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1. INTROBUCTION

The Crank-Gupta problem, [1],[2]1 (so named after its pioneers),
is concerned with the absorption and diffusion of oxygsn in tumour
tissue. In the first stage, oxygen is permitted to diffuse in the
tissue under the constraint of a fixed surface concentration until a
steady state is attained. Crank and Gupta examined the second stage,
that in which the boundary is sealed and the oxygen content in the
tissue is reduced to zero by being externally extracted; this process
causes the inward motion of the oxygen boundary, thus presenting a
moving boundary problem. We follow Crank and Gupta in treating a
one-dimensional model of the second stage of this problem.

The one-dimensiocnal parabolic partial differential equation

governing the concentration of oxygen, ulx,t), is
u, =u = 1 {(1.1)

There is a stationary boundary at x = 0 which permits no oxygen

leakage and therefore imposes the Neumann condition

(1.2)

v
o

u (0,t) =0 , t
X .

The other boundary, which is also impermeable, may move, but maintains

zero concentration: the condition is therefore

ux[xo,t) =0 = u[xD,t), tz0 , (1.3)
where Xg = xD(t] is the position of this boundary at time t,
and must be computed as part of the solution.
The steady state solution of the first stage of the problem
with no absorption supplies the initial condition
ulx,0) = 3(1-x)2, D <x<=1, (1.4)

with the boundary position

xD(U] = ik {(1.5)



Over the last decade numerical results for this problem have
been obtained using a variety of methods, including the original finite
difference approach incorporating a short-time analytical solution via
Laplace transforms by Crank and Gupta (see [1] and [2]}. Hansen and
Hougaard [3] derived an integral equation for X and an integral
formula for u (as a function of xU]. They then solved the integral
equation asymptotically for t » 0 and numerically for all t, computing
u by the integral formula. Miller, Morton and Baines [4] used an
iterative finite element technigue to obtain an adaptive mesh solution.
The results of these different approaches were all in good agreement
with each other.

The method of moving finite elements (MFE) of Miller [51,[8]1 for
this particular problem is attractive for two main reasons: firstly, for
the obvious property of being able to use a moving node in order to
locate the position of the moving boundary, and secondly because of
its recent success in approximately solving diffusion problems in bath
one and two dimensions (see Johnson [7]1).

Section 2 contains a description of the method, and in section 3
we discuss mathematical aspects of its application to the problem.
Section 4 presents and analyses the numerical results obtained, from

which conclusions are then drawn in section 5.

2k THE MFE METHOD

The problem is solved using the local moving finite element
method {81, which arises from the standard moving finite element
method [5], [81, [9]. We begin with a summary of the standard MFE

method but without penalty functions.



2.1 The Standard MFE Method

For an eguation of the form

u, = r(u)

! , (2.1)

where [ 1s a linear one-dimensional spatial differential operator,

we seek a pilecewise linear function v of the form

N
v=Y a, a, (2.2)

where aj = aj(t], j=1(1IN, are the nodal coefficients,
o . uj[x,g), j=1(1)N, are linear basis functions of local compact
support (as shown in Figure 1), and s = s(t} 1s a time-dependent

vector of nodal positions,, Sj' j=1(1)N.
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Differentiation with respect to time yields
N
v, = ad.o. * 5.8.} (2.3)
t qu {80y * 5484

where Bj = Bj[t], J=10(1IN, are (in general) discontinuous piecewise

linear functions (see references [5] and [101).



B: = = ma. > 3=1(1IN (2.4)
J

(where m is the local slope of v). Figure 2 displays this second

type of basis function.
B.(x,s)
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Figure 2

Minimising
Hvt = r(v) ”2 ;i (2.5)

the global L2 norm of the residual, over the variables

aj, Sj’ j=1(1JN, leads to the extended system of Galerkin eguations

I
o

<U._jl Vt - L[VJ>
J=1(IN . (2.6)

n
o

<Bj’ Ve - Llv)>

Substitution for Vi from (2.3) gives rise to a matrix system of
ODE’s which can be solved for the éj’ éj, 3=1(1IN. The nodal
co-ordinates aj, Sj’ j=1(1)N, may then be calculated using a time-
stepping scheme (see Section 3.,5).

Two types of singularity which may occur (and which are also

present in the local method) are described in section 2.3, together with

their remedies.



2.2 The Local MFE Method

The local approach [8] expresses the

\Y)

. of (2.3), which is
piecewise linear and discontinuous,in an element-wise form

K=, B0k * Watird o
2

(2.7)
where ¢, and ¢, .. k = % (1)N-1, are the semi a-type element
basis functions shown in figures 3(al) and (b) and qu, sz are
weighting velocities.
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In the one-dimensional case the sets {uJ,Bj}j=1 and {¢K4,¢K2}K=S
2

span the same space and we may obtain expressions relating
to Wieq? Wioo k =

%, (1IN-% (see (2.168) below).

a., 5., j=101)IN,
J J
Lz-norm

By minimising the
local element

|]vt -L ) |,
over qu, WKZ’ k =

(2.8)
% (1JN-3, we obtain the alternative elementwise
Galerkin equations
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<$pqr Vg - LV
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Each pair of equations (2.9) yields a 2x2

form
., = = - -1
where
& om I, w1t ko= %04
Wy k1* Wk2! 2
Ck = | <bgqdk> <Ogq-¢2”
b2 9k1” Ok’ 0k
I T :
BA s |_1 2
Ask = Sk+’| = SK
and

. T

For each node the relationships

(VS
[0}
J
o

.

where node j borders elements j-

simultaneous equations

k = 3% (1)N-1 . (2.9)

matrix system of the

, (2.10)
IN-% s (2.11)
= % (1)N-3 , (2.12)

(2.13)
k = % (1)N-1 . (2.14)
J=1(1)N ’ (2.15)
>
+1, give rise to the
J=101IN . (2.18)



N

These produce another set of 2x2 matrix systems of the form

M.V. = W, , i=1(1IN | (2.17)
AR :
where
v, = |1 -mj-;| . §=1(1IN, (2.18)
J /| 'm.1
j+i]
and
. | .
V. ® [aj,sj] > Jj=101IN ., (2.19)

As in the standard method, we may solve for the éj,éj, J=10(1J)N, and
obtain aj,sj, j=1(1)N, by a time-stepping integration method. The
difference is that the local method only requires the inversion of 2x2

matrices.

2.3 Singularities

From equations (2.12) and (2.18) we see that the MFE method fails

if either

As, =0 (2.20)
J]
or

m, =m, . , (2.21)

for one or more values of j. Node overtaking, (2.20),may be prevented
by limiting the step used in the time integration, and is therefore discussed
later in the time-stepping section, 3.5.

In the case of the singularity due to (2.21), which is referred to
as "parallelism" or "collinearity"”, there is no unique solution for the
unknowns éj, éj . This is remedied by fixing the positions of
such offending nodes, solving for their heights on a patch which includes



their neighbours and then adding a multiple of the null space, supplying
them with a suitable weighted velocity (see reference [9]). For this,
it is necessary to return to the o and @ basis functions (see [111].
In the case of parallelism at a single node, j, we replace the

Bj equation by
§, =0 (2.22)

from which we obtain

(2.22) yields

W, , - = A&, =w, (2.24)

from which we may obtain (via (2.23])),

éj i bj—%,Z + bj*fJ1 - %{Asj_%ﬁj_%,q + Asj+%®j+%,2) - BE
3 [Asj_% + Asj+%]
The null space vector for [éj,éj]T is
(m, 11" (2.26)
(where mj_% =m = mj+%J, a multiple of which may be added in order

to ensure that this node moves along between its direct neighbours.
When more than one consecutive parallel node 1s present, we have

to solve a tri-diagonal system of linear equations for the unknown

amplitudes. Parallelism, however, very seldom occurs in problems with

non-parallel initial data.



3. APPLICATION OF MFE TO THE PROBLEM

In solving the Crank-Gupta moving boundary problem, five
important factors had to be considered: evaluation of the inner
products, initial node placement, initial data representation,
treatment of the moving boundary node and automatic time-stepping.

These areas are discussed in the ensuing sections.

3.1 Determination of the Local Inner Products

The form of L(u) in the Crank-Gupta problem is

Llul) = U ™ 1 (3.1)

(see (1.1)), which contains second order spatial derivatives. The
approximating function, v, however, is only piecewise linear and so

Vi has the character of a delta function. The local right-hand side

vectors, k = % (1)N-1 , (see (2.14)), must therefore be determined

By
in some suitable manner. The use of integration by parts and an

average element slope at the nodes is a possible approach (see references

[10] and [12]).

. _ T = 21
From (2.14), we obtain for -Ek = [bk1’bk2} , Kk —-E[1JN—%3,
(in a non-boundary element)
beq = <¢k1’L[V]> = <bpq Ve P (3.2)
k2 k2
) Js ¢k1vxxdx B [S ¢k1dx
k1 k1
8o (K2 k2
" Dt T JS Pa,xx IS Bieq
k1 k1
= s
L ~ k2 [ 1 B k2
g VXISK1J J [ ASK] mkdx J ¢k1dx
K1 k1
= —%(mk_,I + mKJ m - %AsK
£ 1
= 3(m, m _, - As ), k=5 TN, (3.3)(a)

2



=10z

and similarly

b, = i

k2 =1

- b8, ko= 3 (1IN-3 (3.3)(b)

M+ k

For boundary nodes, the conditions u, = 0 are implemented via the
corresponding weak form of the differential equation, {1.1), in the

first and last elements, to yield

= —_ l
b33,1 ma/2 3 AS%Q
(3.4)
= -1
bN-“z‘,z mN_% ZASN—%
From these values we can obtain the coefficients qu, 'K2’
k = % (1)N-3, and hence éj, éj, j = 1(1)N, by pairing them off
nodewise (see (2.16)].
3.2 Initial Node placement
Owing to the difficulty of obtaining satisfactory solutions,
it was decided not to evaluate initial nodal and amplitudal values
simultaneously. Consider therefore initial nodal placements alone.
Early experimentation with nodal placement revealed that for
the initial guadratic data
ulx,0) = 3(1-x)2, 0 =2 x £1 i (3.5)

several nodes were required close to boundary mesh points in order to
resolve the curvature of the solution near these points. A cubic
distribution function was found to serve well, the explicit form of which
being

- 2x3 + 3x? ., (3.8)
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3.3 1Initial Data Representation

Having decided on the initial positions of the nodes, the next
task was to determine an adequate initial representation of the initial
condition using pilecewise linears.

The simplest approach considered was merely to sample point
values of the initial function at the nodes. This, however, was to
require a special treatment of the moving boundary node (see Section 3.4).

A second approach was one which was designed to ensure that the
total initial oxygen concentration was equal to the true value, but the
solution was found to be under-determined by one equatiaon; this
vacancy was to be supplied using the same boundary treatment as in the
previous case.

A third idea, one which required no special boundary treatment,
was one of fitting a linear spline to the data. Normal equations,
which formed a tri-diagonal system, were constructed by minimising
(over the amplitudes aj, j=1(1IN) the difference between the initial
guadratic and the piecewise linear function, v, in the L2 norm.

The first approach was finally chosen hecause of its simplicity
and the slightly better agreement of the final results with the results

in [3].

3.4 Special Boundary Treatment

The problem of treating the moving boundary caused the most
difficulty. This arose from the fact that we are trying to represent
a locally quadratic function by a piecewise linear approximation.
Assuming coincidence of the boundary with the final node, the
equations for the velocity of the moving boundary node and its amplitude

are



However, this approach did not produce good results.

The eventual approach employed was one similar to that used

by Miller, Morton and Baines [4]. Their method exploited the local

least sqguares fit
(x)= - Ah(x - x + h) + 2 an?
yix 0 6

to the asymptotic solution

vix,t) = A(xO - x)2, A e IR .
adjacent to the moving boundary. When vy = 0 we obtain
_ 1
X—XD E‘h

From Figure 4 we see that the relationship

a, = = N a
5

N N-1

between the nodal values at SN-1 and Sy

to model the u = 0 boudnary condition., The approach (see Figure 5)

N-17

holds, and this was used

N-1

Figure 4

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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always locates the last node to be in such a position that the

(projected) boundary with the 5:1 ratio has zero oxygen concentration,

u(xO,t] =0, t >0 (3.12)
= U
X
°N-1 °N
. ¢ (ultimate node)
(penultimate 5 Xg 1
node) e d
(position of X ay
boundary)
hN—1
Figure 5
Several other approaches, including some variations on the
above theme were attempted, in particular, one of replacing the last
element slope, LN by the slope of the local line of best fit,
2
" ahyoy
Other approaches included replacing the éN = 0 equation by an
éN + 0 one. For instance
a, = 0a . 0 <6 =1
A (3.13)
ay = eaN_an/aN_q, 0 <es1

. Another approach, requiring that u - 0, G >~ 0 was derived as follows.

Expanding ay and éN yields
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13

[am}
]

aN(t+AtJ aN(t] + AtéN(t] + %K(At]zéN(tJ

»(3.14)

12

o
]

éN(t+At] éN(t] + At éN[t]

where K is either 0 or 1 (depending on whether consistency to order

At or 3

N is respectively required). From (3.14)(b) we aobtain,

suppressing the t-dependence,

At = - & /B (3.15)

which we then substitute into (3.14)(a), yielding

22 = _1
ay = ay aN/(1 3K) , (3.16)
Using the relationship
. da, i aN[aN—aN_13 ,
I TN |Bs,| | (sy-sy ) (3.7
N N “N-1

(3.16) becomes

& =aa.  /la, - (1-%K](SN-S )] (3.18)

N N™N-1 N N-1 .
and this is used to obtain an approximation to éN.

Equation (3.7)(b) was also replaced by one for &, which is

N

feasible since éN occurs in (3.7)(a). An early idea was merely to
differentiate the last equation in the initial placement of the mesh to

arrive at one involving nodal velocities. Another exploited the locally

quadratic behaviour in the last element to produce

S, = & /h + 5§ (3.19)

N N-1"""N-1 N-1 ’

using a total derivative chain formula. The asymptotic expression in

[3] was also considered.
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Other approaches relied on replacing the WN—%,1
equations of the last element by ones obtained using the locally
quadratic form of u (since these weighting velocities were of a
larger order of magnitude than all others). It was, however, discovered

that the further we deviated from the simplest ideas, the less accurate the

results became!

3.5 Time Stepping

The time-stepping integration of the nodal and amplitudal
variables aj, s., j=1(1)N, is obtained via the first order Euler

formula to yield

av+1 =&l + At é?
J J
3=101N (3.20)
sn+/l = S? + At gl
J J J

where At is the time increment at the n superscripted time level,
which precedes the new, n+1, one (see [38]).

The time increment at a particular time-step is automatically
selected to enrsure that neither node overtaking nor more than a
specified relative change in local element slopes occurs, this
amount being chosen to maintain smooth time-stepping.

Node overtaking (and hence the occurrence of a singularity due
to a zero element length) is prevented by using a fixed time increment,
but decreasing it if node overtaking would have occurred in a shorter
time; this reduced increment is taken to be half of the smallest overtaking
time of all offending nodes.

In order to restrict the relative change in element slopes
by a specified percentage, p, say, we proceed as follows [13].

Approximate the change in each particular slope using a first order
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expansion and then equate this to the desired percentage change

in the element slope. A rearrangement then yields the appropriate

time ipcrement. Thus, let mE be the slope of element Kk at time
n+1

t, and mK at a later time. Then

n+1 n N
M, me = M At . (3.21)

Dropping the superscript n gives

. 1
mk At < m pmk » (3.22)
so that
Dmk
At < To0m ) (3.23)
k
where
Aa a a
m - Kig k1 k| (3.247,
ASi Sk
The time increment is then taken as
Dmk
At S - [3.25)
ﬂDDmk

The time increment at a particular time-step is taken as the

minimum of the two values described in the last two paragraphs.

4. NUMERICAL RESULTS

Early experimentation suggested the use of 20 intervals (21 nodes).
In order that the results could be compared with those obtained by other
workers (in particular [3]), solutions at every 0.01 seconds, up to a
final time of 0.19 seconds, were output, 0.1974 seconds being the
approximate time at which the oxygen concentration reduces to zero everywhere.

The relative percentage change in element slopes, p, was taken to be unity.
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Table 1 shows the position of the MFE moving boundary (and
its deviations from the results of [3]) at 0.01 second intervals
from 0 to 0.19 seconds, and in Table 2 we give the variation of the
oxygen concentration with respect to time at the fixed boundary.
Finally, Table 3 presents the amount of oxygen remaining at our
chosen times. Graphical illustrations of the moving boundary solution
(with the position of the moving boundary at each time indicated by
the symbol "A"”) and the amount of oxygen remaining can be seen in

Figures 6 and 7, respectively.



_']8_

[sligids] MFE Boundary Position Ditjegggﬁes
0.00 1.00000 0.00
0.01 0.99409 5.91
0.02 0.99409 5.8
0.03 0.99508 -
0.04 0.99538 3.79
0.05 0.99391 2.88
0.08 0.98970 2.10
0.07 0.98204 =
0.08 0.97076 0.79
0.09 0.85520 -
0.10 0.83508 -0.07
0.11 0.81015 =
0.12 0.87958 -0.40
0.13 0.84304 -
0.14 0.79977 -0.88
g.15 0.74711 -0.43
0.16 0.68360 -0.23
0.17 0.680532 =
0.18 0.50062 0.47
0.19 0.34434 1.03

TABLE 1
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Time Concentration at Fixed Boundary
(seconds) (and the results of 18], where possible)
0.00 0.50000
0.01 0.38878
0,02 0.34203
0.03 0.30604
0.04 0.27541
0.05 0.24868 (0.24769)
0.08 0.22453
0.07 0.20231
0.08 0.18172
0.09 0.16233
0.10 0.14390 (0.14318)
0.11 0.12645
0.12 0.10862
0.13 0.098361
0.14 0.07830
0.15 0.063386 (0.06308)
0.16 0.04803
0.17 0.03531
0.18 0.02183
0.18 0.008889 (0.00902)

TABLE 2
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(SeliZESJ Ameunt of Oxygen Remaining
0.00 0.16699
0.01 0.15706
0.0z 0.14708
003 0.13703
0.04 0.12691
0.05 0.11691
0.06 0.10694
D0i07 0.08704
0.08 0.08729
0.09 0.07765
0.10 0.06815
0.11 0.05891
0.12 0.04987
0.13 0.04124
0.14 0.03306
Q.15 0.02525
0.18 0.01807
g.17 0.01165
0.18 0.00604
0.18 0.00174

TABLE 3
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Referring to Table 1 we see that the free boundary exhibits a slight
initial inward movement, then gradually retreats until about t = 0,04
seconds, after which the motion is towards the fixed boundary at an
increasing rate. Figure B illustrates clearly the reaction of the nodes
to this boundary motion, firstly moving to the right and then returning
to the left, tracing out a concave path. The maximum time-step of
1.0 x 10_4 is greatly reduced during the early and latter stages of
the absorption/diffusion process, respectively due to element slope
changes and the nearness of nodes.

Table 2 demonstrates the initial rapid reduction of the oxygen
concentration at the fixed boundary and the ensuing steady decrease
towards zero. The first stage is due to the effects of the sink
and left-hand Neumann condition and the second to the diffusive nature of
the problem.

In Table 3 we show the almost uniform decay of the total oxygen
content from the initial (truel) value of %w Figure 7 exhibits the linear-
1ike behaviour until 0.08 seconds (approximately) which is followed by
a gentle curve to the final value of 0.18 seconds. Applying a linear fit
to the last two points and extrapolating to the time axis yields the
value of 0.1941 seconds as the time at which no oxygen remains. (A projected
value of 0.1953 is obtained when matching a quadratic through the final
3 points). These values are slightly lower than the figures given in
[31.

The CPU time used on a Nord 500 mini computer was approximately 38 seconds

with 21 nodes, compared to 9 using 11 nodes and 234 with 41.
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5. CONCLUSIONS

We have used the Moving Finite Element method to model the Crank-Gupta
moving boundary problem and have succeeded in producing a relatively
cheap and accurate solution.

In future work we hope to model the corresponding 2-dimensional
problem. We also want to experiment with the possibility of merging

nodes.
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