DEPARTMENT OF MATHEMATICS

On Unconditionally Linearly Stable Centred and
Upwind Semi—Implicit Methods for Convection

and Convection Diffusion Problems

M.J. Baines

Numerical Analysis Report 14/91

UNIVERSITY OF READING



On Unconditionally Linearly Stable Centred and Upwind
Semi~Implicit Methods for Convection

and Convection Diffusion Problems

M.J. Baines

Numerical Analysis Report 14/91

University of Reading

P O Box 220

Reading RG6 2AX



Abstract
We derive unconditionally linearly stable semi-implicit centred and

upwind schemes for convection and convection-diffusion equations in 1-D.



Introduction

In a recent paper Carey & Jiang [1], using a least squares finite

element approach, derived the centred implicit scheme on a regular grid

[1+ (% - 6%b2)52] (U?+1 -

U") = v A UT + 6v252%0° (1.1)
J o J J
for the approximation U? to the solution u of the equation

u +au =0,
X

where a is a constant, v = a At/Ax is the Courant number,

n_ oM _ D 2l _ M oyl n .
Aon = /é(UJ.+1 Uj—l) , & Uj = Uj+1 2Uj + Uj—l and 6 is an
implictness parameter (0O 6 { 1) . The scheme is conservative, second

order if 6 = % and unconditionally stable if 6 2> %4 . The factor %
in (1.1) arises from the mass matrix using linear elements. Carey
& Jiang note the similarity with the Taylor Galerkin form

[1+ %(1 - v)5°] (U‘J.‘+1

- UM = -» A UT + ¥ 025200 (1.2)
J o) J
of Donea [2].
Another similarity is with the implicit centred schemes of Lerat
[3]
[1+ 2avh_ + %(7+ﬁv2)62](U?+1 - 0% = v U + (12004 v?6°0T . (1.3)

The choice a =0, B=-%, v =% regains (1.1) with 6 =% . Lerat
showed that the scheme (1.3) is unconditionally stable in L2 under the

conditions

al¥%, BLa-4¥%,v<4% (1.4)



which are satisfied by a =0, B=-%, v =% .

The choice a =0, B=-%, v = Y% regains (1.2). These do not
satisfy (1.4) and (1.2) is only conditionally stable. It is however
third order accurate and, unlike (1.1), possesses the unit CFL property.

Consider schemes of the form

n+l _

[1+ %(7+ﬁv2)62](Uj UIJ.‘) = -» AOU‘J? + %qsuzazurjl : (1.5)

which include (1.1) with ~ =%, B =-20%, ¢ =26

(1.2) with ~

]
b N

B=-%, ¢ =1 .

Lerat [3] in recent work takes v =0, B=-1, ¢ =1 , motivated by
the most rapid convergence towards steady state.

The parameter ~ arises from the mass matrix in the underlying
Galerkin method : ~ = % corresponds to linear elements, ~+ =0 to
delta functions. The parameters ¢ and S come from higher order
terms in the Taylor expansion : B = -% gives third order accuracy,

¢ = 1 gives second order accuracy.

neleAx

Stability of (1.5) is investigated using U? =g . giving
[1-2(v+Bv?)s®*](g — 1) = —2ivsc - 2¢v3s? (1.6)
where s = sin “4kAx, ¢ = cos ¥kAx . Thus
o 1-2(~v+pv?)s® - 2¢v?s? - 2ivsc
1 - 2(~+pv?)s®
_c® + (1-2(+pv®) - 2¢v%)s® - 2iwsc (1.7)

c? + (1-2(v+pv?))s?



gl® - [c® + (1-2(v+Bv?)s®-291v%s%T2 + 4v2s3c? (1.8)
[c®+ (1-2(v+pv?))s®]?

| 4 %0 + %% - 49v®s®[cP+(1-2(x+Bp?))s?]

[c® + (1-2(~+Bv?)s®)]?

1+ 4v%s%c?(1-¢) + 4vs*¢[¢pp® - {1-2(v+Bv>)}] (1.9)
[c® + (1-2(~+Bp?)s?)]?

from which, for stability for all v , we require
421, v$%, BS-L. (1.10)

This confirms Carey & Jiang's [1] result, that (1.1) is unconditionally
stable if 0 2> % . It is still unconditionally stable if ~+ = % (but
marginally).

The marginal case is of interest. Take ¢ =1, v =%, B=-%.
The scheme (1.5) becomes

n+l _

[1+ 4 (1-v2) 62] (U] U‘J.‘) == AOUIJ.1 + %DZEU? (1.11)

and (1.8) is

2 _ . 2_242 2.2 .2
g={c —vs )2 u 4: ~——=1. (1.12)
(c® + v7s®)

This shows clearly the origin of the implicit operator

1 + %(1-v3)6°



for this purpose. Since (c® - v%s?)? + 4%s%c? = (c? + v®s®)? then

{1 - (1-v®)s® - 203%s%}? + 4%s2%c? = {1-(1-v?)s®}? . (1.13)

The term 4p2sZc?

comes from the central differencing of u, and the
2v%s? term from that of L The remaining terms show the origin of
the implicitness operator. When <~ 1s reduced below % we get some

dissipation.

§2. Extension to Convection-Diffusion

For the convection diffusion equation
u_+ au_ = bu (2.1)
X XX

we extend the scheme to

n+1

[1+%4(1-v2-21)562] Ul %(Un U’J‘_l) + [1+4(1+v2+21)62] U? (2.2)

j+1

bAt
(4x)*
(n+%) At . Then

where u = and the buxx term has been discretised at

|g|2 _ (c3-(v3+2u)s?)® + 4v3s3c?
(c*+(v3+21)s%)®

_ (02+D232)2 _j’J‘SZ(GZ_DZSZ) + 4’-1254 (2 3)
(c®+v%8%)2 + 4us®(c®+v?s®) + 4us?

A-B

e (2.4)



where

A= (c® + 1v2s%)% + 4qu(v? + p)s?
B = 4us®c® . (2.5)

Both A and B are non-negative and so |g| {1 ., Vo,u. It is
unconditionally stable. Dissipation is increased by reducing the factor
% occuring in the second term of (2.2) in each square bracket.

Re-introducing ~ :

2
[1+ %(v - if&)az] UT'I = - v AU+ [1 o+ T+ LI 6P vl (2.6)

|gl2 _ (1-2vs® - (v3+2u)s%)? + 4v?s3c?

(1-2vs® + (v3+ 2u)s?)?

_(c® + (1-27)s® - (v®+2u)s%)? + 3532

(c® + (1-27)s® + (vZ+2u)s®)?

. 4v3s2c® - 4[c® + (1-27)s®](v3+2u)s>

(c2 + (1-2v)s® + (v2+2u,)s2)2

1

=1 - {4(1-27)s* (v3+2n) + 4cZ2us®)

2 . 2 2 2y2 (2.7)
(c® + (1-2v)s® + (v°+2u)s®)
so that it is clear that ~ < % introduces dissipation.
If ~=4%
4 2 2 2
lg]? = 1 - (¥%s” (v=+2u) + 4c“2us”®) (2.8)

(c® + %-sz + (v3+2p)s?)?



§3. Two—dimensional Convection

We attempt the same procedure in the 2-D case. Starting with

n+l n At® n
Uyt =u + Atu 5T U (3.1)
where
u_+ au_+ bu_ =0, we obtain (3.2)
t X y
n+l 2
u - u" = - aAt u - bAt u_ + %(At)3(a® u .+ 2abu + b%u_ )
y yy
which discretises to
n+l _ _ n (282 »252
Ul U‘j‘k = - oA Uy - 2AoyU i ¥ AT + 20y oh A+ 3 )U
(3.3)
= 1 - 2 _ -
Here onUjk = A(Uj+1k Uj—lk) , 6x = Uj+1k 2Ujk + Uj—lk etc. Then
the stability analysis gives
_ — _Os _ . _ 2.2
g-1 = 21vlslc1 21v25202 2v1 1 4v1v251c1s2 9 2v2s2 (3.4)

1 1 1 1
where s; = sin §k1Ax. c; = cos §k1 Ax, Sy = sin 5 2Ay 1€y = COS §k2Ay ‘

Introducing an implicitness operator with real and imaginary parts

Nl‘N2 this becomes

(N1—2u§s1 4v.v,8.C,S 2v§s§)2 + (N2 - 2v.s,c.— 2v,8

172%1°%1%2% 1°1%1

2 2
N1+N2

|g|2 _ 2 2 2)

(3.5)

The object is to choose N, ,N, simply so that |g|2 1. In fact N

172 2



must be zero if one wishes to avoid having to invert an unsymmetric

matrix. Also N1 should be symmetric.

84, Unconditional stability for First Order Upwind Schemes.

The first order upwind scheme for

u +au =0 a>0
t X
is
1 n n n
1l | Y ¢ § S R
J J »( J J—l)
Consider
[1 + %(1-v-02)627 (0% - %) = - (U - 0P ) + %052U0"
j J J j-1 Jj
Then
[1 - (1-0-02)s2](g-1) = -v(1-e KX} _ 9,242
= -2v(s® + isc) - 2v%s? .
So g = 1 - (1+v+v?)s® - 2ivsc

1 - (1-v—?)s®

lg]? = (c® - (v+v%)s®)? + 4Zs3c?

(c? + (v+v?)s?)?

4ps3c?

(c® + (v+®)s®)®

If a < O, the corresponding scheme is

il = <1 p20.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

[1+ %(1+v—v2)62](U?+1 - U3 = - o0 - U3 ) + w20t (4.6)



- 10 -

so a general unconditionally stable scheme (only 1lst order) is

n+l _

[1 + %(1-|v]|-v®)62](U "

: ) = - (U - U, ) + w3670, . 4.7
j 37 v(Uy - Uyyq) + 807070 (+.7)
Note that this method is quite distinct from (1.1) with 6 # % , for

which (1.1) is first order, and from (1.2) which has no linear term in

v multipying 6% .
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