead we

shall assume it is given, as a function of W. Our notation is

w(t)

P(W)

u(t)

b(u,w)

B(w)

1(t)

age.
body mass; W(0) = initial body mass.

production = total power devoted to growth and
reproduction, given in this analysis; P 2 0. We
assume the units of energy are such that allocation
of one unit of power to growth results in unit
growth rate.

energy cost of producing one offspring; W, = W(0)/k
where k represents the efficiency of offspring
production.

fraction of P devoted to reproduction; 0O<us<l.
Production not used for reproduction is assumed to
be used exclusively for growth.

rate at which adults of size W give birth

u(t) P(W)/w,.

mortality rate, assumed to be uniquely determined by

Ww.

survivorship from birth to age t,



oo o
i.e. I(t) =e?®
From this we define a new variable:
L(t) = ™ 1(t); L(0) = 1. (2)
The justification for linking e "" and 1(t) into a single
'state' variable lies in the fact that taking account of the
rate of increase of the population is mathematically
equivalent to adding a constant term r to the mortality rate.
L(t) is a factor weighting fecundity in equation (1), and
decreases with time at rate r + u(W). Fecundity loses value
with time partly because the population is increasing at rate
r and partly because survival probability decreases at rate
B(W).

These variables are necessarily related by

W=(1-u(t))P(m (3)
and

L=-m(w L(t) (4)
where m(W) = r + p(wW) (5)
and the dot (‘) denotes differentiation with respect to time.

Equation (1) can now be rewritten

T

fﬂW)—L de = 1. (6)
0 Wo

The optimal control problem is to choose u to maximize r

subject to equations (3), (4) and (6), and the constraint

O<u<1l.

Optimization Technique




Although our results can be obtained using the technique
of Taylor et al (1974), we prefer to maximise r directly. We
use Pontryagin's Maximum Principle (PMP) (Bryson & Ho, 1969;
Intriligator, 1971; clark, 1976; Banks, 1986) to solve the’
'Mayer' problem of choosing a vector 'control' variable g(t)
for all values of t from initial time 0 to terminal time T so

as to maximize the function

T = F(x(T)) (7)

subject to
2= glx(t),u(t)], b

where 5(0) and T are fixed. Symbols underlined

represent vector variables. Equation (8) is referred to as
the 'state equation' and relates X, referred to as the state
variable, to control variable u(t). One of the conditions
that must be satisfied by the solution is that for every value

of t from 0 to T, u(t) must have the value that maximizes the

'Hamiltonian':
H=&(t)-g[}_<_(t),li(t)] (9)

in which A(t) is a continuous function of t such that

: - _ OH 10
i--& (10)

and, if x,(T) is unconstrained,

A‘i(T) . %}ZIX(T) [ (11)

but if x,(T) is fixed, then A,(T) is free . This is an example

of a split-boundary condition problem.



The Optimal Strategy

t

Let ¢(¢) =f”—“;7—”")—dr; (12)
0 0

$(0)=0 and ¢(T)=1 from equation (6).
In our problem J=r and ¢, W, L. and r are the state

variables. The derivatives of the state variables (equation

(8)) are ¢,W)i and r. From equation (12),

b = ULP (W)

W, (13)

and W and L are given by equations (3) and (4). Since r is

not a function of age r=o0.

Equation (9) now gives a necessary condition for an

allocation strategy u(t) to maximize r:-

max H(t) =Aqu(¢) L_‘t)wﬂw_’.al(c) (1-u(£)) P(W) - A, (E)m(W L(t).

(14)

where A,, A,, A, and A, are the 'costate' variables associated

with ¢,W,L and r respectively. A, does not appear in (14)

because r = 0.



From (10) A, =0, so A, is a constant. As shown in Appendix 1,

Ao = A,(0), which we write ¥. (15)
A, (t) and A,(t) are functions to be determined later; from (10)

they are specified by:

A= don'L - (uwXE o+ (1-way) P (16)
1

-]

where dash (') denotes differentiation with respect to W,

A= hom(m - u B (17)
2 o
and, from (11)
A (D) = A, (T) = 0. (18)

Because the trade-off between fecundity and growth is linear
and mortality is independent of the control variable u, it
follows that the Hamiltonian (equation 14) is linear in u, and
its derivative, the so-called switching function (Bryson & Ho,
1969; Intriligator, 1971) is not explicitly dependent on u:

o (X2 -y (19)

o

To maximize H, therefore, the optimal control, written

u*, must be either 0 or 1, according to the relative values of

YL/W, and A,:

u* = 0 when yL/W, < A, (20)

and ux

1 when yL/W, > A,. (21)
In other words, a boundary solution always maximizes the

Hamiltonian.



Since offspring are necessarily smaller than adults, all
resources must be allocated to growth in the initial part of
the life cycle, and at T, if not before, all resources should
be allocated to reproduction since investment in growth would
then be wasted, because adults do not reproduce after age T.

It is clear therefore that initally yL/W, < A,, with optimal

strategy ux

0 (from 20), and finally YL/W, > A,, with optimal

sStrategy ux 1 (from 21), so that all resources are allocated

to reproduction and size is constant until death. Since 4, >
YL/W, initially but finally A, < yL/W, , it follows that A,
changes more rapidly than yL/W,, and therefore at some time
before T the two functions must cross. We deal later with the
case that during the crossover the two functions are equal
Over some nonzero period of time (when they follow a 'singular
arc'). Assume for the moment that that does not occur, and
the functions cross cleanly: if they only cross once the
optimal strategy is a simple two-phase strategy: growth
followed by reproduction. Although we have not established
that there are not more than two bang-bang phases (e.q.
growth-reproduction-growth—reproduction), these do not occur
in biological examples in non-seasonal environments, so far as

we know, and we shall not consider them further here.

10



The two-phase optimal control problem

Now suppose, for the moment, that the solution is bang-
bang, in two phases, as described above, devoting all
resources to growth in the first phase, and all to
reproduction in the second. The point at which the initial
phase ends will be referred to as the first switching point
and denoted by subscript 1; thus switching time is t,, and
bodymass is then w,. Similarly the start of the final phase
will be referred to as the second switching point, t,, with
associated bodymass W,. Of course, in the two phase problem
these two points coincide (t,=t,, W,=W,), but by keeping them
distinct we are able to derive relationships with wider
generality which we use later in analysing singular arcs.

The two-phase optimal control problem can now be stated
formally as follows. For given T and W,, find the bang-bang
strategy characterised by W,, and associated t, and r, which
maximises r in (1).

To find the solution, note that in the first phase all

aw

resources are allocated to growth, so TEE=P(W) from (3),
and hence
Wy
£ aw
1-' .
KW, P (W

From (4) and L(0) = 1,

" wie)
ftrwmae - [ ZBay
L(t)=e? =g ™

11

(22)



during the first phase, so that

'}1 _Er;(rfr)m =
L,=e . (23)

During the final phase w(t) =W, and from (4), L(¢t) =e'(t+p2)(t-t2)L2.

Hence from (6),

T T

PZL( t) Psz - (r+p,) (-t Psz = (r+py) (T-t,)
- - + =—272 (1_.¢ 2 2’ (24)
1 ! Wt [e dt= )
2 2

where W, = w,, P, = P(W,), B, = u(W,), L, = L, is given by (23)
and t, = t, by (22).

For given T and W, and relationships P(W) and u (W), it
can be seen that since P2y Ly, B, and t, are determined by W,,
(24) provides a relationship between r and W, of the form
£(W,, r) = 1. The relationship between r and W, can readily be
graphed and the optimal strategy, i.e. that value of W, which
maximises r, can be found by inspection (example in Fig. 1).
The optimal control problem is therefore reduced to a simple
static problem of the form: given f£(W,,r)=1, find W, that

maximises r.

A necessary condition for optimality is that

dr _ _ Of ,of _ Of _ ing £40). This
d_w2 aWz/a—r =0, or W, 0 (assuming i )

equation can obtained from (24) as

12



m 22 (roey e T o (Bayig L gmimeny g (25)
m, m,
where m, = r + p,, and m,' = p,' and t, = t,(W,) = t, (W) is

determined by (22). Differentiation denoted by ' is here
thought of as with respect to Ww,.

Size at the second switching point, W,, must therefore
satisfy equation (25), which specifies a relationship between
r and W, for fixed T. However r and W, must also satisfy (24),
and hence r can in principle be eliminated between (24) and
(25) to obtain the optimal W,, as shown graphically in Fig. 1.

This completes the solution of the two-phase optimal control

problemn.

Singular arcs

In the two-phase optimal control problem we assumed that when
A, meets YL/W, the two functions cross cleanly, but if not then

A,=YL/W, over some finite time interval. The history of

optimal control shows that ignoring this possibility can lead
to error. Accordingly we here explore the implications of

intermediate control, giving rise to A,;=YL/W,, being an optimal
strategy over a non-zero period of time. During this period u

must be such that -%g = 0. The trajectory during such a period

is known as a sinqular arc (e.g. Bell & Jacobson, 1975).

Since biological considerations show that the optimal

trajectory is initially all growth and finally all

13



reproduction, the only possible position for a singular arc is

in the middle of the life history. During the singular arc
Ay=yL/W,, (26)

and this holds during a non-zero period of time which we shall

call the singqular period. Hence

A =yL/w, (27)

1

Substituting (4) and (16) into (27), and using (26),

gives:

y Y(Pl—m(W))
: W,m’
0

(28)

throughout the singular period, where as before ' denotes

differentiation with respect to W.

Three phase strateqgy

For a three-phase optimal strategy, containing a singular arec,
the initial phase is characterized by the same equations (22)
and (23) as in the two-phase strategy. Similarly during the

terminal period, u = 1 and W = W,, so A, can be found from (17)

and (18) as

(1 _a-m(T-t)y YP,
A, = (1-e )7EE§ (29)

Substituting (29) into (16) and integrating within the

terminal period from t to T (noting that from (4)

L(t) = L(T e™' ™) gives:

14



Ay Wy =m2/£3L(T) (T-£) + (22)/[L(£) -L(1) ] (30)
Y m, Mz

At the start of the terminal period A W,/y = L(T) e™'T%  ang

substituting this into (30) gives equation (25) again. This
shows that the switching point t, initiating the terminal
period satisfies equation (25) even if the optimal strategy is
not bang bang. Of course if the optimal strategy is not bang
bang, the switching time t, is no longer tied to switching

size W, by equation (22), so equation (25) now acts as a
constraint on the three variables W,, r and t, restricting them
to a surface in W,-r-t, space (Fig. 2). Because it specifies a
criterion satisfied by the optimal solution, we will refer to
(25) in general as the criterion equation. Note however that
in the three-phase strategy two more equations in W,, r and t,

are needed to specify the optimal switching point uniquely.

Joining the Sinqular Period to the Terminal Period

Equations (29) and (28) describe the trajectories of A, during
the terminal and singular periods respectively: the two
trajectories meet at the 'second switching point' when t = t,

and the following must hold:

p,’-
(T-t))m, = - 1n [1-%2 Zm—zj"ﬂ (31)

Equation (31) gives the value of t, at the end of the
Ssingular period, which is the moment when the terminal period
starts, i.e. the final switching point. This is the second of

15



the three equations in W,, r and t, needed to find the
parameters of the optimal final switching point.
Since the final switching point satisfies the criterion

equation, we can substitute T-t, from (31) into (25) to

obtain:
m, P,/ : m, bp,/-
2z - - - B BTy (32)
P, mz/ P, mz’
Using (32), equation (31) may be rewritten as:
1 le
T = ESo TEcN (33
2 Pz m2/ )

For fixed r = r*, the optimal value of r, the criterion
equation (25) specifies a relationship between W, and t,, which

we shall refer to as the switching curve (Figs. 2 and 3), for

reasons that will become apparent (see Fig. 4). It is worth
noting that equation (33) characterizes a stationary point of
W, as a function of t,, implicitly defined by this switching

curve: taking the partial derivative of (25) relative to t,,

with fixed r, while setting dw,/dt, = 0, gives (33).

Necessary Conditions for a Sinqular Arc

The preceding sections show that for a singular arc to exist
equations (32) and (33) must hold. Whether this is possible
depends on the actual shapes of the size-specific production
and mortality functions. We now obtain necessary conditions
for (32) and (33) to hold. From (33) P,' and m,' must have the
same sign for T-t, to be positive. Thus mortality and

production must either both increase with size or both

16



decrease with size for equation (32) to have a solution. Let
us assume first that these rates increase with size. It can
be shown (Appendix 2) that m(W) is necessarily positive at the
switching point if p(W) increases with size; this result also
allows us to disregard the case m, = 0, which would otherwise
be a candidate solution to (32). The left-hand side of (32),
therefore, is positive, so that the term in brackets in the

right-hand side must be smaller than one; this is only

possible if P,' > m,. Furthermore, (%%J’ must also be smaller

than 1, otherwise this term in brackets becomes negative.
Thus, assuming P,' > 0, necessary conditions for the
existence of a stationary point of the criterion curve and

ipso facto of a singular arc, are that, at the stationary

point:
m,' > 0, (34)
P,' > m,, (35)
(%)’ < 1. (36)

A further condition for local optimality, which holds
throughout the singular are, is given by the second order
Clebsch-Legendre condition (Bell & Jacobson, 1975; see
Appendix 3):

Let us assume now that production rate is a decreasing

function of body size. This is a quite plausible assumption,

17



at least over some size range: growth curves are often
sigmoid, implying that production rate first increases, then
decreases with body size. Thus, production rate often
decreases with body size on the upper part of the size range,
which is the part of interest because maturity occurs there.
An analysis similar to that provided here shows that in this
case (P,'<0), the necessary conditions for a singular arc are

that, at the stationary point:

m’ < 0, (38)
P
(=2)" > 1, (39)
m,
e Py/-m, ,
and the Clebsch-Legendre condition (=== > 1. (40)
m,

A specific example is developed below where production
and mortality rates both increase with size. This example
shows that conditions (34) - (37) can be satisfied, and
equation (32) can have a solution. Before presenting the
numerical example, we derive the optimal control during the
singular period, for the general case. Then we join the
initial period to the singular period, in order to provide a

complete solution over the whole life cycle.

18



Optimal Control During the Singular Period

The two terms in equation (28) must be equal during the whole

singular period, so that:

b d . P-m
A= L ~F [——1] (41)

Using (3) and (17) in (41):

ham() =2 - up(n = (220 (10 B, (42)

and using (28) the optimal control u* is defined during the

singular period by:

/_ i i
ut (201 = (2R - B B (43)
m
Substituting into equation (3) gives:
(e
(£l -
W —2 , = G(W, 1), say (44)
(E=-myr g
7
F ¥ T aw
= dw ivi -t = [—9W __ 45
Hence [dt—wm giving ¢, - ¢, !G(W,r) . (45)
1 1 1

Similarly (44) can be used with (4) and (23) to find L during

the singular arc:-

" v
sy - o LR [ )
= e

19



Using this in (6) and using uP = P - G during the singular arc
(from (3) and (44)), we obtain the singular-arc analogue of
(24):-

Wy v
o f IR W) o [ TR (W)
A B dwitumrﬂm

5 f (P(W) -G(W, r))e ™
WoG(W, r)

dw +

» L]
- f Zru (W _ frs(wm
EL Pwm i«um:ﬂm
Pze (l_e—(zﬂs,) (T—tz)) (47)

Wo (Z+p,)

Equations (22) and (33) define t,, t, as functions of w,, W,
respectively. Then (25) (45) and (47) give 3 equations with
which to find W,, W, and r.

A Numerical Example

For the purpose of illustration, a numerical example will now
be given, which is directly relevant to Gabriel's (1982)
numerical simulations. Following Gabriel (1982), production
and mortality rates will be taken increasing with size; more
specifically we will assume both rates proportional to size,
so that P(W) = cW and p (W) = Wd, for some positive constants c
and 4. We assume that k is such that r = 0 for the optimal
strategy. Although some features of the example may be
unrealistic, it has the virtue of analytic simplicity.

For the case that r=0 the switching curve (obtained from

20



equation (25) with r=0, see p.16 and Fig. 2) reduces to:

In[c(T-t,)]
(T-t,) d

W, = (48)
This is shown in Fig. 3, with c and 4 set to 0.0702 and 0.01,
respectively. From equation (33), the end of the singular
period is:

W,

c/ed (49)

and t, = T-e/c (50)
where e is the base of natural logarithms. As expected, this
point coincides with the stationary point of the switching
curve (Fig. 3). Using (43) and (44), the optimal control u*
during this singular period, is given by:
u* = 1-(wd/2c) (51)

It is worth noting that, in this particular case, the

optimal reproductive effort u* decreases with size, and

therefore with age, during the singular period. Using (3),

size during this singular period (the singular arc) is:

2¢

W) = d(e+c(T-t))

(52)

If size at birth is below the singular arc, then u*=0
during the initial period, when size is given by W(t) = kwoect
The optimal strategy (Fig. 3) is, therefore, to grow from
birth exponentially until the singular arc (52) is reached,
then to follow this arc, and finally to stop growing when the

switching curve (48) is met at its stationary point (49,50).
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Discussion

The main contribution of this paper is to extend existing
analyses of growth and reproduction by considering the effects
of size-dependent mortality and lifespan on the optimal
Strategy. The main results are shown in Fig. 4. 1In (a) the
switching curve has no stationary point, i.e. is monotonic, so
the optimal strategy is to grow until the weight-age
trajectory meets the switching curve, then to switch to
reproduction. 1In (b) the switching curve has a stationary
point but the optimal strategy is again determinate growth.
However if (and only if) the switching curve has a stationary
point the optimal strategy may include, in the middle, a
period when growth and reproduction should occur
simultaneously (Fig. 4c). During this period the weight-age
trajectory follows a singular arc satisfying

FIG. 4
equation (44). The optimal strategy in this case is to grow
until the singular arc is reached, then to follow it, growing
and reproducing simultaneously, until the singular arc
terminates (at the stationary point of the switching curve),
and then to devote all resources to reproduction.

Note that the switching curves (dashed lines in Fig. 4)
are only appropriate to the optimal growth trajectories shown.
Other suboptimal growth strategies yield lower values of r and
their switching points do not satisfy the criterion equation
(25) from which the so-called switching curve is calculated
(see Fig. 1).

It will be important to extend these analyses to consider

22



the effect of lifespan on optimal strategy. Is it the case,
for example, that indeterminate growth is only an optimal
strategy for longer lifespans, other things being equal? This
would appear likely intuitively, and fits our knowledge of
animals and plants.

These results extend those of Taylor et al, (1974) and
Sibly et al (1985) by introducing the possibility of a
singular arc and by incorporating the effect of lifespan.

When lifespan, T, tends to infinity, our results (equation
(25)) reduce to those of Taylor et al, i.e. a switch from

growth to reproduction should occur when

S ([P ).
ow r*+p

|
[ey

(their equation (13)).
Equation (25) also generalizes some results of Ziolko &
Kozlowski (1983) who showed that for constant mortality rate

B = #, and fixed population size (r = 0) the optimal strategy

is bang-bang, with a switch from growth to reproduction

occurring when

OP/OW = u/ (1-e#(T-8))
(their equation (31)). oOur equation (25) reduces to their
equation (31) under these same assumptions, and our analysis
again introduces the possibility that intermediate strategies
are optimal, this time by allowing size-dependent mortality, a
common phenomenon in nature.
Our results also provide an analytical basis for

Gabriel's (1982) numerical demonstration that intermediate
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Strategies can be optimal if lifespan is finite and both
production and mortality rates increase with size.

The main conclusion of the paper is that indeterminate
growth can be an optimal strategy if production and mortality
either both increase with size, or both decrease. This has
the intuitive meaning that growth after reproduction entails
simultaneous costs and benefits: growing further either
increases production rate at the expense of survival, or
improves survival at the expense of production; along the
singular arc, the costs and benefits of growing further
equalize over a non-zero period of time.

It is worth noting that King & Roughgarden (1982) also
found a singular arc to be responsible for a gradual
transition to reproduction in the case of annual organisms
with an unpredictable season length. As a matter of fact, it
should be noted, when applying these results to real
organisms, that unpredictable season length (Cohen, 1971; King
& Roughgarden, 1982; Amir & Cohen, 1990) as well as non-linear
trade-offs (Sibly et al, 1985) can also lead to the optimal
strategy being intermediate. No stochastic factors have been
considered in our model, which is completely deterministic.

How relevant are these findings to real organisms, and
how likely is it that conditions for a singular arc are met?
In natural populations, mortality usually decreases with size
(Ito, 1980). Furthermore, growth curves are frequently
sigmoid (Sibly et al, 1985), implying that production rate
first increases, then decreases with increasing body size.

Thus, production rate often decreases with size over the range
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of interest, so that some of the necessary conditions (eq. 38-
40) for a singular arc seem to be met quite often. This could
be responsible for intermediate strategies in several
instances. An empirical test of this idea could be performed
by checking the size dependence of mortality and production
rates in intermediate strategists, over the period of gradual
transition to reproduction.

What about the reverse situation (eq. 34-37), with both
rates of production and of mortality increasing with body
size? Whereas, as pointed out above, mortality usually
decreases with size in natural populations, the reverse is
true under some special circumstances such as fish visual
predation on planktonic crustaceans (Lynch, 1980; Gabriel,
1982). For the purpose of illustration, the patterns of
growth in cladocerans is discussed hereafter.

From Lynch's (1980) review, it appears that the littoral
species of cladocerans are bang-bang strategists, whereas the
Planktonic species are intermediate strategists. Without
referring to a mathematical formalization, Lynch (1980)
proposed an explanation for this trend based on patterns of
size-dependent mortality. Littoral species are mainly under
invertebrate predation at small sizes; the optimal strategy in
this case would be to reach as fast as possible an adult size
large enough to escape invertebrate predation, then to invest
entirely in reproduction. 1In contrast, planktonic species are
under both invertebrate predation at small sizes, and
vertebrate predation at large sizes; the optimal strategy in

this case would be to start reproducing at a small size, while

25



fish predation is still relatively low, but meanwhile to
continue growing, in order to reduce invertebrate predation.

Based on the conclusions of Sibly et al, (1985) (see
introduction), Perrin et al, (1987) criticized this model,
arguing that a size-dependent mortality could not induce an
intermediate strategy. However, the results of the present
analysis obviously oppose this latter argument; these results
furthermore suggest an explanation to the above trend,
slightly different from Lynch's, though also based on patterns
of size-dependent mortality: bang-bang strategies are
selected for in littoral species because mortality decreases
as size increases, due to invertebrate predation at small
sizes; by contrast, intermediate strategies are selected for
in planktonic species because mortality increases with size,
due to vertebrate predation at large sizes.

Since, furthermore, production rate appears to increase
with body size in cladocerans, at least over the size range
where maturity occurs (e.g. Gabriel, 1982; Taylor, 1985;
Perrin et al, 1987), the general patterns of growth in this
group, reviewed by Lynch (1980), seem to confirm the main
Prediction from the present model that a size dependent

mortality might induce a gradual transition to reproduction.
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Appendix 1

Equations (6), (17), (4) and (2) imply

T T T T
= uP(W) L - _3 [ -
Y = 7[——Wu dt = b{[(rﬂl)kzL A,LldE + [[(rw)thdle dt-A,L|

T
= f[(r+p,)),2L—(r+|.L)L2.2]dt + A,(0)
Q

Hence y = ,(0) (14)

Appendix 2

Let u, be the mortality rate of the largest animals, achieved

during the terminal period. If p (W) increases with size, the
mean per capita mortality rate of the population, @, is
necessarily smaller than p_:
B o< n, (A1)
The per capita rate of increase r* is the difference

between the per capita rates of fecundity B and mortality p:

r*x = B -R (A2)
so that, from (Al) and (a2),

r* + . > B (A3)
and, because fecundity cannot be negative, m(W) = r* + p(W) is

necessarily positive during the whole terminal period,

including the switching point.
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Appendix 3

The Legendre-Clebsch second order condition for optimality of

the singular control (Bell & Jacobson, 1975; Banks, 1986) is:

a (%) (&) e

(B1)

From equation (19), the first time-derivative of dH/du

is:

d(dH\ _{y(P' - m)
dt( du) '( W

o

- A,m’ )PL

and the second time-derivative:

(%)2(5_5) = (_Y% - Azml) .d_%PtL_]- + PL[(l-u)P(%(p/ -m/ - Azm”) "MI

o

Using (17) and (28):

du\de) \du W m’

o

a( d)Z( dH) _ P {mﬂﬂ

0

- (P -m) +m

(B2)

(B3)

(B4)

From (Bl), the term in brackets in the right-hand side

must be positive, which is the case, assuming m' > 0, if:
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FIGURE CAPTIONS

Fig. 1. The solution of the two-phase optimal control problem can be found
by plotting the relationship between r and W, (solid line) obtained from
equation (24). Here k = 0.05, other parameters and relationships are as in
Fig. 3. Also shown is the solution of the equation (25) (dashed line).

Note that the optimal strategy (*) lies on the intersection of the two

curves.

Fig. 2. The surface in W,-r-t, space specified by the criterion equation
(a) in 3-D, (b) as a contour map showing contours of W,. Parameters as in
Fig. 3. A slice through the surface at r = 0 gives the switching curve
shown in Fig. 3. Note also that the solution of the criterion equation for
the two-phase optimal control problem illustrated in Fig. 1 (dashed line in
Fig. 1) corresponds to the intersection of this surface with the surface

specified by equation (22).

Fig. 3. The growth curve W(t) (solid line), switching curve W,(t,) (dashed
line) and singular arc (dotted line) for the case analysed in the Numerical
Example in which P = 0.0702W,

B =0.01Ww, T = 100, inital size = 0.25 and r = 0.

Fig. 4. The main types of growth curve (solid lines) and switching curve
(dashed lines) considered in this paper. In (a) the switching curve is
monotonic decreasing and the optimal strategy is determinate growth. 1In
(b) the switching curve has a stationary point but the optimal strategy is
again determinate growth. In (¢) the switching curve has a stationary
point and the optimal strategy is indeterminate growth, following a
singular arc (dotted line) between the initial growth phase and the final
reproductive phase. On the singular arc growth and reproduction occur

simultaneously.
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