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Abstract

It is argued that for certain ordinary differential equations the
Moving Finite Element (MFE) procedure of Miller closely parallels an
algorithm for obtaining best L2 fits with adjustable nodes, reducing
the magnitude of an L2 norm at each step. By considering other types
of projection in the MFE procedure generally, the sensitivity of the
nodal speeds to the type of projection is also demonstrated. Two
effects are identified. For first order partial differential equations
the presence of u terms generates approximate characteristic speeds
whatever the projection while, for the L2 projection, there is an

additional speed which may reduce an L2 norm.



§1. Introduction

In [1] a simple procedure (called here MBF) was given for
determining the best piecewise linear continuous L2 fit to a convex
function of a single variable, with an extension for obtaining near-best
piecewise linear L2 fits to non—-convex functions. The procedure has
much in common with the Moving Finite Element (MFE) procedure of Miller
[2] as presented by Wathen & Baines [3], Baines & Wathen [4]. In both
procedures best L2 fits to functions are first found amongst piecewise
linear discontinuous functions on an element basis. This information is
then used to generate updated nodal positions. In the case of MBF this
procedure is iterated to convergence. The aim of this report is to

bring out the analogy between the two procedures. In the process we

discuss the nature of the MFE projection and its consequences.

§2. The MBF Procedure

In [1] the following simple algorithm, based on a two-step

minimisation procedure, for finding the best piecewise linear L2 fit

U(x), with adjustable nodes, to a continuous function f(x), is

described.
(i) Set up initial node positions Xj (j =1.2,...,J), perhaps equally
spaced.

(ii) For each element k, corresponding to the interval (xk-l'xk)
obtain 9kf(x), the best L, fit to f(x) 1in element k.
(iii) For each node j, common to elements k-1 and k, obtain a new

nodal position through a displacement 6Xj calculated from

{@k_lf(xj) + 1»1]{_15xj—f(xj)}2 = {eﬁkf(xj) + Mkaxj - f(xj))2 (2.1)



where

Mg = Udyare M = (G -

There are two cases:

(a) if f(Xj) - @k—lf(xj) and f(Xj) - ?kf(Xj) have the same

sign (certainly true if £f(x) convex),

{#5(X,)-9, £(X,)}
- 2.2
L e W (2-2)

0X, =
J

(b) otherwise (near a point of inflection of £(x), say)

(8,1 £(X)+ £(X)-26(X,))

2.3
T - e

X, = -
J

(iv) Repeat steps (ii) and (iii) to convergence.

Remarks:

(a) Steps (ii) and (iii) are individual solutions of two

constrained minimisation problems.

(b) Step (iv) is needed because the best fit requires the

solution of the two minimisation problems simultaneously.



83.

The MFE Procedure

As formulated in [3],[4]., the Moving Finite Element (MFE)

procedure is also a two step procedure having a similar structure to

that of MBF. Briefly described, the procedure is as follows.

For the 1-D partial differential equation

u, = 2(u) (3.1)

with all space derivatives contained within the operator ¢, the

following steps are carried out:

(i) Take the current nodal positions Xj and nodal amplitudes
U‘J? (j = 1.2,....7).

(ii) For each element k, corresponding to the interval (Xk—l'xk)'
obtain 9k$(x). the best L2 fit to Q(Un) in the element k,
where U" is the current piecewise linear approximation.

(iii) For each node j, common to elements k-1 and k, obtain a nodal
speed ij calculated from

K- {9k2(Xj)—9k_1$(Xj)} B
J M1

(ﬁj can then be deduced.)

(iv) Step forward in time, perhaps using explicit Euler time-stepping,
from step (ii).

Remarks:

(2) Unlike the MBF procedure:

1. the MFE procedure is not an iteration procedure but a series

of time steps.



2. There is no interaction between steps (ii) and (iii) provided
that the time step is explicit and requires only ¢(U) at
time level n.

(b) In the non—convex inflection case in which Mk = Mk—l there is a
clear danger of bad numerical conditioning in (3.2). In the MBF
case equation (2.3) then applies but if this were used in MFE it
would no longer satisfy the finite dimensional form of (3.1).

However it would, if solved implicitly, give the same value of

(u-f)p - (u-£)? (3.3)

as (2.1).

§4. A Special Case

In order to analyse the connection between the two procedures we
consider first the application of the MFE procedure of 83 to the

equation

u =-ut f(x) (4.1)

where f(x) 1is convex. Step (ii) of 83 requires @kg(x). the best L2

fit to - U™+ f(x) 1in element k and this is evidently
n
9k$(x) = - Uk(X) + Qkf(x) (4.2)

since Uﬁ(x), the local restriction of U" to the element Kk, is

already in the space of linear functions on the element. Step (iii) of



§3 then gives the speed of node j as

. {—Uﬁ(xj)+9kf(xj)+U§_1(Xj)—@k_lf(Xj)} |

J M My

(4.3)

Since U™ 1is continuous, Uﬁ(Xj) = UE—I(XJ) and (4.3) reduces to

N (O£ (X)) £(X; 1)} 2ondi

%3 L '

the same expression as (2.2).

The form of ﬁj corresponding to the ij of (4.3) or (4.4) is

. . P R P
Oy = = Uy + sl ) &y = - —g (4.5)

which, for At = 1, corresponds in the case of explicit Euler
time-stepping to

U?+1 = w(M + Mk_l))'(j (4.6)
so that the two procedures give identical nodal values also (see
Appendix) .

Therefore the MBF step (2.2), for convex f(x), corresponds to an
explicit MFE step with At = 1. Alternatively, we can say that the MFE
displacement corresponds to an MBF step with a relaxation factor At
inserted into the right hand side of (2.2). Similarly, if At < 1 the
new MFE Uj is sandwiched between the previous (common) Uj and the

next MBF Uj (see Appendix). In either case the MBF or MFE step reduces



the L2 norm of - u + f(x) (see [1]).
Now consider the steady limit of (4.1), ultimately reached by
displacement speeds (4.4) (with corresponding ﬁj's). Analogously, the
MFE steps (2.2) follow the MBF iteration to convergence, although the
path (depending on At) may be different. At the common (steady) limit
we find simultaneously the MFE steady solution and the best fit to f(x)

amongst piecewise linear functions with variable nodes. Observe that,

at convergence,
Wk(f(Xj) = @k_lf(xj) (4.7)

corresponding to the well-known result that the best discontinuous L2
fit to a convex function with variable nodes is continuous [5].

For the more general equation
u, = G(x,u) (4.8)

similar arguments apply so long as the function G(x,u) satisfies

4G aG
.y <O, I * 0, and (4.8) has a steady

solution. Here MBF steps arise from a variational principle

certain conditions, e.g.

J F(x,u)dx (4.9)
where G(x,u) = Fu(x,u) (see [1]. Appendix A).
Jimack [6] has shown that for convex By the MFE method applied

to the equation

(4.10)



leads in the steady state limit to a best fit U to the function g(x)

with adjustable nodes, but this time in the Dirichlet norm, i.e. Ux is
a best piecewise constant fit to g in the L2 norm (see [6],[7]).

Moreover, in this case the steady state best fit is exact at the nodes.
We may summarise the results as follows. In the limit as t ~» ®

we have, in many cases,

(a) if $u = - u + f(x) the nodes seek a best piecewise linear fit to
f(x) with adjustable nodes in the L2 norm, generalising to
Yu = G(x,u). The MBF iteration and MFE procedure with explicit

Euler time-stepping track similar paths, reducing ||u - f(x)||L .
2

(b) if Lu = I - the nodes seek a best piecewise linear fit to

g(x) with adjustable nodes in the Dirichlet norm.

(In (a2), (b). equidistribution of a power of u.os U respectively, is

obtained asymptotically [1],[7]).

We also have, from [8],

(c¢) 1if 4u = H(ux) the nodes follow characteristics approximately

(and move in such a way that Ux in an element remains constant

in time (i.e. f&J.: 0)).

In the next section we combine these ideas, but first consider

another type of projection.
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§5 Other Projections and Nodal Movement

Although the L2 projection is the one everyone uses (following
Miller [2])., it is instructive to replace the L2 projection by the
(continuous) linear interpolant in x (see fig. 1). Then, for the
equation (4.1), since both Uk and 9kf(Xj) are continuous, (4.3)

gives
X. =0 (5.1)

and the method is a fixed node method. Similarly, (5.1) holds for the

equation (4.8) when using a linear interpolant of G(x,u).

L (u)

— ——  w— —

fig. 1

Although it might be argued that in the case of (4.1) or (4.8),
with no derivative terms present, zero nodal speeds are natural and
expected, the choice of projection makes too much difference for
comfort. However, we can make some sense of the situation by

considering the equation

u, + H(x,u.ux) =0, (5.3)
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discussed fully in [8], where the L2 projection is used. Here the

nodal speeds are derived as

_ PHXUM), - 9

X W T,

H(X.U.H) |

(5.4)

where 9kH(X,U.M) is the L2 projection of H(X,U,M) into the space
of linear functions on element k. Even if the projection is changed so
that QkH is replaced by the linear interpolant of H in X we still

obtain the expression (5.4), which approximates the characteristic speed

g% . But if u had been missing from the function H, as in (4.8),
X

the type of projection would have made a considerable difference to the
nodal speed, as we have already seen.

Thus, choosing the linear interpolant projection results in

(a) zero nodal speeds if u  is absent from <u.
(b) Approximate characteristic nodal speeds if u is present.

On the other hand, the L2 projection in case (a) leads to non-zero
nodal speeds which eventually carry U in the steady state into the
best fit with adjustable nodes. The L2 projection in case (b) also
leads to a different approximation to the characteristic speed which has
a degree of best fitting within it, as argued below.

For the not so special case

u, + z Gi(x,u).Hi(ux) =0 (56.5)
i
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of (5.3), the projection of a typical term of %u into element k 1is
@k{G(X.U) H(Ux)} = H(Ux) @kG(X,U) . (5.6)
whether linear interpolant or L2 best fit (since Ux is constant in

each element).

In the case of the linear interpolant projection we have

@k{GH} - Qk_l(GH) e {H(Mk) - H(Mk—l)}G(Xj'Uj) (5.7)
giving a nodal speed

(H(M,) - HO, )

X = G(X,.U,). ~ : (5.8)
37 Me = M1
an approximate characteristic speed. For the L2 projection the
corresponding nodal speed may be written
. [H(M) - B )] _ [$,6(X.U) - #_,G(X.Y)]
X, =%, G(X,U) - + H, =
i Me = My ] Me ~ Mer
(5.9)

where gj = %(9k—1 + @k) and ﬁj = %[H(Mk_l) + H(Mk)]. In this case
the speed is made up of two terms, the first being an approximate
characteristic speed and the second being a speed associated with nodes
moving towards a variable node L2 best fit in the steady limit (if
there is one) (see fig. 2). (Note that the second term vanishes if

G(x,u) 1is independent of x and u or linear in x and/or u.)
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3 intercclant

By fic

jump in interpolant

Z jump in L., fit

fig. 2.

Thus, unlike the example in §4, the near-characteristic nodal
speeds arising from the dependence of <u on u are probably not as
sensitive to the type of projection used, the L2 projection
introducing an element of best fitting.

These results complement the result of Morton (see [9]) that, if
H(x.u.ux) = G(u)ux the MFE procedure for (5.3) carries the best L2
fit asymptotically.

The choice of projection is even starker in the case of the heat

equation

u, =u (5.10)

where, in contrast to the speeds obtained by the L2 projection [8],

(which is equivalent to recovery of u by local Hermite cubics [10]).

the recovery of u by a cubic spline (corresponding to a twice

integrated linear interpolant for uxx) leads to zero nodal velocities.
Again the nodal speeds are highly sensitive to the type of

projection used.
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86. Conclusions

We have seen that the MFE algorithms and the MBF procedure for the

equation

u o =-u+ f(x),
where f(x) 1is convex, are identical if explicit time-stepping with
At = 1 is used or if a relaxation factor of At 1is introduced into the
appropriate step of the MBF algorithm. In each case the key step is an
L2 projection of the function f(x) into the space of piecewise linear

discontinuous functions, minimising

J{S‘}‘f - £(x)}? dx (6.1)

where #f is the projection, which may be carried out elementwise.
More generally, if (6.1) is replaced by a variational principle, and the

minimisation replaced by seeking an extremal of
JF(x.u)dx. (6.2)

where G(x,u) = gg (x,u) satisfies certain conditions, the "equivalent”

MFE algorithm is that applied to the equation

u, = + G(x,u),

where the sign is chosen to facilitate convergence to the steady state

solution.
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The question of the type of projection used is important in this
context. If the L2 projection is replaced by the continuous linear
interpolant in X (where X.U are both piecewise linear continuous
functions), there is no jump in #%G(X,U) at a node and hence the nodal
speed is zero. In other words, the nodal speed is a consequence of the
fact that the projection is L2.

If on the other hand the operator ¢(u) contains u the
presence of Ux ensures a jump in the projection, whether L2 or
linear interpolant. Both give rise to a nodal speed which approximates
the characteristic speed. However, the linear interpolant projection is
simpler, avoiding that part of the nodal speed generated purely by the
L2 projection.

Finally we observed that for the linear heat equation recovery of
the piecewise linear U by a Hermite cubic in each element leads to the
nodal speed obtained from the standard L2 projection, while recovery
by a continuous cubic spline leads to zero nodal speeds. When a convex
source term 8ox is present the nodes move in the standard method to a
steady state in which U gives the best fit to g(x) in the Dirichlet
norm with adjustable nodes [6].

We conclude that L2 projection is not essential to the MFE
procedure (for example, linear interpolant projection will give
approximate characteristic speeds), but if it is used it has the
capability of inducing a best linear fit with adjustable nodes to an
associated function in the steady state and will in many cases move

towards that best fit as time progresses.
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Appendix

Suppose that at iteration level or time level n the nodal

positions and nodal values are X? and U? . MBF seeks
min J{—Unﬂ + £(X™1))2 ax (A.1)
Un+1 Xn+1

which, as far as the next new nodal value is concerned, reduces in the

i’th iteration to

min J((—un+1)i+1 + ()2 ax . (A.2)
(Un+1)i+1
MFE seeks
min J{Ut + UP - £(X™))2 ax (A.3)
U
t

which (with X fixed and explicit Euler time-stepping) is equivalent to

seeking

ntl _.n 2
min J{U_Tt_u + 0% - f(Xn)} . (A.4)
n+1
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With At =1 (A.4) reduces to (A.2), Un+1 becoming (Un+1) and X"
becoming (Xn+1)i .
If At #1 , (A.4) can be written
2

min J{v""1 - f(Xn)} dx (A.5)

Vn+1
vwhere

1 n

nt1 U™ 1 U

\'J = It + [1 - E] (A6)
or, if V' =1U",

™ 2 e vV 4 (1) (A.T)

Thus, comparing (A.5) with (A.2), if At < 1 the MFE nodal value in a

step At corresponds to an averaged (relaxed) MBF iteration step.



