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ABSTRACT

In this report we derive, from a stationary principle. a iocal
finite element method on an adaptive grid for the approximate sojution
of guasi one-dimensional duct flow. A solution algorithm is then
presented. The method, together with various associated treatments, is
applied to the approximate solution of two particular duct motions.

Numerical and graphical resuits for each are presented and comparison

made with the numerical solution in [2] of the same moticns on a fixed

uniform grid.
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INTRODUCTION

This is the third report of a series in which we discuss the exact
and approximate solution of duct flow. In the first report a aquasi
one-dimensional approximation to duct flow was presented (1] ana this
was used to obtain an algebraic parameterisation of the flow. In the
second report a stationary principle representative of quasi
one-dimensional duct flow was constructed [2] and used to derive a
finite element method on a fixed grid for the approximate solution of
the flow., By using the algebraic parameterisation as a comparative exact
solution it was concluded that a numerical method is required that will
st11] be accurate when there is significant curvature in the solution.
The aim of this third report is the derivation of a finite element

method on an adaptive grid from the same stationary principle.

The stationary principle representative of quasi one-dimensional

duct flow is stated in Section One and the adaptive grid finite element

method then formuiated.

In Section Two the resulting system of eguations 1is recast in a

local manner and the basic solution algorithm presented.

In Section Three the method is applied to the approximate solution
of a particular converging cone section flow; this includes the
discussion of the occurrence of singuiarity of the local system of
equations. The results obtained are compared toc the approximate solution

for the same motion on a fixed uniform grid, as found in {2].
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In Section Four the adaptive grid methoa 1S appiied to the
approximate solution of flow through a de-tLavai nozzle: two aiternative
treatments of the node at the nozzle throat are considered. The results

are compared with each other and also with the eaquivalent fixea grid

solution found in [2].



SECTION ONE : A NUMERICAL FORMULATION OF QUASI ONE-DIMENSIONAL DUCT

FLOW ON AN ADAPTIVE GRID

In this section a finite element method on an adaptive grid is

formuiated from a stationary principle for the approximate solution of

duct flow.

The compressible fluid to be considered 1is modelled by the

polytropic gas with the appropriate equation of state

p=npop’ . (1.1)

where p represents the pressure, p the density, and 7 is the adiabatic
exponent associated with the fiuid medium. The conservation equations of

fluid dynamics governing the fluid motion in quasi one-dimensional duct

flow are (see [2])

CONSERVATION OF MOMENTUM : h = CONSTANT , (1.2)

where h is the constant total energy in the homenergic flow,

CONSERVATION OF ENERGY : 7 = CONSTANT , (1.3)

where 7 = 7(8) 1is the constant function of entropy, S, in the

homentropic flow, except at discontinuities, and

CONSERVATION OF MASS : d (Q A) = 0 , (1.4)
dx



where A = A(x) is the cross-sectional area of the duct and Q = Q(x)

= is
the local mass flow rate defined by
Q=pv (1.5)
where v represents the fluid speed. The complete solution of the flow.
in which all of the flow variables are recovered, is possible on using

the total energy equation in its appropriate form
h = R(p,m) + (v¥/2) , (1.6)

where N is the enthalpy.

The particular fluid flow to be considered is that of air, defined

by the associated thermodynamic constants

y = 1.4 ,
1 -1
R° = 8.31 dmol K (1.7)
and m= 28.96 x 102 Kg ,

where R° is the universal gas constant and m is the molecular weight of

the gas, together with the flow constants

5 1.1

Jmol 'K

o
"

2.74 x 10

and (1.8)

7.08 x 104

-3
n

(ST UNITS)

(as used in [1] and [2]).

The defining equations (1.2) - (1.5) are considered to hold in a



fixed domain, D. representing the duct axis. In order to be acle to

soclve a particular duct flow mass conservation is ensurea by assigning
Q(x) A(x) = CONSTANT . (1.9)
which is chosen (see [1]) such that

Q(x) = E_ﬁe ,
A(x)

(1.10)

where C 1is the mass flow entry value corresponding to the central

streamline along the duct axis and Ae is the duct entry cross-sectional

area.

A stationary principle representative of quasi one-dimensional duct

flow has been postulated in [2], namely

§1 =6 [ j (C A Vv + p(v) dx ] =0 . (1.11)
D A(x)

The stationary principle (1.11) has been used in [2] to derive a finite
element method on a fixed grid for a piece-wise linear approximation to

the fluid speed throughout the duct, with respect to the distance, x,

along the duct axis.

A method is now formulated on an adaptive grid in which not only
are the nodal amplitudes a; = ai(k), i = 1(1)N, unknown at each
iteration level, k, towards the final approximate solution, but
additionally the corresponding nodal positions s, = si(k), i = 1(1)N,

are not known. A semi-discrete solution of the form



N

VOGK) =) ac(K) a(x,5(K))
i=1

{(1.12)

in a sub-space of c® is sought, where a, = ai(x,g(k)), i = 1(1)N, are

piece-wise linear basis functions with local compact support and s(k) is

the vector of nodal positions; an interior ’'e-type’ basis function is

shown in FIG.1 and defined by

r -
X7 34 1.1 $ X sy
Si 7 %49
@, = - [ 1 =2(1)N-* ] , (1.13)
Sipy — X% sy £ x < sy,

L Siey 7 Sy

a, being zero outside the interval [ P

-1 0 Siay 1o

aJ(X-g.(k))

e

Cse
[}
—
-]
€
"]

FIG.1

The substitution of the approximation to the fluid speed (1.12)

into the functionail, I, underiying the stationary principle (1.11),

yields now a function, L, of the unknown coefficients ai and s,

L=LCag, 845 a5, Sy ooty 8-q7 SN=qr 3y Sy ) o (1.14)



where L = I(v) is defined by

L = J [ C A, vV + p(v) ] dx , (1.15)
D Lax)

on the same domain, D, as its counterpart in continuous space. Therefore
making the function (1.15) stationary gives an approximation to the

stationary point of the functional I in the chosen subspace:; the

conditions for this are simply

[XDs
—
1]
o
~—
-
(1]

1(1N ]

and (1.16)

N>
r
1]
o
—
'
(1]

1(1N ]

The partial derivative (1.16) may be written explicitly

<

J [ CA - »p ] v, dx = 0, [ 3= 1(ON ] (1.18)
D A(x)
using (see [21)
P'(V) = - p v (1.19)
Similarly (1.17) may be written
( [ CA - »p v ] gy dx =0, [1=101)N ] (1.20)
RYES



using (see [3])

dV=ﬁ1 , (1.21)

with ﬁi = ﬂi(x, a(k), s(k)) a second type of basis function with the
same local compact support as as, a(k) being the vector of unknown nodal

amplitudes, such that

T Moy 9 Si-y $ x <8y
d-[ — (1-22)
-m, a, s, {x<s .
i i-= = Ti+d
where
my= a8, (1.23)
Sit1 T 8y

can be interpreted as the siope of the approximate solution, v, in the
open interval ( Si v Sk ); a typical ’J-type’ basis function is shown

in FIG.2.

Bj(x.s(k).itk)]

FIG TWO



The conditions (1.18) and (1.20) now take the form of a system of
equations at each iteration level for the unknown parameters atk) and
s(K) and. the aim being toc derive the approximate fluid speed variation
throughout the duct, the density term in these equations is replaced by
the algebraic relation (see (4})

(1/1-7)

NOER [ -1/ (h = (2/2)) ]“/"“), (1.24)

The conditions (1.18) and (1.20) may then be written in terms of

the inner product

<P, 9> = J o ¥ dx |, (1.25)
D

as

<
[
~
1]

o

< C Ay~ pV) v
A(x)

(1= 101N ] (1.26)

€ C A P v
A(Xx)

<
T
v

1}
o

where <-:,:> denotes integration over the domain, D, which it may be

noted from (1.10) are simply weak forms of (1.5).

On solution of the system (1.26) the function (1.15) has been made
stationary with respect to its arguments, solving the given flow problem

discretely, and thus determining an approximation to the axial fluid

speed variation in the motion.



SECTION TWO : THE SOLUTION OF THE EQUATION SYSTEM

An algorithm 1is required for the solution of the non-linear
equation system (1.26). In the numerical solution of duct flow on a
fixed grid (see [2]) Newton’s method for several variables is employed
to solve for the unknown amplitude parameters a,, i = 1(1)N. This
algorithm may be extended to solve the present system, including now the
unknown nodal positions, i.e. the numerical grid, at each iteration
level. After considerable work with this algorithm, including various
modifications, it was concluded that the Jacobian matrix of the equation

system (1.26) is often extremely ill-conditioned, and consequently an

alternative approach is required. The basic solution algorithm that has

been implemented is outlined in this section. The discussion of more

detailed features will take place where appropriate in subsequent

sections of the report.

2.1 THE BASIC SOLUTION ALGORITHM

The solution domain representing the duct axis is defined to be

2 X3 ’ (2.1

where d is the domain length. The statement of the solution algorithm is

now made in two stages.



1. The fixed grid solution stage

A piece-wise linear approximation to the fluid speed variation
throughout a duct 1is first obtained on a fixed grid: the ull
formulation may be found in (2], but a brief outline is presented here

stating the factors necessary for progression to the adaptive grid

stage.

A fixed numerical grid consisting of N nodes, denoted by Sg is
specified such that nodes are placed at the domain extremes, i.e.
Sq = 0.0 , (2.2)
SN =d ,
and the remaining interior nodes are uniformly spaced
Sy = (i = 1)(d/N) [ 1=2(1)N-1 1] . (2.3)
The equation system fi(g) = 0, i = 1(1)N, for the unknown nodal

amplitudes a, i = 1(1)N, at each iteration level on the fixed grid, is
then solved by Newton’s method; the iteration is said to have converged
when the maximum absolute point-wise residual error of the equation

system is less than a specified tolerance, here taken to be
MAX | f.(a) | < 0.00001 [1=10)N1. (2.4)
The resulting solution vector, 5:’ is now used, together with the

corresponding nodal positions defined by (2.2) and (2.3), to form the

initial data vector, y:, for the adaptive grid stage, where
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°: (a; )z (a : y ) (2.5)
-A - SF v §F - a1y 51, 32, 52, “ee 4 aN, SN . J=)

Hence, prior to any displacement of the nodes. the initial data vector
(2.5) will contain approximately the correct solution curvature, wnich

should mimimise the appearence of ill-conditioning in the adaptive grid

solution procedure.

2. The adaptive grid soiution stage

The possibly ill-conditioned nature of the Jacobian of the equation
system may be controlled by updating the nodes individually in a local

manner 5], the basic steps of which are now presented.

(a) The nodes at the domain extremes (2.2) are constrained to move

in amplitude only. These nodes are the first to be updated by solving

the associated equations

K . N . .
F1,=<2€—pv,a1.>-0, [ i=1,1=N1] (2.6)
A(x)

using the simpie single variable Newton method

- ~ K K
a; (k1) = a (k) [Fi / [fj ] ] ) (2.7)
dai

Prior to updating the interior nodes in the solution domain the
equation system is recast in a manner reflecting the local nature of the
formulation. The form of the J-type basis function (see (1.22) and

FIG.2) allows the definition, here in a node-wise manner, of an
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alternative set of local basis functions ¢1L = éiL(x’§(k))' 1 = 2(1)IN-1,

and o, = miR(x,g(k)), 1= 2(1)N-1, (see ([3])

Py T X T Sy Si-y $ X & 8y
Si 7 %4~
{ 1 = 2(1)N=-1 ] (2.8)
PiR = Siey T p $ X< 85y
Sier T ¥y

¢1L and ¢iR being zero elsewhere (see FIG.3), as a linear combination of

&, and ﬂi such that

1
e, 1 116 ], Ti=2N11 (2.9
Bl L ™ "™ ] R

where my_y and m, are the local approximate gradients of the solution

defined by (1.23).

F1G THREE

Providing that My # m, the system of equations corresponding to the

interior nodes may then be written as 2 x 2 non-overiapping pairs
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kK _ " N
F'iL =< ge - p Vv, u‘!_.lL > = 0
A(x)
Ef - [ 4= 2(0ON=1 ] (2,10
K z¢caA - PV, P00 > =0
iR~ e ' iR !
L A(x)

and the interior nodes may now be updated in the following manner.

(b) The present solution vector, yk, is fixed except for the

amplitude, as, and position, Si» of the particular node under

consideration.

(c) The parameters a, and si are updated by solving the local

system of equations associated with this node by a two variable form of

Newton's method
Kk Kk
A B 531 . i=1.L . (2.11)
c 0 6s§ eK

where the vector of local parameter updates, 5y§, consists of the update

in amplitude, §a?, and in position, 65?, and the elements of the local

Jacobian matrix, [J]?, are

. | k
L P r €= Fig » D= 0Fp (2.12)

where note that § is used here in a totally different sense to that of

variations in Section One. The 1local system (2.11) is solved
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simultaneousiy to give

L _ K K 5
fsy = 1.0 Fig *+ [EF“_J ] (2.13)
D - (B C/A) A
and by back substitution
k _ ok k
5a1. = lﬁ [ FiL + 651. B] , (2.14)
A

(assuming D # B C/A) whence the parameters a, and s, may be updated

according to

aB+1 = a% + éag
i i i
and (2.15)
sk+1 = sB + §sk 1
i i i

(d) Note that this procedure will redefine the neighbouring local

basis functions and thus the corresponding equations in the system

(2.10), i.e.
CCAg =PV P g =0
A(x)
and (2.16)
CCA =PV, Piyq =0
A(x)

(e) The algorithm then proceeds to update each of the interior

nodes once both in amplitude and position by setting i = i + 1 and

returning to stage (b).

It may then be said that, including the updating of the boundary
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nodes. N 1local iterations (one ’sweep’) have been pertformea. “he

adaptive grid stage of the solution is said to nave converged tz the

final approximate solution vector when the maximum absociute rnaal

displacement update tor a compiete sweep is less than the specified

tolerance

£

MAX s l < 0.0001 [ 3= 200)N-1 ] . (2.17)

It is of course possible to update each node in turn more than once
before progressing to the next node, or even to iterate to convergence
of each local system (2.11). The principle behind the basic algorithm

thouah is that the nodes neighbouring that being updated are temporarily

assumed to be at the exact solution, which is of course not the case

until the final sweep, and thus acting in the above manner 1is expensive

and most probably unnecessary. This point is dealt with in more detail

later (see 84.5).

2.2 AN ALGORITHM MODIFICATION

In the basic algorithm (§2.1) the interior nodes are updated in the

natural ordering, i.e. i = 2(1)N-1. However, owing to the local nature
of the solution algorithm, the interior nodes may be updated in any
order and a particularly efficient ordering algorithm results on

consideration of the local element gradients at each node.

(a) Subsequent to having updated the amplitudes of the boundary

nodes, the maximum absolute element gradient, Mi’ where

My = MAX | me oy om, | [ 1=200N1 17, (2.19)
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associated with each interior node is computed.

(b) The gradients (2.19) are then sorted into descending
magnitude, keeping associated with each the respective node number, and

the interior nodes are then updated in the resulting order.

(c) The use of this ordering will theoretically induce more nodal
movement per sweep, and thus a faster convergence rate to the final

solution vector and ultimately a more efficient solution algorithm.

The system solution algorithm is now applied to find the numerical

solution, on an adaptive grid, of two particular duct motions.
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SECTION THREE : THE ADAPTIVE GRID SOLUTION OF CONE SECTION FLOW

The adaptive grid formulation is now applied to the approximate

solution of the flow through a converging cone section. The results

obtained are compared with the approximate solution of the same motion

on a uniform fixed grid (see [2]).

3.1 DEFINITION OF MOTION

The domain on which the cone section lies is defined as

3 (3.1)

and the particular converging cone section flow is specified by the area

variation
A(x) = 1+ 0.1 (1-x) + 0.05 (1-x)? |,

such that (3.2)
Ae = 1.15

and Ao = 1.0,

where Ao is the outlet cross-sectional area, together with the mass

flow boundary condition at inlet (see [2])

C = 200.0

and at outlet (3.3)

Qo = 230.0 .
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The associated stationary principle for this motion is obtained by

substitution of (3.2ab) and (3.3a) into (1.11),

é[ J [ 230.0 v + p(v) ] dx ] =0, (3.4)
D 1+ 0.1(1-x) + 0.05(1-x)>

3.2 THE IMPLEMENTATION OF THE SYSTEM SOLUTION ALGORITHM

The approximate fluid speed variation throughout the cone section
is now obtained in two stages, as described in §2.1. The problem is

first solved on a fixed grid, defined by (2.2) and (2.3), where note

from (3.1) the domain length is 1.0.

There will exist two independent solution vectors on the fixed grid
corresponding to the possibility of one of either subsonic, Q;sub’ or
supersonic, a:sup’ flow throughout the cone section (see [1] and {2]).
The constant initial data vector, gg, is specified in accordance with
the initial data regions derived in [2] so as to obtain the approximate

solution to both of these flow types

SUBSONIC FLOW @ a2 = 200.0
and (3.5)
SUPERSONIC FLOW : aZ = 500.0 .

The piece-wise linear approximation to the fluid speed in subsonic flow
, using 7 nodes, on the fixed grid is shown in FIG.47{¢ and in supersonic
flow, when wusing 10 nodes, 1in FIG.4iv. The corresponding solution

* . . e
vectors, 3Fsub and a may now be used in turn in the initial data

%
=Fsup’

vector, y:, for the adaptive grid solution stage



- O - * A
SUBSONIC FLOW @ w, = (ac .., s )
(3.2
SUPERSONIC FLOW : NER . )
© YA T U ZRsyp v B

so as to obtain the adaptive grid solution vector for subsonic flow,

X _ X
2sub’ and for supersonic flow, éAsup'

3.3 SINGULARITY OF THE LOCAL SYSTEM

We now consider the case when the Jacobian, [J]?, of the 1local
system (2.11) becomes singular, i.e. A D = B C, in the adaptive grid
stage. A situation in which this may be expected to occur 1is on
occurrence of parallelism in the piece-wise linear solution, i.e. when

adjacent element slopes become equal or a when a node and its two

neighbours are collinear, namely

AT NODE i : m, =m. . (3.7)
i-1 i

This will actually correspond in the present case to there being a
linear region in the exact solution; close to collinearity the local
Jacobian becomes nearly singular and as a result the ’parallel node’
migrates very rapidly towards one of its neighbouring nodes. Singularity
will also occur if co-incidence of two nodes takes place, and again this

is found when the determinant of [J]? is zero
k _
det [J]1 =AD-BC=20, (3.8)

The treatment of a ’parallel node’ is now discussed. As stated

above the rapid migration is a consequence of the discrete solution
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beina unable to uniquely represent a linearity present in the solution.
As a result of this movement merging of nodes may occur, but the
replacement of one of these nodes into a suitable location in the
solution domain (by conservation of area, or similar arguments) would
appear unfounded and unnecessary. Therefore the node is deleted from the
solution domain and the iteration continued until a converged discrete

solution is attained with the remaining N-1 nodes.

3.4 THE SOLUTION FEATURES

The adaptive numerical solution for the fluid speed, with varying
numbers of nodes, in subsonic flow throughout the cone section is shown
in FIG.5 and in supersonic flow in FIG.6: the final solution grid for

each is indicated by a series of x's at the bottom of each figure.

The accuracy of the numerical solution of either flow type may be
obtained by considering the relative difference between this solution
and the exact solution of duct flow found in [1] by definition of an
appropriate relative Lq norm (see [2]). For the particular cone section
flow considered here the exact solution for the fluid speed variation in
subsonic filow is shown in FIG.4: and in supersonic flow in FIG.43:3,
both taken from [1]. The relative error magnitudes corresponding to the
numerical solutions shown in FIG.5 are presented in TABLE 1 and to those
shown in FIG.6 in TABLE 2; these will be compared in accuracy to the
respective solutions on a uniform fixed grid (see TABLE 3 from [2]). The
number of iterations necessary for convergence of the fixed grid stage,
"IT - FG’, and the number of sweeps required for the subsequent
convergence of the adaptive grid stage, ’SW - AG’, to within the

specified convergence conditions (2.4) and (2.17) respectively, are also
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given, together with the number of any node that has had to be deleted.

SUBSONIC CONVERGING CONE SECTION FLOW - ADAPTIVE GRID
NODES |REL L2 ERROR| # IT - FG | # SW - AG | DELETE #
4 0.0000685 3 14 -

5 0.0000685 3 18 4
7 0.0000229 3 26 -

9 0.0000156 3 41 =
11 0.0000113 3 35 =

TABLE ONE

SUPERSONIC CONVERGING CONE SECTION FLOW — ADAPTIVE GRID
NODES |REL L2 ERROR| # IT - FG | # SW - AG | DELETE #
5 0.0000214 3 12 -
6 0.0000117 3 18 -
8 0.00000719 3 25 =
9 0.00000719 3 21 6
10 0.00000488 3 65 -
11 0.00000488 3 71 8
TABLE TWO
CONVERGING CONE SECTION FLOW - FIXED GRID
SUBSONIC FLOW SUPERSONIC FLOW
# NODES | RELATIVE L2 ERROR| # NODES | RELATIVE L2 ERROR
4 0.000116 5 0.0000279
7 0.0000283 6 0.0000177
9 0.0000158 8 0.00000891
11 0.0000101 10 0.00000535

TABLE THREE
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Subsonic flow

On emplioying five nodes in the numerical solution of subsonic flow
on employing five nodes it is found that, owing to the singularity of
[J]?, node 4 must be deleted (see §3.3) and thus the final solution
vector has four nodes (see FIG.5¢). In fact exactly the same final
solution vector is obtained on employing four nodes initially in the
discrete solution, which is consistent with the corresponding relative
error magnitudes shown in TABLE 1. The solution can, from TABLE 3, be
seen to be more accurate, in terms of the L2 norm, than that obtained by
employing four nodes on a uniforn fixed grid. The improved accuracy is

again seen on using seven nodes in the solution, note the 1inear region

in the solution cleariy seen in FIG.5:¢.

When employing even more nodes in the discrete solution, although
node merging does not result, considerable migration of nodes is caused
by the presence of the linearity (see FIGS.5:¢:,:v). Thus nodes can be
seen to ’bunch’ towards the right hand side of the solution domain
impairing the relative accuracy of the solution. In fact for nine nodes
the adaptive grid solution is only marginally better, in terms of the
error norm, than the fixed grid equivalent and for eleven nodes actually
becomes less accurate. The representation of the solution features on an
adaptive grid though are vastly improved; the detection of the linear
region in the fixed grid solution (FIG.4::) is impossible, but may of

course be verified retrospectively by close inspection of the associated

exact solution (FIG.4%),
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Supersonic flow

The numerical solution, wusing either Tfive or six rodes
(FIGS.6i¢.12), 1n the approximation of the fluid speed in supersonic flow
may be seen, comparing TABLES 2 and 3, to be more accurate than when
solving on a fixed uniform grid. On solving with nine nodes 1in the
solution (see FIG.6:¢::) a node must be deleted (see TABLE 2); again on
solving initially with one 1less node, i.e. eight nodes, the same
converged solution vector is obtained. The relative accuracy of this
formulation, and that using ten nodes (see FIG.6.:¥), although an
improvement on the fixed grid eguivalent is again impaired due to the

migration of the nodes as a consequence of a linear region in the exact

solution.

3.5 THE NODAL TRAJECTORIES

The features of the numerical solutions of §3.4, in particular the
occurrence of node deletion, are clearly illustrated by inspection of
the nodal displacements and nodal amplitudes of the current solution
vector at each iteration level on the adaptive grid. The trajectories of

the nodes, in both cases, throughout convergence to the approximation to

the steady state solution may then be obtained.

The trajectories associated with the numerical solution of the
fluid speed in subsonic cone section flow emplioying initially five and
eleven nodes are shown; note the uniform starting displacement of the
nodes 1in each case, i.e. at the converged solution stage on the fixed
grid (see FIGS.7:,8:). The generally smooth trajectories associated with

solution on the adaptive grid then proceed until convergence is reached
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after the reguired number of iterations (TABLE 1). A particuiar feature
of FIGS.7:,:t is the near merging of nodes 3 and 4 after 7just two
iterations on the adaptive grid, followed by the aceletion of node 4 at
the specified tolerance: the solution can then be seen to correct
significantly as iteration now proceeds with oaone less node. In
FIGS.8:,:: note the immediate rapid migration of nodes 8, 9 and 10 due
to the linearity present, bunching towards the right hand side of the

solution domain, and their subsequent representation of the curvature in

this regijon.

The nodal trajectories provided for the numerical solution of the
fluid speed in supersonic cone section flow have been chosen so as to
illustrate the effect on the final solution vector of deleting a node
from the solution domain. The nodal trajectories, in displacement and
amplitude, when initially solving with nine nodes (see FIG.9) clearly
show the deletion of node 6 and more importantly the subsequent

convergence to the same solution vector obtained when only eight nodes

are used (see FIG.10).

3.6 FLOW PARAMETERISATION

The remaining flow variables associated with a cone section motion
may be related to the fluid speed by a set of algebraic relationships
(see [1] or [5]1). By considering a piece-wise linear approximation to
the fluid speed as a parameterisation of the flow, substitution of this
into the relationships allows the derivation of the piece-wise linear
variation of all the other flow variables in the motion; this is shown
for subsonic flow, solving with seven adaptive nodes, in FIG.11 and for

supersonic flow, when using ten nodes, in FIG.12.
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SECTION FOQUR : THE ADAPTIVE GRID SOLUTION OF DE-LAVAL NOZZLE FLOW

The adaptive grid method is now applied to the approximate soiution
of flow througn a de-taval nozzie. The results obtained are compared
Wwith the approximate solution of the same motion on both a uniform and

irreguiar fixed grid (see (2]).

4.1 DEFINITION OF MOTION

The de-Laval nozzle is defined on the domain

0.0 < x < 2.0 . (4.1)

bv the area variation corresponding to the two composite sections

1.1 - (x/8) 0.0

L]

A
x
A
o
[0 o]

ENTRY SECTION : Al(x)

(2.6/3.0) + (x/6) 0.8 ¢ x €2.0.

EXHAUST SECTION : A (x)

with
Ae = 11
AT = 1.0 (4.3)
= )
and AO 1.2

where AT is the minimum cross-sectional area of the nozzle at the throat

Jjocation, i.e. from (4.2) at x = 0.8. The mass flow inlet condition 1is

assigned by setting
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C = 223.9193 , (4.4)

S0 that the mass flow rate value at the throat. QT’ 18 the critical

value, Q*, where

QT = Q, = 246.31124 (4.5)

and the outlet mass flow boundary condition then becomes

QO = 205.25936 , (4.6)

(see [2]). The stationary principle corresponding to this motion. by

substitution of (4.3a) and (4.4) into (1.11), is

§ [J [ 246.31124 v + p(v) ] dx] =05 (4.7)
D AlXx)

where A(x) is defined by (4.2).

4.2 THE IMPLEMENTATION OF THE SYSTEM SOLUTION ALGORITHM

The approximate fluid speed variation throughout the nozzle is

again obtained in two stages. The problem is solved initially on a fixed

grid, where the domain length is

d=2.0. (4.8)

defined by (2.2) and (2.3) such that a node always lies at the nozzle

throat.
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The flow is assumed to enter the nozzle subsonically: the flow
being critical at the throat (4.5) means that, dependent on the outlet
pressure conditions, it may remain so throughout the complete nozzle or

a transition may occur at the nozzle throat to supersonic flow (see

(1.

The approximate fluid speed solution on the fixed grid in subsonic
flow, ézsub’ is obtained by specifying the constant initial data vector
(3.5a) (see FIG.13i: when employing twenty-one nodes). The approximation
to transition flow, éztrans’ is found by first computing the supersonic
flow solution, by specifying (3.5b), and then taking a linear
combination (see [2]) of these two solution vectors about the throat
node (see FIG.13:v when using twenty-one nodes). The computed amplitude
of the throat node, g;, in the converged fixed grid solution of both

flow types may be, again because the flow is critical at the throat,

overwritten by the exact sonic value, i.e.

ar = 302.5 , (4.9)

but whether this 1is actually carried out depends on the particular

treatment of the throat node in the adaptive grid stage.
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4.3 THE NOZZLE SOLUTION - CONSTRAINED THROAT NODE

The basic solution algorithm (§2) 1is modified for the present
approximate solution of nozzle flow such that a node is constrainea to
remain positioned at the nozzle throat, although it may still vary in
amplitude. The throat node ampliitude in the fixed grid solution of
transition flow 1is not aoverwritten by the exact solution (4.9) as
initial data 1in this case because the resulting linearity (see
FIGS.13:v) causes nodes to merge in the adaptive grid stage of the
solution. Numerically the throat node constraint may be impiemented by

overwriting the associated local system (2.11) at each iteration level

by

k ,
] . FTL] . . (4.10)
0 -

where the subscript T refers to the throat node and A 1is defined

corresponding to (2.12). Then by inspection of (4.10) the updates to the

throat node are

and (4.11)

The approximation to the fluid speed in subsonic flow, when using
twenty-one nodes on the adaptive grid, 1is shown in FIG.14 and the
approximation to transition flow in FIG.14. The final solution grids are
again 1indicated on these figures by a series of x’s and are also

available explicitly from TABLE 4. Note that, as would be expected, the
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computed grid 1is the same in the entry section for the numerical

solution of both flow types.

NUMERICAL SOLUTION GRID FOR TWENTY-ONE NODES

ADAP’ GRID CONS | ADAP’ GRID FIX FIX’ GRID - IRR

NODE #| SUB’ TRANS’ SuB’ TRANS’ SUB’ TRANS’
1 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2 0.1777 | 0.1777 | 0.1909 | 0.1909 | 0.1820 | 0.1820
3 0.3335 | 0.3335 | 0.3563 | 0.3563 | 0.3540 | 0.3540
4 0.4673 [ 0.4673 | 0.4961 0.4961 0.4960 | 0.4960
5 0.5790 | 0.5790 | 0.6100 | 0.6100 | 0.6140 | 0.6140
6 0.6683 | 0.6683 | 0.6978 | 0.6978 | 0.6900 | 0.6900
7 0.7351 0.7351 0.7591 0.7591 0.7370 | 0.7370
8 0.7790 | 0.7790 | 0.7938 | 0.7938 | 0.7720 | 0.7720
9 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000
10 0.8153 | 0.8017 | 0.8041 0.8048 | 0.8200 | 0.8210
11 0.8466 | 0.8219 | 0.8274 | 0.8286 | 0.8450 | 0.8450
12 0.8939 | 0.8605 | 0.8686 | 0.8700 | 0.8760 | 0.8770
13 0.9569 | 0.9173 | 0.9273 | 0.9288 | 0.9190 | 0.9200
14 1.0353 | 0.9920 1.0033 1.0047 0.9850 | 0.9860
15 1.1289 1.0843 1.0963 1.0974 1.0740 1.0750
16 1.2374 1.1940 1.2060 1.2068 1.1800 1.1810
17 1.3606 1.3209 1.3320 1.3325 1.3080 1.3080
18 1.4984 | 1.4648 1.4744 1.4747 1.4570 1.4560
19 1.6508 1.6258 1.6331 1.6331 1.6290 1.6270
20 1.8180 1.8041 1.8082 1.8082 1.8220 1.8200
21 2.0000 | 2.0000 | 2.0000 | 2.0000 2.0000 | 2.0000

ADAP’ GRID CONS : ADAPTIVE GRID SOLUTION - CONSTRAINED THROAT NODE.
ADAP’ GRID FIX : ADAPTIVE GRID SOLUTION - FIXED THROAT NODE.

FIX’ GRID IRR : FIXED IRREGULAR GRID SOLUTION.

TABLE FOUR

The magnitude of the relative errors, in comparison to the exact
solutions from [1] (see FIGS.13:,:13), for the approximate solution of
both flow types with varying numbers of nodes are found in TABLE 5. Note

the increase in relative accuracy in all cases over the eguivalent
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solution on a fixed uniform grid. and additionaily over that on a fixed
irregular arid, computed (see {2]) by polynomial interpoiation of the
exact solution and eaui-distribution of the nodes (see TABLE 6). The
number of sweeps necessary for convergence in the fixed grid stage for
every formulation considered is three and the number required on the
adaptive grid, 'SW’ is shown in the table: note that no nodes have been

deleted from the soiution domain.

ADAPTIVE GRID SOLUTION OF DE-LAVAL NOZZLE FLOW - THROAT CON
SUBSONIC FLOW TRANSITION FLOW
NODE # | REL L2 ERR | # SW’ NODE # | REL L2 ERR | # Sw’

11 0.002369 59 11 0.001663 59
15 0.001398 17 15 0.001012 118
21 0.001011 188 21 0.000766 189

TABLE FIVE

FIXED GRID SOLUTION OF DE-LAVAL NOZZLE FLOW - REL L2 ERROR
SUBSONIC FLOW TRANSITION FLOW
NODE # | UNIFORM |IRREGULAR| NODE # | UNIFORM |IRREGULAR

11 0.0158 0.0041 11 0.0095 0.0028
15 0.0105 - 15 0.0063 =
21 0.0078 0.0014 21 0.0047 0.0010

TABLE SIX
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ADAPTIVE GRID SOLUTION OF DE-LAVAL NOZZLE FLOW - THROAT FIX
SUBSONIC FLOW TRANSITION FLOW
NODE # | REL L2 ERR | # SW’ NODE # | REL L2 ERR | # Sw’

11 0.001875 60 1B 0.001298 60
15 0.000906 119 15 0.000634 119
21 0.000868 191 21 0.000633 191

TABLE SEVEN

4.4 THE NOZZLE SOLUTION - FIXED THROAT NODE

The basic solution algorithm is now adapted by fixing the throat
node, not only at the throat location, but additionally in amplitude at
the exact sonic speed given in (4.9). This now becomes an internal
numerical boundary condition and numerically the updates to the
amplitude and displacement of the throat node at each iteration level
are overwritten by zero. The fixed grid solution vectors for each flow
type, illustrated in FIGS.13::,:v, may now be used as the initial data

for the adaptive grid stage.

The adaptive grid solution for the fluid speed in both flow types,
using twenty-one nodes, are shown in FIGS.16,17 with, as previously, the
final solution grid denoted by ’x’. On comparison with the approximate
solutions in FIGS.14,15 it may be seen that there is an improvement,
over when the throat node was constrained in position only, in the
representation of the curvature in the solution around the nozzle
throat; this is probably due to the inaccuracy of the numerical
quadrature and thus of the throat node amplitude 1in representing the

extreme gradients at the throat. The relative error magnitudes for
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various numerical solutions of both flow types,

using the present

treatment of the throat node, are provided in TABLE 7, and these can be

seen to be more accurate than those on both of the fixed grids ‘see

TABLE 6) and also as expected the previous adaptive grid solution &4.3

(see TABLE 5).The mproved nodal distribution can also be seen on

inspection of the exact final nodal positions provided in TABLE 4: again

note that the numerical grids are the same throughout the entry section.
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4.5 THE UPDATE OF THE LOCAL SYSTEM

The possibility of modifying the basic algorithm sucn that each
node is locally updated more than once has been suggested in 82.1. The
effect on the solution, with particular regard to the number of sweeps

required for convergence on the adaptive grid and the consequent final

solution

vector, has been studied when considering each of the

treatments, 84.3 and 84.4, of updating the throat node. The results are

shown in TABLES 8 and 9.

ADAPTIVE GRID SOLUTION - THROAT CONS’ - LOCAL ITERATIONS

SUBSONIC FLOW TRANSITION FLOW
LOC’ IT’| REL L2 ERR | # SW’ |LOC’ IT’| REL L2 ERR | # SW’
1 0.00101 188 1 0.000766 189
2 0.00101 181 2 0.000766 182
3 0.00101 181 3 0.000766 182

TABLE EIGHT

ADAPTIVE GRID SOLUTION - THROAT FIX’D - LOCAL ITERATIONS

SUBSONIC FLOW TRANSITION FLOW
LOC’ IT’| REL L2 ERR | # SW’ [LOC’ IT’| REL L2 ERR | # SW’
1 0.000868 191 1 0.000633 191
2 0.000868 184 2 0.000633 184
3 0.000868 184 3 0.000633 183

TABLE NINE
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First note that the final approximate solution vector faor each
motion studied, when employing the same throat node treatment. is the
same however many Jlocal iterations, ’'LOC IT’, are performed: this is
reflected in the relative error values. It may also be seen that in the
solution of every motion there is a decrease in the number of sweeps
required for convergence on the adaptive grid when each of the nodes are
updated twice in turn. A further increase in the number of Jlocal
iterations has no effect on the necessary number of sweeps, from which
it may be concluded that after two iterations the local system (2.11)
for each node has to all intents and purposes converged. The nhode is
then optimally placed with respect to its neighbours. It must be noticed
however that in real terms twice as many computations are now carried
out per sweep and thus in terms of expense the inclusion of this as a

feature of the solution algorithm is not worthwhile.

.6 THE NODAL TRAJECTORIES

The trajectories of the nodes with respect to displacement and
amplitude, when using twenty-one nodes and constraint of the throat node
(84.3), for the approximation to the fluid speed in subsonic flow are
shown in FIG.18 and in transition flow in FIG.19. Note the initial
uniform displacement of the nodes in FIGS.18:,19¢ at the converged
solution on the fixed grid, and also that the broken 1ines in FIG.181¢
represent the nodal amplitude trajectories in the nozzle diffuser.
Similarly the trajectories of the nodes in the approximate solution of
both flow types with the throat node fixed are found in FIGS.20,21; the

additional feature of these graphs is the constant throat node amplitude

shown in FIGS.20:¢,21:1.
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4.7 FLOW PARAMETERIZATION

The piece-wise linear variation of the remaining flow variables
associated with a nozzle motion may again be obtained by considering a
piecewise linear fluid speed variation to give a particular
parameterization of the flow. The variation of each of these variables
for both subsonic and transition flow, when employing twenty-one nodes

and fixing the throat node are shown in FIGS.22,23 respectively.
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CONCLUSION

In this report a new method 1is presented which provides
approximations to the flow variables in duct flow in terms of the
distance along the duct axis. The method is novel in that it determines

the grid at the same time as the approximate solution.

Finite element approximations are used for both aspects and a
Jacobian iteration is employed to soive the non-linear normal egquations
involved. By manipulation of the equations a decoupiing is obtained
which allows sweeps of Tlocal updates, thus avoiding some of the

il1-conditioning inherent in the Jacobian matrix.

An investigation is carried out 1into the efficiency of this
procedure, including the effect of those nearly 1linear parts of the

solution where unrealistically large co-ordinate updates are obtained.
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