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0 Abstract

In this paper we consider PLAGIARISM , a direct Lagrange-Galerkin method
due to Priestley, and address certain problems with both the Lagrange-Galerkin
& PLAGIARISM methods which disappear with the use of higher-order C? ba-
sis functions. Here we concentrate on the use of Hermite-cubics, demonstrating
their superior stability in the Lagrange-Galerkin method, and the adaptations of
the PLAGIARISM technique needed to ensure monotonicity and near conser-

vation.
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1 Introduction

In recent years the combination of the method of characteristics with the finite
element method has proved quite popular, see Benqué et al [1], Bercovier &
Pironneau [2], Douglas & Russell [11], Lesaint [20], Russell [32], Sili [38] and
Pironneau [26], for example. The resulting Lagrange-Galerkin method has many
desirable properties, often including unconditional stability, when the integrals
can be performed exactly. Unfortunately this is rarely so and the introduction
of quadrature reduces unconditional stability to unconditional instability in some
cases, see Priestley [27] or Morton et al [25]. Moreover, the Lagrange-Galerkin
method is not monotone, even with exact integration, and once inexact integra-

tion is used it is no longer conservative.

In Priestley [28] an adaptation of the Lagrange-Galerkin method is
given that uses post-processing recovery operators in order to take the solution
generated by the Lagrange-Galerkin method and recover a monotone and nearly
conservative solution. This enables the Lagrange-Galerkin method to be applied
to a much wider range of problems than has traditionally been the case. It also
helps to nullify the stability problems raised by the use of quadrature. In this
paper we suggest the use of a C! element to overcome problems with the slow
convergence of the quadrature-based scheme to the exactly integrated method.
We would also expect it to have a beneficial effect upon the stability of the scheme

using inexact intergration, c.f. [25]. First we describe the method.

Consider the Cauchy problem for the scalar linear advection equa-



tion for u(z,t):

(1.1) us + a.Vu =0, z € RY, t>0,

(1.2) u(z,0) = uo(z),

where ug belongs to L?(IR?), d being the number of spatial dimensions. We can
define characteristics paths or trajectories, X(z, s;t), in two ways, either as the

solution to an ordinary differential equation,

(13) K(Q,S,S) = Z,
(1.4) dl—%t’i;-t—) = o(X(z,s;t),);

or, if desired, as the solution of the integral equation

X(z,st)=z+ /: a(X(z,s;7),T)dr.
In order to simplify the notation, for two time-levels " and ¢"+! =
1" + At, we will denote the foot of the characteristic path at time t" by z and its
arrival point at time t"*! by y. In terms of the notation in eqs. (1.3) and (1.4),

these satisfy
T = l(ﬂ, t"+1; tn) and y= l(ﬁ, tn; t"+1).

A unique (absolutely continuous) solution to equations (1.3) and
(1.4) can be guaranteed if it is assumed that a belongs to the Bochner space
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LY0,T; (Wh>)?), see Mizohata [23] for example. The solution to the original

partial differential equation problem (1.1),(1.2) is now given by the relation

(1.5) w(X(-tt+7),t+71)=u(t), t>0,72>0.

The direct Lagrange-Galerkin method, so called by Morton & Priest-
ley [24], uses (1.5) directly to obtain a solution. For an approximation, U™, at

time t" given in terms of finite element basis functions ¢, by

(1.6) Un() = U,

J

the direct Lagrange-Galerkin method uses eq. (1.5) to obtain U™*! in L%(IR?) at

time ¢"*! from the weak form of (1.5),

(1.7 U™, 6) = [Un@ai)dy Vi,

i.e., from multiplying (1.5), with ¢ = ¢" and ¢t + 7 = t"*!, by ¢;(y) and inte-
grating over the whole domain with respect to y, and the L? inner product over
IR? being denoted by (-,-). This is the same approach as that used by Bercovier
& Pironneau [2], Douglas & Russell [11], Lesaint [20], Russell [32], Sili [38] and

Pironneau [26], for example.

An alternative version of the method, due to Benqué et al [1], and
termed the weak Lagrange-Galerkin method is more suited to equations in the

conservation form

us + V.(au) = 0.



A comparison of the two versions can be found in Priestley [27], Morton & Priest-
ley [24] or Morton et al [25]. Due to the observations made in Priestley [28],
i.e. the difficulty in constructing a low-order monotone scheme from the weak
Lagrange-Galerkin method, only the direct Lagrange-Galerkin method will be

considered here.

In Priestley [27] and Morton et al [25] it was shown that with linear
elements the Lagrange-Galerkin scheme could become unstable when quadrature
was used to approximate the integrals in (1.7). This analysis was later extended
to include problems with diffusion by Sili {39]. In common with most finite
element methods, the Lagrange-Galerkin method will generate oscillations at dis-
continuities: moreover the direct Lagrange-Galerkin method is not conservative.
The weak Lagrange-Galerkin method will be conservative only if the mass matrix
is inverted exactly and hence, in practice, this method is not quite conservative

either.

In Priestley [28] a monotone version of the direct Lagrange-Galerkin
method, called PLAGIARISM, was described. This deals with the problem of
oscillations at discontinuities and also stops the scheme from blowing up because
of the instabilities. Monotonicity was obtained by noting that if the mass matrix
was lumped in the direct Lagrange-Galerkin method then it could be shown that
the resulting scheme was monotone, albeit of very low accuracy. Given this low
order, but monotone, scheme it is then possible to combine it with the high-order

scheme obtained from inverting the full mass matrix to obtain a scheme that is



both accurate and monotone. This is the FCT (Flux-Corrected Transport) ap-
proach of Boris & Book [5] and Zalesak [46]. For an impressive example of the
FCT algorithm applied to another finite element procedure see Lohner et al [21]

for example.

Given the high-order solution U™ and the low-order solution U% at
a point ¢, we calculate the maximum value of o, 0 < @; < 1, as in [28], such that
the high-order monotone solution

UM = aiUiH + (1 - Oti)UiL
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is bounded by values obtained from the solution at the previous time-level and

values predicted by the monotone scheme.

In Priestley [28] a further modification was then applied that gen-
erally took these « values to be the maximum allowable but would then choose
sub-optimal values in order to achieve conservation of UM. This algorithm is
fully described in {28]. Although conservation cannot be formally guaranteed at
every time-step it was found that usually conservation was achieved to machine
precision with no discernible loss of accuracy. The results obtained on the simple
problem of advecting a square wave with a constant velocity showed the PLA-
GIARISM method to be only marginally worse than the TVD scheme using the
Superbee limiter, see Roe [30], but substantially better than the TVD scheme
using Van Leer’s limiter, see Van Leer [42], the latter being generally regarded as

the best of the rest of the limiters. Although the method did not perform quite as



well as Superbee it must be remembered that PLAGIARISM, unlike Superbee,

has no CFL limit and can be readily extended to multi-dimensions.

The accuracy of the scheme was demonstrated for the exactly in-
tegrated version of the direct Lagrange-Galerkin method. Apart from the simple
case used as a test problem in [28], quadrature must generally be used. Although
the PLAGIARISM method reduces the stability problems associated with this
aspect of the method there is still a problem with the convergence of the quadra-
ture, i.e. with the convergence of the scheme using quadrature to that with exact
integration. A test problem is that of constant coefficient linear advection in

one-dimension on the domain [0, 1] with periodic boundary conditions, that is,

us +u, =0

u(0) = u(1).

The initial data is chosen to be a square wave

1 04<z<0.6
uo(z) =
0 otherwise,

as shown in figure (1). The Lagrange-Galerkin method can solve this problem
rather well in just one time-step as there is no CFL stability limit, and so the

CFL number was artificially restricted to take a value 1/12 so that we can ob-

serve the accuracy after a large number of time-steps. The problem was run for



10 periods or revolutions. In figure (2) the solution is shown as calculated by the
monotone direct Lagrange-Galerkin method, using exact integration and various
Gauss-Lobatto quadratures. We can see that both the 3 pt. and 4 pt. quadrature
rules offer very poor accuracy. The 5 pt. quadrature does rather better but still
falls significantly short of the exactly integrated version. The schemes using 6 & 7
pt. quadrature fail because of stability problems. One of these is plotted to show
the phase error incurred. Indeed it is not until 8 quadrature points are used that
the approximately integrated version of PLAGIARISM overlaps the exactly
integrated version of the method. Whilst 8 abscissae per element is reasonable
for a one-dimensional calculation, the implication for two and three-dimensional
problems is frightening. With this number of quadrature points the scheme is no
more efficient than the EPIC algorithm of Eastwood & Arter [12], which uses a
compound trapezium rule on each element to evaluate the integral on the right-
hand side of eq. (1.7) and the mass matrix resulting from the integral on the
left-hand side of (1.7). The EPIC algorithm has the added advantage of retaining
the unconditional stability of the exactly integrated scheme. In Morton et al [25]
it was claimed that the EPIC algorithm was inefficient compared to using the
method with the exact mass matrix and a Gaussian quadrature to evaluate the
right-hand sides. This is not the contradiction that it first appears. In [25] the
authors were concerned with the advection of 'a much smoother profile, a Gaus-
sian hill for example. With this data the integrals on the right-hand side can
be evaluated very accurately with 4 or even 2 Gauss-Legendre points. On the
other hand the EPIC algorithm has a partially lumped mass matrix because of

the compound trapezium rule employed in the evaluation of these integrals and



hence still requires more points to be used to avoid significant diffusion being

added to the problem.

In the following section the reason for the lack of convergence of the
approximate integration in the PLAGIARISM algorithm is given together with
a solution to the problem which involves the use of higher-order elements. These
new elements will be partially analysed for their stability under quadrature. In
section 3 the test problem given above and used in [28] will be run again with
the new elements and be shown to give very accurate answers even with the use
of quadrature. As a further demonstration of the possible applications of this
method to non-traditional examples, a shock tube problem in gas dynamics is
also solved, with no restrictions put on the scheme that would prevent its use in

higher dimensions on arbitrary grids.

2 The Lagrange-Galerkin Method with C! El-

ements

2.1 Advantages of using C! Elements

C° elements, be they piecewise constants, piecewise linears or piecewise quadrat-
ics, are by far the most common elements used in CFD, in particular with the
Lagrange-Galerkin method. The finite difference version of the Lagrange-Galerkin
method, called the semi-Lagrangian method (see Staniforth & Coté [36] for a re-

view of this method) has used cubic spline and Hermite-cubic interpolation. The



relationship between the two methods has been explored by Bermejo [3, 4]. Glob-
ally C° elements give a function that is continuous but has discontinuous first
derivative. Whilst it may be an obvious statement it is still a rather important
one that within each element these C° basis functions are actually C* functions.
This is significant because the integrals that arise from the finite element method
are evaluated in an element-wise fashion. Generally this means that for most
finite element methods the integrand is a C'™ function over each sub-domain of
integration. This smoothness of the integrand over the area of integration has

consequences for the success of numerical integration.

Unfortunately, in the Lagrange-Galerkin method, eq. (1.7), the test
functions are shifted upwind. Although the product of two linear basis functions,
say, is still quadratic, it is now only piecewise quadratic within the element in
question. Instead, then, of having an integrand that is a C* function over each
sub-domain of integration we have a function that is only C° on the element, the
first derivative being discontinuous. Errors for quadrature formulae, see Demi-

dovich & Maron [10] for example, approximating the integral

(2.1) /abf(w)d:v

by a Gauss-Legendre rule, are usually given in the form

(b — )2+ (nl)* £2) ()
[(2n)3(2n+1)

(2.2) R, =

where n is the number of abscissae and 7 is an unknown point in the range

a <1 < b. This implies that the quadrature converges to (2.1) like O(1/(2n)!)
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which is faster than any power of n, but the problem with a formulae like (2.2)
is the fact that 2n derivatives of the integrand are needed in order to apply it.
Even the simple formulae for the remainder term with the compound trapezium

rule,

requires the existence of two continuous derivatives. More sophisticated results
are available, see Davis & Rabinowitz [8] for example, that do not rely on large
numbers of derivatives existing. These results depend upon the theorems of Jack-
son [18] regarding the approximation of functions, with a given number of deriva-

tives, by polynomials.

More generally, then, the error in approximating the integral (2.1),

with a quadrature formula using only positive weights, is given by

E(f)=2(b—-a)e

where € = max|f(z) — pa(z)|, = € [a,d], is an estimate of how close a func-
tion of given continuity may be approximated by a polynomial, p,(z), of de-
gree n or less. (If negative weights are allowed then the formula is given by
E(f) =€((b—a)+ Xk |wk])). Following Davis & Rabinowitz [8], we assume that

if f € CP then it has a bounded (p + 1)** derivative, i.e.,

I f llpt1,00= Mp41 for f € CP.

Then, for f € C° and = € [a, b],
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3(17 - G,)Ml

(2.9 1£(2) = pula)] < 20—
For f € C?,p > 1, we have the estimate

6p+1pp 41
(2.4) |f(z) = pa(2)] < W(P-l-l)(b—a) My

Equation (2.3) is the reason for the slow convergence of the quadra-
ture reported earlier. When the integrand in eq. (1.7) has discontinuous first
derivative the quadrature will only converge linearly, no matter what the rule.
There is still an advantage in using the Gaussian methods though. The n in egs.
(2.3) and (2.4) refers to the degree of polynomial being approximated, and hence
for a k point quadrature we have for the compound trapezium rule n = k —1
(which comes from the sub-division of [a, b] rather than the degree of the polyno-
mial) whilst for Gauss-Legendre quadrature we have n = 2k — 1 and for Gauss-

Lobatto quadrature n = 2k — 3.

By using C! elements, the integrand in eq. (1.7) has continuous
first derivative and discontinuous second derivative. Putting p = 1 into eq. (2.4)
we see that quadratic convergence will now be obtained for the quadratures.
Clearly this is quite a comedown from O(1/(2n)!) convergence but as we shall
see later it is sufficient for an efficient and accurate scheme to be obtained using

quadrature.

Apart from accuracy considerations there may well be other advan-

tages in using smoother basis functions. Sili & Ware [40] have taken the smooth-

12



ness of the basis functions to the extreme by using spectral methods. This means
that the right-hand side of (1.7) remains infinitely smooth and they were able
to prove the unconditional stability of the scheme even when using approximate
integration. We may therefore hope that C! elements will exhibit better stability
properties than their C° counterparts when quadrature is applied, see Morton et

al [25].

The element we are going to use here is the Hermite-cubic. From
the above discussion it may seem sensible to use the B-spline element because
this is a C? element and hence has one more degree of continuity than the C*
Hermite-cubic element. However, the B-spline element has a large support and
this produces difficulties, though not insurmountable ones, at the boundaries, see
Strang & Fix [37]. More important is the fact that the Hermite-cubic elements
extend to triangular grids. The obvious extension is to construct the triangular
element that has u,u, & u, as unknowns at the vertices together with u at the
centroid to give the correct number of unknowns. This is labelled the Z3 element
in Strang & Fix [37] although there are more attractive versions of the same ele-
ment, see Zienkiewicz [48], which may be more robust. Although this Z; element
has some continuity of derivatives it is not a C! element. It is hoped, at a later
date, to carry out numerical experiments to see whether there is enough continu-
ity in this element to produce an efficient scheme with quadrature. Strictly C*!
triangular elements can be constructed in a number of ways, see [37]. Also see

Mitchell & Wait [22] and Zienkiewicz [47].
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Denoting the two variables at the node ¢, at time-level n, as the
function value U} and the derivative value U/", we can write down the value of

the finite element approximation to the solution u(z,t") in the element [z;, ;11] as

(1:2

Ur() = Up+Uta+ (3U%, — 3UF = Uk — 2U1"h) 3

$3

+ (207 = 2U%, + WU, + hUP) 5,

where h = z;y1 — z;. Alternatively we can expand U™(z) on the element in terms

of the element basis functions,

T X

Ut(z) = Ulds (%) + U"w; (h) + U1 bia (ﬁ) + Ut wits (%) ;

where

(2.5) bi(z) = 22°-322+1
(2.6) biri(z) = —22° 4327
(2.7) wi(z) = h(2® =22+ 2)
(2.8) wipr(z) = h(z® = 22).

Now that we have two different types of basis functions, ¢;(z) and w;(z), the
direct Lagrange-Galerkin method, eq. (1.7), is slightly modified in that there are

14



now a pair of equations,

and

(2.10) (U™,w) = [ U(e)wi(y)dy Vi

At first sight it might seem that we now have twice the work per element that we
would have had had we just chosen a cubic C° element and not the C! Hermite-
cubic element. However, this is not the case. In the Lagrange-Galerkin method
the predominant cost is the evaluation of the right-hand side integrals. This is
due to the calculation of the trajectory from each quadrature point and then the
interpolation of U™ at the foot of the trajectory. This only needs to be done
once for equations (2.9) and (2.10), the two integrands differing only in that this

interpolated value is then multiplied by two different cubics.

The only other issue is the efficiency with which the resulting linear
equations can be solved. Wathen [43] showed that the conjugate gradient method,
see Golub & Van Loan [14] for example, with diagonal preconditioning is a very
efficient means of inverting the mass matrix arising from several common types
of elements. With the usual element numbering, that is, ...U;, U}, U1, Ul . ..

the element mass matrix, Mg, with Hermite-cubic elements is given by
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f 156 22h

2
o o = 22h  4h

o4 13h

With no preconditioning the condition number, &, of the element
mass matrix (putting » = 1/100 into eq. (2.11) for example ) is £ ~ 1.0 x 107.
Premultiplying (2.11) by D~', where D = diag(Mg), reduces the condition num-
ber to k£ ~ 76 independently of the value of h. Following Wathen [44], this can
be improved on yet further. Indeed the result for one-dimensional Hermite-cubic
elements is a simpler example than the one presented in [44]. This involves pre-

conditioning with the inverse of the block diagonal matrix Bp, given by,

(

156 22h
i 22h  4h?
Bp = ;3
0 0
\ 0 0

which then leads to a very acceptable condition number of x & 13.

We can now conclude that there is no reason not to use Hermite-
cubic elements from the efficiency point of view. Compared to the more usual
C° polynomial elements it is only marginally more expensive to calculate the in-

tegrands in the right-hand sides and again only slightly more expensive to solve
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54 —13h
13h  —3h?
156  —22h

0 0 )
0 0
156  —22h
—22h  4h? )

)

- _3p2 2
\ 13h —3h 22h  4h )



the system of linear equations that results.

2.2 Theoretical Results with Exact Integration

Although the main thrust of this paper is to describe the advantages of using C?
elements in the direct Lagrange-Galerkin method when inexact integration has to
be used, here we momentarily look at the theoretical results that can be obtained
when exact integration is used. These are just extensions of the results given in

Morton et al [25].

Let the velocity field a(z,?) is assumed to be incompressible, i.e.

(2.12) Va=0 Vaz,t.

If J is the Jacobi matrix of the transformation defined by the mapping X(-, t"; t"+1),

then we now have, as shown in Chorin & Marsden [6],

where |J| is the determinant of J. For an incompressible velocity field, eq. (2.12)

implies that

(2.13) |J| = constant =1,

which in turn implies that dz = dy. Suppose now that we denote by Ex;(t) the
solution operator u(-,t + At) = Eas(t)u(-,t), and similarly E5;(t)u(-,t + At) =
u(-,t), for equation (1.1) over the time-step At; that is from (1.5)
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(2.14) Eat(t)u(-,t) = u(-,t + At) = u(X (-, t + At;t),t).
Letting || - || denote the usual L? norm over IR? and || - ||« be the correspondingly

defined operator norm, we have

| Eac®u( ) || _  |lu(,t+ A |

Eat(t) ||«= sup = sup ;
| S BTN B S PO

and from (2.14) and (2.13) this equals 1. Hence

(2.15) I Ene(t) b= 1 =[| Ez; (2) I« -
The unconditional stability of the direct Lagrange-Galerkin method with Hermite-

cubic basis functions now follows immediately. Rewriting equations (2.9) and

(2.10) we have,

(2.16) (U™, ¢i) = (Ene(t)U", ¢)

(2.17) (U™ ;) = (Epe(8) U™, wi).

Multiplying eq. (2.16) by U™ and eq. (2.17) by U/"*! and summing both equa-

tions over ¢ and then summing the result gives

FU™EE = (U™, Ex(t™), U™)

< N Ea@)U™ || | U
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Using (2.15) and the Cauchy-Schwarz inequality, we have,

(R bRZa P
Clearly this result does not depend on there just being the two types of basis
functions, ¢ and w, or indeed there being the same number at each node. As long

as the function U(z) can be written in the form

Uz = ¥ > Ukgi(a) |
i=nodes \k=element types

where 1f(z) are the various element types being used, ¢; and w; in the case of

the Hermite-cubics used here, then the same stability result can be proved. This

means that the results also hold true for the Zs element and other two-dimensional

elements.

As for convergence we have the following theorem.

THEOREM 1 The direct Lagrange-Galerkin method with C? finite elements of
degree k (k > p + 1) converges with order k — s in the 1°°(0, T; (L>?)%) norm,
0 < s < p+1, provided that ug € (H**')? a € L®(0,T;(WH*)?%) and the
corresponding solution u of (1.1) belongs to the space H(0,T;(H**1)?). The

mesh is assumed to be quasi-uniform, i.e., hyax/hx < C  for every mesh length

hy.

Proof C will be taken to denote a generic constant.

Let " = u™ — Iu™ and €™ = Tu™ — U™, where u™ denotes the value of the solution
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to equation (1.1) at time t™ = nAt and Iu" is a piecewise polynomial interpolant

of u™ of degree k. From (2.9) we have

(€ = Ba (i€, €)= (Tu™1 = En () w", €)

— (EAt(tn)"]n _ nn+1, £n+1>

(Eat(t™)n™ —q™, €711 + (n™ — g™, €741,

Using (2.15) and applying the Cauchy-Schwarz inequality to all of the inner prod-

ucts we get

(2.18) I < Wem I+ 1| Eael™n™ =™ Il + 9™ = 0™ || -

It now remains to estimate the right-hand side terms in (2.18). Following the

convergence proof in Sili [38],

| Eac(t™)n™ —n™ || < CAt || &n™ ||,

t“+1

Iy =<

dn
E(t)H dt,

so that

n dn
lensien+|s

+ C || ¥ ||z (0,75(22)9) -
L1(0,T;(L?)9)

20



Assuming that U° has been chosen to be Tu°, standard interpolation results yield

the desired estimate:

(219) ” u—U ”I°°(0,T;(L2)d) < Chk ” U ||H1(0,T;(H’°+1)d) .

For the estimates on the derivative errors we write,

v =Ulliooragy < lu—Tullicoray + | Iu = U ooz

(220) _<_ Chk_s “ u ||loo(01T;(Hk)d) + ” Iu - U Hloo(o'T;(Hs)d) 0

It now remains to bound || Tu—U ||;ee(0,7yr+)¢)- Using Ciarlet [7] (Theorem 3.2.6),

[ Tu = U ey < OB || Tu = U [lieoo,y(z2)9)

< Ch°® (|| ITu—u ||[oo(01T;(L2)d) +|u—-U “[oo(o’T;(]_'p)d)) )
which, when using standard interpolation results and (2.19) becomes

(2.21) < Ch? (hk || u ”loo(O,T;(Hk)d) +hF || w ||H1(0,T;(Hk+1)d) .

Finally, combining (2.20) and (2.21) we have,

|u—-U llieo 0,759y < Ch*= || u ||H1(0,T;(Hk+1)d

and hence
| w—U ||loo(0’T;(Hs)d) < ChF—2 Il u ||H1(0’T;(Hk+1)d) for1<s<p+1.
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2.3 Stability and Inexact Integration

The unconditional stability of the exactly integrated method, just proved, is un-
fortunately not the end of the story. Priestley [27] and Morton et al [25] demon-
strated that the Lagrange-Galerkin method with piecewise linear elements loses
its stability properties when quadrature is applied, to leave a scheme uncondi-
tionally unstable or, at best, a scheme that is stable for only a very small range

of CFL numbers. They considered a general quadrature on the interval [0, 1] of

the form,
1 m
(2.22) | F@)de ~ wof (0) + 3w (@) + wmia £(1),
1
where the weights wy, . .., w41 and the quadrature points 0 < 2; < ... <z, <1

are free to be chosen, except that the quadrature was assumed to evaluate the in-
tegral of quadratic polynomials exactly. By considering CFL numbers, v € [0, z,]
they were able to show that the schemes were unstable. Negative results though
are easy to prove, as the instability of the method only has to be demonstrated
for one value of v for the scheme to lose its unconditional stability. The Fourier
analysis gets harder as the degree of the polynomial increases and yet more harder
when two unknowns are present at each node. So far it has proved impossible
to give any rigorous answer to the question of the scheme’s stability when us-
ing quadrature. We can, however, go some way to demonstrating the superior
stability of the method with Hermite-cubic elements over the method using C°

elements.

A quadrature of the form used in (2.22) is taken except that now it
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is assumed to integrate sextic polynomials. Considering the j** pair of equations,

we have

prtt b
1 Jil
M - ;
rin-1 i

where, with the usual notation of §2U; = (Ujy; — 2U; + U;_1) and AgU; =

Uis1 = Uj,
1+ 952 __13Rr%A¢
M _ 70 420
s -
and
§? 42
b‘;},l = [(1 + ?7—0) + %I/252 + Z/SAO - gAO + wo(—21/352 - 3V2A0)] UJn
_312_& _2_12 3 202 2] m
+ h[ 200+ 257 — LA — v Ao + wn(v* Ao + 126+ 617)| U]
o |70 4, 420, 13 212 "
2 = [420” w0 Tt T am o) U

+ A —1—(2—352)+"—2(52—6)+1A —"—3A yr
420 60 60" ° 127974

We can now write the solution at the new time-level in terms of the solution at

the old time-level multiplied by an amplification matrix, A,

rt Uy
(2.23) = A(v, 0;wo)
U{n+l U{n

J J
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The difference operators 62 and Ay have been replaced by their Fourier expan-
sions and hence the dependence on the Fourier angle # in (2.23). The norm of the
matrix A now determines the stability of the scheme. Denoting the two eigenval-

ues of A by A\; and Ay we can then define the 2 norm of A as

| Allz = max(JA], [Ae]).

It does not seem possible to make any analytic statements about this quantity.
However, we can plot || A ||2 for any value of wy we choose and gain some in-
sight into the stability of the scheme under a given quadrature. The lowest order
Gaussian quadratures that satisfy the criterion that they integrate polynomials
of degree 6 are the 4pt. Gauss-Legendre rule and the 5pt. Gauss-Lobatto rule.
These have respective values of wg = 0 and 1/20 and z; = 0.0694 and 0.17267
which are then bounds on the CFL number v. In figure (3) there is a plot of a
normalized value of || A || and we see that everywhere || A ||o< 1. Note also that
because all higher order Gauss-Legendre quadratures still have wg = 0 and have
21 < 0.0694 then this means that all Gauss-Legendre quadratures with 4 or more
points are stable for v < z;. A more convincing result is obtained for the 5pt.
Gauss-Lobatto quadrature, because the value of x; is so much larger and hence a
larger range of CFL numbers is covered. Figure (4) shows a plot of a normalized
value of || A ||z for this quadrature and again we see that || A |[;< 1 and so we
have stability. Conceivably this analysis could be repeated for v € [zy, z,] etc.

but these results would be very specific to the quadrature used.
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In conclusion then we can say that the stability is much improved
over that of the C° linear element. We do not have unconditional stability though
as the 4pt. Gauss-Legendre rule is unstable at ¥ = 5/12. No instability has yet
been observed with any other Gauss-Legendre or Gauss-Lobatto rule with 5 or

more abscissae.

2.4 Monotonicity and Inexact Integration

In Priestley [28] it was proved that for linear elements the direct Lagrange-
Galerkin method produces a monotone solution when the mass matrix is lumped.
Although not explicitly stated there, this proof critically depended upon the fact
that with piecewise linear finite elements the maximum value of the solution
occurs at a node. For the Hermite-cubic element a slightly more sophisticated
approach is needed, using eq. (2.9), however, in an entirely similar way to the
proof in [28], where the basis functions ¢;(x) are now the monotone cubic func-
tions given in (2.5) and (2.6). This enables us to make the following statements
about the nodal values at the new time-level. If the solution at the previous

time-level, U™, was monotone between nodes, then

UMt < max U} Vi.
J

Alternatively, if the maximum occurs between nodes then we can still bound the

new nodal values by

Urtt < max U™ (z) Vi.
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Similar results can also be proved for the minimum. Indeed this second, more
general result, opens up the possibility of applying sub-cell resolution ideas, c.f.

Harten [15].

Unfortunately the fact that no new extrema can be generated at
nodes does not prevent new extrema from being generated within the elements.
This can occur because of the oscillatory nature of the basis functions, w;, as-
sociated with the derivative terms, eqs. (2.7) and (2.8). However, monotonicity
within the element can be ensured by limiting the derivative values. This is a
very simple procedure and is derived in Fritsch & Carlson [13]. It is also used in
the monotone semi-Lagrangian method of Rasch & Williamson [29], Williamson
& Rasch [45], which is a finite difference scheme with much in common with the
direct Lagrange-Galerkin method with Hermite-cubic elements presented here. It
is perhaps also worth comparing with the way in which the limiting is performed
in the construction of the one-dimensional TVD (Total Variation Diminishing)

schemes, see Sweby [41] for example.

Remark. Despite the fact that it is possible to make the scheme
strictly monotone, in all the results presented in the next section it was found
possible to obtain identical results just by limiting the function values without
limiting the derivative values. This is not as pleasing theoretically but has impor-
tant implications in applying the method in higher dimensions. Whilst the above
result can be extended to elements on rectangles that are tensor products of the

one-dimensional Hermite-cubic element, it is not at all clear how similar results
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could be obtained for the Z; element or the quintic C! triangular elements and
hence if it is unnecessary to limit the derivatives this would be very useful in the

practical application of the method.

3 Test Problems and Results

The first test problem is that of constant linear advection in one dimension, the
details being given in the introduction. The problem is run until ¢ = 10, i.e., over
10 periods. To make this a worthwhile test for a Lagrangian scheme the time-step
is restricted so that the effects of interpolation, approximate integration, and the

projection error, may be allowed to accumulate.

Figure (5) compares the solution obtained by the Lagrange-Galerkin
method with Hermite-cubic elements using a 5 point Gauss-Legendre quadrature
to that obtained with the Superbee limiter. The number of nodes used for the
Lagrange-Galerkin method was 50. The number of unknowns is hence 100 due
to the use of the Hermite-cubic element. The cost, though, is by no means dou-
bled because of the amount of shared work. The solution obtained by Superbee
is shown with both 50 and 100 nodes. The I, error for the Lagrange-Galerkin
method is 2.566 x 1072 whereas for the two Superbee solutions it is 1.012 x 107!
and 7.1 x 1072, The Lagrange-Galerkin solution is therefore more accurate in
this norm. The solution obtained by the Lagrange-Galerkin method does under-
shoot and overshoot though and hence, although formally more accurate, may

not be such a desirable solution as that obtained by the Superbee limiter. The
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other thing to note from this figure is the fact that such an accurate solution was
obtained with a relatively low-order quadrature scheme. In figure (6) the mono-
tone version of the Lagrange-Galerkin solution is plotted together with the non-
monotone version and the Superbee solution on the same grid for reference. The
lo error of this monotonised version increases, as we would expect, to 8.49 x 1072,
which makes it now slightly less accurate than the Superbee limited solution with
the same number of unknowns. Again we note that this has been achieved with
a 5 point Gauss-Legendre quadrature whereas in Priestley [28] exact integration
failed to get results as good. It is also worth noting again that although Super-
bee just beats the method here, the Lagrange-Galerkin method has no stability
limit and is equally applicable in two-dimensions on quadrilateral or triangular

elements.

The Lagrange-Galerkin method has traditionally just been used for
the advective terms in fluid flow problems. In the Navier-Stokes equations, see
Benqué et al [1] or Sili [38], the Lagrange-Galerkin method not only removes the
CFL limit but then leaves a Stokes problem to be solved. A Stokes problem leads

to a symmetric matrix which is then relatively easy to solve.

However, with the introduction of monotonicity and conservation
the method can now be regarded as a general solver for any wave model. Con-
servation gives correct shock speeds, Lax & Wendroff [19], whilst monotonicity
ensures convergence, Sanders [33]. Wave models are at the heart of most modern

schemes for solving the Euler equations, see Roe [31}, for example. These rely
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upon the fact that disturbances to the solution can be expressed as the sum of
a number of wave problems, three for the one-dimensional Euler equations, see
Smoller [34] for details. In particular, then, the one-dimensional Euler equations

in conservation form are given by,

(31) Yy + E'c = Q.a

where
p m

(3 2) u=|m |, £E= p+m2/p
e u(p + €)

In equation (3.2) p = density, u = velocity, m = pu = momentum, p = static
pressure and e is the total energy and is related to the other variables by an
equation of state, which for a perfect gas is

p 1,

e = ——— -+ —pu’.
(v=-1) 2

The constant + is the ratio of specific heats and takes a value of 1.4 for our calcu-
lations. Two other variables that we shall need to define are the total enthalpy,
h = (e+p)/p and the sound speed, a = (yp/p)z. We define the Jacobian matrix
to be A = 0F/0u, where F and u are as in (3.2). The eigenvalues, ), and right

eigenvectors, e, of A are then given by:-

M=u—a, d=u and Ml =u+a,
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€ = U—a y &2 = U and e = U+ a

[ =
[S]

u h+ ua

It now remains to find the strengths, «, of these waves such that

F.=Y aphe.
k=1

The a;, can be shown to be,

1

P [Pz — paus], a2 = p [Pw - EP«:] and o3 = ﬁ [Pz + paus) .

o1 = ——
2a?

The updates, agAzey, now satisfy the advection equation (1.1) with the velocity
a now being replaced by each A; in turn. In solving these three advection prob-
lems and adding the updates to the previous solution we solve the original set of
equations, (3.1) and (3.2). We have thus replaced the original equations with a

set of wave problems for which the scheme presented here is suitable.

The test problem is that due to Sod [35]. This consists of two
constant states on the domain [0, 1] separated by a discontinuity at 0.5. The
left-hand state is defined by pr, = 1, pr, = 1, ur, = 0, and the right-hand state by
pr = 1/8, pr = 1/10, ug = 0.0. The output time is ¢ = 0.144. The results can
be compared to those obtained by Sweby [41] for various TVD schemes using a

variety of limiters.
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There was one slight change to the monotone and nearly conser-
vative algorithm of [28] which is also used here. The ‘low-order’ solution seems
to have a tendency to develop nonphysical expansion shocks, so that an entropy
condition is needed to ensure convergence to the correct physical solution, see
Harten et al [16]. Whilst, at the moment, we have no theory to explain this or
prove that the high-order solution will not also suffer from entropy violating so-
lutions, the remedy is very simple. A small amount of artificial viscosity is added
to the low-order solution. Where ¢ represents an arbitrary quantity we just add

the following quantity to the :** node,

At n n n
€A (Qi-i-l-ll — 2¢7* + q'i—+11) ;

where a regular mesh spacing has been assumed. (At one point, in order to reduce
the amount of diffusion especially across the contact discontinuity, this quantity
was scaled by a factor |p;,, |/ maX;—nodes |Pj,. |- Due to the small amounts eventu-
ally used this was probably an unnecessary complication.) A typical value of €

was 1.0 x 10719,

The first result, figure (7), is for the Lagrange-Galerkin method
with the Hermite-cubic elements but without the monotonicity and conservation
algorithms. These results are perhaps rather better than one might have ex-
pected, the basics of the solution all being there. There are a number of faults
though. There is undershoot in front of the shock, most noticeable in the plot of
velocity. This does appear, though, to be the only undershoot or overshoot in the

entire solution. Rather more important is the error in the shock position, most
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noticeable in the plots of pressure and density. The shock has clearly not trav-
elled fast enough. This would seem to be due to the lack of conservation. For the
conserved variables of (3.2) percentage conservations are (99.25,95.975,98.79)7.
In figure (8) we have applied the monotonicity and conservation algorithm, all
other factors remaining the same. Conservation is now 100%, the undershoot
has gone and more importantly the shock is now in the correct position. We
believe, comparing with the results in Sweby [41], that these solutions are better
than those from a TVD limiter scheme, with the exception of the Superbee lim-
iter which captures the contact discontinuity slightly better, as we might expect
from the results using linear advection. At the risk of repeating ourselves we
stress again the flexibility of the scheme presented here as opposed to specialist

one-dimensional nature of the Superbee scheme and the TVD methods in general.

Both these figures used a relatively high-order 8 point Gauss-Lobatto
quadrature. In figure (9) we repeat the result of fig. (8) but using the 4 point
Gauss-Legendre rule. There is no visible difference in an implementation costing
about 50% of the previous result. This again demonstrates the improved con-
vergence properties of the approximate integration when Hermite-cubic elements

are used.

Although these tests on the Euler equations are at a very early
stage they do appear to be very encouraging, giving results as good as the spe-
cialist one-dimensional TVD schemes. Given that this method can be applied,

virtually unaltered, in two-dimensions on triangular or quadrilateral grids the
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multi-dimensional wave models of the Euler equations due to Deconinck et al [9],

Hirsch & Lacor [17] and Roe [31] would be an obvious further use of this method.

4 Conclusions

In this paper we have seen how the PLAGIARISM method of Priestley [28]
can be extended to C' elements, namely Hermite-cubic elements. This improves
the stability of the underlying direct Lagrange-Galerkin method and improves
the effectiveness of the quadrature needed to evaluate the resulting integrals in
all but the simplest problems. The algorithm has also been applied to the Euler
equations showing how, with monotonicity and conservation, it can be used to

solve more general wave problems.
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Figure 1: Initial data for advection problem.
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Figure 2: Constant advection after ten rotations. Exact solution—solid line,
Monotone 3,4,5,7 (with large phase error) & 8 pt. Gauss-Lobatto—0O’s, Monotone

exact integration—x. Az =1/100, v 141/12.
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1, min(]|A||2) = 0.998542.

of 8 & v are [0,27] x [0,0.18]. max(||4]2)
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0.75

Figure 5: Constant advection after ten rotations. Exact solution—solid line,
Superbee (Az = 1/50)— 4+, Superbee (Az = 1/100)— *, Lagrange-Galerkin

using 5pt. Gauss-Legendre quadraturezx. v=>5/12.
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Figure 6: Constant advection after ten rotations. Exact solution—solid line,
Superbee — +, Lagrange-Galerkin using 5pt. Gauss-Legendre quadrature—x,
monotone Lagrange-Galerkin using 5pt48Gauss-Legendre — A, v=35/12,Az =

1/50.
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Figure 7: Sod’s problem with the Lagrange-Galerkin method evaluated by 8 pt.

Gauss-Lobatto quadrature. maxv = 0.22, Az = 1/100.
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Figure 8: Sod’s problem with monotonic Lagrange-Galerkin evaluated by 8 pt.

Gauss-Lobatto quadrature. maxv = 0.22, Az = 1/100.
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Figure 9: Sod’s problem with monotonic Lagrange-Galerkin evaluated by 4 pt.

Gauss-Legendre quadrature. maxv = 0.22, Az = 1/100.
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