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SUMMARY

There is a need to unify present hypotheses of the nature and role of the
hole-pressure, pe* » and thus provide consolidation on which to base future
research and understanding. This paper is intended to meet this need. Attention
is directed towards the calculation of P from the velocity and stress fields
for viscoelastic fluids flowing across rectangular holes. The constitutive models
used are the Newtonian, Second-order and Maxwell models, for values of Reynolds

number up to 10 and Weissenburg number up to 0.1.

The numerical complications involved are studied through an investigation
of the constituent parts of Py~ Verification of present theory is then sought,
from which justification may be derived for the estimation of elasticity from
DB measurements. Attention is directed towards the predictions of Higashitani
and Pritchard (3) and the extension to the Tanner and Pipkin theory for 'Second-
order’ fluids (1). The effects of variation of geometric dimensions and flow

type upon pe are also discussed.

* Or hole-pressure error, defined as p = p - pa where pb is the pressure

e b
measured at the base of a liquid-filled hole and pa is that which would

be exerted on the channel wall by a flowing liquid in the absence of the hole.



1. Introduction

The interest expressed in the hole-pressure arises through the claim that
this quantity plays an important part in the simple yet reliable prediction of
the material properties of viscoelastic liquids. This study is important both
from a theoretical and experimental standpoint, to resolve what has proved to
be a highly controversial issue (see, for example, the experimental findings of
some workers (4-8) and the comments of others (9)). The papers of Tanner and
Pipkin (1), Kearsley (2) and Higashitani and Pritchard (3) provide the relevant
theoretical background. It is suggested that the hole-pressure may be a useful

quantity to measure providing estimates of the first, Vo and second, v2 ’

normal-stress differences of a liquid in unidirectional shear flow. There is
also some evidence to indicate that variation in molecular weight distribution
can affect pe more significantly than the viscosity (10). These observations
reveal the practical role that pe and its measurement takes, in monitoring
polymerization reactions and providing a measure of elasticity during polymer
melt processing (11,12).

Tanner and Pipkin have presented an analysis for the creeping flow of
Second-order (SOE) fluid models across rectangular holes such as in figure 1.*
They established a simple relationship between the first normal-stress difference

and the hole-pressufe given by

1
where a denotes the location shown in fig. 1.

p_ = - 0.25 vl (1)

The following important assumptions are made in the derivation of equation [11:
(i) the streamlines are symmetrical about the hole-centreline;

(ii) the hole-width, 22 » 1s sufficiently narrow and the hole-depth, 23 ,

sufficiently deep to provide stagnation at the base, to ensure that fully-

* Poiseuille flow is driven by a pressure gradient, whilst Cotette flow is driven

by a moving-plate AH.




developed flow does not occur on the centreline and that the presence

of the hole has negligible effect upon the opposing channel wall.
The relevance of these assumptions is discussed under various flow conditions.
Tanner and Pipkin justified the negative Po value for an elastic liquid using
a force balancing argument (see (1)).

Kearsley derived a result similar to equation [1] relating the hole-pressure
to the second normal-stress difference for the slow rectilinear flow of Newtonian
and Second-order model fluids, along sisots placed parallel to the main flow direction.
Higashitani and Pritchard confirmed the results of Tanner and Pipkin, and Kearsley,
using a slightly different approach based upon kinematic considerations, and
went further extending their analysis to a wider ciass of materials. This analysis
extended that of Kearsley to the rectilinear motion of any material. Extension
of the Tanner-Pipkin theory is, however, only an approximation; it is exact for
slow flows of Newtenian and SOE fluids. Similarly Higashitani and Pritchard also

proposed an approximate result for shear flows across circular holes relating

to 1[a a
Pe 61 Voir

The assumptions made within the Higashitami-Pritchard analysis prove, however,

to be quite severe. Crucial dependence is placed upon the symmetry of the
streamline patterns about the hole-centreline. These reguirements are indeed met
for Stokesian flows across any symmetrical cavity and hence, likewise for creeping
SOE flows at least in two-dimensions (see Tanner's theorem {13)). This is also
true when a symmetrical recirculating region occurs within the hole, as observed
by this and other authors (7,14); there is disagreement here with the work of
Han and Yoo (15)1howaver. Later it is shown how this symmetry is lost, both
due to fluid inertia and elasticity effects, which leads to an investilgation
upon the bearing this has on equation [1].

It is the aim of this paper to compute Pg for various viscoelastic fluid flows,
concentrating upon steady flow across rectangular holes. Hole-pressure is

calculated from the velocity and stress fields provided by the finite-difference



numerical methods outlined by Davies and Webster (19) and confirmed by the flow
visualization work reported in Cochrane et al. (17). The particular constitutive
models used are Newtonian, Second-order and implicit Maxwell/0ldroyd differential

models (see (16-18) for justification). The assumed equations of state are

then
le _ pGlK R p‘lk (21
-ik
.ik I _ _ J | (1)ik
ik
where standard tensor notation is used throughout, st is the Kronecker delta,
. . . (L)ik | . .
p 1s an isotropic pressure, e is the (first) rate-of-strain tensor and

igé is the convected time derivative introduced by 0Oldroyd (20). Such models give
non-zero first normal-stress differences and are restricted to a constant viscosity

no. X1 is a relaxation time and A2 is a retardation time (where A1 2 AZ > 0);

A1 g AZ = 0 vyields the Newtonian model, A1 = 0 the SOE model and Az = 0 the

Maxwell model. Of course A1 =0, AZ # 0 provides the so-called Oldroyd 'B'

model.
It is convenient here to define two dimensionless numbers, the Reynold's

number R , and an elasticity (Weissenberg) number, W , as follows:

R = D_EE- and W =

, (41
rs)

—lcl

S

where p is the density, U 1s a characteristic velocity (the mean velocity over

the inlet AB) and L is a characteristic length (the channel-width 217,




2. Calculation of the Hole-pressure

The basic equations from which the pressure solution p(x,y)} 1is derived are the
stress equations of motion. These may be non-dimensionalized as outlined in Cochrane
et al. (17). For a steady incompressible two-dimensional fluid flow in rectangular

Cartesian coordinates (x,y) without body forces these may be written as:
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where the velocity vector v = (u,v]) and p‘lk are the components of the
contravarient extra-stress tensor. For future reference, the extra-stress tensor

is subdivided into separate non-Newtonian and Newtonian additional constituents

as follows:

I L P CO £ (71

The undisturbed wall thrust P, is associated with the value - pyy at
an appropriate point on the hole-centreline , ab , far out in the mainstream
channel flow as illustrated in fig. 1. With a similar identification for the
pressure

Py in the stagnation region at the hole-bottom , Py - may then be

calculated as follows:
P, = Py~ Py . R:D]

Utilising equation (2] and equation (6] and integrating along the unique hole-

centreline path produces the following result:

b - a_pyyd 3 b - R u -& + v a_v. + —a_p’xy dy
e ay &Y ax Ay ax
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Initially, creeping flow conditions are analysed. Stokesian flow displays
a symmetrical streamline pattern, irrespective of the presence of a recirculating
(or secondary) flow region in the hole. Hence under such conditions the prevailing
kinematical fields shaw Py completely determined by term [21 of equation (91,
yielding a vanishing value as consistent with the Tanner-Pipkin theory. In
addition, for the creeping flow of SOE fluids with an identical (Newtonian)
velocity field, P is totally determined by term (3] of equation [9). The
implications are clear: that the shear stress pxy is symmetricalfabout the
centreline ab to a first-order approximation, but need not be at second-order
level, where Pe is determined solely by Sxy. Beyond second-order behaviour
Po will be effected by both terms [2) and (3] of equation (91, and the flow pattern

may then lose its symmetry about ab. The contribution from term [2) will, in

general, no longer vanish though it will, in the absence of inertia, often prove

to be an order of magnitude lower than term (3). Finally, when inertial effects

are also significant, term (1) will also contribute to Pg- The dual disturbances
of inertia and elasticity upon the flow pattern, and therefore upon pe , are now

apparent. The guestion remains whether or not these changes can be related to

present theory.

The integrations involved in equation [91 are computed using the Trapezoidal or

Simpson's quadrature rule. Hole-pressure results are presented in tables 1 - 5

for both the square and narrow hole geometries, and for Poiseuille-type and

Cowette-type flows. In tables 1 - 4 a range of R values is considered

(0 £ R <£10) , and for each R wvalue Py results are recorded for the Newtonian
(W=10), SOE (W = .025) and Maxwell (W = .025 , .05, .1) models. Table 5 compares |

Py values for Newtonian liquids and values of R up to 10.

t The Newtonian shearing stress is an even function of x about the centreline

in the absence of inertia (cf. (1)).



The discrete numerical solutions obtained in Davies and Webster (19) (see also
(18— 1@)are provided on a square finite-difference grid, permitting the use of

twenty mesh lengths h across the main unit channel-width, %,. The selected hole

/l
dimensions are then 22 g 23 = QT in the square hole case, and 23 = 21 with
22 = 21/2 in the narrow hole variety. In all instances a hole-depth 23 = 29

is found quite adequate to provide stagnation at the bottom of the hole.



3. Discussion of the results

The results are discussed in the light of the published literature, indicating
the main points of computational difficulty and the manner im which they are
overcome. Numerical solutions for pe calculations have been found by Malkus (21)
for the creeping flow of SOE fluids. This work presented results for the ratio
P, * v1 as a function of depth: width ratio of the hole, both for Poiseuille
and Couette flows. The numerical method used is the finite element method (FE)
though the flow conditions are restricted to R = 0 only. More recently, Crochet
and Bezy (22) have used a new finite element technique to study Poiseuille flow
of both Newtonian and Maxwell-type fluids across holes. Only a limited
number of these results are given, over which the authors express their concern
due to the numerical error involved. These provide an extension to the range
of ipertia and elasticity beyond creeping flow and Second-order behaviour respectively.
Townsend (23) has also done some similar work using finite difference technigues
(FD) to investigate the Poiseuille flow of a SOE fluid (at fixed W) across various
shaped rectangular holes for a range of inertial values. This work has been
extended by Richards and Townsend (24) recently to alsb cover implicit Oldroyd-
type models (see also Jackson and Finlayson (25) for further reference).

The results of the present study are catalogued in tables 1 - 5, where use
is made of a correction for the inertial and Newtonian terms to compute a ratio
6 , based upon the relationship in equation (1) (cf.(23,24)). All present hole-
pressure theory relies entirely upon the non-Newtonian term (3) of equation [9].
It is unfortunate that, unlike for the SOE, no general rule exists by which
the kinematical terms {11 and [2] may in some sense be correlated for an elastic
fluid with those of an "Equivalent" Newtonian fluid. The obvious correction
the elastic fluid results would then be simple to achieve. The approach adopted
is to compute each individual term of equation (9] and calculate the ratio 6
from the third term only. Inspection of the remaining terms provides an indication
of the necessity and reliabilitv of the correction used. The ratio 6 is defined

as
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It is now a well known result that the corresponding first normal-stress
difference for models of type equation [3) in a steady simple shear flow with

local shear-rate q (cf.Walters (26) ) is

v1 = ZWQ2 8 111

It is important to notice that some discrepancy is expected between the
numerically estimated shear-rate qa on hole-centreline and the theoretically

equivalent wall shear-rate in fully-developed flow gp. Hence, even if assumption

a

(ii) of the Tanner-Pipkin theory is satisfied, it is unreasonable to expect vy

to be equal to qu. This remark is illustrated by the inclusion of both
alternatives in the tables of results.

As mentioned in the assumptions of the Tanner-Pipkin theory, the geometric

dimensions of the hole and channel are expected to affect the computation of P

The ratio 22 : 21 is of crucial importance. This ratio dictates the degree

of deviation of the flow about the hole-centreline from fully-developed form.

This in turn effects the relative magnitude of about the centreline and

5s™Y
X
consequently 6. The observation is made that, under eguivalent flow conditions, the
narrow hole geometry (in contrast to the sguare hole variety) always renders less
distortion to the symmetrical creeping flow streamline pattern with the introduction
of R and W effects. Therefore it is no surprise that the Po values for the
narrow hole case correlate more closely to theoretical predictions than do those for

the square hole. In addition, the hole-depth 2 has relatively little effect

8
upon pe. The flow proves virtually stagnant beyond a depth about equal to the
channel-width 21. These remarks are all in broad general agreement with the
findings of other authors (23,25).

A major complication in the computation of Pe is found to be its relatively

small size in contrast to the overall pressure field: typically, pe < 1% ”p(x,yHL



This is borne out by the Pg tables of Townsend, where difficulties arising because
of small centreline values are overcome by averaging over top-plate and hole-bottom
surfaces, thus simulating the pressure transducer's action. The centreline station
of application is thus abandoned to attain measurability. This indicated the need
for a careful examination of the stress fields involved for different mesh sizes

(h = 0.1, 0.05) in the present study also. A comparison between the equivalent
stress fields for the SOE and Maxwell models under second-order creeping flow
conditions (cf. (16,26)) identified the following effects. The relative magnitudes
of the normal components p‘ii are approximately equal to the non-Newtonian
constituent equivalents Sii » which dominate the elastic solution. Such matching
deteriorates in the shear stress components p,xy and sV » where the solution is

dominated by the Newtonian contribution leaving s*Y an order of magnitude lower

than s'! On a relatively course mesh, a discrepancy is evident in the Sxy fields
of these two equivalent models and indicates the nature of this major numerical
difficulty. It is shown that this complication may be effectively surmounted by

the generation of sufficiently refined discrete solutions.

Concentration is centred upon results for the narrow hole and Poiseuille flow
to test the Higashitani-Pritchard extension to the Tanner-Pipkin theory. In general
these compare favourably with those of other workers (22-25). Under creeping
conditions, the theqretical result of 0 = 0.25 1is obtained to two decimal places
for the SOE model at W = 0.025 , whilst the results for the Maxwell model are
0.22 < 6 £ 0.24 for 0.025 < W £ 0.1. Particularly prevalent here is the decrease
from the theoretical value as the degree of elasticity increases (cf. table 1). To
display numerical noise involved, Po results are also presented for the SOE
model and R = 0 , using the "Equivalent” Newtonian velocity field. The ratio
6 1is found to alter negligibly from R = 0 to R = 1. The streamline patterns
are also found to change negligibly for R < 1 and equivalent models and W
values (cf. (17)). This is in agreement with (23) for low W values and
(22,24,25) for higher W values. It therefore appears a reasonable

experimental approximation to utilise slow flow and an "Equivalent” Newtonian



10 -
correction to determine P for some elastic fluids, and hence also W from tables

such as 1-5. Attention is drawn to the 8 wvalues generated from and the close

9A
proximity of these values to the results of (24), where Qp - and not a, - is also
used.

The situation is somewhat different for the case R = 10 , where inertia

shows significant modification to the streamline patterns. The P, ratios

become © 0.16 for the SOE model and for the Maxwell model 0.13 £ 6 < 0.15 for
0.025 < W < 0.1. Crochet and Bezy (22), and Townsend and co-workers (23,24) also
report similar findings. The experimental work of Higashitani and Lodge (27) for

polymer solutions confirms the credibility of such results i.e. to within 20%

of Py = -D.18v1A

Finally, the departure from the Tanner-Pipkin theory is thus confirmed both
due to inertial and elastic effects, with the former proving more dominant under
the stated test conditions. Under such conditions, the extended theory of Higashitani
and Pritchard is found to be inappropriate, though a close relationship between Po

and v

1 appears to emerge dependent upon the combination (R,W). The opposing

streamline asymmetries generated by inertial and elastic effects can be clearly
seen in the flow visualization work of Cochrane et al. (17) (cf. (24) also].
This type of asymmetrical response due to elasticity is reported but not understood
by Hou et al. (14).

These conclusions agree with the current work of Malkus and co-workers (28],
who have approached the problem from a different slant, namely the direct study
of the Higashitani-Pritchard integral relationship between pe and v1. This
integral can be related to the Tanner-Pipkin form of equation (1}. These workers
argue that deviation from the predictions of Higashitani and Pritchard is due
to the following: that their calculated history-dependence violates the Higashitani-
Pritchard basic assumption that the state of stress on the hole-centreline is one
characteristic of a shearing flow. Particle histories are then not shearing
histories, even with perfectly symmetrical streamlines, as may conceivably arise

when the opposing non-linear effects of inertia and elasticity exactly balance!



The force of this argument is minimised as ideal creeping flow is approached for
which the SOE model becomes completely general (cf. (26)), hence justifying slow
flow situations yet again.

A recent study has been conducted by Lodge (8) into Newtonian ligquid Pg
values at small R wvalues. This study is of interest both for testing apparatus
design for pe measurement and for subracting inertial contributions to pe for
non-Newtonian liquids. Lodge summarises the values found by researchers in a

table comparing 6 = - p /o,Rel for values of Reynolds number Re = pf%_ %, q2/4c
e . e A 271 A A

less than 10 (where GA denotes the wall shear stress and Re = %Rquz).

The results of the present study for Newtonian liquids are presented in table 5
to facilitate direct comparison. The Poiseuille flow result of 58 = -0.032 at
Re = 1 1is very close to the calculated values attributed to Crochet, Jackson
and Finlayson, and Malkus, though it differs from that of Richards and Townsend.
There is also close correlation at Re = 10 of the result 69 = -0.024 with
the only result (experimental) quoted by Lodge which is for a circular shaped hole.
The Couette flow results of table 5 lie within similar ranges as those for
Poiseuille flow, but appear to show little sensitivity to changes in Re and in
general, it is felt, cannot be closely relied upon. The overall quality of agreement
of the results of table 5 with those of others is very good, with the one exception
of the findings attributed to Han and Kim. This is encouraging as far as the
determination of realistic inertial corrections to De for non-Newtonian 1iquids
is concerned.

The full hole-pressure story emerges from tables 1-5. The effect of hole-
width : channel-width ratio is suitably reflected and the decrease in the order
of magnitude of the quantities in guestion for Couette flow is apparent. The

Couette flow results reported surprisingly show values closer to theoretical

6
%

prediction than eqa. This anomally arises through the over-estimation of v?

and the small values involved in such instances. It is this author's experience



that planar Couette channel flows are a bad test case for numerical Py calculations.
This does not, however, appear to generalise to all Couette flow situations, as

shown in the wark of Broadbent and Lodge (4).



4., Conclusion

A detailed study of the different contributions to Pg reveals
serious numerical difficulties involved in its computation. The Tanner-Pipkin
theory is confirmed under creeping flow conditions, whilst the speculative
extension of Higashitani and Pritchard receives only limited ratification.
There is always departure from the Higashitani-Pritchard theory beyond second-
order creeping flow conditions: agreement simply worsens with increase in R
and/or W. Taken in combination with an appropriate "Equivalent" Newtonian
correction, the Higashitani-Pritchard theory does, however, appear a feasible
experimental approximation for slow flows. Hence some justification is derived
for the estimation of elasticity from the measurement of Pg for some elastic
fluids. A close relationship appears to emerge between Pg and Vi though,

in general, it is dependent upon the combination (R,W).

The hole-width to channel-width ratio has a significant effect upon
Py » whilst the hole-depth has negligible effect for depths greater than
the channel-width. These comments are in broad general agreement with the
findings of most other workers in the field. Also avoidance of Couette-type
planar channel flows is strongly recommended in pe calculations due to the

severe numerical difficulties that are so often encountered in such contexts.
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Legend

Figure 1. The Flow Geometry,

Table 1. pB v v1 : Poiseuille Flow and Narrow hole geometry .
Table 2. pe v v1 : Poiseuille Flow and Square hole geometry .
Table 3. Pe v v1 : Couette Flow and Narrow hole geometry .
Table 4. Ps v \)1 : Couette Flow and Square hole geometry .
Table 5. 6 v Re : Newtonian liquids.







Hole-pressure ) v first normal-stress ditference v
p Pg 1

POISEUILLE FLOW  NARROW HOLE GEOMETRY (%, =1 , %, = .5 , £, = 1)
( P )
FLUID THEOR. | NUMER. NON-NEWT . NEWT. NEWT . g 5
MODEL (v ), | (-v)) NON-INERT. | NON-INERT. | INERT. ap a,
@ TERM 3 TERM 2 TERM 1
NEWT .
W=0 0 0 0 -.0037 0 . .
SOE -1.6286 | -.4037 | -.0037 =224 | .248*
W=.025 | -1.8 2176257 17273070 0236 0 226 250F
MAX
W=.025 | -1.8 -1.6259 | -.3942 0168 0 219 243
MAX
W=.05 -3.6 -3.2506 | -.7585 .0012 0 .211 .233
MAX
W=.1 -7.2 -6.5079 | -1.4563 -.0295 0 .202 .224
(a) R =0
r
NEWT
W=0 0 0 0 -.1365 .2825 - -
SOE
W=.025 | -1.8 -1.6267 | -.4054 = 1063 .2848 275 .249
MAX
W=.025 | -1.8 -1.6263 | -.3907 -.1259 .2854 .217 .240
MAX
W=.05 -3.6 -3.2497 | -.7575 -.1503 .2895 .210 kL
MAX
W= .1 =7 2 -6.4990 | -1.4631 -.1704 .2971 .203 .225
(b) R = 1
NEWT
W=0 0 0 0 -.8607 2.0539 " .
SOE
W=.025 | -1.8 -1.6477 | -.2547 ~.9618 2.0859 | .142 .155
MAX
W=.025 | -1.8 -1.6479 | -.2409 -.9671 2.0811 | .134 .146
MAX
W=.05 BLI5 -3.2983 | -.4420 -1.0583 2.0451 | .123 .134
MAX
W= 1 -7.2 -6.6044 | -.8361 -1.1706 1.9243 | .116 127
(c) R = 10

* Newt. v Field T SOE v Field

TABLE 1




Hole-pressure Pe v first normal-stress difference V4

POISEUILLE FLOW SHUARE HOLE GEOMETRY (21 =2, = 84 = 1)

2 3
i P 1

FLUID | THEDR. | NUMER. NON-NEWT . NEWT . NEWT.

MODEL (), | o)) NON-INERT. | NON-INERT. | INERT. By e
' @ | TERM 3 TERM 2 TERM 1 A a

NEWT

W=0 0 0 0 -.0050 0 = =

SOE

W=.025 | -1.8 -1.1938 | -.2940 - .0050 0 .165 .247

MAX

W=.025 | -1.8 -1.1987 | -.2997 -.0012 0 165 .247

MAX

W=.05 B -2.3961 | -.5866 .0174 0 165 .247

MAX

W= -7.2 -4.7986 | -1.1423 .0580 0 .16 .240

(a) R =0

NEWT

W=0 0 0 0 -.2473 .5349 > =

SOE

W=.025 | -1.8 -1.1988 | -.2919 -.2509 .5389 .164 .245

MAX

W=.025 | -1.8 -1.1980 | -.2901 -.2496 .5399 163 .244

MAX

W=.05 | -3.6 -2.3927 | -.5807 -.2453 .5476 163 .245

MAX

W= .0 -4.7757 | -1.1544 -.1922 -.5634 | .162 .244

(b} R =1

NEWT

W=0 0 0 0 -1.1698 3.3270 = =

SOE

W=.025 | -1.8 -1.2875 | -.1145 -1.2483 3.3027 | .087 .091

MAX

W=.025 | -1.8 -1.2879 | -.1166 -1.2574 3.2967 | .067 .09

MAX

W=.05 | -3.6 -2.5817 | -.2194 -1.3493 3.2462 | .063 .087

MAX

W=. -7.2 -5.1884 | -.4007 -1.4348 3.1198 | .058 .079




tiole-pressure Pe Vv Tirst normal-stbress difterence vy

COUETTE FLOW NARROW HOLE GEQMETRY (84 = 1 , £, = .5, 25 = 1)
! Pg 1
(;LUID THEOR. | NUMER. NON-NEWT . NEWT . NEWT . . .
' MODEL (v, 3, | (=92 NON-INERT. | NON-INERT. | INERT. a, a,
a TERM 3 TERM 2 TERM 1
NEWT
W=0 0 0 0 -,0037 0 - -
SOE T.2146__ | -.0356__ | -.0037 o128 _J. . 156"
W=.025 | =2 Z.2150 Z.0359 -.0006 0 .180 167+
MAX
W=.025 =2 -.2146 -.0358 -.0000 0 179 167
MAX
W=.05 .4 - .4256 -.072 -.0005 0 .180 .169
MAX
W=, -.8 -.8384 -.1472 .0009 0 .184 176
(a) R=20
NEWT
W=0 0 0 0 -.0211 .0385 : 3
SOE
W=.025 | -.2 -.2150 -.0358 -.0182 .0392 .179 167
MAX
W=.025 | -.2 -.2145 -.0356 -.0189 .0395 .178 .166
MAX
W=.05 -.4 -.4254 -.0717 -.02 .0398 .179 .169
MAX
W=. &, B -.8378 -.1466 -.0194 .04 .183 .175
(b) R = 1
NEWT
W=0 0 0 0 -.1386 .3135 > =
SOE
W=.025 | -.2 -.2133 -.0274 -.1424 .3144 .137 .128
MAX
W=.025 | -.2 -.2127 -.0272 -.1451 .3149 .136 .128
MAX
W=.05 =, 4 -.4217 -.0547 -.1515 .3138 .137 .130
MAX
W=, -.8 -.8317 -.1135 -.1598 .3111 .142 .136
{c) R =10

* Newt v Field + SOE v Field
TABLE 3




Hole-pressure P,V first normal-stress difference vy
COUETTE FLOW SQUARE HOLE GEOMETRY (21 = 12 - 23 = 1)
! }.Ie !
FLUID THEOR. NUMER NON-NEWT . NEWT . NEWT . 8 9
MODEL [—\H]A [-\H]a NON-INERT. NON-INERT. INERT. qA Sl
TERM 3 TERM 2 TERM 1
NEWT
W=0 0 0 0 -.0028 | O = =
SOE
W=.,025 el -.2544 -.0120 -.0028 0 .060 .047
MAX
W=.02% =2 -.2529 -.0125 -.0033 0 .0B63 .048
MAX
W=,05 -.4 -.4975 |- 0272 -.0026 0 .068 .055
MAX
W=, -.0 -.95392 -.0646 -.0029 0 .081 .067
(a) R =0
NEWT
W=0 0 0 0 -.0289 .057 = #
SOE
W=,025 =2 -.2544 -.0118 -.0293 .0572 .060 .047
MAX
W=.025 ~.2 -.25286 -.0125 -.0297 .05786 .063 ,050
MAX
W=,05 =, 4 -.4964 -.0272 -.0300 .0579 .068 .055
MAX
W=, =<, 8 -.9562 -.0649 -.0310 ,0583 .081 .068
(b) R l
NEWT
W=0 0 0 0 -.1555 . 3866 - =
SOE
W=,025 =2 -.2453 -.0047 -.1601 .3833 .024 .019
MAX
W=.025 =g 2 -.2430 -.0058 -.1618 .3832 .029 .024
MAX
W=.05 -.4 -.4781 -.0142 -.1664 .3811 .036 .030
MAX
W=.1 -0 -.89276 -.0375 -.1807 .3752 .047 .040
(c) R =10
TABLE 4




. P

pe = [OARQJ v Re for NEWTONIAN LIQUIDS (23 = 1)

Flow Type and 22/
A 2 1
Py Hole Shape Re = iRapt, 2 ot
-0.032 Poiseuille - Narrow hole 0.75 1 0.5
-0.027 Poiseuille - Narrow-hole 7.5 10 0.5
-0.032 Poiseuille - Square hole 1.5 1 1
-0.024 Poiseuille - Sguare hole 15 10 1
-0.035 Couette - Narrow hole 0.25 1 0.5
-0.035 Couette - Narrow hole 2.5 10 0.5
-0.028 Couette - Square hole 0.5 1 1
-0.023 Couette - Square hole 5.0 10 1

TABLE 5
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