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ABSTRACT

Roe's approach to the numerical solution of the one-dimensional
scalar wave equation is surveyed and extended to two and three

dimensions with up to third order accuracy.
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§1. One-dimensional Second Order Algorithms

In recent years Roe [1] has evolved algorithms for systems of
hyperbolic conservation laws based on the ideas of 'fluctuation' and
'signal'. The fluctuations measure flux variations in space and the
signals are used to update the variables after a time step in such a way
as to imitate the physics.

For the scalar equation in one dimension,

CH Fx S ug 4 a(u]ux =0, (1.1)
the fluctuation in the cell [xj_%, xj+%] is defined by
= = - ) 1.2
¢j I . dx fj+§ fj_% ( )
cell
equal to the rate of decrease of fudx in the cell at time t. The notation
fk denotes f(u[xk]]. Note that internal cancellation ensures that
= 0, (1.3)
Lo,
the sum being taken over all cells.
A first order algorithm is obtained by updating u after a time
step At by the consistent (in space) addition of the signal Qj’ where
¢. = - (At/AX)¢, (1.4)
J ¢J
and Ax = xj_'__21 - xj_%_ From (1.3) we have
Z u = E u , (1.5)
new time oid time
~level level
a discrete conservation law, so the algorithm is in conservation form.
If the signals are sent with the stream, so that they are received
by UJ+%0j where
f -f,
a,j = UJ+%_UJ = 3 g, = Sign (aj), (1-8]
144755 ’

a being the stream velocity, then the scheme is simple upwinding.

J

In the case aj 2 0 VJ), the new value of uj+%o is then (see Fig. 1),

J



+ig k
AL J=u = Uy * ¢k-%
L 3 - -A_t -
T Uk T 8-y ax (UgTUkq)
= [1-vk_%]uk * V1Ugoqe (1.7)
where v = a At (1.8)
k-1 k=% Ax ’ '
from which it can be seen that, provided that vy <1 vk, uk satisfies
2
the local bound property (LB)
uke[min (u u .., max (u u, . 4J)1] (1.9)
k-4 ket k-3 kg I
henceforth abbreviated to
uRe {min max }(u TS (1.10)
» k_%l k"'% L} L

o]

J

— D; v, >0

3-4 3+
Fig. 1

[N

For the more general case when a may change sign v has to be restricted

N k-3

to | |< i.see [2]. Note that the LB property (1.9) or (1.10) implies

vk_%
monotonicity preservation, i.e. monotone data remains monotane after a time
step [2].

Higher order algorithms can be achieved by a re-adjustment of the
signals but, in accordance with a theorem of Godunov [3], monotonicity
preservation must be lost and thus the LB property must also be lost.

Re-adjustments in the form of transfers will preserve conservation.

One re-adjustment is to transfer aJ¢j. where

oy = 401 - lvjll, (1.11)

across the cell (xj_%,xj+%] agalnst the direction of the stream. First

order accuracy is unaffected by such a transfer and the choice of aj provides




for second order accuracy (see Fig. 1). The result is the Lax-Wendroff

scheme [4]. No LB property exists since even when a, = a, a positive constant,

J
uk =y + ¢ - af + ad (1.12)
K k-3 k-3 k+3
where o= 101-v) = 3(1- 248 (1.13)
Ax
K =3 — - -_— —_ -—
and hence Ut o=y (1 a]v(uk Uk—1) cx\)(uk+1 ukJ
Uy zv('l+\)J(uk uk_1] zv(1 v](uk+1 uK]
= - 1 -1 -
= (1 v)uk + zv(1+vJuk_1 v v]uk+1 (1.14)
k . . .
so that u é {mln,max}(uk_1,uk.uk+1] in general. This
result is consistent with the spontaneous generation of oscillations by the
Lax-Wendroff scheme and with Godunov's theorem (see above).
A local bound does exist under certain circumstances, however. Consider
again (1.12) but for variable aj 2 0 and let
LI T L Y
k+2®k+2 - ak+2¢k+2 - rk‘ say. (1.15]
“k-1k-1 %k-1%k-4
k . =
Then ut o= Uy + ¢k-% ak—%¢k-% + ak-%rkék—%
= {1—v(1-a+ark]}uK + v(1-atar Ju 4o (1.186)
(dropping suffices on v and a) from which it can be seen that the LB
property holds if
0 < v[1-a+ark) <1 (1.17)
or, when 0<v<1,
- R g p 342 ) (1.18)
1-v K v

For fluctuation ratios (1.15) satisfying (1.18) the LB property holds.

Another possible readjustment is to transfer a across another

o)
3
cell, say that cell adjacent and downstream of the cell [xj_l,xj+ll,

2 2

(see Fig. 2). This gives the fully upwinded second order scheme [ 5 ]for

which again no LB property generally exists. This time, in the aj = a> 0 case,



uk+1 = Uppq ¢K+% = a@k_% + a¢k+% (1.19)
= Uyq ” (1+a)v(uk+1-ukl - av(uk—uk_1]
= Uq - %v[B-v](uk+1—uk) + %v[ﬂ-v][uk-uk_1l
= (1ﬁgv+%v2]uk+1 + v(2-vlu - %v(1-v]uk_1, (1.20)

k

so that uf*! £{min, max}(u in general.

k=1*Y% " Yk+1)

a.d
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Fig. 2 aj > 0 case

Again, however, the LB property does exist under certain circumstances.
From (1.19) in the case ay > 0, we have

uk+1 . . -1

ket * Pkt T %-1Tk Okl i

+ a

K+ k+d

-1 I
{1‘Vk+%(1+ak+%-ak+%rk ]}Uk+1 + (1+QK+% (!K_*_%I‘k ]\)k_,_jz_ukl

(1.21)
so that the LB property holds if
-1
or, provided that 0 < v <1, (dropping the suffices)
R R SR PR P S (1.23)
v Kk 1-v
bk-4
For fluctuation ratios 3 (c.f. (1.15}) satisfying (1.23) the LB
k+i
property is satisfied. For more general variable a the situation

J
is more complicated (see Sweby & Baines [2]).




The above transfers can be regarded as special cases of a general

transfer function

Bla,d., o, 3, ) (1.24)
373 J'Uj J"Gj

which has the form B(b1,b2] = b,I in the Lax-Wendroff case and B(bq,b2) = b2

in the fully upwinded case (see Roe & Baines [61). The function

B(b,,by) = 3(b, + b,) (1.25)

corresponds to Fromm's algorithm.

In one version of his second order algorithm Roe [7] uses

b1 b1 < b2 b1b2 >0
B[b1,b2) = b2 b2 < b1 (1.26)
0 b1b2 <0

while Sweby [8] has carried out a thorough study of the related function
B(bq,bzl = minmod (b1,b2) (1.27)

which selects the argument with minimum modulus. Because of their non-
linearity both of these functions escape the limitations of Godunov's theorem

(see above) and lead to second order algorithms with the LB property. Note

that b1 is selected in (1.268) if O < r <1 and in (1.27) if -1 < r <1,
both consistent with (1.18), while b2 is selected in (1.26) if 0 < r;1 < 1,
and in (1.27) if -1 < r;1 £ 1, both consistent with (1.23). Figs. 3 and

4 show the B-functions in the two cases.

Fig. 3 : B-function (1.26) Fig. 4 : B-function (1.27)




More generally for any B function, transferring Bj' say, we have

(in the case a, variable but positive)

Let B(b1,b2] . B{bq,bzl
b5 = B, b =y
1 2
Then, with B, y referring to the cells k-1, k+l, we can write (1.28) as
uk =u + 0 - B a ® Yy oo ®
k k-3 k-3 k-3 k=3 k-3

T {1-(B-Y]ak_%}vk+%[uk-u )

k-1

[1-v{1-(B-YJa}]uk + {1-(B-Y]a}vuk_1

(dropping suffices on v and a ). Hence the LB property is satisfied

when 0 < v <1 iL

0 < v{1-(B-yla} < 1,
which requires
o _ 201-v) _ 2y
s T L L -

Conditions (1.18) and (1.23) are reproduced when 1 (the case

B:

B[b1,b23 = b1) and when vy = 1 (the case B(b1,b2] = bZJ, respectively.

Condition (1.33) is in fact always satisfied by the B-functions in (1.28) and

(1.27) since -1 <B <1 and -1<+y <1 for these functions.

An important effect in second order algorithms is the reduction of
the numerical diffusion, or spreading, evident in first order schemes.
The choices (1.26) and (1.27) generally achieve second order accuracy and
so0 reduce spreading, and in addition they possess the LB property and so do
not introduce spurious oscillations. However, these B-functions provide
somewhat safe choices and larger transfers are consistent with the LB
property (further inhibiting diffusion) in restricted regions of the b1, b2

plane. Thus the choice (Roe [7])

(1

(1

(1.

(1.

(1.

(1.

.28)

.29)

30)

31)

32)

33)




b b, 2 b
[ 1 L b,b, 2 0
Blb,,by) = § By b, > b, (1.34)
0 b1b2 <0
(c.f. (1.26)) will satisfy the LB property provided that -
b b -
B A Ez-s 2, & 2L1=0)
b, 1-v 1 v ’ (1.35)
.2 =2
1-v v D

(see (1.18).and (1.23). The region of the b1, b2 plane given by (1.35)

is shown shaded 1in Fig. 5. b
AL, O L =24 29/(1-v)
b
2
b1 -1
— = (2 + 2(1-v)/V)
b
2
P> b
Fig. 5
b1
In smooth regions we might expect the ratio 5 to be not too far from
2

1 and in that case second order accuracy with minimal spreading and the LB

b
property are all achieved. As solutions become less smooth _1 will move out

by

of the shaded region in Fig. 5. But in that case second ordef accuracy may be
of less interest than the LB property, and so we maintain the latter property

(and continuity of the B-functions) by setting

2v
(2 + =Up (b, > b.)
B(b,,b,) = g e )= =2 (1.36)
2(1-v)
{2 + '—\,—-—}b,' (b2 < b1)

in the unshaded regions of the first guadrant in Fig. 5. We end up with the

B-function




b i
S 1« d g4 2
1 b -V
2
b, 2(1-v)
Blb,uby) = | b, 1EpEE e ¥y (1.37)
b
2v 1 2v
2+ T b2 E; 22 + A5y
2 o 2010, 5250 201-y)
L by -~

for b1b2 >0 with B(b1,b2] = 0 for b1b2 £ 0. This choice satisfies
the LB property in non-smooth regions and has the maximum second order
anti-diffusion effect in smooth regions.

Roe [7] has advocated a simpler form of B-function contained within

(1.37), namely,

™ b, 1Eud
1 b2
b
2
b2 .'ISESZ
B(b,,b,) = b (1.38)
ve ﬁ 2b, El =
2
b
2
2b1 E: =z 2

for b1b2 > 0 with B[b1,b2] = 0 for b1b2 < 0 and has demonstrated its
non-diffusive properties.

Note that the LB property forces peaks and troughs in the data to be
trimmed undesirably and that the Roe schemes above (although not (1.27)) revert

to first order accuracy at extrema, causing extra diffusion. A suggestion for

combatting this effect 1s to add the rule that, if b,b, < 0,

172
b
rB:"""J B < 1
2
J b
B, 4 b—" > 1.
J i 2

This ensures that second order accuracy is maintained at the most important

point, closest to the peak or trough: the unwanted LB property is not preserved,




of course.

§2. A One-dimensional Third Order Algorithm

An attractive feature of the second order algorithms discussed
above is the compactness of their support, everything depending on the
conditions in two adjacent cells. A third order algorithm can be achieved
using the same support but the LB property will hold only for a further
restricted set of values of b1/b2.

To obtain the third order algorithm we carry out a further readjustment
of the original signals, transferring this time a proportion of the
difference of fluctuations across a cell. This leaves first and second order
accuracy unaffected and, with an appropriate choice of weight, third order
accuracy is met.

Thus, in the aJ > 0 case, transfer

1,9, = 1 (2.1)

. o,

373 J o J o
where
104 - 2

Ty = g1 Ivjl ), (2.2)

across the cell [xj_l, Xj+1] in the direction of the stream.
2 2

An alternative process, which achieves the same result, is to carry out

the transfers as shown in Fig. 6 (for the aJ > 0 case) for each Qj'




Then the

and

or

Since B

where r

Now

and R.

Sin

_10_

updated value of U is
= LIk + @k_% - ak_%Qk_% + Gk+%¢k+% + <Tk_%¢k_%_'rk_§¢k_§)_('rk+%¢k+%_'rk_%q>k_%)
2 2 (2.3)
=u + 0 - o ® o r o + T d - T o T-1 ®
k k-3 k-3 “k-3 k-3 "k k-3 k-%"k-% k-3"k-3 "k-1"k-3
2
ak__a_
2
T Tkees%k-1 Tk Tk-1%-d
% vy
T
- - - _ _k+3 _ -1 -
= U [(’I ak_%+2Tk_%) + é ak+1>“k-%rk Tk-g Oy rk-{,"k-%[uk uk_,]J.
2
2 o3 (2.4)
2
ue{min max}(u, ,u,_,) if
’ Kk’ k-1
T 1 o 4
k+3. k-3 -1
< - - -
0 s [Q By * 2T y) ¢ ( . 1):k_%rk Tes o Teoq| Yoy S 1 (2.5
k+3 - k-3
2 —_—
2
-1
0<A + Bery - CiTy-q S 1s (2.8)
. -1, kg -1k}
A =(]-a 2T ,)v 1, B, = S v, ., C_ = 2 . (2.7)
k k-3 k-3} k-3 k ak+% k-3 k Otk_:3
2
k> 0 and Ck > 0 it is sufficient that Ty» Tkoq should satisfy
r < r, < R, r< Teoq S R, (2.8)
», R20 and
= -1 a =1
0 = Ak + Bkr -Ckr , s Ak + BKR CKR = 1 (2.9)
Ak + ka - Ckp (2.10)
1s monotone for p > 0 and lies between 0 and 1 if p lies between r
ce ) 1 5
= =] 1 —
Ak = (1‘ak_%+2'tk_%)\)k_% [5(1"'\)k_£] + 3[1_\)k-%]]vk—i
=1 -




-/I'l_

its slope is 5 - Bv,_,(1-v__,) which is positive for 0 < v, , < 1
k-3 k-3 k-3
and A, = 0 when Ve-y T 0, Ak = 1 when Vg-y T 1. Hence
0 < Ak <1 (2.12)
provided that 0 < Vi1 < 1. Thus we may take r and R to be the roots
2
2 1
L Ak 1 Ak Ck 3
rTTrE tifmt e
K ﬁ K
(2.13)
1
1-A,)12  4c \?
= 1 1 k k
and R = 5(1-Ak) t o3 "'B
— B2 k
8y
of (2.9).
For values of T, Or T _, outside the limits in (2.13) the LB property

is lost. However one can then use one of the LB preserving second order schemes
above.

Note that for second order accuracy Ck =0 and r, R reduce to

1-A_ 1-v,_,(1-a, ;)
B O R=Bk= k-  k-i (2.14)
Kk %.gk—%

in accordance with (1.17) (considering only positive values of rk].

§3, Statement of the One-dimensional Algorithms

Summarising the one-dimensional schemes:-

For each cell (Xj—%‘xj+%)

1. evaluate the fluctuation
- a 3.1
by = ey~ Fyy (3.1)

. At _ At -

and the signal QJ = E§¢j Ax(fj+é fj_%] H (3.2)

2. evaluate the CFL number
v oAt (Fye3y-4) (3.3)

3 ax Tu )

3+ Y3-1
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and a direction given by

= . 3.
Cj sign [Yj] 3 (3.4)

add ¢, to u., , or u

. according as ., = 1 or . = -1,
] j+3 3j- = %3 93

M=

The resulting scheme is first order accurate with the LB property

n+1 . . n n
3] . ’ N 3 (3-5]
uj e [min., max. ] [uJ uJ+0]
transfer Qj?j
whe . = (1~ (3.8)
re o z(1 Ivjl]
from Usiig to u -1g
J*sz J J-z2 J

This scheme is second order accurate but has no LB property.

Transfer TJQj
where Ty = %{1-|vj|2] (3.7)
to u,., from both adjacent nodes.

J+20j

The resulting scheme is third order accurate with no LB property.
For a second order LB preserving scheme, replace steps 4 and 5 by 4a.

Transfer B(ajéj. LT o ] to from

_ U,y
.j J Uj j ZO'J

UJ+%0 » Where the B-function is one of those mentioned above:
J

- 1if the B-function is as in (1.26) or (1.27), the scheme is
second order (except at extrema of the data in the case of (1.26))

and possesses the LB property at all points (other than extrema).

- 1f the B-function is as in (1.37) or (1.38) the scheme is
second order accurate only if the ratio b,]/b2 of the arguments

b1,b2 of the B-function lies within certain limits, but the
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LB property is maintained and the scheme has much less numerical diffusion.

The above algorithms all refer to the scalar non-linear equation, and

the demonstrations of the LB property refer to the case when the wave
speed has one sign throughout. The case of a general wave speed has been
discussed fully by Sweby & Baines [2], and Sweby [8]1. The extension to
systems of non-linear equations has been the subject of a special
investigation of Roe [9] who, using a certain linearised form of the
Jacobian matrix, diagonalises the system prior to applying one of the

algorithms above.

§4, Two-dimensional Second Order Alorithms

Algorithms such as those described above have been applied to two-

dimensional conservation laws, for which the scalar equation is

g+ F o+ By S Uy + alulu, + b[u]uy =0, (4.1)

via a form of operator splitting in which one-dimensional steps are taken
alternately in the x and y directions [10]. Here however we generalise
the ideas of the one-dimensional method directly into two dimensions seeking
to avoid such a splitting technique (see [11]).

First we generalise the fluctuation ¢ by identifying it with the
rate of decrease of J udQ@ over a cell at time t (c.f. (1.2)). For the
quadrilateral in Fig. 7 this is

IL (,+g,)da = ; (f.g) ds. (4.2)
ABC ABCD




_1 4_

C

Fig. 7

Using trapezium rule integration we obtain the approximation

) {§0F +F Iy ~y.) + 3(g +g )(x -x )}
sides like CD C'D-D°C C=p""Cc"D

When the quantities (4.3) are added over all cells there is total
internal cancellation, so that signals constructed from (4.3) in the

manner of earlier work will lead to

Ju = Ju ;
new old
time lsvel time level

the discrete conservation law. We shall define ¢ to be (4.3).

The contribution to the sum (4.3) from the points C and D is
1 - 1 - 1 . 1 N
z[fC+fDJ[yD yCJ + 2(gC+gDJ[xC xD] + 3 fplyyyp) + 2gD(xD Xp)
1 . 1 -
+ ZFC(yC yB] + ng(XB XC]

= 1 - 1 o 1 - 1 N
afctyD yB] + 2FD[yA yC] + ng[xB xD] + 2gD(xC xA]

(4.3)

(4.4)

(4.5)

(4.6)

(see next page)

+Note: Rather than splitting the fluctuations (4.3) into arrow

fluctuations it would be more in line with the non:splitting

philosophy here to use (4.3) or (4.8) in the form of a single

signal sent wholly to a target or targets. However it has

been found (Baines[11] ; that the LB properties (§5) ;

cannot be preserved unless biassed forms of (4.8) used which lead

to conservation difficulties in the non-linear casse.
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If the quadrilateral is a rectangle on the xy grid (see Fig. 8),

Yp7¥g = *lya-yp) = By, say,
BB R (4.7)
Xo X, = -(xB-xDJ = Ax, say.
Then (4.6) becomes
B(Fyrfoldy + 3lg-g)ox . (4.8)
A 2 €
A
8 c ¢
Fig. 8
Now, associating the term %(gD-gC] with CD, leaving %fDAy. %FCAy
to be associated with AD,BC, respectively, the total contribution of CD
from the cells ABCD, COEF (See Fig. 8) to the sum in (4.3) is
Similarly the contribution from DA is
"’f = (-{-‘D—-FA]Ay. (4.10)
Now Z¢, as defined by (4.3), may equally be taken to be the sum
of the guantities wf, wg taken over all arrows CD, AD in the grid of
rectangles. Comparing ¢F' wg in (4.9), (4.10) with ¢ 1in (1.2) of §1,
we see that there is a close correspondence, each component differing only
by a length factor. Since we need to divide the arrow-fluctuations Voo wg

by an area to obtaln the correct dimensions for u (as compared with a

length in one-dimension), we can construct a two-dimensional algorithnﬁ

(+ see previous page)




based on that in one dimension by the simultaneous updating of u

_18_

the addition of signals

in line with the definition of ?j

i

At
Axty Ve

at

x [FD—fA]

(=)
I

At

AXAY

by

. - At ,

in (1.2) and (1.4) of §1.

of this approach is that many of the results for the algorithms in one

dimension go over into two dimensions.

method operates simultaneously in the x

Although akin to splitting the

and y directions.

In a first order scheme the signals (4.11) may be sent with the

stream components (indicated by the signs of

to update u at the appropriéte end of the arrows, i.e. using the signs

of

for all arrows
we can show taking the case

which monotonicity preservation in a range of directions can be deduced.

The value of

A

Fig.
where

Hence

showing that, for v

property

9

\Y

.F

DA,

-f

D A

and b
-u

DA

CD.

co

of

3u

_ Bp7E¢

Yp7Yc

og

:au

For this scheme, which is first order accurate,

a,b > 0, a two-dimensional LB property, from

at the new time level will be (see Fig. 9)

D

UD= u
D
At At
20 Ex * V2 " PeoEy ¢

uD = {1-(v1+vé]}uD+ v

20, v.20,v

1 2 1

+ 0

-V

1Yp

2

+

.F
1(u

+ Vv

o
g

D YA

2Yc’

) -

+v_ < 1, uD

v2[uD—uC] ’

satisfies the LB

The advantage

(4.11)

or their approximations)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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uDe{min,max} {u_,u (4.17)

p*Ua’tc’ -

As 1n §1, for the general non-linear case it can be shown that the
restriction needs to be tightened to |v1 + vzls 1.

We can use the results of §1 to develop a number of algorithms
which are second order in the sense that terms in Uy and uyy in
the truncation error are correctly matched. For example, a two-dimensional
Lax-Wendroff type algorithm can be constructed by redistributing the
signals (4.11) using transfers of a1¢f and a2¢g from D to A and

C respectively, where

o, = %(1—|v1l] ;

L (4.18)
@, = %[1-|v2[] ;
(see Fig. 10). The result will not have the LB property, nor will it
match the uxy term in the truncation error.
a1d>_F G’
A i‘ L €
¢
f i a2¢g
8 ~—c
Fig. 10
Taking the latter point first, we introduce lateral transfers
aSQF from D te G and a4¢g from D to E. Existing first and
second order terms in the truncation error are unaffected by this process
and it is easily shown that the cross-derivative term in uxy is
matched if
Vg + Vol = Vv, (4.19)
which has a parametric solution
@, =V, cos?®, a, =v, sin2g. (4.20)

3 2
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To re-establish the LB property we use the B-function of (1.24).
Then, corresponding to (1.30), we have for the updated value of Ug

D
u o= Ut ¢f - Ba,ItI)jc + ya1¢F
+ <I>g - 80L2<I>g + yoz2<1>g
= Ba3®f + Yo¢3<1>_F

N Ba4¢g + Ya4¢g. (4.21)

where B,y are defined by (1.29) and in fact vary from term to term.

Thus

D
u” =g+ (1—Ba1+ya1—8a3+ya31v1(uD-uA)

+ [1-B?Z+Ya2-6a4+yu4]vztuD-uCJ (4.22)
and the LB property depends on the inequalities
1 - Ba1 *ye, - Bas + Yo 20

1 - Ba, + Yo, - Ba, + Yo, 20 f (4.23)

V1(1-Ba1+ya1-8a3+ya3] + v2[1-8a2+ya2-8a4+ya4] < 1. |

If we take the B-function to be that in (1.26) we have

0<B<1, 0<y<1. (4.24)

Thus
1 - Ba1 *ya, - Bus * yaq =1 - a, - og

= %[1+v1] "V, cas?g, (4.25)

from (4.18) and (4.20). This is non-negative provided that

cos2e < (1*vq) ' (4.26)

2v2
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Similarly 1 - Ba, + Yo, - Bo., + yo, 20 if Sinze < (1"'\)2].
2 2 3 3 ——
2v
1
A consistent value of 9 is E—, giving
= 1 = 1
0(.3 2\)2: 0.4 2\)10 (4-27)

For the final condition in (4.23), we require

v1(1-6a1+ya1-6a3+ya33 + v2[1-8a2+ya2-6a4+ya4J

IA

v1(1+a1+a3] + v2[1+a2+a4]

*v1{%[3-v1] + vzcosze} + vz{%ts-vz] + v1sin26}

2U1(3 v1J + 5v2(3 vzl + v, v

172

= g{v1+v2] - %(v1-v12 (4.28)

to be not greater than 1, which is the case if, for example

vy + v, [s 2 (4.29)

(the worst case is when vy = v2).
If the B-function is taken as that in (1.27) we have only the weaker
condition

B8] < 1, |y| =< 1, (4.30)

c.f. (4.24), and the corresponding conditions on VqoYy and 6 are then

2 & 2 V2
cos40 < 53; " sincg < 5;; ’

(4.31)

and = 2 2
2(v1+v2) [v1+v2] + Vv, < 1.

These can be satisfied,in particular, if o = tan-1(b/a] and (v1.v2) belongs to
a rather small neighbourhood of (0,0).

Under these conditions we have the LB property

D .
u e{mln.max}(uD,uA,uC], (4.32)
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Seeking now maximum anti-diffusion, as in (1.34), we set B = 1

in (4.22) (corresponding to B[b1,b2] = b,) obtaining

1

@ = Un + (1-0, =0 *+Y, 0, +YaYaJ) v, (U_-u, )
D 1 %37 Y1 % Y3 Y3 VT,
+ (1-a2-a4+Y2a2+Y4a4]v2[uD-uC), (4.33)
(see Fig. 10), where —
. =(a1®F]DE .- (GZQg]DG
1 [a1®f)AD 2 (aZQg)CD
> (4.34)
- (63¢f}BC . [a4¢ ]AB
3 [u3¢FJAD 4 [a4¢g)CD -)
Suppose that Yqs Yo Ygs Y, are bounded, i.e.
g < Yy < G, (1 =1,2,3,4). (4.35)
Then the coefficilent of Up in (4.33)
T-0, —a_ +y,a, +y,0a,21+ (a,+a,) (g-1)
1 3 171 3 73 173 (4.36)
2 0
if g2 1 - laytay) . (4.37a)
Similarly for the coefficient of u. we require g = 1 - (a2+a4l—1. (4.37b)
Finally, for the coefficient of Up in (4.33) to be non-negative we require
v1(1-a1-a3w1a1*y3ual + v2[1-a2-a4+y2a2+y4a43
(4.38)

< V1(1 + [a1+a3](G-1]) + v2(1+[a2+u4)[G-1]]

s 1

which holds if
G<s1+{1-

(v1+v2]}7{v1(a1+u3] * v layta,ll, (4.39)
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Therefore, provided that the four ratios CEACTACTR lie in the range
(max. [1-Ca,+a;) "1, 1-Coy+a) 11, 1 + ) (4.40)
' 17 73 ’ 2 74 i i )
where I = {1-(v1+v2]}/{(a1+a3]\)1 + Cayragdv, b, (4.41)

then the coefficients of u., u., u in (4.33) are non-negative and

A° °C
the LB property holds. This is the range for which the Lax-Wendroff-

D

type two-dimensional scheme referred to above has the LB property.

If we now set y = 1 in (4.22) (corresponding to B(b1,b21 = b2]

we obtain
TR uy + (1-B1a1-83a3+a1+a3]v1(uD-uAJ
+ (1—32a2—34a4+a2+a4]v2(uD-uC), (4.42)
Where R R A L (4.43)

(see (4.34)). For the LB property it is then sufficient that the
B, (i =1,2,3,4) 1lie in the range

-1 -1

(1 -T, min.[1 + (a1+a3) , 1+ (a2+a4] 1., (4.44)

1.e. that the coefficients Yy lis in the range

-1

. - -1 1 _
<;ax.[{1+(a1+a3) 1} , {1+[a2+a4] 1} 1, (1-1) 1). (4.45)

Taking (4.40) and (4.45) together, and noting that all v's and o's are
positive, we see that for the LB property to hold it is sufficient that

Y1.Y2,Y3,Y4 lie in the range

Gwmm+m1m§'ﬂ1+mzmd'ﬁmmm.[wm.mfl”g. (4.46)

With ag,0, given by (4.27), this gives the range
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ol 5 1 2 in |1 {1—(v1+v2]} {} {1-(v1+v2)}
. S By au € W gme—— |, B 1 -1 - 2 1 - - 2
3 vty 3+u1 v, 5(v1+v2] 2[\:1 v2) 3(\),]+v2J %[v,l v2J
(4.47)
2
If, further vy <1, v, <1 and v, * vzs 3 c.f. (4.29), the range
for Y;» and therefore for El, can be replaced by
b
2
by
i <— <2, (4.48)
b
2
(i =1,2,3,4) as in the bne-dimensional case (1.38), with the same choice
of B-function as (1.38) when (4.48) is not satisfied. More generally we
can define, as in (1.37),
=
o~
b 1 <P1 <k
1 o
2
b 1 < b2 < K
2 b,
Blb,,b,) = 1 ! , (4.49)
1272 b
kb 12 k
2 o
2
Kb 1 <K 5
i b,
2 J
e
where h
-
2 2
K = max. | 1- » 1 —
N 3-v1+v2 3+v1 v2 J
— - ¢ (4.50)
{1-[v1+v2]} {1-(v1+v2)}
K = min. 1+ 7 ’ 1 2
2V v, )1V, -v,)2 %[v1+\)21-i(v1-\)2J )
S J

§5. A Third-order Two-dimensional Algorithm

We now construct a two-dimensional third order scheme along the

lines of §2.

Using the transfers in §2 on the signals of (4.11) we snsure that terms

in the truncation error proportional to Ugr Ugysr Uy @and uy, uyy' uyyy
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are matched and, with the lateral transfers of §4 1dincluded, the term

in u is also matched. It remains to deal with the terms u and
Xy XXY

uxyy in the truncation error. These can be matched by further lateral

transfers (in the aj’bj >0 case) of the form

1 -
zv2[1 v2J QF
from G to D and from C to D (see Figs. 10 and 11) and
1 N
2\)1['] \)1]¢g
from E to D and from A to 0O
TBQf
7,0 T,0
\4 g L/\Z} :
T3¢f transfers for uxxy and u
- 1 -
TB = z\)2(1 \)2]
= 1 -
c Fig. 11 14 = 2v,]('l v1]
It is possible to analyse this scheme and to determine that it is stable
in a neighbourhood of (v1,v2] = (0,0) [see Appendix A by P.L. Roe].
It is also possible (but intricate) to find regions of the [b1,b23 plane
for which the scheme possesses the LB property.
§8. Statement of the Two-dimensional Algorithms
Summarising the two-dimensional schemes :-
For each x-arrow (like AD in Fig. 12):
1. evaluate a fluctuation
¢f =[fd$AMy
and a signal o . At i =-é£.[f e § 5
£ Axdy f  Ax D A

(5.1)

(5.2)

xyy

(6.1)

(6.2)
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2. 8valuate a CFL number

(FD’FA) (6.3)

- At
1 Ax uD—uA
and a direction o, = sign [v1); (6.4)
3. add ¢f to uy or uA according as o, = 1 or oq = -1.

- repeat steps 1-3 for each y-arrow (like CD in Fig. 13),
defining corresponding quantities wg‘Qg’vZ’UZ'
The resulting scheme is first order with the LB property

n+1 : n n
Uy, € [mln.max](pi‘J. ”1-01,3' ui'J_ch (6.5)

Further, for each x-arrow:

4. transfer a1¢f ’

where @, = %[1—|v1l], (6.6)
from Uy to uA or from uA to Up according as o4 = 1 or
01 = -1 3

5. transfer a3¢f,

where 4, = lvzl cos20, (6.7)
from Un to Ug (01=1, 02=1J

g to Ue [°1=1, °2=+1)

Up to Uy [01=-1. 02=1]

uA to uB

(6.8)

(c,=-1, 02=-1]

1=
- repeat steps 4-5 for each y-arrow, defining

o0y = 401-v,[), e, = v | sire. (6.9)

The scheme so far 1s second order accurate but has no LB

property.
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Fig. 12 Fig. 13

Finally, for each x-arrow:

6. transfer T1@f-

1
where Tq = E{1-|v1|2], (6.10)
from uA and Ue to Up (if o, = 1) or from uD and Ug to uA
(if o, = -1);

7. transfer Ta@f,
where Tg = %|v2|(1-|v2[] (6.11)

from Ug and Uc to up (01 = 1)}, or from W, and Uy to Up [01 = -1);

- repeat steps 6-7 for each y-arrow, defining
1
1, = 5l1-[v,]2), By = %Iv,,l[’l-lv,ll). (6.12)

The resulting scheme is third order accurate but has no LB

property.
For a second order LB preserving scheme, replace steps 4-7 by

u.u
4a. transfer B(a1¢f. o 4 ¢fJ from Uy to u, or from uA to Up

according as o, = 1 or oy = -1, where a# and ¢$ are the
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values of @, and ¢F for the adjacent upwind arrow,

and the B-function is as discussed below.

p

transfer B (a,?® ag¢2) as in step 5 above, where oy

3 f
and a? are the values of oq and Qf for adjacent

parallel arrow upwind w.r.t. v2.

Taking the B-function to be as in (1.26) yields a scheme which
is second order except at flat points of the data and possesses

the LB property (6.5) at all points (other than flat points),

provided that ~
1+|v | 1+|v l
cos20 < o n ’ sin20 s ——2
2|v,| 2|v,|
(satisfied by cos?6 = sin20 = 1) el
2
< =
and l\)1 & \)2l— 3
Taking the B-function to be as in (1.27) yields a scheme which
is everywhere second order and possesses the LB property provided
that
v, | Iv,|
cos2e < ’ sin29 <
2|v,| 2|v,|
(satisfied by tane = v2/v1J ¢ (6.14)
' - - (v2eu2
and 2[v1+v2] N2 (v1+v2) < 1.

Taking the B-function to be as in (4.49) or (1.38) yields a

scheme which is second order provided that the ratio El of the

b b2

arguments b of the B-functions used is

1”7 72
sufficiently close to 1, but it possesses the LB property and also

has strong anti-diffusion properties.
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§7. Three-dimensional Algorithm

We now consider the extension to three dimensions. If the cell
is the rectangular box ABCD A'B'C'D',orientated as in Fig. 14, the

fluctuation in the box is

“' T Semd
‘a -fj t’.d|]>l
' l [Ij(?x+gy+thdQ = }(F.g.h)oqg (7.1)
box
¢ |-
© l— c!
!L C which, using trapezium rule integration, gives
Jhy
) & (hy*hoth +h ) AXAY , (7.2)
r \ A'B C'D
» x sides like
ABCD
z
Fig. 14
and we note that Z ¢ = 0 and updating the u's by the ¢'s will give an (7.3)
boxes
algorithm in conservation form.
Considering the contribution of the points A,B,C,D to the whole sum
in (7.2) we obtain
‘ - - -— -
i( o fgtfofplavhz + ,}(gA+gD gg-gc)AzAx + &(hA+hB+hC+hDJAxAy. (7.4)
Then the contribution from the points C,D to the sum of the four ¢'s
boxes which have CD as an edge is
wg = (gD—gCJAZAx. (7.5)
Hence X¢, as defined by (7.2), may be broken down into the sum of terms
like (7.5) and
(7.6)

¢f = (FD—FA]AyAz. wh = (hD-hD]AxAy

which, as in §4, we may call arrow-fluctuations. We can then construct

a three-dimensional algorithm by updating u values with signals
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% = = At B
% = Ixtyhz Y T " ax Fpfal
- At At
b ===t = = 2> -
g xbydz Vg ay ‘Epec! (
_ —At o AE _
% = Extyaz *h = " 3z (hphpe)- -J

Taking the approximate wave speeds

L. ofa _ BB Y
UD'UA UD"UC UD—UD'

as positive, the corresponding first order scheme is to update up by

the three signals (7.7). The value of u at the new time level will

D
then be
D _
u = UD + ¢f + Qg + Qh
= up - v1(uD—uA] o v2[uD-uCJ . va[uD-uD,J,

\ . At - At = At
S Y17 %A Bk’ V2" Ppcay 0 V3 T Cppr g ¢
Hence WL - {1-v,+v v ) u. + v, u, + vou. + v.u

1 "2 73 D 1°A 2°C 37Dt

< 1, u satisfies the LB

showing that, if v, ,v,,v, 2 0 and |v1 * VU, tvgls

property

D .

u e [m1n.max](uA,uC,uD )
(see Fig. 14).

Analogously to the two-dimensional case we can construct a second order

scheme by transferring quantitiss
a11®f, a22¢g. a33¢h.
where

aii = %[1-'\)1,] (i = 1:2'3)'

as in the one-dimensional case, and adding lateral transfers.

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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Introducing lateral transfers a1iQF (i = 1,2,3) (as indicated in

Fig. 15), (c.f. Fig. 14), together with a2i°g' QSiQh (1 =1,2,3),

we find that in order to match the uyz’ u

ZzX
uXy terms in the truncation error we need
oy 3% P (aygray,iv, + Cagaraggdvg = v,y vy
(agq*agglvg + (o) ta, Jv, = V3Vq
o >
f N
n ‘a11(1>+, (aggragqdvg + Lo ran vy = v,
I o \V] + 0~V + O,V = V,V,V ’
l 11V1 22V2 1 O33V3 = YV v,vg v,
sc’!
@50 ) 7’ which has the particular solution
(:L o,, = Jw Vo, Oo, = JM Var O = lv Vo
11 3V2Y37 %y = 3V3Vqs g3 3v1V2
Fig. 14 A
- = 1
%23 ¥ %yp = 2Vgs Qgy * 0gg = dv,
>
= 1 = 1
%31 T B33 = Vqr 0z tagy = v,
= 1 2
%2 T g T Ve Gy + 0y, = 2y, J
which leads to .7
o =y (1 - J-v ) o =y [1-— 1—v )
23 3'2 3 V1l %3 22 3V
- 1.1 =y (1.2 Y
U31 = V(g - g v ey = vl 3 Vy)
. 1_1 =y (1 -2
%2 = Vol - gvg) oy, = Valg - g vg) _J

The scheme can be made third order by adding further transfers: the U

uyyy‘ uZZZ terms in thé truncation error are matched by double transfers of

111¢f, T12¢g' T33°h'

as in the one and two-dimensional cases, where

I PO 2 -
Tyy = 50 '“1' ) (1 =1,2,3).

For the u , U etc. terms we can use double lateral transfers, as
XXy yyx

in the two-dimensional case: i.e. we transfer LTLIY T13¢f etc.

and

(7.16)

(7.17)

(7.18)

(7.19)

(7.19)
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<,
32¢h

p —Le 1

}Tazq’h
t Fig. 15

c

as illustrated partially in Fig. 15. We then find that the

= 1 - = 1 -
Typ = 2\)2(1 v2] T4 2V1(1 v1J
=1 - = 1 =
Tog 2v3[1 v3] Tap 2V2[1 vzl L
-1 _ = 1 N
Tay 2v1[1 v1] T3 5v3(1 v3] 5

as in the two-dimensional case.

We conclude the discussion of three-dimensional schemes by

consideration of the LB property in a second order scheme using B-functions.

For second order we omit transfers involving Tij but, because it is the
only genuinely three-dimensional term, retain the transfers which match
uxyZ in the truncation error, namely, those invaolving ®pqs Goos Agge

For this second order scheme, with v1 >0, v2 2 0, v3 2 0, the new
value of ugs without using B-functions (or with B[b1,b2] = b1) is

(see Fig. 13)
i i DE BC _ A'D!
== g * Z[%f Tt 7S B L PSRN

BrC
U106 T g% ]

where the sum is over f,g,h, with appropriate 1,2,3 and superfix
permutations. Using B-functions with B,y defined by (1.29) we obtain

D

1]
[

(7.20)

(7.21)

R [1 TPy r vy T Bagy ¥y T Bugg *yagg T Bugy ¢ Y°‘11]“’f

(7.22)

(7.23)
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where e
with similar expressions for qg. Gp, - Thus

u” = ug - v1qf(UD_uA] - vzqg[uD-uCJ

and the LB property depends on the inequalities

2 2
V1qf 0, vzqg 0, vsqh z 0
1 - V1qf - vzqg - Vap 2 0.
For (7.26) we require for example 9

=17 Bagtyay - Bag, * Yo, - Boyg +ovo, -

Bag, *+ ya,

~ V3, (upTup,)

20, i.e. from (7.24)

Bag = yoy + Bag, - yoy, + By - yagg * Bagy - Yo, <1

If we choose the B-function as in (1.28) then

conditions (4.24), namely,

0<B=<1, 0<y<1

and hence, from (7.28), we need

% F %z P Uzt =T
. Leal 11 11 1
i.e. 301 v1] + v2(2 §v3] + v3[2 3V * 3VV4 <1
or
1 2 5
V,] - -3-(\)24-\’3] + -5(1'\’2](1 \)3) < 3
which is satisfied if v1 <1, v2 < 1, Vg < 1.
Considering now the condition (7.27) we need
1o ey ey, ey a2 0,
1 11 1 1
1.e. 1= IV 503V, + v (G - 395) +vi05 - 20,0+ vy 2 0

B,y

satisfy the

1
or 11 9B + b, v, v v, vvg) 2 0.

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)
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This is met if

B __2221 1 1
(v ¥yt Vg ) (v +v2+v3l * 5V, (v Vg )] o+ > 2[v3+v )+ 2v3(v1+v23
—v1v2 3 <1
or -E[v +y +y_ ) + (v V.ot v +uov,) - vovov, <1
21 "2 73 1 7172 "273 1273 = 7
which is satisfied in a neighbourhood of (v1,v2,v3) = (0,0,0).

There are many other solutions for the coefficients in (7.16) and

the conditions stated above should not be regarded as optimal.

Since the coefficients of Ups Ups Ups upt are non-negative we
have the LB property
JP e [min., max] [u u,,u Ja
°’ +UprUesUpe

It is possible to analyse the conditions under which the LB property
holds in much greater detail than this, but there are no new principles

and the algsbra 1s very intricate.

§8. Canclusion

The LB principle exhibited above together with the principle of TVD
(total variation diminishing)[12] has been used [13], [14] to prove the
convergence of difference schemes to weak solutions of the underlying
hyperbolic differential equation. More directly, it is a control on the
slope of the solution preventing any new extrema occurring (a type of
monotonicity preservation). Convergence to the unique physical solution
requires a further element [15] which has been developed for such schemes
as the above [16] and is easily incorporated into them.

The extension to systems in 2 and 3 dimensions needs further .analysis
of the Roe matrix in these cases. First ideas are that the fluctuations

will need to be decomposed on to the eigenvalues of a Roe matrix which,

(7.34)

(7.35)

(7.36)
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for the equation

Y + Ay + By 0,

would be of the form
A cos § + B sin § .

For an x-arrow the angle & would be the

inclipation of the shock normal

(if present) to the x-direction and would need to be estimated from

local u wvalues.

For example, one such estimation in the case of the

(8.1)

(8.2)

x-arrow would be (see Fig. 16) the average (over the components of u) of & given by

H G

tan 6

A
6L

Finally, distortion of the basic grid

D

¢

Fig. 16

conservation but would reduce accuracy to

_ A

1 e
u[uG+uH Ug uC]

used here would not destroy

an extent. The LB principle,

however, would continue to hold where appropriate.
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APPENDIX A - by P.L. Roe

Stability of the Scheme of §5

If the Fourier anglses are 61,92, the amplification factor
scheme in 85 is (see Fig. A1)
v, 16 -ig v2  ig -1g
A - —% (e 1. e 1] + —% (e 1 + e 1. 2)
v i -ig v2 ipg -1¢g
-2te 26 42 2ag 2.4
2 2
-i6 -ie
1 2
v1v2 (1 e J(1 e ).
_1 _
5v2[1 v21
1 . vl - 2
2V (1 + v,y = 2v)) T2VG T Vg vy,
_1 -
5v1(1 v1J
1 -
L 2v2[1 * v, 2v1J
AP
Fig. A.1
Hence
. . 2 -
A1 iv1 sin 61 * vg (cos 0, 1)
= 2 -
iv2 sin 02 *v§ (cos 05 1)
* Vv, (1 - cos 01 + 1 sin 913(1
= X + 1Y,
where

+

=<
u

v%(cos 61-1] + v%(cos 62-1J

v1v2[1 - cos 61 - cos 62 + cos(e1+62J]

A for the

(A.1)

- cos g, + 1 sin 623

(A.2)

(A.3)

Vv, sin 0, - v, sin 6, + v,]vz[sin e1+sin ez-sin(e1+92]]

(A.4]




The condition for stability 1s 2AA* < 1

or

. (1 + X + 1Y)(1 + X - 1Y) < 1,

1+ 2X + X2 + Y2 <1,

X2 + Y2 4+ 2x < 0. (A.5)

For sufficiently small v1,v2, we need consider only the quadratic

terms in this expression, i.e.

Q = [v1 sin 6, + v, sin 62)2 + Zv%(cos 0, = 1) + 2v§(cos 0, - 1)
- . S+ (A.8)
+ 2v1v2 {1 cos 01 cos 62 + cos 61 + 62]
- 2 3 2 - 2 2 -
v1[51n 61 + 2 cos 61 2) + vztsin 92 + 2 cos 02 2)
+ 2v1v2 [1 - cos 91A_ cos 61 + cos e1 cos 92 - sin 91 sin 92 + sin 91 sin92]
= - = 2 _ 2 - 2
v1[1 cos 61] v2(1 cos 62)
+ 201v2[1 - cos 013[1 - cos 62)
B 2
= -[v,|[1- cos e,IJ - v2[1 - cos (-)ZJ] (A.7)
which is negative as required, except for the special case Vg = Vo
61 = 62. In this special case
X = v2(cos:'20 - 1) = -2y2sin2g
Y = v2(2 sin @ - sin 28) - 2 vsin @ P (A.8)
= 2v2 sin 8(1 - cos @) - 2y sin g. J
Hence
X2 + Y2 42X = 4" ginte + 4yl 8in20(1 - cos §)2 - Bv3 s1n26(1 - cos §) + 42 sin2g

- 4\’2 Sinze




