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Summary

The problem of seepage flow through a dam is solved using variational
inequalities and finite element methods. The finite elements used are
(1) linear triangles, (ii) bilinear rectangles (iii) quadratic triangles.
The discretised problem is then solved by (1) Cryer’'s algorithm [11],

(2) Rusin’s algorithm [2]. These methods are compared for cost-effic-
iency by observing the computer time necessary for (a) converging the
value of the functional to be minimised to four significant figures,

(b) converging the position of the free surface to three significant
figures. The conclusign is that it is better to use Cryer's algorithm

but whether linear triangles or bilinear rectangles are better depends

on how the cost-efficiency is measured.



1. Introduction

The problem studied here is that of seepage through a homogeneous, iso-
tropic dam separating two reservoirs at different levels. This gives
rise to a problem where there are two boundary conditions to satisfy on
the free boundary. The standard method of solution has previously been
to begin by guessing the position of the free boundary, and then after
solving the differential equation using ons of the boundary conditions,
to adjust the position of the free boundary toc make the other boundary
condition hold and then re-solve the equation, gdjust again and iterate

towards a solution.

However in 1973 Baiocchi ([3], [4]) introduced a method in which the
domain is fixed and the problem formulated as the solution of a Qariational
inequality. This has two main advantages, firstly it leads to existence
and uniqueness theorems for the solutiﬁn, and secondly the formulation
suggests numerical methods for solution which compete very favourably both
in simplicity of programming and time of execution with the previously

existing methods.

In this paper we consider several different methods of solving the problem

using variational inequalities and attembt to find the most efficient.

Statement of the problem (fig. 1)

(The notation used here is the same as in Baiocchi [11]. In particular

[a, bl 1s a closed interval and la, bl 1is open).

Let a, Yqr Yo be (reall} numbers such that a > 0, P > Y, 2 0, find a
function vy = ¢(x), such that
¢ 1is defined and 'smooth' in [0, a]
(1.1)

¢(0) = Vg3 $la) =y,

such that setting



Q={(x,y) : 0<x<a, 0<y<¢(x)} (1.2)

there exists a function ul(x, y) defined and 'smooth’ in Q, such that

V2u=0 in @ (1.3)
u=y, on [AF]l: u-= y, on [BC]

' (1.4)
u=y on f[CC]

¢

u=y on ﬁﬁ¢ . {1.5)
34 _ 5 on [AB] (1.6)
oy :
ou _ =
3 0 on FC¢ ) (1.7)

Now let us set D = 10, a[ x 10, b[, and extend the function" u contin-
uously in the following way
ulx, v), (x, y) € @
Glx, y) = _ ' (1.8)
y » (x, y] e D\Q
and define the following transformation
b
wix, y) = (d(x, t) - tldt . (1.9}
y

It can be shown (see [31) that the following relations hold::

2 2 2
y1 y1 - y2
EE—- o )
W= s 53 x on JABL |
W = %[y% - y2) on JAFC
- (1.10)
W= %(y% - y2) on [BC]
w = 0 elsewhere on 3D )
V2 = Xg? the characteristic function of & (1.11)
B?T@EE_Ell- If we calculate %% from eq. (1.9) we see that
y=0
$(x)
3w| q
— = u (x, t) = - =
ax y=0 ‘ X k
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where g 1is the discharge of the dam and k the permeability of the

medium. However we also have for a rectangular dam

2 _ 2

Y3 ¥5
atkTm

that is we could write the boundary condition on JAB[ as

Yq

Aot b 8
WS b X

In other problems associated with this one the value of g is an unknown,

and we would have to find some compatability condition which the solution

must satisfy in order to find the true value of g. (See e.g. Bruch [51).

Remark (2). It is obvious from transformation (1.9) that the following

relation holds
(1.12)

wlx, y) = 0 on D\Q
and 1t is also possible to show that (see [31])
wix, v} >0 on @ . (1.13)

Thus the free boundary is uniquely determined from the values of w.

The function w also has the following important property: if we set

+

K ={v: veHI(D); v satisfies conditions

(1.14)
(1.10); v =20 a.e. on D}
then w dis the solution of the variational problem:
Find w € 4 such that
Vw.V(v - wldxdy + | (v - wldxdy = O
D D
+ (1.15)
vV velk

and because of the symmetry of the bilinear form in the inequality (1.15},

w 1is also the solution of the following minimisation problem:

Find w € K+ such that



J+(w] < J+[vJ ¥V Ve X
(1.16)

where J+[v] = 3 (V)2 + | v
D D

This is the problem which we shall be considering.

2.
We now want to compare the following methods of solution of the minimisa-
tion problem:
the region is discretised into finite elements on a regular mesh of
rectangles such that the larger side of each is h. The three different
types of elements used are
(1) linear triangles

(11) bilinear rectangles

(111) quadratic.triangles.
When the equations have been set up using these three different discretisa-
tions we solve them using two different algorithms, the first due to

Cryer [1] and the second to Rusin [2].

Cryer's Algorithm

If A is an n x n, positive definite, symmetric matrix and f 1s a real
n-dimensional column vector, then Cryer's algorithm is a method of solving

the following problem:

Problem 1. Find an n-dimensional column vector v which minimises the

functional
gv) = VA - fly (2.1
subject to v 2 0. (2.2)

The algorithm is a modification of the well known successive overrelaxation

(SOR) technique, and is as follows:



choose an n-dimensional column vector xFO] = {v

(0)
i

(0)

} where v >0

and a parameter w (the relaxation parameter), such that 0 <@ < 2, and

generate a sequence of vectors ka], k =1, 2, -es, by the following
scheme

Sy o T8 e i %13 (K)

1 835 321 841 yo1 214 J

(2.3)
1

v L haxdo, N L vy}

1 i i i
It can be proved (see [1]) that XFKJ +vy as k+» where v is the

solution of problem 1.

Estimation of optimum relaxation parameter

For normal SOR the optimum relaxation parameter can be worked out exactly

(see [6]). We shall denote this by w In this problem however the

A"
cannot be found exactly, but Cryer does show

optimum parameter wopt

that

w <w (2.4)

and we can approximate wopt by Wy e

Rusin'’s Algorithm [2]

This algorithm can be applied to problem 1 together with a system of
constraints of the form
Bv = b | (2.5)

where B is an m X n matrix, as well as the constraint v 2 0.

Here the algorithm is simplified to suit the present problem.

Define the vector § as

5= vA-f (2.6)

(then Si = %V glv) where g(v) 1is defined in relation (2.1)1}.
i

With relation (2.8) we can now define a solution of problem 1 in which the



following conditions hold

z 0

I<

20 (2.7)

| o

0

|<
"

8-
These are just the Kuhn-Tucker conditions for the quadratic minimisation

problem [71].

The simplified version of the algorithm is as follows:

at the beginning of the solution we start with a certain number, say Kk,
variables which we know are strictly greater than zero in the final
solution; we call this the basic set. We then partition the problem

data as in fig. 2.

Then we actually find the values of Vg (the basic set) by solving the
system

AB!B = fB (2.8)

Next for all Jj not belonging to the basic set we calculate

§ =alv. - f, (2.9)

and then find

(=]
"

min &6, - (2.10)
s PR

Now, if GS 2 0 the present solution is optimal, that is it satisfies
conditions (2.7) and is therefore a solution of problem 1. If however
63 < 0 then we include vS in the basic set, rearrange and repartition

‘the problem data and then start again from solving the system (2.8).

Programming the algorithms

We note here that we are searching for a solution in the convex set X
as defined in (1.12), that is w(x, y) must be greater than or equal to
zero everywhere; not just at the element nodes. For the linear and

bilinear elements it is sufficient to insist that the solution is non-



negative at the nodes, but this is not, in general, sufficient for the

quadratic element.

Blowinski [8] remarks that he has used quadratic triangle elements for
the obstacle problem [which is in effect a generalised version of the
problem of seepage flow through a dam]. He considers the two conditions
which would here be equivalent to

(1) wix, y) 2 0 at all interior nodes

(2) wix, y) 2 0 at interior midside nodes
and proVes [8] that for either of these there is convergence to the exact
solution as h -+ 0 provided the angles of the triangular elements are
bounded below by 60 >0 independent of h. This 1is true in the investi-
gation reported in this paper because the triangular elements are obtained
from a regular mesh. In this investigation Glowinski conditions (1} and
(2) have been used and it is interesting to note that in both cases, even
for a very coarse mesh of 8 triangles the solution obtained is non-negative

within each element as well as at the nodss.

Cryer's algorithm presents no problems when programming. If we keep to a
regular mesh, then the matrix has a regular pattern and so the storage
requirements can be cut down considerably, in fact on the Reading ICL 1304

it was possible to run programs with meshes containing up to 10% nodes.

Rusin’'s algorithm presents more difficulty, the main problem being that in
order to rearrange the problem data at the end of each iteration it is

necessary to store the whole matrix.

In order to increase the number of available mesh points, the whole matrix
equation is solved each time by SOR on a regular mesh, but keeping the

non-basic variables equal to zero; hence we use the algorithm



(k+1) _ (k) (K)
vy = vy if vy otoE 0
Sy Fro 2% gen R % 0
a %1 31 %1 1 3=1 %1 1 (2.11)
if vik] #0
1
MUV IR S INC

This means that we can preserve the regular pattern of the matrix.

In going from one iteration to the next the values of the variables which
are already basic do not change very much, so the old basic variables are
used as a starting vector for the next solution, with the new basic

variable initially set equal to that of the nearest basic variable on the

mesh .

The starting nodes used as the first basic set are shown in fig. 3.

3. Results.,

Two different methods (a) and (b) were used to estimate the efficiency of

the numerical procedures.

(a) The value of the functional J°(v) (eq. (1.18)) was calculated for
decreasing mesh sizes, and the method was considered to have converged
if, on halving the mesh, the values of the functional agreed to four
significant figures.

(b) From a more practical point of view the position of the free boundary
was estimated in the following way: 1f, on looking up a mesh line in
the y-direction the last non-zero node was the (i, j)th node, with
value wi,j’ then a quadratic curve was fitted through the points
(i, j - 1), (4, j) and (i, j + 8), where (i, j + 6) is the point
to be found where the function becomes zero (i.e. the free boundary).

and the fact that w, =0 and

Using the values Wi,j-1' Wi,j 1,3+6

E—W = 0, we can then find the value of 6.
Y |, .
i,j+0
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Thus the position of the free boundary was calculated, the mesh lengths
halved and the position of the free boundary was then recalculated. The
method was considered to have converged if the successive positions of

the free boundary agreed to 3 significant figures.

In slightly different problems from this one, s.g. a dam with a sloping
base, another unknown, g, (the discharge) is introduced and Baiocchi [3]

shows that

Thus the boundary condition in equation (1.10) on JABL (fig. 1) depends
on the value of g. The discharge through any vertical section of the
dam must be constant and it might be thought to be a good practical test
of the method to see whether it modelled this correctly. However, for
this problem, as the discharge is included explicitly in the boundary

condition on JAB[L it is always modelled exactly.

The particular values of geometrical parameters for which we present
results are those suggested by Baiocchi [4] as typical for the problem and
are as follows

v, = 3.22, y, =0.84, a=1.62 . (3.1)

However experiments show that the results hold true for a wide range of

parameters.

For this problem Rusin's algorithm did not compare favourably with Cryer's
algorithm. Even the especially adapted form of Rusin’s algorithm takes

approximately 10 times longer to solve the same set of matrix eguations.

It is 1likely though that Rusin would be much more competitive if the matrix
was either full or irregular; rather than a sparse regular matrix. The

reasons for this are two-fold:



1.

(a) Cryer's algorithm would become less effective as we would now have
to store the whole matrix, therefore the number of nodes which we
could use would be reduced.

(b) We would no longer have to worry about preserving the structure of the
matrix, so we could perform the row and column interchanges which
would mean that at each step of the Rusin algorithm we need only
solve the reduced matrix equation.

It also should be noted that Rusin's algorithm (in its original form) can

deal with a more complicated problem than Cryer's algorithm.

The method of discretisation by quadratic elements turned out to be less
efficient than either of the other two discretisations. Although the
number of elements needed to make the method converge by criteria (al) and
(b) above was reduced, the number of nodes needed was increased and con-

sequently the size of the matrix system to be solved was increased.

In order for Glowinski's conditions (1) and (2) to converge to the same
value of the functional it was necessary to use a more refined mesh with
condition (2) than that used with condition (1), although the solutions for
both were always non-nepative everywhere in the region. The refinement
necessary however was only slight and in practice meant a difference of

approximately 1 second in computer time.

Bilinear elements were found to converge much more quickly when using the
value of the functional as a measure of convergence. However for the
position of the free surface both bilinear and linear element discretisations
took about the same time to converge to the solution, and over a wide range
of problem data it was not possible to conclude that one was better than

the other.

This work was suggested by a result in a paper by Bruch, [10] where he
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implies that for the problem of seepage from a channel it is more efficient

to use bilinear rectangles.

Table 1 shows the mesh and times of execution needed in order to obtain

accuracy of four decimal places in the functional.

Table 2 shows the mesh and times of execution nseded in order to obtaln

accuracy of three decimal places in the position of the free surface.



Table 1.

13.

Comparison of linear and bilinear elements by

method (a) (minimisation of functional)

Type of elt Mesh Time of Value of J+[v]
Execution
Linear 24 x 3B 31 secs 12,9385
Bilinear 14 x 21 13 secs 12.8372
Table 2. Comparison of linear and bilinear elements by

method (b) (position of free surface)

Type of elt Mesh Time of
Execution
Linear 20 x 30 22 secs

Bilinear 18 x 27 24 secs
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Partitioning for Rusin's Algorithm

Figure 2.
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Starting nodes for Rusin's Algorithm

- Figure 3.

il <]

o
o W e e . m o



