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The SSpj algorithm is a single-step method for the integration

of

I
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Mu + CO + Ku =, (§=2) (1)

or

!
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o+ Ku=¢f , (3=1) (2)

using a pth degree approximation for the unknown wu(t) din a time step
and the satisfaction of a Weighted Residual equation. This algorithm

has p parameters Bqsrees0 (1] We take p z j.

p
The GNpj is a generalized Newmark or 'g-p' method introduced

v

in reference [2] for equation (1) but equally applicable to equation (2).
This also uses p parameters and approximations constructed in the
Newmark manner and with collocation at time t = (n+1)at.

For the purposes of the discussion in this paper it is sufficient
to consider the SSpj and GNpj algorithms applied to the scalar equation
which we assume can be obtained from the modal decomposition of the

homogeneous form of equation (1):
mu + cll + ku = O . (3)

The SSpj and GNpj algorithms do not appear in the form where we
can make a straightforward comparison of their amplification matrices.

Looking first at the SSpj algorithm and referring for details to reference

p-1

TR un+1. When the

[1]1, we have there equations (B) for u , U

n+1
(p)

substitution for o from eguation (11) in reference [1] is made we have

the SSpj algorithm in the form

{s) _ ,(s),(s)
5n+'l = A -in
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(4)

is of order p.
The equations for the GNpj (org-pJ) algorithm can be found in reference
[(2]. For convenience in matching the SSpj and GNpj algorithms we are here

replacing 80’81""’Bp—1’8p by yp,y seeeaY 0¥y respectively with

p-1



Yo = 1 corresponding to Bp = 1. Using reference [2] equations (6)

, ) . p X . p
which define Un+1’ un+1,..., un+1 in terms of Un’ Un""' un and
P p p (5
Aun = Un+1 = un 5

p
we see that substituting for Au from reference [2] equation (8] gives
a system of equations

((6) _ (6, (B)

X X (8]

; p . .
where IK;G] = [un,Atun,...,Atp un]T and the OGNpj amplification

matrix A(G] is of order p+1. (The GNpj algorithm applied to the system
of equations (1) has the disadvantage over 3SSpj of having to carry an
additional vector E from one time step to the next).

Hence it is more convenient to make an indirect approach to the
matching of the two algorithms. Considering first the SSp2 algorithm applied

to equation (3) we write first the equaticon corresponding to reference [1]

equation (11) and then the equations corresponding to reference [1] equations

: : p- p-1
(6) with Uipq = >\un,un+,| = AL e JUq T AU so that we have a
system of equations
Sy, = 0 (7)

vs _ p—’l
where yT = [u ,At0 ,At2u ,...,0tP L u LAtR Pl and S is the (p+1)
n n n n n

order matrix:

(
by b, b, « « + b, by
E : el
1 1 N R =
0 1-A 1 . . . . '
S = . . . . i (8)
1
O " . . L] /I_A 1 —2-l
0 0 " =0 1-A 1




where b. = eDkAtz, b

= 2
0 SDCAt + 61KAt s

1

. _m cAt kAt? ~
Pq T T %g-2 T Tg-NT Oqq o O 9= 23,0 (8

(eo = 1)].

Now we take the GNp2 algorithm applied to equation (2) as given by
(p
reference [2] equations (6) with the Au terms substituted for from

reference [2] equation (8) and put u =AU Gn

n+1 = Aun,---. u = A

+1

The result is the system of p+1 homogeneous equations

ex'8 = g (10)
—-n —
where .ﬁﬁs] is as in equation (6) and G 1is the matrix given by
a, a, a, * . ap_1 o
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(p-2)T Tp-11 Yp-1
G=| ° ' | ’ ' (11)
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kAE?, a,I = c At + kAt?

_ m . cAt . kAt?
o} (g-2]! (g=1)! q!

» q=2,3,.-.,(p"1]

_ m _ cAL _ kat? _
and ap -——[m [1 +'Yp_20\ 1)] + ——x [1 +Yp_,|0\ 1] + D! [1 +Yp()\ 1)1.

(p=1)!
(12)
Then since the system of eguations (7) only gives a non-trivial solution

for -in if determinant (S) = 0, this equation in A is the stability

polynomial for the 3Sp2 algorithm. Similarly determinant (G) = 0 gives the



stability polynomial for the GNp2 algorithm,

Suppose
. : 2 L
det(S) = mS1 + CAt82 + KAt 83 (13)
Then from equation (8) )
1 9 2 . . H_.__.*__GD"’[ e_p. }
1 21 : (p-1]1 p!
1 1 1
=2 ! 27 ’ ) ’ (p-171 p!
83 = 0 1-A 1 . . . . . . . (14)
1
0 0 . 5 o 1-A 1 B
0 ] . . 0 1-A 1

The value of the determinant is unaltered by adding to row 2

the result of (A-1) times row 1 which gives 83 = Ap where Ap

is the pth order determinant

1 1 1 ,
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Now we take
det (G) = Gym + G,oAt + GgkAt® (18)



Then we have

1 1
1= A 1
0 1-A
Gy = 2 .
0 0
0 0

We next consider
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1 J2 o1
%, 21 (p-101
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Then repeating the maneouvre row 2 + (A-1) times row 1 which

was used on 83 gives:

S, = (A-1)A
p

2 -1

Manipulating G in a similar way to that used on G then

2 3

gives

G, = A(A-1JAD_ if 8, =v.,, J=1,2,...,p

2 1 J J
imi = - 2 =
Similarly S, (x-1) Ap—2’ Ay = 1)
and G1 = 181 again if ej = Yj’ J=12,i00,p

Thus, apart from the trivial factor A the SSpj and GNpj

algorithms have the same stability polynomial if we identify the parameters

in the reference [2] 'B-p' notation as

The two algorithms then have the same stability conditions.
This result also means that the two algorithms then correspond to the

same p-step method. This can be seen by considering the p-step method

I ~10

(mo, + cAty, + kKAt2B.Ju_ ., =0
j50 9 73 37 n+]

applied to eguation (3), with notation as used in references [3,4].
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The stability polynomial of the p-step method given by equation (26)

is

:

(mo, *+ cAty, + kAt28,)A0 = O
3 Y3 By

j=0

Comparing equation (27) with the equation giving the stability

polynomial of SSp2 i.e. from equation (13):

2 =
m81 + CAtSZ + kKAt 83 0

we see that we can identify

='j=§J=‘§J
S, _E a,A, S, P YA, S, 852

Hence obtaining the coefficients of the powers of X in the
expansions of the determinants 84, 82, 83 gives immediately the
coefficients in the p-step method corresponding to SSp2. Since we
have shown that with the conditions (25) on the parameters, GNp2 has
precisely the same stability polynomial (apart from the trivial factor
A) as SSp2 these two single-step algorithms must then correspond to
precisely the same p-step algorithm. The corresponding p-step algorithms

can also be obtained by the method given by Osborne [5] or by the method

in reference [2] but the method described here seems to be the simplest

in the present context. By putting m = 0 we also have the corresponding

results for SSp1 and GNp1 applied to

clt + ku =0

(27)

(28)

(29)

(30)
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