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1. INTRODUCTION

In an earlier report (15/85)*we showed that the Moving Finite
Element (MFE) method in one dimension may be regarded as a two-step
procedure, consisting first of a projection into each local element
subspace, followed by an explicit transfer of the elementwise infarmation
thus generated onto the nodes. We also showed that in the case of
MFE in higher dimensions, or for fixed finite elements (FFE) in any
number of dimensions, the second step leads to a sclution which is
inconsistent with the continuity of the underlying functiocn and a
further projection is needed. For details see the original report.

In the 'Constraints' section of the same report it was shown
how to incorporate a linear constraint on the nodal motions into
the method, giving an elaborate formula for the solution in such a
situation. In particular, the FFE method can be regarded as MFE
with the nodal positions constrained not to move, and the FFE equations
are regained in this case.

In the present report we give a simplified account of the
incorporation of constraints into the method, and link the idea in
with the projections themselves. Later we explore the possibilities of
the use of constraints in two practical situations, those of convection

diffuslon and of non-linear heat flow.

2, CONSTRAINTS
All the methods discussed here (including the FFE method
and unconstrained and constrained MFE methods) start, in the case of

the partial differential equation

u, = Lu B (2.1)

*see Baines (1985c)



with the projection of Lv (where v is the piecewise linear
finite element approximation to u) into each local element subspace.
Suppose that the element k supports d+1 element basis functions

¢Kv' v=12,...,d+1, where d is the dimensionality of the problem.

Projection of Lv into the subspace S¢ spanned by the ¢Kv
k

leads to the approximation

NN (2.2}
v
where, in the case of an L2 projection, the ka are given by the
normal equations
Ckﬂk =-Ek 5 (2.3)
say, where Ck = {Ckuv}’ Ckuv = <¢ku’¢Kv>’ W = {ka} and
b = {bkv}, by, = <¢KV,LV> . Globally
Cw = b (2.4)
where C = {C } WT = {w,} bT = {b,}. The matrix C is block
kK™ — N —K
diagonal in (d+1) x (d+1) blocks.
The .ﬂk's give information about the element motions (see
Baines (1985b)). Transfer of this information on to the nodes is
effected simply in one-dimensional MFE by solving, for each node Jj,
the pair of eguations
8. - m, 18, = w,
] j-373 j-3,2
(2.5)

where [éj,éjJ are the components of the nodal velocity, and m = Ve

is the (constant) slope of the approximation in an element. These

eqguations can be written in the matrix form



M9, = w, (2.6)
Ji' —J

where yT = [éj,éj], etc. Globally we have

My = w (2.7)
where QT o {ig} p EJ = {ﬁ;}' Combining (2.4) and (2.7) yields

CMy = b (2.8)
or

memy = mb . (2.9)

The point of the last operation is to achieve the form (2.9),

which is the standard form of the MFE equations (see Miller (1981),
Wathen & Baines (1985)) with the structure of the mass matrix made
clear. This matrix structure (in one dimension) has the remarkable
property that, when preconditioned by the inverse of the diagonal, its
eigenvalues are simply %- and g- (repeated N+1 times, where N+1
is the number of nodes) (see Wathen & Baines (13985), Wathen (1385)).
The matrix form MTCM may be regarded as "assembling” the

elementwise matrices in C by the MFE assembly matrix M.

In higher dimensions a similar structure is obtained. The
difference lies in the matrix M, which is now rectangular. Because
of the inequality between the total number of elements and the total
number of nodes in higher dimensional meshes the vector w 1s longer
than _i, so that (2.7) does not have a g_ sélution for general .ﬂ.
Indeed, a constraint is now needed on ﬂ to make it lie in the range

gpace of M. The way solutions are obtained is to use the special faorm

(2.9), which is eqguivalent to minimising

My - W (2.10)
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il
in the L2 norm with weight C*. This is the second projection

referred to in the introduction. The resulting eguation (2.9) gives
again the standard MFE equations. This time we can show (Wathen (1885))
that the eigenvalues of the matrix MTCM, when preconditioned by the

inverse of the diagonal, lie in the interval [%u 1 + gJ, where d

is the dimension of the problem. The pre-conditioned matrix is readily
inverted using the conjugate gradient method.

This summary of the MFE method and its solutiocn procedure is
needed so that we can incorporate (fairly) general constraints into the
method. In the above there was in general no valid Yy corresponding
to w in (2.7) and a restricted set (2.9) of equations (2.8) had to be
solved. Consider now the FFE method from this point of view. In this
case Yy = {éj} since the éj =0 VYj. Even more strongly there is now

no valid y corresponding to w and for a solution for y we require

W to lie in the range space of L where L = {Lj} and Lj = [ﬂ

("half" of the matrix Mj]. The solution is obtained by solving

Loy = L'b (2.11)

(c.f. (2.9)), a restricted set of equations based on minimising

1
Ly - w 1in the L2 norm with weight C*. The equations (2.11) are the

standard FFE equations.
We turn now to more general constraints. Suppose that some

elements of Y are constrained to be linear functions of other

elements of y. Then we may write

*

Y =Ry (2.12)

*
where y  contains the unconstrained elements of y. An example might

be the constraint that one of the yj should move with the average of

*
the speed of its neighbours. If i_ can be evaluated, all the elements of
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y are obtained from (2.12). Substituting (2.12) into (2.7) we

obtain

*

MRy = W (2.13)

and, by analogy with previous arguments, for a solution y* to
exist the vector w must lie in the range space of MR , which is
not true in general. A further projection is therefore again necessary

and this time we minimise
*
[IMRY - wl| (2.14)

1
in the L2 norm with weight C?®. This leads to the eguations

(M) € MRy = (MR)'b (2.15)

(c.f. (2.8)). The particular advantage of this form is that the
eigenvalue property mentioned above goes over to these eqguations (see Appendix).
Therefore, using pre-conditioned conjugate gradients (see Wathen (1885)),
(2.15) can be readily solved for iﬁ, and (2.12) used to generate Y.
Apart from the contraints which are built in to the MFE method
in dimension éreater than one and those for FFE, we mention now some
others.
(i) Boundary conditions
The effectp of the outside world on a problem (known as boundary
conditions) give constraints on the elements'of y. For example
a Dirichlet condition at a fixed boundary S gives two constraints
éD = éo = 0, which hold for all time. These can be modelled by
(2.12).
(ii) Parallelism
If mj_% = mj+% in (2.5) or (2.6), M in (2.7} becomes singular
and a special procedure is needed. It has become standard to

temporarily fix éj = 0, solve a reduced system of eguations and to



add a multiple of the null space of M to force éj to take

some average of the speeds of its neighbours. Suppose we reverse

this procedure. First force éj to be the prescribed average.

This determines R in (2.12). Then, solving (2.15) with (2.12},

automatically contrives the constraint and avoids the singularity.
(iii) Shocks

More generally the constraints are prescribed (and are non-zero)

so that (2.12) takes the form

*

Yy =Ry + 8 (2.16)

In that case (2.15) becomes

rR)TctMR)y” = (R T - (MR Tems (2.17)

A special example of the inhomogeneous form (2.16) arises when
nodes overtake in a scalar hyperbolic problem. The approximate
solution v bhas the form of an overturned manifold, and this
unphysical behaviour is restricted by applying a constraint at the
moment of overturning (see Baines (1985b)). The simplest
description of the constraint is that the rotation of the element
is stopped or "frozen"” at this instant. In practice the constraint
equations (in one dimension]) are

5,= 8, ° Py ~ Tl (2.18)

J J+1 aj+1 - aj

corresponding to the usual jump condition for shocks. This
constraint is of the form (2.16) with R=0. In higher dimensions

however the full form of (2.16) is required.



(iv) Steep fronts.
In problems with diffusion present node overtaking and shocks
are non-physical and some form of constraint must be devised.
Indeed, although the MFE method, being close to a method of
characteristics (see Baines (1985a), Wathen (1884]), is
particularly suited to advection processes, it is in a sencse
unsuited to diffusion processes. Where advection and diffusion
occur simultaneously, however, there i1s a case for using the MFE
method with constraints. This was done by Miller (1981) in his
original presentation of MFE using penalty functions. The approach

here is somewhat different.

A direct treatment of second derivatives (from diffusion terms)

is difficult because of the piecewise linear nature of the underlying
approximation v. Even within the usual finite element inner
products a mollifying or recovery argument is needed to justify

the existence of the integrals (see Johnson (1985)). Added to

this is the special difficulty that the nodes cluster in regions

of high curvature where second derivatives are important. When

the additional inaccuracies of finite difference time stepping are
included there is little confidence in the node overtaking phenomena
that occur. One way out is to take very small time steps but there

is evidence that this is an over-restrictive artefact of the method.

An obvious constraint is to limit the nodal movement in such a
way that some average spacing is maintained. Clearly this

cannot be done ocver the whole range (without going back to FFE)
and some selectivity is required. Where advection terms dominate
diffusion terms the flexibility of MFE is clearly demanded, but

where diffusion terms become dominant (in regions of high curvature)



there is a good case for constraining the nodes. It is

therefore suggested that the ratio of these terms is monitored

and, for nodes where diffusion dominates, constraints are imposed.
The type of constraint suggested is the same as that imposed in the
case of parallelism, namely, that a constrained node is moved

at a speed which is the average of its neighbours. Where a

patch of constrained nodes occurs, each node of the patch can be
moved at a speed which is a proportionate average of the nearest
unconstrained nodes. Thus in one dimension a typical éj will

then be of the form

AS, + us,
5 B it , (2.19)
J A+
where s, and s, are the co-ordinates of the nearest

Jt JR

unconstrained nodes to the left and right and

(2.20)

Sk EXAMPLES
The form of the monitor function will differ from problem to
problem. We give here two examples, those of advection-diffusion and of

non-linear heat flow. For the advection diffusion equation

uy + uu = euxx (3.1)

the advection and diffusion terms are uu, and Uy s respectively.

X
These may be approximated by u.m, and e(m, , - m, ;] where
NN J*z J-z
Ej = %[mj_% + mj+%J. The ratio
e (m, -
(mj+% mJ_%J
(3.2)
u, m



is therefore a monitor of the strength of diffusion versus

advection. If this monitor exceeds a certain tolerance, the node

is designated a constrained node and (2.18) applied.

It has been shown by Herbst (1981) that, for a solution with a

shock structure with a jump J, the finite element solution satisfies

This relation can be used to demonstrate that, for ¢ small and

(3.3)

fixed J, large slopes are required in the solution which, if the nodes

are not sufficiently close, manifest themselves in oscillations.

Thus

in applying constraints it is important to allow at least one pair of

nodes to approach to within As . = J/m where m
min. max. max

maximum slope. But the maximum slope, by (3.3), is not greater than

Y(J®/€) and hence s . does not need to be less than V(g /J).

min.

is the

If this minimum spacing is reached by a pair of nodes during the

calculation, they can be constrained at that spacing thereafter and they

will always be able to take up the greatest slope that can possibly

arise so that oscillations need never occur.

The second example considered is that of the non-linear heat flow

equation

[
n

(uu_ )
XX

uz + uu .
X XX

Here the "advection” term is u; and the diffusion term is

that the monitor corresponding to (3.2) is

uu

xx’

S]]

(3.4)

(3.5)
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It is interesting to note that in both cases the test is

an inequality of the form

-m,_; > Klu,,m,) (3.6)
J-z J J

nI=

|mj+
where K 1is some function. The parallelism inequality on the other

hand is

| <k (3.7)

where k is some tolerance. The point of view developed here therefore
suggests that the-curvature, or change in slope, should be neither too
large nor too small in applications of the MFE method and that
constraints (of the same form - averaging the nodal speeds]) should be
applied in both cases.

One further point is that, in a steady state, advection and
diffusion in (3.1) are balanced. It is natural to expect a fully
constrained , i.e. stationary, grid in this case. The monitor (3.2)
should therefore always provide for a co-ordinate constraint when it is
close to unity. OFf course there is the implication here that linear
diffusion problems should not be treated by MFE, but by FFE.

The constraints may in all cases be taken to be of the form (2.13)
which, when written in the form (2.12), provides the R which is used in

solving (2.15).

4. EXTENSION TO SYSTEMS

For systems of equations the main guestion in MFE is whether
to use separate grids for each component or to. use a single grid.
We demonstrate that single grid methods are constrained versions of the

separate grid method.
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Suppose there are three components to the system so that three
sets of Ww's may be calculated from three equations of type (2.4).
Transfer of this information on to the nodes is effected by (2.5) or
its generalisation. Taking separate grids gives three such forms
of (2.5) (or (2.7)). However, three grids are technically cumbersome

to handle (although easy to solve for the y’s). A simplification

suggested in Baines (4ggsd and implemented in Baines & Wathen ( 1988),
Edwards ( qgg5), is to use a single grid determined by some average.
This seems appropriate when the system is physically such that shocks,
for example, occur simultaneously in all three components {the Euler

gquations).

In this case we take the tripled Mj matrix (2.8} and use the

constraint
geRY
. (1) L(1) L(2) J(2) .(3) .(3)
Where y = {---;a. 35S, 3 N sS. sa, 35S, ;---}
= J J J J J J
and g = Lo.alM,al? 83 e

J J J J

the unconstrained unknowns being those in y*. The form of Rj

(the local block of RJ) is

r1 0 0 0|

Ry = 000 0 1
0 1 0 0

0 0 0 1

00 1 0

0 0 0 1

(4.1)

(4.2)

(4.3)

(4.4)
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and that of [MR]j is

7 0 O —miql
(MR)j 1o o0 0 _mé1) (4.5)
0 17 0O —mEZ)
0 0 O —méZJ
g 0 1 —mES)
_D 0 O —méS]_

c.f. Baines (1985a).
This leads to the method described in Baines & Wathen (1986) and

Edwards (1985).

5. LOCAL MFE

Asin Baines (1885), Baines & Wathen (1986), Edwards (1985) a purely
local MFE method may be generated by replacing the C on the left hand
side of (2.9) by A where A 1s a matrix diagonal in blocks Ak, each
block consisting of the unit matrix IK multiplied by the size (length,
area or volume) of the element k (c.f. (2.3)). The presence of AK

preserves the conservation property of the method while keeping the

connections with other elements local. For example, in one dimension

= 1 B
Cy= 25y Ag = bsy (5.1)

wl=~  wln!
wlN W=
o
-

This corresponds to carrying out the minimisation of the L2 norm

(It is also the result

1

1
of (2.10) with the weight C* replaced by A;.

of a Petrov-Galerkin formulation (see Baines & Wathen (1986)).
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Writing

_ -1 . .
I'K = AKCK , A = diag {Ak}" I = diag [Pk]’ (5.2)

where T is purely numerical, we find that the MFE equations (2.8)

K

become
T . -
MAMYy =MT b (5.3)

Constraints work in the same way as in Section 2. If some elements of
y are constrained leaving the unconstrained elements in ¥*, we

write as before

§ = Ry* (MR A mRy* = R b (5.4)

and the solution via the preconditioned conjugate gradient method is

as efficient as before.

6. TIME STEPPING

In the FFE method, time stepping in the fully discrete method is
a matter of accuracy and stability, the stability often being triggered
by oscillatory behaviour. In the unconstrained MFE method time stepping
is concerned with accuracy but also with node overtaking. The application
of constraints is intended to overcome the limitation of miniscule time
steps which are forced to prevent node overtaking, but full constraints
(FFE) may lead to equally small time steps for stability reasons. It

may be possible to build this into the monitor.
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Vs CONCLUSION

We have shown that prescribed linear constraints may easily
be incorporated into the Moving Finite Element method in a consistent
way . The technique may be described as constrained assembly. In
particular, parallelism, boundary conditions and shocks may all
be described as constraints.

If diffusion is a prominent mechanism in the equation to be
soived these constraints can be used to couple nodal motions, thus
providing a more rapid way of transferring information across the
solution region than would be the case with the standard localised

method.
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APPENDIX

Here we follow the argument of Wathen (1985) to show that
the eigenvalue spectrum of RTAR (see (2.19)), when preconditioned
by its (d+1) x (d+1) diagcnal blocks, lies in the real interval
[%. 1 +-%].

Let

RTAR N RTMTCMR N [MRJTCMR (A1)

where C is a blocked diagonal matrix (with (d+1) x (d+1) blocks]).
Let D be the matrix of diagonal blocks of RTAR and consider the

matrix

RTAR - AD = (MR)TCMR - AD. (A2)

Now, since C is a rank 1 matrix (see (2.3) et seq.) we can write the

diagonal D as

D = (MR)TDCMR (A3)

where DC is the diagonal of C. Thus, from (A2) and (A3),

RTAR - AD = (MRJTEC—ADCJMR . (A4)

If A 1is an eigenvalue of D_1RTAR there exists from (A4)

an x # 0 such that

o
i

x (RTAR - AD)x (AS)

(MRﬁ]T(C—XDC]MRi

2" (C-AD )z (AB)

where
Z = MRx (A7}

is not zero since MR has full column rank. So if X is an

eigenvalue of D_qRTAR then C - ADC is singular or indefinite.

If therefore we can show that C - XDC is positive definite for



A in. and negatlye definite for_ A > Amax.? then A € [Amin’xmax]'

It remains to. investigate the definiténesé.of‘[ABJ which equals

i PO
E__EK(C—ADCJKEK 5 (AB)

where ET = {El} and C - ADC - {(C—ADCJK}, and it is sufficient to
consider each term of (A8).
For example, in the case of one dimensional linear elements

(see (5.1)) we need only consider

1 1
ZT 5[1_)‘] 5

N 2z (A9)
1 1
5 -ﬁ-(']')\)
and this leads to A L= 3, A = Ew See Wathen [1985) for further
min max 2

details.



