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ABSTRACT

This report gives a detailed study of quasi one-dimensional shock
flow in a de-Laval nozzle. By definition of the compressible Tlow we may
obtain graphs relating the flow variables and then, by considering an
algebraic parameterization, the variation of the variables with respect
to the distance along the nozzle axis. An adaptive finite element method
is formulated from a stationary principle for the approximate solution
of a quasi one-dimensional nozzle shock flow and two solution algorithms

are compared, differing only in the procedure for the definition of the

initial approximation to the flow.
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INTRODUCTION

The subject of continuous quasi one-dimensional duct flow has been
extensively studied in {4], [5] and [6]. The principles used in the
previous work are now extended to the consideration of quasi

one-dimensional shock flow in a de-Laval nozzle.

In Section One the properties and equations of motion of a
one-dimensional compressible flow are presented. The concept of a shack
front is introduced and the appropriate jump conditions are stated. The

properties of the compressible flow on traversing the shock front are

then discussed.

In Section Two the gquasi one-dimensional approximation to
continuous duct flow is reviewed [3]. A discussion of the conditions
affecting de-tLaval nozzle flow, in terms of both the inlet and outlet
pressures and also the mass flow boundary conditions 1in quasi
one-dimensional flow, then follows. The theory is subsequently extended
to give the definition of the quasi one-dimensional approximation to a

nozzle shock flow and graphs relating the flow variables may then be

obtained ([3] and [41]).

In Section Three a particular quasi one-dimensional nozzle shock
flow is defined, which 1includes the definition of the range of
conditions that may produce such a flow. An algebraic parameterization
[4] is then used to determine the variation of each variable in the flow

in terms of the distance along the nozzle axis, in particular the

behaviour on traversal of the shock front.
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In Section Four a stationary principle is stated which generates
the conditions defining quasi one-dimensional shock flow 1n a nozzle.
This principle is then used to formulate an adaptive finite element
method for the approximate solution of the fluid speed in a shock flow.
The first solution algorithm presented is a direct extension of that
employed for the approximate solution of a continuous nozzle flow (6].
On comparison of the numerical results obtained with the exact solution
inaccuracies in the representation of regions of the continuous flow and

in quantities associated with the shock front require the algorithm to

be modified by re-defining the procedure used to obtain the initial

approximation to a shock flow.



SECTION ONE : A ONE-DIMENSIONAL COMPRESSIBLE FLOW

In this section the properties of a one-dimensional compressible
flow are presented together with the associated equations of motion. The
concept of a shock front 1is introduced and the appropriate Jjump

conditions are stated. The properties of the compressible flow on

traversing the shock front are then discussed.

1.1 THE COMPRESSIBLE FLOW

Air at moderate temperatures may be modelled by the polytropic gas
and thus is adiabatic. For present purposes it can be assumed that the
flow is inviscid and steady; it 1is therefore characterized by

streamiines. The fluid satisfies the law of Boyle and Gay-Lussac
prv=(R/m T, (1.1)

where p represents pressure, T temperature and v is the specific volume
defined by v = 1/p, where p is the density. The thermodynamic constants

Ro’ the universal gas constant, and m, the molecular weight of the gas,

are specified (see [1}) by
- -1,-1
R = 8.31 Jmol 'K
o]
and (1.2)
_ -2
m= 28.96 x 10 :
The one-dimensional flow is of necessity irrotational and thus by
assuming the flow to be homentropic, i.e. constant entropy, S, in the

flow field except at discontinuities, then it must also be homenergic,



i.e. the total energy

h=R+ (v/2) , (1.3)

where v denotes the velocity and } the enthalpy, is constant in the fliow

field. The fluid motion is governed by the conservation equations of

fluid dynamics, which under these circumstances are

CONSERVATION OF MASS : d (pv) =0, (1.4)
dx
CONSERVATION OF MOMENTUM : h = constant (1.5)
and
CONSERVATION OF ENERGY : 7 = constant , (1.6)

where 7 = 7(S), together with the appropriate entropic equation of state

pP=np (1.7)

where 7 is the adiabatic exponent associated with the fluid and in the

case of air flow (see [1]) it takes the approximate value

-2
u

1.4 . (1.8)

Additional flow variables associated with the flow are mass fiow,

Q, where

Q=pv, (1.9)

and flow stress, P, defined by



P=D+pV2. (1.10)

The air flow may be either subsonic or supersonic, the definitive

quantity being the critical fluid speed, Cys (see [21)

v <C : SUBSONIC FLOW

(1.11)
v>C, : SUPERSONIC FLOW .

The magnitude of the critical speed is dependent on the limit speed in
the flow, Vi and the adiabatic exponent (1.8) and occurs where the

fluid speed equals the local sound speed. It takes the value (see (2

. 1/2
C, = VL[7-1] , (1.12)
T+ 1
where
v = 2 m /2 (1.13)

1.2 A SHOCK FRONT IN ONE-DIMENSIONAL FLOW

In the analysis so far we have assumed the fluid to be adiabatic,
neglecting heat conduction, and thus that the thermodynamic processes in
the fluid are reversible; as reflected by the conservation of energy
equation (1.6). The forces in the fluid are presumed to be due to the

pressure variations alone (1.7) with the effect of friction playing no

part.



The effect of 1irreversible thermodynamic oprocesses. causea by
friction and heat conduction, have been neglected because they are
associated with large temperature and velocity gradients and we have
assumed these to be small. It has been found experimentally that the
occurence of large gradients in the thermodynamic variables is confined
to within narrow ’'transition zones’ in the flow. The irreversible
process may therefore be modelled mathematically on an inviscid basis by

a sudden jump discontinuity across a sharply defined surface in the

fluid (see [21).

We now restrict our attention to a particular form of discontinuity
known as a shock front which is stationary in the flow field and is
therefore crossed by the fluid. The consideration of one-dimensionai
flow, in the x-direction only, means that the shock front may be thought
of as a plane perpendicular to the x-axis and hence the fluid may be
assumed to cross the shock front normally. Notationally all mathematical
quantities associated with the ’front side’ of the shock, through which

fluid enters, will be denoted ’+' and those associated with the

'hack side’ '-’.

Therefore we state that in the continuous flow the mathematical
assumption of adiabaticity is justified and the conservation equations
(1.4) - (1.6) are valid. An irreversible process in the fluid, if it
occurs, is modelled mathematically by a jump discontinuity across which

jump conditions must be derived for the mass, momentum and enhergy

balance.

In the present case of a stationary shock front, across which the

flow is normal, the jump conditions are (see [2] and [3])



MASS BALANCE PV, =PV = Q, (1.14)

MOMENTUM BALANCE : p. v +p, =pvi+p_ =P, (1.15)

ENERGY BALANCE @ v + R =vZ+ R =n, (1.16)
2 2

i.e. the mass flow, flow stress and total energy are conserved across
the shock front. The conditions (1.14) and (1.15) are valid for any
fluid irrespective of its equation of state. Condition (1.16) reflects
the thermodynamics of the fluid and can be seen to have the form of
Bernouilli’s law although of course the enthalpy function, because of
its dependence on the density which is discontinuous across the shock
front, will itself be discontinuous. The irreversible character of the

process is evident 1in the statement that the entropy cannot decrease

over the shock front, so that

7, <, (1.17)

which is added to the jump conditions (1.14) - (1.16). Equality of this

condition corresponds to a theoretical zero shock.

The conditions (1.14) - (1.16) allow several properties of the flow
variables, on traversing the shock front, to be inferred. In the case of

a polytropic gas it may be established from explicit formuiae (see [2])

that the shock front is compressive so that

Py < P_ . (1.18)



The magnitude of the compression is defined by

Copnk = p_IPy (1.19)

which, in the case of air flow modelled by the polytropic gas, is

restricted to the range (see [2])

1/6 < CS <6 .

hk (1.20)

Then from (1.14) and (1.15), by using the definition of mass flow rate

(1.9), we may obtain (see [2])

Q(v_-v)=p ~-p (1.21)

and also

Q@ =-[(p_=-p)/ CV/p_-1/p, ) 1. (1.22)

The flow being in the x-direction only it 1is obvious that the fluid
speeds on either side of the shock front and also the mass flow rate
will be of the same sign; therefore from (1.21) the pressure across the
shock front may be seen to change in the opposite sense to the fluid
speed, and from (1.22) the density will change in the same sense as the

pressure. Hence, by (1.18), across the shock front

and (1.23)



In a similar manner. from (1.1), we find, by using (1.7), that

=1

T_=7_ PZ ) (1.24)
T

7=1
+ T Py

and therefore, again using (1.18) and now also (1.17), we may conclude

that

T_ > T+ " (1.25)

The fluid speed on either side of the shock front is related by

Prandt1’s relationship (see [2])

v, v_= ¢, (1.26)

where C* is the critical fluid speed defined by (1.12). Therefore from

(1.23a) we may deduce that

and (1.27)

i.e. the fluid speed at the ’'front side’ of the shock 1is supersonic,

from definition (1.11), whilst at the ’back side’ it is subsonic.

Finally we introduce the quantity known as shock strength. In the

case of a polytropic gas (see [2]) this may be defined in the following

ways



EXCESS PRESSURE RATIO : p_ - p_ , (1.28)
Py
CONDENSAT ION S (1.29)
I
FLUID SPEED PARAMETER : | v_ - v_ |, (1.30)
C

x

and as the measure of the shock strength in the present work we shail

employ the excess pressure ratio (1.28).



SECTION TWO : QUASI ONE-DIMENSIONAL FLOW

In this section a quasi one-dimensional approximation to continuous
duct flow is introduced (see [3] and presented in [4]). A discussion of
the conditions affecting the flow behaviour in quasi one-dimensional
flow through a de-taval nozzle, with special reference to shock flow. is
then presented. The qguasi one-dimensional theory 1is subseguently
extended to give an approximation to shock flow in such a nozzle and

relationships between the flow variables may then be obtained (see [3]).

2.1 QUASI ONE~DIMENSIONAL CONTINUOUS DUCT FLOW

We confine analysis for the time being to a continuous air flow,
with the fluid having the properties of §1.1, through an axi-symmetric
duct; the particular ducts of interest are converging or diverging cone

sections and the de-Laval nozzle (these are illustrated in [4]).

The duct 1is supposed to be siowly varying so that, to a first
approximation, the motion is one-dimensional in the x-direction only.
The flow must be irrotational and by assuming it to be homentropic it
must therefore be homenergic; each of the streamiines in the flow field
are thus defined by the constant total energy and entropy values in the
flow. Hence the streamlines are indistinguishable and any one of them

may be thought of as a streamline along the duct axis that is

representative of the flow (see [4]).

The appropriate conservation of mass equation in  quasi

one-dimensional duct flow is (see [3] or [4])
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d (QA) =0,
dx

(2.1)

where A = A(x) 1is the 1local cross-sectionai area of the duct and
Q@ = Q(x) is the local mass flow rate defined by (1.9). The complete
solution of the flow, in which all of the flow variables are recovered,
is possible by using the total energy equation (1.3). Quasi
one-dimensional continuous duct flow is therefore completely defined by

(1.5), (1.6) and the conservation of mass equation (2.1) with (1.9); the

appropriate equation of state being (1.7).

A particular duct flow may be considered on satisfying the mass

conservation equation (2.1) in the following manner (see (3] and [4])

Q(x) = C Ae . (2.2)
A(X)

where C is the entry mass flow rate to the streamline along the duct
axis and Ae is the entry cross-sectional area of the duct. The flow
boundaries then become a pair of points at the inlet and outlet duct
locations on the central streamline and the boundary conditions (see [3]

and [4]) are the assignment of mass flow at entry, Q

Qe =C, (2.3)

and at outlet, Qo

Q, = C A, , (2.4)

e
AO

where Ao is the duct outlet cross-sectional area.
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2.2 THE FLOW BEHAVIOUR IN A DE-LAVAL NOZZLE

We now consider specifically quasi one-dimensional flow through a
de-taval nozzle. It will be assumed that the flow enters the nozzle
subsonically; to then enable discussion of the flow that may
subsequently occur we must first define the maximum throat mass flow

rate, QT, that may be attained in a nozzle flow

QT =C Ae ) (2.5)

where AT is the corresponding minimum cross-sectional area of the nozzle
at this point. The discussion is clarified by refering to a graph, which
will now be derived, of the relationship between the physical conditions
that determine a nozzle flow, the inlet and outlet pressures, and the

boundary values of mass flow rate in quasi one-dimensional flow.

In [1] algebraic relations have been derived for an ideal gas
between the fluid speed and other flow variables that hold for a fluid
particle as it moves on a streamline, defined by constant values of
total energy and entropy, in any flow field. The graphs of the
relationship between any pair of flow variables in any motion on the
streamiine may then be obtained by prescribing a uniformly increasing

range of fluid speed values from zero to the limit speed defined by

(1.13) (see [4]).

Recall that quasi one-dimensional nozzle flow is represented by a
central streamline along the duct axis. The inter-variable graphs for a
fluid particle moving on this streamline, and hence for the

approximation to the nozzle flow, then manifest themselves as segments
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of each of the full relation graphs, appiicable to motion on a general
streamline, defined by (1.5) and (1.6). In the present case we are in
interested in particular in the pressure vs mass flow rate grapnh, i.e.
p(Q,h,7), which is illustrated for typical flow constants in FIG.1 (this
is taken from [3] and is also presented in [4]). Note the critical vaiue

of the mass flow rate, Q,, on the graph, corresponding to the critical

fluid speed (1.12).
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If the entry mass flow rate, QZ, to a particular nozzle is assigned

such that the mass flow rate at the throat (2.5) is less than the

critical value, Q*, then the flow will remain subsonic in the complete

nozzle (see [4]). Ordinates placed at Q: and at the outlet boundary
value, ch>’ will determine the corresponding pressure conditions , p: and
Py in the subsonic region of the graph. Conversely given a specified

pair of inlet and outlet pressures in that region we may, from (2.4) and
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{2.8), determine the form of nozzle that will admit such a subsonic

flow.

If the entry mass flow rate, Q:, is increased to a value such that
the critical rate of mass flow is attained at the throat, i.e. Q; = Q
then one of two possible flow types may result in the diffuser. Placing
an ordinate at Q: will again determine the inlet pressure, p:, but now
an ordinate at the outlet value, Qg, will provide a choice of two outlet
pressures (see FIG.1). The prescription of the pressure value in the
subsonic region, pgs, will result in a subsonic critical flow and that
in the supersonic region, pgt, a transition flow (or ideal flow), in
which the flow becomes ’sonic at the throat’ and subsegquently supersonic
in the diffuser (see [4]). As above on assigning a suitable pair of

pressure conditions we may again, from FIG.1, define boundary values of

mass flow and hence, from (2.4) and (2.5), a nozzle that will admit

either form of critical flow

In the present work the interest lies in the case where the flow is

critical at the throat, i.e. Qe = Q:, but it 1is stipuiated that an

outlet pressure, pif, lower than the subsonic critical value, pgs, must

be attained (see FIG.2). The flow will behave as for transition flow up
until a point in the diffuser where it must adjust somehow so as to
attain the outlet pressure. This 1is achieved by the intervention of a
stationary shock front, described in §1.2, over which the fluid is
compressed (1.18) and slowed from supersonic to subsonic speed (see
(1.27)). The position and strength of the shock front is automatically

adjusted so as to give the correct outlet pressure (see [2]).
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In accordance with the jump conditions (1.14) - (1.16) the mass

flow rate, flow stress and total energy will be conserved across the

shock front and from condition (1.17), uniess it is a zero shock, there
will be a positive jump in entropy; the remaining flow variables will
then jump in a manner defined by (1.18), (1.23) and (1.25).

Therefore in terms of the quasi one-dimensional modeil a nozzle
transition flow, defined by the inlet flow constants h and 7, will
shock to a subsonic flow in the exhaust section, defined (consistent
with the jump condition (1.16)) by the outlet flow constants h and 7_.
This process may be represented graphically and is illustrated in FIG.2.
The shock front can be seen to intervene at a shock value of mass flow
rate, Qs’ and the intersection of an ordinate placed at the critical

outlet mass flow rate, Qg, and an abscissa placed at pzf will T1ie on the

graph p(Q,h,7_), lying wholly inside p(Q,h,n+) in the p x Q plane.
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Oon
define,
motion,

divided

the basis of the qualitative definition in §2.2 we may now

in terms of the conservation equations governing the fluid

quasi one-dimensional shock flow in a nozzle;

into three distinct regions:

1. The continuous flow prior to the shock front

d (@A) =0,

dx

Q=p v,

h = CONSTANT ,
p=1, = CONSTANT ,

2. Across the shock front

@ =o,
Pl =0,
(hl =0,

3. The continuous flow subsequent to the shock front

d (QA) =0,

dx

Q=pv,

h = CONSTANT ,

7 = 7_ = CONSTANT ,

this may be

(2.6)

(2.7)
(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
(2.13)

(2.14)
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where the square brackets indicate a jump in the enclosed quantity. The
compiete solution of the flow, for all the flow variables 1is again
possible on using the total energy equation (1.3). Furthermore note that
by assigning the total energy to be the same constant vaiue in both
regions of the continuous flow, as indicated by (2.4) and (2.13), the
jump condition (2.10c) is inherently satisfied. Quasi one-dimensional

shock flow is therefore completely defined by (2.6) - (2.14); the

appropriate equation of state again being (1.7).

A particular nozzle shock flow may be considered on satisfying the
conservation of mass equation throughout the complete flow by (2.2)

with, from §2.2, the particular entry mass flow rate Q: assigned so that

QT =C Ae = Q3 (2.15)

the outlet boundary condition, Qg, may then be found from (2.4). Hence,
with the shock front being defined in the present case to be normal to
the x-axis (see §1.2) at a position Xg and Q(x) being uniguely defined
by (2.2) for all x, the mass flow jump condition (2.10a) is now also

automatically satisfied in the definition of the flow.
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2.4 THE SHOCK FLOW LIMITS

The relationship between the prescribed outlet pressure, pzf, and
the resulting shock position, Xg in a particular nozzle may be
theoretically investigated by the gradual reduction of the outlet
pressure from the subsonic critical value pgs , for which a theoretical
zero shock occurs at the nozzle throat (see [2]). It is found that the
resulting shock position will 1lie progressively further down the
diffuser until for a particular value pzo a shock front will 1lie at the
nozzle outlet station. Thus for a particular nozzle filow that is
critical at the throat there will exist a range of outlet pressures that

may actually result in a shock flow, namely

Po - (2.16)

In terms of the quasi one-dimensional approximation to shock flow,

consistent with (1.17), there will exist a corresponding increasing set

of outlet entropy values

AN A S (2.17)

where 7_ = =N corresponds to a shock of zero strength at the nozzle
throat and 7_ = o corresponds to a shock at the nozzle outlet.
Qualitatively the upper limit on the range of outlet entropy values, o
may be obtained by using the graph between flow stress and mass flow for

the motion of a fluid particle on a streamline defined by the inlet flow

constants, i.e. P(Q,h,u+) (see FIG.3).
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For any entropy value greater than that at dinlet, Tpr there will
exist a unique flow stress vs mass flow graph, simiiar in shape to those
in FIG.3, in the P x Q plane. The conservation of mass flow and flow
stress across a shock front (2.10ab) means that the supersonic branch of
P(Q,h,7,) and the subsonic branch of P(Q,h,7_) will intersect at the
shock values of these quantities, denoted Qs and Ps (see [1] or [3]). In
the present situation the mass flow shock value is known to be that at
outlet, i.e. Qs = Qg, and hence by placing an ordinate at this vaiue in

the P x Q@ plane one of the family of mass flow vs flow stress graphs,

namely P(Q,h,nD), will intersect with both this ordinate and P(Q,h,v+),

thus providing the required 1imit o
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Subsequently we may now compute the lower limit, pzc, of the

pressure range (2.16) that will result in a shock flow. The graph

p(Q,h,qD) may be derived in the manner outliined previously (see §2.2):

an ordinate placed at the outlet shock value, Qs = Qg, will then

intersect with this graph at the required pressure value (see FIG.4).

100800 |-

8(QhMo) s

-

10080 |-

It may also be noted that on the definition of a particular quasi
one-dimensional shock flow in terms of the entropy values at inlet (2.9)
and, in the range (2.17), at outlet (2.14) the corresponding inlet and

outlet pressures may also be determined from the associated p(Q,h,7)

graphs by placing ordinates at Q: and Qg respectively.



- 20 -

2.5 GRAPHS RELATING THE FLOW VARIABLES IN A SHOCK FLOW

In §2.2 it is stated that the graphs relating the variables in a
continuous nozzle flow are segments of each of the full graphs acefined
by the flow constants h and 7; in that case these are found by the
positioning of ordinates at the mass flow boundary values, (2.3) and

(2.4), and also the throat value (2.5) (see [3] and [41).

This principle may now be extended (see [3]) to obtain the graphs
between the flow variables in a particular quasi one-dimensional nozzle
shock flow subsequent to obtaining the shock vaiue of mass flow rate.
Recall from 8§2.4 that on deriving the full flow stress vs mass flow
graphs corresponding to the flow constants at inlet, P(Q,h,q+). and at
outlet, P(Q,h,7_), on a common axis the intersection of these graphs

will then give the required shock values (this is {1lustrated in FIG.5).
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In the same way as for the determination of QS each ot the fuil set
of inter-variable graphs are derived for the motion of a Tluid particle
on a general streamline, defined in turn by the inlet and outlet flow
constants, on a common axis. Ordinates are then placed, on the graphs

involving mass flow as a dependent variable, at the values

e’ QT’ QS’ QO ’ (2.18)

A graph, for an illustrative set of h, Ty and 7_ values, between the
mass flow rate and the second dependent flow variable in the shock flow

may then be expiained, with reference to each of FIG.6, by

a-+b=c : THE TRANSITION FLOW PRIOR TO THE SHOCK FRONT

b

c-~d : THE TRAVERSAL OF THE SHOCK FRONT

d-e : THE SUBSONIC DIFFUSER FLOW SUBSEQUENT TO THE SHOCK .

(2.19)

Subsequently the boundary, throat and shock values of each of the
remaining flow variables may be obtained by inspection of each of FIG.6
and hence the fuli set of graphs for the shock flow are now available

(see FIG.7), where a, b, ¢, d and e are again explained by (2.19).
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SECTION THREE : AN ALGEBRAIC PARAMETERIZATION OF SHOCK FLOW IN A

DE-LAVAL NOZZLE

In this section a particular quasi one-dimensional shock flow in a
nozzle is defined, which by necessity includes the derivation of the
range of conditions that will result in such a flow. An aigebraic
parameterization of shock flow is then used to determine the variation
of each variable in the flow in terms of the spatial distance, x., along
the nozzle axis. The properties of the flow variables on traversal of
the shock front, with reference to the definitions of the previous
sections, are then discussed. This will provide a basis for comparison

with the numerical solution of quasi one-dimensional shock flow in a

nozzle to be presented in Section Four.

3.1 A PARTICULAR QUASI ONE-DIMENSIONAL SHOCK FLOW IN A NOZZLE

The quasi one-dimensional approximation to shock flow is defined by
(2.8) - (2.14) which are considered to hold in a fixed domain, D,

representing the nozzle axis

0.0 < x £ 2.0. (3.1

The total energy in both regions of continuous flow, (2.8) and

(2.13), 1is specified as

hz2.74 x 10° Jmol™ kg~ (3.2)

thus satisfying the jump condition (2.10c):; the inlet entropy (2.9) is
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assigned to be

7, = 7.08 x 10* (SI UNITS) . (3.3)

The limit speed in the flow may now, from (1.13), be computed

v, = 740.3 , (3.4)

and subsequently, by (1.12), the critical fluid speed is then

c, = 302.5 . (3.5)

The corresponding critical values of the remaining flow variables may be
obtained from the algebraic relationships in [1] and for a flow defined

by (3.2) and (3.3) may be found in [4]; in particular the maximum

critical mass flow rate is

Q, = 246.31124 . (3.6)

The linear area variation of the nozzle, in each of its composite

sections, is defined by

ENTRY SECTION : A(X) = 1.1 - (x/8) [0.0 < x £ 0.8]
(3.7
EXHAUST SECTION : A(x) = (2.6/3.0) + (x/6) , [0.8 < x £ 2.0]

and therefore
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>
1]

1.1

e
AT = 1.0 recl
and A =1.2
o}

where recall AT is the cross-sectional area at the throat location. X1
which from (3.7) is

Xg = 0.8 . (3.9)

The conservation of mass equation is satisfied by (2.2), hence in

turn the jump condition (2.10a), and the entry mass flow rate is

assigned by
Q = Qe = 223.919 , (3.10)

such that condition (2.15) 1is upheld and (3.6) dis attained at the

throat. The outlet boundary condition, from (2.4), is then

Q@ = Q7 = 205.259 . (3.11)

The upper 1limit, Tps ON the range of outlet entropy values (2.17)
that may result in a shock flow is obtained qualitatively in the manner
outlined in §2.4, where note P(Q,h,ﬂ+) in FIG.3 is derived for a total
energy value (3.2) and an entropy value (3.3), also the ordinate at Qg
on the graph is that defined in (3.11). The analagous numerical process
must however take account of the fact that a graph between flow stress
and mass flow rate is obtained by using an intermediate range of fluid
speed values; we require two guantities, the shock value of mass flow at

outlet, known to be (3.11), and additionally the corresponding magnitude

of the flow stress Ps.
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The algebraic relationship Q(Vzp,h,ﬁ+) (from [1])

O = Q(Vzp’h’”+) - 7£1/1-7) Vzp [ ((y - 1)/7) (h - ((vzp)z/z)) pe /=L

(3.13)

must first be solved for the supersonic outlet fluid speed, vSp by

H

Newton’s single variable method, with the initial value (see [4])
vzp(o) = 500.0 , (3.14)

giving in the present case

vzp = 418.801 . (3.15)

The substitution of (3.15) into the algebraic relationship P(vzp,h,n+)
(from [11)

P = PO hny) = LT L - D/ (h - (D) ¢ veh? )

L - D/ (h= S22 1Y e
then provides the required shock value of flow stress at outlet, here

PS = 112051.201 . (3.17)

The continuity of the flow stress and the mass flow rate across the
shock front means that the 1limit T may now be found by solving
Q(vs,h,ﬂD) and P(vs,h,qD), of the form (3.13) and (3.16), using a
bisection method, where Ve is the subsonic fluid speed magnitude for a
shock at outlet. The algebraic relationships Q(v',h,nl) and Q(v2,h,02)

are first soived at (3.11), where " and 7, are the initial guesses to
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Ty which are chosen here to be

7.08 x 10*

=3
it

and (3.18)
7= 7.4 x 10" ,

3]

for the corresponding fluid speeds vI and v2. Then, by using the
relevant form of (3.16), the suitability of the initial data may be
verified by ensuring that
>
P(V1’h’”|) Ps
and (3.19)

P(Vz,h,ﬂg) <Py

where Ps is defined in the present case by (3.17). The relationship

Q(v ,h, , where
( ] "3)
= 0.5 + 3.20
1, (n + ), ( )
is now solved for v3 and hence the corresponding flow stress
P = P(v ,h, i 3.21
] ( . 713) ( )

Now, dependent on the magnitude of (3.21), the entropy interval

containing 7, may, from initially < g5, € 7, be reduced to
D i p-"1,

el

v

B
=3
I
[VaN
-3

3 s - 3 o 9
oF (3.22)

v
[
A
B
w
=3
[PaN
-3
o
I~
-3
]
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The continuation of this process, by definition of an entropy vaiue q;,
using (3.20), inside the appropriate interval in (3.22), w11l resuit in

a continual reduction of the intervail containing UD; this is saia to of

converged when
| P - P_ | €0.0001 , (3.23)
3 S

and the magnitude of Ty is then defined to be, in the present case

Py = M, = 7.32455 X 104 . (3.24)

Note that inherent in this process is the derivation of vs, here this

being
v_ = v3 = 218.083 . (3.25)

The range of outlet entropy values resulting in shock flow in the nozzle

(3.7), with inlet flow constants (3.2) and (3.3), now becomes
4 4
7.08 x 107 € 7 < 7.32455 x 10 . (3.26)

The upper and lower bounds on the corresponding range of pressure
values (2.16) may be found by deriving p(Q,h,W+) (see FIG.2, which is
derived for the flow constants (3.2) and (3.3)) and p(Q,h,nD) (see
FIG.4, which is derived for the flow constants (3.2) and (3.24)) and
computing their respective intersection with an ordinate erected at Qo
(3.11) in the p x Q plane. Recall though that a relation p(Q,h,7) is
actually given in terms of a parameterization by the fluid speed (see

[4]) in the algebraic relationships Q(v,h,7) (of the form (3.13)) and
p(v,h,7), where
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ov,she = 2V G- v G- Wy 1Y) Gl

(from [1]). Therefore numerically the subsonic critical pressure, pcs

!

in (2.16) must be obtained by first solving (3.13) for the subsonic

outlet fluid speed. vzb, by Newton’s method with initial data (see [4])

vzb(o) = 200.0 , (3.28)

giving in the present case

vzb = 188.935 , (3.29)

and then substituting into p(vzb,h,ﬂ+) (from (3.27). In a similar manner
we may compute the pressure corresponding to a shock at outlet, pzo, by

the substitution of (3.25) into p(vs,h,nD). The computed pressure range

resulting in a shock flow is then
7.95095 x 107 > pzf > 6.72877 . (3.30)

The definition of the quasi one-dimensional shock flow may now be

completed by assigning, from (3.26), the outlet entropy value (2.14)
7= 7.2 x 10* (SI UNITS) . (3.31)

The corresponding outlet pressure value may be obtained by an analagous

process to that used to compute pzo, whence

sf

- - &,
Py = Py = 7.35966 x 107 ; (3.32)

this process 1is shown qualitatively in FIG.2, where p(Q,h,7_) 1is
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derived for the flow constants (3.2) and (3.3%) and Qg is definea by

(3.11). The 1nlet pressure may of course also be found by substituting
the subsonic entry velocity, vzb, obtained by solving (3.13) at (2.10),

into p(v:b,h,v+), this being

. =Gl = 4
pe = pe = 7.30433 x 10 (3.33)

(again qualitatively this 1is shown 1in FIG.2, in which p(Q,h,n+) is

defined by (3.2) and (3.3), with QZ from (3.10)).

3.2 A PARAMETERIZATION OF SHOCK FLOW

An algebraic parameterization of quasi one-dimensional continuous
duct flow is presented in [4] by the derivation of a non-linear
relationship between the fluid speed and the distance from inlet along

the duct axis. In the present case of air flow this takes the form

NCRPE O [ ca, %4 =20t (3.34)

which is dependent on the particular flow definition. The fluid speed
variation for a duct flow is then obtained by employing Newton’s single
variable method in the solution of (3.34), with appropriate initial

data, at each of a specified range of axial Tocations, Xy in the domain

representing the duct axis (see ({4]).

In §2.2 we have stated that in terms of the quasi one-dimensional
approximation to shock flow in a nozzle, in the present case defined by

(3.1) - (3.11) and (3.31), the flow will shock from a transition flow
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defined by the inlet flow constants (3.2) and (3.3) to a subsonic flow
defined by (3.2) and (3.31). The parameterization of the shock flow is
therefore obtained by combining the parameterization of transition flow

in the full nozzle with the parameterization of the subsonic flow 1n the

diffuser, about the computed shock position.

The transition flow parameterization

The appropriate form of the non-linear relationship (3.34) 1s
obtained by the substitution of the flow constants (3.2) and (3.3)
together with (3.7), (3.8a) and (3.10). This is solved at each location

X; in the domain (3.1) uniformly spaced such that

| x4 - %544 | = 0.001 . [ i=1(1)2000 ] (3.35)

The computed parameterization is shown in FIG.8 (from [4]) and denoted

"TF.

The subsonic cone section flow parameterization

An algebraic parameterization of the subsonic flow in the diffuser
may be obtained on definition of the relationship (3.34). The flow
itself is independent of the nozzle flow in the sense that it is really
a flow through a diverging cone section of the form (3.7b) which is

defined by the flow constants (3.2) and (3.31).

As no transition from subsonic to supersonic flow may occur in a
cone section (see [2]) the upper bound on the fluid speed in the
subsonic flow is given by the critical speed (3.5). The algebraic

relationship between mass flow and fluid speed (3.13) may be used, by
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substitution of (3.2), (3.5) and (3.31), to obtain a corresponding uoper

1imit on the mass flow, and in the present case

Qqy = 236.18 . 3.3

The subsonic cone section flow may therefore only exist in a

portion of the complete nozzle diffuser defined to be

XL 1M {x 2.0, (3.37)

where in the present case from (2.2) and (3.7b)

X g = 6-0 [ CA - 2.6 ] = 1.0575 . (3.38)

It is essential when we progress to the consideration of the shock
position in the diffuser that the axial Tlocations in the domain
representing the cone section flow lie at the same position as those in
the corresponding portion of the domain associated with the full nozzie

axis. Thus in the present case the cone section flow is defined on the

reduced domain
1.058 £ x € 2.0, (3.39)

and the range of axial locations is specified so as to be compatible

with (3.35)

| x; = %444 | = 0.001 . [ = 1(1)942 ] (3.40)

The area variation of the cone section, Acs(x), is from (3.7b)
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ASS(x) = (2.6/3.0) +(x/6) , (3.41)

where x lies in the domain (3.39) and therefore

A:s = (2.6/3.0) + (1.058/6.0) = 1.043

and (3.42)
ASS = 1.2,
(o]

where A:s and Ags are the cone section entry and outlet cross-sectional

areas respectively. The mass flow boundary condition at inlet, Q:s, from

(3.42a) and (2.2) is

Q" = C Ae = 236.157 (3.43)

cs
Ae
and, from (3.11), at outlet

Q" = 205.25 . (3.44)

The subsonic cone section flow is thus defined by (3.2), (3.31) and
(3.39) - (3.44) and therefore the appropriate form of (3.34) may now be

found by substitution of (3.41), (3.42a) and (3.43). The domain on which

the flow is defined (3.39) and the computed parameterization, denoted

’DF’, are shown in FIG.S8.
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Fig.$

The shock position in the diffuser

The principle behind obtaining the shock value of mass flow rate

has been presented in §2.5. In that case the parameterization of a

P(Q,h,7) graph was obtained by using a uniformiy increasing range of
fluid speed values as intermediate parameters in the relationships
Q(v,h,7) (3.13) and P(v,h,7) (3.16). The graphs shown in FIG.5 were in
fact computed for a total energy value (3.2) and entropy values at inlet

of (3.3) and at outlet of (3.31) respectively, thus their intersection

provides the mass flow shock value required at present.

It is convenient though, as a general algorithm, to use the
computed fluid speed parameterizations of the particular transition flow

and the particular subsonic cone section flow (see FIG.8) to obtain the
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required P(Q,h,7) graphs (see FIG.9). The supersonic brancn of
P(Q.h,n+), associated with the transition flow, and P(Q,h,7_), for the

subsonic cone flow, will again theoretically intersect at the shock

value of mass flow rate.

The manner in which the axial locations in the domains (3.1) and
(3.39) were specified means that at each particular position common to

both the mass flow rate, from (2.2) with (3.7b) or (3.41), will be the

same in either flow, i.e.

Q(xi) =C Ae = CA : (3.45)

A(x,) A°s(x1)

Therefore numerically the intersection of the P(Q,h,7) graphs, and thus

the shock value of mass flow rate, will be found when

| PCQg.h,2,) = P(QG,h,7 ) | = MIN | PQ(x,),h,n,) - P@(x),h, 1) |,

(3.46)

where Xi are the axial locations common to both domains; thus in the

present case
Qs = 221.205 . (3.47)

The position of the shock in the diffuser, Xgo may then be obtained by

using (2.2) with either (3.7b) or (3.41) giving

Xxg = 6.0 [c Ay = 2.6] = 1.481 , (3.48)
Qg 3.0
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which will 1ie at one of the specified axial locations common tz both

the nozzle and cone section axes. Therefore we may state ov (3.33)} and

(3.40) that the error of the computed shock position 1s at most

| ERROR IN x_ | < 0.001 (3.49)

F16.9

190800 {-

el P(Q,L,M+)

P(A/h1-)
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The shock flow parameterization

As stated previously the fluid speed parameterization may now be
simply computed by combining the parameterization of the transition flow
from inlet, up to and including the shock position (3.48), and the
subsonic cone section flow from the shock position to outlet (see
F1G.10). Note the jump in fluid speed magnitude across the shock front,

and in particular the de-acceleration from supersonic to subsonic speed

as predicted by Prandtl (1.27).
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wl Fig.10
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Subsequently the fluid speed parameterization may be used in the
algebraic relationships (see [1]) to provide the variation of the
remaining flow variables with repect to the axial location (see FIG.11).
Note, consistent with the jump condition (1.15), the continuity of the
flow stress in the domain (FIG.11:13); the discontinuity in the gradient

at the shock position may be explained on considering the implications

of

BBt

at that location (recall the square brackets indicate a jump in the
enclosed quantity), where although in accordance with (1.14) the mass

flow gradient, from FIG.1133, is continuous, from FIG.9 the flow stress
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aradient with respect to mass flow is not. Additionally we may ncte that

the flow variables that do jump do so in the airection estabiisned in

{1.18), (1.23b) and (1.24).

Furthermore using the fluid speed variation as a <cet of
intermediate numerical parameters in the aigebraic relationships will
determine the full set of inter-variable graphs in the shock flow (see
FIG.12). These are simply the segments that were indicated on FIGS.6,7,
computed using (3.2) and the inlet and outlet entropy values (3.3) and
(3.31) respectively, by the mass flow shock value and boundary
conditions. A particularly interesting feature in the graph between
temperature and fluid speed (FIG.12r:v) 1is the jump subseguent to the
shock front back onto the portion of the same graph representing the

subsonic region of the transition flow. This is because the algebraic

relationship used (see [1])

T(VW) =m (3 - 1) (h = (v¥/2)) , (3.51)
R 7
o}
where the thermodynamic constants_ are defined in (1.2), <can be

seen to be independent of entropy. Note also the continuity of the

flow stress vs mass flow graph (FIG.12:v) which is simply a truncated

version of FIG.9.
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3.3 THE SHOCK FRONT

The magnitude of the jump in the fluid speed across the shock front

may be found from the value at entry, Vs and at exit, v_, computed in

the parameterization of the flow

FLUID SPEED JUMP : v_ - vV, = - 159.513 . (3.52)
Subsequently in deriving FIG.11 we have also computed, by using the

algebraic relationships, the quantities necessary to find the jump in

the remaining flow variables

PRESSURE JUMP @ p(v_) - p(v,) = + 3.52858 x 10° ,
DENSITY JUMP . p(v)) - p(v,) = + 0.386 (3.53)
and  TEMPERATURE JUMP : T(v_) - T(v,) = + 49.643 .

The jump in entropy may be found from (3.3) and (3.31) to be

ENTROPY JUMP : 7_ - 7, = + 1200.0 . (3.54)
The compression of the shock, by (1.19), is

Cshk = p(v_)/p(v+) = 1.685 , (3.55)

which may be seen to lie within (1.20), and also the shock strength in

terms of the excess pressure ratio (1.28) is

SHOCK STRENGTH = p(v_) - p(v,) = 1.111 . (3.56)
(v
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3.4 A COMPARISON OF SHOCK FLOWS

The notion of shock strength is of course at present meaningiess
because its role is as a comparative guantity between shock flows. Hence
we now investigate. as suggested in 8§2.4, the relationship between the

nozzle outlet entropy value and the resulting shock strength and

position.

The prescibed 7_ values in the range (3.26), with the corresponding
outlet pressures, and the necessary position and strength of the shock

front in the diffuser are shown in TABLE.1.

OUTLET CONDITIONS INTERVENING SHOCK
ENTROPY x 104 PRESSURE x 104 SHK POSITION | SHK STRENGTH
7.080 7.95095 0.800 0.000
7.082 7.94114 0.836 0.211
7.084 7.93131 0.858 0.273
7.086 7.92150 0.876 0.316
7.088 7.91168 0.893 0.352
7.090 7.90186 0.909 0.385
7.092 7.89204 0.925 0.415
7.094 7.88222 0.939 0.440
7.096 7.87240 0.953 0.465
7.008 7.86258 0.966 0.486
7.100 7.85276 0.979 0.507
7.120 7.75451 1.097 0.678
7.140 7.65613 1.201 0.809
7.160 7.55758 1.299 0.921
7.180 7.45878 1.391 1.020
7.200 7.35966 1.481 1.111
7.220 7.26012 1.568 1.196
7.240 7.16007 1.653 1.276
7.260 7.05941 1.737 1.353
7.280 6.95802 1.819 1.425
7.300 6.85576 1.901 1.496
7.320 6.75245 1.982 1.564
7.3245 6.72877 2.000 1.579

TABLE.ONE
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The qualitative relationships between the guantities in TABLE.1 can
be seen if they are presented graphically. The shock position ('XS’) is
plotted as a function, first of the outlet entropy (’ENT’) in FIG.13¢,
and then of the outlet pressure (’p’) in FIG.13:1; the shock strength
(’ss’) is similarly given as a function of these two variables in

FIGS.143,:3 (each graph denoted by the continuous line).

The shock position is clearly seen to lie at the nozzle throat

location (3.9) for 7_ = 7, (FIG.13{) or pzf = gs (FIG.13:3), the shock

f

strength being zero (FIGS.143,31), and at outlet for p_ = or pz =

"o
pzo, with the shock strength then a maximum. The rate of change of the
shock position (FIGS.131,ii) and shock strength (FIGS.141,:1), with
respect to either outlet variable, is seen to be significantly large in
the vacinity of the throat but becomes virtually constant towards
outlet. Note finally the qualitative similarity in shape of the graphs
in either FIG.13 or FIG.14, the opposite gradient being due only to the
opposite variation in magnitude in the range (3.26) of outlet entropy

and (3.30) of outlet pressure.
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A guadratic diffuser

The relationship between the nozzle outlet entropy, thus pressure,
and the resulting shock position and strength is now investigated for
shock flow through a nozzle as before consisting of a linear entry

section (3.7a) but now with a guadratically varying diffuser, i.e.

ENTRY SECTION : A(x) = 1.1 - (x/8) [0.0 £ x ¢ 0.8]
(3.57)
EXHAUST SECTION : A(x) = (0.1/0.72) (x - 0.8)% + 1.0, [0.8 < x < 2.0]

(see FIG.15). The quasi one-dimensional approximation to a shock flow is
now defined by (3.1) - (3.6), (3.57) and (3.8) - (3.11) together with
the outlet entropy value which, as (3.57) is defined such that (3.8) and
thus (3.10) and (3.11) still hold, 1lies in the range (3.26); the
corresponding pressure range is then again (3.30). The relationships

between the above quantities are shown in FIGS.13,14 but are now denoted

by the broken line.
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The shock position will, by definition of the flow, 1ie at the same
location as for the linear diffuser at the T1imits of the outlet entropy

range (3.26) (see FIG.13¢) and pressure range (3.30) (see FIG.13112).

There is though a noticeably large increase in the rate of change
of the position of the shock front, with respect to either flow
variable, near the throat. This may be explained on first noting that
the mass flow shock value QS is fixed for given flow constants at inlet,
h and Mys and outlet, h and 7_, being simply the intersection of the
respective P(Q,h,7) graphs. Hence, from (2.2), there exists a

caorresponding unique cross-sectional area, As’ in a diffuser at which

the shock must 1lie

Ag = C A, - (3.58)
QS

Then on considering a suitable pair of outlet entropy values, from
(3.26), that are close to T here

a . 7.082 x 10°

-3
n

and (3.59)

b . 7.084 x 10*

-3
1]

1

then for each the resulting shock must, from (3.58), lie at the

locations where

A2 = 1.006
S
and (3.60)
Al - .01 .
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The placing of ordinates on FIG.15, for each diffuser shape. at both of

(3.60) then cleariy shows the increase in the rate of change of the

shock position near the throat in the quadratic diffuser. Axs(Q),

compared to that for the linear form, AxS(L), i.e.

Axs(Q) >> Axs(L) . (3.61)

Note that the same argument may be applied, by assigning a pair of n

values close to Ty to explain the reduction in the positionail rate of

change of the shock on approaching the nozzle outlet.

Now, having established that for a given value p_ (thus pressure
pzf) the shock value Qs is fixed, we may deduce that the corresponding
shock strength (1.28), as shown by FIGS.14:%,:3, is also fixed. This is
because the quantities required to define (1.28), i.e. the pressures P,
and p_, may be found from Qs alone by deriving the full graphs p(Q,h,n+)
and p(@,h,7_) on a common axis (see FIG.16) and placing an ordinate at

this value; this process being independent of a particular flow.

p (Q l"\l"\-ln)

P-

RN

Pe

i
A

T

= Q, Fi4.16
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SECTION FOUR : A NUMERICAL FORMULATION OF SHOCK FLOW IN A DE-LAVAL

NOZZLE

In this section a stationary principie 1is derivea that is
equivalent to the conditions (2.6) - (2.14) defining quasi
one-dimensional shock flow 1in a de-Laval nozzle. A numerical ’'shock
fitting’ method is then formulated from the stationary principle for the

approximate solution on an adaptive grid of the fluid speed in a shock

flow.

The particular shock flow to be considered is that defined by
(3.1) - (3.11) and (3.31). This will allow a comparison between the
numerical solution with the ’exact’ parameterization that has been
determined for this flow in §3 and thus give an idea of the relative
accuracy of the numerical method. It is hoped that the solution obtained
will possess two qualities. The position of the shock front in the
diffuser must be accurately located and the representation of the
continuous flow in the remainder of the solution domain, in particular
around the nozzle throat, must also be sufficiently accurate. It is
found that the c¢ritical factor in achieving these aims is the
development of an efficient algorithm to determine an initial

approximation to the shock flow.
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4.1 A STATIONARY PRINCIPLE FOR SHOCK FLOW

The equations defining the quasi one-dimensional approximation to
shock flow in the nozzie are, recall, considered to hold in a fixed
domain, D, which represents the nozzle axis. Let ¢ and ¢ be undetermined
functions of position and define a functional I = I(z) by

X
S

I= J [Qv + p(v,h,n+) +¢d (QA) ] dx +

0 ax
d
J[QV+p(v,h,n_)+¢d(Q A) 1 dx , (4.1)
X dx
s
where
_Z_=(Q,V,¢,¢), (4-2)

and xs € (0,d) for the present case is considered as fixed, d being the
domain length. The function p(v,h,7) is that given by (3.27), in which

here the flow constants h, 5, and 7_ have been retained for clarity.

Now consider smail, arbitrary variations of the arguments of I. The

functional (4.1) 1is stationary with respect to the variations if and

only if its first variation, I, is zero, i.e.

X
S

§1 = ¢ [ J [Qv + p(v,h,n+) +¢d (@A) ] dx +
0 dx

d
J Qv+ p(v,h,7.) + ¥d (QA) ] dx ] =0, (4.3)
X

s dx
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which may, by extending the theory of [5], be written explicitly as

X
S

§I:J[§Q(v-Ad¢]+§v[Q+dp]+§ai[d(QA)] ] dx +
0 dx dx dx

d
J [ 6Q[ v - A d¥ ] + Jv[ Q + dp ] + 6&[ d (@ A) ] ] dx = 0,
. e & e

(4.4)

where it is assumed that at x = 0, x = Xg and x = d we have 4Q = 0. The

natural conditions of the stationary principle (4.3) are therefore, on

the domain (0 , xs]

fQ : v =Adg, (4.5)
dx

v : Q=-dp, (4.6)
dv

¢ : d QA =0, (4.7)

dx
and on the domain [xs , dl

iQ v=Ady, (4.8)
dx

v : Q@=-dp, (4.9)
dv

§¢ : d(QA)=0, (4.10)

dx
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where (4.6) and (4.9) may be written in the form

Q=pv, (4.11)
by definition of the pressure gradient
p'(v) = -pv . (4.12)

We now consider allowing Xg in (4.1) to vary, giving an additional
contribution to the first variation (4.4), and therefore a corresponding

natural condition of (4.3) which arises from

+

S S
J Qv+ oplv,hyp) +¢6d (@A) ] dx+
Xg dx

[ Qv +p(v,h,p ) + $d(QA)] dx , (4.13)

X + Ox ax
s . dx

where 6xs denotes the variation in xs. By the (first) mean value theorem

for integrals the natural condition arising from the variation dx_ is

easily seen to be

(@v +plv,hy7) +9d (QA)] | -[@v+plv,hg) +¥d@A] | =0,
dx x; dx X,

(4.14)

where the superscripts '+’ and -’ denote the shock when approached from
the front and back respectively. The full set of natural conditions of

the principie ¢éI = 0, when Xg is varied in addition to the other



- 48 -~

variables. therefore consists of (4.5) - (4.10) and (4.14),

The natural conditions (4.7) and (4.10) may be 1mposed as
constraints on the variations in (4.3) on ensuring that mass

conservation is satisfied by assigning

Q(x) A(x) = CONSTANT = C Ae R (4.15)

which in the present case is chosen in accordance with (2.2). The new

stationary principle obtained is therefore

X
s
0J = ¢ [ J [ C Ag v+ p(v,h,7.) ] dx + J [ € Ag v t p(v,h,p_) ] dx ] =0
0 A(X) X A(X)

S

(4.16)

with the natural conditions of (4.16) being (4.5), (4.6), (4.8), (4.9)
and from (4.14)

[ cA, v+ plv,hp) ] - L CcA, v+ plv,h,g) ] =0
AX) X ACX) X

Then, from the definition of flow stress (1.10)
P=p+pviz=p+Qv, (4.18)
in magnitude (4.17) may be written

P(v,h,7) | - P,hg) | =PI =0, (4.19)
+ -—
xS XS
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which is the shock condition (2.10b).

Hence, having satisfied the conservation of mass by (2.2) ana of
total energy by definition of (4.16), we may conclude that <the
stationary principle éJ 1is equivalent to the conditions defining the
quasi one-dimensional approximation to shock flow. The principle ¢J may
be appiied to the present motion by substitution of the nozzle area
variation (3.7), the entry mass flow rate to the central streamiine
(3.10), the entry nozzle cross-sectional area (3.8a) and the flow
constants at inlet, (3.2) and (3.3) and at outlet, (3.2) and (3.31).
Note finally that J depends only on the fluid speed and the position of
the shock front and may now be used to deveiop a numerical method for

the approximate fluid speed variation in the shock flow.

4.2 THE NUMERICAL FORMULATION

A numerical method is now formulated on an adaptive grid. The nodal
amplitudes a, = a,(k), i = 1(1)N, with ay, and a,  the amplitudes of the
node, M, representing the shock front, when approached from the front
and the back respectively, and the corresponding nodal positions
S; = Si(k)’ i = 1(1)N, are unknown at each iteration level, k, towards

the final approximate solution. A semi-discrete approximation to the

fluid speed is now sought

N

V6K =) k) a(x,s0K) (4.20)
i=1

where s(k) is the nodal position vector and o, = a,(x,s(k)) , i = 1(1N,

are piece-wise linear basis functions of local compact support (see
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[6]1). In particular

e T T Sy [syog &% € sy ]
M T SM-1 (4.21)
aM:_
-7 Smey T X [y &% & sy |
j SMe1 ~ M

The substitution of the approximation to the fluid speed (4.20), in

which nodes are constrained to remain fixed at the domain extremes

and (4.22)

into the functional, J, underlying the stationary principle (4.16)

yields now a function, L, of the unknown coefficients

L=LtCa, cooag,y sy ven 54 ) (4.23)

where L = J(v) is defined by

)

M d
L= [ e TenGng) Tacs [ Do A e e@na) T
0 A(x) sy A(X)

M
(4.24)

Therefore making the function (4.24) stationary gives an

approximation to the stationary point of the functional J; the

conditions for this are simply
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gL =0, [i = 1(1)N] (4,25)
da
and
oL = 0 (i = 2(1)N=-1] (4.26)
Js

The partial derivatives (4.25) may be written, using (4.12), as

[CA, -7 v ] a; dx = 0, [ 1= 1(1N, i #M 1 (4.27)
D A(X)
and
Sy .
{ E_ée -pv] LN dx = 0
0 A(x)
- (4.28)
d
J [ E_ée -pv] ay_ dx = 0
Sy A(x) J
similarly those in (4.26) become
[ca, -» v ] g, dx =0, [ 1=1(1N, i #M] (4.29)
D A(X)
and
[ €Ay v +oplv,hg) ] . [ CAg v +pvhg) 1| -
A(x) M A(X) M
M
[CA - plvihn) v T lay, - ay /sy = sy ql oy X
0  A(x)
d
J [ E_ﬁe - p(v,h, 3. ) v ] [aM+1— ay_ i Sugpq T sM] Oy dx = 0 .
A(X)
(4.30)

M
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where /7, = di(x, a(k), s(k)) is a second type of basis function (see

[6]), a(k) being the vector of unknown nodal amplitudes. The pressure
function 1in (4.30) 1is, recall, defined by (3.27) and to enable the
solution for the approximate fluid speed in the nozzie to be founa the

density term in (4.27) - (4.29) is replaced by (see [1])

pevsbym = VY L= ) Cho- vEr2y ) 1YY (4

Now by noting (4.28) and also that

<l
x
1]
o
x
pre

ana (4.32)

then (4.30) may be written as

[ CA, 8y, +play,hn) 1-1CA ay +play  hy)1=0,

A(Xx) A(x)
(4.33)

which is the discrete form of the shock condition [P]t = 0.

The conditions (4.25) - (4.26) then take the form of a system of
non-linear equations, at each iteration 1level k, for <the unknown

parameters; the system may be written in the form of the inner products



and

as

~

M

o , ¥ > = [ d v
] | J

0

d
¢, ¥ > = [ ¢ v

B J

M
C Ay~ pv,h, )
A(x)
i pv,h,7.)
A(x)
C Ay~ plvihymy)
A(x)
C Ay = plv,hy1)
A(x)
C A By + P(ay,,
A(x)
C Ay - p(V,h,7)
A(X)
C Ae - P(V,h,f]_)
A(x)
C Ay = plv,h,7)
A(x)
C Ay = P(Vihy7)

7 dx

 dx

<]

<l

<l

<l

<l

<l

<

<i
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c Ae

A(x)

a

M-

[1 = 2(1)M-1]

(4.34)

+ play_,h,7_) 1 =0,

[i = MEF1(1)N=1]

(4.35)
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On solution of the system (4.35) the function (4.24) has been made
stationary with respect to its parameters, representing the given snhock

flow discretely, and determining an approximation to the fluid speed in

the motion.

4.3 THE SOLUTION ALGORITHM

The solution algorithm to be presented here is a direct extension,
modified for shock flow, of that used for the numerical solution of a

continuous quasi one-dimensional nozzle flow on an adaptive grid found

in [6].

1. The preliminary solution stage

In terms of the quasi one-dimensional approximation to shock flow
it is stated in §2.4, and employed in the shock flow parameterization of
§3.2, that a shock front intervenes between a nozzle transition flow,
defined by (3.2) and (3.3), and an independent subsonic cone section
flow defined by (3.2) and (3.31). In this stage of the solution process
a piece-wise linear approximation to the fluid speed in each of these

flows is obtained on a fixed uniform grid (the full formulation may be

found in [5]).

The approximation to the nozzle transition flow

The approximation to the fluid speed in a nozzle transition flow,
9;, defined by (3.1) -(3.11), when solving on the numerical grid found
in TABLE 2, is shown in FIG.17 (from ([5]) and denoted ’'TF’. Note that

there are twenty-one nodes employed in the discrete solution and that
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the amplitude of the node at the nozzle throat location (3.3) has been

overwritten by the critical fluid speed value (3.5).

TRANSITION FLOW IN A DE-LAVAL NOZZLE |
FIXED UNIFORM GRID — TWENTY ONE NODES !
NODE NUMBER | NODE POSITION| NODE NUMBER | NODE POSITION

1 0.0 11 1.0
2 0.1 12 1.1
3 0.2 13 1.2
4 0.3 14 1.3
5 0.4 15 1.4
6 0.5 16 1.5
7 0.6 17 1.6
8 0.7 18 1.7
9 0.8 19 1.8
10 0.9 20 1.9
21 2.0

TABLE TWO

The approximation to the subsonic cone section flow

It has been established in §3.2 that the subsonic cone section flow
defined by (3.2) and (3.31) may only exist in a portion of the complete

nozzle diffuser (3.7b), in the present case from (3.37) and (3.38) this

being

1.0575 < x € 2.0 . (4.36)

To enable the definition of an initial shock position in the numerical
method the cone section flow is therefore solved on a fixed uniform grid

defined by the portion of the grid in TABLE 2 that lies in the domain
(4.36) (see TABLE 3).
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SUBSONIC FLOW IN A DIVERGING CONE SECTION
FIXED UNIFORM GRID - TEN NODES

NODE NUMBER | NODE POSITION| NODE NUMBER | NODE POSITION |
1 1.1 6 1.6 |
2 1.2 7 1.7
3 1.3 8 1.8
4 1.4 9 1.9
5 1.5 10 2.0 |

TABLE THREE

The cone section flow to be solved numerically is therefore defined

on the domain

1.1 ¢ x £2.0, (4.37)

with the area variation, Acn(x), from (3.7b), being
cn -
AT (x) = (2.6/3.0) + (x/6) , (4.38)

where x lies in (4.37). The cross-sectional area of the cone at entry,

cn
Ae , is therefore

AZ“ = (2.6/3.0) + (1.1/6.0) = 1.05 , (4.39)

and at exit, Agn where

cn _
A0 = 1.2 . (4.40)
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The mass flow boundary condition at inlet, from (2.2) and (4.39), s now

cn

Qe

=C Ae = 234.582 , (4.41)

ACD
e
and, from (3.11), at outlet

an = 205.259 . (4.42)

The approximation to the fluid speed in the subsonic cone section

flow, 9;’ defined by (4.37) - (4.42) 1s shown in FIG.17 and is denoted
"DF’.
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. The initial shock flow approximation

3
<

The aim of this stage of the solution is to determine an 1nitial
position for the shock front in the diffuser, and thus subsequentiy to
obtain an 1initial numerical approximation to the shock flow. The

equation system (4.35) is first de-coupled and reformulated in a local

manner.

The local formulation

A set of local basis functions

di = 25 s(K)) [ i=2(1)N]
and (4.43)
= & i = -
bip = Aip(Xs8(K)) [ 1= 1(1)N-1]
are defined in a node-wise manner (see [6]), where note
7" - 2 =
by = oy (xo8(k)) = ay,
and (4.44)
fur = PMp(Xr8(K)) = oy

The resulting system of equations, in terms of the inner products (4.34)

is now



< E_ée . p(v,h,ﬁ+) v, ¢1R }1 =0 . (4.45)
A(x)
Fil = ¢ E;fe - plvihen ) v, 9y 20
A(X)
Fi=- [ 4= 2(1)M-1 1  (4.46)
Fip = ¢ E_ﬁe - pviheg) vy P > =0,
A(x)

[ = _ _
Fg = [E_fe ay, + play,h,1)] [E_fe ay- *+ p(ay_,h,7 )1 =0,
A(x) A(x)
- 2 = _ (T v . N
Es = Fs = ¢ E_ée p(v,h,n+) Vo fwL >| =0,
A(x)
3 = _ by o -
FS =« C_ﬁe p(vvhvﬂ_) v o, ¢MR >2 =0 y (4'47)
L A(x)
F'lL =< ge = P(V,h,YI_) v, ‘Pﬂ_ >2 =0 1
A(x)
Ei = [ 1= MH(1)IN=-1 ] (4.48)
FiR =< E_ﬁe - plv,h,p_) v, ¢1R >2 =0,
L A(X)
< C Ae - p(v,h,q_ ) v, ¢NL ’2 =0 . (4.49)

A(X)

Providing that the local gradients of the approximate solution M.y and

m., where

M= Ay Ay (4.50)
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are not eaqual then the system eguations in (4.35) carresponaing ta the
interior nodes may be written as 2 x 2 non-overlapping pairs. i.e.
(4.46) and (4.48). In a similar manner the system equations
corresponding to the node, M, representing the shock front may now be

written as a local shock node system (4.47).

The initial location of the shock front

The manner in which the approximation to the fluid speed in both
the transition flow and cone section flow has been obtained will
provide, excluding that at outlet, a choice of, here nine, initial shock
positions, s;, (see FIG.18) 1lying at the grid locations 1in TABLE 3.
Subsequent to the assignment of s: the resulting initial approximation

to the fluid speed in the shock flow, !o

o _ ,._% * o _x x
W= (a1, Syr wee s By Sy Ay s e 5 Ay sN) (4.51)

will consist of the approximation to the transition flow from inlet tao

M+ and to the cone section flow from M to outlet, i.e.

* +
a (i =101)M]

é* = =T 1 (4.52)
a [i = M (1N

where the nodal positions are defined in TABLE 2.

The local nature of the present discrete formulation allows the
nodes to be updated in any order; particular use of this flexibility is

made in the following algorithm to determine sa.
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(a) The initial solution vector, yo, resulting from assignment of a
particular sa is fixed except for the amplitudes, a;+ ana aa_, and

position, sa, of the shock node.

(b) The parameters aa+, aa_ and sa are updated once by solving the

Jocal shock node system (4.47) by a three variable form of Newton’s

method

0 i ’ (4.53)
A B ¢ 6aM+ Fs
o S 2
D 0 E fay_ | = Fo
o 3
L 0 F G 11 5SM i L Fs )
[J]s 633 -s

where the vector of local parameter updates, 655, consists of the
updates in amplitude of the shock nodes, 6aa+ and Ja;_, and the update

in the shock position, 633; the elements of the Jacobian matrix [J]s are

- Al - Jel - Acl - Ar2 - 2 _ 3 - Ap3
A = dFs , B = dFs o Ci2 dFs, D = dFs , E = dFS, F=dFy , G= dF,
2.0 1.0 41 0 o o] 5 0 3 O
day, day_ Jsy, day, sy day_ Isy,
(4.54)

where note that ¢ is used here in a totally different sense to that of
the variations in §4.1. The local system (4.53) is solved by forming the

augmented matrix and reducing to row echelon form to give (assuming that

G+ (AF/BD) (CD/A-E))

o _ f7a _ 2y _ g3
§sM = (A F/B D) (D FS/A Fs) Fs : (4.55)

G + (A F/B D)(E - (C D/A))
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and subseguently by back substitution

o _ -2 _ | o} =
fay_ = FJ - (D F/A) + ésy (E - (C D/A)) (4.56)
(B D/A)
and
o _ _ 3 .0 (o]
5aM+ = - (F_ + fa, B+ 6sM c) . (4.57)
A

The amplitudes and positions of the shock nodes may now be updated

according to

[\
1
(o]
+
>
[
o

M+ - BMe M+
_ .0 o
ay. = a,_ t 6aM_
and (4.58)
o_ o o
Sy = S + 65M

(c) The direction and magnitude of the update to the shock position

(4.55) is first computed for the s; closest to outlet, in the present

case (see TABLE 3)

Sy © 1.9 , (4.59)

and subsequently for the remaining positions decreasing in magnitude [7]

. o] o] , o o] .
until for, say, sml and sMg, with le > st, we find that

§5s° < 0.0
M
and (4.60)
5339 > 0.0 ,

(this process is illustrated for the present case in FIG.18)
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(d) The minimum absolute update of those in (4.60), 5533, i.e.

o 5 o (o}
6SM3 = MIN | by, 5sM2 | » (4.61)
is then computed and the shock position associated with that minimum

update is employed as the initial approximation to the position of the

shock front in the numerical method, in the present case

M .5 . (4.62)

The resulting initial approximation to the fluid speed, !o, in the
full shock flow may now, as stated previously, be obtained by combining
the approximations to the transition flow and the cone section flow

about sa (see (4.51) and (4.52)), this is illustrated here in FIG.19.
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3. The adaptive grid solution stage

The manner in which the initial approximation to the shock flow
(4.51) has been computed means that prior to any displacement of the
nodes it will contain approximately the correct solution curvature in
the regions of continuous flow, which should minimize the appearance of
il1-conditioning in the adaptive grid solution. The nodes throughout the
complete solution domain are now updated individually, consistent with
the local formulation (4.45) - (4.49), by an analagous process to that

used in the adaptive grid solution of a continuous nozzle flow presented

in [6].
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{:) The amplitudes, af and a;, of the nodes at the domain extremes
(4,22), where here d = 2.0 (3.1), are first updated once by solving the
associated equations (4.45) and (4.49) using the simple singlie variable

Newton iterative algorithm (see [6]).

(1) The amplitudes, a;+ and a;_, and position, s:, of the shock

node are then updated once by solving the local shock node system (4.47)

in the manner outlined in (b).

(iii) The remaining interior nodes, in both regions of continuous
flow in the solution domain, are finally updated using a similar process
to that used for (i:). The present solution vector, yk, is fixed except
for the amplitude, g?, and position, §§, of the particular node under

consideration. These parameters are then updated by solving the

associated local equation system, (4.46) or (4.48), by a two variable

form of Newton’s method (see [6]).

Note that the node initially at the nozzle throat location is
constrained to remain fixed in this position (3.9) and additionally in
amplitude at the critical fluid speed (3.5); this ig as a result of the
comparative study of the possibie treatments for this node presented in
[6]. Subsequent to the above updating process it may then be said that N
local iterations (’one sweep’) have been performed. The adaptive grid
stage of the solution is said to of converged to the final approximate
soiution vector, !n’ when the maximum absolute nodal displacement for a

complete sweep, including that of the shock node, is less than the

specified tolerance

MAX | ‘s:( | < 0.0001 . (i = 2(1)N-1] (4.63)



4.4 THE SHOCK FLOW SOLUTION

The approximation to the fluid speed in the snock flow aefinea by
(3.1) - (3.11) and (3.31) is shown in FIG.20:, with the finai soiution
grid denoted on the figure by a series of x’s; the exact nogal positions

may be found in TABLE 4 in which the shock node is denoted -

SHOCK FLOW IN A DE-LAVAL NOZZLE
FINAL SOLUTION GRID - TWENTY ONE NODES

NODE NUMBER | NODE POSITION| NODE NUMBER | NODE POSITION
1 0.0000 12 0.9166
2 0.1899 13 1.0147
3 0.3547 14 1.1418
4 0.4944 15 1.2970
5 0.6087 16 1.4808 T
6 0.6969 17 1.5685
7 0.7588 18 1.6643
8 0.7938 19 1.7681
9 0.8000 20 1.8800
10 0.8079 21 2.0000
11 0.8475

TABLE FOUR

The numerical shock position, sa, in the present case lies at

s,, = 1.4808 , (4.64)

which, noting that the corresponding ’exact’ shock position (3.48) 1is

computed to within (3.49), may be said, after rounding, to be accurate

to three decimal places.
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The accuracy of the numerical solution may be examined tvy pictting
the nodal values and the exact parameterization (FIG.10) =n a ccmmon
axis (see FIG.20:?¢). It is apparent that considerable accuracy has been
achieved in the modeling of the present shock flow, notably 11n the
representation of the relatively large rates of fluid speed change in

the continuous flow around the throat, and of course in the fitting of

the shock front.

The detailed features of the adaptive grid stage of the numerical
solution may be obtained by inspection of the nodal displacements and
amplitudes at the current solution vector, !5 for each level k. The

trajectories of the nodes, in both cases, are thus shown in FIG.21.

The uniform displacement of the nodes in the solution domain at the
initial approximation to the shock flow, y? (from FIG.19) may be seen in
FIG.21:. The displacement of the shock node, i.e. s:, is denoted on this
figure by a broken line, from which it 1is found that sa (4.64) is
attained roughly after only two sweeps; this is due to the efficiency of
the algorithm used in computing the initial shock position (4.62). The
total of 92 sweeps on the adaptive grid is therefore predominantly
required to attain the representation of the continuous flow (as
expected from [6]) to within the tolerance (4.63); note the node fixed
at the nozzle throat (3.9). The amplitudes of the shock node, when
approached from the front and back respectively, are indicated in
FIG.2174 by a similar fine broken line which, corresponding to the
displacements, become unchanged roughly after a couple of sweeps. The
amplitude of the throat node, fixed at (3.5), is clearly shown and the

coarse broken lines represent the variation in the amplitude of the

nodes in the subsonic flow subsequent to the intervention of the shock

front.
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The magnitude of the jump in the fluid speed across the shock front

may be computed from the ampiitude of the shock node at entry toc the

shock front, I and exit, Ay_s in the numerical solution. Subseauently

the algebraic relationships (3.27), (4.31) and (3.51) may De used to

compute the jumps in the other flow variables (see TABLE 5).

THE SHOCK FRONT
QUANTITY JUMP MAGNITUDE PERCENTAGE ERROR
v - 159.731 0.137
p + 35334.088 0.137
p + 0.387 0.259
T + 49.720 0.155
MAGNITUDE
Gt 1.687 0.119
Setr 1.114 0.270

TABLE FIVE

The percentage error in the fluid speed jump, between the numerical
value and that in the exact parameterization (4.65), is seen (TABLE 5)
to lead an error of the same order in the computed jump of the other
flow variables (the imposed jump in entropy is of course exact). The
magnitude of other significant quantities associated with the shock
front may also be found from the algebraic relationships (see §3.3), in
particular both the shock compression, Cshk’ and strength, S are

str’
again seen to have the same order error, in comparison with (3.55) and

(3.56), as the speed jump.
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4,5 THE NUMERICAL METHOD

The robustness and overall accuracy of the numericai method may be
investigated by considering the relationship between the outlet
entropy value and the resulting numerical shock position and strength
(see TABLE 6) in comparison to the analagous relationship (TABLE 1) for
the exact parameterization; these are presented graphically in FIG.22
where the numerical results are denoted by the broken graph and the

’exact’ results by the full graph, the axial quantities are defined as

in FIG.13.
4 n n n n

ENTROPY x10 Sy sM(E) Sstr Sstr(E)
7.080 0.80053 0.125 0.038 =
7.082 0.83607 - 0.234 10.900
7.084 0.85830 - 0.303 10.989
7.086 0.87739 0.114 0.355 12.342
7.088 0.89474 0.224 0.398 13.068
7.090 0.91092 0.220 0.435 12.987
7.092 0.92624 0.108 0.469 13.012
7.094(%) 0.94089 0.213 0.500 13.636
7.096 0.95294 N 0.475 2.151
7.098 0.96640 N 0.498 2.469
7.100 0.97949 - 0.520 2.564
7.120 1.09714 N 0.686 1.180
7.140 1.20149 N 0.815 0.724
7.160 1.29872 - 0.925 0.434
7.180 1.39139 - 1.024 0.392
7.200 1.48084 - 1.114 0.270
7.220 1.56789 - 1.199 0.251
7.240 1.65309 - 1.279 0.235
7.260 1.73682 - 1.355 0.148
7.280 1.81936 - 1.428 0.211
7.300 1.90093 - 1.498 0.134
7.320 1.98170 = 1.566 0.128
7.3245 1.99978 = 1.581 0.127

TABLE SIX
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. . L n, ..
A percentage error 1in the numerical shock position, SM(:J, 3 cnly

n . . . .
M is not accurate to three decimal piaces, ana it s then

computed if s

evaluated using the rounded vaiue. Similarly the error in the numerical

shock strength, Sgtr(E), is computed using the value, N given

1’
str’ n

TABLE 6.

The significant feature of the resuits in TABLE 6 and FIG.22 is the
relatively poor fitting of the shock front by the numerical method if

the outlet entropy value is prescribed in the range

4 4

7.086 x 107 < 7. 7.094 x 10" ., (4.65)

This inaccuracy 1is a consequence of the algorithm to determine the
initial approximation to the position of the shock front (84.3). The
solution of the local shock system (4.47) in the adaptive grid stage
depends directly on the neighbouring nodes to those in the shock front;
if these are representative of the local curvature of the continuous

flow then an accurate numerical shock position will result. In the case

of an outlet entropy value of

4

7_ = 7.096 x 107, (4.66)

the initial shock position is assigned such that a node is always
present between the shock nodes and the throat node, adequately
(although note not accurately) representing the local curvature in that
region throughout the adaptive grid stage (see FIG.23:), resulting in an
accurate shock position (see TABLE 6). Conversely on prescription of a
value 7_ in the range (4.65) the initial shock position is chosen so

that no such intermediate node exists, hence the continuous flow around
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the throat 1is pooriy represented (see FIG.23:: with 7 = 7.092),
resuiting in an 1naccurate shock position (see TABLE 6). The inaccuracy
will be refiected to a greater degree in the numerical shock strength
because. due to the targe rate of fluid speed change around the nozzle
throat, an error in the shock position will produce considerable error
in the ampiitudes of the shock node, which are exactly the quantities
reguired to compute Sgtr (see TABLE 6) (* note that for 7_ = 7.094 a
node has heen deleted in the adaptive grid stage of the solution due to
a linearity 1in the numerical approximation of the subsonic flow

subsequent to the intervention of the shock front (see [6])).

Finally it is found from TABLE 6 that an accurate shock position is
obtained when the expected shock is almost at the nozzle throat. This is
because the shock node approached from the front and the throat node
together are enough to represent adequately the intermediate fluid speed
change. Note though that as a consequence of the extreme rate of fluid
speed change 1in this region the numerical shock strength still has
considerable error; in fact as a result of numerical error in the
amplitudes of the shock node this occurs, although to a lesser degree,

throughout the full range of shock flows in TABLE 6 (see FIG.22:1).

In summary an initial approximation to the shock flow is required
that will consistently produce, not only a good first approximation to
the position of the shock front, but more importantly an accurate
representation, throughout the adaptive grid stage, of the regions of

continuous flow, in particular around the nozzle throat.
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4.6 THE MODIFIED SOLUTION ALGORITHM

In the develcpment of an algorithm for soliution of the equation
system (4.35) the numerical solution of several shock flows was
obtained, again using a Tlocal reformulation, but with the initial
position of the shock front lying at the diffuser outiet. The locai
system (4.47) was solved to update the shock nodes as in §4.3 (b), with
nodes passing ’‘through’ the shock front in a manner akin to Heath [9],
and after one update a reasonable approximation to the exact shock
position was consistently obtained. The frequent extreme finite jump in
the shock position caused however considerable inaccuracy in the

ampiitudes of the shock node, leading ultimately to the merging of nodes

in the adaptive grid stage.

On the basis of these observations the present algorithm §4.3 was
developed to determine a sufficiently close initial approximation to the
position of the shock front so as to eliminate any such potential
problems. A conseguence of this approach is that the number of nodes, in
the diffuser, representing the continuous flow regions either side of
the shock front must remain unchanged in the adaptive grid stage. This
expiains the problems encountered in §4.5 in which, for an initial shock
position close to the throat, insufficient nodes are present prior to

the shock and subsequent to it there is an abundance (see FIG.23).

The aim must therefore be to ensure, as far as possible, the
optimum distribution of nodes in the initial approximation to the shock

flow so as to accurately represent the regions of continuous flow

wherever the initial position of the shock front.

The modified solution algorithm 1is presented for the particular
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shock flow in §4.4 defined by

p_ = 7.2 x 107, (4.67)

and is applied specifically, not only in the solution of this flow, but

also to the more informative case where
_ 4
7_=7.092 x 10" . (4.68)

The solution algorithm

The approximation to the fluid speed in the nozzle transition flow
defined by (3.1) - (3.11) is first solved now on an adaptive grid (this
formulation is presented in [6]), for which the final solution grid is
found in TABLE 7, and is shown in FIG.24 denoted 'TF' (from [6]). Twenty
one nodes are again emplioyed in the discrete solution and the throat

node is fixed throughout at a position (3.9) and amplitude (3.5).

TRANSITION FLOW IN A DE-LAVAL NOZZLE
FINAL SOLUTION GRID - TWENTY ONE NODES
NODE NUMBER | NODE POSITION| NODE NUMBER | NODE POSITION

1 0.0000 1" 0.8336
2 0.1899 12 0.8814
3 0.3547 13 0.9479
4 0.4944 14 1.0315
5 0.6087 15 1.1306
6 0.6969 16 1.2438
7 0.7588 17 1.3701
8 0.7938 18 1.5087
9 0.8000 19 1.6595
10 0.8057 20 1.8230
21 2.0000

TABLE SEVEN



- 74 -

The approximation to the subsonic cone section flow definea by
(3.1) and (3.31) is obtained fundamentally as stated in §4.3. The tlow,
as we already know, will only exist in part of the diffuser defined by
(4.36); to allow the definition of the initial numerical shock position
the cone flow must now be solved on a fixed irregular grid (as

formulated in [5]), obtained as in §4.3, and shown in TABLE 8.

SUBSONIC FLOW IN A DIVERGING CONE SECTION
FIXED IRREGULAR GRID - SEVEN NODES
NODE NUMBER | NODE POSITION| NODE NUMBER | NODE POSITION

1 1.1306 5 1.6595
2 1.2438 6 1.8230
3 1.3701 7 2.0000
4 1.5087

TABLE EIGHT

The cone section flow to be solved numerically is now defined on the

domain

1.1306 < x < 2.000 , (4.69)

where Acn(x), A:n

and Agn may be deduced from (4.38) -(4.40) and
similarly the mass flow boundary conditions from (4.41) and (4.42). The
present approximation to the fluid speed is shown for this flow in

FIG.24 and is denoted ’DF’.
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The initial approximation to the shock flow is obtained by the

process outlined in 84.3 2. with the initial shock position now being

S

1.5087 , (4.70)

out of the possible locations in TABLE 8, and is shown in FIG.25¢; this.

is also shown for a shock flow defined by (4.68) in FIG.25:1, with here

SM 0.9479 . (4.71)

In both of these figures, and for that matter the initial approximation
to any shock flow in the nozzle, the nodes in the continuous flow priar
to the shock front are optimally distributed, wherever the initial shock

position, because they originate from the adaptive grid solution of the
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transition flow (FIG.24). Due to the qualitative similarity, subseauent
to the shock front. in the absolute magnitude of the curvature of the
exact parameterization of the transition flow and subsonic cone flow the
nodes in this region are not adapted to the optimal distribution: this
will occur anyway as a consequence of updating the shock position. Note
finally that the initial shock position, although dramatically improved
near the nozzle throat, will in fact be poorer on approaching the
diffuser outlet; this however is not found to impair the final shock

position because of the relative linearity of the fluid speed variation

in this region.

The nodes are updated in the adaptive grid stage of the solution in
accordance with 84,3 3.. Although obvious additional computational
expense has been incurred in obtaining an initial approximation on an
adaptive grid it must be noted that, due to the local formulation and
the fixed throat node, the nodes prior to the throat have no influence
on the subsequent numerical solution in the diffuser. Therefore, these
nodes already being optimally distributed, means that they need be

updated no further (this is discussed again later).
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The shock flow solution

The approximation to the fluid speed in the shock flows defined by
(3.1) - (3.11) and the outlet entropy values (4.67) or (4.68) are shown
in FIGS.261¢,:: respectively along with, in each case, the final solution

grid (see also TABLE 9). The numerical shock positions, for each flow,

are

7.2 x 10 s

-3
|
"

1.4808

X3

and (4.71)

7.092 x 10% : s

-3
1"

0.9245 ,

which may both now be said, after rounding to be accurate to three
decimal places. The accuracy of (4.71), as explained in 84.5, is a
direct consequence of the accurate 1local representation of the
continuous flow in the vacinity of the shock front, in particular in the

case of (4.71b) around the nozzle throat (see FIG.26¢: compared to

FIG.23¢1).

The constraint of the nodes prior to the nozzle throat in the
adaptive grid stage is apparent from TABLE.2, in which for both shock
flows the final grid is that for the transition solution (TABLE 7) in
that region. The superior nodal distribution for each flow when using
the present initial approximation technique 1is highlighted by the
increase in nodal numbers of the node representing the shock front,

again denoted T, when compared to TABLE 4 and FIG.23:: repectively.
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SHOCK FLOW IN A DE-LAVAL NOZZLE
FINAL SOLUTION GRID - TWENTY ONE NODES !
NODE #|7 = 7.092 | 7= 7.2 | NODE #|p = 7.092 | 7= 7.2 |
1 0.0000 0.0000 12 0.8676 0.8710 |
2 0.1899 0.1899 13 0.9245 1| 0.9304
3 0.3547 0.3547 14 0.9958 1.0070
4 0.4944 0.4944 15 1.0856 1.1004
5 0.6087 0.6087 16 1.1936 1.2106
6 0.6969 0.6969 17 1.3194 1.3374
7 0.7588 0.7588 18 1.4630 1.4808 1
8 0.7938 0.7938 19 1.6242 1.6315
9 0.8000 0.8000 20 1.8031 1.8046
10 0.8047 0.8047 21 2.0000 2.0000
11 0.8276 0.8276

TABLE NINE

The nodal trajectories in the adaptive grid stage of the solution
of the shock flow defined by (4.67) are shown in FIG.27, which may be
compared with FIG.21. Noticeable displacement of the shock node again
occurs for only a couple of sweeps (FIG.27:). As a result of the
constraint of the nodes in the entry section, clearly seen, and also the
improved nodal distribution in the diffuser, only 62 sweeps are now
necessary to sweep to convergence within (4.63). This is significantly
less than the 92 required previously; for the flow defined by (4.68) 70
sweeps are needed, which is actually exactly half that for the former
method. The 1initial expense incurred in obtaining an initial
approximation through the adaptive grid solution of the transition flow
is therefore countered in the present case by the significant decrease
in the number of sweeps in the adaptive grid stage. The corresponding
features may be also seen with respect to the nodal amplitude variation

in FIG.27t¢:, in which the definition of the particular trajectories is

the same as for FIG.21:1.
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The magnitude in the jump of the fluid speed, and the other flow
variables, may again be computed from the amplitudes of the shock node;
these are shown for a flow defined using (4.67) in TABLE !0, and

similarly, together with the exact values, for both methods of numerical

solution of a flow defined by (4.68) in TABLE 11.

THE SHOCK FRONT
QUANTITY JUMP MAGNITUDE PERCENTAGE ERROR
v - 159.767 0.159
P + 35342.066 0.159
0 + 0.387 0.259
T + 49,717 0.149
MAGNITUDE
Copi 1.687 0.119
. 1.114 0.270

TABLE TEN

THE SHOCK FRONT - JUMP MAGNITUDE
QUANTITY EXACT UNIFORM I |ERROR ADAPTIVE I |ERROR
v - 7.780 - 81.504 8.992 |- 75.144 0.487
) + 18044.555|+ 19661.757| 8.962 |+ 18132.350|0.487
p + 0198 + 0.216 9.091 |+ 0.199 0.505
T + 22.673 + 24.955 10.065 1|+ 22.781 0.476
THE SHOCK FRONT - MAGNITUDE
Cshk 1.280 1.314 10.065 1.281 0.078
S 0.415 0.469 13.012 0.418 0.723
str

TABLE ELEVEN
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The nodal <Zistribution in the present solution aigorithm, i.e.
relatively few representing the fluid speed variation near cutlet, could
potentially lead to inaccuracies in the numerical solution cf a flow
admitting a shock in this region, i.e. a flow defined using (4.67).
However it is exactly because of the linearity in this region that the
nodes present are able to represent the local curvature accurately and
thus the shock position (4.71a) is as accurate as that cbtained
previously (4.64), where there were excessive nodes. The errcr in the
shock node amplitudes and thus the quantities in TABLE 10 will, as can
be seen, therefore, for the same reasons, be of the same order of
accuracy as those obtained in TABLE 5. Therefore we may conclude that
the numerical solutions of the shock flow defined by (4.67), using both

forms of the initial approximation, are of the same degree of accuracy

with regard to the shock front, but the representation of the continuous

flow is superior in the present case.

The benefits of employing the modified initial approximation, when
considering a flow with a shock front intervening near the throat
(4.68), are conclusively illustrated, not only by the accuracy of the
numerical shock position (4.71b), but also by the dramatic increase in
accuracy of all of the quantities associated with the shock front (TABLE
11). In particular the numerical shock strength may be seen to be in

excess of ten times more accurate than when using the previous approach.

The approximation to the fluid speed in a shock flow may naow be
used directly in the compliete set of algebraic relationships [1] to
provide the discrete axial variation of the other flow variables (see
FIG.28 for (4.67)), for which an exact parameterization is given in

F1G.11, and further as a set of intermediate numerical parameters to
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determine the discrete form of the inter-variable graphs (FIG.12) in the

shock flow.

The numerical method

The overall accuracy of the numerical method when emplioying the

present initial approximation to a shock flow is now

investigated,

as

previously, by considering the numerical solution of a variety of shock

flows and constructing TABLE 12.

ENTROPY x10% s sh(E) s, STy o (E)
7.080 0.80053 0.125 0.038 -
7.082 0.83563 . 0.216 2.370
7.084 0.85756 - 0.276 1.099
7.086 0.87639 - 0.321 1.582
7.088 0.89349 - 0.358 1.705
7.090(x) | 0.90946 - 0.393 2.078
7.002 0.92454 . 0.418 0.723
7.004 0.93898 B 0.444 0.909
7.096 0.95288 - 0.468 0.645
7.098 0.96634 B 0.491 1.029
7.100 0.97943 - 0.512 0.977
7.120 1.09712 s 0.681 0.442
7.140 1.20148 = 0.812 0.371
7.160 1.29872 - 0.924 0.326
7.180 1.39139 - 1.023 0.294
7.200 1.48084 - 1.114 0.270
7.220 1.56789 B 1.199 0.251
7.240 1.65309 - 1.279 0.235
7.260 1.73681 - 1.355 0.148
7.280 1.81936 = 1.428 0.211
7.300 1.90093 - 1.498 0.134
7.320 1.98170 - 1.566 0.128
7.3245 1.99978 s 1.581 0.127

TABLE TWELVE
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The quantities in TABLE 12 are defined exactly as in TABLE . It

may now be seen that, except for the extreme case of a theoreticai zero

shock at the nozzle throat, all of the numerical shock positions are

accurately located to three decimal places. There 1is thougn, as
expected, an overall decrease in accuracy of the computed shock strength
as the shock pcsition lies progressively towards the nozzle throat. The

only uncharacteristically large error in the shock strength occurs for a

prescribed outlet entropy value of

n_ = 7.09 x 104 . (4.72)

Although the shock position is accurately located the amplitude of the
shock node at the back of the shock front is in error because, due to
linearities in the numerical solution of the subsonic flow, four nodes
have been deleted form the solution domain (see [6]); thus the
representation of the fluid speed variation in this region is relatively
inaccurate. This may be remedied by choosing the initial shock position

in the opposite sense to that in §4.3 2. (d), the numerical solution

then producing

s, = 0.90943 ,

n
M
sStr = 0.389 (4.73)

and Sstr(E) = 1.039 .

The numerical shock position is again as accurate as in TABLE 12, but
now no nodes need be deleted and consequently the error in the shock

strength is more in keeping with the general trend
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CONCLUSION

A quasi one-dimensional approximation tc snock Tlow in a nozzis nas
peen defined. An algebraic parameterization of the flow variabies with
respect to the distance along the nozzle axis 1is then cbtainea. A
stationary principle eguivalent to the conditions defining a shock flow
is constructed and is used to determine an approximate finite element
soiution for the fluid speed on an adaptive grid. The de-coupling of the
equations allows the local update of both the nodes representing the
regions of continuous flow and in particular the shock front. The
numerical solution is found to be extremely accurate, when compared to
the exact solution, in representing not only the fluid speed variation

but also the magnitude of physical quantities associated with the shock

front.
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